Science.gov

Sample records for pilot-scale cryogenic separation

  1. Multiloop control of a pilot-scale membrane system for gas separations

    SciTech Connect

    Henson, M.A.; Koros, W.J. . Dept. of Chemical Engineering)

    1994-08-01

    Membrane systems are preferred for many separations due to their low energy consumption, reduced environmental impact, cost effectiveness at low gas volumes, low maintenance costs, space and weight efficiency, and ease of operation. A multiloop control system for a pilot-scale membrane separation process is designed and evaluated. The process employs hollow fiber membrane modules and is representative of air separation systems in industry. The decentralized control system originally consists of five PID controllers which regulate feed flow rate and pressure, permeate pressure, suction pressure, and module temperature. This configuration yields poor performance as a result of interactions between the feed flow rate and feed pressure controllers. By disabling the flow rate controller and proper tuning of the remaining control loops, satisfactory control is achieved during 4 days of continuous operation.

  2. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    SciTech Connect

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  3. Separation of Corn Fiber and Conversion to Fuels and Chemicals: Pilot-Scale Operation

    SciTech Connect

    2006-04-01

    This project focuses on the development and pilot-scale testing of technologies that will enable the development of a biorefinery capable of economically deriving high-value chemicals and oils from lower value corn fiber.

  4. Separation efficiency in a whirlpool surface tension separator, separating faeces and toilet paper for nutrient recovery--pilot-scale study.

    PubMed

    Vinnerås, B

    2004-01-01

    The main proportion of the plant nutrients in waste from society can be recycled in two unpolluted fractions if the urine and the faeces are collected separately. By using urine-diverting toilets combined with a whirlpool surface tension faecal separator, it is possible to achieve this. If the separator is installed correctly, with a gradual bend to minimise disintegration of the particles, it is possible to collect approximately 92% nitrogen, 86% phosphorus and 76% potassium of the content excreted in the faeces in a small separated fraction that only contains 10% of the flushwater used. The faecal separation is a robust system with no moving parts, which is not significantly affected by the flushwater volume, and almost no water is separated to the separated solids if neither toilet paper nor faeces are flushed.

  5. Separation of glycosylated caseinomacropeptide at pilot scale using membrane adsorption in direct-capture mode.

    PubMed

    Kreuss, Markus; Kulozik, Ulrich

    2009-12-11

    A direct-capture anion-exchange membrane adsorption process for the separation of a pure glycosylated (gCMP) fraction of caseinomacropeptide (CMP) was successfully developed at pilot plant scale. The method was evolved using a commercial CMP isolate as feedstock as well as fresh sweet whey from skim milk. The former resulted in a binding capacity (BC) of 0.28 mg gCMP/cm(2) membrane surface with a purity of 97% while the latter afforded a gCMP fraction with a purity of 91% and a BC of 0.21 mg gCMP/cm(2) membrane surface. The main difference was a significant fouling of the membrane adsorber module when the whey was applied, which resulted in a loss of 46% BC after at least five loading/elution cycles. This effect was not observed using the pure CMP isolates and indicates a blocking of the ion-exchange ligands. Triglycerides, as detected by lipid analysis, as well as protein aggregates and casein-flocculates, are mainly responsible for the fouling process. The fouling was decreased using microfiltered whey or by increasing the temperature of the adsorption process. Additionally, a method of repeated elution was shown to decrease the volume of the eluate as well as the NaCl consumption of the elution buffer. The process development further included a desalting and concentration step, which was performed by a 10 kDa ultrafiltration/diafiltration (UF/DF). The efficiency of the UF was strongly influenced by the pH of the solutions and showed best performance at pH 4.1 for the eluate. The residual solution had to be adjusted at pH 6.5 as there was a strong decrease of flux at lower pH levels.

  6. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  7. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  8. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  9. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  10. Cryogenic methane separation/catalytic hydrogasification process analysis. Quarterly report

    SciTech Connect

    Klosek, J.

    1981-08-01

    In both the Rockwell and the Exxon gasification processors, the desired product methane needs to be separated from the reaction products and some of the other synthesis gas products recycled. This separation is not easy and cryogenic methane separation results from the Rockwell process gas at 932 psia and containing 3725 ppM of benzene are reported. The benzene was recovered by partial condensation and carbon adsorption. Other details are given. In the Exxon process three preliminary plant designs for acid gas removal and cryogenic methane separation from the raw gas at 250 psig were evaluated. (LTN)

  11. A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor.

    PubMed

    Jiang, Ke; Zhou, Kanggen; Yang, Youcai; Du, Hu

    2013-07-01

    Fluoride removal by traditional precipitation generates huge amounts of a water-rich sludge with low quality, which has no commercial or industrial value. The present study evaluated the feasibility of recovering fluoride as low water content cryolite from industrial fluoride-containing wastewater. A novel pilot-scale reaction-separation integrated reactor was designed. The results showed that the seed retention time in the reactor was prolonged to strengthen the induced crystallization process. The particle size of cryolite increased with increasing seed retention time, which decreased the water content. The recovery rate of cryolite was above 75% under an influent fluoride concentration of 3500 mg/L, a reaction temperature of 500C, and an influent flow of 40 L/hr. The cryolite products that precipitated from the reactor were small in volume, large in particle size, low in water content, high in crystal purity, and recyclable.

  12. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  13. Pilot-scale test of an advanced, integrated wastewater treatment process with sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER).

    PubMed

    Yan, Peng; Ji, Fangying; Wang, Jing; Fan, Jianping; Guan, Wei; Chen, Qingkong

    2013-08-01

    Sludge reduction technologies are increasingly important in wastewater treatment, but have some defects. In order to remedy them, a novel, integrated process including sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal was developed. The pilot-scale system was operated steadily at a treatment scale of 10 m(3)/d for 90 days. The results showed excellent nutrient removal, with average removal efficiencies for NH4(+)-N, TN, TP, and COD reaching 98.2 ± 1.34%, 75.5 ± 3.46%, 95.3 ± 1.65%, and 92.7 ± 2.49%, respectively. The ratio of mixed liquor volatile suspended solids (MLVSS) to mixed liquor suspended solids (MLSS) in the system gradually increased, from 0.33 to 0.52. The process effectively prevented the accumulation of inert or inorganic solids in activated sludge. Phosphorus was recovered as a crystalline product with aluminum ion from wastewater. The observed sludge yield Yobs of the system was 0.103 gVSS/g COD, demonstrating that the system's sludge reduction potential is excellent.

  14. Cryogenic molecular separation system for radioactive (11)C ion acceleration.

    PubMed

    Katagiri, K; Noda, A; Suzuki, K; Nagatsu, K; Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Ramzdorf, A Yu; Nakao, M; Hojo, S; Wakui, T; Noda, K

    2015-12-01

    A (11)C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. In the ISOL system, (11)CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive (12)CH4 gases, which can simulate the chemical characteristics of (11)CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  15. Cryogenic methane separation/catalytic hydrogasification process analysis. Quarterly report

    SciTech Connect

    Klosek, J.

    1981-02-13

    The objective of this coordinated research program is to obtain the most attractive combinations of acid gas removal, methane separation for the Exxon Catalytic Coal Gasification (CCG) and the Rockwell/Cities Service Hydrogasification processes. The program is divided into nine subtasks with each subtask studying the effect of variation of a key design parameter on the treatment cost of the SNG produced. Progress reports of 8 subtasks are presented. The following are some of the highlights. Subtask 1 - Heat and material balance and equipment sizing was completed for the cryogenic methane separation. The overall material balance is presented in a table. Subtask 2 - Preliminary designs for MEA and DEA gas removal systems were established. Subtasks 3 to 5 - Economic evaluation is in proress. Subtask 6 - The SNG product compressor train was simulated for the case where sufficient SNG fuel is withdrawn from the product compressors to fire the dryer reactivation heater. Subtask 7 - Acid gas removal and cryogenic separation equipment was resized to accommodate Exxon's request for a two-train plant design. Subtask 8 - The Benfield and Selexol systems will be evaluated for acid gas removal.

  16. Investigation related to hydrogen isotopes separation by cryogenic distillation

    SciTech Connect

    Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I.

    2008-07-15

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

  17. Cryogenic methane separation/catalytic hydrogasification process analysis. Final report

    SciTech Connect

    Cassano, A.A.; Hilton, M.F.; Li, T.C.; Tsao, T.R.

    1980-02-14

    The objective of this program was to recommend the most attractive combinations of acid gas removal methane separation systems for the Exxon Catalytic Coal Gasification (CCG) and the Rockwell Hydrogasification process currently undergoing development supported by DOE. The program was comprised of the following tasks. Screening to define the most promising integration scheme for each gasification process; development of a process flowsheet, heat and material balance, P and ID, equipment specification, utility summary, and plot plan for the process combination selected; and preparation of detailed economic and final report. The results of the study are documented in this report. The evaluations were performed using data supplied by the prime coal gasification contractors and the vendors of proprietary acid gas removal processes. This information, combined with Air Products' in-house capabilities in acid gas and cryogenic separation processses, was used to develop process designs and cost estimates for each integrated system. The design based and economic criteria employed in the study are described.

  18. Design concept of cryogenic falling liquid film helium separator

    SciTech Connect

    Kinoshita, M.; Yamanishi, T.; Bartlit, J.R.; Sherman, R.H.

    1986-07-01

    A design concept is developed for a cryogenic falling liquid film helium separator by clarifying the differences between this process and a cryogenic distillation column. The process characteristics are greatly improved by the idea of adding an H/sub 2/ gas flow to a point near the upper end of the packed section. The flow rate of tritium lost from the top is kept extremely low with an adequately short packed section, and the column pressure is reduced to 1 atm. The addition causes no appreciable increase in the protium percentage (approx. =1%) in the bottom liquid flow. A design procedure applying the Colburn-Hougen method is proposed for determining specifications of the refrigerated section. It is shown that the presence of noncondensible helium requires a significantly larger heat transfer area mainly because the mass transfer resistance increases enormously as the condensation of hydrogen isotopes proceeds. Control schemes are also proposed: The tritium concentration in the top gas is controlled by the H/sub 2/ gas flow rate. The pressure rise caused by an increase of the helium percentage within the refrigerated section, which cannot readily be eliminated by changing input specifications of the refrigerant gas, is avoided by increasing the top gas flow rate to release more helium from the top.

  19. Cryogenic methane separation/catalytic hydrogasification process analysis. Quarterly report

    SciTech Connect

    Klosek, J.

    1981-05-01

    The objective of this coordinated research program is optimization of the Rockwell/Cities Service Short Residence Time Hydrogasification (SRTH) and the Exxon Catalytic Coal Gasification (CCG) processes in the acid gas removal and cryogenic areas. Progress reports of eight subtasks are presented along with process flowsheets, heat and material balances and economic evaluation, summarized in tables. Each subtask studied the effect of variation of a key design parameter on the treatment cost of the SNG produced.

  20. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect

    Demmer, Rick L.; Fox, Don T.; Archiblad, Kip E.

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  1. Reducing Relaxation of Hyperpolarized ^129 Xe during Cryogenic Separation

    NASA Astrophysics Data System (ADS)

    Patton, B.; Kuzma, N. N.; Happer, W.

    2004-05-01

    Recent experimental results^1 indicate that the T1 relaxation time of solid ^129Xe is much shorter than previous models had predicted^2 near the xenon melting point of 161 K and at low magnetic fields. This enhanced relaxation is detrimental to commercial xenon polarizers, which cryogenically distill hyperpolarized ^129Xe from a buffer gas mixture. We have measured the fraction of xenon polarization lost during a typical cryogenic collection, using different permanent magnets to vary the holding field from 700 gauss to over a tesla. The results indicate that using a stronger permanent magnet around the cryo-trap is a simple way to increase the final polarization of the pure xenon gas. An additional experiment was conducted in order to determine whether the majority of the xenon relaxation occurs throughout accumulation (possibly as a result of temperature inhomogeneities within the frozen sample) or during the brief thawing time. In pinpointing the polarization loss, this research may suggest new designs for xenon polarizers. 1. Kuzma et al., Phys. Rev. Lett. 88, 147602 (2002). 2. Fitzgerald et al., Phys. Rev. B 59, 8795 (1999).

  2. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  3. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  4. Failure Analysis of a Pilot Scale Melter

    SciTech Connect

    Imrich, K J

    2001-09-14

    Failure of the pilot-scale test melter resulted from severe overheating of the Inconel 690 jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading.

  5. Cryogenic molecular separation system for radioactive {sup 11}C ion acceleration

    SciTech Connect

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.

    2015-12-15

    A {sup 11}C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. In the ISOL system, {sup 11}CH{sub 4} molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive {sup 12}CH{sub 4} gases, which can simulate the chemical characteristics of {sup 11}CH{sub 4} gases. We investigated the separation of CH{sub 4} molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH{sub 4}. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  6. Integrated Cryogenic System for CO2 Separation and Lng Production from Landfill Gas

    NASA Astrophysics Data System (ADS)

    Chang, H. M.; Chung, M. J.; Park, S. B.

    2010-04-01

    An integrated cryogenic system to separate carbon dioxide (CO2) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption, and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation-liquefaction mode while the other is in CO2 clean-up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO2 freeze-out process.

  7. Pilot-scale study of biomass reduction in wastewater treatment.

    PubMed

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  8. Pilot-scale gasification of woody biomass

    Treesearch

    Thomas Elder; Leslie H. Groom

    2011-01-01

    The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...

  9. Liberation characteristics after cryogenic modification and air table separation of discarded printed circuit boards.

    PubMed

    Zhou, Cuihong; Pan, Yongtai; Lu, Maxi; Yang, Changshun

    2016-07-05

    Liberating useful materials from printed circuit boards (PCBs) is challenging because PCBs are flexible and complex in terms of materials and components. In this study, the crushing of PCBs at low-temperature was investigated. The results indicated that when the temperature was decreased to approximately -20 °C, the strength of PCBs decreased and their brittleness increased, making them easier to crush. A double roll crusher was selected to crush the PCBs. The particle size distribution and power consumption were studied under different working conditions. The results showed that the particle size of most of the lumps was in the range 15×20-25×20 mm, and that power consumption was minimal when the frequency of the crusher was 40-50 Hz. A small shredder was used for cryogenic grinding, and it was found that its power consumption strongly depended on the cooling temperature. An orthogonal experiment was conducted, which revealed that a smaller cutter gap and higher rotational speed could achieve higher yield. Furthermore, the results indicated that the air table developed to liberate PCB materials could effectively separate 2.8-0.5mm grade materials. Overall, the results of this study provide an experimental foundation for more effectively recycling discarded PCBs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE

    EPA Science Inventory

    Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

  11. SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE

    EPA Science Inventory

    Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

  12. Pilot-scale fractionation of whey proteins with supercritical CO2

    USDA-ARS?s Scientific Manuscript database

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  13. Pilot-scale semisolid fermentation of straw.

    PubMed

    Grant, G A; Han, Y W; Anderson, A W

    1978-03-01

    Semisolid fermentation of ryegrass straw to increase its animal feed value was successfully performed on a pilot scale. The pilot plant, which could handle 100 kg of straw per batch, was designed so that all major operations could take place in one vessel. The straw was hydrolyzed at 121 degrees C for 30 min with 0.5 N H2SO4 (7:3 liquid:solid), treated with ammonia to raise the pH to 5.0, inoculated with Candida utilis, and fermented in a semisolid state (70% moisture). During fermentation the straw was held stationary with air blown up through it. Batch fermentation times were 12 to 29 h. Semisolid fermentation did not require agitation and supported abundant growth at 20 to 40 degrees C even at near zero oxygen tensions. Fermentation increased the protein content, crude fat content, and in vitro rumen digestibility of the straw.

  14. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    NASA Astrophysics Data System (ADS)

    Willms, R. S.; Taylor, D. J.; Enoeda, Mikio; Okuno, Kenji

    1994-04-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H2, and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is a practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  15. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  16. Pilot-scale testing of microbubble flotation

    SciTech Connect

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1991-01-01

    Fundamental investigations into the effect of bubble size on coal flotation have established that the use of microbubbles can improve the recovery of fine coal during flotation while, at the same time, increasing the rejection of ash-forming mineral matter. When used in conjunction with the quiescent conditions provided by a column, the microbubble flotation process has been demonstrated on a laboratory scale to be capable of producing superclean coal containing less than 1 or 2% ash and very little pyritic sulfur. The main objective of this project is to demonstrate the microbubble column flotation process on a pilot-scale. A 500 lb/hr pilot plant is being constructed for the purpose of: 910 demonstrating the feasibility of the microbubble flotation process for producing superclean coal, (2) collecting scale-up data for designing commercial-scale microbubble flotation columns, and (3) collecting cost data for an economic evaluation of the process. In addition to micronized coal, the process is also being tested on coarse coal and refuse pond material. 20 figs.

  17. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Berdowska, Sylwia

    2016-03-01

    In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process - the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  18. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    EPA Science Inventory

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  19. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    EPA Science Inventory

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  20. Cryogenic methane separation/catalytic hydrogasification process analysis. Final technical report, 23 July 1980-23 September 1981

    SciTech Connect

    Klosek, J.; Gramse, C.J.; Tsao, T.R.

    1981-10-20

    In a continuing effort to further optimize the CS/R (Rockwell) Coal Hydrogasification process and the Exxon Catalytic Coal Gasification (CCG) process, DOE extended the contract study, Cryogenic Methane Separation/Catalytic Hydrogasification Process Analysis (ET-78-C-01-3044). Air Products and Chemicals, Inc. was authorized to perform additional trade-off studies which were of interest to DOE, Rockwell, and Exxon as potential capital and operating cost savings for the two, third generation coal gasification processes. The scope of this contract extension was comprised of two (2) subtasks for the CS/R (Rockwell) process and nine (9) subtasks for the Exxon CCG process. A Task I type screening study was performed for all subtasks. The results of the evaluations are summarized below.

  1. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.

    PubMed

    Rosendahl, S; Brown, E; Cristescu, I; Fieguth, A; Huhmann, C; Lebeda, O; Murra, M; Weinheimer, C

    2015-11-01

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive (85)Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive (83m)Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of (83m)Kr/Xe = 1.9 ⋅ 10(-15), demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  2. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    NASA Astrophysics Data System (ADS)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  3. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Adamson, D.

    2009-05-28

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin hydraulic cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Sixteen of these cycles were completed in the 24-inch IX Column (1/2 scale column). Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 3 times better than the design requirements of the WTP full-scale IX system. The RF resin bed showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. The hydraulic and chemical performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins. The pilot-scale testing indicates that the RF resin is durable and should hold up to many hydraulic cycles in actual radioactive Cesium (Cs) separation.

  4. The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets

    SciTech Connect

    Burchell, Timothy D; Pappano, Peter J

    2010-10-01

    Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variations was noted to be small.

  5. Laboratory to pilot scale: Microwave extraction for polyphenols lettuce.

    PubMed

    Périno, Sandrine; Pierson, Jean T; Ruiz, Karine; Cravotto, Giancarlo; Chemat, Farid

    2016-08-01

    Microwave hydrodiffusion and gravity (MHG) technique has been applied to pilot-scale solvent-free microwave extraction (SFME) of polyphenols from Lettuce sativa. Following the dictates of green extraction and with the aim to save time and energy, the lab-scale knowledge on SFME was exploited for the development of a pilot-scale process. The investigation entailed the optimization of all main parameters (temperature, time, extracted water volume, etc.) and we showed that the polyphenols composition profile under SFME was similar to the classic methods though a bit lower in total content. The energy consumption in the optimized procedure (30min) was 1W/g of fresh matrix.

  6. Variable-temperature cryogenic trap for the separation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1978-01-01

    The paper describes a continuous variable-temperature U-shaped cold trap which can both purify vacuum-line combustion products for subsequent stable isotopic analysis and isolate the methane and ethane constituents of natural gases. The canister containing the trap is submerged in liquid nitrogen, and, as the gas cools, the gas mixture components condense sequentially according to their relative vapor pressures. After the about 12 min required for the bottom of the trap to reach the liquid-nitrogen temperature, passage of electric current through the resistance wire wrapped around the tubing covering the U-trap permits distillation of successive gas components at optimal temperatures. Data on the separation achieved for two mixtures, the first being typical vacuum-line combustion products of geochemical samples such as rocks and the second being natural gas, are presented, and the thermal behavior and power consumption are reported.

  7. Variable-temperature cryogenic trap for the separation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1978-01-01

    The paper describes a continuous variable-temperature U-shaped cold trap which can both purify vacuum-line combustion products for subsequent stable isotopic analysis and isolate the methane and ethane constituents of natural gases. The canister containing the trap is submerged in liquid nitrogen, and, as the gas cools, the gas mixture components condense sequentially according to their relative vapor pressures. After the about 12 min required for the bottom of the trap to reach the liquid-nitrogen temperature, passage of electric current through the resistance wire wrapped around the tubing covering the U-trap permits distillation of successive gas components at optimal temperatures. Data on the separation achieved for two mixtures, the first being typical vacuum-line combustion products of geochemical samples such as rocks and the second being natural gas, are presented, and the thermal behavior and power consumption are reported.

  8. A PILOT-SCALE STUDY ON THE COMBUSTION OF WASTE ...

    EPA Pesticide Factsheets

    Symposium Paper Post-consumer carpet is a potential substitute fuel for high temperature thermal processes such as cement kilns and boilers.This paper reports on results examining emissions of PCDDs/Fs from a series of pilot-scale experiments performed on the EPA's rotary kiln incinerator simulator facility in Research triangle Park, NC.

  9. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    SciTech Connect

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-08-26

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H{sup +}] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  10. Cryogenic separation of CO{sub 2} from the fluegas of conventional coal-fired power plants

    SciTech Connect

    Brockmeier, N.F.; Jody, B.J.; Wolsky, A.M.; Daniels, E.J.

    1995-02-01

    The reduction of CO{sub 2} emissions to the atmosphere is under study because such emissions are believed to contribute to undesired global warming via the greenhouse effect. Several conceptual processes for the capture of CO{sub 2} from power-plant flue gas are listed, with an emphasis on refrigeration and compression as a promising process to compete with amine absorption. At conditions that are industrially achievable (temperature of 170 K and pressure of 5 bar), CO{sub 2} forms a nearly pure solid on cooling from an impure mixed vapor. This study relies on this freezing and purification process to remove 90% or more of the CO{sub 2} from flue gas. Thermal and mechanical integration are used in the conceptual flow sheet to achieve better efficiency. A computerized process simulator, Aspen Plus with Model Manager{reg_sign}, is used to rigorously calculate the material and energy balances for the conceptual process. Key parameters are regressed from the component physical properties of the flue gas and used by the computer in the Peng-Robinson equation of state to quantify the required phase changes of CO{sub 2} solid between vapor and liquid states. Results of process evaluation are given over a range of operating conditions: pressures from 2 to 25 bar and temperatures from 150 to 220 K. This CO{sub 2} separation is shown to be technically feasible by using relatively simple and compact heat-exchange and compression equipment, with an energy requirement of 0.54 kWh/kg CO{sub 2}, even without optimization. For comparison, the energy used by state-of-the-art amine absorption is 0.43 kWh/kg. In spite of the 25% higher energy requirement for a cryogenic separation plant, the expectation is that it should have a 4% lower cost per tonne of avoided CO{sub 2} because it is estimated to require a much lower capital investment than amine absorption.

  11. Pilot-scale tests of HEME and HEPA dissolution process

    SciTech Connect

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  12. Pilot scale fermentation of Jerusalem artichoke tuber pulp mashes

    SciTech Connect

    Ziobro, G.C.; Williams, L.A.

    1983-01-01

    Processing and fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tuber pulp mashes were successfully carried out at pilot scales of 60 gallons and 1000 gallons. Whole tubers were pulped mechanically into a thick mash and fermented, using commercially available Saccharomyces cerevisiae and selected strains of Kluyveromyces fragilis. EtOH fermentation yields ranging from 50-70% of theoretical maximum were obtained in 3-4 days. Several problems regarding the processing and direct fermentation of tuber pulp mashes are discussed.

  13. Synthesis of arsenic graft adsorbents in pilot scale

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Aketagawa, Yasushi; Takahashi, Makikatsu; Yoshii, Akihiro; Tsunoda, Yasuhiko; Seko, Noriaki

    2012-08-01

    Synthesis of arsenic (As) adsorbents in pilot scale was carried out with a synthesizing apparatus by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid monomer (PA), which consists of phosphoric acid mono- (50%) and di- (50%) ethyl methacrylate esters onto a nonwoven cotton fabric (NCF), and following chemical modification by contact with a zirconium (Zr) solution. The apparatus which was equipped with reaction tanks, a washing tank and a pump can produce up to 0.3 m×14 m size of the As(V) adsorbent in one reaction. A degree of grafting of 150% was obtained at an irradiation dose of 20 kGy with 5% of PA solution mixed with deionized water for 1 h at 40 °C. Finally, after Zr(IV) was loaded onto a NCF with 5 mmol/L of Zr(IV) solution, the graft adsorbent for the removal of As(V) was achieved in pilot-scale. The adsorbent which was synthesized in pilot scale was evaluated in batch mode adsorption with 1 ppm (mg/l) of As(V) solution for 2 h at room temperature. As a result, the adsorption capacity for As(V) was 0.02 mmol/g-adsorbent.

  14. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Adamson, D

    2007-01-09

    morphology. The skeletal density of the RF resin in the 24-inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

  15. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Adamson, D

    2006-11-08

    morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

  16. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.

    PubMed

    Hancock, Nathan T; Xu, Pei; Heil, Dean M; Bellona, Christopher; Cath, Tzahi Y

    2011-10-01

    Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOrCs) such as pharmaceuticals, personal care products, plasticizers, and flame-retardants by FO and a hybrid FO-RO system was investigated at both the bench- and pilot-scales. More than 30 compounds were analyzed, of which 23 nonionic and ionic TOrCs were identified and quantified in the studied wastewater effluent. Results revealed that almost all TOrCs were highly rejected by the FO membrane at the pilot scale while rejection at the bench scale was generally lower. Membrane fouling, especially under field conditions when wastewater effluent is the FO feed solution, plays a substantial role in increasing the rejection of TOrCs in FO. The hybrid FO-RO process demonstrated that the dual barrier treatment of impaired water could lead to more than 99% rejection of almost all TOrCs that were identified in reclaimed water.

  17. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    PubMed

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute.

  18. Bench- and pilot-scale sludge electrodewatering in a diaphragm filter press.

    PubMed

    Saveyn, H; Van der Meeren, P; Pauwels, G; Timmerman, R

    2006-01-01

    Electrodewatering is a technique in which pressure dewatering is combined with electrokinetic effects to realize an improved solid/liquid separation and hence increased filter cake dry matter contents. In order to be energy efficient, it is shown that sludge should be dewatered by pressure dewatering to a high extent prior to electric field application, and a sufficient contact time for the electric field must be guaranteed. In order to realize these goals, a bench- and pilot-scale diaphragm filter press suited for electrodewatering were constructed for treatment of sewage and other types of sludges. It was shown that electrodewatering of sludge is a feasible technique, especially for biological sludge types. Other types of sludge are less suited for electrodewatering because of the restricted improvements that can be realized in cake dry matter content and the high electric energy consumption. Furthermore, it was shown in pilot-scale tests that the use of a diaphragm filter press with electrodewatering facilities was very well suited to deliver dry filter cakes of sewage sludge at a moderate energy consumption. Depending on local market prices for investment, operating and sludge disposal costs, this technology may therefore lead to important savings in the sludge management process.

  19. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.

  20. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  1. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Treesearch

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  2. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage

    USDA-ARS?s Scientific Manuscript database

    A pilot-scale (1800'kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organi...

  3. Odour in composting processes at pilot scale: monitoring and biofiltration.

    PubMed

    Gutiérrez, M C; Serrano, A; Martín, M A; Chica, A F

    2014-08-01

    Although odour emissions associated with the composting process, especially during the hydrolytic stage, are widely known, their impact on surrounding areas is not easily quantifiable, For this reason, odour emissions during the first stage ofcomposting were evaluated by dynamic olfactometry at pilot scale in order to obtain results which can be extrapolated to industrial facilities. The composting was carried out in a commercial dynamic respirometer equipped with two biofilters at pilot scale filled with prunings (Populus) and mature compost obtained from the organic fraction of municipal solid waste. Given that the highest odour emissions occur in the first stage of the composting process, this stage was carried out in a closed system to better control the odour emissions, whose maximum value was estimated to be 2.78 ouF S-1 during the experiments. Odour concentration, the dynamic respiration index and temperature showed the same evolution during composting, thus indicating that odour could be a key variable in the monitoring process. Other variables such as total organic carbon (CTOC) and pH were also found to be significant in this study due to their influence over odour emissions. The efficiency of the biofilters (empty bed residence time of 86 s) was determined by quantifying the odour emissions at the inlet and outlet of both biofilters. The moisture content in the biofilters was found to be an important variable for improving odour removal efficiency, while the minimum moisture percentage to obtain successful results was found to be 55% (odour removal efficiency of 95%).

  4. A pilot-scale continuous-jet hydrate reactor

    SciTech Connect

    Szymcek, Phillip; McCallum, Scott; Taboada Serrano, Patricia L; Tsouris, Costas

    2008-01-01

    A three-phase, pilot-scale continuous-jet hydrate reactor (CJHR) has been developed for the production of gas hydrates. The reactor receives water and a hydrate-forming species to produce the solid gas hydrate. The CJHR has been tested for the production of CO{sub 2} hydrate for the purpose of ocean carbon sequestration. Formation of CO{sub 2} hydrate was investigated using various reactor/injector designs in a 72-l high-pressure vessel. Designs of the CJHR varied from single-capillary to multiple-capillary injectors that dispersed (1) liquid CO{sub 2} into water or (2) water into liquid CO{sub 2}. The novel injector is designed to improve the dispersion of one reactant into the other and, thus, eliminate mass transfer barriers that negatively affect conversion. An additional goal was an increase in production rates of two orders of magnitude. The designed injectors were tested in both distilled and saline water. Hydrate production experiments were conducted at different CO{sub 2} and water flow rates and for pressures and temperatures equivalent to intermediate ocean depths (1100-1700 m). The pilot-scale reactor with the novel injection system successfully increased hydrate production rates and efficiency.

  5. Extractive purification of enzymes from animal tissue using aqueous two phase systems: pilot scale studies.

    PubMed

    Boland, M J; Hesselink, P G; Papamichael, N; Hustedt, H

    1991-06-01

    Pilot scale trials have been carried out to assess the feasibility of using PEG-salt aqueous phase systems for extraction and purification of enzymes from animal tissue on an industrial scale. Comminuted bovine liver was used as a starting material, and it was easy to separate a clear upper phase containing proteins of interest from a mixture containing 20% biomass, 15% PEG and 8% phosphate using a disc separator. Similar attempts with decanters were unsuccessful. Second-phase separation was simply accomplished by the addition of salt to the separated, clear upper layer and standing or allowing passage through a disc separator. The method was tested using continuous mixing on the GBF continuous mixing aqueous phase extraction plant, with and without computer control. Good separations were achieved. The enzyme superoxide dismutase was purified using this method yielding a 4-fold purification factor with respect to soluble protein and a recovery rate of 83%, with the enzyme in a clarified solution suitable for further processing by chromatographic methods. The general applicability of this method, its economics and its potential application in industry are discussed.

  6. Organic emissions from pilot-scale incineration of CFCs

    SciTech Connect

    Ryan, J.V.; Lee, C.W.; Korn, S.

    1993-01-01

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichloro-difluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international accord implemented to reduce the production and use of stratospheric ozone depleting substances, considerable quantities of chlorofluorocarbons (CFCs) and halons may be accumulated and ultimately require disposal or destruction. Incineration is a potential destruction technology; however, little is known of the combustion emission characteristics from CFC incineration.) A 293-kW (1 million Btu/h) incinerator was made available to the EPA for the characterization, which focused on determining the destruction efficiencies (DEs) and major products of incomplete combustion (PICs) for each CFC evaluated.

  7. Pilot-scale biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Rajganesh, B.; Sublette, K.L.; Camp, C.

    1995-12-31

    Caustics are used in petroleum refining to remove hydrogen sulfide from various hydrocarbon streams. It was previously demonstrated that spent sulfidic caustics from two Conoco refineries could be successfully biotreated at the bench scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate to Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic. Biotreatment of a Conoco spent sulfidic caustic has now been demonstrated at pilot scale (1000 gal or 3875 L). Results were comparable to those obtained at the bench scale. The economics and design of a commercial system to treat 1 gpm (3.8 L/min) of spent caustic are resented.

  8. Pilot-scale trommel: experimental test descriptions and data

    SciTech Connect

    Bolczak, R.

    1981-09-01

    A pilot scale trommel test at a laboratory in upper Marlboro, Maryland, was initiated to support theoretical work on development of a model performance and to supplement data collected in full scale testing at Recovery 1 in New Orleans. Descriptions and summaries of the project through July 1981 are presented. The feedstocks were identical nearsized flakes and wooden blocks. Three groupings of results are provided. The first group, Feedstock Tests, contains data on feedstock properties. This group includes description of the feedstocks and results of tests on the probability of passage, the dynamic angle of repose, and the coefficient of friction for the test flakes. The second test group on Residence Time and Impingement Tests contains data on the movement of flakes and blocks through the trommel. The last group, Mass Split, Screening Efficiency, and Undersize Distribution contains data on flake and block mass splits to the undersize and oversize products and the axial and sectorial distribution in the undersize. (MCW)

  9. Pilot Scale Tests Alden/Concepts NREC Turbine

    SciTech Connect

    Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

    2003-09-30

    Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

  10. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a {sup 83m}Kr tracer method

    SciTech Connect

    Rosendahl, S. Brown, E.; Fieguth, A.; Huhmann, C.; Murra, M.; Weinheimer, C.; Cristescu, I.; Lebeda, O.

    2015-11-15

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive {sup 85}Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive {sup 83m}Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of {sup 83m}Kr/Xe = 1.9 ⋅ 10{sup −15}, demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  11. Adapting British gas LNG facilities to varying gas compositions: The SELEXOL {reg_sign} process and cryogenic separation

    SciTech Connect

    Dewing, R.A.; Waring, S.; Burns, D.

    1996-12-31

    The original design of the UK National Transmission System (NTS) included five peak shave LNG storage sites strategically located around the country. They now form part of the Storage business that offers gas services to gas transportation companies-these include non British Gas companies as well as other parts of British Gas itself. At these sites, natural gas can be taken from the NTS at the request of the gas transportation companies, treated to cryogenic specifications, and liquefied for storage. LNG can then be re-vaporized and re-injected into the NTS or local mains as required. In this way the whole NTS does not have to be sized for peak rates and increases in demand can be met very quickly. Each peak-shave site was originally designed to handle natural gas with CO{sub 2} levels of up to 1 mol% and with ethane and higher hydrocarbon (C{sub 2}+) levels that needed only limited reduction. However, as different natural gas reservoirs came on stream in the early 1990`s the level of CO{sub 2} and C{sub 2}+ in the NTS network began to rise, and significant modifications were required at four of the five LNG sites. 3 refs., 2 figs., 2 tabs.

  12. Riverbank filtration: comparison of pilot scale transport with theory.

    PubMed

    Gupta, Vishal; Johnson, W P; Shafieian, P; Ryu, H; Alum, A; Abbaszadegan, M; Hubbs, S A; Rauch-Williams, T

    2009-02-01

    Pilot-scale column experiments were conducted in this study using natural soil and river water from Ohio river to assess the removal of microbes of size ranging over 2 orders of magnitude, i.e., viruses (0.025-0.065 microm), bacteria (1-2 microm), and Cryptosporidium parvum oocysts (4-7 microm) under conditions representing normal operation and flood scour events. Among these different organisms, the bacterial indicators were transported over the longest distances and highest concentrations; whereas much greater retention was observed for smaller (i.e., viral indicators) and larger (i.e., Cryptosporidium parvum oocysts) microbes. These results are in qualitative agreement with colloid filtration theory (CFT) which predicts the least removal for micrometer size colloids, suggesting that the respective sizes of the organisms was a dominant control on their transport despite expected differences in their surface characteristics. Increased fluid velocity coupled with decreased ionic strength (representative of major flood events) decreased colloid retention, also in qualitative agreement with CFT. The retention of organisms occurred disproportionately near the source relative to the log-linear expectations of CFT, and this was true both in the presence and absence of a colmation zone, suggesting that microbial removal by the RBF system is not necessarily vulnerable to flood scour of the colmation zone.

  13. Pilot-scale bioremediation of PAH-contaminated soils

    SciTech Connect

    Pradhan, S.P.; Paterek, J.R.; Liu, B.Y.; Conrad, J.R.; Srivastava, V.J.

    1997-12-31

    The Institute of Gas Technology (IGT) conducted a pilot-scale study at a former manufactured gas plant (MGP) site in New Jersey. The objective of the study was to determine the effectiveness of an innovative chemical/biological treatment process (MGP-REM process) to remediate soils contaminated with polynuclear aromatic hydrocarbons (PAHs). In order to identify the benefits of the MGP-REM process, the system was also operated in the conventional bioremediation mode. Results showed that the MGP-REM process can effectively treat PAH-contaminated MGP site soils, and it reduced the toxicity of the soil by a factor of 50, as indicated by the Microtox Toxicity Test. The MGP-REM process was 70% more efficient than conventional bioremediation in the removal of the PAHs from the soils. Air emissions data suggest that minimal air pollution control and monitoring are required for the slurry-phase application of both the MGP-REM process and the conventional biological treatment. Process economics indicate that the MGP-REM process in a slurry-phase mode has an estimated treatment cost of $100/cubic yard for remediation of PAH-contaminated soils. 7 refs., 7 figs., 9 tabs.

  14. Supervisory control of a pilot-scale cooling loop

    SciTech Connect

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  15. SAES ST 909 PILOT SCALE METHANE CRACKING TESTS

    SciTech Connect

    Klein, J; Henry Sessions, H

    2007-07-02

    Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

  16. Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...

    EPA Pesticide Factsheets

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A

  17. Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...

    EPA Pesticide Factsheets

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A

  18. Glycerol production by anaerobic fermentation of molasses on pilot scale

    SciTech Connect

    Virkar, P.D.; Panesar, M.S.

    1987-04-20

    The use of sodium sulphite as a steering agent for enhancing the yield of glycerol during anaerobic ethanol fermentation is well established. Several studies have been reported in the literature using free as well as immobilized cells of Saccharomyces cerevisiae. In these studies it was observed that a relatively high concentration of sulphite in the fermentation broth, typically 40-100 g/l, was required to obtain a commercially significant yield of glycerol on sugar fermented. However, the dosing of large quantities of sulphite generally resulted in reduced viability of the microorganisms and slow fermentations. The glycerol concentration in the fermented broth was generally observed to be in the range 20-40 g/l. The low productivity coupled with the high cost of sulfite rendered the process commercially unattractive. In order to reduce the sulphite requirement, whilst at the same time increasing the productivity, a modified vacuum fermentation was developed in the laboratories. The process was successfully estabilished on a pilot scale and typical data obtained on scaleup are reported below. 8 references.

  19. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  20. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    SciTech Connect

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW

  1. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  2. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  3. Pilot-Scale Batch Alkaline Pretreatment of Corn Stover

    SciTech Connect

    Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.; Schell, Daniel J.

    2015-12-18

    The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinone (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.

  4. Pilot-Scale Batch Alkaline Pretreatment of Corn Stover

    DOE PAGES

    Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.; ...

    2015-12-18

    The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinonemore » (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.« less

  5. A pilot-scale radioactive test using in situ vitrification

    SciTech Connect

    Timmerman, C.L.; Oma, K.M.

    1985-11-01

    Pacific Northwest Laboratory is developing in situ vitrification (ISV) as a potential remedial action technique for previously disposed radioactive liquid drain sites. The process melts the contaminated soil to produce a durable glass and crystalline waste form and encapsulates the radionuclides. The development of this alternative technology is being performed for the US Department of Energy. The results of an ISV pilot-scale test conducted in June 1983 are discussed in which soils contaminated with actual radioactive transuranic and mixed fission product elements were vitrified. The test successfully demonstrated the containment of radionuclides during processing, both within the vitrified mass and in the off-gas system. No environmental release of radioactive material was detectable during testing operations. The vitrified soil retained >99% of all radionuclides. Losses to the offgas system varied from less than or equal to 0.03% for particulate materials (plutonium and strontium) to 0.8% for cesium, which is a more volatile element. The off-gas system effectively contained both volatile and entrained radioactive materials. Analysis of the vitrified soil revealed that all radionuclides were distributed throughout the vitrified zone, some more uniformly than others. Analysis of soil samples taken adjacent to the block indicated that no migration of radionuclides outside the vitrification zone occurred. Leaching studies have shown that the ISV process generates a highly durable waste form, comparable to Pyrex and granite. Based on geologic data from the hydration of obsidian, which is chemically similar to the ISV glass, the hydration or weathering rate is predicted to be much less than 1 mm in 10,000 yr.

  6. Lightweight alumina refractory aggregate. Phase 2, Pilot scale development

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1994-11-01

    Kilogram quantities of refractory aggregate were prepared from both a paste and a pelletized form of extruder feed material in both bench and pilot-scale equipment. The 99{sup +} % alumina aggregate exhibited a bulk density approaching 2.5 g/cm{sup 3} and a fired strength slightly lower than fused alumina. Based on initial evaluation by two refractory manufacturers in brick or castable applications, the new aggregate offered adequate strength with thermal conductivity reductions up to 34%, depending on the temperature and application of the new aggregate in these initial trials. The new aggregate was simply substituted for Tabular{trademark} in the refractory formulation. Thus, there is room for improvement through formulation optimization with the lightweight aggregate. The new aggregate offers a unique combination of density, strength, and thermal properties not available in current aggregate. To this point in time, technical development has led to a pelletized formulation with borderline physical form leaving the Eirich mixer. The formulation requires further development to provide more latitude for the production of pelletized material without forming paste, while still reducing the bulk density slightly to reach the 2.5 g/cm{sup 3} target. The preferred, pelletized process flowsheet was outlined and a preliminary economic feasibility study performed based on a process retrofit into Alcoa`s Arkansas tabular production facilities. Based on an assumed market demand of 20,000 mt/year and an assumed selling price of $0.65/lb (25% more than the current selling price of Tabular{trademark}, on a volume basis), economics were favorable. Decision on whether to proceed into Phase 3 (full- scale demonstration) will be based on a formal market survey in 1994 October.

  7. Two-phase methanization of food wastes in pilot scale.

    PubMed

    Lee, J P; Lee, J S; Park, S C

    1999-01-01

    A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  8. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  9. RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...

  10. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  11. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  12. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  13. Evaluation of the cryogenic helium recovery process from natural gas based on flash separation by advanced exergy cost method - Linde modified process

    NASA Astrophysics Data System (ADS)

    Ansarinasab, Hojat; Mehrpooya, Mehdi; Parivazh, Mohammad Mehdi

    2017-10-01

    In this paper, exergy cost analysis method is used to evaluate a new cryogenic Helium recovery process from natural gas based on flash separation. Also advanced exergoeconomic analysis was made to determine the amount of avoidable exergy destruction cost of the process component. This proposed process can extract Helium from a feed gas stream with better efficiency than other existing processes. The results indicate that according to the avoidable endogenous exergy destruction cost C-4 (287.2/hr), C-5 (257.3/hr) and C-6 (181.6/hr) compressors should be modified first, respectively. According to the endogenous investment and exergy destruction cost, the interactions between the process components are not strong. In compressors, a high proportion of the cost of exergy destruction is avoidable while in these components, investment costs are unavoidable. In heat exchangers and air coolers, a high proportion of the exergy destruction cost is unavoidable while in these components, investment costs are avoidable. Finally, three different strategies are suggested to improve performance of each component, and the sensitivity of exergoeconomic factor and cost of exergy destruction to operating variables of the process are studied.

  14. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine.

    PubMed

    Fumasoli, Alexandra; Etter, Bastian; Sterkele, Bettina; Morgenroth, Eberhard; Udert, Kai M

    2016-01-01

    Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer.

  15. Pilot-scale pressurized base hydrolysis of HMX plastic-bonded explosives

    SciTech Connect

    Larson, S.A.; Brewer, G.R.; Harradine, D.M.; Polston, C.E.; Le, L.A.; Bishop, R.L.; Dell`Orco, P.C.; Flesner, R.L.

    1998-12-31

    A pilot-scale, pressurized, base hydrolysis reactor has been designed and its construction is nearly completed. Up to 120 L of 1--6 M NaOH aqueous solutions will convert as much as 25 kg of consolidated, explosive pieces to non-energetic compounds. Temperatures approaching 155 C in the pressurized unit will reduce reaction times significantly for the destruction of plastic-bonded explosives compared to previous atmospheric-pressure reactors. The hydrolysis effluent is then pumped into a holding tank where it is fed into a hydrothermal oxidation reactor for complete destruction to non-hazardous products. The hydrothermal unit operates at 480 C and 100 MPa and hydrogen peroxide fed into the reactor at two points will ensure complete destruction of all organic species and nitrogen-containing salts. The entire system is comprised of eight major components and is assembled on five separate and transportable skids. Following construction and preliminary testing at Los Alamos National Laboratory, the unit will be shipped to the Pantex Plant where it will be used for continuous demilitarization activities.

  16. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter

    PubMed Central

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M. Suleman

    2012-01-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use. PMID:24415802

  17. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.

    PubMed

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman

    2012-07-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use.

  18. Pilot-scale washing of metal contaminated garden soil using EDTA.

    PubMed

    Voglar, David; Lestan, Domen

    2012-05-15

    Ten batches (75kg each) of garden soil with >50% of silt and clay and average 1935mgkg(-1) Pb, 800mgkg(-1) Zn, 10mgkg(-1) Cd and 120mgkg(-1) As were remediated in a pilot-scale chemical extraction plant. Washing with 60mmol ethylenediaminetetraacetic acid (EDTA) per kg of soil on average removed 79, 38, 70, and 80% of Pb, Zn, Cd and As, respectively, and significantly reduced the leachability, phyto-accessibility and oral-availability of residual toxic metals, as assessed using deionised water, toxicity characteristic leaching procedure (TCLP), diethylenetriamine pentaacetic acid extraction (DTPA) and physiologically based extraction test (PBET) tests. The used soil washing solution was treated before discharge using an electrochemical advanced oxidation process with graphite anode: EDTA was removed by degradation and toxic metals were electro-precipitated onto a stainless steel cathode. The novelty of the remediation technique is separation of the soil from the washing solution and soil rinsing (removal of mobilized contaminants) carried out in the same process step. Another novelty is the reuse of the soil rinsing solution from the previous batch for cleansing the soil sand, soil rinsing and for preparation of the washing solution in subsequent batches. The cost of energy and material expenses and disposal of waste products amounted to approximately 75€ton(-1) of soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  20. Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.

    PubMed

    Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

    2012-01-01

    The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.

  1. Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling.

    PubMed

    Voglar, David; Lestan, Domen

    2013-03-01

    Pb, Zn and Cd contaminated garden soil (5249, 3348 and 20.6 mg kg(-1), respectively) rich with fines and organic matter was washed with a solution of 120 mmol EDTA kg(-1) of soil in a pilot-scale remediation plant operating in a batch (60 kg of soil) mode. After soil washing, the solid phase and used washing solution were separated in a chamber filter press. A base/acid pair Ca(OH)(2)/H(2)SO(4) was used to impose a pH gradient for EDTA recycling from used washing solution and, coupled with an electrochemical advanced oxidation process using a graphite anode, for cleansing and recycling the process water, which was used for rinsing the soil solid phase in the press. On average (5 batches), 75%, 26% and 66% of Pb, Zn and Cd, respectively, was removed from the soil, 71% of EDTA was recycled and no waste water was generated. The variable costs of the novel remediation process (materials, energy but not labour) amounted to 66 € t(-1) of remediated soil. The results of the pilot-scale testing indicate that scaling-up the process to a commercial level is technically and economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    NASA Astrophysics Data System (ADS)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  3. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  4. Foam vessel for cryogenic fluid storage

    SciTech Connect

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  5. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-09-30

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the

  6. Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis.

    PubMed

    Han, S K; Kim, S H; Kim, H W; Shin, H S

    2005-01-01

    This study was performed to optimize both acidogenic hydrogenesis and methanogenesis, and then to develop a pilot-scale two-stage process producing not only CH4 but also H2. Firstly, acidogenic hydrogenesis of food waste was examined in pilot-scale leaching-bed reactors using dilution rate (D) as a tool to improve the environmental conditions. The maximum efficiency of 71.4% was obtained by adjusting D from 4.5 to 2.5 d(-1) depending on the state of degradation. Secondly, the wastewater from acidogenic hydrogenesis was converted to CH4 in a pilot-scale UASB reactor. The COD removal efficiency exceeded 95% up to the loading rates of 13.1 g COD/Ld, which corresponded to HRT of 0.25 d (6 h). Lastly, a pilot-scale two-stage process was devised based on a combination of acidogenic hydrogenesis and methanogenesis. Over 120 days, the pilot-scale process resulted in large VS reduction of 70.9% at the high loading rate of 12.5 kg VS/m3/d in a short SRT of 8 days.

  7. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  8. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  9. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1991-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also termally connected to a reservoir containing the cryogen to further reduce the internal temperature.

  10. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1992-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  11. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect

    Gary M. Blythe

    2006-03-01

    Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  12. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.

    PubMed

    Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R

    2010-05-01

    Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  13. A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation

    USDA-ARS?s Scientific Manuscript database

    A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...

  14. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  15. Removal of Salmonella Enteritidis from commercial† unpasteurized liquid egg white using pilot scale crossflow tangential microfiltration

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of a pilot-scale cross-flow microfiltration (MF) process for removal of Salmonella enteritidis from liquid egg white (LEW) was evaluated. To facilitate MF, 110 L of unpasteurized LEW from a local egg breaking plant was first wedge screened, homogenized and then diluted (1:2 w/w) w...

  16. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  17. PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS

    EPA Science Inventory

    The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...

  18. [Performance and process kinetics of pilot-scale ANAMMOX bioreactor under different water temperatures].

    PubMed

    Tang, Chong-jian; Zheng, Ping; Zhang, Ji-qiang; Chen, Jian-wei; Ding, Shuang; Zhou, Shang-xing; Ding, Ge-sheng

    2010-08-01

    Performance and process biokinetics of the upflow pilot-scale anaerobic ammonium oxidation (ANAMMOX) reactor were investigated at ambient temperature. The results of substrate testing showed that the pilot-scale ANAMMOX reactor operated stably when the influent nitrite concentration reached (380.4 +/- 18.3) mg x L(-1); while the nitrite inhibition occurred when its concentration arrived at (480.5 +/- 21.9) mg x L(-1). The results of shortening of hydraulic retention time (HRT) showed that the HRT could be shortened to 3.43 h, and the nitrogen removal rate was as high as 3.45 kg x (m3 x d)(-1). Temperature was found to affect the performance of the ANAMMOX reactor significantly during long-term operation. The modified Stover-Kincannon model was applied to model the non-inhibition performance of the pilot-scale reactor under different temperature ranges. Good fitting results were obtained. The process biokinetic parameters and effluent substrate concentration prediction equations as well as the substrate removal efficiency prediction equations obtained in different temperature ranges are helpful to the stable operation of the pilot-scale ANAMMOX bioreactor.

  19. Pilot-scale tests to optimize the treatment of net-alkaline mine drainage.

    PubMed

    Jang, Min; Kwon, Hyunho

    2011-01-01

    A pilot-scale plant consisting of an oxidation basin (OB), a neutralization basin (NB), a reaction basin (RB), and a settling basin (SB) was designed and built to conduct pilot-scale experiments. With this system, the effects of aeration and pH on ferrous oxidation and on precipitation of the oxidized products were studied systemically. The results of pilot-scale tests showed that aeration at 300 L/min was optimum for oxidation of Fe(II) in the OB, and the efficiency of oxidation of Fe(II) increased linearly with increasing retention time. However, Fe(II) was still present in the subsequent basins-NB, RB, and SB. Results from pilot-scale tests in which neutralization was excluded were used to obtain rate constants for heterogeneous and homogeneous oxidation. Oxidation of Fe(II) reached almost 100% when the pH of the mine drainage was increased to more than 7.5, and there was a linear relationship between total rate constant, log (K(total)), and pH. Absorbance changes for samples from the NB under different pH conditions were measured to determine the precipitation properties of suspended solids in the SB. Because ferrous remained in the inflow to the SB, oxidation of Fe(II) was dominant initially, resulting in increased absorbance, and the rate of precipitation was slow. However, the absorbance of the suspension in the SB rapidly dropped when pH was higher than 7.5.

  20. PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS

    EPA Science Inventory

    The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...

  1. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  2. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate

    Treesearch

    Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron

    2016-01-01

    The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...

  3. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  4. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  5. ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL

    EPA Science Inventory

    The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...

  6. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  7. ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL

    EPA Science Inventory

    The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...

  8. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  9. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  10. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  11. Summary of pilot-scale activities with resorcinol ion exchange resin

    SciTech Connect

    Cicero, C.A.; Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-10-02

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds.

  12. Pilot-scale treatability test plan for the 100-HR-3 operable unit

    SciTech Connect

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

  13. Pilot scale production of cellulolytic enzymes by Trichoderma reesei

    SciTech Connect

    Warzywoda, M.; Chevron, F.; Ferre, V.; Pourquie, J.

    1983-01-01

    The French substitute fuels program aims at the substitution of part of gasoline by methanol. In order to avoid phase separation of the gasoline-methanol blend, a cosolvant has to be added; one of the most efficient cosolvants is the mixture of acetone and butanol produced by anaerobic acetone-butanol fermentation. The Institut Francais du Petrole is thus implementing a research and development program on the production of acetone butanol from biomass, either sugar crops (fodder beets and Jerusalem artichoke) or lignocellulosic (corn stover and wheat straw). Production of sugars from lignocellulosics is a major part of this program. The enzymatic hydrolysis route, based on Trichoderma reesei cellulolytic enzymes, has been chosen since it does not cause any degradation of C/sub 5/ sugars which are good substrates of the acetone butanol fermentation. Efficient and cheap large-scale production of cellulolytic enzymes is thus a key step in this process. This paper reports on production of cellulases by Trichoderma reesei in a 3-m/sup 3/ pilot fermentor under conditions which should facilitate the scaling-up of the process. 7 references, 2 figures, 2 tables.

  14. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils: LEFPC appendices, volume 1, appendix I-IV

    SciTech Connect

    1994-09-01

    This document contains Appendix I-IV for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are calibration records; quality assurance; soils characterization; pilot scale trial runs.

  15. Cryogenic coolers and refrigerators. (Latest citations from the Patent Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  16. Cryogenic coolers and refrigerators. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  17. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    PubMed

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different

  18. Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process.

    PubMed

    Wang, Bin-Yuan; Chen, Zhong-Lin; Zhu, Jia; Shen, Ji-Min; Han, Ying

    2013-01-01

    A pilot-scale ballasted flocculation system was used to remove fluoride from one type of industrial wastewater. The system included the formation of calcium fluoride (CaF2) using calcium hydroxide followed by coagulation sedimentation. Calcium fluoride was recycled as nuclei for enhancing CaF2 precipitation and as a ballasting agent for improving fluoride removal and flocculation efficiency. Factors affecting fluoride and turbidity removal efficiencies, including pH in the CaF2-reacting tank and coagulation-mixing tank, sludge recycling ratio, and dosages of FeCl3 and polyacrylamide (PAM), were investigated in the pilot-scale system. The recycled CaF2 precipitates improved CaF2 formation kinetics, enhanced fluoride removal and flocculation performance. Under the optimized condition, the ballast flocculation process reduced fluoride concentration from 288.9 to 10.67 mg/L and the turbidity from 129.6 NTU to below 2.5 NTU.

  19. Physical-chemical treatment of rainwater runoff in recovery and recycling companies: Pilot-scale optimization.

    PubMed

    Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk

    2015-01-01

    Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained).

  20. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    SciTech Connect

    Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

    1996-07-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  1. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    SciTech Connect

    Flesner, R.L.; Dell`Orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.B.; Uher, K.; Kramer, J.F.

    1997-10-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment. Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  2. Modeling the Pyrochemical Reduction of Spent UO2 Fuel in a Pilot-Scale Reactor

    SciTech Connect

    Steven D. Herrmann; Michael F. Simpson

    2006-08-01

    A kinetic model has been derived for the reduction of oxide spent nuclear fuel in a radial flow reactor. In this reaction, lithium dissolved in molten LiCl reacts with UO2 and fission product oxides to form a porous, metallic product. As the reaction proceeds, the depth of the porous layer around the exterior of each fuel particle increases. The observed rate of reaction has been found to be only dependent upon the rate of diffusion of lithium across this layer, consistent with a classic shrinking core kinetic model. This shrinking core model has been extended to predict the behavior of a hypothetical, pilot-scale reactor for oxide reduction. The design of the pilot-scale reactor includes forced flow through baskets that contain the fuel particles. The results of the modeling indicate that this is an essential feature in order to minimize the time needed to achieve full conversion of the fuel.

  3. Pilot-scale equipment development for pyrochemical treatment of spent oxide fuel.

    SciTech Connect

    Herrmann, S. D.

    1999-06-08

    Fundamental objectives regarding spent nuclear fuel treatment technologies include, first, the effective distribution of spent fuel constituents among product and stable waste forms and, second, the minimization and standardization of waste form types and volumes. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical treatment of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in an uranium product and two stable waste forms, i.e. ceramic and metallic. Engineering efforts are underway at ANL to develop pilot-scale equipment which would precondition irradiated oxide fuel via pyrochemical processing and subsequently allow for electrometallurgical treatment of such non-metallic fuels into standard product and waste forms. This paper highlights the integration of proposed spent oxide fuel treatment with existing electrometallurgical processes. System designs and technical bases for development of pilot-scale oxide reduction equipment are also described.

  4. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  5. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    EPA Science Inventory

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  6. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    EPA Science Inventory

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  7. Characterization of double-shell slurry feed grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

    1992-12-01

    Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

  8. Low-level waste vitrification pilot-scale system need report

    SciTech Connect

    Morrissey, M.F.; Whitney, L.D.

    1996-03-01

    This report examines the need for pilot-scale testing in support of the low-level vitrification facility at Hanford. In addition, the report examines the availability of on-site facilities to contain a pilot-plant. It is recommended that a non-radioactive pilot-plant be operated for extended periods. In addition, it is recommended that two small-scale systems, one processing radioactive waste feed and one processing a simulated waste feed be used for validation of waste simulants. The actual scale of the pilot-plant will be determined from the technologies included in conceptual design of the plant. However, for the purposes of this review, a plant of 5 to 10 metric ton/day of glass production was assumed. It is recommended that a detailed data needs package and integrated flowsheet be developed in FY95 to clearly identify data requirements and identify relationships with other TWRS elements. A pilot-plant will contribute to the reduction of uncertainty in the design and initial operation of the vitrification facility to an acceptable level. Prior to pilot-scale testing, the components will not have been operated as an integrated system and will not have been tested for extended operating periods. Testing for extended periods at pilot-scale will allow verification of the flowsheet including the effects of recycle streams. In addition, extended testing will allow evaluation of wear, corrosion and mechanical reality of individual components, potential accumulations within the components, and the sensitivity of the process to operating conditions. Also, the pilot facility will provide evidence that the facility will meet radioactive and nonradioactive environmental release limits, and increase the confidence in scale-up. The pilot-scale testing data and resulting improvements in the vitrification facility design will reduce the time required for cold chemical testing in the vitrification facility.

  9. Thermal composting of faecal matter as treatment and possible disinfection method--laboratory-scale and pilot-scale studies.

    PubMed

    Vinnerås, Björn; Björklund, Anders; Jönsson, Håkan

    2003-05-01

    When using toilets where the urine and faeces are collected separately for reuse as nutrients in agriculture, the collected matter should be disinfected. One way to do this is by thermal composting. Composting of different material mixes was investigated in a laboratory-scale experiment. This showed that the best mixture for dry thermal composting was a mix of faeces, food waste and amendment. The urine was collected separately by use of urine-diverting toilets. A new method was developed to mathematically evaluate and estimate the safety margins of pathogen inactivation during thermal composting. The method is based upon a mathematical calculation of the number of times total inactivation (at least 12log(10) reduction) of the organisms is achieved. In a pilot-scale experiment, the disinfection of a faeces/food waste mix was performed with a calculated safety margin of more than 37 times the total die-off of Enteroviruses and some 550 times that of Ascaris. Thus, well functioning composting seems to be effective for disinfection of faecal matter. To get a high temperature in all of the material, the reactor has to have sufficient insulation. A major disadvantage is the initial need for handling the raw un-disinfected material. The degradation of the organic matter in the compost was almost 75%, resulting in a small final volume that could safely be recycled.

  10. Pilot Scale Production of Manganese Ferroalloys Using Heat-Treated Mn-Nodules

    NASA Astrophysics Data System (ADS)

    Tangstad, Merete; Ringdalen, Eli; Manilla, Edmundo; Davila, Daniel

    2017-02-01

    Pilot-scale experiments are one way to investigate the process patterns and the reaction mechanisms of processes and raw materials. To understand a process fully, both theoretical considerations as well as small-scale investigations are needed; nevertheless, the complex patterns of chemical reactions and physical phenomena can best be studied in pilot-scale investigations. After studying the chemical and mineralogical properties, the strength and the melting behavior of Mn-nodules, presented in a previous paper, the process behavior of the ore is studied in a pilot scale experiment. The industrial process is simulated in a top-and bottom-electrode furnace operated at about 150 kW. The high-strength, low-melting Mn-nodules produced by Autlan were the main raw material mixed with Comilog ore and some lime. It was shown that the Mn-nodules behave in principle like other commercial Mn-raw materials. The ore will at the border of the high-temperature area produce a liquid in coexistence with a MnO phase. As the ore is reaching the cokebed zone, the ore is already fully reduced. The ore will not be reduced much more in the cokebed area. The slag will be tapped at the composition close to the liquidus composition, as observed for other Mn-raw materials, and thus, also follow the well-known rule of lower MnO content in the slag with higher basicity.

  11. Pilot Scale Production of Manganese Ferroalloys Using Heat-Treated Mn-Nodules

    NASA Astrophysics Data System (ADS)

    Tangstad, Merete; Ringdalen, Eli; Manilla, Edmundo; Davila, Daniel

    2016-12-01

    Pilot-scale experiments are one way to investigate the process patterns and the reaction mechanisms of processes and raw materials. To understand a process fully, both theoretical considerations as well as small-scale investigations are needed; nevertheless, the complex patterns of chemical reactions and physical phenomena can best be studied in pilot-scale investigations. After studying the chemical and mineralogical properties, the strength and the melting behavior of Mn-nodules, presented in a previous paper, the process behavior of the ore is studied in a pilot scale experiment. The industrial process is simulated in a top-and bottom-electrode furnace operated at about 150 kW. The high-strength, low-melting Mn-nodules produced by Autlan were the main raw material mixed with Comilog ore and some lime. It was shown that the Mn-nodules behave in principle like other commercial Mn-raw materials. The ore will at the border of the high-temperature area produce a liquid in coexistence with a MnO phase. As the ore is reaching the cokebed zone, the ore is already fully reduced. The ore will not be reduced much more in the cokebed area. The slag will be tapped at the composition close to the liquidus composition, as observed for other Mn-raw materials, and thus, also follow the well-known rule of lower MnO content in the slag with higher basicity.

  12. INVESTIGATING SUSPENSION OF MST SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect

    Poirier, M.; Restivo, M.; Steeper, T.; Williams, M.; Qureshi, Z.

    2011-01-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to suspend the MST particles so that MST can be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations).

  13. Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale.

    PubMed

    Maxime, Guillerm; Amine, Assadi Aymen; Abdelkrim, Bouzaza; Dominique, Wolbert

    2014-11-01

    This study focuses on the removal of gas-phase ammonia (NH3) and hydrogen sulfide (H2S) in a continuous reactor. Photocatalysis and surface dielectric barrier discharge (SDBD) plasma are studied separately and combined. Though the removal of volatile organic compounds by coupling plasma and photocatalysis has been reported on a number of studies in laboratory scale, this is as far as we know the first time that it is used to remove inorganic malodorous pollutants. While each separate process is able to degrade ammonia and hydrogen sulfide, a synergetic effect appears when they are combined at a pilot scale, leading to removal capacity higher than the sum of each separate process. The removal capacity is higher when the gas circulates at a higher flow rate and when pollutant concentration is higher. The presence of water vapor in the gas is detrimental to the efficiency of the process. Operating conditions also influence the production of nitrogen oxides and ozone.

  14. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    CRYOGENIC WIND TUNNEL by J.D.CadweD 18 A CRYOGENIC TRANSONIC INTERMITTENT TUNNEL PROJECT: THE INDUCED -FLOW CRYOGENIC WIND-TUNNEL T2 AT ONERA/CERT by...CRYOGENIC TUNNELS The types of tunnel drive and test gas currently exploited in cryogenic wind tunnels include: Drive Test Gas fan nitrogen induced flow...reduce other heat fluxes. Other sources can arise from thermally induced oscillations under both storage and transfer con- ditions. 1.3 (c) Reduction

  15. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  16. Preliminary Evaluation of the Control of Microbial Fouling by Laboratory and Pilot-Scale Air-Stripping Columns

    DTIC Science & Technology

    1985-03-01

    Column. 7 3. Saddles in Pilot-Scale Air-stripping Column before use. 14 4. Saddles in Pilot-Scale Air-Stripping Column showing gelatinous slime buildup...Cleveland, OH), sodium hydrcxide (J.T. Baker, Phillipsburg, NJ), potassium dichloroisocyanurate (Dorex Inc., Frankfort, IL), potassium iodide starch ...mannitol mineral salts agar, starch agar (Difco Laboratories, Detroit, MI), nitrate broth (Difco Laboratories, Detroit, MI), Gram stain reagents

  17. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    SciTech Connect

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997.

  18. Final Report: Pilot-Scale Cross-Flow Ultrafiltration Test Using a Hanford Site Tank 241-AN-102 Waste Simulant

    SciTech Connect

    Duignan, M.R.

    2003-10-03

    Bechtel National l, Inc. (BNI) has been contracted to design a Waste Treatment and Immobilization Plant (WTP) to stabilize liquid radioactive waste that is stored at the Hanford Site as part of the River Protection Project (RPP). Because of its experience with radioactive waste stabilization, the Savannah River Technology Center (SRTC) is working with BNI to help design and test certain parts of the waste treatment facility. One part of the process is the separation of radioactive solids from the liquid wastes by cross- flow ultrafiltration. This task tested a cross- flow filter, prototypic in porosity, length and diameter, with a simulated radioactive waste, made to prototypically represent the chemical and physical characteristics of a Hanford waste in tank 241-AN-102 (AN-102) and precipitated under prototypic conditions. This report discusses the results of cross- flow filter operation in a pilot-scale experimental facility. This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by Bechtel National, Inc. The waste treatment plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  19. Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment.

    PubMed

    del Valle-Zermeño, R; Formosa, J; Prieto, M; Nadal, R; Niubó, M; Chimenos, J M

    2014-02-15

    A granular material (GM) to be used as road sub-base was formulated using 80% of weathered bottom ash (WBA) and 20% of mortar. The mortar was prepared separately and consisted in 50% APC and 50% of Portland cement. A pilot-scale study was carried on by constructing three roads in order to environmentally evaluate the performance of GM in a real scenario. By comparing the field results with those of the column experiments, the overestimations observed at laboratory scale can be explained by the potential mechanisms in which water enters into the road body and the pH of the media. An exception was observed in the case of Cu, whose concentration release at the test road was higher. The long-time of exposure at atmospheric conditions might have favoured oxidation of organic matter and therefore the leaching of this element. The results obtained showed that immobilization of all heavy metals and metalloids from APC is achieved by the pozzolanic effect of the cement mortar. This is, to the knowledge of the authors, the only pilot scale study that is considering reutilization of APC as a safe way to disposal.

  20. Pilot-scale treatment of RDX-contaminated soil with zerovalent iron.

    PubMed

    Comfort, S D; Shea, P J; Machacek, T A; Satapanajaru, T

    2003-01-01

    Soils in Technical Area 16 at Los Alamos National Laboratory (LANL) are severely contaminated from past explosives testing and research. Our objective was to conduct laboratory and pilot-scale experiments to determine if zerovalent iron (Fe(0)) could effectively transform RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in two LANL soils that differed in physicochemical properties (Soils A and B). Laboratory tests indicated that Soil A was highly alkaline and needed to be acidified [with H2SO4, Al2(SO4)3, or CH3COOH] before Fe(0) could transform RDX. Pilot-scale experiments were performed by mixing Fe(0) and contaminated soil (70 kg), and acidifying amendments with a high-speed mixer that was a one-sixth replica of a field-scale unit. Soils were kept unsaturated (soil water content = 0.30-0.34 kg kg(-1)) and sampled with time (0-120 d). While adding CH3COOH improved the effectiveness of Fe(0) to remove RDX in Soil A (98% destruction), CH3COOH had a negative effect in Soil B. We believe that this difference is a result of high concentrations of organic matter and Ba. Adding CH3COOH to Soil B lowered pH and facilitated Ba release from BaSO4 or BaCO3, which decreased Fe(0) performance by promoting flocculation of humic material on the iron. Despite problems encountered with CH3COOH, pilot-scale treatment of Soil B (12 100 mg RDX kg(-1)) with Fe(0) or Fe(0) + Al2(SO4)3 showed high RDX destruction (96-98%). This indicates that RDX-contaminated soil can be remediated at the field scale with Fe(0) and soil-specific problems (i.e., alkalinity, high organic matter or Ba) can be overcome by adjustments to the Fe(0) treatment.

  1. Pilot-scale investigation of drinking water ultrafiltration membrane fouling rates using advanced data analysis techniques.

    PubMed

    Chen, Fei; Peldszus, Sigrid; Peiris, Ramila H; Ruhl, Aki S; Mehrez, Renata; Jekel, Martin; Legge, Raymond L; Huck, Peter M

    2014-01-01

    A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    SciTech Connect

    Wittreich, C.D.

    1994-05-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume.

  3. Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1996-01-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

  4. MGP soil remediation in a slurry-phase system: A pilot-scale test

    SciTech Connect

    Liu, Bill Y.; Srivastava, V.J.; Paterek, J.R.; Pradhan, S.P.; Pope, J.R.; Hayes, T.D.; Linz, D.G.; Jerger, D.E.

    1993-12-31

    An overall protocol for remediating manufactured gas plant (MGP) soils generally includes bench-scale evaluation of the technology, pilot-scale demonstration, and full-scale implementation. This paper summarizes the results of the bench-scale and pilot-scale study for treating an MGP soil with IGT`s integrated Chemical/Biological Treatment (CBT) or Manufactured Gas Plant Remediation (MGP-REM) process in the slurry-phase mode of application. MGP soils are contaminated primarily with polynuclear aromatic hydrocarbons (PAHs). An MGP site in New Jersey was the subject of this study. Soils from the site were used for the bench-scale evaluation of the integrated Chemical/Biological Treatment. The bench-scale study started with biological pre-treatment followed by chemical treatment and biological polishing. Results of the bench-scale study showed that this process was effective in degrading EPA Total as well as EPA Carcinogenic PAHs. A test matrix was developed to assess this technology at a pilot-scale facility. The test matrix consisted of at least eight semi-continuous runs designed to evaluate the effects of PAH concentration, total solids concentration, residence time, and a number of chemical reagent additions. An operating permit for 14 days was obtained to evaluate the process primarily for air emission data and secondarily for PAH degradation data. The PAH data showed that the MGP-REM process was very effective in degrading carcinogenic PAHs even under sub-optimal operating conditions. The field data also showed that the emissions of volatile organic compounds were well below the regulatory limits.

  5. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    SciTech Connect

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy's Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized.

  6. Evaluation of pilot-scale pollution control devices for hazardous-waste incineration

    SciTech Connect

    Freeman, H.M.; Olexsey, R.A.

    1985-09-01

    The paper summarizes the results of emission tests carried out on three pilot-scale air pollution-control devices. The units were connected to a slip stream from the ENSCO, Inc. hazardous-waste incinerator at El Dorado, Arkansas. The three units were a Hydro Sonic System wet scrubber; an ETS dry scrubber; and a Vulcan Engineering Company high temperature baghouse. The units were evaluated for their capability in removing particulate matter and HCl. Full discussion of the testing program and results is in an EPA report, Evaluation of Air Pollution Control Devices for Hazardous Waste Combustion, now undergoing final review in the Agency.

  7. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    SciTech Connect

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  8. Refrigeration for Cryogenic Sensors

    SciTech Connect

    Gasser, M.G.

    1983-12-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  9. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  10. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  11. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  12. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-04-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  15. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.

    PubMed

    Wu, Jinglan; Peng, Qijun; Arlt, Wolfgang; Minceva, Mirjana

    2009-12-11

    One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).

  16. Recovery of elemental sulfur from zinc concentrate direct leaching residue using atmospheric distillation: a pilot-scale experimental study.

    PubMed

    Li, Hailong; Yao, Xiaolong; Wang, Mingxia; Wu, Shaokang; Ma, Weiwu; Wei, Wenwu; Li, Liqing

    2014-01-01

    Recovery of elemental sulfur from zinc concentrate direct leaching residue (DLR) using atmospheric distillation was systematically investigated on a pilot-scale system for the first time. Batch operating mode was suggested for recovery of elemental sulfur from water-rich DLR using atmospheric distillation. Elemental sulfur with purity higher than 99% was obtained under certain conditions in batch operating mode. With an appropriate feed amount of 1,200 kg, batch experiment conducted at 460 degrees C resulted in sulfur purity of 96.22% and a recovery rate higher than 85%. Only 0.59 and 1.24 kWh power was needed to handle 1.0 kg DLR and produce 1.0 kg elemental sulfur, respectively. The results suggest that recovery of elemental sulfur from zinc concentrate DLR using atmospheric distillation is technologically and economically feasible. Moreover, other metal elements such as zinc were enriched in the distillation concentrate, which could be used for metal refining. Technologies could effectively lower the moisture content of DLR, and lowering the distillation temperature would be of great value for recovery of elemental sulfur from DLR using a distillation method. Distillation is a promising solution for recovery of elemental sulfur from DLRs. This work revealed the possibility of separation of elemental sulfur from zinc concentrate DLR using atmospheric distillation. Such knowledge is of fundamental importance in developing field-scale separation and purification technologies and devices in which simultaneous sulfur recovery and precious metal enrichment are possible. Important tasks for follow-up research are also suggested.

  17. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  18. A pilot-scale photocatalyst-membrane hybrid reactor: performance and characterization.

    PubMed

    Ryu, J; Choi, W; Choo, K H

    2005-01-01

    We developed and tested a pilot-scale photocatalyst-membrane hybrid reactor for water treatment. The performance of the pilot-scale reactor was evaluated by monitoring the degradation efficiency of several organic pollutants and the membrane suction pressure at different operating conditions. The concentration of humic acids rather increased in the initial period of UV illumination and then decreased gradually, which could be ascribed to the photoinduced desorption of humic acids from the TiO2 surface. The decoloring rate of methylene blue was faster than that of rhodamine B, whereas the order of mineralization rates of the dyes was reversed. 4-chlorophenol of 100 ppb was fully degraded under UV irradiation in 2 hours, which suggests that this hybrid reactor would be more suitable in removing micropollutants in water. The reactor was operated with either continuous or intermittent suction mode. In a continuous suction mode, the formation of TiO2 cake layers on the membrane surface occurred and caused a substantial increase in suction pressure. However, no further fouling (or suction pressure build-up) took place with an intermittent suction mode with the 9-min suction and 3-min pause period. The photocatalyst-membrane hybrid reactor system developed in this study could be an attractive option for controlling micropollutants in water.

  19. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  20. Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation.

    PubMed

    Saha, Badal C; Nichols, Nancy N; Qureshi, Nasib; Kennedy, Gregory J; Iten, Loren B; Cotta, Michael A

    2015-01-01

    The production of ethanol from wheat straw (WS) by dilute acid pretreatment, bioabatement of fermentation inhibitors by a fungal strain, and simultaneous saccharification and fermentation (SSF) of the bio-abated WS to ethanol using an ethanologenic recombinant bacterium was studied at a pilot scale without sterilization. WS (124.2g/L) was pretreated with dilute H2SO4 in two parallel tube reactors at 160°C. The inhibitors were bio-abated by growing the fungus aerobically. The maximum ethanol produced by SSF of the bio-abated WS by the recombinant Escherichia coli FBR5 at pH 6.0 and 35°C was 36.0g/L in 83h with a productivity of 0.43gL(-1)h(-1). This value corresponds to an ethanol yield of 0.29g/g of WS which is 86% of the theoretical ethanol yield from WS. This is the first report on the production of ethanol by the recombinant bacterium from a lignocellulosic biomass at a pilot scale. Published by Elsevier Ltd.

  1. Second-order chlorine decay and trihalomethanes formation in a pilot-scale water distribution systems.

    PubMed

    Li, Cong; Yang, Y Jeffrey; Yu, Jieze; Zhang, Tu-qiao; Mao, Xinwei; Shao, Weiyun

    2012-08-01

    It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).

  2. Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater.

    PubMed

    Saran, S; Kamalraj, G; Arunkumar, P; Devipriya, S P

    2016-09-01

    Pilot scale thin film plate reactors (TFPR) were fabricated to study the solar photocatalytic treatment of wastewater obtained from the secondary treatment plant of a sugar refinery. Silver-impregnated titanium dioxide (TiO2) was prepared by a facile chemical reduction method, characterized, and immobilized onto the surface of ceramic tiles used in the pilot scale reactors. On 8 h of solar irradiation, percentage reduction of chemical oxygen demand (COD) of the wastewater by Ag/TiO2, pure TiO2, and control (without catalyst) TFPR was about 95, 86, and 22 % respectively. The effects of operational parameters such as, flow rate, pH, and addition of hydrogen peroxide (H2O2) were optimized as they influence the rate of COD reduction. Under 3 h of solar irradiation, 99 % COD reduction was observed at an optimum flow rate of 15 L h(-1), initial pH of 2, and addition of 5 mM of H2O2. The results show that Ag/TiO2 TFPR could be effectively used for the tertiary treatment of sugar refinery effluent using sunlight as the energy source. The treated water could be reused for industrial purposes, thus reducing the water footprint of the industry. Graphical Abstract Sugar refinery effluent treatment by solar photocatalytic TFPR.

  3. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  4. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Fate of sex hormones in two pilot-scale municipal wastewater treatment plants: conventional treatment.

    PubMed

    Esperanza, Mar; Suidan, Makram T; Marfil-Vega, Ruth; Gonzalez, Cristina; Sorial, George A; McCauley, Paul; Brenner, Richard

    2007-01-01

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormones in both the liquid and the solid matrixes of the plants were determined. Each of the two 20-l/h pilot-scale plants consisted of a primary clarifier followed by a three-stage aeration tank and a final clarifier. The primary sludge and the waste activated sludge (WAS) were digested anaerobically in one pilot plant and aerobically in the other. The pilot plants were fed a complex synthetic wastewater spiked with the hormones. Levels of testosterone, androstenedione and progesterone were close to method detection limit (MDL) concentrations in the final and digester effluents (both liquid and solid phases) and were considered as completely removed. Average mass flux removals from the liquid streams (plant influent minus secondary clarifier effluent) for the natural estrogens were 82% for E1, 99% for E2, and 89% for (E1+E2). An average overall removal of only 42% was achieved for EE2. These values reflect removals averaged for the two pilot plants.

  6. Pilot-scale electrokinetic treatment of a Cu contaminated red soil.

    PubMed

    Zhou, Dong-Mei; Cang, Long; Alshawabkeh, Akram N; Wang, Yu-Jun; Hao, Xiu-Zhen

    2006-05-01

    A pilot-scale experiment for electrokinetic treatment of 700 kg of copper contaminated red soil was conducted using a constant voltage of 80 V. Dynamic removal percentages of Cu from the soil and energy consumption during the treatment were evaluated together with changes of soil pH, electrical conductivity and soil microbial functional diversity before and after the electrokinetic treatment. The results indicate that 76% of Cu was successfully removed from the soil after 140 d of treatment when lactic acid was used as enhancing reagent for adjusting the catholyte pH and dissolving soil Cu by complexation, and the pilot-scale electrokinetic experiment consumed electric energy of 224 kW h t-1 soil. The post-treatment soil pH values decreased about 0.1-1.6 units compared with the initial value (pH 4.8), and soil electrical conductivities in most of soil sections also significantly decreased. Soil microbial functional diversity varied after the electrokinetic treatment, particularly the increase of substrate richness index, which is possibly due to the stimulation of lactic acid that was introduced into the soil column during the experiment.

  7. Evaluation of the thermal stability POHC incinerability ranking in a pilot-scale rotary kiln incinerator

    SciTech Connect

    Lee, J.W.; Waterland, L.R.; Whitworth, W.E.; Carroll, G.J.

    1991-01-01

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility to evaluate the thermal stability-based POHC incinerability ranking. In the tests, mixtures of 12 POHCs with predicted incinerability spanning the range of most to least difficult to incinerate class were combined with a clay-based sorbent and batch-fed to the facility's pilot-scale rotary kiln incinerator via a fiberpack drum ram feeder. Kiln operating conditions were varied to include a baseline operating condition, three modes of attempted incineration failure, and a worst case combination of the three failure modes. Kiln exit POHC DREs were in the 99.99 percent range for the volatile POHCs for the baseline, mixing failure (increased charge mass), and matrix failure (decreased feed H/C) tests. Semivolatile POHCs were not detected in the kiln exit for these tests; corresponding DREs were generally greater than 99.999 percent. The thermal failure (low kiln temperature) and worst case (combination of thermal, mixing, and matrix failure) tests resulted in substantially decreased kiln exit POHC DREs. These ranged from 99 percent or less for Freon 113 to greater than 99.999 percent for the less stable-ranked semivolatile POHCs. General agreement between relative kiln exit POHC DRE and predicted incinerability class was observed.

  8. 106-AN grout pilot-scale test HGTP-93-0501-02

    SciTech Connect

    Bagaasen, L.M.

    1993-05-01

    The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over 1,000,000 gal of Phosphate/Sulfate Waste were solidified in the first production campaign with this facility. The next tank scheduled for treatment is 106-AN. After conducting laboratory studies to select the grout formulation, part of the normal formulation verification process is to conduct tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL). The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilot-scale equipment and to collect thermal information to help determine the best way to manage the grout hydration heat.

  9. Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study.

    PubMed

    Lin, Li; Chen, Jing; Xu, Zuqun; Yuan, Songhu; Cao, Menghua; Liu, Huangcheng; Lu, Xiaohua

    2009-09-15

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5m(3) per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  10. Pilot scale benzene stripping column testing: Review of test data and application to the ITP columns

    SciTech Connect

    Georgeton, G.K.; Gaughan, T.P.; Taylor, G.A.

    1993-09-10

    Radioactive cesium will be removed from aqueous high level waste (HLW) solutions by precipitation with sodium tetraphenyl borate (TPB) in the In-Tank Precipitation (ITP) process. Benzene is generated due to the radiolysis of TPB, and dissolves into the decontaminated salt solution (DSS) and into the water used to wash (WW) the precipitate. These solutions will be processed through stripping columns to reduce the benzene concentration to satisfy limits for disposal of the DSS and for temporary storage of the WW. A pilot scale testing program to evaluate the stripping column operation in support of ITP startup activities has been completed. Equipment and test plans were developed so that data obtained from the pilot scale testing would be directly applicable to full scale column operation and could be used to project hydraulic performance and stripping efficiency of both columns. A review of the test data indicate that the ITP stripping columns will be capable of reducing benzene concentrations in salt solutions to satisfy Saltstone and Tank 22 acceptance limits. An antifoam (AF) will be required to maintain the column differential pressure below the vendor recommendation of 40 inches wc so that design feed rates can be achieved. Additionally, the testing program indicated that the nitrogen rate can be decreased from the ITP column design rates and still satisfy benzene concentration requirements in the product.

  11. Pilot-scale tests of an innovative 'serial self-turning reactor' composting technology in Thailand.

    PubMed

    Sungsomboon, Praj-ya; Chaisomphob, Taweep; Bongochgetsakul, Nattakorn; Ishida, Tetsuya

    2013-02-01

    Composting facilities in Thailand have faced various operational problems, resulting in the emission of odours, incomplete digestion of waste organics, and higher than desired costs. Composting technologies imported from developed countries tend to be sized for larger communities and are otherwise not suited for the rural communities that comprise more than 80% of all communities in Thailand. This article addresses the research and development of a novel composting technology aimed at filling this observed need. The study was divided into two parts: (1) the development of a new composting technology and fabrication of a prototype configuration of equipment; and (2) scale-up and study on a pilot-scale using real rubbish. The proposed technology, called 'serial self-turning reactor (STR)', entailed a vertical flow composting system that consisted of a set of aerobic reactors stacked on a set of gravity fed turning units. In-vessel bioreactor technology enables the operator to control composting conditions. The researchers found that a tower-like STR results in flexibility in size scale and waste processing residence time. The pilot-scale experiments showed that the proposed system can produce good quality compost while consuming comparatively little energy and occupying a compact space, compared to traditional land-intensive windrow composting facilities.

  12. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  13. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  14. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  15. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  16. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  17. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    SciTech Connect

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

  18. Simulation of carbon degradation in a rotary drum pilot scale composting process.

    PubMed

    Villaseñor, J; Rodríguez Mayor, L; Rodríguez Romero, L; Fernández, F J

    2012-10-15

    This paper studies the simulation of carbon degradation in pilot scale solid waste composting processes using first-order kinetic models previously calibrated by laboratory experiments at different temperatures. Different solid biowastes (olive mill waste, winery waste, sewage sludge and reed biomass) were used. Three mixtures were prepared from combinations of the materials listed above, and they were used in both the laboratory kinetic experiments and the pilot scale composting experiments. Lab experiments were conducted in small reactors with temperature (T) control and forced aeration of the solid mixture. Each biowaste mixture was treated at four different temperatures, 25, 40, 50 and 60 °C, with controlled moisture; the carbon (C) concentration of the samples was measured weekly. Two different kinetic models were used to fit the carbon mineralisation curves: the 2C model, which considers two organic fractions (biodegradable and non-biodegradable), and the 3C model, which considers three fractions (easily biodegradable, slowly biodegradable and non-biodegradable). In both cases, the kinetic rate constants were calculated by mathematical fitting. The influence of temperature on the rate constants was also studied for both models using a T-dependent equation. The theoretical k(T) curves showed classical shapes, and the temperatures for optimum k values and thermal inactivation were obtained. Once the C degradation rate constants and their T dependence equations were available, it was possible to simulate the evolution of C degradation in an actual pilot scale rotary drum composting process under varying temperatures and using the same biowaste mixtures. The comparison between the theoretical profiles and the experimental data showed that the thermophilic stage could be accurately simulated; however, errors and lower levels of model accuracy occurred when the maturation stage was simulated. The simulation was valid for all of the viewed biowaste mixtures. The 2C

  19. Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium parvum Infectivity in Immunocompetent Suckling Mice.

    PubMed

    Le Goff, L; Hubert, B; Favennec, L; Villena, I; Ballet, J J; Agoulon, A; Orange, N; Gargala, G

    2015-12-01

    Cryptosporidium spp., a significant cause of foodborne infection, have been shown to be resistant to most chemical food disinfectant agents and infective for weeks in irrigation waters and stored fresh vegetal produce. Pulsed UV light (PL) has the potential to inactivate Cryptosporidium spp. on surfaces of raw or minimally processed foods or both. The present study aimed to evaluate the efficacy of PL on viability and in vivo infectivity of Cryptosporidium parvum oocysts present on raspberries, a known source of transmission to humans of oocyst-forming apicomplexan pathogens. The skin of each of 20 raspberries was experimentally inoculated with five 10-μl spots of an oocyst suspension containing 6 × 10(7) oocysts per ml (Nouzilly isolate). Raspberries were irradiated by PL flashes (4 J/cm(2) of total fluence). This dose did not affect colorimetric or organoleptic characteristics of fruits. After immunomagnetic separation from raspberries, oocysts were bleached and administered orally to neonatal suckling mice. Seven days after infection, mice were euthanized, and the number of oocysts in the entire small intestine was individually assessed by immunofluorescence flow cytometry. Three of 12 and 12 of 12 inoculated mice that received 10 and 100 oocysts isolated from nonirradiated raspberries, respectively, were found infected. Four of 12 and 2 of 12 inoculated mice that received 10(3) and 10(4) oocysts from irradiated raspberries, respectively, were found infected. Oocyst counts were lower in animals inoculated with 10(3) and 10(4) oocysts from irradiated raspberries (92 ± 144 and 38 ± 82, respectively) than in animals infected with 100 oocysts from nonirradiated raspberries (35,785 ± 66,221, P = 0.008). PL irradiation achieved oocyst reductions of 2 and 3 log for an inoculum of 10(3) and 10(4) oocysts, respectively. The present pilot-scale evaluation suggests that PL is an effective mode of decontamination for raspberries and prompts further applicability

  20. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale.

    PubMed

    Combernoux, Nicolas; Schrive, Luc; Labed, Véronique; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2017-10-15

    The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and (137)Cs (radioactive). The scale up to a 2.6 m(2) spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pilot scale single stage fine coal dewatering and briquetting process. Technical report, September 1--November 30, 1995

    SciTech Connect

    Wilson, J.W.; Ding, Y.; Honaker, R.Q.

    1995-12-31

    The primary goal of the current coal preparation research is to reduce the ash and sulfur content from coal, using fine grinding and various coal cleaning processes to separate finely disseminated mineral matter and pyrite from coal. Small coal particles are produced by the grinding operation, thus the ultrafine coal becomes very difficult to dewater. In addition, the ultrafine coal also creates problems during its transportation, storage and handling at utility plants. The current research is seeking to combine ultrafine coal dewatering and briquetting processes into a single stage operation, using hydrophobic binders as coal dewatering and binding reagents with the help of a compaction device. From previous tests, it has been found that coal pellets with a moisture content of less than 15% and good wear and water resistance can be successfully fabricated at pressures of less than 6,000 psi using a lab scale ram extruder. The primary objective of the research described in this quarter has been to extend the lab scale ultrafine coal dewatering and briquetting process into a pilot scale operation, based on the test data obtained from earlier research. A standard roller briquetting machine was used to dewater fine coal-binder mixtures during the briquetting process. The operating parameters, including moisture content of feed, feed rate, and roller speed, were evaluated on the basis of the performance of the briquettes. Briquettes fabricated at rates of up to 108 pellets per minute exhibited satisfactory water and wear resistance, i.e., less than 7.5% cured moisture and less than 8.3% weight loss after 6 min. of tumbling. Also, coal-binder samples with moisture contents of 40 percent have been successfully dewatered and briquetted. Briquetting of fine coal was possible under current feeding conditions, however, a better feeding system must be designed to further improve the quality of dewatered coal briquettes.

  2. Destruction of hazardous wastes cofired in industrial boilers: pilot-scale parametrics testing. Final report

    SciTech Connect

    Wolbach, C.D.; Garman, A.R.

    1985-08-01

    Thermal destruction of wastes by direct incineration or by cofiring with conventional fuels in boilers, furnaces, or kilns is one of the most-effective methods currently available for disposal of hazardous organic material. However, more information is needed on the potential for emissions to the environment during thermal destruction. The specific objectives of the current study were to identify which of several boiler operational parameters have a major impact on boiler destruction and removal efficiency; and to evaluate and if practical, establish a mathematical model for predicting an upper limit on the amount of cofired waste that could be emitted. The program was carried out in three phases: a detailed characterization of thermal history and environment of a pilot-scale furnace under various sets of operating conditions; a study of the DRE of one compound as conditions were varied; and finally, a study of DRE's of several compounds burned simultaneously (a composite soup).

  3. Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system.

    PubMed

    Arora, Sudipti; Rajpal, Ankur; Bhargava, Renu; Pruthi, Vikas; Bhatia, Akansha; Kazmi, A A

    2014-08-01

    The present study investigated microbial community diversity and antibacterial and enzymatic properties of microorganisms in a pilot-scale vermifiltration system during domestic wastewater treatment. The study included isolation and identification of diverse microbial community by culture-dependent method from a vermifilter (VF) with earthworms and a conventional geofilter (GF) without earthworms. The results of the four months study revealed that presence of earthworms in VF could efficiently remove biochemical oxygen demand (BOD), chemical oxygen demand (COD), total and fecal coliforms, fecal streptococci and other pathogens. Furthermore, the burrowing activity of earthworms promoted the aeration conditions in VF which led to the predominance of the aerobic microorganisms, accounting for complex microbial community diversity. Antibacterial activity of the isolated microorganisms revealed the mechanism behind the removal of pathogens, which is reported for the first time. Specifically, cellulase, amylase and protease activity is responsible for biodegradation and stabilization of organic matter.

  4. Slag Characterization: A Necessary Tool for Modeling and Simulating Refractory Corrosion on a Pilot Scale

    NASA Astrophysics Data System (ADS)

    Gregurek, D.; Wenzl, C.; Reiter, V.; Studnicka, H. L.; Spanring, A.

    2014-09-01

    The slag in pyrometallurgical operations plays a major role affecting the life of furnace refractory. As such, comprehensive mineralogical and chemical slag examination, physical property determination including the slag melting point or liquidus, and viscosity are necessary for precise understanding of a slag. At the RHI Technology Center Leoben, Austria, the main objective of slag characterization work is to reach a better understanding of refractory corrosion. This corrosion testwork is performed at the laboratory and pilot scale. Typically, corrosion tests are performed in an induction furnace or rotary kiln, with the main purpose being the improved selection of the most suitable refractory products to improve refractory performance in operating metallurgical furnaces. This article focuses on characterization of samples of six non-ferrous, customer-provided slags. This includes slag from a copper Peirce-Smith converter, a short rotary furnace for lead smelting, a titania-processing furnace, and a Ni-Cu top blowing rotary converter (TBRC) plant.

  5. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    SciTech Connect

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  6. Pilot-scale tests of tuff gravel flow diversion barriers for Yucca Mountain

    SciTech Connect

    Conca, J.; Apted, M.; Kessler, J.; Kessler, J.

    1995-12-31

    This project conducts pilot-scale tests on potential sand/tuff gravel barrier designs and materials by measuring their hydraulic and barrier properties for use in modeling and final designs of possible diversion barriers at Yucca Mountain. The use of rubble composed of crushed paintbrush tuff (referred to as tuff gravel) in an engineered barrier around the waste packages can provide superior performance capabilities in a geologic repository located in the vadose zone. The effectiveness of unsaturated gravel as an hydraulic barrier to inflow of water from the surrounding environment is referred to by various names, e.g., diversion barrier, capillary barrier, or Richard`s barrier. A gravel barrier can also function as a diffusion barrier to the transport of ionic contaminants away from waste packages. Preliminary studies on tuff gravel and other gravel barriers have demonstrated their performance under a wide range of conditions anticipated in disposal scenarios.

  7. Design and analysis of a pilot scale biofiltration system for odorous air

    SciTech Connect

    Classen, J.J.; Young, J.S.; Bottcher, R.W.; Westerman, P.W.

    2000-02-01

    Three pilot-scale biofilters and necessary peripheral equipment were built to clean odorous air from the pit of a swine gestation building at North Carolina State University. A computer measured temperatures, flow rates, and pressure drops. It also controlled and measured the moisture content of a biofilter medium comprised of a 3:1 mixture of yard waste compost to wood chips mixture (by volume). The system was evaluated to ensure that the biofilters would be useful for performing scientific experiments concerning the reduction of swine odor on future research projects. The capability of the biofilters to remove odor was measured using a cotton swatch absorption method and an odor panel. The average odor reductions measured by odor intensity, irritation intensity, and unpleasantness for five tests were 61%, 58%, and 84%, respectively. No significant differences in odor reduction performance were found between the biofilters.

  8. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    SciTech Connect

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-12-31

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy`s Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized.

  9. Pilot scale experiments of magnesia hydration under gas-liquid-solid (three-phase) reaction system

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojia; Lv, Qiwei; Yin, Lin; Nie, Yixing; Jin, Qi; Ji, Yangyuan; Zhu, Yimin

    2017-08-01

    Pilot scale experiments were conducted to prepare magnesium hydroxide by magnesia hydration under gas-liquid-solid (three-phase) reaction system. The effect of reaction pressure, reactivity and particle size of magnesia and the concentration of the pulp on the degree of hydration was investigated. The results indicated that the hydration reaction occurred at the first 30min mainly. During the set reaction condition, degree of hydration of 68% could be obtained at the reaction pressure of 0.2MPa, concentration of pulp of 5%w/w with high reactivity and fine powder. The promotion effect on the degree of hydration caused by the three-phase reaction system was mostly attributed to the exfoliation of steam.

  10. HWVP pilot-scale vitrification system campaign: LFCM-8 summary report

    SciTech Connect

    Perez, J.M.; Whitney, L.D.; Buchmiller, W.C.; Daume, J.T.; Whyatt, G.A.

    1996-04-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to treat the high-level radiative waste (HLW) stored in underground storage tanks as an alkaline sludge. Tank waste will first be retrieved and pretreated to minimize solids requiring vitrification as HLW. The glass product resulting from HWVP operations will be stored onsite in stainless steel canisters until the HLW repository is available for final disposal. The first waste stream scheduled to be processed by the HWVP is the neutralized current acid waste (NCAW) stored in double-shell storage tanks. The Pacific Northwest Laboratory (PNL) is supporting Westinghouse Hanford Company (WHC) by providing research, development, and engineering expertise in defined areas. As a part of this support, pilot-scale testing is being conducted to support closure of HWVP design and development issues. Testing results will verify equipment design performance, establish acceptable and optimum process parameters, and support product qualification activities.

  11. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    NASA Astrophysics Data System (ADS)

    Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitaka; Aoki, Shinji; Izutsu, Masahiro

    1995-09-01

    A pilot-scale test for electron beam treatment of flue gas (12,000m3N/hr) from coal-fired boiler was conducted by Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation, in the site of Shin-Nagoya Thermal Power Plant in Nagoya, Japan. During 14 months operation, it was proved that the method is possible to remove SO2 and NOX simultaneously in wide concentration range of SO2 (250-2,000ppm) and NOX (140-240ppm) with higher efficiency than the conventional methods, with appropriate operation conditions (dose, temperature etc.). The pilot plant was easily operated with well controllability and durability, and was operated for long period of time without serious problems. The byproduct, ammonium sulfate and ammonium nitrate, produced by the treatment was proved to be a nitrogenous fertilizer with excellent quality.

  12. Pilot-scale trommel: experimental test descriptions and data - a working paper

    SciTech Connect

    Bolczak, R.

    1982-11-01

    Descriptions and summaries are provided of testing from July 1980 to July 1981 on a pilot scale trommel at the National Center for Resource Recovery's Laboratory in Upper Marlboro, Maryland. There are three groupings of results. The first group, Feedstock Tests, includes descriptions of the feedstocks and results of tests on the probability of passage, the dynamic angle of repose, and the coefficient of friction for the test flakes. The second test group on Residence Time and Impingement Tests contains data on the movement of flakes and blocks through the trommel. The last group, Mass Split, Screening Efficiency and Undersize Distribution contains data on flake and block mass splits to the undersize and oversize products and the axial and sectorial distribution in the undersize.

  13. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  14. Recovery of phosphorus from dairy manure: a pilot-scale study.

    PubMed

    Zhang, Hui; Lo, Victor K; Thompson, James R; Koch, Frederic A; Liao, Ping H; Lobanov, Sergey; Mavinic, Donald S; Atwater, James W

    2015-01-01

    Phosphorus was recovered from dairy manure via a microwave-enhanced advanced oxidation process (MW/H2O2-AOP) followed by struvite crystallization in a pilot-scale continuous flow operation. Soluble phosphorus in dairy manure increased by over 50% after the MW/H2O2-AOP, and the settleability of suspended solids was greatly improved. More than 50% of clear supernatant was obtained after microwave treatment, and the maximum volume of supernatant was obtained at a hydrogen peroxide dosage of 0.3% and pH 3.5. By adding oxalic acid into the supernatant, about 90% of calcium was removed, while more than 90% of magnesium was retained. As a result, the resulting solution was well suited for struvite crystallization. Nearly 95% of phosphorus in the treated supernatant was removed and recovered as struvite.

  15. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  16. Biogasification of community-derived biomass and solid wastes in a pilot-scale SOLCON reactor

    SciTech Connect

    Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.; Hayes, T.D.

    1988-01-01

    The Institute of Gas Technology has developed a novel, solids- concentrating (SOLCON) bioreactor to convert a variety of individual or mixed feedstocks (biomass and wastes) to methane at higher rates and efficiencies than those obtained from conventional high-rate anaerobic digesters. The biogasification studies are being conducted in a pilot-scale experimental test unit (ETU) located in the Walt Disney World Resort Complex, Orlando, Florida. This paper describes the ETU facility, the logistics of feedstock integration, the SOLCON reactor design and operating techniques, and the results obtained during 4 years of stable, uninterrupted operation with different feedstocks. The SOLCON reactor consistently outperformed the conventional stirred-tank reactor by 20% to 50%.

  17. Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale.

    PubMed

    Maulini-Duran, Caterina; Abraham, Juliana; Rodríguez-Pérez, Sheila; Cerda, Alejandra; Jiménez-Peñalver, Pedro; Gea, Teresa; Barrena, Raquel; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2015-03-01

    The emissions of volatile organic compounds (VOC), CH4, N2O and NH3 during the solid state fermentation process of some selected wastes to obtain different enzymes have been determined at pilot scale. Orange peel+compost (OP), hair wastes+raw sludge (HW) and winterization residue+raw sludge (WR) have been processed in duplicate in 50 L reactors to provide emission factors and to identify the different VOC families present in exhaust gaseous emissions. Ammonia emission from HW fermentation (3.2±0.5 kg Mg(-1) dry matter) and VOC emission during OP processes (18±6 kg Mg(-1) dry matter) should be considered in an industrial application of these processes. Terpenes have been the most emitted VOC family during all the processes although the emission of sulphide molecules during HW SSF is notable. The most emitted compound was dimethyl disulfide in HW and WR processes, and limonene in the SSF of OP.

  18. Paper and board mill effluent treatment with the combined biological-coagulation-filtration pilot scale reactor.

    PubMed

    Afzal, Muhammad; Shabir, Ghulam; Hussain, Irshad; Khalid, Zafar M

    2008-10-01

    Pilot scale reactor based on combined biological-coagulation-filtration treatments was designed and evaluated for the treatment of effluent from a paper and board mill. Biological treatment by fed batch reactor (FBR) followed by coagulation and sand filtration (SF) resulted in a total COD and BOD reduction of 93% and 96.5%, respectively. A significant reduction in both COD (90%) and BOD (92%) was also observed by sequencing batch reactor (SBR) process followed by coagulation and filtration. Untreated effluent was found to be toxic, whereas the treated effluents by either of the above two processes were found to be non-toxic when exposed to the fish for 72h. The resultant effluent from FBR-coagulation-sand filtration system meets National Environmental Quality Standards (NEQS) of Pakistan and can be discharged into the environment without any risks.

  19. A pilot-scale study of selective desulfurization via urea addition in iron ore sintering

    NASA Astrophysics Data System (ADS)

    Long, Hong-ming; Wu, Xue-jian; Chun, Tie-jun; Di, Zhan-xia; Wang, Ping; Meng, Qing-min

    2016-11-01

    The iron ore sintering process is the main source of SO2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO2 concentration in flue gas without urea addition, the SO2 concentration decreased substantially from 694.2 to 108.0 mg/m3 when 0.10wt% urea was added. NH3 decomposed by urea reacted with SO2 to produce (NH4)2SO4, decreasing the SO2 concentration in the flue gas.

  20. Performance of pilot scale bioventing at an aviation gasoline spill site. Book chapter

    SciTech Connect

    Kampbell, D.H.

    1993-01-01

    An aviation gasoline (Avgas) spill of near 35,000 gallons occurred over 20 years ago at the U.S. Coast Guard Air Station in Traverse City, Michigan. The site has a relatively uniform subsurface of beach sand to a depth of 50 feet. A three-feet vertical smear of oily globules was near the water table depth of 15 feet. Two pilot-scale bioventing systems were evaluated on a portion of the 240 x 1100 foot surface area plume. The vadose zone contaminated with aviation gasoline was satisfactorily bioremediated by both venting systems. Differential performance between the two systems was not apparent. Operational time for clean-up was eight months. Surface emissions of gasoline vapor during systems operation were minimal.

  1. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    PubMed

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters.

  2. Pilot-scale equipment development for lithium-based reduction of spent oxide fuel.

    SciTech Connect

    Herrmann, S. D.

    1998-04-24

    An integral function of the electrometallurgical conditioning of DOE spent nuclear fuel is the standardization of waste forms. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic waste, and metal waste forms. Engineering studies are underway at ANL in support of pilot-scale equipment development, which would precondition irradiated oxide fuel and likewise demonstrate the application of electrometallurgical conditioning to such non-metallic fuels. This paper highlights the integration of proposed spent oxide fuel conditioning with existing electrometallurgical processes. Additionally, technical bases for engineering activities to support a scale up of an oxide reduction process are described.

  3. Recovery of cellulase activity after ethanol stripping in a novel pilot-scale unit.

    PubMed

    Skovgaard, Pernille Anastasia; Christensen, Børge Holm; Felby, Claus; Jørgensen, Henning

    2014-04-01

    Recycling of enzymes has a potential interest during cellulosic bioethanol production as purchasing enzymes is one of the largest expenses in the process. By recycling enzymes after distillation, loss of sugars and ethanol are avoided, but depending on the distillation temperature, there is a potential risk of enzyme degradation. Studies of the rate of enzyme denaturation based on estimation of the denaturation constant K D was performed using a novel distillation setup allowing stripping of ethanol at 50-65 °C. Experiments were performed in a pilot-scale stripper, where the effect of temperature (55-65 °C) and exposure to gas-liquid and liquid-heat transmission interfaces were tested on a mesophilic and thermostable enzyme mixture in fiber beer and buffer. Lab-scale tests were included in addition to the pilot-scale experiments to study the effect of shear, ethanol concentration, and PEG on enzyme stability. When increasing the temperature (up to 65 °C) or ethanol content (up to 7.5 % w/v), the denaturation rate of the enzymes increased. Enzyme denaturation occurred slower when the experiments were performed in fiber beer compared to buffer only, which could be due to PEG or other stabilizing substances in fiber beer. However, at extreme conditions with high temperature (65 °C) and ethanol content (7.5 % w/v), PEG had no enzyme stabilizing effect. The novel distillation setup proved to be useful for maintaining enzyme activity during ethanol extraction.

  4. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana.

    PubMed

    Mainoo, Nana O K; Barrington, Suzelle; Whalen, Joann K; Sampedro, Luis

    2009-12-01

    Pineapple wastes, an abundant organic waste in Accra, Ghana, were vermicomposted using native earthworms (Eudrilus eugeniae Kinberg) collected from the banks of streams and around bath houses of this city. Triplicate pilot-scale vermidigesters containing about 90 earthworms and three other control boxes with no earthworms were fed pineapple pulp or peels, and the loss of wet mass was monitored over 20 weeks. In a second experiment, a 1:1 mixture of pineapple peels and pulp (w/w) was fed to triplicate pilot-scale vermicomposters and control boxes during a 20 week period. One month after feeding ended, the vermicompost and composted (control) waste was air dried and analyzed. During the first experiment, the vermicomposted pineapple pulp and peels lost 99% and 87% of their wet mass, respectively, indicating the potential for vermicomposting. Fresh pineapple waste exhibited an initial pH of 4.4, but after 24 weeks, the vermicompost and compost had acquired a neutral to alkaline pH of 7.2-9.2. The vermicompost contained as much as 0.4% total N, 0.4% total P and 0.9% total K, and had a C:N ratio of 9-10. A reduction of 31-70% in the Escherichia coli plus Salmonella loads and 78-88% in the Aspergillus load was observed during vermicomposting. The rapid breakdown of pineapple wastes by E. eugeniae demonstrated the viability of vermicomposting as a simple and low cost technology recycling this waste into a soil amendment that could be used by the 2500 vegetable producers of Accra and its surrounding areas.

  5. Pilot-scale grout production test with a simulated low-level waste

    SciTech Connect

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  6. Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil

    SciTech Connect

    Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

    1999-07-01

    The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

  7. Using minced horseradish roots and peroxides for the deodorization of swine manure: a pilot scale study.

    PubMed

    Govere, Ephraim M; Tonegawa, Masami; Bruns, Mary Ann; Wheeler, Eileen F; Kephart, Kenneth B; Voigt, Jean W; Dec, Jerzy

    2007-04-01

    Enzymes that have proven to be capable of removing toxic compounds from water and soil may also be useful in the deodorization of animal manures. Considering that pork production in the US is a $40-billion industry with over half a million workers, odor control to protect air quality in the neighboring communities must be considered an essential part of managing livestock facilities. This pilot scale (20-120 L) study tested the use of minced horseradish (Armoracia rusticana L.) roots (1:10 roots to swine slurry ratio), with calcium peroxide (CaO(2) at 34 mM) or hydrogen peroxide (H(2)O(2) at 68 mM), to deodorize swine slurry taken from a 40,000-gallon storage pit at the Pennsylvania State University's Swine Center. Horseradish is known to contain large amounts of peroxidase, an enzyme that, in the presence of peroxides, can polymerize phenolic odorants and thus reduce the malodor. Twelve compounds commonly associated with malodor (seven volatile fatty acids or VFAs, three phenolic compounds and two indolic compounds) were used as odor indicators. Their concentration in swine slurry before and after treatment was determined by gas chromatography (GC) to assess the deodorization effect. The pilot scale testing demonstrated a complete removal of phenolic odorants (with a detection limit of 0.5 mg L(-1)) from the swine slurry, which was consistent with our previous laboratory experiments using 30-mL swine slurry samples. Horseradish could be recycled (reused) five times while retaining significant reduction in the concentration of phenolic odorants. In view of these findings, inexpensive plant materials, such as horseradish, represent a promising tool for eliminating phenolic odorants from swine slurry.

  8. The oxycoal process with cryogenic oxygen supply

    NASA Astrophysics Data System (ADS)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  9. The oxycoal process with cryogenic oxygen supply.

    PubMed

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  10. Cryogenic Cabaret

    NASA Astrophysics Data System (ADS)

    Leblanc, Marcel A. R.

    2004-03-01

    Recipient of the Royal Society of Canada's McNeil Medal for the promotion of science to the public,emeritus physics professor Marcel LeBlanc has given this spectacular science show to hundreds of audiences of students, parents, and science teachers over 35 years. An expert in cryophysics, Dr. LeBlanc chills his audience with a -78 C blizzard, freezes -200 C liquid nitrogen by boiling, morphs into a dragon spouting -200 C vapors, transforms soggy frozen cigars into torches. In the pursuit of science he sings low baritone then high tenor, fires electromagnetic cannons, and cannons belching smoke rings at the audience, invites teams to separate pairs of vacuum sealed hemispheres, levitates rings,magnets and electric coils,smashes rubber balls, explodes hydrogen balloons, and freezes everything but your imagination. For a preview glance at www.science.uottawa/phy/eng/profs/leblanc/ cryomagic: work in progress.

  11. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  12. Possible human endogenous cryogens.

    PubMed

    Shido, Osamu; Sugimoto, Naotoshi

    2011-06-01

    Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.

  13. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  14. Pilot-scale On-farm Pretreatment of Perennial Grasses with Dilute Acid and Alkali for Fuel Ethanol Production

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated with sulfuric acid or calcium hydroxide 50 g/kg DM at both the laboratory (250 g DM) and pilot-scale (250 kg DM) and anaerobically stored for two durations, 60 and 180 days. Pretreated and untreated samp...

  15. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    EPA Science Inventory

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  16. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  17. Development of a Pilot Scale Process to Sequester Aflatoxin and Release Bioactive Peptides from Highly Contaminated Peanut Meal

    USDA-ARS?s Scientific Manuscript database

    Peanut meal (PM) is the high protein by-product remaining after commercial extraction of peanut oil. PM applications are limited because of typical high concentrations of aflatoxin. For the first time, pilot-scale extraction of protein and sequestration of aflatoxin from PM were evaluated. Aqueous...

  18. Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge

    SciTech Connect

    Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C.; Owczarski, P.C.

    1993-09-01

    This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

  19. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  20. Monitoring Tribolium castaneum (Herbst) in Pilot-Scale Warehouses Treated with B-Cyfluthrin: Are Residual Insecticides and Trapping Compatible?

    USDA-ARS?s Scientific Manuscript database

    Integrated pest management strategies for cereal processing facilities often include both pheromone-baited pitfall traps and crack and crevice applications of a residual insecticide like cyfluthrin. In replicated pilot-scale warehouses, a 15-week long experiment was conducted to compare population ...

  1. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

  2. A PILOT-SCALE STUDY OF THE PRECURSORS LEADING TO THE FORMATION OF MIXED BROMO-CHLORO DIOXINS AND FURANS

    EPA Science Inventory

    The paper gives results of experiments in a pilot-scale rotary kiln incinerator simulator where a mixture of chlorinated and brominated surrogate waste was burned in the presence of injected fly-ash from a coal-fired utility boiler. Measurements were made of semivolatile products...

  3. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  4. A PILOT-SCALE STUDY OF THE PRECURSORS LEADING TO THE FORMATION OF MIXED BROMO-CHLORO DIOXINS AND FURANS

    EPA Science Inventory

    The paper gives results of experiments in a pilot-scale rotary kiln incinerator simulator where a mixture of chlorinated and brominated surrogate waste was burned in the presence of injected fly-ash from a coal-fired utility boiler. Measurements were made of semivolatile products...

  5. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    EPA Science Inventory

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  6. PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...

  7. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

  9. PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...

  10. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  11. INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN A PILOT-SCALE OZONE BUBBLE-DIFFUSER CONTACTOR - II: MODEL VALIDATION AND APPLICATION

    EPA Science Inventory

    The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...

  12. Mathematical and experimental pilot-scale study of coal reburning for NO sub x control in cyclone boilers

    SciTech Connect

    Farzan, H.; Wessel, R.A.

    1991-06-01

    The purpose of this pilot-scale study was to examine the effectiveness of reburning for NO{sub x} reduction and to assess the potential side effects. In addition, the potential of a high-sulfur Illinois coal for cyclone reburning application was evaluated. (VC)

  13. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  14. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    NASA Astrophysics Data System (ADS)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  15. Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover

    PubMed Central

    2014-01-01

    Background Dilute acid pretreatment is a promising process technology for the deconstruction of low-lignin lignocellulosic biomass, capable of producing high yields of hemicellulosic sugars and enhancing enzymatic yields of glucose as part of a biomass-to-biofuels process. However, while it has been extensively studied, most work has historically been conducted at relatively high acid concentrations of 1 - 4% (weight/weight). Reducing the effective acid loading in pretreatment has the potential to reduce chemical costs both for pretreatment and subsequent neutralization. Additionally, if acid loadings are sufficiently low, capital requirements associated with reactor construction may be significantly reduced due to the relaxation of requirements for exotic alloys. Despite these benefits, past efforts have had difficulty obtaining high process yields at low acid loadings without supplementation of additional unit operations, such as mechanical refining. Results Recently, we optimized the dilute acid pretreatment of deacetylated corn stover at low acid loadings in a 1-ton per day horizontal pretreatment reactor. This effort included more than 25 pilot-scale pretreatment experiments executed at reactor temperatures ranging from 150 – 170°C, residence times of 10 – 20 minutes and hydrolyzer sulfuric acid concentrations between 0.15 – 0.30% (weight/weight). In addition to characterizing the process yields achieved across the reaction space, the optimization identified a pretreatment reaction condition that achieved total xylose yields from pretreatment of 73.5% ± 1.5% with greater than 97% xylan component balance closure across a series of five runs at the same condition. Feedstock reactivity at this reaction condition after bench-scale high solids enzymatic hydrolysis was 77%, prior to the inclusion of any additional conversion that may occur during subsequent fermentation. Conclusions This study effectively characterized a range of pretreatment reaction

  16. Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover.

    PubMed

    Shekiro Iii, Joseph; Kuhn, Erik M; Nagle, Nicholas J; Tucker, Melvin P; Elander, Richard T; Schell, Daniel J

    2014-02-18

    Dilute acid pretreatment is a promising process technology for the deconstruction of low-lignin lignocellulosic biomass, capable of producing high yields of hemicellulosic sugars and enhancing enzymatic yields of glucose as part of a biomass-to-biofuels process. However, while it has been extensively studied, most work has historically been conducted at relatively high acid concentrations of 1 - 4% (weight/weight). Reducing the effective acid loading in pretreatment has the potential to reduce chemical costs both for pretreatment and subsequent neutralization. Additionally, if acid loadings are sufficiently low, capital requirements associated with reactor construction may be significantly reduced due to the relaxation of requirements for exotic alloys. Despite these benefits, past efforts have had difficulty obtaining high process yields at low acid loadings without supplementation of additional unit operations, such as mechanical refining. Recently, we optimized the dilute acid pretreatment of deacetylated corn stover at low acid loadings in a 1-ton per day horizontal pretreatment reactor. This effort included more than 25 pilot-scale pretreatment experiments executed at reactor temperatures ranging from 150 - 170°C, residence times of 10 - 20 minutes and hydrolyzer sulfuric acid concentrations between 0.15 - 0.30% (weight/weight). In addition to characterizing the process yields achieved across the reaction space, the optimization identified a pretreatment reaction condition that achieved total xylose yields from pretreatment of 73.5% ± 1.5% with greater than 97% xylan component balance closure across a series of five runs at the same condition. Feedstock reactivity at this reaction condition after bench-scale high solids enzymatic hydrolysis was 77%, prior to the inclusion of any additional conversion that may occur during subsequent fermentation. This study effectively characterized a range of pretreatment reaction conditions using deacetylated corn

  17. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  18. Rigid open-cell polyurethane foam for cryogenic insulation

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Lindquist, C. R.; Niendorf, L. R.; Nies, G. E.; Perkins, P. J., Jr.

    1971-01-01

    Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields.

  19. Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer

    SciTech Connect

    Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.; Kim, Pyoungchung; Labbé, Ncole

    2016-03-30

    To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compounds into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.

  20. Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer

    DOE PAGES

    Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.; ...

    2016-03-30

    To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less

  1. Achieving "Final Storage Quality" of municipal solid waste in pilot scale bioreactor landfills.

    PubMed

    Valencia, R; van der Zon, W; Woelders, H; Lubberding, H J; Gijzen, H J

    2009-01-01

    Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.

  2. A pilot-scale homogenization-assisted negative pressure cavitation extraction of Astragalus polysaccharides.

    PubMed

    Jiao, Jiao; Wei, Fu-Yao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2014-06-01

    This paper reported a new, green and effective extraction technique for polysaccharides, namely homogenization-assisted negative pressure cavitation extraction (HNPCE), which succeeded in the extraction of Astragalus polysaccharides (APs). Central composite design and kinetic model were applied to optimize the extraction conditions, and the optimal parameters were obtained as follows: homogenization time 70s, negative pressure -0.068MPa, extraction temperature 64.8°C, ratio of water to material 13.4 and extraction time 53min. The proposed method exhibited considerable predominance in terms of higher APs yield (16.74%) with much lower temperature and shorter duration, as against the reported hot water extraction method (14.33% of APs yield with 100°C and 3h). Moreover, FT-IR results showed that HNPCE method did not alter the primary structure of polysaccharides. Furthermore, the pilot-scale application of HNPCE was successfully performed with 16.62% of APs yield. Thus, HNPCE is an excellent alternative method for the extraction of polysaccharides from Astragalus or other plant materials in industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    PubMed

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  4. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.

    PubMed

    Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2017-05-01

    The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO2-H2S absorption column (AC) via settled broth recirculation. CO2-removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H2S removal was achieved regardless of the operational conditions. A maximum CH4 concentration of 94% with a limited O2 and N2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm(-2)d(-1) and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite.

    PubMed

    Su, Shi-jun; Zhu, Xiao-fan; Liu, Yong-jun; Jiang, Wen-ju; Jin, Yan

    2005-01-01

    MnO2 in pyrolusite can react with SO2 in flue gas and obtain by-product MnSO4 x H2O. A pilot scale jet bubbling reactor was applied in this work. Different factors affecting both SO2 absorption efficiency and Mn2+ extraction rate have been investigated, these factors include temperature of inlet gas flue, ration of liquid/solid mass flow rate (L/S), pyrolusite grade, and SO2 concentration in the inlet flue gas. In the meantime, the procedure of purification of absorption liquid was also discussed. Experiment results indicated that the increase of temperature from 30 to 70 K caused the increase of SO2 absorption efficiency from 81.4% to 91.2%. And when SO2 concentration in the inlet flue gas increased from 500 to 3000 ppm, SO2 absorption efficiency and Mn2+ extraction rate decreased from 98.1% to 82.2% and from 82.8% to 61.7%, respectively. The content of MnO2 in pyrolusite had a neglectable effect on SO2 absorption efficiency. Low L/S was good for both removal of SO2 and Mn2+ extraction. The absorption liquid was filtrated and purified to remove Si, Mg, Ca, Fe, Al and heavy metals, last product MnSO4 x H2O was obtained which quality could reach China GB1622-86, the industry grade standards.

  6. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation.

  7. Pilot scale study on retrofitting conventional activated sludge plant for biological nutrient removal.

    PubMed

    Chiang, W W; Qasim, S R; Zhu, G; Crosby, E C

    1999-01-01

    Eutrophication of receiving waters due to the discharge of nitrogen and phosphorus through the wastewater effluent has received much interest in recent years. Numerous techniques have been proposed and aimed at retrofitting the existing conventional activated sludge process for nutrient removal. A pilot-scale research program was conducted to evaluate the effectiveness of a biological nutrient process for this purpose. The results indicated that creating an anoxic/anaerobic zone before aeration basin significantly enhances total phosphorus (TP) and total nitrogen (TN) removal. Without internal cycle, about 80 percent TP and TN removal were respectively achieved under their optimal conditions. However, adverse trends for phosphorus and nitrogen removal were observed when the ratio of return sludge to the influent was varied in the range between 0.5 and 3.0. The total phosphorus removal decreased as the concentration of BOD5 in the mixture of influent and return sludge decreased. Improved sludge settling properties and reduced foaming problems were also observed during the pilot plant operation. Based upon experimental results, the strategies to modify an existing conventional activated sludge plant into a biological nutrient removal (BNR) system are discussed.

  8. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  9. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw.

    PubMed

    Sharma, Sandeep; Kumar, Ravindra; Gaur, Ruchi; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Das, Biswapriya

    2015-01-01

    Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200°C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (∼87%) at 200 and 180°C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Two-step pilot-scale biofilter system for the abatement of food waste composting emission.

    PubMed

    Galera, Melvin Maaliw; Cho, Eulsaeng; Kim, Yekyung; Farnazo, Danvir; Park, Shin-Jung; Oh, Young-Sook; Park, Jae Kyu; Chung, Wook-Jin

    2008-03-01

    A pilot-scale two-step biofilter system was evaluated in treating food waste composting emission for 220 days. Wood chips were packed at the bottom section while mixture of rock wool and earthworm compost (6% w/v) was packed at the top section. Inlet ammonia concentration was found to be dominant and intermittent. The overall ammonia removal of over 98% was achieved, 70% of which was removed in the wood chip section. The highest ammonia elimination capacity was determined to be 39.43 g-NH(3)/m(3)/h at 99.5% removal efficiency. From biodegradation kinetic analysis, the maximum removal rate, V(m), of the wood chip section was determined to be 200 g-NH(3)/m(3)/h and the saturation constant, K(s), 180 mg/m(3). For the rock wool-earthworm cast mixture section, the V(m) was 87 g-NH(3)/m(3)/h and K(s) was 87 mg/m(3). Complete removal of hydrogen sulfide and most trace compounds were achieved by the biofilter. Highest hydrogen sulfide elimination rate was 0.22 g-H(2)S/m(3)/h. The biofilter was optimized from 24 to 16 s EBRT with resulting low average pressure drops of 16 and 29 mm H(2)O/m, respectively.

  12. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    PubMed

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  13. Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.

    PubMed

    Acevedo, Juan C; Hernández, Jorge A; Valdés, Carlos F; Khanal, Samir Kumar

    2015-01-01

    The present study aims to evaluate the operating costs of biodiesel production using palm oil in a pilot-scale plant with a capacity of 20,000 L/day (850 L/batch). The production plant uses crude palm oil as a feedstock, and methanol in a molar ratio of 1:10. The process incorporated acid esterification, basic transesterification, and dry washing with absorbent powder. Production costs considered in the analysis were feedstock, supplies, labor, electricity, quality and maintenance; amounting to $3.75/gal ($0.99/L) for 2013. Feedstocks required for biodiesel production were among the highest costs, namely 72.6% of total production cost. Process efficiency to convert fatty acids to biodiesel was over 99% and generated a profit of $1.08/gal (i.e., >22% of the total income). According to sensitivity analyses, it is more economically viable for biodiesel production processes to use crude palm oil as a feedstock and take advantage of the byproducts such as glycerine and fertilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    EPA Pesticide Factsheets

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  15. Performance of pilot-scale constructed wetlands for secondary treatment of chromium-bearing tannery wastewaters.

    PubMed

    Dotro, Gabriela; Castro, Silvana; Tujchneider, Ofelia; Piovano, Nancy; Paris, Marta; Faggi, Ana; Palazolo, Paul; Larsen, Daniel; Fitch, Mark

    2012-11-15

    Tannery operations consist of converting raw animal skins into leather through a series of complex water- and chemically-intensive batch processes. Even when conventional primary treatment is supplemented with chemicals, the wastewater requires some form of biological treatment to enable the safe disposal to the natural environment. Thus, there is a need for the adoption of low cost, reliable, and easy-to-operate alternative secondary treatment processes. This paper reports the findings of two pilot-scale wetlands for the secondary treatment of primary effluents from a full tannery operation in terms of resilience (i.e., ability to produce consistent effluent quality in spite of variable influent loads) and reliability (i.e., ability to cope with sporadic shock loads) when treating this hazardous effluent. Areal mass removal rates of 77.1 g COD/m2/d, 11 g TSS/m2/d, and 53 mg Cr/m2/d were achieved with a simple gravity-flow horizontal subsurface flow unit operating at hydraulic loading rates of as much as 10 cm/d. Based on the findings, a full-scale wetland was sized to treat all the effluent from the tannery requiring 68% more land than would have been assumed based on literature values. Constructed wetlands can offer treatment plant resilience for minimum operational input and reliable effluent quality when biologically treating primary effluents from tannery operations.

  16. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    EPA Pesticide Factsheets

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  17. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    SciTech Connect

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-01-01

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy's Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

  18. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    SciTech Connect

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-12-31

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy`s Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

  19. A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Kim, Sa Dong; Yoon, Yong Soo

    2014-10-01

    A specifically designed pilot-scale hybrid wastewater treatment system integrating an innovative equalizing reactor (EQ), rotating hanging media bioreactor (RHMBR) and submerged flat sheet membrane bioreactor (SMBR) was evaluated for its effectiveness in practical, long-term, real-world applications. The pilot system was operated at a constant flux, but with different internal recycle flow rates (Q) over a long-term operating of 475 days. At 4 Q internal recycle flow rate, BOD5, CODCr, NH4(+)-N, T-N, T-P and TSS was highly removed with efficiencies up to 99.88 ± 0.05%, 95.01 ± 1.62%, 100%, 90.42 ± 2.43%, 73.44 ± 6.03%, and 99.93 ± 0.28%, respectively. Furthermore, the effluent quality was also superior in terms of turbidity (<1 NTU), color (<15 TCU) and taste (inoffensive). The results indicated that with providing only chemically cleaned-in-place (CIP) during the entire period of operation, the membrane could continuously maintain a constant permeate flux of 22.77 ± 2.19 L/m(2)h. In addition, the power consumption was also found to be reasonably low (0.92-1.62 k Wh/m(3)).

  20. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  1. Benzalkonium runoff from roofs treated with biocide products - In situ pilot-scale study.

    PubMed

    Gromaire, M C; Van de Voorde, A; Lorgeoux, C; Chebbo, G

    2015-09-15

    Roof maintenance practices often involve the application of biocide products to fight against moss, lichens and algae. The main component of these products is benzalkonium chloride, a mixture of alkyl benzyl dimethyl ammonium chlorides with mainly C12 and C14 alkyl chain lengths, which is toxic for the aquatic environment. This paper describes, on the basis of an in-situ pilot scale study, the evolution of roof runoff contamination over a one year period following the biocide treatment of roof frames. Results show a major contamination of roof runoff immediately after treatment (from 5 to 30 mg/L), followed by an exponential decrease. 175-375 mm of cumulated rainfall is needed before the runoff concentrations become less than EC50 values for fish (280 μg/l). The residual concentration in the runoff water remains above 4 μg/L even after 640 mm of rainfall. The level of benzalkonium ions leaching depends on the roofing material, with lower concentrations and total mass leached from ceramic tiles than from concrete tiles, and on the state of the tile (new or worn out). Mass balance calculations indicate that a large part of the mass of benzalkonium compounds applied to the tiles is lost, probably due to biodegradation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Pilot-Scale Test of Counter-Current Ion Exchange (CCIX) Using UOP IONSIV IE-911

    SciTech Connect

    Wester, Dennis W. ); Fondeur, Fernando; Dennis, Richard; Pike, Jeff; Leugemors, Robert K. ); Taylor, Paul W.; Hang, Thong

    2001-09-24

    A pilot-scale test of a moving-bed configuration of a UOP IONSIV? IE-911 ion-exchange column was performed over 17 days at Severn Trent Services facilities. The objectives of the test, in order of priority, were to determine if aluminosilicate precipitation caused clumping of IE-911 particles in the column, to observe the effect on aluminum-hydroxide precipitation of water added to a simulant-filled column, to evaluate the extent of particle attrition, and to measure the expansion of the mass-transfer zone under the influence of column pulsing. The IE-911 moved through the column with no apparent clumping during the test, although analytical results indicate that little if any aluminosilicate precipitated onto the particles. A precipitate of aluminum hydroxide was not produced when water was added to the simulant-filled column, indicating that this upset scenario is probably of little concern. Particle-size distributions remained relatively constant with time and position in the column, indicating that particle attrition was not significant. The expansion of the mass-transfer zone could not be accurately measured because of the slow loading kinetics of the IE-911 and the short duration of the test; however, the information obtained indicates that back-mixing of sorbent is not extensive.

  3. Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026

    PubMed Central

    Shi, Jun; Pan, Jian; Liu, Ling; Yang, Dong; Lu, Songquan; Zhu, Xiangcheng; Shen, Ben; Duan, Yanwen; Huang, Yong

    2016-01-01

    Platensimycin (PTM) and platencin (PTN), isolated from several strains of Streptomyces platensis, are potent antibiotics against multi-drug resistant bacteria. PTM was also shown to have antidiabetic and antisteatotic activities in mouse models. Through a novel genome-mining method, we have recently identified six PTM and PTN dual-producing strains, and generated several mutants with improved production of PTM or PTN by inactivating the pathway-specific transcriptional repressor gene ptmR1. Among them, S. platensis SB12026 gave the highest titer of 310 mg/L for PTM. In this study, we now report titer improvement by medium and fermentation optimization and pilot-scale production and isolation of PTM from SB12026. The fermentation medium optimization was achieved by manipulating the carbon and nitrogen sources, as well as the inorganic salts. The highest titer of 1560 mg/L PTM was obtained in 15-L fermentors, using a formulated medium mainly containing soluble starch, soybean flour, morpholinepropanesulfonic acid sodium salt and CaCO3. In addition, a polyamide chromatographic step was applied to facilitate the purification and 45.14 g of PTM was successfully obtained from a 60 L scale fermentation. These results would speed up the future development of PTM as human medicine. PMID:27126098

  4. Pilot-scale study of efficient vermicomposting of agro-industrial wastes.

    PubMed

    Kumar, Vaidyanathan Vinoth; Shanmugaprakash, M; Aravind, J; Namasivayam, S Karthick Raja

    2012-01-01

    Pilot-scale vermicomposting was explored using Eudrilus eugeniae for 90 days with 45 days preliminary decomposition using different agro-industrial wastes as substrates. Spent wash and pressmud were mixed together (referred to as PS) and then combined with cow dung (CD) at five different ratios of PS:CD, namely, 25:75 (T1), 50:50 (T2), 75:25 (T3), 85:15 (T4) and 100 (T5), with two replicates for each treatment. All vermibeds expressed a significant decrease in pH (11.4-14.8%), organic carbon (4.2-30.5%) and an increase in total nitrogen (6-29%), AP (5-29%), exchangeable potash (6-21%) and turnover rate (52-66%). Maximum mortality (18.10%) of worms was recorded in T5 treatment. A high manurial value and a matured product was achieved in T3 treatment. The data reveal that pressmud mixed with spent wash can be decomposed through vermicomposting and can help to enhance the quality of vermicompost.

  5. Pesticide removal from cotton farm tailwater by a pilot-scale ponded wetland.

    PubMed

    Rose, Michael T; Sanchez-Bayo, Francisco; Crossan, Angus N; Kennedy, Ivan R

    2006-06-01

    A pilot-scale, ponded wetland consisting of an open pond and a vegetated pond in series was constructed on a cotton farm in northern New South Wales, Australia, and assessed for its potential to remove pesticides from irrigation tailwater. Ten incubation periods ranging from 7 to 13 days each were conducted over two cotton growing seasons to monitor removal of residues of four pesticides applied to the crop. Residue reductions ranging 22-53% and 32-90% were observed in the first and second seasons respectively. Average half-lives during this first season were calculated as 21.3 days for diuron, 25.4 days for fluometuron and 26.4 days for aldicarb over the entire wetland. During the second season of monitoring, pesticide half-lives were significantly reduced, with fluometuron exhibiting a half-life of 13.8 days, aldicarb 6.2 days and endosulfan 7.5 days in the open pond. Further significant reductions were observed in the vegetated pond and also following an algal bloom in the open pond, as a result of which aldicarb and endosulfan were no longer quantifiable. Partitioning onto sediment was found to be a considerable sink for the insecticide endosulfan. These results demonstrate that macrophytes and algae can reduce the persistence of pesticides in on-farm water and provide some data for modelling.

  6. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.

    PubMed

    Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J

    2005-10-01

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.

  7. Ammonia Oxidizing Bacteria Community Dynamics in a Pilot-Scale Wastewater Treatment Plant

    PubMed Central

    Wang, Xiaohui; Wen, Xianghua; Xia, Yu; Hu, Ma; Zhao, Fang; Ding, Kun

    2012-01-01

    Background Chemoautotrophic ammonia oxidizing bacteria (AOB) have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs). However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. Methodology/Principal Findings The community dynamics of ammonia oxidizing bacteria (AOB) in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP). During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days) of AOB community structures was 10%±8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA) and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO), effluent ammonia, effluent Biochemical Oxygen Demand (BOD) and temperature. Conclusions/Significance This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification. PMID:22558415

  8. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply

    PubMed Central

    Schmidt, Radomir; Klemme, David A.; Scow, Kate; Hristova, Krassimira

    2012-01-01

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, E. coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. PMID:22321859

  9. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Pilot-scale incineration of comtaminated soils from the drake chemical superfund site. Final report

    SciTech Connect

    King, C.; Lee, J.W.; Waterland, L.R.

    1993-03-01

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, Pennsylvania. The soils at the Drake site are reported to be contaminated to varying degrees with various organic constituents and several hazardous constituent trace metals. The purpose of the test program was to evaluate the incinerability of selected site soils in terms of the destruction of contaminant organic constituents and the fate of contaminant trace metals. All tests were conducted in the rotary kiln incineration system at the IRF. Test results show that greater than 99.995 percent principal organic hazardous constituent (POHC) destruction and removal efficiencies (DRE) can be achieved at kiln exit gas temperatures of nominally 816 C (1,500 F) and 538 C (1,000 F). Complete soil decontamination of semivolatile organics was achieved; however, kiln ash levels of three volatile organic constituents remained comparable to soil levels.

  11. Experimental proof of concept of a pilot-scale thermochemical storage unit

    NASA Astrophysics Data System (ADS)

    Tescari, Stefania; Singh, Abhishek; de Oliveira, Lamark; Breuer, Stefan; Agrafiotis, Christos; Roeb, Martin; Sattler, Christian; Marcher, Johnny; Pagkoura, Chrysa; Karagiannakis, George; Konstandopoulos, Athanasios G.

    2017-06-01

    The present study presents installation and operation of the first pilot scale thermal storage unit based on thermochemical redox-cycles. The reactive core is composed of a honeycomb ceramic substrate, coated with cobalt oxide. This concept, already analyzed and presented at lab-scale, is now implemented at a larger scale: a total of 280 kg of storage material including 90 kg of cobalt oxide. The storage block was implemented inside an existing solar facility and connected to the complete experimental set-up. This experimental set-up is presented, with focus on the measurement system and the possible improvement for a next campaign. Start-up and operation of the system is described during the first complete charge-discharge cycle. The effect of the chemical reaction on the stored capacity is clearly detected by analysis of the temperature distribution data obtained during the experiments. Furthermore two consecutive cycles show no evident loss of reactivity inside the material. The system is cycled between 650°C and 1000°C. In this temperature range, the total energy stored was about 50 kWh, corresponding to an energy density of 630 kJ/kg. In conclusion, the concept feasibility was successfully shown, together with a first calculation on the system performance.

  12. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.

    PubMed

    Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

    2005-09-01

    Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.

  13. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.

    PubMed

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto

    2013-10-15

    This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  14. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-07-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  15. Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature.

    PubMed

    Trojanowicz, Karol; Plaza, Elzbieta; Trela, Jozef

    2016-01-01

    Process of partial nitritation-anammox for mainstream wastewater at low temperature was run in a pilot scale moving bed biofilm reactor (MBBR) system for about 300 days. The biofilm history in the reactor was about 3 years of growth at low temperature (down to 10 °C). The goal of the studies presented in this paper was to achieve effective partial nitritation-anammox process. Influence of nitrogen loading rate, hydraulic retention time, aeration strategy (continuous versus intermittent) and sludge recirculation (integrated fixed-film activated sludge (IFAS) mode) on deammonification process' efficiency and microbial activity in the examined system was tested. It was found that the sole intermittent aeration strategy is not a sufficient method for successful suppression of nitrite oxidizing bacteria in MBBR. The best performance of the process was achieved in IFAS mode. The highest recorded capacity of ammonia oxidizing bacteria and anammox bacteria in biofilm was 1.4 gN/m(2)d and 0.5 gN/m(2)d, respectively, reaching 51% in nitrogen removal efficiency.

  16. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    PubMed

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  17. Bench- and pilot-scale evaluation of mercury speciation measurement methods

    SciTech Connect

    Laudal, D.L.; Heidt, M.K.; Nott, B.R.; Brown, T.D.

    1996-12-31

    The 1990 Clean Air Act Amendments require the US Environmental Protection Agency (EPA) to assess the health risks associated with mercury. Since the rate of mercury deposition and the type of control strategies used may depend on the type of mercury species emitted, a proven sampling method that can reliably and accurately speciate mercury at the very low concentrations found in coal combustion flue gas is necessary. A number of mercury speciation methods have been proposed, including wet-chemistry methods, such as EPA Method 29, the Ontario Hydro method, and the tris-buffer method, as well as dry methods such as the Mercury Speciation Absorption method (MESA). In addition, a number of companies are developing continuous emissions monitors to speciate mercury by difference. Bench- and pilot-scale tests, sponsored by the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE), are currently under way at the Energy and Environmental Research Center (EERC) to determine the most accurate and precise mercury speciation method available. The overall objective of the test program is to determine whether EPA Method 29 or other sampling methods can reliably quantify and speciate mercury in flue gas from coal-fired boilers at both the inlet and outlet of a particulate control device such as a pulse-jet baghouse. A specific goal of the project is to determine the precision and bias of the various mercury speciation methods as a function of process variables.

  18. Indirect measurement of water content in an aseptic solid substrate cultivation pilot-scale bioreactor.

    PubMed

    Peña Y Lillo, M; Pérez-Correa, R; Agosin, E; Latrille, E

    2001-01-01

    A lack of models and sensors for describing and monitoring large-scale solid substrate cultivation (SSC) bioreactors has hampered industrial development and application of this type of process. This study presents an indirect dynamic measurement model for a 200-kg-capacity fixed-bed SSC bioreactor under periodic agitation. Growth of the filamentous fungus Gibberella fujikuroi on wheat bran was used as a case study. Real data were preprocessed using previously reported methodology. The model uses CO2 production rate and inlet air conditions to estimate average bed water content and average bed temperature. The model adequately reproduces the evolution of the average bed water content and can therefore be used as an on-line estimator in pilot-scale SSC bioreactors. To obtain a reasonable fit of the bed temperature, however, inlet air humidity measurements will have to be adjusted with a data reconciliation algorithm. Good estimation of temperature is important for the future design of improved water content estimation using state observers. The model also provides insight into understanding the complex behavior of the dynamic system, which could prove useful when establishing advanced model-based operational and control strategies.

  19. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  20. Performance evaluation of pilot scale sulfur-oxidizing denitrification for treatment of metal plating wastewater.

    PubMed

    Flores, Angel S P; Gwon, Eun-Mi; Sim, Dong-Min; Nisola, Grace; Galera, Melvin M; Chon, Seung-Se; Chung, Wook-Jin; Pak, Dae-Won; Ahn, Zou Sam

    2006-01-01

    A full-scale and two pilot-scale upflow sulfur-oxidizing denitrification (SOD) columns were evaluated using metal plating wastewater as feed. The sludge was autotrophically enriched, and inoculated in the SOD columns attached to the effluent line of three metal plating wastewater treatment facilities. The effects of activated carbon and aeration were also studied, and found effective for the removal of suspended solids and ammonia, respectively. The results showed that the constituents, such as the total nitrogen, nitrates, nitrites, ammonia, chemical oxygen demand (COD), and heavy metals, were effectively removed. The pH was observed to be maintained at 7-8 due to the alkalinity supplied by the sulfur-calcium carbonate (SC) pellet. The denitrification efficiency and start-up period were observed to be affected by the influent quality. Chromium, iron, nickel, copper, and zinc--the major heavy metal components of the influent--were effectively reduced at certain concentrations. Other metal ions were also detected and reduced to undetectable concentrations, but no trends in the comparison with denitrification were observed. From the results it can be concluded that SOD is effective for the removal of nitrogen, particularly nitrates, without a drastic pH change, and can effectively remove minute concentrations of heavy metals and COD in metal plating wastewaters.

  1. Removal of N, P, BOD5, and coliform in pilot-scale constructed wetland systems.

    PubMed

    Jin, Guang; Kelley, Tim; Freeman, Mike; Callahan, Mike

    2002-01-01

    Pilot-scale surface-flow (SF), subsurface-flow (SSF), and floating aquatic plant (FAP) constructed wetland system designs were installed and evaluated to determine the effectiveness of constructed wetlands to treat tertiary effluent wastewater in a Midwestern U.S. climate (central Illinois). Average ammonia-nitrogen (N) concentrations decreased approximately 50% in the SSF system design, suggesting that this design had the highest nitrification rate. Nitrate-N concentrations decreased by over 60% in the FAP system design, possibly due to dissimilatory reduction or plant uptake. Total phosphorus (P) concentration reductions of 25 to 40% were observed in all three system designs. Five-day biochemical oxygen demand (BOD5) and dissolved oxygen (DO) results suggested that biodegradation was highest in the SSF system design and lowest in the FAP system design. Greater than 90% concentration reductions of total coliform and E. coli recovered were also observed following treatment in all three system designs. The FAP system design appeared to yield the highest concentration reduction efficiency for E. coli, possibly due to increased sunlight and related bacteriocidal ultraviolet light exposure. Ongoing experiments will test regularly for a variety of vegetative, water quality, and biological conditions for longer time periods in order to gain a better understanding of the pilot constructed wetland system design kinetics.

  2. A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.

    PubMed

    Pešoutová, Radka; Stříteský, Luboš; Hlavínek, Petr

    2014-01-01

    This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L(-1). All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L(-1). At a dose of 4.4 · mg L(-1) ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers - carbonates and bicarbonates.

  3. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  4. Pilot-scale production of mesoporous silica-based adsorbent for CO2 capture

    NASA Astrophysics Data System (ADS)

    Wang, Hou Chuan; Lu, Chungsying; Bai, Hsunling; Hwang, Jyh Feng; Lee, Hsiu Hsia; Chen, Wang; Kang, Yuhao; Chen, Shing-Ting; Su, Fengsheng; Kuo, Shih-Chun; Hu, Fang-Chun

    2012-07-01

    This study presents a pilot-scale spray drying system designed to manufacture spherical mesoporous silica particles (MSP) that is capable of producing up to 100 g per hour. The MSP fabricated via a nozzle pressure of 4 kg/cm2 and a drying temperature of 200 °C possess a high specific area of 1012 m2/g, a narrow pore size distribution with an average pore diameter of 2.4 nm, and large pore volume of 0.81 cm3/g. They were further modified with a tetraethylenepentamine (TEPA-MSP) to enhance CO2 adsorption selectivity from gas streams. The adsorption capacity of 15% CO2 on TEPA-MSP was significantly influenced by adsorption temperature and water vapor of air streams, and reached a maximum of 87.05 mg/g (1.98 mmol/g) at 60 °C and 129.19 mg/g (2.94 mmol/g) at a water vapor of 6.98%. The adsorption capacities and the physicochemical properties of TEPA-MSP were preserved through 20 cycles of adsorption-desorption operation. A comparative study revealed that the TEPA-MSP had better adsorption performance of 15% CO2 than the TEPA-modified granular activated carbon and zeolite. These results suggest that the TEPA-MSP can be stably employed in the prolonged cyclic CO2 adsorption and that they possess good potential for CO2 capture from flue gas.

  5. Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes.

    PubMed

    Lee, Jiho; Lee, Byoung C; Ra, Jin S; Cho, Jaeweon; Kim, In S; Chang, Nam I; Kim, Hyun K; Kim, Sang D

    2008-04-01

    The removal efficiency of endocrine disrupting compounds from effluents using pilot scale sewage treatment processes, including various treatment technologies, such as membrane bioreactors (MBR), nanofiltration (NF) and reverse osmosis (RO) for the purpose of water reuse, were estimated and compared. The calculated estrogenic activity, expressed in ng-EEQ/l, based on the concentration detected by GC/MS, and relative potencies for each target compound were compared to those measured using the E-screen assay. The removal efficiencies for nonylphenol, was within the range of 55-83% in effluents. High removal efficiencies of approximately >70% based on the detection limits were obtained for bisphenol A, E1, EE2 and genistein with each treatment processes, with the exception of E1 ( approximately 64%) using the MBR process. The measured EEQ values for the effluents from the MBR, NF and RO processes also indicated low estrogenic activities of 0.65, 0.23 and 0.05 ng-EEQ/l, respectively. These were markedly reduced values compared with the value of 1.2 ng-EEQ/l in influent. Consequently, the removals of EDCs in terms of the EEQ value from the biological and chemical determinations were sufficiently achieved by the treatment process applied in this study, especially in the cases of the NF and RO treatments.

  6. Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.

    PubMed

    Meinel, F; Sperlich, A; Jekel, M

    Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

  7. Pilot-scale evaluation of the thermal-stability POHC incinerability anking

    SciTech Connect

    Lee, J.W.; Whitworth, W.E.; Waterland, L.R.

    1992-04-01

    A test series were performed at the U.S. EPA Incineration Research Facility (IRF) to evaluate the thermal-stability-based principal organic hazardous constituent (POHC) incinerability ranking. Mixtures of twelve POHCs with predicted incinerabilities spanning the range of most- to least-difficult-to-incinerate classes were combined with a clay-based sorbent matrix and fed to the facility's pilot-scale rotary kiln incinerator. Kiln operating conditions were varied to include a baseline operating condition, three modes of attempted incineration failure, and a worst-case combination of the three failure modes. Kiln-exit POHC destruction and removal efficiencies (DREs) were in the 99.99% range for the volatile POHCs during the baseline, mixing failure and matrix failure tests. Semivolatile POHCs were not detected at the kiln exit for these tests; corresponding DREs were generally greater than 99.999%. The thermal failure and worst-case tests resulted in substantially decreased kiln-exit POHC DREs, ranging from less than 99% to greater than 99.999%. General agreement between measured and predicted relative kiln-exit POHC DREs was observed for those two tests.

  8. Pilot-scale anaerobic co-digestion of municipal wastewater sludge with restaurant grease trap waste.

    PubMed

    Razaviarani, Vahid; Buchanan, Ian D; Malik, Shahid; Katalambula, Hassan

    2013-07-15

    The maximum feasible loading rate of grease trap waste (GTW) to the municipal wastewater sludge (MWS) was investigated using two 1300 L pilot-scale (1200 L active volume) digesters under mesophilic conditions at a 20 day solids retention time. During the co-digestion, the test reactor received a mixture of GTW and MWS while the control reactor received only MWS. The test digester loading was increased incrementally to a maximum of 280% of the control digester COD loading. The highest feasible GTW loading was determined to be 23% and 58% in terms of its total 1.58 kg VS/(m(3) d) and 3.99 kg COD/(m(3) d) loadings, respectively. This test digester COD loading represented 240% of the control digester COD loading. At this loading, test digester biogas production was 67% greater than that of the control. During the test digester quasi steady state loading period when VS from GTW represented 19% of its total VS loading, the test digester COD and VS removal rates were 2.5 and 1.5 fold those of the control digester, respectively. The test digester biogas production declined markedly when the percentage of VS from GTW in its feed was increased to 30% of its total VS loading. Causes of the reduced biogas production were investigated and attributed to inhibition due to long chain fatty acid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale.

    PubMed

    Seidel, H; Löser, C; Zehnsdorf, A; Hoffmann, P; Schmerold, R

    2004-03-01

    The core stages of a sediment remediation process--the conditioning of dredged sludge by plants and the solid-bed leaching of heavy metals using microbially produced sulfuric acid--were tested on a pilot scale using a highly polluted river sediment. Conditioning was performed in 50 m3 basins at sludge depths of 1.8 m. During one vegetation period the anoxic sludge turned into a soil-like oxic material and became very permeable to water. Reed canary grass (Phalaris arundinacea) was found to be best suited for conditioning. Bioleaching was carried out in an aerated solid-bed reactor of 2000 L working volume using oxic soil-like sediment supplemented with 2% sulfur. When applying conditioned sediment, the oxidation of easily degradable organic matter by heterotrophic microbes increased the temperature up to 50 degrees C in the early leaching phase, which in turn temporarily inhibited the sulfur-oxidizing bacteria. Nevertheless, most of the metal contaminants were leached within 21 days. Zn, Cd, Mn, Co, and Ni were removed by 61-81%, Cu was reduced by 21%, while Cr and Pb were nearly immobile. A cost-effectiveness assessment of the remediation process indicates it to be a suitable treatment for restoring polluted sediments for beneficial use.

  10. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    PubMed

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200%, recycle ratio 2 of 100%, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51%, while the role of denitrification and phosphorus removal removed partial TN (14%). Furthermore, nitrogen was further removed (11%) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84%. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination.

  11. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer.

    PubMed

    Iqbal, M; Bhuiyan, H; Mavinic, D S

    2008-11-01

    The recovery of phosphates from biological wastewater treatment plants, through struvite crystallization, minimizes operational downtime and offers the potential for cost-effective recovery. The pilot-scale, fluidized bed reactor developed at the University of British Columbia (UBC) was found to be effective in recovering phosphate in the form of nearly pure struvite product, from an anaerobic digester centrate. The desired degree of phosphate removal was achieved by maintaining operating pH 8.0-8.2, and recycle ratio 5-9, to control the supersaturation conditions inside the reactor. The performance of the system was found to be optimal when the in-reactor supersaturation ratio was 2-6. In-reactor magnesium to phosphate molar ratio was found to be an important parameter to maintain system performance. In-reactor ammonium to phosphate molar ratio was also found to maintain a good correlation with phosphate removal. The influence of organic ligands on the struvite precipitation was investigated for a small molecular weight organic ligand, acetate, using a chemical equilibrium model PHREEQC. An acetate concentration below about 100 mg l(-1) was not found to affect the precipitation potential of struvite. Calcium and carbonate ion did not have any noticeable effect in struvite crystallization of struvite, under the operational concentrations utilized. Since the precipitation of calcium and carbonate compounds was controlled by kinetic factors, rather than thermodynamic solubility alone, the solid precipitates harvested were pure struvite, with undetectable impurities.

  12. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale.

    PubMed

    Löser, Christian; Urit, Thanet; Stukert, Anton; Bley, Thomas

    2013-01-10

    Whey arising in huge amounts during milk processing is a valuable renewable resource in the field of White Biotechnology. Kluyveromyces marxianus is able to convert whey-borne lactose into ethyl acetate, an environmentally friendly solvent. Formation of ethyl acetate as a bulk product is triggered by iron (Fe). K. marxianus DSM 5422 was cultivated aerobically in whey-borne medium originally containing 40 μg/L Fe, supplemented with 1, 3 or 10 mg/L Fe in the pre-culture, using an 1 L or 70 L stirred reactor. The highest Fe content in the pre-culture promoted yeast growth in the main culture causing a high sugar consumption for growth and dissatisfactory formation of ethyl acetate, while the lowest Fe content limited yeast growth and promoted ester synthesis but slowed down the process. An intermediate Fe dose (ca. 0.5 μg Fe/g sugar) lastly represented a compromise between some yeast growth, a quite high yield of ethyl acetate and an acceptable duration of the process. The mass of ethyl acetate related to the sugar consumed amounted to 0.113, 0.265 and 0.239 g/g in the three processes corresponding to 21.9%, 51.4% and 46.3% of the theoretically maximum yield. The performance on a pilot scale was somewhat higher than on lab scale.

  13. Production and isolation of azaspiracid-1 and -2 from Azadinium spinosum culture in pilot scale photobioreactors.

    PubMed

    Jauffrais, Thierry; Kilcoyne, Jane; Séchet, Véronique; Herrenknecht, Christine; Truquet, Philippe; Hervé, Fabienne; Bérard, Jean Baptiste; Nulty, Cíara; Taylor, Sarah; Tillmann, Urban; Miles, Christopher O; Hess, Philipp

    2012-06-01

    Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell · mL(-1) at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day(-1), with optimum toxin production at 0.25 day(-1). After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.

  14. Anaerobic hydrolysis of a municipal wastewater in a pilot-scale digester.

    PubMed

    Alvarez, J A; Zapico, C A; Gómez, M; Presas, J; Soto, M

    2003-01-01

    Raw domestic wastewater from the city of Santiago de Compostela (Northwest Spain) was fed into a pilot-scale hydrolytic up flow sludge bed (HUSB) digester with an active volume of 25.5 m3. The total influent chemical oxygen demand (COD) ranged from 360 to 470 mg/l, the influent SS varied from 190 to 370 mg/l, and the temperature was between 17 degrees and 20 degrees C. The organic load rate (OLR) applied increased step by step from 1.2 to 3.9 kgCOD/m3 x d, while the hydraulic retention time (HRT) decreased from 7.1 h to 2.9 h. A high suspended solids (SS) removal of about 82-85% from the influent was reached, most of which (81 to 88%) was eliminated by hydrolysis, while the rest remained in the purge stream. The total COD removal ranged from 46 to 59%. On the other hand, a high acidification of the COD remaining in the effluent was obtained, so the percent COD in the form of volatile fatty acids (VFA(COD)) with respect to total effluent COD was about 43% for the highest HRT applied, and about 27% for the lowest HRT. The soluble to total COD ratio (CODs/CODt) increased from 25-32% for the influent to 71-86% for the effluent. The results obtained confirm the viability and interest of direct anaerobic hydrolytic pre-treatment of domestic wastewater.

  15. Disinfection of bacterial biofilms in pilot-scale cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.

    2015-01-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day−1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755

  16. Microanalytical characterization of slagging deposits in a pilot-scale combustor

    SciTech Connect

    Harb, J.N.; West, J.

    1996-10-01

    A study was performed to provide insight into the mechanisms by which phase transformations occur in slogging deposits. An important consideration in such studies is the relevance of the samples to large-scale boiler behavior. Samples for this study were collected in ABB-CE`s Fireside Performance Test Facility (FPTF), a pilot-scale facility which operates at conditions representative of those found in full-scale units. Samples were cross-sectioned and analyzed using Scanning Electron Microscopy Point Count (SEMPC) techniques. The SEMPC data were combined with image analysis to characterize composition and morphology as a function of position in the deposit. Results show the transition from a particulate inner layer dominated by individual particle chemistry to a more homogeneous and less porous outer layer. This information was combined with FPTF operating conditions to determine the dominant factors in the transition between inner and outer deposit layers, particularly for deposits with molten outer layers. Insight into these issues will assist in the development of deposition models that efficiently and accurately describe the deposition process.

  17. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds.

    PubMed

    Zimmo, O R; van der Steen, N P; Gijzen, H J

    2004-02-01

    Nitrogen removal processes and nitrogen mass balances in algae-based ponds (ABPs) and duckweed (Lemna gibba)-based ponds (DBPs) were assessed during periods of 4 months, each under different operational conditions. During periods 1 and 2, the effect of cold and warm temperature was studied. During periods 2 and 3, the effect of low- and high-system organic loading (OL) was studied in warm seasons operation. The pilot-scale systems consisted of four similar ponds in series fed with domestic sewage with hydraulic retention time of 7 days in each pond. Overall nitrogen removal was higher during warm temperature in both ABPs and DBPs, but similar during periods 2 and 3. Nitrogen removal in DBPs was lower than in ABPs by 20%, 12% and 8% during cold temperature, warm temperature and high-OL periods, respectively. Depending on temperature and OL rate, ABPs showed higher nitrogen removal via sedimentation (46-245% higher) compared to DBPs. Also, ABPs also showed higher nitrogen removal via denitrification (7-37% higher) compared to DBPs. Ammonia volatilisation in both systems did not exceed 1.1% of influent total nitrogen during the entire experimental period. N uptake by duckweed corresponds to 30% of the influent nitrogen during warm/low OL period and decreased to 10% and 19% during the cold and warm/high OL period, respectively. Predictive models for nitrogen removal presented a good reflection of nitrogen fluxes on overall nitrogen balance under the prevailing experimental conditions.

  18. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.

    PubMed

    Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E

    2011-03-01

    A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.

  19. Removal kinetic of Escherichia coli and enterococci in a laboratory pilot scale wastewater maturation pond.

    PubMed

    Ouali, A; Jupsin, H; Ghrabi, A; Vasel, J L

    2014-01-01

    During the last 15 years several authors studied the disinfection in waste stabilisation pond (WSP) and several empirical models were developed. There are huge differences between the models describing this process and there is really a need to improve the design of ponds for better disinfection. This paper addresses the Escherichia coli and enterococci disinfection in a laboratory pilot scale maturation pond (1.5 l) with light intensity (0, 12 and 25 W/m(2)) under controlled pH, temperature and dissolved oxygen (DO) conditions. The aim of this study is to improve modelling for a better design of disinfection in maturation ponds (MP) and to identify the key parameters influencing the process. It was found that kinetic coefficients K values for E. coli and enterococci are closely dependent on physicochemical parameters. K values increase with increasing pH, I, T and DO. E. coli disinfection depends closely on the pH and the DO and increases strongly when the pH is above 8.5. The enterococci disinfection depends essentially on DO. Two equations are suggested to calculate the kinetic coefficient K related to the environmental average state variables.

  20. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale.

    PubMed

    Morgan-Sagastume, F; Hjort, M; Cirne, D; Gérardin, F; Lacroix, S; Gaval, G; Karabegovic, L; Alexandersson, T; Johansson, P; Karlsson, A; Bengtsson, S; Arcos-Hernández, M V; Magnusson, P; Werker, A

    2015-04-01

    A pilot-scale process was operated over 22 months at the Brussels North Wastewater Treatment Plant (WWTP) in order to evaluate polyhydroxyalkanoate (PHA) production integration with services of municipal wastewater and sludge management. Activated sludge was produced with PHA accumulation potential (PAP) by applying feast-famine selection while treating the readily biodegradable COD from influent wastewater (average removals of 70% COD, 60% CODsol, 24% nitrogen, and 46% phosphorus). The biomass PAP was evaluated to be in excess of 0.4gPHA/gVSS. Batch fermentation of full-scale WWTP sludge at selected temperatures (35, 42 and 55 °C) produced centrate (6-9.4 gCODVFA/L) of consistent VFA composition, with optimal fermentation performance at 42 °C. Centrate was used to accumulate PHA up to 0.39 gPHA/gVSS. The centrate nutrients are a challenge to the accumulation process but producing a biomass with 0.5 gPHA/gVSS is considered to be realistically achievable within the typically available carbon flows at municipal waste management facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Suppression of dioxins by S-N inhibitors in pilot-scale experiments.

    PubMed

    Zhan, Ming-Xiu; Fu, Jian-Ying; Chen, Tong; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-08-01

    S-N inhibitors like thiourea and sewage sludge decomposition gases (SDG) are relatively novel dioxins suppressants and their efficiencies are proven in numerous lab-scale experiments. In this study, the suppression effects of both thiourea and SDG on the formation of dioxins are systematically tested in a pilot-scale system, situated at the bypass of a hazardous waste incinerator (HWI). Moreover, a flue gas recirculation system is used to get high dioxin suppression efficiencies. Operating experience shows that this system is capable of stable operation and to keep gaseous suppressant compounds at a high and desirable molar ratio (S + N)/Cl level in the flue gas. The suppression efficiencies of dioxins are investigated in flue gas both without and with addition of S-N inhibitors. A dioxin reduction of more than 80 % is already achieved when the (S + N)/Cl molar ratio is increased to ca. 2.20. When this (S + N)/Cl molar ratio has augmented to 4.18 by applying suppressant recirculation, the residual PCDD/Fs concentration in the flue gas shrank from 1.22 to 0.08 ng I-TEQ/Nm(3). Furthermore, the congener distribution of dioxins is analysed to find some possible explanation or suppression mechanism. In addition, a correlation analysis between (S + N)/Cl molar ratios and PCDD/Fs is also conducted to investigate the chief functional compounds for dioxin suppression.

  2. Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills

    NASA Astrophysics Data System (ADS)

    Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

    2006-08-01

    In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

  3. Comparison of microbial communities in pilot-scale bioreactors treating Bayer liquor organic wastes.

    PubMed

    McSweeney, Naomi J; Plumb, Jason J; Tilbury, Amanda L; Nyeboer, Hugh J; Sumich, Matt E; McKinnon, Anthony J; Franzmann, Peter D; Sutton, David C; Kaksonen, Anna H

    2011-04-01

    Western Australian bauxite deposits are naturally associated with high amounts of humic and fulvic materials that co-digest during Bayer processing. Sodium oxalate remains soluble and can co-precipitate with aluminium hydroxide unless it is removed. Removal of sodium oxalate requires a secondary crystallisation step followed by storage. Bioreactors treating oxalate wastes have been developed as economically and environmentally viable treatment alternatives but the microbial ecology and physiology of these treatment processes are poorly understood. Analysis of samples obtained from two pilot-scale moving bed biofilm reactors (MBBRs) and one aerobic suspended growth bioreactor (ASGB) using polymerase chain reaction- denaturing gradient gel electrophoresis of 16S rRNA genes showed that members of the α-, β- and γ-Proteobacteria subgroups were prominent in all three processes. Despite differing operating conditions, the composition of the microbial communities in the three reactors was conserved. MBBR2 was the only configuration that showed complete degradation of oxalate from the influent and the ASGB had the highest degradation rate of all three configurations. Several strains of the genus Halomonas were isolated from the bioreactors and their morphology and physiology was also determined.

  4. Ammonium removal from groundwater using a zeolite permeable reactive barrier: a pilot-scale demonstration.

    PubMed

    Li, Shengpin; Huang, Guoxin; Kong, Xiangke; Yang, Yingzhao; Liu, Fei; Hou, Guohua; Chen, Honghan

    2014-01-01

    In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH(4)(+)-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH(4)(+)-N was microbially oxidized to nitrate. Any remaining NH(4)(+)-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH(4)(+)-N was consistently removed, and approximately 40% of the influent NH(4)(+)-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH(4)(+)-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH(4)(+)-N removal.

  5. Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors

    PubMed Central

    Jauffrais, Thierry; Kilcoyne, Jane; Séchet, Véronique; Herrenknecht, Christine; Truquet, Philippe; Hervé, Fabienne; Bérard, Jean Baptiste; Nulty, Cíara; Taylor, Sarah; Tillmann, Urban; Miles, Christopher O.; Hess, Philipp

    2012-01-01

    Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL−1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day−1, with optimum toxin production at 0.25 day−1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures. PMID:22822378

  6. Characterization results for 106-AN grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Bagaasen, L.M.; Martin, P.F.C.; Palmer, S.E.; Anderson, C.M.

    1993-06-01

    The Grout Treatment Facility (GTF) at Hanford. Washington, will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over one million gallons of phosphate/sulfate waste were solidified in the first production campaign with this facility. The next tank waste scheduled for treatment is 106-AN (the waste from Tank 241-AN-106). After laboratory studies were conducted to select the grout formulation, tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL) were conducted as part of the formulation verification process. The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilotscale equipment. to collect thermal information to help determine the best way to manage the grout hydration heat, and to characterize the solidified grout.

  7. Pilot-scale production of grout with simulated double-shell slurry feed. Final report

    SciTech Connect

    Whyatt, G.A.

    1994-08-01

    This report describes the pilot-scale production of grout with simulated double-shell slurry feed (DSSF) waste performed in November 1988, and the subsequent thermal behavior of the grout as it cured in a large, insulated vessel. The report was issued in draft form in April 1989 and comments were subsequently received; however, the report was not finalized until 1994. In finalizing this report, references or information gained after the report was drafted in April 1989 have not been incorporated to preserve the report`s historical perspective. This report makes use of criteria from Ridelle (1987) to establish formulation criteria. This document has since been superseded by a document prepared by Reibling and Fadeef (1991). However, the reference to Riddelle (1987) and any analysis based on its content have been maintained within this report. In addition, grout is no longer being considered as the waste form for disposal of Hanford`s low-level waste. However, grout disposal is being maintained as an option in case there is an emergency need to provide additional tank space. Current plans are to vitrify low-level wastes into a glass matrix.

  8. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    PubMed Central

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacteria dominated in the MRIS. Relative abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) showed contrary tendency. In the flowing phase (water effluent), AOA diversity was significantly correlated with the concentration of dissolve oxygen (DO), NO3-N and NH3-N. AOB abundance was significantly correlated with the concentration of DO and chemical oxygen demand (COD). NH3-N and COD were identified as the key factors to shape AOB community structure, while no variable significantly correlated with that of AOA. AOA might play an important role in the MRIS. This study could reveal key environmental factors affecting the community composition and abundance of ammonia oxidizers in the MRIS. PMID:25479611

  9. Influence of supplemental heat addition on performance of pilot-scale bioreactor landfills.

    PubMed

    Abdallah, Mohamed; Kennedy, Kevin; Narbaitz, Roberto; Warith, Mostafa; Sartaj, Majid

    2014-02-01

    Implementation of supplemental heat addition as a means of improving bioreactor landfill performance was investigated. The experimental work was conducted with two pilot-scale bioreactor setups (control cell and heated cell) operated for 280 days. Supplemental heat was introduced by recirculating leachate heated up to 35 °C compared to the control which used similar quantities of leachate at room temperature (21 ± 1 °C). The temporal and spatial effects of recirculating heated leachate on the landfill internal temperature were determined, and performance was assessed in terms of leachate parameters and biogas production. Recirculation of heated leachate helped establish balanced anaerobic microbial consortia that led to earlier (70 days) and greater (1.4-fold) organic matter degradation rates, as well as threefold higher methane production compared to the non-heated control. Despite the significant enhancements in performance resulting from supplemental heat addition, heated leachate recirculation did not significantly impact waste temperatures, and the effects were mainly restricted to short periods after recirculation and mostly at the upper layers of the waste. These findings suggest that improvements in bioreactor landfill performance may be achieved without increasing the temperature of the whole in-place waste, but rather more economically by raising the temperature at the leachate/waste interface which is also exposed to the maximum moisture levels within the waste matrix.

  10. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    SciTech Connect

    Pliat, M.J.; Wilder, J.M.

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.

  11. A comparison of pilot-scale photocatalysis and enhanced coagulation for disinfection byproduct mitigation.

    PubMed

    Gerrity, Daniel; Mayer, Brooke; Ryu, Hodon; Crittenden, John; Abbaszadegan, Morteza

    2009-04-01

    This study evaluated pilot-scale photocatalysis and enhanced coagulation for their ability to remove or destroy disinfection byproduct (DBP) precursors, trihalomethane (THM) formation potential (FP), and THMs in two Arizona surface waters. Limited photocatalysis (<5 kWh/m(3)) achieved reductions in most of the DBP precursor parameters (e.g., DOC, UV(254), and bromide) but led to increased chlorine demand and THMFP. In contrast, enhanced coagulation achieved reductions in the DBP precursors and THMFP. Extended photocatalysis (<320 kWh/m(3)) decreased THMFP once the energy consumption exceeded 20 kWh/m(3). The photocatalytic energy requirements for THM destruction were considerably lower (EEO=20-60 kWh/m(3)) than when focusing on precursor destruction and THMFP. However, rechlorination increased the total THM (TTHM) concentration well beyond the raw value, thereby negating the energy benefits of this application. Enhanced coagulation achieved consistent 20-30% removals of preformed THMs. Outstanding issues need to be addressed before TiO(2) photocatalysis is considered feasible for DBP mitigation; traditional strategies, including enhanced coagulation, may be more appropriate.

  12. Leachate/domestic wastewater aerobic co-treatment: A pilot-scale study using multivariate analysis.

    PubMed

    Ferraz, F M; Bruni, A T; Povinelli, J; Vieira, E M

    2016-01-15

    Multivariate analysis was used to identify the variables affecting the performance of pilot-scale activated sludge (AS) reactors treating old leachate from a landfill and from domestic wastewater. Raw leachate was pre-treated using air stripping to partially remove the total ammoniacal nitrogen (TAN). The control AS reactor (AS-0%) was loaded only with domestic wastewater, whereas the other reactor was loaded with mixtures containing leachate at volumetric ratios of 2 and 5%. The best removal efficiencies were obtained for a ratio of 2%, as follows: 70 ± 4% for total suspended solids (TSS), 70 ± 3% for soluble chemical oxygen demand (SCOD), 70 ± 4% for dissolved organic carbon (DOC), and 51 ± 9% for the leachate slowly biodegradable organic matter (SBOM). Fourier transform infrared (FTIR) spectroscopic analysis confirmed that most of the SBOM was removed by partial biodegradation rather than dilution or adsorption of organics in the sludge. Nitrification was approximately 80% in the AS-0% and AS-2% reactors. No significant accumulation of heavy metals was observed for any of the tested volumetric ratios. Principal component analysis (PCA) and partial least squares (PLS) indicated that the data dimension could be reduced and that TAN, SCOD, DOC and nitrification efficiency were the main variables that affected the performance of the AS reactors.

  13. Pilot-scale study of the solar detoxification of VOC-contaminated groundwater

    SciTech Connect

    Mehos, M; Turchi, C; Pacheco, J; Boegel, A J; Merrill, T; Stanley, R

    1992-08-01

    The Solar Detoxification Field Experiment was designed to investigate the photocatalytic decomposition of organic contaminants in groundwater at a Superfund site at Lawrence Livermore National Laboratory (LLNL). The process uses ultraviolet (UV) energy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide, to decompose organic chemicals into nontoxic compounds. The field experiment was developed by three federal laboratories: the National Renewable Energy Laboratory (NREL), Sandia National Laboratory (SNLA), and LLNL. The US Department of Energy funded the experiment. The objectives of the pilot-scale study included the advancement of the solar technology into a nonlaboratory waste-remediation environment the compilation of test data to help guide laboratory research and future demonstrations and the development of safe operational procedures. Results of the pilot study are discussed, emphasizing the effect of several process variables on the system performance. These variables include alkalinity, catalyst loading, flow velocity through the reactor, and incident solar UV radiation. The performance of the solar detoxification process are discussed as it relates to concentrating and nonconcentrating collectors.

  14. Prediction of the pilot-scale recovery of a recombinant yeast enzyme using integrated models.

    PubMed

    Varga, E G; Titchener-Hooker, N J; Dunnill, P

    2001-07-20

    This article describes the rapid prediction of recovery process performance for a new recombinant enzyme product on the basis of a broad portfolio of computer models and highly targeted experimentation. A process model for the recombinant system was generated by linking unit operation models in an integrated fashion, with required parameter estimation and physical property determination accomplished using data from scale-down studies. This enabled the generic modeling framework established for processing of a natural enzyme from bakers' yeast to be applied. An experimental study of the same operations at the pilot scale showed that the process model gave a conservative prediction of recombinant enzyme recovery. The model successfully captured interactions leading to a low overall product yield and indicated the need for further study of precipitate breakage in the feed zone of a disc stack centrifuge in order to improve performance. The utility of scale-down units as an aid to fast model generation and the advantage of integrating computer modeling and scale-down studies to accelerate bioprocess development are highlighted. Copyright 2001 John Wiley & Sons, Inc.

  15. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven.

    PubMed

    Cinquanta, L; Albanese, D; Cuccurullo, G; Di Matteo, M

    2010-01-01

    The effects on orange juice batch pasteurization in an improved pilot-scale microwave (MW) oven was evaluated by monitoring pectin methyl-esterase (PME) activity, color, carotenoid compounds and vitamin C content. Trials were performed on stirred orange juice heated at different temperatures (60, 70, 75, and 85 degrees C) during batch process. MW pilot plant allowed real-time temperature control of samples using proportional integrative derivative (PID) techniques based on the infrared thermography temperature read-out. The inactivation of heat sensitive fraction of PME, that verifies orange juice pasteurization, showed a z-value of 22.1 degrees C. Carotenoid content, responsible for sensorial and nutritional quality in fresh juices, decreased by about 13% after MW pasteurization at 70 degrees C for 1 min. Total of 7 carotenoid compounds were quantified during MW heating: zeaxanthin and beta-carotene content decreased by about 26%, while no differences (P < 0.05) were found for beta-cryptoxanthin in the same trial. A slight decrease in vitamin C content was monitored after MW heating. Results showed that MW heating with a fine temperature control could result in promising stabilization treatments.

  16. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    SciTech Connect

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  17. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    PubMed Central

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  18. Pilot-scale equipment development for pyrochemical reduction of spent oxide fuel

    SciTech Connect

    Herrmann, S.D.; King, R.W.; Durstine, K.R.; Eberl, C.S.

    1998-07-01

    Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded spent metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic, and metal waste forms. Equipment is being developed at ANL which will precondition irradiated oxide fuel and demonstrate the application of electrometallurgical conditioning to such non-metallic fuels as well. The oxide reduction process preconditions irradiated oxide fuel such that uranium and transuranic (TRU) constituents are chemically reduced into metallic form via a molten Li/LiCl-based reduction system. In this form the spent fuel is further conditioned in an electrorefiner and waste handling equipment, thereby placing the uranium, TRU elements, and fissions products into stable forms suitable for placement in a long-term repository. Development of the Li/LiCl-based oxide reduction process has proceeded at lab- (nominally 50 grams of heavy metal (HM)) and engineering-scale (nominally 10-kg of HM) for unirradiated oxide fuel. The presentation described the process and equipment design for scale-up from lab- and engineering-scale reduction of unirradiated oxide fuel in gloveboxes to pilot-scale (up to 100-kg of HM) reduction of irradiated oxide fuel in a hot cell. [Abstract only.

  19. CRESST cryogenic dark matter search

    NASA Astrophysics Data System (ADS)

    Cozzini, C.; Angloher, G.; Bucci, C.; Feilitzsch, F. von; Frank, T.; Hauff, D.; Henry, S.; Jagemann, T.; Jochum, J.; Kraus, H.; Majorovits, B.; Ninkovic, J.; Petricca, F.; Pröbst, F.; Ramachers, Y.; Rau, W.; Razeti, M.; Seidel, W.; Stark, M.; Stodolsky, L.; Uchaikin, S.; Wulandari, H.

    2005-05-01

    The CRESST Phase II experiment at Gran Sasso is using 300 g scintillating CaWO 4 crystals as absorbers for direct WIMP (weakly interactive massive particles) detection. The phonon signal in the CaWO 4 crystal is registered in coincidence with the light signal, which is measured with a separate cryogenic light detector. The absorber crystal and the silicon light detector are read out by tungsten superconducting phase transition thermometers (W-SPTs). As a result an active discrimination of the electron recoils against nuclear recoils is achieved. Results on the properties of the detector modules and on the WIMP sensitivity are presented.

  20. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems.

    PubMed

    Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C

    2013-06-15

    Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic

  1. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  2. Design and performance of a pilot-scale constructed wetland treatment system for natural gas storage produced water.

    PubMed

    Kanagy, Laura E; Johnson, Brenda M; Castle, James W; Rodgers, John H

    2008-04-01

    To test the hypothesis that water produced from natural gas storage wells could be treated effectively by constructed wetland treatment systems, a modular pilot-scale system was designed, built, and used for treating gas storage produced waters. Four simulated waters representing the range of contaminant concentrations typical of actual produced waters were treated, and the system's performance was monitored. Freshwater wetland cells planted with Schoenoplectus californicus and Typha latifolia were used to treat fresh and brackish waters. Saline and hypersaline waters were treated by saltwater wetland cells planted with Spartina alterniflora and by reverse osmosis. Effective removal of cadmium, copper, lead, and zinc was achieved by the pilot-scale system. Results suggest that use of specifically designed constructed wetland treatment systems provides a flexible and effective approach for treating gas storage produced waters over a wide range of compositions.

  3. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN

    2017-03-01

    In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.

  4. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  5. Dynamic Oil-in-Water Concentration Acquisition on a Pilot-Scaled Offshore Water-Oil Separation Facility.

    PubMed

    Durdevic, Petar; Raju, Chitra S; Bram, Mads V; Hansen, Dennis S; Yang, Zhenyu

    2017-01-10

    This article is a feasibility study on using fluorescence-based oil-in-water (OiW) monitors for on-line dynamic efficiency measurement of a deoiling hydrocyclone. Dynamic measurements are crucial in the design and validation of dynamic models of the hydrocyclones, and to our knowledge, no dynamic OiW analysis of hydrocyclones has been carried out. Previous studies have extensively studied the steady state efficiency perspective of hydrocyclones, and have related them to different key parameters, such as the pressure drop ratio (PDR), inlet flow rate, and the flow-spilt. Through our study, we were able to measure the dynamics of the hydrocyclone's efficiency ( ϵ ) response to step changes in the inlet flow rate with high accuracy. This is a breakthrough in the modelling, control, and monitoring of hydrocyclones.

  6. Dynamic Oil-in-Water Concentration Acquisition on a Pilot-Scaled Offshore Water-Oil Separation Facility

    PubMed Central

    Durdevic, Petar; Raju, Chitra S.; Bram, Mads V.; Hansen, Dennis S.; Yang, Zhenyu

    2017-01-01

    This article is a feasibility study on using fluorescence-based oil-in-water (OiW) monitors for on-line dynamic efficiency measurement of a deoiling hydrocyclone. Dynamic measurements are crucial in the design and validation of dynamic models of the hydrocyclones, and to our knowledge, no dynamic OiW analysis of hydrocyclones has been carried out. Previous studies have extensively studied the steady state efficiency perspective of hydrocyclones, and have related them to different key parameters, such as the pressure drop ratio (PDR), inlet flow rate, and the flow-spilt. Through our study, we were able to measure the dynamics of the hydrocyclone’s efficiency (ϵ) response to step changes in the inlet flow rate with high accuracy. This is a breakthrough in the modelling, control, and monitoring of hydrocyclones. PMID:28075371

  7. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  8. Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.

    PubMed

    Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato

    2014-07-01

    This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment.

  9. Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal

    SciTech Connect

    Swanstrom, C.P.; Besmer, M.

    1995-03-09

    Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

  10. Characterization of double-shell slurry feed grout produced in a pilot-scale test. Hanford Grout Technology Program

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

    1992-12-01

    Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

  11. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  12. SNS Cryogenic Systems Commissioning

    NASA Astrophysics Data System (ADS)

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  13. SNS Cryogenic Systems Commissioning

    SciTech Connect

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  14. Spacelab 2 infrared telescope cryogenic system

    NASA Technical Reports Server (NTRS)

    Urban, E. W.; Katz, L.; Hendricks, J. B.; Karr, G. R.

    1979-01-01

    The paper discusses the development of a cryogenic helium system to provide cooling to a scanning infrared telescope for the Spacelab 2 mission. The infrared optical/detector system and related electronics are being developed by the Smithsonian Astrophysical Observatory and the University of Arizona. A superfluid helium dewar and porous plug phase separator permit gas cooling of the infrared focal plane assembly to about 2.5 K, and of the two telescope sections to 8 K and 60 K. The design of the cryogenic system,including a commandable vacuum cover, and the prelaunch liquid helium servicing and maintenance approach were discussed. It is concluded that the system will satisfy the Infrared Telescope requirements, and the superfluid helium system shall be capable of satisfying cryogenic helium cooled requirements for the next several years.

  15. Kinetics of hydrocarbon and pesticide removal from clay soils during thermal treatment in a pilot-scale rotary kiln

    SciTech Connect

    Silcox, G.D.; Larsen, F.S.; Owens, W.D.; Choroszy-Marshall, M.

    1995-12-31

    The kinetics of hydrocarbon removal from contaminated clay soils during thermal treatment in rotary kilns were studied experimentally, and kinetic parameters were obtained for simple first-order models. Results are given for seven hydrocarbons: toluene, naphthalene, n-hexadecane, lindane ({gamma}-HCH or 1,2,3,4,5,6-hexachlorocyclohexane), DDT (1,1{prime}-(2,2,2-trichloroethylidene) bis [4-chlorobenzene]), DDD (1,1{prime}-(2,2-dichloroethylidene) bis [4-chlorobenzene]), and DDE (1,1-dichloro-2,2-bis [p-chlorophenyl] ethylene). The activation energies ranged from 18 kJ/mol for toluene on wet soil, to 90 kJ/mol for the chlorinated pesticides. All the kinetic data were obtained in a 130 kW pilot-scale rotary kiln. The wall temperature of the kiln was 700 C for the pesticides. Three of the hydrocarbons, toluene, naphthalene and n-hexadecane, were studied on both wet soil (5.0 and 8.5 wt%) and on oven-dried soil at temperatures ranging from 300 to 650 C in order to understand better the effects of water on desorption rates. Water increases the rate of desorption of toluene but decreases the rates for the heavier compounds. The pilot-scale data and correlations should be useful to those who are operating and/or designing rotary kilns to remediate soils thermally. A methodology for taking pilot-scale results and using them to estimate full-scale performance is given.

  16. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies.

    PubMed

    Wang, Long; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2014-12-01

    The anaerobic digestion performances of kitchen waste (KW) and fruit/vegetable waste (FVW) were investigated for establishing engineering digestion system. The study was conducted from lab-scale to pilot-scale, including batch, single-phase and two-phase experiments. The lab-scale experimental results showed that the ratio of FVW to KW at 5:8 presented higher methane productivity (0.725 L CH4/g VS), and thereby was recommended. Two-phase digestion appeared to have higher treatment capacity and better buffer ability for high organic loading rate (OLR) (up to 5.0 g(VS) L(-1) d(-1)), compared with the low OLR of 3.5 g(VS) L(-1) d(-1) for single-phase system. For two-phase digestion, the pilot-scale system showed similar performances to those of lab-scale one, except slightly lower maximum OLR of 4.5 g(VS) L(-1) d(-1) was allowed. The pilot-scale system proved to be profitable with a net profit of 10.173$/ton as higher OLR (⩾ 3.0 g(VS) L(-1) d(-1)) was used.

  17. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    PubMed

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months.

  18. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Development of an extractive membrane bioreactor for degradation of 3 chloro-4-methylaniline: From lab bench to pilot scale

    SciTech Connect

    Splendiani, A.; Moreira de Sa, J.A.G.C.; Jorge, R.; Nicolella, C.; Livingston, A.G.; Hughes, K.; Cook, S.

    2000-03-31

    Extractive Membrane Bioreactor (EMB) technology has been applied to an industrial wastewater containing 3-chloro-4-methylaniline, para-toluidine and methanol produced at the Hickson and Welch Ltd. production site in Castleford, UK. Successful treatment was accomplished through a step-wise approach to process development, involving selection of a suitable microbial culture, extractive membrane bioreactor operation under well-controlled laboratory conditions, and finally pilot scale-application at the production site. Three experimental steps were undertaken: (1) a microbial culture capable of degrading 3-chloro-4-methylaniline was developed in a continuous enrichment reactor; (2) the selected culture was then inoculated to a lab-scale EMB unit and adapted to the conditions of the industrial waste; and (3) finally the process was scaled-up to assess feasibility and performance at pilot-scale. At the pilot scale, 100% extraction of the target molecules contained in the industrial wastewater was achieved in a 1 m{sup 3} extractive membrane bioreactor treating 60 gld 3-chloro-4-methylaniline and 30 gld para-toluidine. Stoichiometric amounts of chloride were generated, indicating complete mineralization of 3-chloro-4-methylaniline.

  20. Status of the ESS cryogenic system

    SciTech Connect

    Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-29

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  1. Status of the ESS cryogenic system

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-01

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  2. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.

    PubMed

    Hadad, H R; Maine, M A; Bonetto, C A

    2006-06-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes.

  3. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.

    PubMed

    Milani, Mirco; Toscano, Attilio

    2013-01-01

    This article reports the results of evapotranspiration (ET) experiments carried out in Southern Italy (Sicily) in a pilot-scale constructed wetland (CW) made of a combination of vegetated (Phragmites australis) and unvegetated sub-surface flow beds. Domestic wastewater from a conventional wastewater treatment plant was used to fill the beds. Microclimate data was gathered from an automatic weather station close to the experimental plant. From June to November 2009 and from April to November 2010, ET values were measured as the amount of water needed to restore the initial volume in the beds after a certain period. Cumulative reference evapotranspiration (ET(0)) was similar to the cumulative ET measured in the beds without vegetation (ET(con)), while the Phragmites ET (ET (phr) ) was significantly higher underlining the effect of the vegetation. The plant coefficient of P. australis (K(p)) was very high (up to 8.5 in August 2009) compared to the typical K(c) for agricultural crops suggesting that the wetland environment was subjected to strong "clothesline" and "oasis" effects. According to the FAO 56 approach, K(p) shows different patterns and values in relation to growth stages correlating significantly to stem density, plant height and total leaves. The mean Water Use Efficiency (WUE) value of P. australis was quite low, about 2.27 g L(-1), probably due to the unlimited water availability and the lack of the plant's physiological adaptations to water conservation. The results provide useful and valid information for estimating ET rates in small-scale constructed wetlands since ET is a relevant issue in arid and semiarid regions. In these areas CW feasibility for wastewater treatment and reuse should also be carefully evaluated for macrophytes in relation to their WUE values.

  4. Pilot-Scale Demonstration of an Innovative Treatment for Vapor Emissions.

    PubMed

    Watt, Andrew S; Magrini, Kimberly A; Carlson, Lynnae E; Wolfrum, Edward J; Larson, Sheldon A; Roth, Christine; Glatzmaier, Greg C

    1999-11-01

    Researchers from the National Renewable Energy Laboratory recently conducted a pilot-scale study at McClellan Air Force Base (AFB) in Sacramento, CA. The objective of the test was to determine the effectiveness of an ambient-temperature, solar-powered photocatalytic oxidation treatment unit for destroying emissions of chlorinated organic compounds from an air stripper. This paper reports test results and discusses applications and limitations of the technology. A 10-standard-cubic-foot-per-minute (SCFM) (28.3 L/min) slip stream of air from an air stripper at Operative Unit 29-31 at McClellan AFB was passed through a reactor that contained a lightweight, perforated, inert support coated with photoactive titanium dioxide. The reactor faced south and was tilted at a 45° angle from vertical so that the light-activated catalyst received most of the available sunlight. An online portable gas chro-matograph with two identical columns simultaneously analyzed the volatile organic compounds contained in the reactor inlet and outlet air streams. Summa canister grab samples of the inlet and outlet were also collected and sent to a certified laboratory for U.S. Environmental Protection Agency Method TO-14 analysis and verification of our field analyses. Three weeks of testing demonstrated that the treatment system's destruction and removal efficiencies (DREs) are greater than 95% at 10 SCFM with UV intensities at or greater than 1.5 milliwatts/square centimeter (mW/cm(2)). DREs greater than 95% at 20 SCFM were obtained under conditions where UV irradiation measured at or greater than 2 mW/cm(2). In Sacramento, this provided 6 hours of operation per clear or nearly clear day in April. A solar tracking system could extend operating time. The air stream also contained trace amounts of benzene. We observed no loss of system performance during testing.

  5. Comparison of model-based and conventional controllers on a pilot-scale heat exchanger.

    PubMed

    Raul, Pramod R; Srinivasan, Haritha; Kulkarni, Sanket; Shokrian, Mazdak; Shrivastava, Glory; Russell Rhinehart, R

    2013-05-01

    This pilot-scale heat exchanger demonstration compares two relatively simple nonlinear model-based control strategies to conventional proportional-integral (PI) control. The two nonlinear controllers, generic model control (GMC) and process-model based control (PMBC), use a first-principles model thereby providing characterization of the nonlinear process throughout the operating range. There are two approaches to GMC, one uses a dynamic model, the other a steady-state model. This work uses the steady-state model; accordingly, will use the term GMC-SS, which can be classified as output characterization for a PI controller, making it relatively simple to implement. PMBC uses a dynamic model and adapts to represent the process. These two nonlinear controllers were selected for this application evaluation because of their simplicity (they can be implemented in-house within many commercial control systems), diversity (steady-state and dynamic models), and demonstrated utility for control of nonlinear single-input-single-output processes. The application and results are presented and discussed. Summarizing the results: Within a small temperature operating range PI provides good control, but over the full operating range, the nonlinear and variable delay of the process lead to poor control with PI. GMC can handle the nonlinear issues, but using the convenient steady-state model; it also, provides poor control because of the variable delay associated with flow rate. PMBC was able to provide good control throughout the entire operating range. PMBC has a further advantage of only having one tuning coefficient, while PI and GMC-SS have two.

  6. Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale.

    PubMed

    Cozzolino, Daniel; Parker, Mango; Dambergs, Robert G; Herderich, Markus; Gishen, Mark

    2006-12-20

    The modern wine industry needs tools for process control and quality assessment in order to better manage fermentation or bottling processes. During wine fermentation it is important to measure both substrate and product concentrations (e.g. sugars, phenolic compounds), however, the analysis of these compounds by traditional means requires sample preparation and in some cases several steps of purification are needed. The combination of visible/near-infrared (Vis/NIR) spectroscopy and chemometrics potentially provides an ideal solution to accurately and rapidly monitor physical or chemical changes in wine during processing without the need for chemical analysis. The aim of this study was to assess the possibility of combining spectral and multivariate techniques, such as principal component analysis (PCA), discriminant partial least squares (DPLS), or linear discriminant analysis (LDA), to monitor time-related changes that occur during red wine fermentation. Samples (n = 652) were collected at various times from several pilot scale fermentations with grapes from either Cabernet Sauvignon or Shiraz varieties, over three vintages (2001-2003) and scanned using a monochromator instrument (Foss-NIRSystems 6500, Silver Spring, MD) in transmission mode (400-2,500 nm). PCA was used to demonstrate consistent progressive spectral changes that occur through the time course of the fermentation. LDA using PCA scores showed that regardless of variety or vintage, samples belonging to a particular time point in fermentation could be correctly classified. This study demonstrates the potential of Vis/NIR spectroscopy combined with chemometrics, as a tool for the rapid monitoring of red wine fermentation.

  7. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    SciTech Connect

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  8. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  9. Transformation of ionophore antimicrobials in poultry litter during pilot-scale composting.

    PubMed

    Munaretto, Juliana S; Yonkos, Lance; Aga, Diana S

    2016-05-01

    Ionophores are the second top selling class of antimicrobials used in food-producing animals in the United States. In chickens, ionophores are used as feed additives to control coccidiosis; up to 80% of administered ionophores are excreted in the litter. Because poultry litter is commonly used to fertilize agricultural fields, ionophore residues in litter have become contaminants of emerging concern. This study aims to develop a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify ionophores, and identify their transformation products (TPs) in poultry litter after on-farm pilot-scale composting. The validation parameters of the optimized method showed good accuracy, ranging from 71 to 119% recovery and relative standard deviation (precision) of ≤19% at three different concentration levels (10, 50 and 100 μg/kg). Monensin, salinomycin and narasin, were detected in the poultry litter samples prior to composting at 290.0 ± 40, 426 ± 46, and 3113 ± 318 μg kg(-1), respectively. This study also aims to investigate the effect of different composting conditions on the removal of ionophores, such as the effect of turning or aeration. Results revealed a 13-68% reduction in ionophore concentrations after 150 d of composting, depending on whether the compost was aerated, turned, or subjected to a combination of both aeration and turning. Three transformation products and one metabolite of ionophores were identified in the composted litter using high-resolution liquid chromatography with quadrupole time-of-flight mass spectrometry (LC-QToF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pilot-scale aerated submerged biofilm reactor for organics removal and nitrification at cold temperatures.

    PubMed

    Choi, Youngik; Johnson, Kraig; Hayes, Donald; Xu, Hua

    2008-04-01

    This research describes pilot-scale experiments for efficient removal of dissolved organic and nitrogen compounds in domestic wastewater using aerated submerged biofilm (ASBF) reactors. These reactors could enhance the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. The structures are designed to encourage the growth of a nitrifying bacterial biofilm on a submerged surface. They also force the direct contact of rising air bubbles against the submerged biofilm. This direct gas-phase contact is postulated to increase the oxygen transfer rate into the biofilm and increase the microclimate mixing of water, nutrients, and waste products into and out of the biofilm. This research investigated the efficiency of dissolved organic matter and ammonia-nitrogen removals. Specifically, the effects of cold temperatures on the dissolved organic matter and ammonia-nitrogen performance of the ASBF pilot plant (see Figure 1) was investigated for the batch system. Over a period of 3.5 months, a total of 11 batch runs were performed. By the fourth run, the biofilm had matured to the point that it consumed all the ammonia in 40 hours. On the ninth run, the air supply was left off as a control run. This time, the ammonia was barely consumed, with the level dropping from 24 to 18 mg/L in 40 hours. By the middle of December, the average water temperature during the runs had dropped to approximately 6 degrees C and, at one point, was as low as 3.3 degrees C. The biofilm continued to perform even at these low temperatures, reducing ammonia levels from approximately 25 mg/L to basically zero within 40 to 48 hours.

  11. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation.

    PubMed

    Xu, Meiying; Wu, Wei-Min; Wu, Liyou; He, Zhili; Van Nostrand, Joy D; Deng, Ye; Luo, Jian; Carley, Jack; Ginder-Vogel, Matthew; Gentry, Terry J; Gu, Baouhua; Watson, David; Jardine, Philip M; Marsh, Terence L; Tiedje, James M; Hazen, Terry; Criddle, Craig S; Zhou, Jizhong

    2010-08-01

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 microg l(-1)) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  12. Pilot-scale continuous ultrasonic cleaning equipment reduces Listeria monocytogenes levels on conveyor belts.

    PubMed

    Tolvanen, Riina; Lundén, Janne; Hörman, Ari; Korkeala, Hannu

    2009-02-01

    Ultrasonic cleaning of a conveyor belt was studied by building a pilot-scale conveyor with an ultrasonic cleaning bath. A piece of the stainless steel conveyor belt was contaminated with meat-based soil and Listeria monocytogenes strains (V1, V3, and B9) and incubated for 72 h to allow bacteria to attach to the conveyor belt surfaces. The effect of ultrasound with a potassium hydroxide-based cleaning detergent was determined by using the cleaning bath at 45 and 50 degrees C for 30 s with and without ultrasound. The detachment of L. monocytogenes from the conveyor belt caused by the ultrasonic treatment was significantly greater at 45 degrees C (independent samples t test, P < 0.001) and at 50 degrees C (independent samples t test, P = 0.04) than without ultrasound. Ultrasonic cleaning efficiency was tested with different cleaning durations (10, 15, 20, and 30 s) and temperatures (30, 45, and 50 degrees C). The differences in the log reduction between cleaning treatments were analyzed by analysis of variance with Tamhane's T2 posthoc test using SPSS (Chicago, IL). The lengthening of the treatment time from 10 to 30 s did not significantly increase the detachment of L. monocytogenes (ANOVA 0.633). At 30 degrees C and at the longest time tested (30 s), the treatment reduced L. monocytogenes counts by only 2.68 log units. However, an increase in temperature from 30 to 50 degrees C improved the effect of the ultrasonic treatment significantly (P < 0.01). Ultrasonic cleaning for 10 s at 50 degrees C reduced L. monocytogenes counts by more than 5 log units. These results indicate that ultrasonic cleaning of a conveyor belt is effective even with short treatment times.

  13. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    SciTech Connect

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  14. Pilot-scale Tests to Vitrify Korean Low-Level Wastes

    SciTech Connect

    Choi, K.; Kim, C.-W.; Park, J. K.; Shin, S. W.; Song, M.-J.; Brunelot, P.; Flament, T.

    2002-02-26

    Korea is under preparation of its first commercial vitrification plant to handle LLW from her Nuclear Power Plants (NPPs). The waste streams include three categories: combustible Dry Active Wastes (DAW), borate concentrates, and spent resin. The combustible DAW in this research contains vinyl bag, paper, and protective cloth and rubber shoe. The loaded resin was used to simulate spent resin from NPPs. As a part of this project, Nuclear Environment Technology Institute (NETEC) has tested an operation mode utilizing its pilot-scale plant and the mixed waste surrogates of resin and DAW. It has also proved, with continuous operation for more than 100 hours, the consistency and operability of the plant including cold crucible melter and its off-gas treatment equipment. Resin and combustible DAW were simultaneously fed into the glass bath with periodic addition of various glass frits as additives, so that it achieved a volume reduction factor larger than 70. By adding various glass frits, this paper discusses about maintaining the viscosity and electrical conductivity of glass bath within their operable ranges, but not about obtaining a durable glass product. The operating mode starts with a batch of glass where a titanium ring is buried. When the induced power ignites the ring, the joule heat melts the surrounding glass frit along with the oxidation heat of titanium. As soon as the molten bath is prepared, in the first stage of the mode, the wastes consisting of loaded resin and combustible DAW are fed with no or minimum addition of glass frits. Then, in the second stage, the bath composition is kept as constant as possible. This operation was successful in terms of maintaining the glass bath under operable condition and produced homogeneous glass. This operation mode could be adapted in commercial stage.

  15. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant.

    PubMed

    Ma, Yong; Peng, Yongzhen; Wang, Shuying; Yuan, Zhiguo; Wang, Xiaolian

    2009-02-01

    Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V=300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.

  16. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale.

    PubMed

    Silva, Tânia F C V; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2017-01-15

    In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe(3+)/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe(2+), at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC <256mg/L, consuming 117mM of H2O2 and 10.4kJ/L of accumulated UV energy, to achieve an effluent that can be biologically treated in compliance with the COD discharge limit (150mg O2/L) into water bodies. The biological process downstream from the photocatalytic system would promote a mineralization >60%. The PF step cost to treat 100m(3)/day of leachate was 6.41€/m(3), combining 1339m(2) of CPCs with 31 lamps. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of a constructed wetland for industrial wastewater treatment: a pilot-scale study.

    PubMed

    Chen, T Y; Kao, C M; Yeh, T Y; Chien, H Y; Chao, A C

    2006-06-01

    The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.

  18. Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate.

    PubMed

    Pokasoowan, Chanya; Kanitchaidecha, Wilawan; K C, Bal Krishna; Annachhatre, Ajit P

    2009-01-01

    Airlift bioreactor was established for recovering sulfur from synthetic sulfide wastewater under controlled dissolved oxygen condition. The maximum recovered sulfur was 14.49 g/day when sulfide loading rate, dissolved oxygen (DO) and pH values were 2.97 kgHS(-)/m(3)-day, 0.2-1.0 mg/L and 7.2-7.8, respectively. On the other hand, the increase in recovered sulfur reduced the contact surface of sulfide oxidizing bacteria which affects the recovery process. This effect caused to reduce the conversion of sulfide to sulfur. More recovered sulfur was produced at high sulfide loading rate due to the change of metabolic pathway of sulfide-oxidizing bacteria which prevented the toxicity of sulfide in the culture. The maximum activity in this system was recorded to be about 3.28 kgS/kgVSS-day. The recovered sulfur contained organic compounds which were confirmed by the results from XRD and CHN analyzer. Afterwards, by annealing the recovered sulfur at 120 degrees C for 24 hrs under ambient Argon, the percentage of carbon reduced from 4.44% to 0.30%. Furthermore, the percentage of nitrogen and hydrogen decreased from 0.79% and 0.48% to 0.00% and 0.14%, respectively. This result showed the success in increasing the purity of recovered sulfur by using the annealing technique. The pilot-scale biological sulfide oxidation process was carried out using real wastewater from Thai Rayon Industry in Thailand. The airlift reactor successfully removed sulfide more than 90% of the influent sulfide at DO concentration of less than 0.1 mg/L, whereas the elementary sulfur production was 2.37 kgS/m(3)-day at sulfide loading rate of 2.14 kgHS(-)/m(3)-day. The sulfur production was still increasing as the reactor had not yet reached its maximum sulfide loading rate.

  19. Design of a novel automated methanol feed system for pilot-scale fermentation of Pichia pastoris.

    PubMed

    Hamaker, Kent H; Johnson, Daniel C; Bellucci, Joseph J; Apgar, Kristie R; Soslow, Sherry; Gercke, John C; Menzo, Darrin J; Ton, Christopher

    2011-01-01

    Large-scale fermentation of Pichia pastoris requires a large volume of methanol feed during the induction phase. However, a large volume of methanol feed is difficult to use in the processing suite because of the inconvenience of constant monitoring, manual manipulation steps, and fire and explosion hazards. To optimize and improve safety of the methanol feed process, a novel automated methanol feed system has been designed and implemented for industrial fermentation of P. pastoris. Details of the design of the methanol feed system are described. The main goals of the design were to automate the methanol feed process and to minimize the hazardous risks associated with storing and handling large quantities of methanol in the processing area. The methanol feed system is composed of two main components: a bulk feed (BF) system and up to three portable process feed (PF) systems. The BF system automatically delivers methanol from a central location to the portable PF system. The PF system provides precise flow control of linear, step, or exponential feed of methanol to the fermenter. Pilot-scale fermentations with linear and exponential methanol feeds were conducted using two Mut(+) (methanol utilization plus) strains, one expressing a recombinant therapeutic protein and the other a monoclonal antibody. Results show that the methanol feed system is accurate, safe, and efficient. The feed rates for both linear and exponential feed methods were within ± 5% of the set points, and the total amount of methanol fed was within 1% of the targeted volume. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  20. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor.

  1. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39.

    PubMed

    Toyoshima, Masakazu; Aikawa, Shimpei; Yamagishi, Takahiro; Kondo, Akihiko; Kawai, Hiroshi

    Microalgae are considered to be efficient bio-resources for biofuels and bio-based chemicals because they generally have high productivity. The filamentous cyanobacterium Arthrospira (Spirulina) platensis has been widely used for food, feed, and nutrient supplements and is usually cultivated in open ponds. In order to extend the surface area for growing this alga, we designed a pilot-scale floating closed culture system for cultivating A. platensis on open water and compared the growth and quality of the alga harvested at both subtropical and temperate regions. The biomass productivity of A. platensis NIES-39 was ca. 9 g dry biomass m(-2) day(-1) in summer at Awaji Island (warm temperature region) and ca. 10 and 6 g dry biomass m(-2) day(-1) in autumn and winter, respectively, at Ishigaki Island, (subtropical region) in Japan. If seawater can be used for culture media, culture cost can be reduced; therefore, we examined the influence of seawater salt concentrations on the growth of A. platensis NIES-39. Growth rates of A. platensis NIES-39 in diluted seawater with enrichment of 2.5 g L(-1) NaNO3, 0.01 g L(-1) FeSO4·7H2O, and 0.08 g L(-1) Na2EDTA were considerably lower than SOT medium, but the biomass productivity (dry weight) was comparable to SOT medium. This is explained by the heavier cell weight of the alga grown in modified seawater media compared to the alga grown in SOT medium. Furthermore, A. platensis grown in modified seawater-based medium exhibited self-flocculation and had more loosely coiled trichomes.

  2. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.

    PubMed

    Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla

    2014-07-01

    The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Advances in Cryogenic Principles

    NASA Astrophysics Data System (ADS)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  4. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  5. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  6. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  7. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  8. Cryogenic Shutter Mechanism

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Electromagnetic shutter mechanism operates at ambient and cryogenic temperatures to shield optical element, such as mirror, filter, polarizer, beam splitter, or detector, from external light and radiation in cryogenic Dewar equipped with window for optical evaluation. Shutter mechanism in Dewar container alternately shields and exposes optical element as paddle rotates between mechanical stops. Mounted on cold plate of liquid-helium reservoir. Paddle, shaft, and magnet constitutes assembly rotated by electromagnetic field on coil.

  9. Final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. LEFPC appendices, Volume 4, Appendix V-C

    SciTech Connect

    1994-09-01

    This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.

  10. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  11. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  12. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  13. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  14. Removal of phosphorus from wastewaters using ferrous salts - a pilot scale membrane bioreactor study.

    PubMed

    Wang, Yuan; Tng, K Han; Wu, Hao; Leslie, Greg; Waite, T David

    2014-06-15

    A pilot scale membrane bioreactor (3.7 m(3)/day capacity), configured for alternate point ferrous sulphate addition, was evaluated in a fourteen month trial to comply with an effluent discharge requirement of less than 0.15 mg-P/L at the 50(th) percentile and less than 0.30 mg-P/L at the 90th percentile. Ferrous sulphate was added at a molar ratio (Fe(II):PO4) of 2.99 in the filtration chamber for 85 days and 2.60 in the primary anoxic zone for 111 days. Addition of ferrous salts to the anoxic zone achieved a final effluent phosphorous concentration (mg-P/L) of <0.05 (29%), <0.15 (77%) and <0.30 (95%), while addition of ferrous salts in the filtration zone achieved <0.05 (18%), <0.15 (63%) and <0.30 (95%). Analysis of the concentration of iron(II) in the supernatant indicated that phosphorus was mainly removed via adsorption to amorphous iron oxyhydroxides particles in both dosing scenarios. However, analysis of residence time distribution (RTD) data of the reactor indicated that severe short-circuiting from the dosing point to the membrane outlet could occur when the ferrous salts were added to the membrane zone while the reactor behaved close to a completely mixed reactor when dosing to the primary anoxic zone, resulting in improved phosphorus removal. The addition of ferrous salt was also found to delay the onset of severe increase in trans-membrane pressure as a result of the removal of macro-molecules. However, detailed analysis of the form and concentration of iron species in the supernatant and permeate indicated that the presence of fine iron particles resulted in a higher fouling rate when Fe(II) was added to the membrane zone rather than the primary anoxic zone and could cause more severe irreversible fouling in long-term operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.

    PubMed

    Huang, Jiayu; Wang, Hongmei; Shi, Yingjie; Zhang, Fan; Dang, Xiaoqing; Zhang, Hui; Shu, Yun; Deng, Shuang; Liu, Yu

    2016-10-01

    The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s(-1), the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m(-3) and ca. 10(4) 1 cm(-3) at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s(-1). Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m(-3) with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m(-3) with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV.

  16. No corrosion caused by coal chlorine found in AFBC pilot scale tests

    SciTech Connect

    Ho, K.; Pan, W.P.; Riley, J.T.; Liu, K.; Smith, S.

    2000-07-01

    Measurements of deposition and corrosion were made in the freeboard of a 3 m inner diameter pilot scale atmospheric fluidized-bed combustor (AFBC) during seven 1,000-hours tests using coals with chlorine (Cl) contents ranging from 0.026% up to 0.47% and sulfur contents ranging from 0.897{approximately}4.4%. Uncooled coupons of alloys 304, 309, 347 and a cooled tube of A210C medium carbon steel were exposed to the hot flue gases to investigate the effects of different coal compositions on deposition and corrosion behavior, if any. The uncooled coupons were installed at the tope of the freeboard to simulate the superheater tube conditions (1,020--1,100 F surface temperature), while the temperature of the cooled A210C test tube was controlled to match the conditions of the evaporator tubes. Specimens were removed for examination after 250, 500, 750, 1,000 hours of exposure and analyzed for deposit formation and corrosion. No chlorine was found in the corrosion scale or on the metal surfaces after any of the tests. High sulfur contents were found in the outer parts of the deposits, and appeared to be associated with calcium and magnesium suggesting that the fly ash may react further after being deposited on the surface of the metal. It was concluded that the limestone bed in the AFBC not only can capture the sulfur but also can effectively capture chlorine. This effect helps being the Cl in the AFBC flue gas down to a level of <50 ppm which is significantly lower than the 300{approximately}400 ppm expected from combustion of the coal in the absence of limestone. This reduction in chlorine species in the gas phase has possible implications for decreased corrosion problems not only in the freeboard, but also in the cold end of the boiler. No evidence was found in these tests that metal wastage or corrosion was accelerated, either directly or indirectly, by chlorine in the coal.

  17. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  18. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  19. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    SciTech Connect

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  20. Pilot Scale Production of Highly Efficacious and Stable Enterovirus 71 Vaccine Candidates

    PubMed Central

    Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Background Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. Principal Finding In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7–10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30–43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37°C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4°C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and

  1. Evaluation of pilot-scale microencapsulation of probiotics and product effect on broilers.

    PubMed

    Zhang, L; Li, J; Yun, T T; Li, A K; Qi, W T; Liang, X X; Wang, Y W; Liu, S

    2015-10-01

    This study was conducted to evaluate the pilot-scale production of microencapsulated in a 500-L fermenter using emulsion and gelation and to assess the effect of the products on the growth performance, antioxidant activity, immune function, and cecal microbiota in Arbor Acres broilers. A total of seven hundred 1-d-old male Arbor Acres broilers were randomly assigned to 7 dietary treatments with 5 replicate pens per treatment and 20 broilers per pen. The dietary treatments were as follows: 1) basal diet (CON), 2) basal diet containing 0.1% Aureomycin (ANT), 3) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P1), 4) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P2), 5) basal diet containing 0.01% empty microcapsules (CAP), 6) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP1), and 7) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP2). The feeding experiment included 2 phases: the starter phase from d 1 to 21 and the grower phase from d 22 to 42. The results showed that a 500-L fermenter could produce 20.73 ± 4.05 kg of microcapsules with an approximate diameter of 549 μm. The feeding experiment showed that ADG of broilers in CAPP1 was significantly ( < 0.05) greater than that in CON and CAP throughout the feeding period, whereas the ratio of feed to gain (G:F) was significantly ( < 0.05) lower. Broilers in P1, P2, CAPP1, and CAPP2 had significantly ( < 0.05) greater levels of total superoxide dismutase, catalase, IgG, and cluster of differentiation 3 than those in CON. Furthermore, broilers in CAPP1 had significantly ( < 0.05) greater richness and diversity of intestinal microorganisms, particularly of , than those in all other dietary treatments. In summary, our results indicate that large-scale microencapsulation of microbial cells can be achieved using emulsion and initial gelation and that the dietary administration of microencapsulated can

  2. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.

    PubMed

    Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

    2012-11-01

    This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter

  3. Influence of photoperiod on carbon dioxide and methane emissions from two pilot-scale stabilization ponds.

    PubMed

    Silva, Juan P; Ruiz, José L; Peña, Miguel R; Lubberding, Henk; Gijzen, Huub

    2012-01-01

    Greenhouse gas (GHG) emissions (CO(2), CH(4)) from pilot-scale algal and duckweed-based ponds (ABP and DBP) were measured using the static chamber methodology. Daylight and nocturnal variations of GHG and wastewater characteristics (e.g. chemical oxygen demand (COD), pH) were determined via sampling campaigns during midday (12:30-15:30) and midnight (00:30-03:30) periods. The results showed that under daylight conditions in ABP median emissions were -232 mg CO(2) m(-2) d(-1) and 9.9 mg CH(4) m(-2) d(-1), and in DBP median emissions were -1,654.5 mg CO(2) m(-2) d(-1) and 71.4 mg CH(4) m(-2) d(-1), respectively. During nocturnal conditions ABP median emissions were 3,949.9 mg CO(2) m(-2) d(-1), 12.7 mg CH(4) m(-2) d(-1), and DBP median emissions were 5,116 mg CO(2) m(-2) d(-1), 195.2 mg CH(4) m(-2) d(-1), respectively. Once data measured during daylight were averaged together with nocturnal data the median emissions for ABP were 1,566.8 mg CO(2) m(-2) d(-1) and 72.1 mg CH(4) m(-2) d(-1), whilst for DBP they were 3,016.9 mg CO(2) m(-2) d(-) and 178.9 mg CH(4) m(-2) d(-1), respectively. These figures suggest that there were significant differences between CO(2) emissions measured during daylight and nocturnal periods (p < 0.05). This shows a sink-like behaviour for both ABP and DBP in the presence of solar light, which indicates the influence of photosynthesis in CO(2) emissions. On the other hand, the fluxes of CH(4) indicated that DBP and ABP behave as net sources of CH(4) during day and night, although higher emissions were observed from DBP. Overall, according to the compound average (daylight and nocturnal emissions) both ABP and DBP systems might be considered as net sources of GHG.

  4. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation.

    PubMed

    Zhu, J Y; Chandra, M Subhosh; Gu, Feng; Gleisner, Roland; Reiner, Rick; Sessions, John; Marrs, Gevan; Gao, Johnway; Anderson, Dwight

    2015-03-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid-liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the ground forest harvest residue with no further mechanical size reduction, at a low temperature of 145°C and calcium bisulfite or total SO2 loadings of only 6.5 or 6.6 wt% on oven dry forest residue, respectively. The low temperature pretreatment facilitated high solids fermentation of the un-detoxified pretreated whole slurry. An ethanol yield of 282 L/tonne, equivalent to 70% theoretical, with a titer of 42 g/L was achieved. SPORL solubilized approximately 45% of the wood lignin as directly marketable lignosulfonate with properties equivalent to or better than a commercial lignosulfonate, important to improve the economics of biofuel production.

  5. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    PubMed

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1).

  6. Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing filters for treating dairy wastewater.

    PubMed

    Lee, Martin S; Drizo, Aleksandra; Rizzo, Donna M; Druschel, Greg; Hayden, Nancy; Twohig, Eamon

    2010-07-01

    The performance and temporal variation of three hybrid and three integrated, saturated flow, pilot-scale constructed wetlands (CWs) were tested for treating dairy farm effluent. The three hybrid systems each consisted of two CWs in-series, with horizontal and vertical flow. Integrated systems consisted of a CW (horizontal and vertical flow) followed by a steel slag filter for removing phosphorus. Time series temporal semivariogram analyses of measured water parameters illustrated different treatment efficiencies existed over the course of one season. As a result, data were then divided into separate time period groups and CW systems were compared using ANOVA for parameter measurements within each distinct time period group. Both hybrid and integrated CWs were efficient in removing organics; however, hybrid systems had significantly higher performance (p<0.05) during peak vegetation growth. Compared to hybrid CWs, integrated CWs achieved significantly higher DRP reduction (p<0.05) throughout the period of investigation and higher ammonia reduction (p<0.05) in integrated CWs was observed in late summer. Geochemical modeling demonstrates hydroxyapatite and vivianite minerals forming on steel slag likely control the fate of phosphate ions given the reducing conditions prevalent in the system. The model also demonstrates how the wastewater:slag ratio can be adjusted to maximize phosphorus removal while staying at a near-neutral pH.

  7. Cryogenically cooled multiple-substrate holder for high vacuum

    NASA Astrophysics Data System (ADS)

    Chaiken, A.; Honea, E. C.; Rupprecht, W. S.; Torres, S.; Michel, R. P.

    1994-12-01

    A novel design is presented for a cryogenically cooled multisubstrate sample holder for thin film deposition in high vacuum. The cryogen flows through tubing soldered onto a fixed copper plate, while the substrates are mounted on a separate tray that is supported by a linear/rotary-motion feedthrough. By lowering the substrate tray into firm contact with the copper plate, substrate temperatures as low as 120 K can be achieved.

  8. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  9. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  10. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system.

    PubMed

    Långmark, Jonas; Storey, Michael V; Ashbolt, Nicholas J; Stenström, Thor-Axel

    2005-02-01

    The accumulation and fate of model microbial "pathogens" within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-mum hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 28B, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 28B plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspheres, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system.

  11. Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1995-11-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

  12. Removal of heavy metals in an abandoned mine drainage via ozone oxidation: a pilot-scale operation.

    PubMed

    Seo, S H; Sung, B W; Kim, G J; Chu, K H; Um, C Y; Yun, S L; Ra, Y H; Ko, K B

    2010-01-01

    The objective of this study was to evaluate the ozone oxidation of dissolved heavy metals in an abandoned mine drainage (AMD) by conducting a pilot-scale operation at two different ozone doses of 7.5 and 24.0 g O(3)/h into an ozone reactor. A portion of the abandoned mine drainage near the Jungam Mine in Samchuck, Korea was pumped into this pilot-scale plant and used as an influent for the ozone oxidation. Some possible precipitates of metal oxides and hydroxides that resulted from the pilot-scale ozone oxidation of the dissolved Fe and Mn ions in the AMD (with a hydraulic retention time of 106 seconds in the ozone reactor) were effectively removed via sand filtration. A six-hour ozone oxidation with an ozone dose of 24.0 g O(3)/h and subsequent sand filtration, before backwashing the sand filter bed, can meet Korean drinking water quality standards (less than 0.3 mg/L) for Fe and Mn in the sand filter effluent under the operating conditions that were used in this study. The SO(4)(-2) concentrations and alkalinities of the influents were not affected by the ozone oxidation. The pH values of the influents were neutral or slightly alkaline, and after the six-hour oxidation, increased very slightly. These experiment results show that the ozone oxidation of dissolved heavy metals and the subsequent sand filtration of metal precipitates are desirable alternatives to removing heavy metals in an abandoned mine drainage.

  13. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    SciTech Connect

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  14. Detailed project plan: Design, construction and operation of pilot scale Charfuel{reg_sign} process. Topical report, Task 2

    SciTech Connect

    Not Available

    1993-09-01

    In this project, a pilot-scale facility for the flash hydropyrolysis of coal will be designed, built and operated to demonstrate the integrated operation of critical components of the CHARFUEL process and to obtain scale-up data for subsequent demonstration facility for the production of a clean coal slurry fuel. This report presents project plans which includes detailed construction plan; procurement of materials and equipment; construction, test and start-up; potential problems and solutions during operations; data collection and analysis; and feasibility analysis.

  15. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    SciTech Connect

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  16. Evaluation of pilot-scale air pollution control devices on a municipal waterfall incinerator. Project report, June 1978-June 1980

    SciTech Connect

    Hall, F.D.; Bruck, J.M.; Albrinck, D.N.

    1985-10-01

    The project report describes the results of a program for the testing of two pilot-scale pollution control devices, a fabric filter, and a venturi scrubber at the Braintree, Massachusetts Municipal Solid Waste Incinerator. It includes operation, sampling, and analytical efforts and outlines the plant operating conditions at the time of testing of the two pilot control devices. The Braintree Municipal Incinerator is a mass-burn, water-wall type consisting of two furnaces, each designed to burn 4.7 Mg (5 tons) per hour of unprocessed refuse.

  17. Mercury emissions control in coal combustion systems using potassium iodide: bench-scale and pilot-scale studies

    SciTech Connect

    Ying Li; Michael Daukoru; Achariya Suriyawong; Pratim Biswas

    2009-01-15

    Bench- and pilot-scale experiments were conducted using potassium iodide (KI) for capture and removal of Hg in air and coal combustion exhaust. Two bench-scale reactor systems were used: (1) a packed-bed reactor (PBR) packed with granular or powder KI and (2) an aerosol flow reactor (AFR) with injection of KI particles. It was found that a higher temperature, a higher concentration of KI, and a longer gas residence time resulted in a higher Hg removal efficiency. A 100% Hg removal was achieved in the PBR above 300{sup o}C using 0.5 g of powder KI and in the AFR above 500{sup o}C with a KI/Hg molar ratio of 600 at a 5.8 s residence time. The low KI injection ratio relative to Hg indicated that KI is highly effective for Hg removal in air. Formation of I{sub 2} vapor by the oxidation of KI by O{sub 2} at high temperatures, which then reacts with Hg to produce HgI{sub 2}, was identified as the pathway for removal. The pilot-scale experiments were conducted in a 160 kW pulverized coal combustor. KI was introduced in two ways: as a powder mixed with coal and by spraying KI solution droplets into the flue gas. In both cases the Hg removal efficiency increased with an increase in the feed rate of KI. Mixing KI powder with coal was found to be more effective than spraying KI into the flue gas. The Hg removal by KI was less efficient in the pilot-scale tests than in the bench-scale tests probably due to certain flue gas components reacting with KI or I{sub 2}. Hg speciation measurements in both bench- and pilot-scale experiments indicated no oxidized mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured in the particulate phase. This is very beneficial in coal-fired power plants equipped with electrostatic precipitators where particulate-bound Hg can be efficiently removed. 27 refs., 8 figs., 4 tabs.

  18. Pilot-Scale Evaluation of pH-Based Control of Single Stage Deammonification Processes for Sidestream Treatment.

    PubMed

    Graham, David M; Jolis, Domènec

    2017-02-01

    Pilot scale sidestream reactors, utilizing a pH-based control strategy, were operated at the San Francisco Public Utilities Commission (SFPUC), Southeast Plant (SEP) for the biological treatment of anaerobically digested sludge centrate using combined partial nitritation/anaerobic ammonium oxidation (anammox) as the main nitrogen removal pathway. Reactors were setup to functionally simulate two full-scale commercial processes common to the industry using nonproprietary, flexible, pH-based process control strategy. Results demonstrated that comparable full-scale loading rates and removal efficiencies can be reached for different reactor configurations while maintaining stable process performance using this relatively simple control strategy.

  19. A comparison of impulse drying to double felted pressing on pilot- scale shoe presses and roll presses

    SciTech Connect

    Orloff, D.I.

    1992-08-01

    Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.

  20. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  1. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  2. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  3. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  4. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  5. Cryogenic submicron linear actuator

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; González de María, David; Argelaguet Vilaseca, Heribert; Lamensans, Mikel; López Justo, David; Sanz Puig, Violeta

    2010-07-01

    The Cryogenic Submicron Linear Actuator (CSA) is a medium range (+/-5 mm) submicron resolution linear actuator suitable to be used at cryogenic temperature (12K). The unit has been developed for fine positioning use. The unit is based on classic motor-gear concept with nut and screw; different materials and lubrications have been tested for the same design configuration to compare performances. Load capability is above 20N. This paper describes main design features, results of different lubrications tested, tested performances, and main lessons learned.

  6. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  7. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  8. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  9. Cryogenic foil bearing turbopumps

    NASA Technical Reports Server (NTRS)

    Gu, Alston L.

    1993-01-01

    Cryogenic foil bearing turbopumps offer high reliability and low cost. The fundamental cryogenic foil bearing technology has been validated in both liquid hydrogen and liquid oxygen. High load capacity, excellent rotor dynamics, and negligible bearing wear after over 100 starts and stops, and over many hours of testing, were observed in both fluids. An experimental liquid hydrogen foil bearing turbopump was also successfully demonstrated. The results indicate excellent stability, high reliability, wide throttle-ability, low bearing cooling flow, and two-phase bearing operability. A liquid oxygen foil bearing turbopump has been built and is being tested at NASA MSFC.

  10. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    PubMed

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  11. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  12. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  13. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast.

    PubMed

    Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin

    2016-08-01

    Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes.

  14. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies.

  15. Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    SciTech Connect

    1994-09-01

    IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

  16. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing.

    PubMed

    Boelee, N C; Janssen, M; Temmink, H; Shrestha, R; Buisman, C J N; Wijffels, R H

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m(2)/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m(2)/day and 0.023 g P/m(2)/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.

  17. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  18. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator

    SciTech Connect

    Ying Li; Achariya Suriyawong; Michael Daukoru; Ye Zhuang; Pratim Biswas

    2009-05-15

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 m at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 {mu}m, and 10 {mu}m. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. 32 refs., 5 figs., 1 tab.

  19. Characterization of microbial communities in a pilot-scale constructed wetland using PLFA and PCR-DGGE analyses.

    PubMed

    Jin, Guang; Kelley, Timothy R

    2007-09-01

    Phospholipid fatty acid (PLFA) analysis and 16S ribosomal DNA polymerase chain reaction amplification-denaturing gradient gel electrophoresis (PCR-DGGE) were used to determine microbial communities and predominant microbial populations in water samples collected from a pilot-scale constructed wetland system. This pilot-scale constructed wetland system consists of three types: subsurface-flow (SSF), surface-flow (SF) and a floating aquatic plant (FAP) system. Analysis of PLFA profiles indicated primarily eukaryotic organisms, including fungi, protozoa, and diatoms were observed in all three wetland systems. Biomarkers for Gram-negative bacteria were also detected in all samples analyzed while low proportions of biomarkers for Gram-positive bacteria were observed. Biomass content (total PFLA/sample) was highest in water samples collected from both SF and FAP system while highest metabolic activity was observed in FAP system. This is consistent with the observed highest metal removal rate in FAP system. Sequence analysis of the predominant PCR-DGGE DNA fragments showed 0.92 to 0.99 similarity indices to Beta-proteobacteria, Flavobacterium sp. GOBB3-206, Flexibacter-Cytophaga-Bacteroides group, and Gram-positive bacteria. Results suggest diverse microbial communities including microorganisms that may significantly contribute to biogeochemical elemental cycles.

  20. Pilot scale annular plug flow photoreactor by UV/H2O2 for the decolorization of azo dye wastewater.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin

    2005-10-17

    A pilot scale annular plug flow photoreactor with thin gap size, which combines with UV irradiation and hydrogen peroxide, was employed to deal with colored dyeing wastewater treatment. In the experiment, a mono-azo dye acid orange 10 was the target compound. The experimental parameters such as flow rate, hydrogen peroxide dosage, UV input power, pH and dye initial concentrations in a pilot scale photoreactor with flow rate of 9.32 m3day(-1) were investigated. Ultimately, the degradation rates were calculated and compared with a 100-l batch reactor. In our plug flow photoreactor design, the degradation rate of acid orange 10 was 233 times higher than that of 100-l annular batch reactor with same UV light source. The residence time needed for 99% decolorizing of 100 l of 20 mgl(-1) acid orange 10 wastewater was 26.9 min for the thin gap plug flow reactor and was far shorter than that of batch reactor needed.

  1. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  2. Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site: changes in concentration and toxicity.

    PubMed

    Elgh-Dalgren, Kristin; Arwidsson, Zandra; Camdzija, Aida; Sjöberg, Ragnar; Ribé, Veronica; Waara, Sylvia; Allard, Bert; von Kronhelm, Thomas; van Hees, Patrick A W

    2009-12-30

    Soil washing of a soil with a mixture of both polycyclic aromatic hydrocarbons (PAH) and As was evaluated in laboratory and pilot scale, utilizing both single and mixtures of different additives. The highest level of decontamination was achieved with a combination of 0.213 M of the chelating agent MGDA and 3.2 x CMC* of a non-ionic, alkyl glucoside surfactant at pH 12 (Ca(OH)(2)). This combination managed to reach Swedish threshold values within 1 0 min of treatment when performed at elevated temperature (50 degrees C), with initial contaminant concentrations of As=105+/-4 mg/kg and US-EPA PAH(16)=46.0+/-2.3mg/kg. The main mechanisms behind the removal were the pH effect for As and a combination of SOM ionization as a result of high pH and micellar solubilization for PAHs. Implementation of the laboratory results utilizing a pilot scale equipment did not improve the performance, which may be due to the shorter contact time between the washing solution and the particles, or changes in physical characteristics of the leaching solution due to the elevated pressure utilized. The ecotoxicological evaluation, Microtox, demonstrated that all soil washing treatments increased the toxicity of soil leachates, possibly due to increased availability of contaminants and toxicity of soil washing solutions to the test organism.

  3. Pilot-scale studies on the effect of bromine addition on the emissions of chlorinated organic combustion by-products.

    PubMed

    Lemieux, P M; Stewart, E S; Ryan, J V

    2002-01-01

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PICs) including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs). This phenomenon appears to be sensitive to temperature and combustion conditions. This paper reports on a study to evaluate the emissions of organic combustion by-products while varying amounts of bromine (Br) and chlorine (Cl) are being fed into a pilot-scale incinerator burning surrogate waste materials. The surrogate waste was fed at a constant molar halogen input rate, with varying Br/Cl molar ratios. In these tests, an approximately 30% decrease in the total PCDD/F concentrations due to the addition of Br was observed. This decrease appears to be a decrease only in the chlorinated dioxin and furan species; other halogenated dioxins and furans were formed instead. PCDD/F homologue distribution shifted towards the higher chlorinated species. Perhalogenated or nearly perhalogenated mixed bromo-chloro furans were also observed in quantities that could potentially account for the observed decrease in PCDDs/Fs. This research illustrates the need for careful trial burn planning if Br will be present in the facility's feed-stock during normal operation.

  4. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Li, Taiping; Yuan, Songhu; Wan, Jinzhong; Lin, Li; Long, Huayun; Wu, Xiaofeng; Lu, Xiaohua

    2009-08-01

    This study deals with the efficiency of a pilot-scale electrokinetic (EK) treatment on real aged sediments contaminated with hexachlorobenzene (HCB) and Zn. A total of 0.5m(3) of sediments were treated under a constant voltage in a polyvinyl chloride reactor. The changes of sediment pH, electrical conductivity (EC), organic content (OC), the transport of contaminants in sediments and the consumption of electric energy were evaluated. After 100 d processing, sediment pH slightly increased compared with the initial values, particularly in the bottom layer close to cathodic section, while sediment EC in most sections significantly decreased. Sediment OC in all sections increased, which implied that hydroxypropyl-beta-cyclodextrin (HPCD) was successfully penetrated across sediments by electroosmosis. Significant movement of contaminants was observed across sediments with negligible removals. Both HCB and Zn generally moved from sections near anode and accumulated near cathode. Upon the completion of treatment, the electric energy consumption was calculated as 563 kWhm(-3). This pilot-scale EK test indicates that it is difficult to achieve great removal of hydrophobic organic compounds (HOCs), or HOCs and heavy metal mixed contaminants, by EK treatment in large scale with the use of HPCD.

  5. Disk Valve For Cryogenics

    NASA Technical Reports Server (NTRS)

    Calhoun, Richard B.

    1993-01-01

    Lightweight disk valve designed to have dimensions and capabilities similar to those of valve described in "Lightweight Right-Angle Valve For Cryogenics" (MSC-21889). Simple unit remains leaktight over wide range of pressures and temperatures without need for manual readjustment of packing gland. Weighs less than 60 g and made relatively inexpensively from some commercial and few simple custom-machined components.

  6. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  7. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  8. Cryogenic structural support

    DOEpatents

    Niemann, Ralph C.; Mataya, Karl F.; Gonczy, John D.

    1982-01-01

    A tensile support member is provided for use in a cryogenic environment. The member is in the form of a link formed of an epoxy glass laminate with at least one ply of the laminate having its fibers aligned circumferentially about the link.

  9. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources.

    PubMed

    Vandenbossche, Virginie; Brault, Julien; Hernandez-Melendez, Oscar; Evon, Philippe; Barzana, Eduardo; Vilarem, Gérard; Rigal, Luc

    2016-07-01

    A process has been validated for the deconstruction of lignocellulose on a pilot scale installation using six types of biomass selected for their sustainability, accessibility, worldwide availability, and differences of chemical composition and physical structure. The process combines thermo-mechano-chemical and bio-catalytic action in a single twin-screw extruder. Three treatment phases were sequentially performed: an alkaline pretreatment, a neutralization step coupled with an extraction-separation phase and a bioextrusion treatment. Alkaline pretreatment destructured the wall polymers after just a few minutes and allowed the initial extraction of 18-54% of the hemicelluloses and 9-41% of the lignin. The bioextrusion step induced the start of enzymatic hydrolysis and increased the proportion of soluble organic matter. Extension of saccharification for 24h at high consistency (20%) and without the addition of new enzyme resulted in the production of 39-84% of the potential glucose.

  10. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    SciTech Connect

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to

  11. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an

  12. Removal of Ni(II) from aqueous solutions by an Arthrobacter viscosus biofilm supported on zeolite: from laboratory to pilot scale.

    PubMed

    Quintelas, Cristina; Pereira, Ricardo; Kaplan, Ecem; Tavares, Teresa

    2013-08-01

    This study discusses the retention of Ni(II) by Arthrobacter viscosus supported on zeolite 13 X in batch mode and in continuous mode, at laboratory scale and at pilot scale. The maximum adsorption capacities of 28.37, 20.21 and 11.13 mg/g were recorded for lab scale batch, for continuous lab scale minicolumns and for pilot scale bioreactors, respectively. The Sips isotherm and pseudo second order kinetics described well the observations registered in batch assays. The Adams-Bohart, Thomas and Yoon-Nelson models were applied to data obtained with the pilot scale bioreactor and a good fit was reached for Adams-Bohart and for Yoon-Nelson models. A fed-batch was performed at lab scale and the applicability of the biofilm in continuous mode for the described purpose was confirmed. The sorption mechanism was investigated in detail through FTIR, SEM and EDX analyses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  14. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  15. SEPARATION OF VAPOR-PHASE ALCOHOL/WATER MIXTURES VIA FRACTIONAL CONDENSATION USING A PILOT-SCALE DEPHLEGMATOR: ENHANCEMENT OF THE PREVAPORATION PROCESS SEPARATION FACTOR

    EPA Science Inventory

    In prevaporation, a liquid mixture contacts a membrane surface that preferentially permeates one of the liquid components as a vapor. Our approach to improving pervaporation performance is to replace the one-stage condenser traditionally used to condense the permeate with a frac...

  16. SEPARATION OF VAPOR-PHASE ALCOHOL/WATER MIXTURES VIA FRACTIONAL CONDENSATION USING A PILOT-SCALE DEPHLEGMATOR: ENHANCEMENT OF THE PREVAPORATION PROCESS SEPARATION FACTOR

    EPA Science Inventory

    In prevaporation, a liquid mixture contacts a membrane surface that preferentially permeates one of the liquid components as a vapor. Our approach to improving pervaporation performance is to replace the one-stage condenser traditionally used to condense the permeate with a frac...

  17. The efficacy of a commercial competitive exclusion product on Campylobacter colonization in broiler chickens in a 5-week pilot-scale study

    PubMed Central

    Schneitz, C.; Hakkinen, M.

    2016-01-01

    The efficacy of the commercial competitive exclusion product Broilact against Campylobacter jejuni was evaluated in broiler chickens in a 5-week pilot-scale study. Newly-hatched broiler chicks were brought from a commercial hatchery. After arrival 50 seeder chicks were challenged orally with approximately 103 cfu of C. jejuni, wing marked, and placed back in a delivery box and moved to a separate room. The rest of the chicks (contact chicks) were placed in floor pens, 100 chicks per pen. Birds in two pens were treated orally on the day of hatch with the commercial competitive exclusion (CE) product Broilact, and three pens were left untreated. The following day 10 seeder chicks were introduced into the Broilact treated and untreated control pens. One pen was left both untreated and unchallenged (0-control). Each week the ceca of 10 contact chicks and one seeder chick were examined quantitatively for Campylobacter. The treatment prevented or significantly reduced the colonization of the challenge organism in the ceca during the two first weeks; the percentage of colonized birds being 0% after the first week and 30% after the second week in the Broilact treated groups but was 100% in the control groups the entire 5-week rearing period. During the third rearing week the proportion of Campylobacter positive birds started to increase in the treated pens, being 80% after the third week and 95 and 90% after the fourth and fifth rearing weeks, respectively. Similarly the average count of Campylobacter in the cecal contents of the Broilact treated chicks started to increase, the difference between the treated and control chicks being 1.4 logs at the end of the rearing period. Although the protective effect was temporary and occurred only during the first two weeks of the rearing period, the results of this study support the earlier observations that CE flora designed to protect chicks from Salmonella may also reduce Campylobacter colonization of broiler chickens. PMID

  18. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  19. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  20. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  1. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  2. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  3. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  4. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  5. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  6. Cryogenic Test Technology 1984.

    DTIC Science & Technology

    1985-04-01

    super- sonic cruise research model (Figure 19) made from Vascomax 200, a flat-plate delta wing model (Figure 20) made from Vascomax 200 with pressure...beam welded together Sting design has been considered in papers 8),93, from General Dynamics. An attempt was made to design a composite sting but the...ment in the cryogenic toughness of comrcial high-strength martensitic and maragingW steels has been demonstrated through the use of grain-refining

  7. A compact cryogenic pump

    SciTech Connect

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  8. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  9. Cryogenic Production Testing

    NASA Astrophysics Data System (ADS)

    Buchness, R. K.; Banks, E.; Doidge, J.; Gable, A.; Nelson, L.; Olsen, D.

    1985-10-01

    Rockwell has realized rapid testing of Infrared Focal Plane Arrays (IRFPAs) using a totally automated cryogenic test station with the latest technology in device handling, data acquisition, illumination and throughput capabilities. This station provides testing of HgCdTe Focal Plane Arrays fabricated in a fully certified production facility. All aspects of this facility are under Quality Control surveillance including the hardware and software used by the automated test station.

  10. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  11. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  12. Minimum energy test direction design in the control of cryogenic wind tunnels

    NASA Astrophysics Data System (ADS)

    Balakrishna, S.; Goglia, G. L.

    1980-06-01

    The advent of the cryogenic wind tunnel concept is attributable to the need for high Reynolds number flow in wind tunnels. The cryogenic wind tunnel concept consists of operating the test medium of a conventional tunnel at cryogenic temperatures down to 80 K. Nitrogen gas, cooled by injected liquid nitrogen, proves to be ideal for the cryogenic tunnel test medium because of its near perfect behavior in insentropic flow. Cryogenic operation of a wind tunnel results in reduced fan power consumption and no penalty in flow dynamic pressure. In a cryogenic tunnel, the flow parameters (Reynolds number, Mach number and flow dynamic pressure) can be independently controlled by separately controlling the tunnel flow variables: total temperature, test section mass flow, and the tunnel total pressure. The problem of closed-loop control of the tunnel total temperature, flow Mach number, and total pressure is addressed and reported.

  13. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD).

    PubMed

    Ghosh, S; Henry, M P; Sajjad, A; Mensinger, M C; Arora, J L

    2000-01-01

    Bioconversion of municipal solid waste-sludge blend by conventional high-rate and two-phase anaerobic digestion was studied. RDF (refused-derived fuel)-quality feed produced in a Madison, Wisconsin, USA, MRF (materials-recovery facility) was used. High-rate digestion experiments were conducted with bench-scale digesters under target operating conditions developed from an economic feasibility study. The effects of digestion temperature, RDF content of digester feed, HRT, loading rate, RDF particle size, and RDF pretreatment with cellulase or dilute solutions of NaOH or lime on digester performance were studied. A pilot-scale two-phase digestion plant was operated with 80:20 (weight ratio) RDF-sludge blends to show that this process exhibited a higher methane yield, and produced a higher methane-content digester gas than those obtained by single-stage, high-rate anaerobic digestion.

  14. Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw.

    PubMed

    Agrawal, Ruchi; Satlewal, Alok; Kapoor, Manali; Mondal, Sujit; Basu, Biswajit

    2017-01-01

    In this study, commercial surfactants have been investigated at economically viable dosage to enhance the enzymatic saccharification of pretreated wheat straw at high solid loadings. Twenty one surfactants were evaluated with pilot scale pretreated wheat straw and mechanism of surfactant action has been elucidated. One surfactant has improved the saccharification of dilute acid wheat straw (DAWS) by 26.4% after 24h and 23.1% after 48h while, steam exploded wheat straw (SEWS) saccharification was increased by 51.2% after 24h and 36.4% after 48h at 10% solid loading. At 20% solid loading, about 31% increase in yield was obtained on DAWS and about 55% on SEWS after 48h. Further, lignin was isolated from pretreated wheat straws and characterized which revealed that SEWS derived lignin was more hydrophobic than DAWS lignin. This investigation suggests that surfactant supplementation during saccharification is an effective strategy to achieve higher saccharification yield.

  15. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.

    PubMed

    Yang, Zixu; Zhang, Shihong; Liu, Lei; Li, Xiangpeng; Chen, Hanping; Yang, Haiping; Wang, Xianhua

    2012-04-01

    Despite its abundant supply, tobacco stem has not been exploited as an energy source in large scale. This study investigates the combustion behaviours of tobacco stem in a thermogravimetric analyser (TGA) and a pilot-scale fluidized bed (FB). Combustion characteristics, including ignition and burnout index, and combustion reaction kinetics were studied. Experiments in the FB investigated the effects of different operating conditions, such as primary air flow, secondary air flow and feeding rates, on the bed temperature profiles and combustion efficiency. Two kinds of bed materials cinder and silica sand were used in FB and the effect of bed materials on agglomeration was studied. The results indicated that tobacco stem combustion worked well in the FB. When operation condition was properly set, the tobacco stem combustion efficiency reached 94%. In addition, compared to silica sand, cinder could inhibit agglomeration during combustion because of its high aluminium content. Copyright © 2012. Published by Elsevier Ltd.

  16. Phosphorus Sorption Capacities of Steel Slag in Pilot-Scale Constructed Wetlands for Treating Urban Runoff: Saturation Potential and Longevity

    NASA Astrophysics Data System (ADS)

    Guo, W. J.; Zhao, L. Y.; Zhao, W. H.; Li, Q. Y.; Wu, Z. B.

    2017-01-01

    Two parallel pilot-scale integrated constructed wetland (ICW) systems were constructed on the bank of Nanfeihe River. The phosphate (PO4 3-) isothermal adsorption properties of the upper substrate steel furnace slag (SFS) in up-flow chamber was investigated during one-year operation period. The maximum phosphorus (P) adsorption capacity of SFS 9, 11, 13, 15, 17, 19 months service time were 848.9 mg/kg, 968.1 mg/kg, 824.5 mg/kg, 788.7 mg/kg, 864.7 mg/kg and 960.3 mg/kg, respectively. The saturated adsorption amount of SFS had not decreased with the service time prolonging in ICW. The longevity of a full-scale system could not be reliably estimated only based on the theoretical saturated adsorption capacity from laboratory experiments.

  17. Pilot-Scale In-situ Biosequestration of Uranium in Groundwater at the Monument Valley UMTRA Site

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Gutierrez, D. I.; Abel, E. J.; Johnson, R. H.; Root, R. A.; Chorover, J.; Brusseau, M. L. L.

    2015-12-01

    In-situ biosequestration, wherein electron-donating substrates are injected to promote microbial-associated sequestration of contaminants, is one promising enhanced-attenuation technique for remediation of groundwater containing arsenic, uranium, selenium, and similar constituents. A pilot-scale test of in-situ biosequestration for uranium in groundwater was conducted at a former uranium mining site in Monument Valley, Arizona. Approximately 20 m3 of 0.5% ethanol solution was injected into a test zone of the alluvial aquifer. Groundwater was sampled periodically before, during, and after the injection. The relevant constituents, such as uranium, nitrogen species, sulfur species, anions/cations, ethanol, and S and N isotopes, were monitored to characterize the biosequestration process. Sediment samples were also collected before and after the injection for monitoring changes in sediment properties, mineral geochemical composition, microbial community composition, and microbial activity.

  18. Pilot scale single chamber up-flow membrane-less microbial fuel cell for wastewater treatment and electricity generation

    NASA Astrophysics Data System (ADS)

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi Muhammad; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2017-04-01

    Pilot scale up-flow membrane-less microbial fuel cell (UFML-MFC) was constructed to study feasibility of the bioreactor for simultaneous degradation of organic substance and electricity generation. The performance of the UFML-MFC was evaluated with different anode electrode (cube carbon felt and stacked carbon felt) in terms of voltage output, chemical oxygen demand (COD) and Coulombic efficiency (CE). Carbon flake were used as cathode in the UFML-MFC. UFML-MFC was operated in three stages where included batch-fed, end of batch fed and semi-continuous. The Cube carbon felt as anode have the better performance in terms of voltage output and electricity generation in all 3 stages. Maximum voltage output was 0.311 ± 0.004 V at 75% of COD reduction and thus CE was 0.15%. The result shows the operational mode is the key to improve the voltage output and also COD reduction.

  19. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate.

    PubMed

    Speer, Sean; Champagne, Pascale; Anderson, Bruce

    2012-01-01

    Hybrid-passive landfill leachate treatment systems employ active pretreatment to remove dissolved inorganic constituents and decrease the oxygen demand of the leachate prior to treatment in a passive system. In a 1-year pilot-scale study, two passive treatment systems - a peat and wood shaving biological trickle filter and a sand and gravel constructed wetland - were installed to treat leachate from the Merrick Landfill in North Bay, Ontario, Canada. Leachate was pretreated in a fixed-film aerobic reactor, which provided reductions in COD (26%), and masses of ammonia (21%), Al (69%), Ca (57%), Fe (73%) and Sr (37%). A comparison of the performance of the hybrid-passive treatment systems indicated different extents of heterotrophic nitrification; the peat and wood shaving filter removed 49% of the ammonia and nitrified 29%, while the constructed wetland removed 99% of the ammonia and nitrified 90%. Hybrid-passive landfill leachate treatment was determined to be feasible in cold climates.

  20. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study.

    PubMed

    Sharma, Abha; Thakur, Vasanta Vadde; Shrivastava, Anita; Jain, Rakesh Kumar; Mathur, Rajeev Mohan; Gupta, Rishi; Kuhad, Ramesh Chander

    2014-10-01

    In present study, xylanase and laccase were produced in a cost-effective manner up to 10 kg substrate level and evaluated in elemental chlorine free bleaching of Eucalyptus kraft pulp. Compared to the pulp pre-bleached with xylanase (15%) or laccase (25%) individually, the ClO2 savings were higher with sequential treatment of xylanase followed by laccase (35%) at laboratory scale. The sequential enzyme treatment when applied at pilot scale (50 kg pulp), resulted in improved pulp properties (50% reduced post color number, 15.71% increased tear index) and reduced AOX levels (34%) in bleach effluents. The decreased AOX level in effluents will help to meet AOX discharge limits, while improved pulp properties will be value addition to the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors.

    PubMed

    San Pedro, A; González-López, C V; Acién, F G; Molina-Grima, E

    2014-10-01

    This work studied outdoor pilot scale production of Nannochloropsis gaditana in tubular photobioreactors. The growth and biomass composition of the strain were studied under different culture strategies: continuous-mode (varying nutrient supply and dilution rate) and two-stage cultures aiming lipid enhancement. Besides, parameters such as irradiance, specific nitrate input and dilution rate were used to obtain models predicting growth, lipid and fatty acids production rates. The range of optimum dilution rate was 0.31-0.351/day with maximum biomass, lipid and fatty acids productivities of 590, 110 and 66.8 mg/l day, respectively. Nitrate limitation led to an increase in lipid and fatty acids contents (from 20.5% to 38.0% and from 16.9% to 23.5%, respectively). Two-stage culture strategy provided similar fatty acids productivities (56.4 mg/l day) but the neutral lipids content was doubled.

  2. The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond.

    PubMed

    Erkelens, Mason; Ball, Andrew S; Lewis, David M

    2014-04-01

    The use of recycled media has been shown to be a necessary step within the lifecycle of microalgal biofuels for economic sustainability and reducing the water footprint. However the impact of the harvesting of microalgae on the bacterial load of the recycled water has yet to be investigated. Within this study PCR-DGGE and real-time PCR was used to evaluate the bacterial community dynamics within the recycled water following harvest and concentration steps for a pilot scale open pond system (120,000L), which was developed for the production of green crude oil from Tetraselmis sp. in hyper saline water. Two stages were used in the harvesting; Stage 1 electroflocculation, and Stage 2 centrifugation. Electroflocculation was shown to have little effect on the bacterial cell concentration. In contrast bacterial diversity and cell concentration within the centrifugation step was greatly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: perspectives for medical application.

    PubMed

    Linan, Lamia Zuniga; Nascimento Lima, Nádson M; Filho, Rubens Maciel; Sabino, Marcos A; Kozlowski, Mark T; Manenti, Flavio

    2015-06-01

    This work presents the rheological assessment of poly(methyl methacrylate) (PMMA) polymers synthesized in a dedicated pilot-scale plant. This material is to be used for the construction of scaffolds via Rapid Prototyping (RP). The polymers were prepared to match the physical and biological properties required for medical applications. Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC) measurements verified that the synthesized polymers were atactic, amorphous and linear in chains. Rheological properties such as viscosity, storage and loss modulus, beyond the loss factor, and creep and recovery were measured in a plate-plate sensor within the viscoelastic linear region. The results showed the relevant influence of the molecular weight on the viscosity and elasticity of the material, and how, as the molecular weight increases, the viscoelastic properties are getting closer to those of human bone. This article demonstrates that by using the implemented methodology it is possible to synthesize a polymer, with properties comparable to commercially-available PMMA.

  4. Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion.

    PubMed

    Appels, Lise; Houtmeyers, Sofie; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2013-01-01

    Anaerobic digestion is widely applied for the recovery of energy from waste activated sludge. Pre-treatment methods are of high interest to increase the biodegradability of the sludge and to enhance the digestion efficiency. This paper studies the application of a microwave pre-treatment. An experimental set-up of two pilot scale semi-continuous digesters was used. During a long term experiment, one of the reactors was fed with untreated sludge, while microwave pre-treated sludge (336 kJ/kg sludge) was introduced in the second one. A solid retention time of 20 days was kept during the experiments. (Organic) dry solids, carbohydrates, proteins and volatile fatty acids were monitored during digestion. It was seen that the microwave pre-treatment resulted in an effective solubilization of the organic matter in the sludge. The changes to the sludge composition resulted in an increase in biogas production by 50%, while the methane concentration in both reactors remained stable.

  5. Pilot-scale culture of somatic embryos of Eleutherococcus senticosus in airlift bioreactors for the production of eleutherosides.

    PubMed

    Shohael, Abdullah Mohammad; Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2014-08-01

    To establish pilot scale bioreactor cultures of somatic embryos of Siberian ginseng for the production of biomass and eleutherosides. Somatic embryos of Eleutherococcus senticosus were cultured in airlift bioreactors using Murashige and Skoog medium with 30 g sucrose l(-1) for the production of biomass and eleutherosides. Various parameters including the type of bioreactor, aeration volume, and inoculum density were optimized for 3 l capacity bioreactors. Balloon-type airlift bioreactors, utilizing a variable aeration volume of 0.1-0.3 vvm and an inoculum of 5 g l(-1), were suitable for biomass and eleutheroside production. In 500 l balloon-type airlift bioreactors, 11.3 g dry biomass l(-1), 220 µg eleutheroside B l(-1), 413 µg eleutheroside E l(-1), and 262 µg eleutheroside E1 l(-1) were produced.

  6. Prediction of Solids Circulation Rate of Cork Particles in an Ambient-Pressure Pilot-Scale Circulating Fluidized Bed

    SciTech Connect

    Huang, Yue; Turton, Richard; Famouri, Parviz; Boyle, Edward J.

    2009-01-07

    Circulating fluidized beds (CFB) are currently used in many industrial processes for noncatalytic and catalytic because its effective control is the key to smooth operation of a CFB system. This paper presents a method for solids flow metering from pressure drop measurements in the standpipe dense phase. A model based on the Ergun equation is developed to predict the solids flow rate and voidage in the dense phase of the standpipe. The profile of the solids flow rate under unsteady state is also presented. With the use of this method, the dynamic response time at different locations along the standpipe of a pilot-scale fluidized bed operating at ambient conditions with 812 mu m cork particles is estimated successfully. Through the use of a pressure balance analysis, solids flow models for the standpipe, riser, and other sections of the flow loop are combined to give an integrated CFB model.

  7. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    PubMed

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup.

  8. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    PubMed

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  9. Cryogenic technology for CMBPol

    NASA Astrophysics Data System (ADS)

    Di Pirro, M.; Johnson, D. L.; Shirron, P.

    2009-03-01

    Future space telescopes such as CMBPol, SAFIR, DARWIN, SPICA and XEUS will require cooling to very low temperatures. Staged cooling is the most efficient means of achieving low temperature in an observatory or instrument with the least cost and mass. The first stage is usually passive radiators taking advantage of views to deep space. In the past stored cryogen systems provided the next lower stagesof cooling. Mechanical cryocoolers represent a significant enabling technology, especially at the lower temperatures where the passive coolers' effectiveness is limited. These coolers are in general lighter, have more cooling capability, and more operationally flexible than stored cryogens. Sub Kelvin cooling is required for many of the most sensitive detectors. For fundamental reasons, microcalorimeters and bolometers must be cooled to extremely low temperature to achieve their ultimate resolution and, eventually, background-limited detection. The state of the art for these cryogenic cooling technologies are presented along with plans to advance the technology readiness level to enable these future missions.

  10. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  11. Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp

    USDA-ARS?s Scientific Manuscript database

    Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...

  12. Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology

    SciTech Connect

    2005-05-01

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

  13. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  14. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B

    PubMed Central

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m2 area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated. PMID:23458578

  15. The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations.

    PubMed

    Fauzee, Ayeshah Fateemah Beebee; Khamanga, Sandile Maswazi; Walker, Roderick Bryan

    2014-12-01

    The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 2(4) full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer-Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.

  16. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B.

    PubMed

    Zayas, Caridad; González, Domingo; Acevedo, Reinaldo; del Campo, Judith; Lastre, Miriam; González, Elizabeth; Romeu, Belkis; Cuello, Maribel; Balboa, Julio; Cabrera, Osmir; Guilherme, Luisa; Pérez, Oliver

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m² area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated.

  17. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  18. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  19. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  20. Pilot scale experiment with MBR operated in intermittent aeration condition: analysis of biological performance.

    PubMed

    Capodici, M; Di Bella, G; Di Trapani, D; Torregrossa, M

    2015-02-01

    The effect of intermittent aeration (IA) on a MBR system was investigated. The study was aimed at analyzing different working conditions and the influence of different IA cycles on the biological performance of the MBR pilot plant, in terms of organic carbon and ammonium removal as well as extracellular polymeric substances (EPSs) production. The membrane modules were placed in a separate compartment, continuously aerated. This configuration allowed to disconnect from the filtration stage the biological phenomena occurring into the IA bioreactor. The observed results highlighted good efficiencies, in terms of organic carbon and ammonium removal. It was noticed a significant soluble microbial products (SMPs) release, likely related to the higher metabolic stress that anoxic conditions exerted on the biomass. However, the proposed configuration, with the membranes in a separate compartment, allowed to reduce the EPSs in the membrane tank even during the non-aerated phase, thus lowering fouling development.