Sample records for piloted flight simulation

  1. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  2. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  3. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  4. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  5. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  6. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  7. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  8. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  9. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  10. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  11. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  12. 14 CFR 61.167 - Privileges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...

  13. 14 CFR 61.167 - Privileges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...

  14. 14 CFR 61.167 - Privileges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...

  15. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  16. Stress and Simulation in Pilot Training. Final Report, May 1977 Through December 1977.

    ERIC Educational Resources Information Center

    Krahenbuhl, Gary S.; And Others

    Research was conducted on pilot stress during simulated emergency flight conditions. Catecholamine (adrenaline and non-adrenaline) secretion for twenty United States Air Force student pilots and thirteen instructor pilots was determined during daily activities, during simulated flights performed in high realism simulators, and during actual…

  17. Single pilot scanning behavior in simulated instrument flight

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1979-01-01

    A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.

  18. Studies of Pilot Control During Launching and Reentry of Space Vehicles, Utilizing the Human Centrifuge

    NASA Technical Reports Server (NTRS)

    Clark, Carl C.; Woodling, C. H.

    1959-01-01

    With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.

  19. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  20. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  1. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  2. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  3. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  4. An analysis of airline landing flare data based on flight and training simulator measurements

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Schulman, T. M.; Clement, T. M.

    1982-01-01

    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.

  5. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  6. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  7. 14 CFR 61.167 - Airline transport pilot privileges and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) In flight simulators, and flight training devices representing the aircraft referenced in paragraph... instruct in aircraft, flight simulators, and flight training devices under this section— (i) For more than... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline...

  8. A Low Cost Simulation System to Demonstrate Pilot Induced Oscillation Phenomenon

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat

    1997-01-01

    A flight simulation system with graphics and software on Silicon Graphics computer workstations has been installed in the Flight Vehicle Design Laboratory at Tuskegee University. The system has F-15E flight simulation software from NASA Dryden which uses the graphics of SGI flight simulation demos. On the system, thus installed, a study of pilot induced oscillations is planned for future work. Preliminary research is conducted by obtaining two sets of straight level flights with pilot in the loop. In one set of flights no additional delay is used between the stick input and the appearance of airplane response on the computer monitor. In another set of flights, a 500 ms additional delay is used. The flight data is analyzed to find cross correlations between deflections of control surfaces and response of the airplane. The pilot dynamics features depicted from cross correlations of straight level flights are discussed in this report. The correlations presented here will serve as reference material for the corresponding correlations in a future study of pitch attitude tracking tasks involving pilot induced oscillations.

  9. The Effects of Longitudinal Control-System Dynamics on Pilot Opinion and Response Characteristics as Determined from Flight Tests and from Ground Simulator Studies

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1958-01-01

    The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.

  10. Development and Assessment of a Novel Training Package for Basic Maneuvering Tasks on a Flight Simulator Using Self Instruction Methods and Above Real Time Training (ARTT)

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.

  11. Helicopter pilot scan techniques during low-altitude high-speed flight.

    PubMed

    Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun

    2014-07-01

    This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.

  12. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  13. Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan

    2014-11-01

    Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.

  14. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...

  15. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  16. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  17. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  18. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  19. The Propulsive-Only Flight Control Problem

    NASA Technical Reports Server (NTRS)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  20. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  1. Results of a simulator test comparing two display concepts for piloted flight-path-angle control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.

  2. A methodology for the assessment of manned flight simulator fidelity

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Malsbury, Terry N.

    1989-01-01

    A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.

  3. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  4. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  5. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  6. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  7. A preliminary investigation of the use of throttles for emergency flight control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  8. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA have undertaken the systematic validation of a ground-based piloted simulator for the UH-60A helicopter. The results of previous handling quality and task performance flight tests for this helicopter have been used as a data base for evaluating the fidelity of the present simulation, which is being conducted at the NASA Ames Research Center's Vertical Motion Simulator. Such nap-of-the-earth piloting tasks as pop-up, hover turn, dash/quick stop, sidestep, dolphin, and slalom, have been investigated. It is noted that pilot simulator performance is significantly and quantifiable degraded by comparison with flight test results for the same tasks.

  9. An Evaluation of Training Interventions and Computed Scoring Techniques for Grading a Level Turn Task and a Straight In Landing Approach on a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.

  10. Validating Visual Cues In Flight Simulator Visual Displays

    NASA Astrophysics Data System (ADS)

    Aronson, Moses

    1987-09-01

    Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.

  11. Nicotine deprivation and pilot performance during simulated flight.

    PubMed

    Mumenthaler, Martin S; Benowitz, Neal L; Taylor, Joy L; Friedman, Leah; Noda, Art; Yesavage, Jerome A

    2010-07-01

    Most airlines enforce no-smoking policies, potentially causing flight performance decrements in pilots who are smokers. We tested the hypotheses that nicotine withdrawal affects aircraft pilot performance within 12 h of smoking cessation and that chewing nicotine gum leads to significant relief of these withdrawal effects. There were 29 pilots, regular smokers, who were tested in a Frasca 141 flight simulator on two 13-h test days, each including three 75-min flights (0 hr, 6 hr, 12 hr) in a randomized, controlled trial. On the first day (baseline), all pilots smoked one cigarette per hour. On the second day, pilots were randomly assigned to one of four groups: (1) nicotine cigarettes; (2) nicotine gum; (3) placebo gum; (4) no cigarettes/no gum. Flight Summary Scores (FSS) were compared between groups with repeated measures ANOVAs. No statistically significant differences in overall simulator flight performance were revealed between pilots who smoked cigarettes and pilots who were not allowed to smoke cigarettes or chew nicotine gum, but there was a trend for pilots who were not allowed to smoke to perform worse. However, pilots who chewed placebo gum performed significantly worse during the 6-h (FSS = -0.03) as well as during the 12-h flight (FSS = -0.08) than pilots who chewed nicotine gum (FSS = 0.15 / 0.30, respectively). Results suggest that nicotine withdrawal effects can impair aircraft pilot performance within 12 h of smoking cessation and that during smoking abstinence chewing one stick of 4-mg nicotine gum per hour may lead to significantly better overall flight performance compared to chewing placebo gum.

  12. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  13. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  14. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  15. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  16. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  17. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  18. Flight Hour Reductions in Fleet Replacement Pilot Training through Simulation.

    ERIC Educational Resources Information Center

    Smode, Alfred F.

    A project was undertaken to integrate the 2F87F operational flight trainer into the program for training replacement patrol plane pilots. The objectives were to determine the potential of the simulator as a substitute environment for learning aircraft tasks and to effectively utilize the simulator in pilot training. The students involved in the…

  19. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    PubMed

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  20. Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    NASA Technical Reports Server (NTRS)

    Kiteley, G. W.; Harris, R. L., Sr.

    1978-01-01

    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.

  1. Pilot-Induced Oscillation Prediction With Three Levels of Simulation Motion Displacement

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.; Chung, William W. Y.; Tran, Duc T.; Laforce, Soren; Bengford, Norman J.

    2001-01-01

    Simulator motion platform characteristics were examined to determine if the amount of motion affects pilot-induced oscillation (PIO) prediction. Five test pilots evaluated how susceptible 18 different sets of pitch dynamics were to PIOs with three different levels of simulation motion platform displacement: large, small, and none. The pitch dynamics were those of a previous in-flight experiment, some of which elicited PIOs These in-flight results served as truth data for the simulation. As such, the in-flight experiment was replicated as much as possible. Objective and subjective data were collected and analyzed With large motion, PIO and handling qualities ratings matched the flight data more closely than did small motion or no motion. Also, regardless of the aircraft dynamics, large motion increased pilot confidence in assigning handling qualifies ratings, reduced safety pilot trips, and lowered touchdown velocities. While both large and small motion provided a pitch rate cue of high fidelity, only large motion presented the pilot with a high fidelity vertical acceleration cue.

  2. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  3. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  4. 14 CFR 61.13 - Issuance of airman certificates, ratings, and authorizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pilot authorization, a flight simulator or flight training device may be used if it is approved by the..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND... the Administrator, a person whose pilot, flight instructor, or ground instructor certificate has been...

  5. Cockpit simulation study of use of flight path angle for instrument approaches

    NASA Technical Reports Server (NTRS)

    Hanisch, B.; Ernst, H.; Johnston, R.

    1981-01-01

    The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.

  6. Flight Simulator Motion Literature Pertinent to Airline-Pilot Recurrent Training and Evaluation.

    DOT National Transportation Integrated Search

    2011-08-08

    There has been much debate over the years regarding the need for flight simulator motion for airline-pilot training and evaluation. From the intuitive perspective there is the dictum, The airplane moves, so the simulator must move but intui...

  7. 14 CFR 61.13 - Issuance of airman certificates, ratings, and authorizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... required by this part for a Category II or a Category III pilot authorization, a flight simulator or flight..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND... suspension or revocation. (1) Unless otherwise authorized by the Administrator, a person whose pilot, flight...

  8. 14 CFR 61.13 - Issuance of airman certificates, ratings, and authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... required by this part for a Category II or a Category III pilot authorization, a flight simulator or flight..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND... suspension or revocation. (1) Unless otherwise authorized by the Administrator, a person whose pilot, flight...

  9. 14 CFR 61.13 - Issuance of airman certificates, ratings, and authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... required by this part for a Category II or a Category III pilot authorization, a flight simulator or flight..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND... suspension or revocation. (1) Unless otherwise authorized by the Administrator, a person whose pilot, flight...

  10. 14 CFR 61.13 - Issuance of airman certificates, ratings, and authorizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... required by this part for a Category II or a Category III pilot authorization, a flight simulator or flight..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND... suspension or revocation. (1) Unless otherwise authorized by the Administrator, a person whose pilot, flight...

  11. The Relationship Between Fidelity and Learning in Aviation Training and Assessment

    NASA Technical Reports Server (NTRS)

    Noble, Cliff

    2002-01-01

    Flight simulators can be designed to train pilots or assess their flight performance. Low-Fidelity simulators maximize the initial learning rate of novice pilots and minimize initial costs; whereas, expensive, high-fidelity simulators predict the realworld in-flight performance of expert pilots (Fink & Shriver, 1978 Hays & Singer 1989; Kinkade & Wheaton. 1972). Although intuitively appealing and intellectually convenient to generalize concepts of learning and assessment, what holds true for the role of fidelity in assessment may not always hold true for learning, and vice versa. To bring clarity to this issue, the author distinguishes the role of fidelity in learning from its role in assessment as a function of skill level by applying the hypothesis of Alessi (1988) and reviewing the Laughery, Ditzian, and Houtman (1982) study on simulator validity. Alessi hypothesized that there is it point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of learning. The author of this current paper also suggests the existence of an optimal point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of practical assessment of nonexpert pilot performance.

  12. Development and Utility of a Piloted Flight Simulator for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.

    2003-01-01

    A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.

  13. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  14. Manual flying of curved precision approaches to landing with electromechanical instrumentation. A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1993-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.

  15. The effects of workload on respiratory variables in simulated flight: a preliminary study.

    PubMed

    Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew

    2010-04-01

    In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. An investigation into pilot and system response to critical in-flight events, volume 2

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Giffin, W. C.

    1981-01-01

    Critical in-flight event is studied using mission simulation and written tests of pilot responses. Materials and procedures used in knowledge tests, written tests, and mission simulations are included

  17. STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.

  18. Modeling of pilot's visual behavior for low-level flight

    NASA Astrophysics Data System (ADS)

    Schulte, Axel; Onken, Reiner

    1995-06-01

    Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.

  19. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  20. Astronauts Grissom and Young prepare to preform flight simulations

    NASA Image and Video Library

    1965-03-19

    S65-21864 (19 March 1965) --- Astronauts Virgil I. Grissom (left), command pilot; and John W. Young, pilot, prepare to run Gemini-Titan 3 simulations in the Gemini mission simulator at Cape Kennedy, Florida. The NASA GT-3 flight was scheduled for March 23, 1965.

  1. 14 CFR 61.1 - Applicability and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....2. Aeronautical experience means pilot time obtained in an aircraft, flight simulator, or flight... from an authorized instructor in an aircraft, flight simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device...

  2. KSC-2013-3561

    NASA Image and Video Library

    2013-08-15

    DRYDEN FLIGHT RESEARCH CENTER, Calif. - Simulation technicians Brent Bieber, left, and Dennis Pitts install a boilerplate Dream Chaser canopy structure over the cockpit of a flight simulator in the simulation laboratory at NASA's Dryden Flight Research Center in California. The modification will give Dream Chaser pilot-astronauts a more representative view of the actual flight profiles the spacecraft would fly during piloted approach and landing tests. Sierra Nevada Corporation's Space Systems division is conducting uncrewed captive- and free-flight approach and landing tests of its Dream Chaser at Dryden during the summer and fall. Photo credit: NASA/Ken Ulbrich

  3. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  4. T-4G Simulator and T-4 Ground Training Devices in USAF Undergraduate Pilot Training.

    ERIC Educational Resources Information Center

    Woodruff, Robert R.; Smith, James F.

    The objective of the project was to investigate the utility of using an A/F37A-T4G T-37 flight simulator within the context of Air Force undergraduate pilot training. Twenty-one subjects, selected from three undergraduate pilot training classes, were given contact flight training in a TP4G/EPT simulator before going to T-37 aircraft for further…

  5. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  6. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  7. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...

  8. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...

  9. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...

  10. High temperature and performance in a flight task simulator.

    DOT National Transportation Integrated Search

    1972-05-01

    The effects of high cockpit temperature on physiological responses and performance were determined on pilots in a general aviation simulator. The pilots (all instrument rated) 'flew' an instrument flight while exposed to each of three cockpit tempera...

  11. Effects of helicopter noise and vibration on pilot performance (as measured in a fixed-base flight simulator)

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1973-01-01

    The effects of noise and vibration on pilot performance are described. Pilot subjects were required to fly VTOL commercial IFR schedules using the computer simulation facilities. The routes flown simulated closely metropolitan routes flown currently by a helicopter airline. The duration of simulator flights ranged from 3 to 8 hours. Subjects were exposed to noise sound pressure levels ranging from 74dB (ambient) to 100dB and 17 Hz vibration stimuli ranging from .1 g to .3 g measured at the floor directly beneath the pilot's seat. Despite subject reports of extreme fatigue in these long flights, performance did not degrade. A curve of performance shows a slow improvement for the first three hours of exposure and a slight loss in performance during the remainder of the flight. As environmental stress conditions (noise, vibration, and time in the simulator) increased, subject performance improved. Within the limits of this study, the higher the stress the better the performance.

  12. Pilot In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.

    2008-01-01

    A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.

  13. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2017-04-20

    the methods on the NAVAIR Manned Flight Simulator. Activities this period During this report period, we implemented the CRAFT CFD code on the...Penn State VLRCROE Flight simulator and performed the first Pilot-in-the-Loop PILCFD tests at Penn State using the COCOA5 clusters. The initial tests...integration of the flight simulator and Penn State computing infrastructure. Initial tests showed slower performance than real-time (3x slower than real

  14. Step 1: Human System Integration Simulation and Flight Test Progress Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration

  15. Flight Performance During Exposure to Acute Hypobaric Hypoxia.

    PubMed

    Steinman, Yuval; van den Oord, Marieke H A H; Frings-Dresen, Monique H W; Sluiter, Judith K

    2017-08-01

    The purpose of the present study was to examine the influence of hypobaric hypoxia (HH) on a pilot's flight performance during exposure to simulated altitudes of 91, 3048, and 4572 m (300, 10,000, and 15,000 ft) and to monitor the pilot's physiological reactions. In a single-blinded counter-balanced design, 12 male pilots were exposed to HH while flying in a flight simulator that had been placed in a hypobaric chamber. Flight performance of the pilots, pilot's alertness level, Spo2, heart rate (HR), minute ventilation (VE), and breathing frequency (BF) were measured. A significant difference was found in Flight Profile Accuracy (FPA) between the three altitudes. Post hoc analysis showed no significant difference in performance between 91 m and 3048 m. A trend was observed at 4572 m, suggesting a decrease in flight performance at that altitude. Significantly lower alertness levels were observed at the start of the flight at 4572 m compared to 91 m, and at the end of the flight at 4572 m compared to the start at that altitude. Spo2 and BF decreased, and HR increased significantly with altitude. The present study did not provide decisive evidence for a decrease in flight performance during exposure to simulated altitudes of 3048 and 4572 m. However, large interindividual variation in pilots' flight performance combined with a gradual decrease in alertness levels observed in the present study puts into question the ability of pilots to safely fly an aircraft while exposed to these altitudes without supplemental oxygen.Steinman Y, van den Oord MHAH, Frings-Dresen MHW, Sluiter JK. Flight performance during exposure to acute hypobaric hypoxia. Aerosp Med Hum Perform. 2017; 88(8):760-767.

  16. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  17. Flight simulator platform motion and air transport pilot training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1987-01-01

    The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.

  18. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  19. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...

  20. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...

  1. A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.

    PubMed

    McMahon, Terry W; Newman, David G

    2015-07-01

    Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.

  2. Pilots' visual scan patterns and situation awareness in flight operations.

    PubMed

    Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham

    2014-07-01

    Situation awareness (SA) is considered an essential prerequisite for safe flying. If the impact of visual scanning patterns on a pilot's situation awareness could be identified in flight operations, then eye-tracking tools could be integrated with flight simulators to improve training efficiency. Participating in this research were 18 qualified, mission-ready fighter pilots. The equipment included high-fidelity and fixed-base type flight simulators and mobile head-mounted eye-tracking devices to record a subject's eye movements and SA while performing air-to-surface tasks. There were significant differences in pilots' percentage of fixation in three operating phases: preparation (M = 46.09, SD = 14.79), aiming (M = 24.24, SD = 11.03), and release and break-away (M = 33.98, SD = 14.46). Also, there were significant differences in pilots' pupil sizes, which were largest in the aiming phase (M = 27,621, SD = 6390.8), followed by release and break-away (M = 27,173, SD = 5830.46), then preparation (M = 25,710, SD = 6078.79), which was the smallest. Furthermore, pilots with better SA performance showed lower perceived workload (M = 30.60, SD = 17.86), and pilots with poor SA performance showed higher perceived workload (M = 60.77, SD = 12.72). Pilots' percentage of fixation and average fixation duration among five different areas of interest showed significant differences as well. Eye-tracking devices can aid in capturing pilots' visual scan patterns and SA performance, unlike traditional flight simulators. Therefore, integrating eye-tracking devices into the simulator may be a useful method for promoting SA training in flight operations, and can provide in-depth understanding of the mechanism of visual scan patterns and information processing to improve training effectiveness in aviation.

  3. Pilot tracking performance during successive in-flight simulated instrument approaches.

    DOT National Transportation Integrated Search

    1972-02-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in a conventional 'T'...

  4. STS-36 Commander Creighton and Pilot Casper on flight deck during JSC training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In their forward flight deck stations, STS-36 Commander John O. Creighton and Pilot John H. Casper discuss procedures prior to participating in JSC Fixed Based (FB) Shuttle Mission Simulator (SMS) exercises in the Shuttle Simulation and Training Facility Bldg 5. Creighton (left) sits in front of the commanders station controls and Casper (right) in front of the pilots station controls. Checklists are posted in various positions on the forward control panels as the crewmembers prepare for the FB-SMS simulation and their Department of Defense (DOD) flight aboard Atlantis, Orbiter Vehicle (OV) 104.

  5. Pilot age and expertise predict flight simulator performance: a 3-year longitudinal study.

    PubMed

    Taylor, Joy L; Kennedy, Quinn; Noda, Art; Yesavage, Jerome A

    2007-02-27

    Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults' skilled cognitive performances.

  6. Pilot age and expertise predict flight simulator performance

    PubMed Central

    Kennedy, Quinn; Noda, Art; Yesavage, Jerome A.

    2010-01-01

    Background Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Methods Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. Results More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. Conclusions These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults’ skilled cognitive performances. PMID:17325270

  7. Dietary Effects on Cognition and Pilots' Flight Performance.

    PubMed

    Lindseth, Glenda N; Lindseth, Paul D; Jensen, Warren C; Petros, Thomas V; Helland, Brian D; Fossum, Debra L

    2011-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg's mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer ( p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets.

  8. Techniques for Improving Pilot Recovery from System Failures

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2001-01-01

    This project examined the application of intelligent cockpit systems to aid air transport pilots at the tasks of reacting to in-flight system failures and of planning and then following a safe four dimensional trajectory to the runway threshold during emergencies. Two studies were conducted. The first examined pilot performance with a prototype awareness/alerting system in reacting to on-board system failures. In a full-motion, high-fidelity simulator, Army helicopter pilots were asked to fly a mission during which, without warning or briefing, 14 different failures were triggered at random times. Results suggest that the amount of information pilots require from such diagnostic systems is strongly dependent on their training; for failures they are commonly trained to react to with a procedural response, they needed only an indication of which failure to follow, while for 'un-trained' failures, they benefited from more intelligent and informative systems. Pilots were also found to over-rely on the system in conditions were it provided false or mis-leading information. In the second study, a proof-of-concept system was designed suitable for helping pilots replan their flights in emergency situations for quick, safe trajectory generation. This system is described in this report, including: the use of embedded fast-time simulation to predict the trajectory defined by a series of discrete actions; the models of aircraft and pilot dynamics required by the system; and the pilot interface. Then, results of a flight simulator evaluation with airline pilots are detailed. In 6 of 72 simulator runs, pilots were not able to establish a stable flight path on localizer and glideslope, suggesting a need for cockpit aids. However, results also suggest that, to be operationally feasible, such an aid must be capable of suggesting safe trajectories to the pilot; an aid that only verified plans entered by the pilot was found to have significantly detrimental effects on performance and pilot workload. Results also highlight that the trajectories suggested by the aid must capture the context of the emergency; for example, in some emergencies pilots were willing to violate flight envelope limits to reduce time in flight - in other emergencies the opposite was found.

  9. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 1: Experimental design and initial test

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.; Christensen, D. G.

    1981-01-01

    A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication.

  10. Pilot heart rate during in-flight simulated instrument approaches in a general aviation aircraft.

    DOT National Transportation Integrated Search

    1970-04-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in conventional 'T' c...

  11. Piloted simulation study of an ILS approach of a twin-pusher business/commuter turboprop aircraft configuration

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.

    1994-01-01

    A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.

  12. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  13. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    NASA Technical Reports Server (NTRS)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  14. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    PubMed

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  15. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  16. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations i The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzyinference identification can be used to reflect changes in simulator fidelity for the task examined.

  17. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.

  18. Numerical and flight simulator test of the flight deterioration concept

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Norviel, V.

    1982-01-01

    Manned flight simulator response to theoretical wind shear profiles was studied in an effort to calibrate fixed-stick and pilot-in-the-loop numerical models of jet transport aircraft on approach to landing. Results of the study indicate that both fixed-stick and pilot-in-the-loop models overpredict the deleterious effects of aircraft approaches when compared to pilot performance in the manned simulator. Although the pilot-in-the-loop model does a better job than does the fixed-stick model, the study suggests that the pilot-in-the-loop model is suitable for use in meteorological predictions of adverse low-level wind shear along approach and departure courses to identify situations in which pilots may find difficulty. The model should not be used to predict the success or failure of a specific aircraft. It is suggested that the pilot model be used as part of a ground-based Doppler radar low-level wind shear detection and warning system.

  19. A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.

    1961-01-01

    As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.

  20. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  1. A comparison of effects of peripheral vision cues on pilot performance during instrument flight in dissimilar aircraft simulators.

    DOT National Transportation Integrated Search

    1968-09-01

    Pilot response to peripheral vision cues relating to aircraft bank angle was studied during instrument flight in two simulators representing (1) a conventional, medium weight, piston engine airliner, and (2) a heavy, jet engine, sweptwing transport. ...

  2. [EEG-correlates of pilots' functional condition in simulated flight dynamics].

    PubMed

    Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M

    2015-01-01

    The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.

  3. A flight investigation of simulated data link communications during single-pilot IFR flight

    NASA Technical Reports Server (NTRS)

    Parker, J. F.; Duffy, J. W.; Christensen, D. G.

    1983-01-01

    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.

  4. Visual cues to geographical orientation during low-level flight

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Delzell, Suzanne

    1991-01-01

    A field study of an operational Emergency Medical Service (EMS) unit was conducted to investigate the relationships among geographical orientation, pilot decision making, and workload in EMS flights. The map data collected during this study were compared to protocols gathered in the laboratory, where pilots viewed a simulated flight over different types of unfamiliar terrain and verbally identified the features utilized to maintain geographical orientation. The EMS pilot's questionnaire data were compared with data from non-EMS helicopter pilots with comparable flight experience.

  5. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  6. Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.

    PubMed

    Di Stasi, Leandro L; McCamy, Michael B; Martinez-Conde, Susana; Gayles, Ellis; Hoare, Chad; Foster, Michael; Catena, Andrés; Macknik, Stephen L

    2016-01-01

    Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments. Here we measured the eye movements of US Marine Corps combat helicopter pilots before and after simulated flight missions of different durations.We found a decrease in saccadic velocities after long simulated flights compared to short simulated flights. These results suggest that saccadic velocity could serve as a biomarker of aviator fatigue.

  7. Pilot physiology, cognition and flight performance during flight simulation exposed to a 3810-m hypoxic condition.

    PubMed

    Peacock, Corey A; Weber, Raymond; Sanders, Gabriel J; Seo, Yongsuk; Kean, David; Pollock, Brandon S; Burns, Keith J; Cain, Mark; LaScola, Phillip; Glickman, Ellen L

    2017-03-01

    Hypoxia is a physiological state defined as a reduction in the distribution of oxygen to the tissues of the body. It has been considered a major factor in aviation safety worldwide because of its potential for pilot disorientation. Pilots are able to operate aircrafts up to 3810 m without the use of supplemental oxygen and may exhibit symptoms associated with hypoxia. To determine the effects of 3810 m on physiology, cognition and performance in pilots during a flight simulation. Ten healthy male pilots engaged in a counterbalanced experimental protocol comparing a 0-m normoxic condition (NORM) with a 3810-m hypoxic condition (HYP) on pilot physiology, cognition and flight performance. Repeated-measures analysis of variance demonstrated a significant (p ≤ 0.05) time by condition interaction for physiological and cognitive alterations during HYP. A paired-samples t test demonstrated no differences in pilot performance (p ≥ 0.05) between conditions. Pilots exhibited physiological and cognitive impairments; however, pilot performance was not affected by HYP.

  8. Flight Simulator Fidelity Considerations for Total Airline Pilot Training and Evaluation.

    DOT National Transportation Integrated Search

    2001-04-01

    This paper presents the FAA/Volpe Centers Flight Simulator Fidelity Research Program, which is part of the Federal Aviation Administration's effort to promote the effectiveness, availability and affordability of flight simulators. This initiative ...

  9. Effective Training for Flight in Icing Conditions

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Ratvasky, Thomas P.

    2007-01-01

    The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstrations.

  10. Demonstration of an Ice Contamination Effects Flight Training Device

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Ranaudo, Richard J.; Blankenship, Kurt S.; Lee, Sam

    2006-01-01

    The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstrations

  11. Measuring Pilot Workload in a Moving-base Simulator. Part 2: Building Levels of Workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, B. H.; Hart, S. G.; Bortolussi, M. R.; Shively, R. J.; Kantowitz, S. C.

    1984-01-01

    Pilot behavior in flight simulators often use a secondary task as an index of workload. His routine to regard flying as the primary task and some less complex task as the secondary task. While this assumption is quite reasonable for most secondary tasks used to study mental workload in aircraft, the treatment of flying a simulator through some carefully crafted flight scenario as a unitary task is less justified. The present research acknowledges that total mental workload depends upon the specific nature of the sub-tasks that a pilot must complete as a first approximation, flight tasks were divided into three levels of complexity. The simplest level (called the Base Level) requires elementary maneuvers that do not utilize all the degrees of freedom of which an aircraft, or a moving-base simulator; is capable. The second level (called the Paired Level) requires the pilot to simultaneously execute two Base Level tasks. The third level (called the Complex Level) imposes three simultaneous constraints upon the pilot.

  12. Aural glide slope cues : their effect on pilot performance during in-flight simulated ILS instrument approaches.

    DOT National Transportation Integrated Search

    1971-05-01

    Forty instrument rated commercial and ATR pilots with 250 to 12,271 flight hours each flew ten simulated ILS approaches in a single engine, general aviation aircraft. Divided into five groups, each group used a different glide slope cue display in co...

  13. A review of flight simulation techniques

    NASA Astrophysics Data System (ADS)

    Baarspul, Max

    After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.

  14. 14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...

  15. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  16. 14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...

  17. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  18. 14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...

  19. 14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...

  20. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  1. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  2. 14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...

  3. 14 CFR 61.1 - Applicability and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...

  4. 14 CFR 61.1 - Applicability and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...

  5. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations.

  6. Effects of workload preview on task scheduling during simulated instrument flight.

    PubMed

    Andre, A D; Heers, S T; Cashion, P A

    1995-01-01

    Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.

  7. Quantifying Pilot Contribution to Flight Safety during Drive Shaft Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Tim; Last, Mary Carolyn; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base simulation experiment specifically addressed this void by collecting data to quantify the human (pilot) contribution to safety-of-flight and the methods they use in today's National Airspace System. A human-in-the-loop test was conducted using the FAA's Oklahoma City Flight Simulation Branch Level D-certified B-737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Eighteen U.S. airline crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution to safety of flight, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance during single pilot and reduced crew operations were measured for comparison against the normal two-crew complement during normal and non-normal situations. This paper details the crew's actions, including decision-making, and responses while dealing with a drive shaft failure - one of 6 non-normal events that were simulated in this experiment.

  8. An investigation into pilot and system response to critical in-flight events, volume 1

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Giffin, W. C.

    1981-01-01

    The scope of a critical in-flight event (CIFE) with emphasis on pilot management of available resources is described. Detailed scenarios for both full mission simulation and written testing of pilot responses to CIFE's, and statistical relationships among pilot characteristics and observed responses are developed. A model developed to described pilot response to CIFE and an analysis of professional fight crews compliance with specified operating procedures and the relationships with in-flight errors are included.

  9. Pilot/vehicle model analysis of visually guided flight

    NASA Technical Reports Server (NTRS)

    Zacharias, Greg L.

    1991-01-01

    Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.

  10. Manual and automatic flight control during severe turbulence penetration

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Klein, R. H.; Hoh, R. H.

    1976-01-01

    An analytical and experimental investigation of possible contributing factors in jet aircraft turbulence upsets was conducted. Major contributing factors identified included autopilot and display deficiencies, the large aircraft inertia and associated long response time, and excessive pilot workload. An integrated flight and thrust energy management director system was synthesized. The system was incorporated in a moving-base simulation and evaluated using highly experienced airline pilots. The evaluation included comparison of pilot workload and flight performance during severe turbulence penetration utilizing four control/display concepts: manual control with conventional full panel display, conventional autopilot (A/P-A) with conventional full panel display, improved autopilot (A/P-B) with conventional full panel display plus thrust director display, and longitudinal flight director with conventional full panel display plus thrust director display. Simulation results show improved performance, reduced pilot workload, and a pilot preference for the autopilot system controlling to the flight director command and manual control of thrust following the trim thrust director.

  11. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  12. Evaluation of a strapless heart rate monitor during simulated flight tasks.

    PubMed

    Wang, Zhen; Fu, Shan

    2016-01-01

    Pilots are under high task demands during flight. Monitoring pilot's physiological status is very important in the evaluation of pilot's workload and flight safety. Recently, physiological status monitor (PSM) has been embedded into a watch that can be used without a conventional chest strap. This makes it possible to unobtrusively monitor, log and transmit pilot's physiological measurements such as heart rate (HR) during flight tasks. The purpose of this study is to validate HR recorded by a strapless heart rate watch against criterion ECG-derived HR. Ten commercial pilots (mean ± SD : age: 39.1 ± 7.8 years; total flight hours 7173.2 ± 5270.9 hr) performed three routinely trained flight tasks in a full flight simulator: wind shear go-around (WG), takeoff and climb (TC), and hydraulic failure (HF). For all tasks combined (overall) and for each task, differences between the heart rate watch measurements and the criterion data were small (mean difference [95% CI]: overall: -0.71 beats/min [-0.85, -0.57]; WG: -0.90 beats/min [-1.15, -0.65]; TC: -0.69 beats/min [-0.98, -0.40]; HF: -0.61 beats/min [-0.80, -0.42]). There were high correlations between the heart rate watch measurements and the ECG-derived HR for all tasks (r ≥ 0.97, SEE < 3). Bland-Altman plots also show high agreements between the watch measurements and the criterion HR. These results suggest that the strapless heart rate watch provides valid measurements of HR during simulated flight tasks and could be a useful tool for pilot workload evaluation.

  13. Effects of headset, flight workload, hearing ability, and communications message quality on pilot performance.

    PubMed

    Casto, Kristen L; Casali, John G

    2013-06-01

    This study was designed to determine the effects of hearing loss, aviation headset type, flight workload complexity, and communication signal quality on pilots' performance in an army rotary-wing flight simulator. To maintain flight status, army aviators who do not meet current audiometric standards require a hearing loss waiver, which is based on speech intelligibility in quiet conditions. Because hearing loss characteristics of hearing-impaired aviators can vary greatly, and because performance is likely also influenced by degree of flight workload and communication demand, it was expected that performance among hearing-impaired aviators would also vary. Participants were 20 army helicopter pilots. Pilots flew three flights in a full motion-based helicopter simulator,with a different headset configuration and varying flight workload levels and communication signal quality characterizing each flight. Objective flight performance parameters of heading, altitude, and airspeed deviation and air traffic control command read-backs were measured. Statistically significant results suggest that high levels of flight workload, especially in combination with poor communications signal quality, lead to deficits in flight performance and speech intelligibility. These results support a conclusion that factors other than hearing thresholds and speech intelligibility in quiet should be considered when evaluating helicopter pilots' flight safety. The results also support a recommendation that hearing-impaired pilots use assistive communication technology and not fly with strictly passive headsets. The combined effects of flight environment with individual hearing levels should be considered when making recommendations concerning continued aviation flight status and those concerning communications headsets used in high-noise cockpits.

  14. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  15. Correlating Computed and Flight Instructor Assessments of Straight-In Landing Approaches by Novice Pilots on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat

    2005-01-01

    The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.

  16. Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.

    PubMed

    Dalecki, Marc; Bock, Otmar; Guardiera, Simon

    2010-05-01

    We have previously shown that subjects produce exaggerated manual forces in +3 Gz. When subjects execute discrete flight path changes in a flight simulator, their performance is less stable in +3 Gz than in +1 Gz. Here we explore whether Gz-related deficits are found with continuous flight path changes. Novice subjects and fighter pilots sat in a high-fidelity flight simulator equipped with the reproduction of the Eurofighter 2000 cockpit, including the realistic flight stick, and pursued continuous altitude changes of a target airplane in +1 Gz and +3 Gz. Subjects also produced verbal responses in a Stroop task. Pursuit and Stroop tasks were administered alone and concurrently. Flight instability increased in +3 Gz compared to +1 Gz in novices (+46%), but not in pilots (+3%), and even there only during the first minute. Flight performance improved after the first minute in both subject groups. Stroop reaction time was higher in novices (+5.27%) than in pilots (+3.77%) at +3 Gz. Dual-task costs did not differ between groups or Gz levels. Deficits of force production in high Gz are largely compensated for when subjects apply forces to produce a continuously changing flight path. This compensation seems not to require additional cognitive resources and may be achieved by using visual feedback. Force production deficits in high Gz seem to have no appreciable effects on flight performance and cognitive load of experienced pilots using a force-plus-displacement stick in +3 Gz. It remains to be shown whether this conclusion extends to purely isometric sticks and to higher Gz levels.

  17. The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training.

  18. Training monitoring skills in helicopter pilots.

    PubMed

    Potter, Brian A; Blickensderfer, Elizabeth L; Boquet, Albert J

    2014-05-01

    Prior research has indicated that ineffective pilot monitoring has been associated with aircraft accidents. Despite this finding, empirical research concerning pilot monitoring skill training programs is nearly nonexistent. E-learning may prove to be an effective method to foster nontechnical flight skills, including monitoring. This study examined the effect of using e-learning to enhance helicopter aircrew monitoring skill performance. The design was a posttest only field study. Forty-four helicopter pilots completed either an e-learning training module or a control activity and then flew two scenarios in a high-fidelity flight simulator. Learner reactions and knowledge gained were assessed immediately following the e-learning module. Two observer raters assessed behaviors and performance outcomes using recordings of the simulation flights. Subjects who completed the e-learning training module scored almost twice as high as did the control group on the administered knowledge test (experimental group, mean = 92.8%; control group, mean = 47.7%) and demonstrated up to 150% more monitoring behaviors during the simulated flights than the control subjects. In addition, the participating pilots rated the course highly. The results supported the hypothesis that a relatively inexpensive and brief training course implemented through e-learning can foster monitoring skill development among helicopter pilots.

  19. Piloted simulation of one-on-one helicopter air combat at NOE flight levels

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Aiken, E. W.

    1985-01-01

    A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.

  20. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  1. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  2. Helicopter simulation validation using flight data

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.

    1982-01-01

    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.

  3. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  4. Piloted Flight Simulator Developed for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2005-01-01

    In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.

  5. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  6. An optimal control approach to the design of moving flight simulators

    NASA Technical Reports Server (NTRS)

    Sivan, R.; Ish-Shalom, J.; Huang, J.-K.

    1982-01-01

    An abstract flight simulator design problem is formulated in the form of an optimal control problem, which is solved for the linear-quadratic-Gaussian special case using a mathematical model of the vestibular organs. The optimization criterion used is the mean-square difference between the physiological outputs of the vestibular organs of the pilot in the aircraft and the pilot in the simulator. The dynamical equations are linearized, and the output signal is modeled as a random process with rational power spectral density. The method described yields the optimal structure of the simulator's motion generator, or 'washout filter'. A two-degree-of-freedom flight simulator design, including single output simulations, is presented.

  7. Piloted Simulation of Various Synthetic Vision Systems Terrain Portrayal and Guidance Symbology Concepts for Low Altitude En-Route Scenario

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Glaab, L. J.; Hughes, M. F.; Wong, D. T.; Bartolone, A. P.

    2008-01-01

    In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts.

  8. Dietary Effects on Cognition and Pilots’ Flight Performance

    PubMed Central

    Lindseth, Glenda N.; Lindseth, Paul D.; Jensen, Warren C.; Petros, Thomas V.; Helland, Brian D.; Fossum, Debra L.

    2017-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg’s mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer (p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets. PMID:29353985

  9. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  10. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  11. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  12. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  13. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  14. 14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...

  15. 14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...

  16. 14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...

  17. A pilot rating scale for evaluating failure transients in electronic flight control systems

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  18. Usability of EFBs for Viewing NOTAMs and AIS/MET Data Link Messages

    NASA Technical Reports Server (NTRS)

    Evans, Emory T.; Young, Steven D.; Daniels, Tammi S.; Myer, Robert R.

    2014-01-01

    Electronic Flight Bags (EFB) are increasingly integral to flight deck information management. A piloted simulation study was conducted at NASA Langley Research Center, one aspect of which was to evaluate the usability and acceptability of EFBs for viewing and managing Notices to Airmen (NOTAMs) and data linked aeronautical information services (AIS) and meteorological information (MET). The study simulated approaches and landings at Memphis International Airport (KMEM) using various flight scenarios and weather conditions. Ten two-pilot commercial airline crews participated, utilizing the Cockpit Motion Facility's Research Flight Deck (CMF/RFD) simulator. Each crew completed approximately two dozen flights over a two day period. Two EFBs were installed, one for each pilot. Study data were collected in the form of questionnaire/interview responses, audio/video recordings, oculometer recordings, and aircraft/system state data. Preliminary usability results are reported primarily based on pilot interviews and responses to questions focused on ease of learning, ease of use, usefulness, satisfaction, and acceptability. Analysis of the data from the other objective measures (e.g., oculometer) is ongoing and will be reported in a future publication. This paper covers how the EFB functionality was set up for the study; the NOTAM, AIS/MET data link, and weather messages that were presented; questionnaire results; selected pilot observations; and conclusions.

  19. Wind Tunnel Tests Conducted to Develop an Icing Flight Simulator

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2001-01-01

    As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.

  20. Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.

    1992-01-01

    A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  1. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  2. Design of a flight director/configuration management system for piloted STOL approaches

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.; Klein, R. H.; Johnson, W. A.

    1973-01-01

    The design and characteristics of a flight director for V/STOL aircraft are discussed. A configuration management system for piloted STOL approaches is described. The individual components of the overall system designed to reduce pilot workload to an acceptable level during curved, decelerating, and descending STOL approaches are defined. The application of the system to augmentor wing aircraft is analyzed. System performance checks and piloted evaluations were conducted on a flight simulator and the results are summarized.

  3. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  4. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  5. The design and implementation of CRT displays in the TCV real-time simulation

    NASA Technical Reports Server (NTRS)

    Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.

    1975-01-01

    The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.

  6. Heart rate and performance during combat missions in a flight simulator.

    PubMed

    Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K

    2007-04-01

    The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.

  7. Users guide: The LaRC human-operator-simulator-based pilot model

    NASA Technical Reports Server (NTRS)

    Bogart, E. H.; Waller, M. C.

    1985-01-01

    A Human Operator Simulator (HOS) based pilot model has been developed for use at NASA LaRC for analysis of flight management problems. The model is currently configured to simulate piloted flight of an advanced transport airplane. The generic HOS operator and machine model was originally developed under U.S. Navy sponsorship by Analytics, Inc. and through a contract with LaRC was configured to represent a pilot flying a transport airplane. A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central computer system. This document provides a guide for using the program and describes in some detail the assortment of files used during its operation.

  8. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  9. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  10. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  11. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    NASA Technical Reports Server (NTRS)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  12. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  13. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  14. Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation

    NASA Technical Reports Server (NTRS)

    Zwerneman, W. D.; Eller, B. G.

    1994-01-01

    For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.

  15. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  16. The impact of brain size on pilot performance varies with aviation training and years of education

    PubMed Central

    Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.

    2010-01-01

    Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103

  17. Seat cushion to provide realistic acceleration cues to aircraft simulator pilot

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R. (Inventor)

    1979-01-01

    Seat cushions, each including an air cell with a non-compressible surface, are disclosed. The apparatus are provided for initially controlling the air pressure in the air cells to allow the two main support areas of the simulator pilot to touch the non-compressible surface and thus begin to compress the flesh near these areas. During a simulated flight the apparatus control the air pressure in the cells to simulate the events that occur in a seat cushion during actual flight.

  18. Justification for, and design of, an economical programmable multiple flight simulator

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.

    1981-01-01

    The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.

  19. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  20. 14 CFR 142.54 - Airline transport pilot certification training program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training in a flight simulation training device— (1) Holds an aircraft type rating for the aircraft represented by the flight simulation training device utilized in the training program and have received... will be demonstrated in the flight simulation training device; and (2) Satisfies the requirements of...

  1. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  2. Development of a virtual flight simulator.

    PubMed

    Kuntz Rangel, Rodrigo; Guimarães, Lamartine N F; de Assis Correa, Francisco

    2002-10-01

    We present the development of a flight simulator that allows the user to interact in a created environment by means of virtual reality devices. This environment simulates the sight of a pilot in an airplane cockpit. The environment is projected in a helmet visor and allows the pilot to see inside as well as outside the cockpit. The movement of the airplane is independent of the movement of the pilot's head, which means that the airplane might travel in one direction while the pilot is looking at a 30 degrees angle with respect to the traveled direction. In this environment, the pilot will be able to take off, fly, and land the airplane. So far, the objects in the environment are geometrical figures. This is an ongoing project, and only partial results are available now.

  3. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    PubMed

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  4. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation. [helicopter hovering

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Zacharias, G.

    1980-01-01

    The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.

  5. Simulator-induced spatial disorientation: effects of age, sleep deprivation, and type of conflict.

    PubMed

    Previc, Fred H; Ercoline, William R; Evans, Richard H; Dillon, Nathan; Lopez, Nadia; Daluz, Christina M; Workman, Andrew

    2007-05-01

    Spatial disorientation mishaps are greater at night and with greater time on task, and sleep deprivation is known to decrease cognitive and overall flight performance. However, the ability to perceive and to be influenced by physiologically appropriate simulated SD conflicts has not previously been studied in an automated simulator flight profile. A set of 10 flight profiles were flown by 10 U.S. Air Force (USAF) pilots over a period of 28 h in a specially designed flight simulator for spatial disorientation research and training. Of the 10 flights, 4 had a total of 7 spatial disorientation (SD) conflicts inserted into each of them, 5 simulating motion illusions and 2 involving visual illusions. The percentage of conflict reports was measured along with the effects of four conflicts on flight performance. The results showed that, with one exception, all motion conflicts were reported over 60% of the time, whereas the two visual illusions were reported on average only 25% of the time, although they both significantly affected flight performance. Pilots older than 35 yr of age were more likely to report conflicts than were those under 30 yr of age (63% vs. 38%), whereas fatigue had little effect overall on either recognized or unrecognized SD. The overall effects of these conflicts on perception and performance were generally not altered by sleep deprivation, despite clear indications of fatigue in our pilots.

  6. Stress training improves performance during a stressful flight.

    PubMed

    McClernon, Christopher K; McCauley, Michael E; O'Connor, Paul E; Warm, Joel S

    2011-06-01

    This study investigated whether stress training introduced during the acquisition of simulator-based flight skills enhances pilot performance during subsequent stressful flight operations in an actual aircraft. Despite knowledge that preconditions to aircraft accidents can be strongly influenced by pilot stress, little is known about the effectiveness of stress training and how it transfers to operational flight settings. For this study, 30 participants with no flying experience were assigned at random to a stress-trained treatment group or a control group. Stress training consisted of systematic pairing of skill acquisition in a flight simulator with stress coping mechanisms in the presence of a cold pressor. Control participants received identical flight skill acquisition training but without stress training. Participants then performed a stressful flying task in a Piper Archer aircraft. Stress-trained research participants flew the aircraft more smoothly, as recorded by aircraft telemetry data, and generally better, as recorded by flight instructor evaluations, than did control participants. Introducing stress coping mechanisms during flight training improved performance in a stressful flying task. The results of this study indicate that stress training during the acquisition of flight skills may serve to enhance pilot performance in stressful operational flight and, therefore, might mitigate the contribution of pilot stress to aircraft mishaps.

  7. STS-44 Atlantis, OV-104, crewmembers participate in JSC FB-SMS training

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory and Pilot Terence T. Henricks are stationed at their appointed positions on the forward flight deck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) in JSC's Mission Simulation and Training Facility Bldg 5. Gregory (left) in the commanders seat and Henricks (right) in the pilots seat look back toward aft flight deck and the photographer. Seat backs appear in the foreground and forward flight deck control panels in the background.

  8. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  9. Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick

    2017-01-01

    Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.

  10. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  11. V/STOL tilt rotor aircraft study. Volume 9: Piloted simulator evaluation of the Boeing Vertol model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.

    1973-01-01

    The results of a real time piloted simulation to investigate the handling qualities and performance of a tilting rotor aircraft design are presented. The aerodynamic configuration of the aircraft is described. The procedures for conducting the simulator evaluation are reported. Pilot comments of the aircraft handling qualities under various simulated flight conditions are included. The time histories of selected pilot maneuvers are shown.

  12. Use of Highways in the Sky and a virtual pad for landing Head Up Display symbology to enable improved helicopter pilots situation awareness and workload in degraded visual conditions.

    PubMed

    Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Allison, Craig K

    2017-12-15

    Flight within degraded visual conditions is a great challenge to pilots of rotary-wing craft. Environmental cues typically used to guide interpretation of speed, location and approach can become obscured, forcing the pilots to rely on data available from in-cockpit instrumentation. To ease the task of flight during degraded visual conditions, pilots require easy access to flight critical information. The current study examined the effect of 'Highways in the Sky' symbology and a conformal virtual pad for landing presented using a Head Up Display (HUD) on pilots' workload and situation awareness for both clear and degraded conditions across a series of simulated rotary-wing approach and landings. Results suggest that access to the HUD lead to significant improvements to pilots' situation awareness, especially within degraded visual conditions. Importantly, access to the HUD facilitated pilot awareness in all conditions. Results are discussed in terms of future HUD development. Practitioner Summary: This paper explores the use of a novel Heads Up Display, to facilitate rotary-wing pilots' situation awareness and workload for simulated flights in both clear and degraded visual conditions. Results suggest that access to HUD facilitated pilots' situation awareness, especially when flying in degraded conditions.

  13. The Effects of Stress on Pilot Judgment in a MIDIS Simulator

    DTIC Science & Technology

    1989-02-01

    stress were relatively independent of problem demands for working memory and knowledge. Keywords: Decision making; Stress psychology; Pilot judgment; Divided attention; Cognitive task analysis ; Flight simulators.

  14. Flight Experiment Investigation of General Aviation Self-Separation and Sequencing Tasks

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Ramiscal, Ermin R.; McNabb, Jennifer L.; Bussink, Frank J. L.

    2005-01-01

    A new flight operations concept called Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) was developed to increase capacity during Instrument Meteorological Conditions (IMC) at non-towered, non-radar airports by enabling concurrent operations of multiple aircraft. One aspect of this concept involves having pilots safely self-separate from other aircraft during approaches into these airports using appropriate SATS HVO procedures. A flight experiment was conducted to determine if instrument-rated general aviation (GA) pilots could self-separate and sequence their ownship aircraft, while following a simulated aircraft, into a non-towered, non-radar airport during simulated IMC. Six GA pilots' workload levels and abilities to perform self-separation and sequencing procedures while flying a global positioning system (GPS) instrument approach procedure were examined. The results showed that the evaluation pilots maintained at least the minimum specified separation between their ownship aircraft and simulated traffic and maintained their assigned landing sequence 100-percent of the time. Neither flight path deviations nor subjective workload assessments were negatively impacted by the additional tasks of self-separating and sequencing during these instrument approaches.

  15. Orion Capsule Handling Qualities for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Tigges, Michael A.; Bihari, Brian D.; Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Law, Howard G.; Johnson, Wyatt; Bailey, Randall E.; Jackson, Bruce

    2011-01-01

    Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects.

  16. The effects of alcohol on pilot performance during instrument flight.

    DOT National Transportation Integrated Search

    1972-01-01

    Sixteen instrument-rated pilots, eight of whom were very experienced professional aviators, flew instrument landing system approaches in a Cessna 172 under simulated instrument flight conditions while sober and while under the influence of 40, 80, an...

  17. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  18. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  19. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  20. Engineering flight and guest pilot evaluation report, phase 2. [DC 8 aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.; Anderson, E. B.; Brown, G. W.; Schwind, G. K.

    1974-01-01

    Prior to the flight evaluation, the two-segment profile capabilities of the DC-8-61 were evaluated and flight procedures were developed in a flight simulator at the UA Flight Training Center in Denver, Colorado. The flight evaluation reported was conducted to determine the validity of the simulation results, further develop the procedures and use of the area navigation system in the terminal area, certify the system for line operation, and obtain evaluations of the system and procedures by a number of pilots from the industry. The full area navigation capabilities of the special equipment installed were developed to provide terminal area guidance for two-segment approaches. The objectives of this evaluation were: (1) perform an engineering flight evaluation sufficient to certify the two-segment system for the six-month in-service evaluation; (2) evaluate the suitability of a modified RNAV system for flying two-segment approaches; and (3) provide evaluation of the two-segment approach by management and line pilots.

  1. STS-36 crewmembers train in JSC's FB shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-36 Mission Specialist (MS) David C. Hilmers, seated on the aft flight deck, discusses procedures with Commander John O. Creighton (left) and Pilot John H. Casper during a simulation in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). Casper reviews a checklist at the pilots station on the forward flight deck. The crewmembers are rehearsing crew cabin activities for their upcoming Department of Defense (DOD) mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  2. Modeling human pilot cue utilization with applications to simulator fidelity assessment.

    PubMed

    Zeyada, Y; Hess, R A

    2000-01-01

    An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.

  3. Guidelines for Line-Oriented Flight Training, Volume 1

    NASA Technical Reports Server (NTRS)

    Lauber, J. K.; Foushee, H. C.

    1981-01-01

    Line-Oriented Flight Training (LOFT) is a developing training technology which synthesizes high-fidelity aircraft simulation and high-fidelity line-operations simulation to provide realistic, dynamic pilot training in a simulated line environment. LOFT is an augmentation of existing pilot training which concentrates upon command, leadership, and resource management skills. This report, based on an NASA/Industry workshop held in January, 1981, is designed to serve as a handbook for LOFT users. In addition to providing background information, guidelines are presented for designing LOFT scenarios, conducting real-time LOFT operations, pilot debriefing, and instructor qualification and training. The final chapter addressed other uses of LOFT and line-operations (or full-mission) simulation.

  4. The effects of enhanced hexapod motion on airline pilot recurrent training and evaluation

    DOT National Transportation Integrated Search

    2003-08-13

    A quasi-transfer experiment tested the effect of : simulator motion on recurrent evaluation and training : of airline pilots. Two groups of twenty B747-400 pilots : were randomly assigned to a flight simulator with or : without platform motion. In th...

  5. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  6. Visually guided control of movement in the context of multimodal stimulation

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.

    1991-01-01

    Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.

  7. A Flying Qualities Study of Longitudinal Long-Term Dynamics of Hypersonic Planes

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Sachs, G.; Knoll, A.; Stich, R.

    1995-01-01

    The NASA Dryden Flight Research Center and the Technical University of Munich are cooperating in a research program to assess the impact of unstable long-term dynamics on the flying qualities of planes in hypersonic flight. These flying qualities issues are being investigated with a dedicated flight simulator for hypersonic vehicles located at NASA Dryden. Several NASA research pilots have flown the simulator through well defined steady-level turns with varying phugoid and height mode instabilities. The data collected include Pilot ratings and comments, performance measurements, and Pilot workload measurements. The results presented in this paper include design guidelines for height and Phugoid mode instabilities, an evaluation of the tapping method used to measure pilot workload, a discussion of techniques developed by the pilots to control large instabilities, and a discussion of how flying qualities of unstable long-term dynamics influence control Power design requirements.

  8. A flying qualities study of longitudinal long-term dynamics of hypersonic planes

    NASA Technical Reports Server (NTRS)

    Cox, T.; Sachs, G.; Knoll, A.; Stich, R.

    1995-01-01

    The NASA Dryden Flight Research Center and the Technical University of Munich are cooperating in a research program to assess the impact of unstable long-term dynamics on the flying qualities of planes in hypersonic flight. These flying qualities issues are being investigated with a dedicated flight simulator for hypersonic vehicles located at NASA Dryden. Several NASA research pilots have flown the simulator through well-defined steady-level turns with varying phugoid and height mode instabilities. Th data collected include pilot ratings and comments, performance measurements, and pilot workload measurements. The results presented in this paper include design guidelines for height and phugoid mode instabilities, an evaluation of the tapping method used to measure pilot workload, a discussion of techniques developed by the pilots to control large instabilities, and a discussion of how flying qualities of unstable long-term dynamics influence control power design requirements.

  9. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  10. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.

  11. The Effect of Lateral-Directional Control Coupling on Pilot Control of an Airplane as Determined in Flight and in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Vomaske, Richard F.; Sadoff, Melvin; Drinkwater, Fred J., III

    1961-01-01

    A flight and fixed-base simulator study was made of the effects of aileron-induced yaw on pilot opinion of aircraft lateral-directional controllability characteristics. A wide range of adverse and favorable aileron-induced yaw was investigated in flight at several levels of Dutch-roll damping. The flight results indicated that the optimum values of aileron- induced yaw differed only slightly from zero for Dutch-roll damping from satisfactory to marginally controllable levels. It was also shown that each range of values of aileron-induced yawing moment considered satisfactory, acceptable, or controllable increased with an increase in the Dutch- roll damping. The increase was most marked for marginally controllable configurations exhibiting favorable aileron-induced yaw. Comparison of fixed-base flight simulator results with flight results showed agreement, indicating that absence of kinesthetic motion cues did not markedly affect the pilots' evaluation of the type of control problem considered in this study. The results of the flight study were recast in terms of several parameters which were considered to have an important effect on pilot opinion of lateral-directional handling qualities, including the effects of control coupling. Results of brief tests with a three-axis side-arm controller indicated that for control coupling problems associated with highly favorable yaw and cross-control techniques, use of the three-axis controller resulted in a deterioration of control relative to results obtained with the conventional center stick and rudder pedals.

  12. Effects of visual, seat, and platform motion during flight simulator air transport pilot training and evaluation

    DOT National Transportation Integrated Search

    2009-04-27

    Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...

  13. The effect of simulator motion cues on initial training of airline pilots

    DOT National Transportation Integrated Search

    2005-08-15

    Two earlier studies conducted in the framework of the Federal Aviation Administration/Volpe Flight Simulator Human Factors Program examining the effect of simulator motion on recurrent training and evaluation of airline pilots have found that in the ...

  14. Test and evaluation of a multifunction keyboard and a dedicated keyboard for control of a flight management computer

    NASA Technical Reports Server (NTRS)

    Crane, J. M.; Boucek, G. P., Jr.; Smith, W. D.

    1986-01-01

    A flight management computer (FMC) control display unit (CDU) test was conducted to compare two types of input devices: a fixed legend (dedicated) keyboard and a programmable legend (multifunction) keyboard. The task used for comparison was operation of the flight management computer for the Boeing 737-300. The same tasks were performed by twelve pilots on the FMC control display unit configured with a programmable legend keyboard and with the currently used B737-300 dedicated keyboard. Flight simulator work activity levels and input task complexity were varied during each pilot session. Half of the points tested were previously familiar with the B737-300 dedicated keyboard CDU and half had no prior experience with it. The data collected included simulator flight parameters, keystroke time and sequences, and pilot questionnaire responses. A timeline analysis was also used for evaluation of the two keyboard concepts.

  15. Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1977-01-01

    An implicit model-following flight controller is proposed. This controller is relatively simple in concept: it provides an input/output relationship that is approximately that of any selected second order system; it provides good gust alleviation; and it is self-trimming. The flight controller was applied to all axes of a comprehensive mathematical model of a lift-fan V/STOL transport. Power management controls and displays were designed to match the various modes of control provided by the flight controller. A piloted simulation was performed using a six degree of freedom simulator. The fixed-operating-point handling qualities throughout the powered lift flight envelope received pilot ratings of 3-1/2 or better. Approaches and vertical landings in IFR zero-zero conditions received pilot ratings varying from 2-1/2 to 4 depending on the type of approach and weather conditions.

  16. Utility of an airframe referenced spatial auditory display for general aviation operations

    NASA Astrophysics Data System (ADS)

    Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.

    2009-05-01

    The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.

  17. Integration of visual and motion cues for simulator requirements and ride quality investigation. [computerized simulation of aircraft landing, visual perception of aircraft pilots

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1975-01-01

    Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.

  18. STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks (right), positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Gregory in the commanders seat, Musgrave sitting on center console, and Henricks in the pilots seat look back toward the aft flight deck and the photographer. Seat backs appear in the foreground and forward control panels in the background.

  19. Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2017-01-01

    Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.

  20. Initial flight and simulator evaluation of a head up display for standard and noise abatement visual approaches

    NASA Technical Reports Server (NTRS)

    Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.

    1973-01-01

    A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.

  1. [Clarity of flight information in the cockpit of the new aircraft generation].

    PubMed

    Stern, C; Schwartz, R; Groenhoff, S; Draeger, J; Hüttig, G; Bernhard, H

    1994-08-01

    Fundamental changes of cockpit design in recent years, especially the transition from analogue to digital flight information systems and the use of colour-coded displays, lead to new demands on the visual system of the pilot. Twenty experienced pilots each participated in four 15-min sessions with a simulator program in the new Airbus 340 Simulator of the Technical University of Berlin. The pilots were confronted with various flight situations and events. The simulation program was carried out with visual acuity of 1.0 or better, with acuity reduced to 0.5 and with red and green filters. The time between the display of information and the pilot's reaction was determined. The probands were classified into two groups according to their age (< or = 45 years, > or = 45 years). In both age groups a significant difference was found only with green filters. There was no difference with reduced visual acuity or with red filters, and no differences were seen between the two age groups.

  2. Computer aiding for low-altitude helicopter flight

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    1991-01-01

    A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  3. "Party Line" Information Use Studies and Implications for ATC Datalink Communications

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Pritchett, Amy; Midkiff, Alan

    1995-01-01

    The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The importance, availability, and accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.

  4. Pilot control through the TAFCOS automatic flight control system

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  5. Effects of Inboard Horizontal Field of View Display Limitations on Pilot Path Control During Total In-Flight Simulator (TIFS) Flight Test

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.

    1999-01-01

    A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.

  6. Investigation of interactions between limb-manipulator dynamics and effective vehicle roll control characteristics

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Mcruer, D. T.

    1986-01-01

    A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).

  7. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the concept of a propulsion controlled aircraft (PCA), : discusses pilot controls, displays, and procedures; and presents the results of a : PCA piloted simulation test and evaluation of the B747-400 airplane conducted at : NASA...

  8. Spatial awareness comparisons between large-screen, integrated pictorial displays and conventional EFIS displays during simulated landing approaches

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.

  9. A piloted simulation study of data link ATC message exchange

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Lohr, Gary W.

    1989-01-01

    Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.

  10. Simulator Investigation of Pilot Aids for Helicopter Terminal Area Operations with One Engine Inoperative

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.

  11. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  12. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  13. 14 CFR 141.33 - Personnel.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... providing training in a flight simulation training device, have received training and evaluation within the... motion limitations of simulation; (D) Minimum equipment requirements for each curriculum; and (E) The maneuvers that will be demonstrated in the flight simulation training device. (b) An applicant for a pilot...

  14. Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model

    NASA Technical Reports Server (NTRS)

    Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.

    2002-01-01

    A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.

  15. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  16. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  17. Practises to identify and prevent adverse aircraft-and-rotorcraft-pilot couplings-A ground simulator perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Jump, Michael; Masarati, Pierangelo; Zaichik, Larisa; Dang-Vu, Binh; Smaili, Hafid; Quaranta, Giuseppe; Stroosma, Olaf; Yilmaz, Deniz; Johnes, Michael; Gennaretti, Massimmo; Ionita, Achim

    2015-08-01

    The aviation community relies heavily on flight simulators as a fundamental tool for research, pilot training and development of any new aircraft design. The goal of the present paper is to provide a review on how effective ground simulation is as an assessment tool for unmasking adverse Aircraft-and-Rotorcraft Pilot Couplings (APC/RPC). Although it is generally believed that simulators are not reliable in revealing the existence of A/RPC tendencies, the paper demonstrates that a proper selection of high-gain tasks combined with appropriate motion and visual cueing can reveal negative features of a particular aircraft that may lead to A/RPC. The paper discusses new methods for real-time A/RPC detection that can be used as a tool for unmasking adverse A/RPC. Although flight simulators will not achieve the level of reality of in-flight testing, exposing A/RPC tendencies in the simulator may be the only convenient safe place to evaluate the wide range of conditions that could produce hazardous A/RPC events.

  18. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  19. Ride qualities criteria validation/pilot performance study: Flight test results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Greek, D. C.

    1979-01-01

    Pilot performance during a terrain following flight was studied for ride quality criteria validation. Data from manual and automatic terrain following operations conducted during low level penetrations were analyzed to determine the effect of ride qualities on crew performance. The conditions analyzed included varying levels of turbulence, terrain roughness, and mission duration with a ride smoothing system on and off. Limited validation of the B-1 ride quality criteria and some of the first order interactions between ride qualities and pilot/vehicle performance are highlighted. An earlier B-1 flight simulation program correlated well with the flight test results.

  20. Moving-Base Simulation Evaluation of Control/Display Integration Issues for ASTOVL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1997-01-01

    A moving-base simulation has been conducted on the Vertical Motion Simulator at Ames Research Center using a model of an advanced, short takeoff and vertical landing (STOVL) lift fan fighter aircraft. This experiment expanded on investigations during previous simulations with this STOVL configuration with the objective of evaluating (1) control law modifications over the low speed flight envelope, (2) integration of the throttle inceptor with flight control laws that provide direct thrust command for conventional flight, vertical and short takeoff, and flightpath or vertical velocity command for transition, hover, and vertical landing, (3) control mode blending for pitch, roll, yaw, and flightpath control during transition from wing-borne to jet-borne flight, and (4) effects of conformal versus nonconformal presentation of flightpath and pursuit guidance symbology on the out-the-window display for low speed STOVL operations. Assessments were made for takeoff, transition, hover, and landing, including precision hover and landing aboard an LPH-type amphibious assault ship in the presence of winds and rough seas. Results yielded Level 1 pilot ratings for the flightpath and vertical velocity command modes for a range of land-based and shipboard operation and were consistent with previous experience with earlier control laws and displays for this STOVL concept. Control mode blending was performed over speed ranges in accord with the pilot's tasks and with the change of the basic aircraft's characteristics between wing-borne and hover flight. Blending of yaw control from heading command in hover to sideslip command in wing-borne flight performed over a broad speed range helped reduce yaw transients during acceleration through the low speed regime. Although the pilots appreciated conformality of flightpath and guidance symbols with the external scene during the approach, increased sensitivity of the symbols for lateral path tracking elevated the pilots' control activity in the presence of turbulence. The pilots preferred the choice of scaling that was originally established during the display development and in-flight evaluations.

  1. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  2. The ergonomic evaluation of eye movement and mental workload in aircraft pilots.

    PubMed

    Itoh, Y; Hayashi, Y; Tsukui, I; Saito, S

    1990-06-01

    This paper presents an experiment which examines characteristics of pilots' scanning behaviour when using integrated CRT displays, and the changes in characteristics when pilots face abnormal situations. The subjects were five experienced pilots. They performed two modes of flight tasks, under normal and abnormal situations, in flight simulators with standard settings. The flight simulators were for a Boeing 747-300 (B747), which made use of electromechanical displays, and for a Boeing 767 (B767), equipped with integrated CRT displays. The results showed that the B767 pilots tended to gaze at the attitude director indicator which was displayed in the integrated CRT display. It was assumed that 'gaze-type scanning' might be one of the characteristics of pilots' scanning behaviour in cockpits which use the integrated display. By employing subjective ratings and heart rate variability to measure mental workload, no differences in mental workload between the B767 pilots and the B747 pilots were observed. However, in abnormal situations, the changes in scanning pattern for B767 pilots were found to be smaller than those of the B747 pilots. It is concluded that the application of integrated displays helps pilots to obtain sufficient information more easily than electromechanical displays do, even under abnormal situations.

  3. Influence of the menstrual cycle on flight simulator performance after alcohol ingestion.

    PubMed

    Mumenthaler, M S; O'Hara, R; Taylor, J L; Friedman, L; Yesavage, J A

    2001-07-01

    Previous studies investigating the influence of the menstrual cycle on cognitive functioning of women after alcohol ingestion have obtained inconsistent results. The present study tested the hypothesis that flight simulator performance during acute alcohol intoxication and 8 hours after drinking differs between the menstrual and the luteal phase of the menstrual cycle. White female pilots (N = 24) were tested during the menstrual and the luteal phases of their menstrual cycles. On each test day they performed a baseline simulator flight, consumed 0.67 g/kg ethanol, and performed an acute-intoxication and an 8-hour-carryover simulator flight. Subjects reached highly significant increases in estradiol (E2) as well as progesterone (P) levels during the luteal test day. Yet, there were no significant differences in overall flight performance after alcohol ingestion between the menstrual and luteal phases during acute intoxication or at 8-hour carryover. We found no correlations between E, or P levels and overall flight performance. However, there was a statistically significant Phase x Order interaction: Pilots who started the experiment with their menstrual day were less susceptible to the effects of alcohol during the second test day than were pilots who started with their luteal day. The tested menstrual cycle phases and varying E2 and P levels did not significantly influence postdrink flight performance. Because the present study included a comparatively large sample size and because it involved complex "real world" tasks (piloting an aircraft), we believe that the present findings are important. We hope that our failure to detect menstrual cycle effects will encourage researchers to include women in their investigations of alcohol effects and human performance.

  4. Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Bussink, Frank J. L.; Chamberlain, James P.; Chartrand, Ryan C.; Palmer, Michael T.; Palmer, Susan O.

    2008-01-01

    The Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure (ITP) Validation Simulation Study investigated the viability of an ITP designed to enable oceanic flight level changes that would not otherwise be possible. Twelve commercial airline pilots with current oceanic experience flew a series of simulated scenarios involving either standard or ITP flight level change maneuvers and provided subjective workload ratings, assessments of ITP validity and acceptability, and objective performance measures associated with the appropriate selection, request, and execution of ITP flight level change maneuvers. In the majority of scenarios, subject pilots correctly assessed the traffic situation, selected an appropriate response (i.e., either a standard flight level change request, an ITP request, or no request), and executed their selected flight level change procedure, if any, without error. Workload ratings for ITP maneuvers were acceptable and not substantially higher than for standard flight level change maneuvers, and, for the majority of scenarios and subject pilots, subjective acceptability ratings and comments for ITP were generally high and positive. Qualitatively, the ITP was found to be valid and acceptable. However, the error rates for ITP maneuvers were higher than for standard flight level changes, and these errors may have design implications for both the ITP and the study's prototype traffic display. These errors and their implications are discussed.

  5. Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    NASA Technical Reports Server (NTRS)

    Stephens, Chad L.; Kennedy, Kellie D.; Crook, Brenda L.; Williams, Ralph A.; Schutte, Paul

    2017-01-01

    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety.

  6. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  7. NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane

    NASA Image and Video Library

    2016-11-29

    NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.

  8. Energy Navigation: Simulation Evaluation and Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2011-01-01

    This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.

  9. GEMINI-TITAN (GT)-9- TRAINING - AEROSPACE FLIGHT SIMULATOR - PILOT - TX

    NASA Image and Video Library

    1966-03-01

    S66-27990 (March 1966) --- Astronaut Eugene A. Cernan, pilot for the Gemini-9 spaceflight, works out procedures for his historic space excursion in a unique manned Aerospace Flight Simulator at LTV Corp. at Dallas, Texas. The LTV simulator is used frequently by NASA astronauts for a variety of space programs maneuvers to provide many of the sensations and visual scenes of actual spaceflight. Controlled through a complex of computers, the device makes it possible for the astronauts to work out procedures, solve problems and simulate missions in real time with great accuracy. The astronaut rides in a spacecraft-like gondola which moves in roll, pitch and yaw in response to his controls and accurate computer inputs. The simulator's usual spacecraft displays and canopy have been removed and AMU backpack complete with control electronics installed. The astronaut makes his simulated flight in an inflated pressure suit and with the NASA-developed Extravehicular Life Support system chest pack which will be used in the Gemini flight. Photo credit: NASA

  10. Assessment of ECG and respiration recordings from simulated emergency landings of ultra light aircraft.

    PubMed

    Bruna, Ondřej; Levora, Tomáš; Holub, Jan

    2018-05-08

    Pilots of ultra light aircraft have limited training resources, but with the use of low cost simulators it might be possible to train and test some parts of their training on the ground. The purpose of this paper is to examine possibility of stress inducement on a low cost flight simulator. Stress is assessed from electrocardiogram and respiration. Engine failure during flight served as a stress inducement stimuli. For one flight, pilots had access to an emergency navigation system. There were recorded some statistically significant changes in parameters regarding breathing frequency. Although no significant change was observed in ECG parameters, there appears to be an effect on respiration parameters. Physiological signals processed with analysis of variance suggest, that the moment of engine failure and approach for landing affected average breathing frequency. Presence of navigation interface does not appear to have a significant effect on pilots.

  11. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  12. A piloted simulator investigation of stability and control, display and crew-loading requirements for helicopter instrument approach. Part 1: Technical discussion and results

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.

    1982-01-01

    A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.

  13. Pilot/Vehicle display development from simulation to flight

    NASA Technical Reports Server (NTRS)

    Dare, Alan R.; Burley, James R., II

    1992-01-01

    The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.

  14. Simulation of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Dugan, D. C.

    1982-01-01

    The effective use of simulation from issuance of the request for proposal through conduct of a flight test program for the XV-15 Tilt Rotor Research Aircraft is discussed. From program inception, simulation complemented all phases of XV-15 development. The initial simulation evaluations during the source evaluation board proceedings contributed significantly to performance and stability and control evaluations. Eight subsequent simulation periods provided major contributions in the areas of control concepts; cockpit configuration; handling qualities; pilot workload; failure effects and recovery procedures; and flight boundary problems and recovery procedures. The fidelity of the simulation also made it a valuable pilot training aid, as well as a suitable tool for military and civil mission evaluations. Simulation also provided valuable design data for refinement of automatic flight control systems. Throughout the program, fidelity was a prime issue and resulted in unique data and methods for fidelity evaluation which are presented and discussed.

  15. A STOL airworthiness investigation using a simulation of an augmentor wing transport. Volume 2: Simulation data and analysis

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Stapleford, R. L.; Rumold, R. C.; Lehman, J. M.; Scott, B. C.; Hynes, C. S.

    1974-01-01

    A simulator study of STOL airworthiness was conducted using a model of an augmentor wing transport. The approach, flare and landing, go-around, and takeoff phases of flight were investigated. The simulation and the data obtained are described. These data include performance measures, pilot commentary, and pilot ratings. A pilot/vehicle analysis of glide slope tracking and of the flare maneuver is included.

  16. Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations

    NASA Technical Reports Server (NTRS)

    Weir, D. H.; Mcruer, D. T.

    1972-01-01

    Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.

  17. Measuring Workload Differences Between Short-term Memory and Long-term Memory Scenarios in a Simulated Flight Environment

    NASA Technical Reports Server (NTRS)

    Berg, S. L.; Sheridan, T. B.

    1984-01-01

    Four highly experienced Air Force pilots each flew four simulated flight scenarios. Two scenarios required a great deal of aircraft maneuvering. The other two scenarios involved less maneuvering, but required remembering a number of items. All scenarios were designed to be equaly challenging. Pilot's Subjective Ratings for Activity-level, Complexity, Difficulty, Stress, and Workload were higher for the manuevering scenarios than the memory scenarios. At a moderate workload level, keeping the pilots active resulted in better aircraft control. When required to monitor and remember items, aircraft control tended to decrease. Pilots tended to weigh information about the spatial positioning and performance of their aircraft more heavily than other items.

  18. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  19. Effet de l'encombrement visuel de l'ecran primaire de vol sur la performance du pilote, la charge de travail et le parcours visuel

    NASA Astrophysics Data System (ADS)

    Doyon-Poulin, Philippe

    Flight deck of 21st century commercial aircrafts does not look like the one the Wright brothers used for their first flight. The rapid growth of civilian aviation resulted in an increase in the number of flight deck instruments and of their complexity, in order to complete a safe and ontime flight. However, presenting an abundance of visual information using visually cluttered flight instruments might reduce the pilot's flight performance. Visual clutter has received an increased interest by the aerospace community to understand the effects of visual density and information overload on pilots' performance. Aerospace regulations demand to minimize visual clutter of flight deck displays. Past studies found a mixed effect of visual clutter of the primary flight display on pilots' technical flight performance. More research is needed to better understand this subject. In this thesis, we did an experimental study in a flight simulator to test the effects of visual clutter of the primary flight display on the pilot's technical flight performance, mental workload and gaze pattern. First, we identified a gap in existing definitions of visual clutter and we proposed a new definition relevant to the aerospace community that takes into account the context of use of the display. Then, we showed that past research on the effects of visual clutter of the primary flight display on pilots' performance did not manipulate the variable of visual clutter in a similar manner. Past research changed visual clutter at the same time than the flight guidance function. Using a different flight guidance function between displays might have masked the effect of visual clutter on pilots' performance. To solve this issue, we proposed three requirements that all tested displays must satisfy to assure that only the variable of visual clutter is changed during study while leaving other variables unaffected. Then, we designed three primary flight displays with a different visual clutter level (low, medium, high) but with the same flight guidance function, by respecting the previous requirements. Twelve pilots, with a mean experience of over 4000 total flight hours, completed an instrument landing in a flight simulator using all three displays for a total of nine repetitions. Our results showed that pilots reported lower workload level and had better lateral precision during the approach using the medium-clutter display compared to the low- and high-clutter displays. Also, pilots reported that the medium-clutter display was the most useful for the flight task compared to the two other displays. Eye tracker results showed that pilots' gaze pattern was less efficient for the high-clutter display compared to the low- and medium-clutter displays. Overall, these new experimental results emphasize the importance of optimizing visual clutter of flight displays as it affects both objective and subjective performance of experienced pilots in their flying task. This thesis ends with practical recommendations to help designers optimize visual clutter of displays used for man-machine interface.

  20. Aircraft Simulators and Pilot Training.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  1. Development and validation of a piloted simulation of a helicopter and external sling load

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.; Deaux, T. N.; Yenni, K. R.

    1979-01-01

    A generalized, real time, piloted, visual simulation of a single rotor helicopter, suspension system, and external load is described and validated for the full flight envelope of the U.S. Army CH-54 helicopter and cargo container as an example. The mathematical model described uses modified nonlinear classical rotor theory for both the main rotor and tail rotor, nonlinear fuselage aerodynamics, an elastic suspension system, nonlinear load aerodynamics, and a loadground contact model. The implementation of the mathematical model on a large digital computing system is described, and validation of the simulation is discussed. The mathematical model is validated by comparing measured flight data with simulated data, by comparing linearized system matrices, eigenvalues, and eigenvectors with manufacturers' data, and by the subjective comparison of handling characteristics by experienced pilots. A visual landing display system for use in simulation which generates the pilot's forward looking real world display was examined and a special head up, down looking load/landing zone display is described.

  2. 14 CFR 135.336 - Airline transport pilot certification training program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (v) Evaluation. (4) If providing training in a flight simulation training device, holds an aircraft type rating for the aircraft represented by the flight simulation training device utilized in the... simulation; (iv) Minimum equipment requirements for each curriculum; and (v) The maneuvers that will be...

  3. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  4. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  5. The psychophysiological assessment method for pilot's professional reliability.

    PubMed

    Zhang, L M; Yu, L S; Wang, K N; Jing, B S; Fang, C

    1997-05-01

    Previous research has shown that a pilot's professional reliability depends on two relative factors: the pilot's functional state and the demands of task workload. The Psychophysiological Reserve Capacity (PRC) is defined as a pilot's ability to accomplish additive tasks without reducing the performance of the primary task (flight task). We hypothesized that the PRC was a mirror of the pilot's functional state. The purpose of this study was to probe the psychophysiological method for evaluating a pilot's professional reliability on a simulator. The PRC Comprehensive Evaluating System (PRCCES) which was used in the experiment included four subsystems: a) quantitative evaluation system for pilot's performance on simulator; b) secondary task display and quantitative estimating system; c) multiphysiological data monitoring and statistical system; and d) comprehensive evaluation system for pilot PRC. Two studies were performed. In study one, 63 healthy and 13 hospitalized pilots participated. Each pilot performed a double 180 degrees circuit flight program with and without secondary task (three digit operation). The operator performance, score of secondary task and cost of physiological effort were measured and compared by PRCCES in the two conditions. Then, each pilot's flight skill in training was subjectively scored by instructor pilot ratings. In study two, 7 healthy pilots volunteered to take part in the experiment on the effects of sleep deprivation on pilot's PRC. Each participant had PRC tested pre- and post-8 h sleep deprivation. The results show that the PRC values of a healthy pilot was positively correlated with abilities of flexibility, operating and correcting deviation, attention distribution, and accuracy of instrument flight in the air (r = 0.27-0.40, p < 0.05), and negatively correlated with emotional anxiety in flight (r = -0.40, p < 0.05). The values of PRC in healthy pilots (0.61 +/- 0.17) were significantly higher than that of hospitalized pilots (0.43 +/- 0.15) (p < 0.05). The PRC value after 8 h sleep loss (0.50 +/- 0.17) was significantly lower than those before sleep loss (0.70 +/- 0.15) (p < 0.05). We conclude that a pilot's PRC, which was closely related to flight ability and functional state, could partly represent the pilot's professional reliability. It is worthwhile to further research using a pilot's PRC as a predictor of mental workload in aircraft design.

  6. Prediction of helicopter simulator sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, R.D.; Birdwell, J.D.; Allgood, G.O.

    1990-01-01

    Machine learning methods from artificial intelligence are used to identify information in sampled accelerometer signals and associative behavioral patterns which correlates pilot simulator sickness with helicopter simulator dynamics. These simulators are used to train pilots in fundamental procedures, tactics, and response to emergency conditions. Simulator sickness induced by these systems represents a risk factor to both the pilot and manufacturer. Simulator sickness symptoms are closely aligned with those of motion sickness. Previous studies have been performed by behavioral psychologists using information gathered with surveys and motor skills performance measures; however, the results are constrained by the limited information which ismore » accessible in this manner. In this work, accelerometers were installed in the simulator cab, enabling a complete record of flight dynamics and the pilot's control response as a function of time. Given the results of performance measures administered to detect simulator sickness symptoms, the problem was then to find functions of the recorded data which could be used to help predict the simulator sickness level and susceptibility. Methods based upon inductive inference were used, which yield decision trees whose leaves indicate the degree of simulator-induced sickness. The long-term goal is to develop a gauge'' which can provide an on-line prediction of simulator sickness level, given a pilot's associative behavioral patterns (learned expectations). This will allow informed decisions to be made on when to terminate a hop and provide an effective basis for determining training and flight restrictions placed upon the pilot after simulator use. 6 refs., 6 figs.« less

  7. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  8. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  9. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks.

    PubMed

    Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio

    2016-10-01

    Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.

  10. Analysis of the longitudinal handling qualities and pilot-induced-oscillation tendencies of the High-Angle-of-Attack Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1994-01-01

    The NASA High-Angle-of Attack Research Vehicle (HARV), a modified F-18 aircraft, experienced handling qualities problems in recent flight tests at NASA Dryden Research Center. Foremost in these problems was the tendency of the pilot-aircraft system to exhibit a potentially dangerous phenomenon known as a pilot-induced oscillation (PIO). When they occur, PIO's can severely restrict performance, sharply dimish mission capabilities, and can even result in aircraft loss. A pilot/vehicle analysis was undertaken with the goal of reducing these PIO tendencies and improving the overall vehicle handling qualities with as few changes as possible to the existing feedback/feedforward flight control laws. Utilizing a pair of analytical pilot models developed by the author, a pilot/vehicle analysis of the existing longitudinal flight control system was undertaken. The analysis included prediction of overall handling qualities levels and PIO susceptability. The analysis indicated that improvement in the flight control system was warranted and led to the formulation of a simple control stick command shaping filter. Analysis of the pilot/vehicle system with the shaping filter indicated significant improvements in handling qualities and PIO tendencies could be achieved. A non-real time simulation of the modified control system was undertaken with a realistic, nonlinear model of the current HARV. Special emphasis was placed upon those details of the command filter implementation which could effect safety of flight. The modified system is currently awaiting evaluation in the real-time, pilot-in-the-loop, Dual-Maneuvering-Simulator (DMS) facility at Langley.

  11. Piloted simulator evaluation of a relaxed static stability fighter at high angle-of-attack

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Klein, R. W.; Martorella, R. P.; Cangelosi, J.; Neely, W. R., Jr.

    1982-01-01

    A piloted simulator evaluation of the stability and control characteristics of a relaxed static stability fighter aircraft was conducted using a differential maneuvering simulator. The primary purpose of the simulation was to evaluate the effectiveness of the limiters in preventing departure from controlled flight. The simulation was conducted in two phases, the first consisting of open-loop point stability evaluations over a range of subsonic flight conditions, the second concentrating on closed-loop tracking of a preprogrammed target in low speed, high angle-of-attack air combat maneuvering. The command limiters were effective in preventing departure from controlled flight while permitting competent levels of sustained maneuvering. Parametric variations during the study included the effects of pitch control power and wing-body static margin. Stability and control issues were clearly shown to impact the configuration design.

  12. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.

  13. Simulator fidelity considerations for training and evaluation of today's airline pilots

    DOT National Transportation Integrated Search

    2001-03-05

    Regulatory changes in response to today's airline pilot training and evaluation needs push the twin issues of effectiveness and affordability of flight simulators for use by U.S. airlines to the forefront. The Federal Aviation Administration (FAA) is...

  14. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  15. Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Dorr, D. W.; Moralez, E., III; Merrick, V. K.

    1994-01-01

    Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.

  16. An investigation into pilot and system response to critical in-flight events. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Griffin, W. C.

    1981-01-01

    Critical in-flight events (CIFE) that threaten the aircraft were studied. The scope of the CIFE was described and defined with emphasis on characterizing event development, detection and assessment; pilot information requirements, sources, acquisition, and interpretation, pilot response options, decision processed, and decision implementation and event outcome. Detailed scenarios were developed for use in simulators and paper and pencil testing for developing relationships between pilot performance and background information as well as for an analysis of pilot reaction decision and feedback processes. Statistical relationships among pilot characteristics and observed responses to CIFE's were developed.

  17. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    ERIC Educational Resources Information Center

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  18. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    NASA Technical Reports Server (NTRS)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  19. Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Mayer, Jann; Cox, Timothy H.

    2003-01-01

    A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.

  20. Flight Simulator and Training Human Factors Validation

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Leland, Richard

    2009-01-01

    Loss of control has been identified as the leading cause of aircraft accidents in recent years. Efforts have been made to better equip pilots to deal with these types of events, commonly referred to as upsets. A major challenge in these endeavors has been recreating the motion environments found in flight as the majority of upsets take place well beyond the normal operating envelope of large aircraft. The Environmental Tectonics Corporation has developed a simulator motion base, called GYROLAB, that is capable of recreating the sustained accelerations, or G-forces, and motions of flight. A two part research study was accomplished that coupled NASA's Generic Transport Model with a GYROLAB device. The goal of the study was to characterize physiological effects of the upset environment and to demonstrate that a sustained motion based simulator can be an effective means for upset recovery training. Two groups of 25 Air Transport Pilots participated in the study. The results showed reliable signs of pilot arousal at specific stages of similar upsets. Further validation also demonstrated that sustained motion technology was successful in improving pilot performance during recovery following an extensive training program using GYROLAB technology.

  1. Age and expertise effects in aviation decision making and flight control in a flight simulator.

    PubMed

    Kennedy, Quinn; Taylor, Joy L; Reade, Gordon; Yesavage, Jerome A

    2010-05-01

    Age (due to declines in cognitive abilities necessary for navigation) and level of aviation expertise are two factors that may affect aviation performance and decision making under adverse weather conditions. We examined the roles of age, expertise, and their relationship on aviation decision making and flight control performance during a flight simulator task. Seventy-two IFR-rated general aviators, aged 19-79 yr, made multiple approach, holding pattern entry, and landing decisions while navigating under Instrument Flight Rules weather conditions. Over three trials in which the fog level varied, subjects decided whether or not to land the aircraft. They also completed two holding pattern entries. Subjects' flight control during approaches and holding patterns was measured. Older pilots (41+ yr) were more likely than younger pilots to land when visibility was inadequate (older pilots' mean false alarm rate: 0.44 vs 0.25). They also showed less precise flight control for components of the approach, performing 0.16 SD below mean approach scores. Expertise attenuated an age-related decline in flight control during holding patterns: older IFR/CFI performed 0.73 SD below mean score; younger IFR/CFI, younger CFII/ATP, older CFII/ATP: 0.32, 0.26, 0.03 SD above mean score. Additionally, pilots with faster processing speed (by median split) had a higher mean landing decision false alarm rate (0.42 vs 0.28), yet performed 0.14 SD above the mean approach control score. Results have implications regarding specialized training for older pilots and for understanding processes involved in older adults' real world decision making and performance.

  2. Pitch attitude, flight path, and airspeed control during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.

  3. The roles of COMT val158met status and aviation expertise in flight simulator performance and cognitive ability.

    PubMed

    Kennedy, Q; Taylor, J L; Noda, A; Adamson, M; Murphy, G M; Zeitzer, J M; Yesavage, J A

    2011-09-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41-69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task.

  4. The Roles of COMT val158met Status and Aviation Expertise in Flight Simulator Performance and Cognitive Ability

    PubMed Central

    Taylor, J. L.; Noda, A.; Adamson, M.; Murphy, G. M.; Zeitzer, J. M.; Yesavage, J. A.

    2011-01-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41–69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task. PMID:21193954

  5. A failure effects simulation of a low authority flight control augmentation system on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Corliss, L. D.; Talbot, P. D.

    1977-01-01

    A two-pilot moving base simulator experiment was conducted to assess the effects of servo failures of a flight control system on the transient dynamics of a Bell UH-1H helicopter. The flight control hardware considered was part of the V/STOLAND system built with control authorities of from 20-40%. Servo hardover and oscillatory failures were simulated in each control axis. Measurements were made to determine the adequacy of the failure monitoring system time delay and the servo center and lock time constant, the pilot reaction times, and the altitude and attitude excursions of the helicopter at hover and 60 knots. Safe recoveries were made from all failures under VFR conditions. Pilot reaction times were from 0.5 to 0.75 sec. Reduction of monitor delay times below these values resulted in significantly reduced excursion envelopes. A subsequent flight test was conducted on a UH-1H helicopter with the V/STOLAND system installed. Series servo hardovers were introduced in hover and at 60 knots straight and level. Data from these tests are included for comparison.

  6. Eye position affects flight altitude in visual approach to landing independent of level of expertise of pilot

    PubMed Central

    Camachon, Cyril; Montagne, Gilles

    2018-01-01

    The present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing. Each participant performed 40 approaches to the runway. During 8 of the approaches, the point of view that the flight simulator used to compute the visual scene was slowly raised or lowered with 4 cm with respect to the cockpit, hence moving the projection of the visible part of the cockpit down or up in the visible scene in a hardly noticeable manner. The increases and decreases in the simulated eye height led to increases and decreases in the altitude of the approach trajectories, for all three groups of participants. On the basis of these results, it is argued that the eye position of pilots during visual approaches is a factor that contributes to the risk of black hole accidents. PMID:29795618

  7. Research on computer aided testing of pilot response to critical in-flight events

    NASA Technical Reports Server (NTRS)

    Giffin, W. C.; Rockwell, T. H.; Smith, P. J.

    1984-01-01

    Experiments on pilot decision making are described. The development of models of pilot decision making in critical in flight events (CIFE) are emphasized. The following tests are reported on the development of: (1) a frame system representation describing how pilots use their knowledge in a fault diagnosis task; (2) assessment of script norms, distance measures, and Markov models developed from computer aided testing (CAT) data; and (3) performance ranking of subject data. It is demonstrated that interactive computer aided testing either by touch CRT's or personal computers is a useful research and training device for measuring pilot information management in diagnosing system failures in simulated flight situations. Performance is dictated by knowledge of aircraft sybsystems, initial pilot structuring of the failure symptoms and efficient testing of plausible causal hypotheses.

  8. Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.

  9. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    PubMed

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med Hum Perform. 2016; 87(12):989-995.

  10. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.

  11. Aviation spatial orientation in relationship to head position and attitude interpretation.

    PubMed

    Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P

    1997-06-01

    Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.

  12. Hidden Markov Models as a tool to measure pilot attention switching during simulated ILS approaches

    DOT National Transportation Integrated Search

    2003-04-14

    The pilot's instrument scanning data contain information about not only the pilot's eye movements, but also the pilot's : cognitive process during flight. However, it is often difficult to interpret the scanning data at the cognitive level : because:...

  13. Piloted Simulation to Evaluate the Utility of a Real Time Envelope Protection System for Mitigating In-Flight Icing Hazards

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.

  14. Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean

    2001-01-01

    Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.

  15. 14 CFR 61.197 - Renewal requirements for flight instructor certification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator or flight training device if the test is accomplished pursuant to an approved course conducted by... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Renewal requirements for flight instructor... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...

  16. 14 CFR 61.197 - Renewal requirements for flight instructor certification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... simulator or flight training device if the test is accomplished pursuant to an approved course conducted by... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Renewal requirements for flight instructor... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...

  17. 14 CFR 61.197 - Renewal requirements for flight instructor certification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator or flight training device if the test is accomplished pursuant to an approved course conducted by... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Renewal requirements for flight instructor... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...

  18. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  19. Pilot Joe Walker in Lunar Landing Research Vehicle (LLRV) on ramp

    NASA Technical Reports Server (NTRS)

    1964-01-01

    In this 1964 NASA Flight Research Center photograph, NASA Pilot Joe Walker is setting in the pilot's platform of the the Lunar Landing Research Vehicle (LLRV) number 1. This photograph provides a good view of the pilot setting in front of the primary instrumentation panel. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On the LLRV, in case of jet engine failure, six-500-pounds-of thrust rockets could be used by the pilot to carefully apply lift thrust during the rapid descent to hopefully achieve a controllable landing. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. Weight and balance design constraints were among the most challenging to meet for all phases of the program (design, development, operations). The two LLRVs were shipped disassembled from Bell to the FRC in April 1964, with program emphasis placed on vehicle No. 1. The scene then shifted to the old South Base area of Edwards Air Force Base. On the day of the first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. As 1966 ended, the LLRV #1 had flown 198 flights, and the LLRV #2 was being assembled, instrumented and cockpit modifications made at the South Base. The first flight of the number two LLRV in early January 1967 was quickly followed by five more. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in mid January 1967. When Dryden's LLRVs arrived at Houston they joined the first of the LLTVs to eventually make up the five-vehicle training and simulator fleet. All five vehicles were relied on for simulation and training of moon landings.

  20. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  1. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  2. The effect of aircraft control forces on pilot performance during instrument landings in a flight simulator.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-07-01

    Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.

  3. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  4. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  5. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  6. Flight Deck Surface Trajectory-based Operations (STBO): Results of Piloted Simulations and Implications for Concepts of Operation (ConOps)

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2013-01-01

    The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required. Surface Traffic Management (STM) System Implications. The data indicate a number of implications regarding specific parameters for ATC/STM algorithm development. Pilots have a tendency to arrive at RTA points early with slow required speeds, on time for moderate speeds, and late with faster required speeds. This implies that ATC/STM algorithms should operate with middle-range speeds, similar to that of non-STBO taxi performance. Route length has a related effect: Long taxi routes increase the earliness with slow speeds and the lateness with faster speeds. This is likely due to the" open-loop" nature of the task in which the speed error compounds over a longer time with longer routes. Results showed that this may be mitigated by imposing a small number oftime constraint points each with their own RTAs effectively tuming a long route into a series of shorter routes - and thus improving RTA performance. STBO ConOps Implications. Most important is the impact that these data have for NextGen STM system ConOps development. The results of these experiments imply that it is not reasonable to expect pilots to taxi under a "Full STBO" ConOps in which pilots are expected to be at a predictable (x,y) airport location for every time (t). An STBO ConOps with a small number of intermediate time constraint points and the departing runway, however, is feasible, but only with flight deck equipage enabling the use of a display similar to the "error-nulling algorithm/display" tested.

  7. Incorporating Data Link Messaging into a Multi-function Display for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Adams, Catherine A.; Murdoch, Jennifer L.

    2006-01-01

    One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness over conventional instrument flight rules (IFR) procedures.

  8. Feasibility study of a procedure to detect and warn of low level wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Kessel, P. A.; Frost, W.

    1981-01-01

    A Doppler radar system which provides an aircraft with advanced warning of longitudinal wind shear is described. This system uses a Doppler radar beamed along the glide slope linked with an on line microprocessor containing a two dimensional, three degree of freedom model of the motion of an aircraft including pilot/autopilot control. The Doppler measured longitudinal glide slope winds are entered into the aircraft motion model, and a simulated controlled aircraft trajectory is calculated. Several flight path deterioration parameters are calculated from the computed aircraft trajectory information. The aircraft trajectory program, pilot control models, and the flight path deterioration parameters are discussed. The performance of the computer model and a test pilot in a flight simulator through longitudinal and vertical wind fields characteristic of a thunderstorm wind field are compared.

  9. Fighter agility metrics, research, and test

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.

    1990-01-01

    Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A completed set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available. Simulation documentation and user instructions are provided in an appendix.

  10. Pilot Interactions in an Over-Constrained Conflict Scenario as Studied in a Piloted Simulation of Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Barhydt, Richard; Barmore, Bryan; Krishnamurthy, Karthik

    2003-01-01

    Feasibility and safety of autonomous aircraft operations were studied in a multi-piloted simulation of overconstrained traffic conflicts to determine the need for, and utility of, priority flight rules to maintain safety in this extraordinary and potentially hazardous situation. An overconstrained traffic conflict is one in which the separation assurance objective is incompatible with other objectives. In addition, a proposed scheme for implementing priority flight rules by staggering the alerting time between the two aircraft in conflict was tested for effectiveness. The feasibility study was conducted through a simulation in the Air Traffic Operations Laboratory at the NASA Langley Research Center. This research activity is a continuation of the Distributed Air-Ground Traffic Management feasibility analysis reported in the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001 (paper #48). The over-constrained conflict scenario studied here consisted of two piloted aircraft that were assigned an identical en-route waypoint arrival time and altitude crossing restriction. The simulation results indicated that the pilots safely resolved the conflict without the need for a priority flight rule system. Occurrences of unnecessary maneuvering near the common waypoint were traced to false conflict alerts, generated as the result of including waypoint constraint information in the broadcast data link message issued from each aircraft. This result suggests that, in the conservative interests of safety, broadcast intent information should be based on the commanded trajectory and not on the Flight Management System flight plan, to which the aircraft may not actually adhere. The use of priority flight rules had no effect on the percentage of the aircraft population meeting completely predictable which aircraft in a given pair would meet the constraints and which aircraft would make the first maneuver to yield right-of-way. Therefore, the proposed scheme for implementing priority flight rules through staggering the alerting time between the two aircraft was completely effective. The data and observations from this experiment, together with results from the previously reported study, support the feasibility of autonomous aircraft operations.

  11. Relationship of CogScreen-AE to flight simulator performance and pilot age.

    PubMed

    Taylor, J L; O'Hara, R; Mumenthaler, M S; Yesavage, J A

    2000-04-01

    We report on the relationship between CogScreen-Aeromedical Edition (AE) factor scores and flight simulator performance in aircraft pilots aged 50-69. Some 100 licensed, civilian aviators (average age 58+/-5.3 yr) performed aviation tasks in a Frasca model 141 flight simulator and the CogScreen-AE battery. The aviation performance indices were: a) staying on course; b) dialing in communication frequencies; c) avoiding conflicting traffic; d) monitoring cockpit instruments; e) executing the approach; and f) a summary score, which was the mean of these scores. The CogScreen predictors were based on a factor structure reported by Kay (11), which comprised 28 CogScreen scores. Through principal components analysis of Kay's nine factors, we reduced the number of predictors to five composite CogScreen scores: Speed/Working Memory (WM), Visual Associative Memory, Motor Coordination, Tracking, and Attribute Identification. Speed/WM scores had the highest correlation with the flight summary score, Spearman r(rho) = 0.57. A stepwise-forward multiple regression analysis indicated that four CogScreen variables could explain 45% of the variance in flight summary scores. Significant predictors, in order of entry, were: Speed/WM, Visual Associative Memory, Motor Coordination, and Tracking (p<0.05). Pilot age was found to significantly improve prediction beyond that which could be predicted by the four cognitive variables. In addition, there was some evidence for specific ability relationships between certain flight component scores and CogScreen scores, such as approach performance and tracking errors. These data support the validity of CogScreen-AE as a cognitive battery that taps skills relevant to piloting.

  12. Effects of mass on aircraft sidearm controller characteristics

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A.

    1994-01-01

    When designing a flight simulator, providing a set of low mass variable-characteristic pilot controls can be very difficult. Thus, a strong incentive exists to identify the highest possible mass that will not degrade the validity of a simulation. The NASA Dryden Flight Research Center has conducted a brief flight program to determine the maximum acceptable mass (system inertia) of an aircraft sidearm controller as a function of force gradient. This information is useful for control system design in aircraft as well as development of suitable flight simulator controls. A modified Learjet with a variable-characteristic sidearm controller was used to obtain data. A boundary was defined between mass considered acceptable and mass considered unacceptable to the pilot. This boundary is defined as a function of force gradient over a range of natural frequencies. This investigation is limited to a study of mass-frequency characteristics only. Results of this investigation are presented in this paper.

  13. Predictability of Pilot Performance from Simulated to Real Flight in the UH-60 (Black Hawk) Helicopter

    DTIC Science & Technology

    2008-02-01

    keratectomy ( PRK ) and laser in-situ keratomileusis ( LASIK ) procedures to determine compatibility, safety, and efficacy of these procedures for rated Army...performance data. Table B- 1. Simulator and aircraft mean flight performance. LASIK PRK Simulator Aircraft Simulator Aircraft Pre-op 60.81 (2.65) 56.41...12 7. Aircraft vs . Simulator scatter plot, hover turn maneuvers

  14. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    DTIC Science & Technology

    2016-04-01

    incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching architecture...Simulation Model, Quasi -Nonlinear, Piloted Simulation, Flight-Test Implications, System Identification, Off-Nominal Loading Extrapolation, Stability...incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching

  15. An evaluation of flight path formats head-up and head-down

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.

    1988-01-01

    Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.

  16. Visual information transfer. 1: Assessment of specific information needs. 2: The effects of degraded motion feedback. 3: Parameters of appropriate instrument scanning behavior

    NASA Technical Reports Server (NTRS)

    Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.

    1984-01-01

    Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.

  17. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume I. Model Development.

    ERIC Educational Resources Information Center

    Connelly, Edward A.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…

  18. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume II. Appendices. Final Report.

    ERIC Educational Resources Information Center

    Connelly, E. M.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is described. Ultimately, this approach will allow automatic measurement of pilot performance in a flight simulator or from recorded in-flight data. An efficient method of representing performance data within a computer is…

  19. The Next Best Thing to Flying.

    ERIC Educational Resources Information Center

    Sorensen, Peter

    1983-01-01

    Discusses flight simulator use in pilot training. With computer graphics, sound effects, and hydraulic thrust, pilots can learn to fly without leaving the ground. Indicates that air safety has significantly improved since the Federal Aviation Administration approved using simulators, replacing a large portion of training received in actual…

  20. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    PubMed

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  1. 'Party Line' Information Use Studies and Implications for ATV Datalink Communications

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy; Hansman, R. John; Midkiff, Alan

    1995-01-01

    The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The Importance, Availability, and Accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the importance of party line information appears to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.

  2. STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.

  3. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  4. Pilot interaction with cockpit automation 2: An experimental study of pilots' model and awareness of the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1994-01-01

    Technological developments have made it possible to automate more and more functions on the commercial aviation flight deck and in other dynamic high-consequence domains. This increase in the degrees of freedom in design has shifted questions away from narrow technological feasibility. Many concerned groups, from designers and operators to regulators and researchers, have begun to ask questions about how we should use the possibilities afforded by technology skillfully to support and expand human performance. In this article, we report on an experimental study that addressed these questions by examining pilot interaction with the current generation of flight deck automation. Previous results on pilot-automation interaction derived from pilot surveys, incident reports, and training observations have produced a corpus of features and contexts in which human-machine coordination is likely to break down (e.g., automation surprises). We used these data to design a simulated flight scenario that contained a variety of probes designed to reveal pilots' mental model of one major component of flight deck automation: the Flight Management System (FMS). The events within the scenario were also designed to probe pilots' ability to apply their knowledge and understanding in specific flight contexts and to examine their ability to track the status and behavior of the automated system (mode awareness). Although pilots were able to 'make the system work' in standard situations, the results reveal a variety of latent problems in pilot-FMS interaction that can affect pilot performance in nonnormal time critical situations.

  5. An Experimental Design of a Foundational Framework for the Application of Affective Computing to Soaring Flight Simulation and Training

    ERIC Educational Resources Information Center

    Moon, Shannon

    2017-01-01

    In the absence of tools for intelligent tutoring systems for soaring flight simulation training, this study evaluated a framework foundation to measure pilot performance, affect, and physiological response to training in real-time. Volunteers were asked to perform a series of flight tasks selected from Federal Aviation Administration Practical…

  6. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  7. Terrain Portrayal for Head-Down Displays Experiment

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Takallu, M. A.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study has been conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and pilot performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. This paper focuses on the experimental set-up and preliminary qualitative results of the TP-HDD simulation experiment. In this experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs. Preliminary results indicate that all of the evaluation pilots favored SVS displays over standard gauges, in terms of terrain awareness, SA, and perceived pilot performance. Among the terrain portrayal concepts tested, most pilots preferred the higher-resolution DEM. In addition, with minimal training, low-hour VFR evaluation pilots were able to negotiate a precision approach using SVS displays with a tunnel in the sky guidance concept.

  8. Pilot Comments From the Boeing High Speed Research Aircraft, Cycle 3, Simulation Study of the Effects of Aeroservoelasticity (LaRC.3)

    NASA Technical Reports Server (NTRS)

    Bailey, Melvin L. (Editor)

    2000-01-01

    This is a compilation of pilot comments from the Boeing High Speed Research Aircraft, Cycle 3, simulation study (LaRC.3) of the effects of aeroservoelasticity, conducted from October to December 1997 at NASA Langley Research Center. This simulation study was conducted using the Visual Motion Simulator. The comments are from direct tape transcriptions and have been edited for spelling only. These comments were made on tape following the completion of each flight card, immediately after the pilot was satisfied with his practice and data recording runs. Six pilots were used in the evaluation and they are identified as pilots A through F.

  9. Sensor supported pilot assistance for helicopter flight in DVE

    NASA Astrophysics Data System (ADS)

    Waanders, Tim; Münsterer, T.; Kress, M.

    2013-05-01

    Helicopter operations at low altitude are to this day only performed under VFR conditions in which safe piloting of the aircraft relies on the pilot's visual perception of the outside environment. However, there are situations in which a deterioration of visibility conditions may cause the pilot to lose important visual cues thereby increasing workload and compromising flight safety and mission effectiveness. This paper reports on a pilot assistance system for all phases of flight which is intended to: • Provide navigational support and mission management • Support landings/take-offs in unknown environment and in DVE • Enhance situational awareness in DVE • Provide obstacle and terrain surface detection and warning • Provide upload, sensor based update and download of database information for debriefing and later missions. The system comprises a digital terrain and obstacle database, tactical information, flight plan management combined with an active 3D sensor enabling the above mentioned functionalities. To support pilots during operations in DVE, an intuitive 3D/2D cueing through both head-up and head-down means is proposed to retain situational awareness. This paper further describes the system concept and will elaborate on results of simulator trials in which the functionality was evaluated by operational pilots in realistic and demanding scenarios such as a SAR mission to be performed in mountainous area under different visual conditions. The objective of the simulator trials was to evaluate the functional integration and HMI definition for the NH90 Tactical Transport Helicopter.

  10. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  11. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1992-01-01

    Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  12. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1994-01-01

    Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  13. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  14. Human Factors Experiments for Data Link : Interim Report No. 5

    DOT National Transportation Integrated Search

    1975-02-01

    One and two-man crews of general aviation pilots and two-man crews of FAA/NAFEC test pilots made a series of simulated flights in a GAT-2 simulator to evaluate various complements of I/O equipment for Data Link. In the earlier experiments in the seri...

  15. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  16. Crew Training - Apollo 9 - KSC

    NASA Image and Video Library

    1969-02-17

    S69-19983 (17 Feb. 1969) --- The Apollo 9 crew is shown suited up for a simulated flight in the Apollo Mission Simulator at the Kennedy Space Center (KSC). Left to right are astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot.

  17. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.

  18. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.

  19. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  20. 14 CFR 63.39 - Skill requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...

  1. 14 CFR 63.39 - Skill requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...

  2. Development of a computer program data base of a navigation aid environment for simulated IFR flight and landing studies

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.

    1980-01-01

    A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.

  3. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.

  4. Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks

    NASA Technical Reports Server (NTRS)

    Cover, Mathew; Schnell, Thomas

    2010-01-01

    Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.

  5. GEMINI-TITAN (GT)-12 - TRAINING (PRIOR) - MISSION SIMULATOR

    NASA Image and Video Library

    1966-09-06

    S66-45579 (6 Sept. 1966) --- Astronaut James A. Lovell Jr. (right), prime crew command pilot of the Gemini-12 spaceflight, talks with Burton M. Gifford (left) and Duane K. Mosel (center), both with the Simulation Branch, Flight Crew Support Division. Lovell was preparing to undergo flight training in the Gemini Mission Simulator in Building 5, Mission Simulation and Training Facility. Photo credit: NASA

  6. When the Wheels Touch Earth and the Flight is Through, Pilots Find One Eye is Better Than Two?

    NASA Technical Reports Server (NTRS)

    Valimont, Brian; Wise, John A.; Nichols, Troy; Best, Carl; Suddreth, John; Cupero, Frank

    2009-01-01

    This study investigated the impact of near to eye displays on both operational and visual performance by employing a human-in-the-loop simulation of straight-in ILS approaches while using a near to eye (NTE) display. The approaches were flown in simulated visual and instrument conditions while using either a biocular NTE or a monocular NTE display on either the dominant or non dominant eye. The pilot s flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested.

  7. Line-oriented flight training: Northwest Airlines

    NASA Technical Reports Server (NTRS)

    Nunn, H. T.

    1981-01-01

    An exemption from certain FAA regulations which stereotype simulator flight training was obtained and pilots with current line experience were used to prepare and develop scenarios for a program in which each crew member would be trained to recognize and properly use all available resouces. The development of the scenarios for training to proficiency and pilot reaction to the training sessions are discussed.

  8. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  9. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  10. Managing human error in aviation.

    PubMed

    Helmreich, R L

    1997-05-01

    Crew resource management (CRM) programs were developed to address team and leadership aspects of piloting modern airplanes. The goal is to reduce errors through team work. Human factors research and social, cognitive, and organizational psychology are used to develop programs tailored for individual airlines. Flight crews study accident case histories, group dynamics, and human error. Simulators provide pilots with the opportunity to solve complex flight problems. CRM in the simulator is called line-oriented flight training (LOFT). In automated cockpits CRM promotes the idea of automation as a crew member. Cultural aspects of aviation include professional, business, and national culture. The aviation CRM model has been adapted for training surgeons and operating room staff in human factors.

  11. Use of the flight simulator in the design of a STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.

    1972-01-01

    Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.

  12. Comparison of closed loop model with flight test results

    NASA Technical Reports Server (NTRS)

    George, F. L.

    1981-01-01

    An analytic technique capable of predicting the landing characteristics of proposed aircraft configurations in the early stages of design was developed. In this analysis, a linear pilot-aircraft closed loop model was evaluated using experimental data generated with the NT-33 variable stability in-flight simulator. The pilot dynamics are modeled as inner and outer servo loop closures around aircraft pitch attitude, and altitude rate-of-change respectively. The landing flare maneuver is of particular interest as recent experience with military and other highly augmented vehicles shows this task to be relatively demanding, and potentially a critical design point. A unique feature of the pilot model is the incorporation of an internal model of the pilot's desired flight path for the flare maneuver.

  13. New Approaches to Motion Cuing in Flight Simulators

    DTIC Science & Technology

    1991-09-01

    iv Table of Contents 1.0 Introduction ............................. .......... ...... 1 1.1 The Problem of Motion Cuing in Flight Simulation...the Report ................ ................... 7 2.0 A Conceptual Model of Pilot Control .......... ............ 9 2.1 Introduction ...33 3.4 Task Analysis ................ ...................... .. 34 3.4.1 Introduction ................ ...................... 34 3.4.2 Discussion

  14. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    NASA Astrophysics Data System (ADS)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized enough to be able to be applied to any rotorcraft with redundant controls. Minimum power propeller thrust shares ranged from 50% - 90% in high speed flight, while lift shares at high speeds tended towards 60% wing and 40% main rotor.

  15. Rand Symposium on Pilot Training and the Pilot Career; Recollections of the Chairman.

    ERIC Educational Resources Information Center

    Stewart, W. A.

    Topics discussed in this 1970 symposium included the economics of flight training, careers in flying, college versus high school graduates, defining the trained pilot, motivation and selection, innovation in pilot training, training goals, transfer of training, and the role of simulators. Conferees agreed that the present Air Force undergraduate…

  16. Novel flight instrument display to minimize the risk of spatial disorientation

    NASA Astrophysics Data System (ADS)

    Braithwaite, Malcolm G.; Durnford, Simon J.

    1997-06-01

    This novel flight instrument display presents information to the pilot in a simple and easily comprehensible format by integrating the five orientational flight parameters. It allows the pilot to select specific orientation parameters and then follow a simple tracking task which ensures that these parameters are maintained or, if necessary, recovered. The pilot can at any time check any parameter he wishes, but is free from the requirement to continually sample and combine information from the traditional instruments to maintain stable flight. Cognitive workload to maintain orientation is thus reduced. Our assessment of the display in a UH-60 helicopter simulator showed that the novel display makes recovery from unusual aircraft attitudes and instrument flying easier than when using the standard instrument panel.

  17. LEAVE PAD - TRAINING - CAPE

    NASA Image and Video Library

    1965-03-18

    S65-20641 (1965) --- Astronauts John W. Young (left), pilot, and Virgil I. Grissom, command pilot, for the Gemini-Titan 3 flight, are shown leaving the launch pad after simulations in the Gemini-3 spacecraft.

  18. Physiological effects of night vision goggle counterweights on neck musculature of military helicopter pilots.

    PubMed

    Harrison, Michael F; Neary, J Patrick; Albert, Wayne J; Veillette, Major Dan W; Forcest, Canadian; McKenzie, Neil P; Croll, James C

    2007-08-01

    Increased helmet-mounted mass and specific neck postures have been found to be a cause of increased muscular activity and stress. However, pilots who use night vision goggles (NVG) frequently use counterweight (CW) equipment such as a lead mass that is attached to the back of the flight helmet to provide balance to counter the weight of the NVG equipment mounted to the front of the flight helmet. It is proposed that this alleviates this stress. However, no study has yet investigated the physiological effects of CW during an extended period of time during which the pilots performed normal operational tasks. Thirty-one Canadian Forces pilots were monitored on consecutive days during a day and a NVG mission in a CH-146 flight simulator. Near infrared spectroscopy probes were attached bilaterally to the trapezius muscles and hemodynamics, i.e., total oxygenation index, total hemoglobin, oxyhemoglobin, and deoxyhemoglobin, were monitored for the duration of the mission. Pilots either wore CW (n = 25) or did not wear counterweights (nCW, n = 6) as per their usual operational practice. Levene's statistical tests were conducted to test for homogeneity and only total oxygenation index returned a significant result (p < or = 0.05). For the near infrared spectroscopy variables, significant differences were found to exist between CW and nCW pilots for total hemoglobin, deoxyhemoglobin, and oxyhemoglobin during NVG flights. The CW pilots displayed less metabolic and hemodynamic stress during simulated missions as compared to the nCW pilots. The results of this study would suggest that the use of CW equipment during NVG missions in military helicopter pilots does minimize the metabolic and hemodynamic responses of the trapezius muscles.

  19. Current training: Where are we?

    NASA Technical Reports Server (NTRS)

    Golden, Gerald

    1992-01-01

    Petroleum Helicopters, Inc. maintains a staff of 750 helicopter pilots. The initial, transition, upgrade, and recurrent training for these pilots requires a significant financial outlay. Since a major portion of that training is done to satisfy the requirements of FAR 61.57, 'Recent Flight Experience, Pilot in Command' and 135.297, 'Pilot in Command: Instrument Proficiency Check Requirements', much could be accomplished using an approved simulator. However, it is imperative that credit be given for training time spent in the simulators and that the device be realistic, practical, and affordable.

  20. Quantifying Pilot Contribution to Flight Safety During Dual Generator Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Kennedy, Kellie D.; Bailey, Randall E.; Last, Mary Carolyn

    2017-01-01

    Accident statistics cite flight crew error in over 60% of accidents involving transport category aircraft. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. No data currently exists that quantifies the contribution of the flight crew in this role. Neither does data exist for how often the flight crew handles non-normal procedures or system failures on a daily basis in the National Airspace System. A pilot-in-the-loop high fidelity motion simulation study was conducted by the NASA Langley Research Center in partnership with the Federal Aviation Administration (FAA) to evaluate the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Eighteen crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance when one of the flight crew was unavailable were also recorded for comparison against the nominal two-crew operations. This paper details diversion decisions, perceived safety of flight, workload, time to complete pertinent checklists, and approach and landing results while dealing with a complete loss of electrical generators. Loss of electrical power requires pilots to complete the flight without automation support of autopilots, flight directors, or auto throttles. For reduced crew complements, the additional workload and perceived safety of flight was considered unacceptable.

  1. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  2. Summary of flight tests to determine the spin and controllability characteristics of a remotely piloted, large-scale (3/8) fighter airplane model

    NASA Technical Reports Server (NTRS)

    Holleman, E. C.

    1976-01-01

    An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.

  3. A mathematical representation of an advanced helicopter for piloted simulator investigations of control system and display variations

    NASA Technical Reports Server (NTRS)

    Aiken, E. W.

    1980-01-01

    A mathematical model of an advanced helicopter is described. The model is suitable for use in control/display research involving piloted simulation. The general design approach for the six degree of freedom equations of motion is to use the full set of nonlinear gravitational and inertial terms of the equations and to express the aerodynamic forces and moments as the reference values and first order terms of a Taylor series expansion about a reference trajectory defined as a function of longitudinal airspeed. Provisions for several different specific and generic flight control systems are included in the model. The logic required to drive various flight control and weapon delivery symbols on a pilot's electronic display is also provided. Finally, the model includes a simplified representation of low altitude wind and turbulence effects. This model was used in a piloted simulator investigation of the effects of control system and display variations for an attack helicopter mission.

  4. Measuring moment-to-moment pilot workload using synchronous presentations of secondary tasks in a motion-base trainer

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R.; Hart, Sandra G.; Shively, Robert J.

    1987-01-01

    A simulation was conducted to determine whether the sensitivity of secondary task measures of pilot workload could be improved by synchronizing their presentation to the occurrence of specific events or pilot actions. This synchronous method of presentation was compared to the more typical asynchronous method, where secondary task presentations are independent of pilot's flight-related activities. Twelve pilots flew low- and high-difficulty scenarios in a motion-base trainer with and without concurrent secondary tasks (e.g., choice reaction time and time production). The difficulty of each scenario was manipulated by the addition of 21 flight-related tasks superimposed on a standard approach and landing sequence. The insertion of the secondary tasks did not affect primary flight performance. However, secondary task performance did reflect workload differences between scenarios and among flight segments within scenarios, replicating the results of an earlier study in which the secondary tasks were presented asynchronously (Bortolussi et al., 1986).

  5. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  6. Automation under suspicion--case flight AF-447 Air France.

    PubMed

    Martins, Edgard; Soares, Marcelo

    2012-01-01

    The probes allow the pilot to control the aircraft speed was essential to the balance of the flight. Opinions of experts who claim that "the design of the plane would have exercised a not inconsiderable role in the occurrence of a disaster." These messages revealed a series of important operating errors in a zone of turbulence, "making the plane uncontrollable, leading to a rapid depressurization device, according to these reports. A lawsuit in Toulouse and in Brazil aims to recognition of the liability of Air France and Airbus not insignificant role in the design and operation of the aircraft in the event of catastrophe. Opinions are taken from senior pilots that no commercial aviation training for certain situations abnormal flight that, if realized, could have influenced the pilots of the AF-447 to remove the plane's fatal dive show what experiments performed in simulators for military pilots, who are permanently subject to critical flight situations.

  7. Simulator sickness in a helicopter flight training school.

    PubMed

    Webb, Catherine M; Bass, Julie M; Johnson, David M; Kelley, Amanda M; Martin, Christopher R; Wildzunas, Robert M

    2009-06-01

    Simulator sickness (SS) is a common problem during flight training and can affect both instructor pilots (IP) and student pilots (SP). This study was conducted in response to complaints about a high incidence of SS associated with use of new simulators for rotary-wing aircraft. The problem was evaluated using the Simulator Sickness Questionnaire (SSQ) to collect data on 73 IP and 129 SP who used the new simulators. Based on analysis of these data, operator comments, and a search of the literature, we recommended limiting simulator flights to 2 h, removing unusual or unnatural maneuvers, turning off the sidescreens to reduce the field-of-view, avoiding use of improperly calibrated simulators until repaired, and stressing proper rest and health discipline among the pilots. The success of these measures was evaluated 1 yr later by collecting SSQ data on 25 IP and 50 SP. There was a main effect of time, in that after the recommendations were implemented, there was a significant reduction in nausea, oculomotor, and total SSQ scores from the pre-study to the post-study. There was also a main effect of experience, as IP reported significantly greater SS than SP for the same scores. Implementation of the recommendations reduced SS in the new simulators at the cost of limiting session duration and shutting down some simulator features. Although the optimal solution to the SS problem lies in addressing SS during a simulator's design stage, these recommendations can be used as interim solutions to reduce SS.

  8. British Airways' pre-command training program

    NASA Technical Reports Server (NTRS)

    Holdstock, L. F. J.

    1980-01-01

    Classroom, flight simulator, and in-flight sessions of an airline pilot training program are briefly described. Factors discussed include initial command potential assessment, precommand airline management studies course, precommand course, and command course.

  9. Investigation of the use of an electronic multifunction display and an electromechanical horizontal situation indicator for guidance and control of powered-lift short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Clement, W. F.

    1976-01-01

    The use which pilots make of a moving map display from en route through the terminal area and including the approach and go-around flight phases was investigated. The content and function of each of three primary STOLAND displays are reviewed from an operational point of view. The primary displays are the electronic attitude director indicator (EADI), the horizontal situation indicator (HSI), and the multifunction display (MFD). Manually controlled flight with both flight director guidance and raw situation data is examined in detail in a simulated flight experiment with emphasis on tracking reference flight plans and maintaining geographic orientation after missed approaches. Eye-point-of-regard and workload measurements, coupled with task performance measurements, pilot opinion ratings, and pilot comments are presented. The experimental program was designed to offer a systematic objective and subjective comparison of pilots' use of the moving map MFD in conjunction with the other displays.

  10. Development Of Maneuvering Autopilot For Flight Tests

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1992-01-01

    Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.

  11. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.

  12. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  13. An experimental evaluation of the Sternberg task as a workload metric for helicopter Flight Handling Qualities (FHQ) research

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C.

    1984-01-01

    The objective was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopters engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  14. The Sternberg Task as a Workload Metric in Flight Handling Qualities Research

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C.

    1984-01-01

    The objective of this research was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopers engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to a workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  15. SPACECRAFT - MERCURY-ATLAS (MA)-9 - PRELAUNCH - ASTRONAUT COOPER - SIMULATED FLIGHT TESTS - CAPE

    NASA Image and Video Library

    1963-03-01

    S63-03975 (1963) --- Astronaut L. Gordon Cooper Jr., prime pilot for the Mercury-Atlas 9 (MA-9) mission, is pictured prior to entering the Mercury spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance. Photo credit: NASA

  16. Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights.

    PubMed

    Huttunen, Kerttu; Keränen, Heikki; Väyrynen, Eero; Pääkkönen, Rauno; Leino, Tuomo

    2011-01-01

    Mental overload directly affects safety in aviation and needs to be alleviated. Speech recordings are obtained non-invasively and as such are feasible for monitoring cognitive load. We recorded speech of 13 military pilots while they were performing a simulator task. Three types of cognitive load (load on situation awareness, information processing and decision making) were rated by a flight instructor separately for each flight phase and participant. As a function of increased cognitive load, the mean utterance-level fundamental frequency (F0) increased, on average, by 7 Hz and the mean vocal intensity increased by 1 dB. In the most intensive simulator flight phases, mean F0 increased by 12 Hz and mean intensity, by 1.5 dB. At the same time, the mean F0 range decreased by 5 Hz, on average. Our results showed that prosodic features of speech can be used to monitor speaker state and support pilot training in a simulator environment. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  18. LEAVING PAD - ASTRONAUT JOHN W. YOUNG - TRAINING

    NASA Image and Video Library

    1965-03-19

    S65-20636 (1965) --- Astronauts John W. Young (left), pilot, and Virgil I. Grissom, command pilot, for the Gemini-Titan 3 flight, are shown leaving the launch pad after simulations in the Gemini-3 spacecraft.

  19. Fully Automatic Guidance and Control for Rotorcraft Nap-of-the-earth Flight Following Planned Profiles. Volume 2: Mathematical Model

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  20. Analysis of Pilot Feedback Regarding the Use of State Awareness Technologies During Complex Situations

    NASA Technical Reports Server (NTRS)

    Evans, Emory; Young, Steven D.; Daniels, Taumi; Santiago-Espada, Yamira; Etherington, Tim

    2016-01-01

    A flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) predict aircraft energy state and/or autoflight configuration, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. Four new technology concepts were evaluated vis-à-vis current state-of-the-art flight deck systems and indicators. This human-in-the-loop study was conducted using commercial airline crews. Scenarios spanned a range of complex conditions and several emulated causal factors and complexity in recent accidents involving loss of state awareness by pilots (e.g. energy state, automation state, and/or system state). Data were collected via questionnaires administered after each flight, audio/video recordings, physiological data, head and eye tracking data, pilot control inputs, and researcher observations. This paper strictly focuses on findings derived from the questionnaire responses. It includes analysis of pilot subjective measures of complexity, decision making, workload, situation awareness, usability, and acceptability.

  1. Incorporating data link messaging into a multi-function display to support the Small Aircraft Transportation System (SATS) and the self-separation of general aviation aircraft.

    PubMed

    Adams, Catherine A; Murdoch, Jennifer L; Consiglio, Maria C; Williams, Daniel M

    2007-07-01

    One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots' subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness (SA) over conventional instrument flight rules (IFR) procedures.

  2. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose

    1997-01-01

    Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.

  3. Lunar Landing Research Vehicle (LLRV) in flight

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In this 1967 NASA Flight Reserch Center photograph the Lunar Landing Research Vehicle (LLRV) is viewed from the front. This photograph provideds a good view of the pilot's platform with the restrictive cockpit view like that of he real Lunar Module (LM) When Apollo planning was underway in 1960, NASA was looking for asimulator to profile the descent to the moon's surface. Three conceptssurfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Lunar Landing Research Vehicle (LLRV) became the most significant one. After conceptual planning and meetings with engineers from Bell Aerosystems Company, Buffalo, N.Y., NASA FRC issued a $3.6 million production contract awarded in 1963, for delivery of the first of two vehicles for flight studies. Built of tubular aluminum alloy like a giant four-legged bedstead, the vehicle wasto simulate a lunar landing profile from around 1500 feet to the moon's surface. The LLRV had a turbofan engine mounted vertically in a gimbal, with 4200 pounds of thrust. The engine, lifted the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, thus simulating the reduced gravity of the moon. Two lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll.. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. The two LLRVs were shipped from Bell to the FRC in April 1964, with program emphasis on vehicle No. 1. The first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. 1966 ended with the phasing out of the Flight Research Center's portion of the LLRV program. The LLRV #1 had flown 198 flights, with flight times reaching 9-1/2 minutes and altitudes of around 750 feet. In December 1966 vehicle No. 1 was shipped to NASA Manned Spacecraft Center, followed by No. 2 in mid January 1967 with a total of six flights. The two LLRV's were soon joined by the three LLTV's. All five vehicles were relied on for simulation and training of moon landings.

  4. Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.

    1993-01-01

    Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.

  5. Space Shuttle flying qualities and flight control system assessment study, phase 2

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D. T.

    1983-01-01

    A program of flying qualities experiments as part of the Orbiter Experiments Program (OEX) is defined. Phase 1, published as CR-170391, reviewed flying qualities criteria and shuttle data. The review of applicable experimental and shuttle data to further define the OEX plan is continued. An unconventional feature of this approach is the use of pilot strategy model identification to relate flight and simulator results. Instrumentation, software, and data analysis techniques for pilot model measurements are examined. The relationship between shuttle characteristics and superaugmented aircraft is established. STS flights 1 through 4 are reviewed from the point of view of flying qualities. A preliminary plan for a coordinated program of inflight and simulator research is presented.

  6. Piloted Simulation of a Model-Predictive Automated Recovery System

    NASA Technical Reports Server (NTRS)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  7. Identification of pilot-vehicle dynamics from simulation and flight test

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    The paper discusses an identification problem in which a basic feedback control structure, or pilot control strategy, is hypothesized. Identification algorithms are employed to determine the particular form of pilot equalization in each feedback loop. It was found that both frequency- and time-domain identification techniques provide useful information.

  8. Initial Cognitive Performance Predicts Longitudinal Aviator Performance

    PubMed Central

    Jo, Booil; Adamson, Maheen M.; Kennedy, Quinn; Noda, Art; Hernandez, Beatriz; Zeitzer, Jamie M.; Friedman, Leah F.; Fairchild, Kaci; Scanlon, Blake K.; Murphy, Greer M.; Taylor, Joy L.

    2011-01-01

    Objectives. The goal of the study was to improve prediction of longitudinal flight simulator performance by studying cognitive factors that may moderate the influence of chronological age. Method. We examined age-related change in aviation performance in aircraft pilots in relation to baseline cognitive ability measures and aviation expertise. Participants were aircraft pilots (N = 276) aged 40–77.9. Flight simulator performance and cognition were tested yearly; there were an average of 4.3 (± 2.7; range 1–13) data points per participant. Each participant was classified into one of the three levels of aviation expertise based on Federal Aviation Administration pilot proficiency ratings: least, moderate, or high expertise. Results. Addition of measures of cognitive processing speed and executive function to a model of age-related change in aviation performance significantly improved the model. Processing speed and executive function performance interacted such that the slowest rate of decline in flight simulator performance was found in aviators with the highest scores on tests of these abilities. Expertise was beneficial to pilots across the age range studied; however, expertise did not show evidence of reducing the effect of age. Discussion. These data suggest that longitudinal performance on an important real-world activity can be predicted by initial assessment of relevant cognitive abilities. PMID:21586627

  9. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  10. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.

  11. APOLLO 16 ASTRONAUTS UNDERGO SIMULATED LUNAR TRAVERSE DURING TRAINING

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 flight crew, astronauts Charles M. Duke, Jr., and John W. Young, prepare to undergo a simulated lunar traverse in the training area. The National Aeronautics and Space Administration Apollo 16, the eighth Apollo Lunar landing, is scheduled to land in the mountainous highland region near the crater Descartes to explore the area for a three day period collecting surface material. Making geological observations, and deploying the fourth geophysical station on the Moon. The flight crew of the mission are: John W. Young, commander; Charles M. Duke, Jr., lunar module pilot; and Thomas K. Mattingly II, command module pilot.

  12. Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.

    1999-01-01

    This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.

  13. HL-10 flight simulator

    NASA Technical Reports Server (NTRS)

    1968-01-01

    As shown in this photo of the HL-10 flight simulator, the lifting-body pilots and engineers made use of early simulators for both training and the determination of a given vehicle's handling at various speeds, attitudes, and altitudes. This provided warning of possible problems. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.

  14. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  15. Pilot simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    DOT National Transportation Integrated Search

    1995-12-01

    Partial failures of aircraft primary flight-control systems and structural : damages to aircraft during flight have led to catastrophic accidents with : subsequent loss of life. These accidents can be prevented if sufficient : alternate control autho...

  16. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  17. Age and Expertise Effects in Aviation Decision Making and Flight Control in a Flight Simulator

    PubMed Central

    Kennedy, Quinn; Taylor, Joy L.; Reade, Gordon; Yesavage, Jerome A.

    2010-01-01

    Introduction Age (due to declines in cognitive abilities necessary for navigation) and level of aviation expertise are two factors that may affect aviation performance and decision making under adverse weather conditions. We examined the roles of age, expertise, and their relationship on aviation decision making and flight control performance during a flight simulator task. Methods Seventy-two IFR-rated general aviators, aged 19–79 yr, made multiple approach, holding pattern entry, and landing decisions while navigating under Instrument Flight Rules weather conditions. Over three trials in which the fog level varied, subjects decided whether or not to land the aircraft. They also completed two holding pattern entries. Subjects’ flight control during approaches and holding patterns was measured. Results Older pilots (41+ yr) were more likely than younger pilots to land when visibility was inadequate (older pilots’ mean false alarm rate: 0.44 vs 0.25). They also showed less precise flight control for components of the approach, performing 0.16 SD below mean approach scores. Expertise attenuated an age-related decline in flight control during holding patterns: older IFR/CFI performed 0.73 SD below mean score; younger IFR/CFI, younger CFII/ATP, older CFII/ATP: 0.32, 0.26, 0.03 SD above mean score. Additionally, pilots with faster processing speed (by median split) had a higher mean landing decision false alarm rate (0.42 vs 0.28), yet performed 0.14 SD above the mean approach control score. Conclusions Results have implications regarding specialized training for older pilots and for understanding processes involved in older adults’ real world decision making and performance. PMID:20464816

  18. Analytical methodology for determination of helicopter IFR precision approach requirements. [pilot workload and acceptance level

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.

    1980-01-01

    A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.

  19. Real-time piloted simulation of fully automatic guidance and control for rotorcraft nap-of-the-earth (NOE) flight following planned profiles

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard

    1990-01-01

    Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.

  20. Simulator fidelity : the effect of platform motion.

    DOT National Transportation Integrated Search

    2000-07-31

    As part of the Federal Aviation Administration's (FAA) initiative towards affordable flight simulators for U.S. commuter airlines, this study empirically examined the effect of six-degree-of-freedom simulator platform motion on recurrent pilot traini...

  1. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  2. Analyses of shuttle orbiter approach and landing conditions

    NASA Technical Reports Server (NTRS)

    Teper, G. L.; Dimarco, R. J.; Ashkenas, I. L.; Hoh, R. H.

    1981-01-01

    A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system.

  3. Thoughts in flight: automation use and pilots' task-related and task-unrelated thought.

    PubMed

    Casner, Stephen M; Schooler, Jonathan W

    2014-05-01

    The objective was to examine the relationship between cockpit automation use and task-related and task-unrelated thought among airline pilots. Studies find that cockpit automation can sometimes relieve pilots of tedious control tasks and afford them more time to think ahead. Paradoxically, automation has also been shown to lead to lesser awareness. These results prompt the question of what pilots think about while using automation. A total of 18 airline pilots flew a Boeing 747-400 simulator while we recorded which of two levels of automation they used. As they worked, pilots were verbally probed about what they were thinking. Pilots were asked to categorize their thoughts as pertaining to (a) a specific task at hand, (b) higher-level flight-related thoughts (e.g.,planning ahead), or (c) thoughts unrelated to the flight. Pilots' performance was also measured. Pilots reported a smaller percentage of task-at-hand thoughts (27% vs. 50%) and a greater percentage of higher-level flight-related thoughts (56% vs. 29%) when using the higher level of automation. However, when all was going according to plan, using either level of automation, pilots also reported a higher percentage of task-unrelated thoughts (21%) than they did when in the midst of an unsuccessful performance (7%). Task-unrelated thoughts peaked at 25% when pilots were not interacting with the automation. Although cockpit automation may provide pilots with more time to think, it may encourage pilots to reinvest only some of this mental free time in thinking flight-related thoughts. This research informs the design of human-automation systems that more meaningfully engage the human operator.

  4. Synthetic Vision Systems in GA Cockpit-Evaluation of Basic Maneuvers Performed by Low Time GA Pilots During Transition from VMC to IMC

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Wong, D. T.; Uenking, M. D.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of modern flight displays in general aviation cockpits for mitigating Low Visibility Loss of Control and the Controlled Flight Into Terrain accidents. A total of 18 General Aviation (GA) pilots with private pilot, single engine land rating, with no additional instrument training beyond private pilot license requirements, were recruited to evaluate three different display concepts in a fixed-based flight simulator at the NASA Langley Research Center's General Aviation Work Station. Evaluation pilots were asked to continue flight from Visual Meteorological Conditions (VMC) into Instrument Meteorological Conditions (IMC) while performing a series of 4 basic precision maneuvers. During the experiment, relevant pilot/vehicle performance variables, pilot control inputs and physiological data were recorded. Human factors questionnaires and interviews were administered after each scenario. Qualitative and quantitative data have been analyzed and the results are presented here. Pilot performance deviations from the established target values (errors) were computed and compared with the FAA Practical Test Standards. Results of the quantitative data indicate that evaluation pilots committed substantially fewer errors when using the Synthetic Vision Systems (SVS) displays than when they were using conventional instruments. Results of the qualitative data indicate that evaluation pilots perceived themselves to have a much higher level of situation awareness while using the SVS display concept.

  5. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  6. Flight Training Technology for Regional/Commuter Airline Operations: Regional Airline Association/NASA Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Lee, A. T. (Editor); Lauber, J. K. (Editor)

    1984-01-01

    Programs which have been developed for training commercial airline pilots and flight crews are discussed. The concept of cockpit resource management and the concomitant issues of management techniques, interpersonal communication, psychological factors, and flight stress are addressed. Training devices and simulation techniques are reported.

  7. Pilot performance, strategy, and workload while executing approaches at steep angles and with lower landing minima.

    PubMed

    Boehm-Davis, Deborah A; Casali, John G; Kleiner, Brian M; Lancaster, Jeffrey A; Saleem, Jason J; Wochinger, Kathryn

    2007-10-01

    We examined the willingness and ability of general aviation pilots to execute steep approaches in low-visibility conditions into nontowered airports. Executing steep approaches in poor weather is required for a proposed Small Aircraft Transportation System (SATS) that consists of small aircraft flying direct routes to a network of regional airports. Across two experiments, 17 pilots rated for Instrument Flight Rules at George Mason University or Virginia Tech flew a Cessna 172R simulator into Blacksburg, Virginia. Pilots were familiarized with the simulator and asked to fly approaches with either a 200- or 400-foot ceiling (at approach angles of 3 degrees, 5 degrees, and 7 degrees in the first experiment, 3 degrees and 6 degrees in the second). Pilots rated subjective workload and the simulator recorded flight parameters for each set of approaches. Approaches with a 5 degree approach angle produced safe landings with minimal deviations from normal descent control configurations and were rated as having a moderate level of workload. Approaches with 6 degree and 7 degree approach angles produced safe landings but high workload ratings. Pilots reduced power to control the speed of descent and flew the aircraft slightly above the glide path to gain time to control the landing. Although the 6 degree and 7 degree approaches may not be practical for routine approaches, they may be achievable in the event of an emergency. Further work using other aircraft flying under a wider variety of conditions is needed before implementing SATS-type flights into airports intended to supplant or complement commercial operations in larger airports.

  8. A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.

    2011-01-01

    Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.

  9. The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Uenking, Michael D.; Hughes, Monica F.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs. This paper focuses on the experimental set-up and final physiological results of the TP-HDD simulation experiment. The physiological measures of skin temperature, heart rate, and muscle response, show a decreased engagement (while using the synthetic vision displays as compared to the baseline conventional display) of the sympathetic and somatic nervous system responses which, in turn, indicates a reduced level of mental workload. This decreased level of workload is expected to enable improvement in the pilot's situation and terrain awareness.

  10. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  11. Pilot GPS LORAN Receiver Programming Performance A Laboratory Evaluation

    DOT National Transportation Integrated Search

    1994-02-01

    This study was designed to explore GPS/LORAN receiver programming performance under : simulated flight conditions. The programming task consisted of entering, editing, and : verifying a four-waypoint flight plan. The task demands were manipulated by ...

  12. Evaluation of a computer-generated perspective tunnel display for flight path following

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.; Robertson, J. B.; Hatfield, J. J.

    1980-01-01

    The display was evaluated by monitoring pilot performance in a fixed base simulator with the vehicle dynamics of a CH-47 tandem rotor helicopter. Superposition of the predicted future vehicle position on the tunnel image was also investigated to determine whether, and to what extent, it contributes to better system performance (the best predicted future vehicle position was sought). Three types of simulator experiments were conducted: following a desired trajectory in the presence of disturbances; entering the trajectory from a random position, outside the trajectory; detecting and correcting failures in automatic flight. The tunnel display with superimposed predictor/director symbols was shown to be a very successful combination, which outperformed the other two displays in all three experiments. A prediction time of 4 to 7 sec. was found to optimize trajectory tracking for the given vehicle dynamics and flight condition. Pilot acceptance of the tunnel plus predictor/director display was found to be favorable and the time the pilot needed for familiarization with the display was found to be relatively short.

  13. Flight deck benefits of integrated data link communication

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.

    1992-01-01

    A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.

  14. The effects of cockpit environment on long-term pilot performance

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1977-01-01

    A fixed-base helicopter simulator was used to examine pilot performance as influenced by noise, vibration, and fatigue. Subjects flew the simulator for periods ranging between three and eight hours while exposed to vibrations (at 17 Hz) ranging from 0.1 to 0.3 g, and noise stimuli varying between 74 (ambient) and 100 dB. Despite reports of extreme fatigue on these long flights, subject performance did not degrade. Within the limits of this study, performance tended to improve as environmental stress increased. However, subjects did suffer from lapses resulting in abnormally poor performance. These lapses are probably of short duration (seconds) and occur at unpredictable times. If such lapses occur in actual flight, they could provide an explanation for many so-called 'pilot error' accidents.

  15. Influences of APOE ε4 and Expertise on Performance of Older Pilots

    PubMed Central

    Taylor, Joy L.; Kennedy, Quinn; Adamson, Maheen M.; Lazzeroni, Laura C.; Noda, Art; Murphy, Greer M.; Yesavage, Jerome A.

    2010-01-01

    Little is known about how APOE ε4-related differences in cognitive performance translate to real-life performance, where training and experience may help to sustain performance. We investigated the influences of APOE ε4 status, expertise (FAA pilot proficiency ratings), and their interaction on longitudinal flight simulator performance. Over a 2-year period, 139 pilots aged 42–69 years were tested annually. APOE ε4 carriers had lower memory performance than noncarriers (p = .019). APOE interacted with Expertise (p = .036), such that the beneficial influence of expertise (p = .013) on longitudinal flight simulator performance was more pronounced for ε4 carriers. Results suggest that relevant training and activity may help sustain middle-aged and older adults’ real-world performance, especially among APOE ε4 carriers. PMID:21668123

  16. STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.

  17. Smart command recognizer (SCR) - For development, test, and implementation of speech commands

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.

    1988-01-01

    The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.

  18. Lunar Landing Research Vehicle (LLRV) in flight lifting off from ramp

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This 1964 NASA Flight Reserch Center photograph shows the Lunar Landing Research Vehicle (LLRV) number 1 in flight at the south base of Edwards Air Force Base. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On the LLRV, in case of jet engine failure, six-500-pounds-of thrust rockets could be used by the pilot to carefully apply lift thrust during the rapid descent to hopefully achieve a controllable landing. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. Weight and balance design constraints were among the most challenging to meet for all phases of the program (design, development, operations). The two LLRVs were shipped disassembled from Bell to the FRC in April 1964, with program emphasis placed on vehicle No. 1. The scene then shifted to the old South Base area of Edwards Air Force Base. On the day of the first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. As 1966 ended, the LLRV #1 had flown 198 flights, and the LLRV #2 was being assembled, instrumented and cockpit modifications made at the South Base. The first flight of the number two LLRV in early January 1967 was quickly followed by five more. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in mid January 1967. When Dryden's LLRVs arrived at Houston they joined the first of the LLTVs to eventually make up the five-vehicle training and simulator fleet. All five vehicles were relied on for simulation and training of moon landings.

  19. Lunar Landing Research Vehicle (LLRV) in flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    In this 1965 NASA Flight Reserch Center photograph the Lunar Landing Research Vehicle (LLRV) number 1 is shown in flight. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On the LLRV, in case of jet engine failure, six-500-pounds-of thrust rockets could be used by the pilot to carefully apply lift thrust during the rapid descent to hopefully achieve a controllable landing. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. Weight and balance design constraints were among the most challenging to meet for all phases of the program (design, development, operations). The two LLRVs were shipped disassembled from Bell to the FRC in April 1964, with program emphasis placed on vehicle No. 1. The scene then shifted to the old South Base area of Edwards Air Force Base. On the day of the first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. As 1966 ended, the LLRV #1 had flown 198 flights, and the LLRV #2 was being assembled, instrumented and cockpit modifications made at the South Base. The first flight of the number two LLRV in early January 1967 was quickly followed by five more. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in mid January 1967. When Dryden's LLRVs arrived at Houston they joined the first of the LLTVs to eventually make up the five-vehicle training and simulator fleet. All five vehicles were relied on for simulation and training of moon landings.

  20. Computer simulation of multiple pilots flying a modern high performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.

  1. A comparison of two recorders for obtaining in-flight heart rate data.

    PubMed

    Dahlstrom, Nicklas; Nahlinder, Staffan

    2006-09-01

    : Measurement of mental workload has been widely used for evaluation of aircraft design, mission analysis and assessment of pilot performance during flight operations. Heart rate is the psychophysiological measure that has been most frequently used for this purpose. The risk of interference with flight safety and pilot performance, as well as the generally constrained access to flights, make it difficult for researchers to collect in-flight heart rate data. Thus, this study was carried out to investigate whether small, non-intrusive sports recorders can be used for in-flight data collection for research purposes. Data was collected from real and simulated flights with student pilots using the Polar Team System sports recorder and the Vitaport II, a clinical and research recording device. Comparison of the data shows that in-flight heart rate data from the smaller and less intrusive sports recorder have a correlation of.981 with that from the clinical recorder, thus indicating that the sports recorder is reliable and cost-effective for obtaining heart rate data for many research situations.

  2. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey train in JSC fixed-based (FB) shuttle mission simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. On FB-SMS flight deck, Hauck and Covey man their respective stations. Mission Specialist (MS) David C. Hilmers is partially visible in the foreground. A simulation for their anticipated June 1988 flight began 10-20-87.

  3. Review of Flight Training Technology

    DTIC Science & Technology

    1976-07-01

    the cockpit. They might be used to train pilots in procedures to cope with NOE-altitude emergencies; howeve-r, a combination of cinematic simulation...airplanes. Although cockpit motion adds realism , thereby i-nproving pilot performanc, in the simulater Fedderqon, Vil; Guercio and Wall, i7?. Ince...operations. Light aircraft, part-task trainers, motion pictures and video tares, cinematic simulators, and digital teaching machines are among the

  4. Inductive Learning Approaches for Improving Pilot Awareness of Aircraft Faults

    NASA Technical Reports Server (NTRS)

    Spikovska, Lilly; Iverson, David L.; Poll, Scott; Pryor, anna

    2005-01-01

    Neural network flight controllers are able to accommodate a variety of aircraft control surface faults without detectable degradation of aircraft handling qualities. Under some faults, however, the effective flight envelope is reduced; this can lead to unexpected behavior if a pilot performs an action that exceeds the remaining control authority of the damaged aircraft. The goal of our work is to increase the pilot s situational awareness by informing him of the type of damage and resulting reduction in flight envelope. Our methodology integrates two inductive learning systems with novel visualization techniques. One learning system, the Inductive Monitoring System (IMS), learns to detect when a simulation includes faulty controls, while two others, Inductive Classification System (INCLASS) and multiple binary decision tree system (utilizing C4.5), determine the type of fault. In off-line training using only non-failure data, IMS constructs a characterization of nominal flight control performance based on control signals issued by the neural net flight controller. This characterization can be used to determine the degree of control augmentation required in the pitch, roll, and yaw command channels to counteract control surface failures. This derived information is typically sufficient to distinguish between the various control surface failures and is used to train both INCLASS and C4.5. Using data from failed control surface flight simulations, INCLASS and C4.5 independently discover and amplify features in IMS results that can be used to differentiate each distinct control surface failure situation. In real-time flight simulations, distinguishing features learned during training are used to classify control surface failures. Knowledge about the type of failure can be used by an additional automated system to alter its approach for planning tactical and strategic maneuvers. The knowledge can also be used directly to increase the pilot s situational awareness and inform manual maneuver decisions. Our multi-modal display of this information provides speech output to issue control surface failure warnings to a lesser-used communication channel and provides graphical displays with pilot-selectable !eve!s of details to issues additional information about the failure. We also describe a potential presentation for flight envelope reduction that can be viewed separately or integrated with an existing attitude indicator instrument. Preliminary results suggest that the inductive approach is capable of detecting that a control surface has failed and determining the type of fault. Furthermore, preliminary evaluations suggest that the interface discloses a concise summary of this information to the pilot.

  5. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  6. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Liu, Yuan; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  7. Real-time state estimation in a flight simulator using fNIRS.

    PubMed

    Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic

    2015-01-01

    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.

  8. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  9. Simulation Model Development for Icing Effects Flight Training

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.

    2003-01-01

    A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.

  10. A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  11. Three-Dimensional Displays In The Future Flight Station

    NASA Astrophysics Data System (ADS)

    Bridges, Alan L.

    1984-10-01

    This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.

  12. The Effects of Safety Information on Aeronautical Decision Making

    NASA Technical Reports Server (NTRS)

    Lee, Jang R.; Fanjoy, Richard O.; Dillman, Brian G.

    2005-01-01

    The importance of aeronautical decision making (ADM) has been considered one of the most critical issues of flight education for future professional pilots. Researchers have suggested that a safety information system based on information from incidents and near misses is an important tool to improve the intelligence and readiness of pilots. This paper describes a study that examines the effect of safety information on aeronautical decision making for students in a collegiate flight program. Data was collected from study participants who were exposed to periodic information about local aircraft malfunctions. Participants were then evaluated using a flight simulator profile and a pen and pencil test of situational judgment. Findings suggest that regular access to the described safety information program significantly improves decision making of student pilots.

  13. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is representative of the AH-64 pilot location. Six test pilots flew three tasks that were specifically designed to represent a broad class of situations in which both lateral and yaw motion cues may be useful. For the first task, the pilot controlled only the yaw axis and was required to rapidly acquire a North heading from 15 deg yaw offsets to either the East or West. This task allowed for full, or 1:1, motion to be used in all axes (yaw, lateral, and longitudinal). The second task was a 10 sec., 180 deg. pedal turn over a runway, but with the pilot only controlling the yaw degree-of-freedom. The position of the vehicle's center-of-mass remained fixed. This maneuver was taken from a current U.S. Army rotary wing design standard5 and is representative of a maneuver performed for acceptance of military helicopters; however, it does not allow for full 1:1 motion, since the simulator cab cannot rotate 180 deg. The third task required the pilot to perform a rapid 9 ft climb at a constant heading. This task was challenging, because rapid collective lever movement in the unaugmented AH64 results in a substantial yawing moment (due to engine torque) that must be countered by the pilot. This task also had full motion in all axes, but, in this case, the pilot had two axes to control simultaneously, rather than one as in the previous tasks. Four motion configurations were examined for each task: full motion (except for the 180 deg turn, for which the motion system was configured to provide as much motion as possible), full linear with no yaw motion, full yaw with no linear motion, and no motion. Each configuration was flown four times in a randomized test matrix, and the pilots were not informed of the configuration given. Vehicle state data were recorded for objective performance comparisons, and pilots provided subjective comments and ratings. As part of the pilots' evaluation, they were asked to rate the compensation required, the overall fidelity of the motion as compared to real flight, and whether motion was detected or not in each of the six degrees of freedom. In addition, the pilots provided a numerical level-of confidence rating, between 1 and 7, corresponding to how sure they were whether or not motion was present in each degree-of-freedom. The latter rating allow classical signal detection analysis to be performed.

  14. A simulator evaluation of an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1983-01-01

    The automatic terminal approach system (ATAS) is a concept for improving the pilot/machine interface with cockpit automation. The ATAS can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane avionics, control the airplane's autopilot, and display status information to the pilot. A piloted simulation study was conducted to determine the feasibility of an ATAS, determine pilot acceptance, and examine pilot/ATAS interaction. Seven instrument-rated pilots each flew four instrument approaches with a base-line heading select autopilot mode. The ATAS runs resulted in lower flight technical error, lower pilot workload, and fewer blunders than with the baseline autopilot. The ATAS status display enabled the pilots to maintain situational awareness during the automatic approaches. The system was well accepted by the pilots.

  15. LLRV liftoff from ramp

    NASA Technical Reports Server (NTRS)

    1960-01-01

    This 24-second video clip shows the LLRV pilot strapping in and flying the vehicle. The LLRV's, humorously referred to as 'flying bedsteads,' were created by a predecessor of the NASA Dryden Flight Research Center and Bell Aerosystems Company, Niagra Falls, New York, to study and analyze piloting techniques needed to fly and land the tiny Apollo Lunar Module in the Moon's airless environment. (Dryden was known simply as the NASA Flight Research Center from 1959 to 1976.) Success of the LLRV's led to the building of three Lunar Landing Training Vehicles (LLTV) used by Apollo astronauts at the Manned Spacecraft Center, Houston, Texas, predecessor of the NASA Johnson Space Center. Apollo 11 astronaut, Neil Armstrong -- first human to step onto the Moon's surface -- said the mission would not have been successful without the type of simulation that resulted from the LLRV's. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the Moon's surface. Three concepts developed: an electronic simulator, a tethered device, and the ambitious Flight Research Center (FRC) contribution, a free-flying vehicle. All three became serious projects, but eventually the FRC's LLRV became the most significant one. Hubert Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman the project manager. After conceptual planning and meetings with engineers from Bell Aerosystems, a company with experience in vertical takeoff and landing (VTOL) aircraft, NASA issued Bell a $50,000 study contract in December 1961. Bell had independently conceived a similar, free-flying simulator, and out of this study came the headquarters' endorsement of the LLRV concept, resulting in a $3.6 million production contract awarded to Bell February 1, 1963, for delivery of the first of two vehicles for flight studies at the FRC within 14 months. Built of aluminum alloy trusses and shaped like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in a gimbal, with 4200 pounds of thrust. The engine got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the Moon. Two hydrogen peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal movement. Sixteen smaller hydrogen peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. As safety backups on the LLRV, six 500-pound rockets could take over the lift function and stabilize the craft for a moment if the main jet engine failed. The pilot had a zero-zero ejection seat that would then lift him away to safety. The two LLRV's were shipped from Bell to the FRC in April 1964, with program emphasis on vehicle No. 1. It was first readied for captured flight on a tilt-table affair. The scene then shifted to the old South Base area of Edwards. On the day of the first flight, October 30, 1964, research pilot Joe Walker flew it three times for a total of just under 60 seconds to a peak altitude of ten feet (three meters). Later flights were shared between Walker, another Center pilot named Don Mallick, the Army's Jack Kleuver, NASA Manned Spacecraft Center, Houston, Texas, pilots Joseph Algranti and H.E. 'Bud' Ream. NASA had accumulated enough data from the LLRV flight program at the FRC by mid-1966 to give Bell a contract to deliver three LLTV's at a cost of $2.5 million each. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in January 1967, within weeks of its first flight. Modifications already made to No. 2 had given the pilot a three-axis side control stick and a more restrictive cockpit view, both features of the real Lunar Module that would later be flown by the astronauts down to the Moon's surface. When the LLRV's arrived at Houston, where research pilots would learn how to become LLTV instructor pilots, No. 2 had been flown just seven times while No. 1, the veteran, had a total of 198 flights. In December 1967, the first of the LLTV's joined the FRC's LLRV's to eventually make up the five-vehicle training and simulator fleet. Three of the five vehicles were later destroyed in crashes at Houston - LLRV No. 1 in May 1968 and two LLTVs, in December 1968 and January 1971. The two accidents in 1968, before the first lunar landing, did not deter Apollo program managers who enthusiastically relied on the vehicles for simulation and training. Donald 'Deke' Slayton, then NASA's astronaut chief, said there was no other way to simulate a Moon landing except by flying the LLTV. LLRV No. 2 was eventually returned to Dryden, where it is on display as a silent artifact of the Center's contribution to the Apollo program.

  16. Pilot expertise and hippocampal size: associations with longitudinal flight simulator performance.

    PubMed

    Adamson, Maheen M; Bayley, Peter J; Scanlon, Blake K; Farrell, Michelle E; Hernandez, Beatriz; Weiner, Michael W; Yesavage, Jerome A; Taylor, Joy L

    2012-09-01

    Previous research suggests that the size of the hippocampus can vary in response to intensive training (e.g., during the acquisition of expert knowledge). However, the role of the hippocampus in maintenance of skilled performance is not well understood. The Stanford/Veterans Affairs Aviation MRI Study offers a unique opportunity to observe the interaction of brain structure and multiple levels of expertise on longitudinal flight simulator performance. The current study examined the relationship between hippocampal volume and three levels of aviation expertise, defined by pilot proficiency ratings issued by the U.S. Federal Aviation Administration (11). At 3 annual time points, 60 pilots who varied in their level of aviation expertise (ages ranging from 45 to 69 yr) were tested. At baseline, higher expertise was associated with better flight simulator performance, but not with hippocampal volume. Longitudinally, there was an Expertise x Hippocampal volume interaction, in the direction that a larger hippocampus was associated with better performance at higher levels of expertise. These results are consistent with the notion that expertise in a cognitively demanding domain involves the interplay of acquired knowledge ('mental schemas') and basic hippocampal-dependent processes.

  17. Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus.

    PubMed

    Adamson, Maheen M; Taylor, Joy L; Heraldez, Daniel; Khorasani, Allen; Noda, Art; Hernandez, Beatriz; Yesavage, Jerome A

    2014-01-01

    The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20-66) were asked to "fly" a series of simulated "cockpit view" instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog-legally unsafe to land) or low risk (medium fog-legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a "land" versus "do not land" decision (CFII: d' = 3.62 ± 2.52; IFR: d' = 0.98 ± 1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a "land" versus "do not land" decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97 ± 0.80) compared to Moderate Expertise pilots (1.91 ± 1.16) (p<.05). These findings provide evidence for increased "neural efficiency" in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the "expertise" effect was observed. These data provide evidence that performing "real world" aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.

  18. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  19. Evaluation of two cockpit display concepts for civil tiltrotor instrument operations on steep approaches

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.

    1993-01-01

    A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.

  20. The performance of the standard rate turn (SRT) by student naval helicopter pilots.

    PubMed

    Chapman, F; Temme, L A; Still, D L

    2001-04-01

    During flight training, student naval helicopter pilots learn the use of flight instruments through a prescribed series of simulator training events. The training simulator is a 6-degrees-of-freedom, motion-based, high-fidelity instrument trainer. From the final basic instrument simulator flights of student pilots, we selected for evaluation and analysis their performance of the Standard Rate Turn (SRT), a routine flight maneuver. The performance of the SRT was scored with air speed, altitude and heading average error from target values and standard deviations. These average errors and standard deviations were used in a Multiple Analysis of Variance (MANOVA) to evaluate the effects of three independent variables: 1) direction of turn (left vs. right), 2) degree of turn (180 vs. 360 degrees); and 3) segment of turn (roll-in, first 30 s, last 30 s, and roll-out of turn). Only the main effects of the three independent variables were significant; there were no significant interactions. This result greatly reduces the number of different conditions that should be scored separately for the evaluation of SRT performance. The results also showed that the magnitude of the heading and altitude errors at the beginning of the SRT correlated with the magnitude of the heading and altitude errors throughout the turn. This result suggests that for the turn to be well executed, it is important for it to begin with little error in these two response parameters. The observations reported here should be considered when establishing SRT performance norms and comparing student scores. Furthermore, it seems easier for pilots to maintain good performance than to correct poor performance.

  1. Effect of Above Real Time Training and Post Flight Feedback in Training of Novice Pilots in a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce E.; Ali, Syed firasat; Crane, Peter; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    The use of Post-Flight Feedback (PFFB) and Above Real-Time Training (ARTT) while training novice pilots to perform a coordinated level turn on a PC-based flight simulator was investigated. One group trained at 1.5 ARTT followed by an equal number of flights at 2.0 ARTT; the second group experienced Real Time Training (RTT). The total number of flights for both groups was equal. Each group was further subdivided into two groups one of which was provided PFFB while the other was not. Then, all participants experienced two challenging evaluation missions in real time. Performance was assessed by comparing root-mean-square error in bank-angle and altitude. Participants in the 1.512.0 ARTT No-PFFB sequence did not show improvement in performance across training sessions. An ANOVA on performance in evaluation flights found that the PFFB groups performed significantly better than those with No-PFFB. Also, the RTT groups performed significantly better than the ARTT groups. Data from two additional groups trained under a 2.011.5 ARTT PFFB and No-PFFB regimes were collected and combined with data from the previously Trainers, Real-time simulation, Personal studied groups and reanalyzed to study the computers, Man-in-the-loop simulation influence of sequence. An ANOVA on test trials found no significant effects between groups. Under training situations involving ARTT we recommend that appropriate PFFB be provided.

  2. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    NASA Image and Video Library

    1987-10-20

    S87-46304 (20 Oct 1987) --- Astronauts Frederick H. (Rick) Hauck, left, STS-26 commander, and Richard O. Covey, pilot, man their respective stations in the Shuttle mission simulator (fixed base) at the Johnson Space Center. A simulation for their anticipated June 1988 flight aboard the space shuttle Discovery began Oct. 20. Astronaut David C. Hilmers, one of three mission specialists for the flight, is partially visible in the foreground.

  3. Concurrent Pilot Instrument Monitoring in the Automated Multi-Crew Airline Cockpit.

    PubMed

    Jarvis, Stephen R

    2017-12-01

    Pilot instrument monitoring has been described as "inadequate," "ineffective," and "insufficient" after multicrew aircraft accidents. Regulators have called for improved instrument monitoring by flight crews, but scientific knowledge in the area is scarce. Research has tended to investigate the monitoring of individual pilots when in the pilot-flying role; very little research has looked at crew monitoring, or that of the "monitoring-pilot" role despite it being half of the apparent problem. Eye-tracking data were collected from 17 properly constituted and current Boeing 737 crews operating in a full motion simulator. Each crew flew four realistic flight segments, with pilots swapping between the pilot-flying and pilot-monitoring roles, with and without the autopilot engaged. Analysis was performed on the 375 maneuvering-segments prior to localizer intercept. Autopilot engagement led to significantly less visual dwell time on the attitude director indicator (mean 212.8-47.8 s for the flying pilot and 58.5-39.8 s for the monitoring-pilot) and an associated increase on the horizontal situation indicator (18-52.5 s and 36.4-50.5 s). The flying-pilots' withdrawal of attention from the primary flight reference and increased attention to the primary navigational reference was paralleled rather than complemented by the monitoring-pilot, suggesting that monitoring vulnerabilities can be duplicated in the flight deck. Therefore it is possible that accident causes identified as "inadequate" or "insufficient" monitoring, are in fact a result of parallel monitoring.Jarvis SR. Concurrent pilot instrument monitoring in the automated multi-crew airline cockpit. Aerosp Med Hum Perform. 2017; 88(12):1100-1106.

  4. LLRV in flight and landing on ramp

    NASA Technical Reports Server (NTRS)

    1960-01-01

    This 26-second video clip shows the LLRV flying and landing. The LLRV's, humorously referred to as 'flying bedsteads,' were created by a predecessor of the NASA Dryden Flight Research Center and Bell Aerosystems Company, Niagra Falls, New York, to study and analyze piloting techniques needed to fly and land the tiny Apollo Lunar Module in the Moon's airless environment. (Dryden was known simply as the NASA Flight Research Center from 1959 to 1976.) Success of the LLRV's led to the building of three Lunar Landing Training Vehicles (LLTV) used by Apollo astronauts at the Manned Spacecraft Center, Houston, Texas, predecessor of the NASA Johnson Space Center. Apollo 11 astronaut, Neil Armstrong -- first human to step onto the Moon's surface -- said the mission would not have been successful without the type of simulation that resulted from the LLRV's. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the Moon's surface. Three concepts developed: an electronic simulator, a tethered device, and the ambitious Flight Research Center (FRC) contribution, a free-flying vehicle. All three became serious projects, but eventually the FRC's LLRV became the most significant one. Hubert Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman the project manager. After conceptual planning and meetings with engineers from Bell Aerosystems, a company with experience in vertical takeoff and landing (VTOL) aircraft, NASA issued Bell a $50,000 study contract in December 1961. Bell had independently conceived a similar, free-flying simulator, and out of this study came the headquarters' endorsement of the LLRV concept, resulting in a $3.6 million production contract awarded to Bell February 1, 1963, for delivery of the first of two vehicles for flight studies at the FRC within 14 months. Built of aluminum alloy trusses and shaped like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in a gimbal, with 4200 pounds of thrust. The engine got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the Moon. Two hydrogen peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal movement. Sixteen smaller hydrogen peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. As safety backups on the LLRV, six 500-pound rockets could take over the lift function and stabilize the craft for a moment if the main jet engine failed. The pilot had a zero-zero ejection seat that would then lift him away to safety. The two LLRV's were shipped from Bell to the FRC in April 1964, with program emphasis on vehicle No. 1. It was first readied for captured flight on a tilt-table affair. The scene then shifted to the old South Base area of Edwards. On the day of the first flight, October 30, 1964, research pilot Joe Walker flew it three times for a total of just under 60 seconds to a peak altitude of ten feet (three meters). Later flights were shared between Walker, another Center pilot named Don Mallick, the Army's Jack Kleuver, NASA Manned Spacecraft Center, Houston, Texas, pilots Joseph Algranti and H.E. 'Bud' Ream. NASA had accumulated enough data from the LLRV flight program at the FRC by mid-1966 to give Bell a contract to deliver three LLTVs at a cost of $2.5 million each. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in January 1967, within weeks of its first flight. Modifications already made to No. 2 had given the pilot a three-axis side control stick and a more restrictive cockpit view, both features of the real Lunar Module that would later be flown by the astronauts down to the Moon's surface. When the LLRV's arrived at Houston, where research pilots would learn how to become LLTV instructor pilots, No. 2 had been flown just seven times while No. 1, the veteran, had a total of 198 flights. In December 1967, the first of the LLTV's joined the FRC's LLRV's to eventually make up the five-vehicle training and simulator fleet. Three of the five vehicles were later destroyed in crashes at Houston - LLRV No. 1 in May 1968 and two LLTV's, in December 1968 and January 1971. The two accidents in 1968, before the first lunar landing, did not deter Apollo program managers who enthusiastically relied on the vehicles for simulation and training. Donald 'Deke' Slayton, then NASA's astronaut chief, said there was no other way to simulate a Moon landing except by flying the LLTV. LLRV No. 2 was eventually returned to Dryden, where it is on display as a silent artifact of the Center's contribution to the Apollo program.

  5. Helicopter roll control effectiveness criteria program summary

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Bourne, Simon M.; Mnich, Marc A.

    1988-01-01

    A study of helicopter roll control effectiveness is summarized for the purpose of defining military helicopter handling qualities requirements. The study is based on an analysis of pilot-in-the-loop task performance of several basic maneuvers. This is extended by a series of piloted simulations using the NASA Ames Vertical Motion Simulator and selected flight data. The main results cover roll control power and short-term response characteristics. In general the handling qualities requirements recommended are set in conjunction with desired levels of flight task and maneuver response which can be directly observed in actual flight. An important aspect of this, however, is that vehicle handling qualities need to be set with regard to some quantitative aspect of mission performance. Specific examples of how this can be accomplished include a lateral unmask/remask maneuver in the presence of a threat and an air tracking maneuver which recognizes the kill probability enhancement connected with decreasing the range to the target. Conclusions and recommendations address not only the handling qualities recommendations, but also the general use of flight simulators and the dependence of mission performance on handling qualities.

  6. Piloted Aircraft Environment Simulation Techniques

    DTIC Science & Technology

    1978-04-01

    raS’I.Al. lIIf~iiI~.1 labL. lot. Rolmotion -oft. skylicav - ow d Roll rMotion -oft Skylicape - Off Fig 6 a A Effect of roll motion and akyscape, an msatwntn...greater realism and pilot involvement than ground based simu- lation, it still lacks some of the pilot motivating factors of actual combat. Flight

  7. Handling qualities effects of display latency

    NASA Technical Reports Server (NTRS)

    King, David W.

    1993-01-01

    Display latency is the time delay between aircraft response and the corresponding response of the cockpit displays. Currently, there is no explicit specification for allowable display lags to ensure acceptable aircraft handling qualities in instrument flight conditions. This paper examines the handling qualities effects of display latency between 70 and 400 milliseconds for precision instrument flight tasks of the V-22 Tiltrotor aircraft. Display delay effects on the pilot control loop are analytically predicted through a second order pilot crossover model of the V-22 lateral axis, and handling qualities trends are evaluated through a series of fixed-base piloted simulation tests. The results show that the effects of display latency for flight path tracking tasks are driven by the stability characteristics of the attitude control loop. The data indicate that the loss of control damping due to latency can be simply predicted from knowledge of the aircraft's stability margins, control system lags, and required control bandwidths. Based on the relationship between attitude control damping and handling qualities ratings, latency design guidelines are presented. In addition, this paper presents a design philosophy, supported by simulation data, for using flight director display augmentation to suppress the effects of display latency for delays up to 300 milliseconds.

  8. Advanced techniques for mitigating the effects of temporal distortions in human in the loop control systems

    NASA Astrophysics Data System (ADS)

    Guo, Liwen

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, the simulation transport delay remains a problem. Because of the limitations shown in the three prominent existing delay compensators---the lead/lag filter, the McFarland compensator and the Sobiski/Cardullo predictor---new approaches of compensating the transport delay in a flight simulator have been developed. The first novel compensator is the adaptive predictor making use of the Kalman filter algorithm in a unique manner so that the predictor can provide accurately the desired amount of prediction, significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors it illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator's control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Piloted simulation tests were conducted for assessing the effectiveness of the two novel compensators in comparison to the McFarland predictor and no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. Four metrics---the glide slope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating on the handling qualities---were employed for the analyses. The overall analyses show that while the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator, the state space predictor is fairly superior for short delay and significantly superior for long delay to the McFarland compensator. The state space predictor also achieves better compensation than the adaptive predictor. The results of the evaluation on the effectiveness of these predictors in the piloted tests agree with those in the theoretical offline tests conducted with the recorded simulation aircraft states.

  9. ARC-1971-AC71-3921

    NASA Image and Video Library

    1971-03-19

    Visual Flgiht Attachment 2 (REDIFON) is a terrain model that is video-coupled with a simulator cockpit to integrate the pilot with the machine for actual STOL operations of the future N-210 Flight Simulation Laboratory

  10. Operational requirements for flight control and navigation systems for short haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1978-01-01

    To provide a background for evaluating advanced STOL systems concepts, a number of short haul and STOL airline operations in the United States and one operation in Canada were studied. A study of flight director operational procedures for an advanced STOL research airplane, the Augmented Wing Jet STOL Research Airplane, was conducted using the STOLAND simulation facility located at the Ames Changes to the advanced digital flight control system (STOLAND) installed in the Augmentor Wing Airplane are proposed to improve the mode sequencing to simplify pilot procedures and reduce pilot workload.

  11. Analyses of Shuttle Orbiter approach and landing

    NASA Technical Reports Server (NTRS)

    Ashkenas, I. L.; Hoh, R. H.; Teper, G. L.

    1982-01-01

    A study of the Shuttle Orbiter approach and landing conditions is summarized. The causes of observed PIO-like flight deficiencies are listed, and possible corrective measures are examined. Closed-loop pilot/vehicle analyses are described, and a description is given of path-attitude stability boundaries. The latter novel approach is found to be of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. It is shown that the analytical results are consistent with flight test and fixed-base simulation. Conclusions are drawn concerning possible improvements in the Shuttle Orbiter/Digital Flight Control System.

  12. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  13. An Annotated Bibliography of Objective Pilot Performance Measures

    DTIC Science & Technology

    1982-01-01

    realism . (Author) 224 NAVTRAEQUIPCEN IH-330 t 667. PROPHET, Wallace W., and Caro, Paul W., Simulation and Aircrew Training and Performance, Human... cinematic simulation and air training appears to be the most promising cost-effective method of developing NOE visual perception skills. Of other...flight and control dynamics. Informal trials were run with research staff and carrier-qualified pilots to evaluate realism of the displays; amount of

  14. Human factors evaluations of Free Flight Issues solved and issues remaining.

    PubMed

    Ruigrok, Rob C J; Hoekstra, Jacco M

    2007-07-01

    The Dutch National Aerospace Laboratory (NLR) has conducted extensive human-in-the-loop simulation experiments in NLR's Research Flight Simulator (RFS), focussed on human factors evaluation of Free Flight. Eight years of research, in co-operation with partners in the United States and Europe, has shown that Free Flight has the potential to increase airspace capacity by at least a factor of 3. Expected traffic loads and conflict rates for the year 2020 appear to be no major problem for professional airline crews participating in flight simulation experiments. Flight efficiency is significantly improved by user-preferred routings, including cruise climbs, while pilot workload is only slightly increased compared to today's reference. Detailed results from three projects and six human-in-the-loop experiments in NLR's Research Flight Simulator are reported. The main focus of these results is on human factors issues and particularly workload, measured both subjectively and objectively. An extensive discussion is included on many human factors issues resolved during the experiments, but also open issues are identified. An intent-based Conflict Detection and Resolution (CD&R) system provides "benefits" in terms of reduced pilot workload, but also "costs" in terms of complexity, need for priority rules, potential compatibility problems between different brands of Flight Management Systems and large bandwidth. Moreover, the intent-based system is not effective at solving multi-aircraft conflicts. A state-based CD&R system also provides "benefits" and "costs". Benefits compared to the full intent-based system are simplicity, low bandwidth requirements, easy to retrofit (no requirements to change avionics infrastructure) and the ability to solve multi-aircraft conflicts in parallel. The "costs" involve a somewhat higher pilot workload in similar circumstances, the smaller look-ahead time which results in less efficient resolution manoeuvres and the sometimes false/nuisance alerts due to missing intent information. The optimal CD&R system (in terms of costs versus benefits) has been suggested to be state-based CD&R with the addition of intended or target flight level. This combination of state-based CD&R with a limited amount of intent provides "the best of both worlds". Studying this CD&R system is still an open issue.

  15. Lunar Landing Research Vehicle (LLRV) in flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    An inflight view from the left side of the Lunar Landing Research Vehicle, is shown in this 1964 NASA Flight Research Center photograph. The photograph was taken in front of the old NACA hangar located at the South Base, Edwards Air Force Base. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On the LLRV, in case of jet engine failure, six-500-pounds-of thrust rockets could be used by the pilot to carefully apply lift thrust during the rapid descent to hopefully achieve a controllable landing. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. Weight and balance design constraints were among the most challenging to meet for all phases of the program (design, development, operations). The two LLRVs were shipped disassembled from Bell to the FRC in April 1964, with program emphasis placed on vehicle No. 1. The scene then shifted to the old South Base area of Edwards Air Force Base. On the day of the first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. As 1966 ended, the LLRV #1 had flown 198 flights, and the LLRV #2 was being assembled, instrumented and cockpit modifications made at the South Base. The first flight of the number two LLRV in early January 1967 was quickly followed by five more. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in mid January 1967. When Dryden's LLRVs arrived at Houston they joined the first of the LLTVs to eventually make up the five-vehicle training and simulator fleet. All five vehicles were relied on for simulation and training of moon landings.

  16. Lunar Landing Research Vehicle (LLRV) in flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    In this 1965 NASA Flight Reserch Center photograph the Lunar Landing Research Vehicle (LLRV) is shown at near maximum altitude over the south base at Edwards Air Force Base. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On the LLRV, in case of jet engine failure, six-500-pounds-of thrust rockets could be used by the pilot to carefully apply lift thrust during the rapid descent to hopefully achieve a controllable landing. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. Weight and balance design constraints were among the most challenging to meet for all phases of the program (design, development, operations). The two LLRVs were shipped disassembled from Bell to the FRC in April 1964, with program emphasis placed on vehicle No. 1. The scene then shifted to the old South Base area of Edwards Air Force Base. On the day of the first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. As 1966 ended, the LLRV #1 had flown 198 flights, and the LLRV #2 was being assembled, instrumented and cockpit modifications made at the South Base. The first flight of the number two LLRV in early January 1967 was quickly followed by five more. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in mid January 1967. When Dryden's LLRVs arrived at Houston they joined the first of the LLTVs to eventually make up the five-vehicle training and simulator fleet. All five vehicles were relied on for simulation and training of moon landings.

  17. F-18 simulation with Simulation Group Lead Martha Evans at the controls

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Simulation Group Leader Martha Evans is seen here at the controls of the F-18 aircraft simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  18. Development of an integrated configuration management/flight director system for piloted STOL approaches

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.; Klein, R. H.; Johnson, W. A.

    1977-01-01

    A system analysis method for the development of an integrated configuration management/flight director system for IFR STOL approaches is presented. Curved descending decelerating approach trajectories are considered. Considerable emphasis is placed on satisfying the pilot centered requirements (acceptable workload) as well as the usual guidance and control requirements (acceptable performance). The Augmentor Wing Jet STOL Research Aircraft was utilized to allow illustration by example, and to validate the analysis procedure via manned simulation.

  19. An Assessment of Reduced Crew and Single Pilot Operations in Commercial Transport Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Kennedy, Kellie D.; Stephens, Chad L.; Etherington, Timothy J.

    2017-01-01

    Future reduced crew operations or even single pilot operations for commercial airline and on-demand mobility applications are an active area of research. These changes would reduce the human element and thus, threaten the precept that "a well-trained and well-qualified pilot is the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system." NASA recently completed a pilot-in-the-loop high fidelity motion simulation study in partnership with the Federal Aviation Administration (FAA) attempting to quantify the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Crew complement was used as the experiment independent variable in a between-subjects design. These data show significant increases in workload for single pilot operations, compared to two-crew, with subjective assessments of safety and performance being significantly degraded as well. Nonetheless, in all cases, the pilots were able to overcome the failure mode effects in all crew configurations. These data reflect current-day flight deck equipage and help identify the technologies that may improve two-crew operations and/or possibly enable future reduced crew and/or single pilot operations.

  20. A feedback intervention to increase digital and paper checklist performance in technically advanced aircraft simulation.

    PubMed

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes.

  1. Situation Awareness and Levels of Automation: Empirical Assessment of Levels of Automation in the Commercial Cockpit

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; Schutte, Paul C. (Technical Monitor)

    2000-01-01

    This report has been prepared to closeout a NASA grant to Mississippi State University (MSU) for research into situation awareness (SA) and automation in the advanced commercial aircraft cockpit. The grant was divided into two obligations including $60,000 for the period from May 11, 2000 to December 25, 2000. The information presented in this report summarizes work completed through this obligation. It also details work to be completed with the balance of the current obligation and unobligated funds amounting to $50,043, which are to be granted to North Carolina State University for completion of the research project from July 31, 2000 to May 10, 2001. This research was to involve investigation of a broad spectrum of degrees of automation of complex systems on human-machine performance and SA. The work was to empirically assess the effect of theoretical levels of automation (LOAs) described in a taxonomy developed by Endsley & Kaber (1999) on naive and experienced subject performance and SA in simulated flight tasks. The study was to be conducted in the context of a realistic simulation of aircraft flight control. The objective of this work was to identify LOAs that effectively integrate humans and machines under normal operating conditions and failure modes. In general, the work was to provide insight into the design of automation in the commercial aircraft cockpit. Both laboratory and field investigations were to be conducted. At this point in time, a high-fidelity flight simulator of the McDonald Douglas (MD) 11 aircraft has been completed. The simulator integrates a reconfigurable flight simulator developed by the Georgia Institute of Technology and stand-alone simulations of MD-11 autoflight systems developed at MSU. Use of the simulator has been integrated into a study plan for the laboratory research and it is expected that the simulator will also be used in the field study with actual commercial pilots. In addition to the flight simulator, an electronic version of the Situation Awareness Global Assessment Technique (SAGAT) has been completed for measuring commercial pilot SA in flight tasks. The SAGAT is to be used in both the lab and field studies. Finally, the lab study has been designed and subjects have been recruited for participation in experiments. This study will investigate the effects of five levels of automation, described in Endsley & Kaber's (1999) taxonomy and applied to the MD-11 autoflight system, on private pilot performance and SA in basic flight tasks by using the MD-11 simulator. The field study remains to be planned and executed.

  2. Flight investigation of a vertical-velocity command system for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.

    1977-01-01

    A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.

  3. The reliability and validity of flight task workload ratings

    NASA Technical Reports Server (NTRS)

    Childress, M. E.; Hart, S. G.; Bortolussi, M. R.

    1982-01-01

    Twelve instrument-rated general aviation pilots each flew two scenarios in a motion-base simulator. During each flight, the pilots verbally estimated their workload every three minutes. Following each flight, they again estimated workload for each flight segment and also rated their overall workload, perceived performance, and 13 specific factors on a bipolar scale. The results indicate that time (a priori, inflight, or postflight) of eliciting ratings, period to be covered by the ratings (a specific moment in time or a longer period), type of rating scale, and rating method (verbal, written, or other) may be important variables. Overall workload ratings appear to be predicted by different specific scales depending upon the situation, with activity level the best predictor. Perceived performance seems to bear little relationship to observer-rated performance when pilots rate their overall performance and an observer rates specific behaviors. Perceived workload and performance also seem unrelated.

  4. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  5. Low-speed longitudinal orbiter qualities

    NASA Technical Reports Server (NTRS)

    Powers, B. G.

    1985-01-01

    The shuttle program took on the challenge of providing a manual landing capability for an operational vehicle returning from orbit. Some complex challenges were encountered in developing the longitudinal flying qualities required to land the orbiter manually in an operational environment. Approach and landing test flights indicated a tendency for pilot-induced oscillation near landing. Changes in the operational procedures reduced the difficulty of the landing task, and an adaptive stick filter was incorporated to reduce the severity of any pilot-induced oscillatory motions. Fixed-base, movingbase, and in-flight simulations were used for the evaluations, and in general, flight simulation was the only reliable means of assessing the low-speed longitudinal flying qualities problems. Overall, the orbiter control system and operational procedures have produced a good capability to routinely perform precise landings with a large, unpowered vehicle with a low lift-to-drag ratio.

  6. Towards an internal model in pilot training.

    PubMed

    Braune, R J; Trollip, S R

    1982-10-01

    Optimal decision making requires an information seeking behavior which reflects the comprehension of the overall system dynamics. Research in the area of human monitors in man-machine systems supports the notion of an internal model with built-in expectancies. It is doubtful that the current approach to pilot training helps develop this internal model in the most efficient way. But this is crucial since the role of the pilot is changing to a systems' manager and decision maker. An extension of the behavioral framework of pilot training might help to prepare the pilot better for the increasingly complex flight environment. This extension is based on the theoretical model of schema theory, which evolved out of psychological research. The technological advances in aircraft simulators and in-flight performance measurement devices allow investigation of the still-unresolved issues.

  7. Development of ADOCS controllers and control laws. Volume 2: Literature review and preliminary analysis

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  8. Development of ADOCS controllers and control laws. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the study are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume 1 is an Executive Summary of the study. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  9. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  10. Generic Airplane Model Concept and Four Specific Models Developed for Use in Piloted Simulation Studies

    NASA Technical Reports Server (NTRS)

    Hoffler, Keith D.; Fears, Scott P.; Carzoo, Susan W.

    1997-01-01

    A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.

  11. Towards a genetics-based adaptive agent to support flight testing

    NASA Astrophysics Data System (ADS)

    Cribbs, Henry Brown, III

    Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.

  12. Symbology Development for General Aviation Synthetic Vision Primary Flight Displays for the Approach and Missed-Approach Modes of Flight

    NASA Technical Reports Server (NTRS)

    Bartolone, Anthony P.; Hughes, Monica F.; Wong, Douglas T.; Takallu, Mohammad A.

    2004-01-01

    Spatial disorientation induced by inadvertent flight into instrument meteorological conditions (IMC) continues to be a leading cause of fatal accidents in general aviation. The Synthetic Vision Systems General Aviation (SVS-GA) research element, an integral part of NASA s Aviation Safety and Security Program (AvSSP), is investigating a revolutionary display technology designed to mitigate low visibility events such as controlled flight into terrain (CFIT) and low-visibility loss of control (LVLoC). The integrated SVS Primary Flight Display (SVS-PFD) utilizes computer generated 3-dimensional imagery of the surrounding terrain augmented with flight path guidance symbology. This unique combination will provide GA pilots with an accurate representation of their environment and projection of their flight path, regardless of time of day or out-the-window (OTW) visibility. The initial Symbology Development for Head-Down Displays (SD-HDD) simulation experiment examined 16 display configurations on a centrally located high-resolution PFD installed in NASA s General Aviation Work Station (GAWS) flight simulator. The results of the experiment indicate that situation awareness (SA) can be enhanced without having a negative impact on flight technical error (FTE), by providing a general aviation pilot with an integrated SVS display to use when OTW visibility is obscured.

  13. Subjective evaluation with FAA criteria: A multidimensional scaling approach. [ground track control management

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.

    1975-01-01

    Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.

  14. Developing a Measurement for Task Complexity in Flight.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Wang, Zhen; Huang, Dan; Fu, Shan

    2015-08-01

    Task complexity is regarded as an essential metric that is related to a pilot's performance and workload. Normally, pilots follow Standard Operating Procedures (SOPs) during a flight. In this study, we developed a measurement named Task Complexity in Flight (TCIF) to represent the task complexity in the SOPs. The TCIF measurement combined four complexity components into one index: actions logic complexity (ALC), actions size complexity (ASC), information control exchange complexity (ICEC), and control mode complexity (CMC).To verify the measurement, we calculated 11 tasks during the takeoff and landing phases from the SOPs, and invited 10 pilots to perform the same tasks in a flight simulator. After flight, the TCIF results were compared with two workload measurements: the Bedford scale and heart rate. The results of TCIF and the 4 components of the 11 tasks were calculated. Further, the TCIF results showed a significant correlation with the Bedford scores (R=0.851) and were also consistent with the difference in heart rate (R=0.816). Therefore, with the increased TCIF results, both the Bedford scale and the difference in heart rate increased. TCIF was proposed based on the flight operating conditions. Although additional studies of TCIF are necessary, the results of this study suggest this measurement could effectively indicate task complexity in flight, and could also be used to guide pilot training and task allocation on the flight deck.

  15. Multi-man flight simulator

    NASA Technical Reports Server (NTRS)

    Macdonald, G.

    1983-01-01

    A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.

  16. Lift-fan aircraft: Lessons learned-the pilot's perspective

    NASA Technical Reports Server (NTRS)

    Gerdes, Ronald M.

    1993-01-01

    This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.

  17. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  18. Pilots' monitoring strategies and performance on automated flight decks: an empirical study combining behavioral and eye-tracking data.

    PubMed

    Sarter, Nadine B; Mumaw, Randall J; Wickens, Christopher D

    2007-06-01

    The objective of the study was to examine pilots' automation monitoring strategies and performance on highly automated commercial flight decks. A considerable body of research and operational experience has documented breakdowns in pilot-automation coordination on modern flight decks. These breakdowns are often considered symptoms of monitoring failures even though, to date, only limited and mostly anecdotal data exist concerning pilots' monitoring strategies and performance. Twenty experienced B-747-400 airline pilots flew a 1-hr scenario involving challenging automation-related events on a full-mission simulator. Behavioral, mental model, and eye-tracking data were collected. The findings from this study confirm that pilots monitor basic flight parameters to a much greater extent than visual indications of the automation configuration. More specifically, they frequently fail to verify manual mode selections or notice automatic mode changes. In other cases, they do not process mode annunciations in sufficient depth to understand their implications for aircraft behavior. Low system observability and gaps in pilots' understanding of complex automation modes were shown to contribute to these problems. Our findings describe and explain shortcomings in pilot's automation monitoring strategies and performance based on converging behavioral, eye-tracking, and mental model data. They confirm that monitoring failures are one major contributor to breakdowns in pilot-automation interaction. The findings from this research can inform the design of improved training programs and automation interfaces that support more effective system monitoring.

  19. Motion Factors in Flight Simulation. Final Report.

    ERIC Educational Resources Information Center

    Klier, Sol; Gage, Howard

    The effect of different simulator motion conditions on pilot performance was investigated, and the cuing function of simulator motion was explored. Subjects were required to perform a simulated air-to-air gunnery task under four conditions of motion. While treatment effects did not meet the predetermined level of statistical significance,…

  20. Incorporating Data Link Features into a Multi-Function Display to Support Self-Separation and Spacing Tasks for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Adams, Catherine A.; Murdoch, Jennifer L.; Consiglio, Maria C.; WIlliams, Daniel M.

    2005-01-01

    One objective of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated Airport Management Module (AMM) and separation responsibilities to general aviation (GA) pilots. Implementation of this concept required the development of a research Multi-Function Display (MFD) to support the interactive communications between pilots and the AMM. The interface also had to accommodate traffic awareness, self-separation, and spacing tasks through dynamic messaging and symbology for flight path conformance and conflict detection and alerting (CDA). The display served as the mechanism to support the examination of the viability of executing instrument operations designed for SATS designated airports. Results of simulation and flight experiments conducted at the National Aeronautics and Space Administration's (NASA) Langley Research Center indicate that the concept, as facilitated by the research MFD, did not increase pilots subjective workload levels or reduce their situation awareness (SA). Post-test usability assessments revealed that pilots preferred using the enhanced MFD to execute flight procedures, reporting improved SA over conventional instrument flight rules (IFR) procedures.

Top