Science.gov

Sample records for pilz domain proteins

  1. A Novel Tetrameric PilZ Domain Structure from Xanthomonads

    PubMed Central

    Li, Tso-Ning; Chin, Ko-Hsin; Fung, Kit-Man; Yang, Ming-Te; Wang, Andrew H.-J.; Chou, Shan-Ho

    2011-01-01

    PilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal. We now report a novel tetrameric PilZ domain structure of XCC6012 from the plant pathogen Xanthomonas campestris pv. campestris (Xcc). It is one of the four PilZ domain proteins essential for Xcc pathogenicity. Although the monomer adopts a structure similar to those of the PilZ domains with very weak c-di-GMP binding activity, it is nevertheless interrupted in the middle by two extra long helices. Four XCC6012 proteins are thus self-assembled into a tetramer via the extra heptad repeat α3 helices to form a parallel four-stranded coiled-coil, which is further enclosed by two sets of inclined α2 and α4 helices. We further generated a series of XCC6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer. Discovery of this new PilZ domain architecture increases the complexity of c-di-GMP-mediated regulation. PMID:21760949

  2. The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility.

    PubMed

    Yang, Fenghuan; Tian, Fang; Chen, Huamin; Hutchins, William; Yang, Ching-Hong; He, Chenyang

    2015-07-01

    The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R(141) and R(10) residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae.

  3. Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris.

    PubMed

    Ryan, Robert P; McCarthy, Yvonne; Kiely, Patrick A; O'Connor, Rosemary; Farah, Chuck S; Armitage, Judith P; Dow, J Maxwell

    2012-11-01

    RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain 'adaptor' protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.

  4. The Structural Basis of Cyclic Diguanylate Signal Transduction by PilZ Domains

    SciTech Connect

    Benach,J.; Swaminathan, S.; Tamayo, R.; Handelman, S.; Folta-Stogniew, E.; Ramos, J.; Forouhar, F.; Neely, H.; Seetharaman, J.; et al

    2007-01-01

    The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 Angstroms crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.

  5. PilZ Domain Protein FlgZ Mediates Cyclic Di-GMP-Dependent Swarming Motility Control in Pseudomonas aeruginosa

    PubMed Central

    Baker, Amy E.; Diepold, Andreas; Kuchma, Sherry L.; Scott, Jessie E.; Ha, Dae Gon; Orazi, Giulia

    2016-01-01

    ABSTRACT The second messenger cyclic diguanylate (c-di-GMP) is an important regulator of motility in many bacterial species. In Pseudomonas aeruginosa, elevated levels of c-di-GMP promote biofilm formation and repress flagellum-driven swarming motility. The rotation of P. aeruginosa's polar flagellum is controlled by two distinct stator complexes, MotAB, which cannot support swarming motility, and MotCD, which promotes swarming motility. Here we show that when c-di-GMP levels are elevated, swarming motility is repressed by the PilZ domain-containing protein FlgZ and by Pel polysaccharide production. We demonstrate that FlgZ interacts specifically with the motility-promoting stator protein MotC in a c-di-GMP-dependent manner and that a functional green fluorescent protein (GFP)-FlgZ fusion protein shows significantly reduced polar localization in a strain lacking the MotCD stator. Our results establish FlgZ as a c-di-GMP receptor affecting swarming motility by P. aeruginosa and support a model wherein c-di-GMP-bound FlgZ impedes motility via its interaction with the MotCD stator. IMPORTANCE The regulation of surface-associated motility plays an important role in bacterial surface colonization and biofilm formation. c-di-GMP signaling is a widespread means of controlling bacterial motility, and yet the mechanism whereby this signal controls surface-associated motility in P. aeruginosa remains poorly understood. Here we identify a PilZ domain-containing c-di-GMP effector protein that contributes to c-di-GMP-mediated repression of swarming motility by P. aeruginosa. We provide evidence that this effector, FlgZ, impacts swarming motility via its interactions with flagellar stator protein MotC. Thus, we propose a new mechanism for c-di-GMP-mediated regulation of motility for a bacterium with two flagellar stator sets, increasing our understanding of surface-associated behaviors, a key prerequisite to identifying ways to control the formation of biofilm communities. PMID

  6. Identification of flgZ as a Flagellar Gene Encoding a PilZ Domain Protein That Regulates Swimming Motility and Biofilm Formation in Pseudomonas

    PubMed Central

    Redondo-Nieto, Miguel; González de Heredia, Elena; Baena, Irene; Martín-Martín, Irene; Rivilla, Rafael; Martín, Marta

    2014-01-01

    Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC) and one phosphodiesterase (BifA) implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ. PMID:24504373

  7. Structures of the activator of K. pneumonia biofilm formation, MrkH, indicates PilZ domains involved in c-di-GMP and DNA binding

    PubMed Central

    Schumacher, Maria A.; Zeng, Wenjie

    2016-01-01

    The pathogenesis of Klebsiella pneumonia is linked to the bacteria’s ability to form biofilms. Mannose-resistant Klebsiella-like (Mrk) hemagglutinins are critical for K. pneumonia biofilm development, and the expression of the genes encoding these proteins is activated by a 3′,5′-cyclic diguanylic acid (c-di-GMP)–regulated transcription factor, MrkH. To gain insight into MrkH function, we performed structural and biochemical analyses. Data revealed MrkH to be a monomer with a two-domain architecture consisting of a PilZ C-domain connected to an N domain that unexpectedly also harbors a PilZ-like fold. Comparison of apo- and c-di-GMP–bound MrkH structures reveals a large 138° interdomain rotation that is induced by binding an intercalated c-di-GMP dimer. c-di-GMP interacts with PilZ C-domain motifs 1 and 2 (RxxxR and D/NxSxxG) and a newly described c-di-GMP–binding motif in the MrkH N domain. Strikingly, these c-di-GMP–binding motifs also stabilize an open state conformation in apo MrkH via contacts from the PilZ motif 1 to residues in the C-domain motif 2 and the c-di-GMP–binding N-domain motif. Use of the same regions in apo structure stabilization and c-di-GMP interaction allows distinction between the states. Indeed, domain reorientation by c-di-GMP complexation with MrkH, which leads to a highly compacted structure, suggests a mechanism by which the protein is activated to bind DNA. To our knowledge, MrkH represents the first instance of specific DNA binding mediated by PilZ domains. The MrkH structures also pave the way for the rational design of inhibitors that target K. pneumonia biofilm formation. PMID:27551088

  8. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  9. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  10. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  12. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria.

    PubMed

    Fang, Xin; Ahmad, Irfan; Blanka, Andrea; Schottkowski, Marco; Cimdins, Annika; Galperin, Michael Y; Römling, Ute; Gomelsky, Mark

    2014-08-01

    In contrast to numerous enzymes involved in c-di-GMP synthesis and degradation in enterobacteria, only a handful of c-di-GMP receptors/effectors have been identified. In search of new c-di-GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope-labelled c-di-GMP. We uncovered three new candidate c-di-GMP receptors in E. coli and characterized one of them, BcsE. The bcsE gene is encoded in cellulose synthase operons in representatives of Gammaproteobacteria and Betaproteobacteria. The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c-di-GMP via the domain of unknown function, DUF2819, which is hereby designated GIL, GGDEF I-site like domain. The RxGD motif of the GIL domain is required for c-di-GMP binding, similar to the c-di-GMP-binding I-site of the diguanylate cyclase GGDEF domain. Thus, GIL is the second protein domain, after PilZ, dedicated to c-di-GMP-binding. We show that in S. enterica, BcsE is not essential for cellulose synthesis but is required for maximal cellulose production, and that c-di-GMP binding is critical for BcsE function. It appears that cellulose production in enterobacteria is controlled by a two-tiered c-di-GMP-dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA.

  13. Protein domain connectivity and essentiality

    NASA Astrophysics Data System (ADS)

    da F. Costa, L.; Rodrigues, F. A.; Travieso, G.

    2006-10-01

    Protein-protein interactions can be properly modeled as scale-free complex networks, while the lethality of proteins has been correlated with the node degrees, therefore defining a lethality-centrality rule. In this work the authors revisit this relevant problem by focusing attention not on proteins as a whole, but on their functional domains, which are ultimately responsible for their binding potential. Four networks are considered: the original protein-protein interaction network, its randomized version, and two domain networks assuming different lethality hypotheses. By using formal statistical analysis, they show that the correlation between connectivity and essentiality is higher for domains than for proteins.

  14. Diversity in protein domain superfamilies

    PubMed Central

    Das, Sayoni; Dawson, Natalie L; Orengo, Christine A

    2015-01-01

    Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function. PMID:26451979

  15. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Functional domains in tetraspanin proteins.

    PubMed

    Stipp, Christopher S; Kolesnikova, Tatiana V; Hemler, Martin E

    2003-02-01

    Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.

  18. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  19. The architecture of the protein domain universe.

    PubMed

    Dokholyan, Nikolay V

    2005-03-14

    Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties. We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of protein evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub-clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families.

  20. Domain structure of Lassa virus L protein.

    PubMed

    Brunotte, Linda; Lelke, Michaela; Hass, Meike; Kleinsteuber, Katja; Becker-Ziaja, Beate; Günther, Stephan

    2011-01-01

    The 200-kDa L protein of arenaviruses plays a central role in viral genome replication and transcription. This study aimed at providing evidence for the domain structure of L protein by combining bioinformatics with a stepwise mutagenesis approach using the Lassa virus minireplicon system. Potential interdomain linkers were predicted using various algorithms. The prediction was challenged by insertion of flexible sequences into the predicted linkers. Insertion of 5 or 10 amino acid residues was tolerated at seven sites (S407, G446, G467, G774, G939, S1952, and V2074 in Lassa virus AV). At two of these sites, G467 and G939, L protein could be split into an N-terminal and a C-terminal part, which were able to trans-complement each other and reconstitute a functional complex upon coexpression. Coimmunoprecipitation studies revealed physical interaction between the N- and C-terminal domains, irrespective of whether L protein was split at G467 or G939. In confocal immunofluorescence microscopy, the N-terminal domains showed a dot-like, sometimes perinuclear, cytoplasmic distribution similar to that of full-length L protein, while the C-terminal domains were homogenously distributed in cytoplasm. The latter were redistributed into the dot-like structures upon coexpression with the corresponding N-terminal domain. In conclusion, this study demonstrates two interdomain linkers in Lassa virus L protein, at G467 and G939, suggesting that L protein is composed of at least three structural domains spanning residues 1 to 467, 467 to 939, and 939 to 2220. The first domain seems to mediate accumulation of L protein into cytoplasmic dot-like structures.

  1. Protein function prediction using domain families

    PubMed Central

    2013-01-01

    Here we assessed the use of domain families for predicting the functions of whole proteins. These 'functional families' (FunFams) were derived using a protocol that combines sequence clustering with supervised cluster evaluation, relying on available high-quality Gene Ontology (GO) annotation data in the latter step. In essence, the protocol groups domain sequences belonging to the same superfamily into families based on the GO annotations of their parent proteins. An initial test based on enzyme sequences confirmed that the FunFams resemble enzyme (domain) families much better than do families produced by sequence clustering alone. For the CAFA 2011 experiment, we further associated the FunFams with GO terms probabilistically. All target proteins were first submitted to domain superfamily assignment, followed by FunFam assignment and, eventually, function assignment. The latter included an integration step for multi-domain target proteins. The CAFA results put our domain-based approach among the top ten of 31 competing groups and 56 prediction methods, confirming that it outperforms simple pairwise whole-protein sequence comparisons. PMID:23514456

  2. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  3. Proteins and cholesterol-rich domains.

    PubMed

    Epand, Richard M

    2008-01-01

    Biological membranes are composed of many molecular species of lipids and proteins. These molecules do not mix ideally. In the plane of the membrane components are segregated into domains that are enriched in certain lipids and proteins. Cholesterol is a membrane lipid that is not uniformly distributed in the membrane. Proteins play an important role in determining cholesterol distribution. Certain types of protein lipidation are known to cause the lipoprotein to sequester with cholesterol and to stabilize cholesterol-rich domains. However, proteins that are excluded from such domains also contribute to the redistribution of cholesterol. One of the motifs that favor interaction with cholesterol is the CRAC motif. The role of the CRAC motif of the gp41 fusogenic protein of HIV is discussed. The distribution of the multianionic lipid, phosphatidylinositol(4,5)bis-phosphate (PtnIns(4,5)P2), is also not uniform in cell membranes. This lipid has several functions in the cell, including a morphological role in determining the sites of attachment of the actin cytoskeleton to the plasma membrane. PtnIns(4,5)P2 is sequestered by proteins having clusters of cationic residues in their sequence. Certain proteins containing cationic clusters also contain moieties such as myristoylation or a CRAC segment that would also endow them with the ability to sequester to a cholesterol-rich domain. These proteins interact with PtnIns(4,5)P2 in a cholesterol-dependent manner forming domains that are enriched in both cholesterol and in PtnIns(4,5)P2 but can also be distinct from liquid-ordered raft-like domains.

  4. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level.

  5. ECOD: an evolutionary classification of protein domains.

    PubMed

    Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V

    2014-12-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

  6. Inferring Evolutionary Scenarios for Protein Domain Compositions

    NASA Astrophysics Data System (ADS)

    Wiedenhoeft, John; Krause, Roland; Eulenstein, Oliver

    Essential cellular processes are controlled by functional interactions of protein domains, which can be inferred from their evolutionary histories. Methods to reconstruct these histories are challenged by the complexity of reconstructing macroevolutionary events. In this work we model these events using a novel network-like structure that represents the evolution of domain combinations, called plexus. We describe an algorithm to find a plexus that represents the evolution of a given collection of domain histories as phylogenetic trees with the minimum number of macroevolutionary events, and demonstrate its effectiveness in practice.

  7. Folding mechanism of a multiple independently-folding domain protein: double B domain of protein A.

    PubMed

    Arora, Pooja; Hammes, Gordon G; Oas, Terrence G

    2006-10-10

    The antibody binding properties of staphylococcal protein A (SpA) can be attributed to the presence of five highly homologous domains (E, D, A, B, and C). Although the folding of the B domain of protein A (BdpA) is well-characterized, the folding behavior of this domain in the context of full-length SpA in the cell remains unexplored. The sequence of the B domain is 89 and 91% identical to those of domains A and C, respectively. We have fused B domain sequences (BBdpA) as a close approximation of the A-B or B-C portion of SpA. Circular dichroism and fluorescence-detected denaturation curves of BBdpA are experimentally indistinguishable from those of BdpA. The rate constants for folding and unfolding from NMR line shape analysis for the single- and double-domain proteins are the same within experimental uncertainties (+/-20%). These results support the designation of SpA as a multiple independently-folding domain (MIFD) protein. We develop a mathematical model that describes the folding thermodynamics and kinetics of MIFD proteins. The model depicts MIFD protein folding and unfolding as a parallel network and explicitly calculates the flux through all parallel pathways. These fluxes are combined to give a complete description of the global thermodynamics and kinetics of the folding and unfolding of MIFD proteins. The global rates for complete folding and unfolding of a MIFD protein and those of the individual domains depend on the stability of the protein. We show that the global unfolding rate of a MIFD protein may be many orders of magnitude slower than that of the constituent domains.

  8. BAR domain proteins regulate Rho GTPase signaling

    PubMed Central

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis. PMID:25483303

  9. Linking in domain-swapped protein dimers

    PubMed Central

    Baiesi, Marco; Orlandini, Enzo; Trovato, Antonio; Seno, Flavio

    2016-01-01

    The presence of knots has been observed in a small fraction of single-domain proteins and related to their thermodynamic and kinetic properties. The exchanging of identical structural elements, typical of domain-swapped proteins, makes such dimers suitable candidates to validate the possibility that mutual entanglement between chains may play a similar role for protein complexes. We suggest that such entanglement is captured by the linking number. This represents, for two closed curves, the number of times that each curve winds around the other. We show that closing the curves is not necessary, as a novel parameter G′, termed Gaussian entanglement, is strongly correlated with the linking number. Based on 110 non redundant domain-swapped dimers, our analysis evidences a high fraction of chains with a significant intertwining, that is with |G′| > 1. We report that Nature promotes configurations with negative mutual entanglement and surprisingly, it seems to suppress intertwining in long protein dimers. Supported by numerical simulations of dimer dissociation, our results provide a novel topology-based classification of protein-swapped dimers together with some preliminary evidence of its impact on their physical and biological properties. PMID:27659606

  10. Joining RDC data from flexible protein domains

    NASA Astrophysics Data System (ADS)

    Sgheri, Luca

    2010-11-01

    We study the inverse problem of determining the conformational freedom of two protein domains from residual dipolar coupling (RDC) measurements. For each paramagnetic ion attached to one of the domains we obtain a magnetic susceptibility tensor χ from the RDC of couples of atoms of that domain, and a mean paramagnetic susceptibility tensor {\\bar{\\chi }} from the RDC of couples of atoms of the other domain. The latter is an integral average of rotations of χ which depends on the conformational freedom of the two domains. In this paper we consider the case when we have data from paramagnetic ions attached separately to each of the domains. We prove that in this case not all the elements of χ and {\\bar{\\chi }} are independent. We derive the mathematical equations for the compatibility of the measurements and show how these relations can be used in the presence of noisy data to determine a compatible set of χ and {\\bar{\\chi }} with an unconstrained minimization. If available, information about the shape of the noise can be included in the target function. We show that in this case the compatible set obtained has a reduced error with respect to the noisy data.

  11. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  12. Structure and function of WD40 domain proteins.

    PubMed

    Xu, Chao; Min, Jinrong

    2011-03-01

    The WD40 domain exhibits a β-propeller architecture, often comprising seven blades. The WD40 domain is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes. In this review, we will discuss the identification, definition and architecture of the WD40 domains. WD40 domain proteins are involved in a large variety of cellular processes, in which WD40 domains function as a protein-protein or protein-DNA interaction platform. WD40 domain mediates molecular recognition events mainly through the smaller top surface, but also through the bottom surface and sides. So far, no WD40 domain has been found to display enzymatic activity. We will also discuss the different binding modes exhibited by the large versatile family of WD40 domain proteins. In the last part of this review, we will discuss how post-translational modifications are recognized by WD40 domain proteins.

  13. Phylogenetic Analysis of Brassica rapa MATH-Domain Proteins

    PubMed Central

    Zhao, Liming; Huang, Yong; Hu, Yan; He, Xiaoli; Shen, Wenhui; Liu, Chunlin; Ruan, Ying

    2013-01-01

    The MATH (meprin and TRAF-C homology) domain is a fold of seven anti-parallel β-helices involved in protein-protein interaction. Here, we report the identification and characterization of 90 MATH-domain proteins from the Brassica rapa genome. By sequence analysis together with MATH-domain proteins from other species, the B. rapa MATH-domain proteins can be grouped into 6 classes. Class-I protein has one or several MATH domains without any other recognizable domain; Class-II protein contains a MATH domain together with a conserved BTB (Broad Complex, Tramtrack, and Bric-a-Brac ) domain; Class-III protein belongs to the MATH/Filament domain family; Class-IV protein contains a MATH domain frequently combined with some other domains; Class-V protein has a relative long sequence but contains only one MATH domain; Class-VI protein is characterized by the presence of Peptidase and UBQ (Ubiquitinylation) domains together with one MATH domain. As part of our study regarding seed development of B. rapa, six genes are screened by SSH (Suppression Subtractive Hybridization) and their expression levels are analyzed in combination with seed developmental stages, and expression patterns suggested that Bra001786, Bra03578 and Bra036572 may be seed development specific genes, while Bra001787, Bra020541 and Bra040904 may be involved in seed and flower organ development. This study provides the first characterization of the MATH domain proteins in B. rapa PMID:24179444

  14. Independent Structural Domains in Paramyxovirus Polymerase Protein*

    PubMed Central

    Dochow, Melanie; Krumm, Stefanie A.; Crowe, James E.; Moore, Martin L.; Plemper, Richard K.

    2012-01-01

    All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases. PMID:22215662

  15. Synthetic mimetics of protein secondary structure domains

    PubMed Central

    Ross, Nathan T.; Katt, William P.; Hamilton, Andrew D.

    2010-01-01

    Proteins modulate the majority of all biological functions and are primarily composed of highly organized secondary structural elements such as helices, turns and sheets. Many of these functions are affected by a small number of key protein–protein contacts, often involving one or more of these well-defined structural elements. Given the ubiquitous nature of these protein recognition domains, their mimicry by peptidic and non-peptidic scaffolds has become a major focus of contemporary research. This review examines several key advances in secondary structure mimicry over the past several years, particularly focusing upon scaffolds that show not only promising projection of functional groups, but also a proven effect in biological systems. PMID:20123744

  16. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications.

  17. Evolution of Protein Domain Repeats in Metazoa

    PubMed Central

    Schüler, Andreas; Bornberg-Bauer, Erich

    2016-01-01

    Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125

  18. Extra domains in secondary transport carriers and channel proteins.

    PubMed

    Barabote, Ravi D; Tamang, Dorjee G; Abeywardena, Shannon N; Fallah, Neda S; Fu, Jeffrey Yu Chung; Lio, Jeffrey K; Mirhosseini, Pegah; Pezeshk, Ronnie; Podell, Sheila; Salampessy, Marnae L; Thever, Mark D; Saier, Milton H

    2006-10-01

    "Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.

  19. Stochastic single-molecule dynamics of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  20. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  1. Design of protein function leaps by directed domain interface evolution

    PubMed Central

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-01-01

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting “affinity clamp” had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution. PMID:18445649

  2. Purification and Structural Analysis of LEM-Domain Proteins.

    PubMed

    Herrada, Isaline; Bourgeois, Benjamin; Samson, Camille; Buendia, Brigitte; Worman, Howard J; Zinn-Justin, Sophie

    2016-01-01

    LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.

  3. WW domain-containing proteins: retrospectives and the future.

    PubMed

    Salah, Zaidoun; Alian, Akram; Aqeilan, Rami I

    2012-01-01

    WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs (PRM) and phosphorylated serine/threonine-proline sites. WW domains are found in many different structural and signaling proteins that are involved in a variety of cellular processes, including RNA transcription and processing, protein trafficking and stability, receptor signaling, and control of the cytoskeleton. WW domain-containing proteins and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway, making them targets for new diagnostics and therapeutics. In this review, we discuss how WW domains provide versatile platforms that link individual proteins into physiologically important networks and the indispensible role of WW domain-containing proteins in biology and pathology, especially tumorogenesis.

  4. Fold of the conserved DTC domain in deltex proteins

    SciTech Connect

    Obiero, Josiah; Walker, John R.; Dhe-Paganon, Sirano

    2012-04-30

    Human Deltex 3-like (DTX3L) is a member of the Deltex family of proteins. Initially identified as a B-lymphoma and BAL-associated protein, DTX3L is an E3 ligase that regulates subcellular localization of its partner protein, BAL, by a dynamic nucleocytoplasmic trafficking mechanism. Unlike other members of the Deltex family of proteins, DTX3L lacks the highly basic N-terminal motif and the central proline-rich motif present in other Deltex proteins, and instead contains other unique N-terminal domains. The C-terminal domains are, however, homologous with other members of the Deltex family of proteins; these include a RING domain and a previously unidentified C-terminal domain. In this study, we report the high-resolution crystal structure of this previously uncharacterized C-terminal domain of human DTX3L, which we term the Deltex C-terminal domain.

  5. Fuzzy domains: new way of describing flexibility and interdependence of the protein domains.

    PubMed

    Yesylevskyy, Semen O; Kharkyanen, Valery N

    2009-03-01

    We proposed the innovative method of domain identification based on the concept of the fuzzy domains. In this method each residue of the protein can belong to several domains simultaneously with certain weights, which reflect to what extent this residue shares the motion pattern of the given domain. Our method allows describing the fuzzy boundaries between the domains and the gradual changes of the motion pattern from one domain to the other. It provides the reasonable compromise between the continuous change of the protein dynamics from one residue to the other and the discrete description of the structure in terms of small number of domains. We suggested quantitative criterion, which shows the overall degree of domain flexibility in the protein. The concept of the fuzzy domains provides an innovative way of visualization of domain flexibility, which makes the gradual transitions between the domains clearly visible and comparable to available experimental and structural data. In the future, the concept of the fuzzy domains can be used in the coarse-grained simulations of the domain dynamics in order to account for internal protein flexibility.

  6. Domain mobility in proteins: functional and evolutionary implications.

    PubMed

    Basu, Malay Kumar; Poliakov, Eugenia; Rogozin, Igor B

    2009-05-01

    A substantial fraction of eukaryotic proteins contains multiple domains, some of which show a tendency to occur in diverse domain architectures and can be considered mobile (or 'promiscuous'). These promiscuous domains are typically involved in protein-protein interactions and play crucial roles in interaction networks, particularly those contributing to signal transduction. They also play a major role in creating diversity of protein domain architecture in the proteome. It is now apparent that promiscuity is a volatile and relatively fast-changing feature in evolution, and that only a few domains retain their promiscuity status throughout evolution. Many such domains attained their promiscuity status independently in different lineages. Only recently, we have begun to understand the diversity of protein domain architectures and the role the promiscuous domains play in evolution of this diversity. However, many of the biological mechanisms of protein domain mobility remain shrouded in mystery. In this review, we discuss our present understanding of protein domain promiscuity, its evolution and its role in cellular function.

  7. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  8. Do proteins facilitate the formation of cholesterol-rich domains?

    PubMed

    Epand, Richard M

    2004-11-03

    Both biological and model membranes can exhibit the formation of domains. A brief review of some of the diverse methodologies used to identify the presence of domains in membranes is given. Some of these domains are enriched in cholesterol. The segregation of lipids into cholesterol-rich domains can occur in both pure lipid systems as well as membranes containing peptides and proteins. Peptides and proteins can promote the formation of cholesterol-rich domains not only by preferentially interacting with cholesterol and being sequestered into these regions of the membrane, but also indirectly as a consequence of being excluded from cholesterol-rich domains. The redistribution of components is dictated by the thermodynamics of the system. The formation of domains in a biological membrane is a consequence of all of the intermolecular interactions including those among lipid molecules as well as between lipids and proteins.

  9. Interaction between Functional Domains of Bacillus thuringiensis Insecticidal Crystal Proteins

    PubMed Central

    Rang, Cécile; Vachon, Vincent; de Maagd, Ruud A.; Villalon, Mario; Schwartz, Jean-Louis; Bosch, Dirk; Frutos, Roger; Laprade, Raynald

    1999-01-01

    Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C. PMID:10388684

  10. Continuous and discontinuous domains: an algorithm for the automatic generation of reliable protein domain definitions.

    PubMed Central

    Siddiqui, A. S.; Barton, G. J.

    1995-01-01

    An algorithm is presented for the fast and accurate definition of protein structural domains from coordinate data without prior knowledge of the number or type of domains. The algorithm explicitly locates domains that comprise one or two continuous segments of protein chain. Domains that include more than two segments are also located. The algorithm was applied to a nonredundant database of 230 protein structures and the results compared to domain definitions obtained from the literature, or by inspection of the coordinates on molecular graphics. For 70% of the proteins, the derived domains agree with the reference definitions, 18% show minor differences and only 12% (28 proteins) show very different definitions. Three screens were applied to identify the derived domains least likely to agree with the subjective definition set. These screens revealed a set of 173 proteins, 97% of which agree well with the subjective definitions. The algorithm represents a practical domain identification tool that can be run routinely on the entire structural database. Adjustment of parameters also allows smaller compact units to be identified in proteins. PMID:7663343

  11. Delineation of modular proteins: domain boundary prediction from sequence information.

    PubMed

    Kong, Lesheng; Ranganathan, Shoba

    2004-06-01

    The delineation of domain boundaries of a given sequence in the absence of known 3D structures or detectable sequence homology to known domains benefits many areas in protein science, such as protein engineering, protein 3D structure determination and protein structure prediction. With the exponential growth of newly determined sequences, our ability to predict domain boundaries rapidly and accurately from sequence information alone is both essential and critical from the viewpoint of gene function annotation. Anyone attempting to predict domain boundaries for a single protein sequence is invariably confronted with a plethora of databases that contain boundary information available from the internet and a variety of methods for domain boundary prediction. How are these derived and how well do they work? What definition of 'domain' do they use? We will first clarify the different definitions of protein domains, and then describe the available public databases with domain boundary information. Finally, we will review existing domain boundary prediction methods and discuss their strengths and weaknesses.

  12. ELISA: a unified, multidimensional view of the protein domain universe.

    PubMed

    Shakhnovich, Boris E; Harvey, John Max; Delisi, Charles

    2004-01-01

    ELISA (http://romi.bu.edu/elisa/) is a database that was designed for flexibility in defining interesting queries about protein domain evolution. We have defined and included both the inherent characteristics of the domains such as structure and function and comparisons of these characteristics between domains. Thus, the database is useful in defining structural and functional links between related protein domains and by extension sequences that encode them. In this database we introduce and employ a novel method of functional annotation and comparison. For each protein domain we create a probabilistic functional annotation tree using GO. We have designed an algorithm that accurately compares these trees and thus provides a measure of "functional distance" between two protein domains. Along with functional annotation, we have also included structural comparison between protein domains and best sequence comparisons to all known genomes. The latter enables researchers to dynamically do searches for domains sharing similar phylogenetic profiles. This combination of data and tools enables the researcher to design complex queries to carry out research in the areas of protein domain evolution, structure prediction and functional annotation of novel sequences.

  13. Protein universe containing a PUA RNA-binding domain.

    PubMed

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  14. The history of the CATH structural classification of protein domains.

    PubMed

    Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine

    2015-12-01

    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families.

  15. Protein domain definition should allow for conditional disorder.

    PubMed

    Yegambaram, Kavestri; Bulloch, Esther M M; Kingston, Richard L

    2013-11-01

    Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.

  16. CBS domains: structure, function, and pathology in human proteins.

    PubMed

    Ignoul, Sofie; Eggermont, Jan

    2005-12-01

    The cystathionine-beta-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-beta-synthase, inosine 5'-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.

  17. Cholesterol and the interaction of proteins with membrane domains.

    PubMed

    Epand, Richard M

    2006-07-01

    Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in

  18. Allosteric properties of PH domains in Arf regulatory proteins.

    PubMed

    Roy, Neeladri Sekhar; Yohe, Marielle E; Randazzo, Paul A; Gruschus, James M

    2016-01-01

    Pleckstrin Homology (PH) domains bind phospholipids and proteins. They are critical regulatory elements of a number enzymes including guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) for Ras-superfamily guanine nucleotide binding proteins such as ADP-ribosylation factors (Arfs). Recent studies have indicated that many PH domains may bind more than one ligand cooperatively. Here we discuss the molecular basis of PH domain-dependent allosteric behavior of 2 ADP-ribosylation factor exchange factors, Grp1 and Brag2, cooperative binding of ligands to the PH domains of Grp1 and the Arf GTPase-activating protein, ASAP1, and the consequences for activity of the associated catalytic domains.

  19. Discrete structure of van der Waals domains in globular proteins.

    PubMed

    Berezovsky, Igor N

    2003-03-01

    Most globular proteins are divisible by domains, distinct substructures of the globule. The notion of hierarchy of the domains was introduced earlier via van der Waals energy profiles that allow one to subdivide the proteins into domains (subdomains). The question remains open as to what is the possible structural connection of the energy profiles. The recent discovery of the loop-n-lock elements in the globular proteins suggests such a structural connection. A direct comparison of the segmentation by van der Waals energy criteria with the maps of the locked loops of nearly standard size reveals a striking correlation: domains in general appear to consist of one to several such loops. In addition, it was demonstrated that a variety of subdivisions of the same protein into domains is just a regrouping of the loop-n-lock elements.

  20. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    PubMed Central

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Stricher, Francois; Serrano, Luis; Schymkowitz, Joost WH; Rousseau, Frederic

    2008-01-01

    Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures. PMID:18842137

  1. Selection of soluble protein expression constructs: the experimental determination of protein domain boundaries.

    PubMed

    Dyson, Michael R

    2010-08-01

    Proteins can contain multiple domains each of which is capable of possessing a separate independent function and three-dimensional structure. It is often useful to clone and express individual protein domains to study their biochemical properties and for structure determination. However, the annotated domain boundaries in databases such as Pfam or SMART are not always accurate. The present review summarizes various strategies for the experimental determination of protein domain boundaries.

  2. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  3. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  4. Domain tree-based analysis of protein architecture evolution.

    PubMed

    Forslund, Kristoffer; Henricson, Anna; Hollich, Volker; Sonnhammer, Erik L L

    2008-02-01

    Understanding the dynamics behind domain architecture evolution is of great importance to unravel the functions of proteins. Complex architectures have been created throughout evolution by rearrangement and duplication events. An interesting question is how many times a particular architecture has been created, a form of convergent evolution or domain architecture reinvention. Previous studies have approached this issue by comparing architectures found in different species. We wanted to achieve a finer-grained analysis by reconstructing protein architectures on complete domain trees. The prevalence of domain architecture reinvention in 96 genomes was investigated with a novel domain tree-based method that uses maximum parsimony for inferring ancestral protein architectures. Domain architectures were taken from Pfam. To ensure robustness, we applied the method to bootstrap trees and only considered results with strong statistical support. We detected multiple origins for 12.4% of the scored architectures. In a much smaller data set, the subset of completely domain-assigned proteins, the figure was 5.6%. These results indicate that domain architecture reinvention is a much more common phenomenon than previously thought. We also determined which domains are most frequent in multiply created architectures and assessed whether specific functions could be attributed to them. However, no strong functional bias was found in architectures with multiple origins.

  5. The evolution of filamin – A protein domain repeat perspective

    PubMed Central

    Light, Sara; Sagit, Rauan; Ithychanda, Sujay S.; Qin, Jun; Elofsson, Arne

    2013-01-01

    Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates. PMID:22414427

  6. Classification of domain movements in proteins using dynamic contact graphs.

    PubMed

    Taylor, Daniel; Cawley, Gavin; Hayward, Steven

    2013-01-01

    A new method for the classification of domain movements in proteins is described and applied to 1822 pairs of structures from the Protein Data Bank that represent a domain movement in two-domain proteins. The method is based on changes in contacts between residues from the two domains in moving from one conformation to the other. We argue that there are five types of elemental contact changes and that these relate to five model domain movements called: "free", "open-closed", "anchored", "sliding-twist", and "see-saw." A directed graph is introduced called the "Dynamic Contact Graph" which represents the contact changes in a domain movement. In many cases a graph, or part of a graph, provides a clear visual metaphor for the movement it represents and is a motif that can be easily recognised. The Dynamic Contact Graphs are often comprised of disconnected subgraphs indicating independent regions which may play different roles in the domain movement. The Dynamic Contact Graph for each domain movement is decomposed into elemental Dynamic Contact Graphs, those that represent elemental contact changes, allowing us to count the number of instances of each type of elemental contact change in the domain movement. This naturally leads to sixteen classes into which the 1822 domain movements are classified.

  7. Exogenous agents that target transmembrane domains of proteins.

    PubMed

    Yin, Hang

    2008-01-01

    Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.

  8. An ambiguity principle for assigning protein structural domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object-in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our "multipartitioning" approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules.

  9. An ambiguity principle for assigning protein structural domains

    PubMed Central

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object—in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our “multipartitioning” approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules. PMID:28097215

  10. 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response.

    PubMed

    Mohammad, Duaa H; Yaffe, Michael B

    2009-09-02

    The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phosphorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G(2)/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.

  11. Domain view: a web tool for protein domain visualization and analysis.

    PubMed

    Pan, Xiaokang; Bingman, Craig A; Wesenberg, Gary E; Sun, Zhaohui; Phillips, George N

    2010-12-01

    The identification of sequence-based protein domains and their boundaries is often a prelude to structure determination. An accurate prediction of disordered regions, secondary structures and low complexity segments of target protein sequences can improve the efficiency of selection in structural genomics and also aid in design of constructs for directed structural biology studies. At the Center for Eukaryotic Structural Genomics (CESG) we have developed DomainView, a web tool to visualize and analyze predicted protein domains, disordered regions, secondary structures and low complexity segments of target protein sequences for selection of experimental protein structure attempts. DomainView consists of a relational database and a web graphical-user interface. The database was developed based on MySQL, which stores data from target protein sequences and their domains, disordered regions, secondary structures and low complexity segments. The program of the web user interface is a Perl CGI script. When a user searches for a target protein sequence, the script displays the combinational information about the domains and other features of that target sequence graphically on a web page by querying the database. The graphical representation for each feature is linked to a web page showing more detailed annotation information or to a new window directly running the corresponding prediction program to show further information about that feature.

  12. Proteasomes and protein conjugation across domains of life.

    PubMed

    Maupin-Furlow, Julie

    2011-12-19

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.

  13. Targeting of passenger protein domains to multiple intracellular membranes.

    PubMed Central

    Janiak, F; Glover, J R; Leber, B; Rachubinski, R A; Andrews, D W

    1994-01-01

    The role of passenger domains in protein targeting was examined by fusing previously characterized targeting motifs to different protein sequences. To compare the targeting requirements for a variety of subcellular compartments, targeting of the fusion proteins was examined for endoplasmic reticulum, mitochondria and peroxisomes in vitro and in yeast. Although most passenger domains were only partially passive to translocation, motif-dependent targeting via motifs positioned at either end of one passenger domain (gPA) was demonstrated for all of the subcellular compartments tested. The data presented extend earlier suggestions that translocation competence is an intrinsic property of the passenger protein. However, the properties that determine protein targeting are not mutually exclusive for the compartments tested. Therefore, although the primary determinant of specificity is the targeting motif, our results suggest that translocation competence of the targeted protein augments the fidelity of transport. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8198533

  14. de Gennes Narrowing Describes the Relative Motion of Protein Domains

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Smolin, Nikolai; Smith, Jeremy C.

    2014-04-01

    The relative motion of structural domains is essential for the biological function of many proteins. Here, by analyzing neutron scattering data and performing molecular dynamics simulations, we find that interdomain motion in several proteins obeys the principle of de Gennes narrowing, in which the wave vector dependence of the interdomain diffusion coefficient is inversely proportional to the interdomain structure factor. Thus, the rate of interdomain motion is inversely proportional to the probability distribution of the spatial configurations of domains.

  15. Evolution of a protein domain interaction network

    NASA Astrophysics Data System (ADS)

    Gao, Li-Feng; Shi, Jian-Jun; Guan, Shan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases.

  16. Singlet CH domain containing human multidomain proteins: an inventory.

    PubMed

    Friedberg, Felix

    2010-03-01

    The actin cytoskeleton presents the basic force in processes such as cytokinesis, endocytosis, vesicular trafficking and cell migration. Here, we list 30 human singlet CH (calpononin homology/actin binding) containing multidomain molecules, each encoded by one gene. We show the domain distributions as given by the SMART program. These mosaic proteins organize geographically the placement of selected proteins in proximity within the cell. In most instances, their precise location, their actin binding capacity by way of the singlet CH (or by other domains?) and their physiological functions need further elucidation. A dendrogram based solely on the relationship for the human singlet CH domains (in terms of AA sequences) for the various molecules that possess the domain, implies that the singlet descended from a common ancestor which in turn sprouted three main branches of protein products. Each branch bifurcated multiple times thus accounting for a cornucopia of products. Wherever, additional (unassigned), highly homologous regions exist in related proteins (e.g., in LIM and LMO7 or in Tangerin and EH/BP1), these unrecognized domain regions await assignment as specific functional domains. Frequently genes coding multidomain proteins duplicated. The varying modular nature within multidomain proteins should have accelerated evolutionary changes to a degree not feasible to achieve by means of mere post-duplication mutational changes.

  17. Molekulare Methoden zum Nachweis, zur Quantifizierung und zum Monitoring der Mykotoxinbildung lebensmittelrelevanter Pilze

    NASA Astrophysics Data System (ADS)

    Geisen, Rolf

    Schimmelpilze kommen ubiquitär vor und spielen besonders bei pflanzlichen Lebensmitteln und Rohprodukten eine besondere Rolle als Verderbsorganismen. Es wird geschätzt, dass 20-25 % der jährlichen Produktion an pflanzlichen Produkten durch Schimmelpilze verdorben werden (Smith et al., 1994). Viele der lebensmittelrelevanten Schimmelpilze sind zudem in der Lage, Mykotoxine, toxische Sekundärmetabolite, zu bilden, was das Ausmaß des Problems deutlich macht. Die wichtigsten mykotoxinbildenden Spezies gehören zu den Fusarien (Trichothecene, Fumonisine, Zearalenon), Aspergillen (Aflatoxin, Ochratoxin, Cyclopiazonsäure) und Penicillien (Patulin, Ochratoxin). Für viele Mykotoxine, wie die Aflatoxine, Ochratoxin, Fumonisine und Trichothecene sind Grenzwerte erlassen worden, die die Verkehrsfähigkeit betroffener Produkte regeln. Die Einhaltung der Grenzwerte kann sehr genau durch offizielle chemisch-analytische Methoden, wie HPLC, GC-MS etc. kontrolliert werden. Diese analytischen Methoden sind aber für die Anwendung eines HACCP-Ansatzes zur Kontrolle der Mykotoxinbildung nur bedingt geeignet, da sie Endpunktkontrollen darstellen und nur das über eine längere Zeit gebildete Mykotoxin bestimmen. Sie sagen daher nichts über die biologischen Bedingungen zur Zeit der Bildung durch den Pilz aus.

  18. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  19. Anchors aweigh: protein localization and transport mediated by transmembrane domains.

    PubMed

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S

    2013-10-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.

  20. Anchors Aweigh: Protein Traffic Mediated by Transmembrane Domains

    PubMed Central

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S.

    2013-01-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in the cytosolic domains, TMD sorting determinants are not conserved amino-acid sequences but physical properties such as length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport. PMID:23806646

  1. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins.

    PubMed Central

    Gillooly, D J; Simonsen, A; Stenmark, H

    2001-01-01

    PtdIns3P is a phosphoinositide 3-kinase product that has been strongly implicated in regulating membrane trafficking in both mammalian and yeast cells. PtdIns3P has been shown to be specifically located on membranes associated with the endocytic pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural information is now available concerning the interaction between FYVE domains and PtdIns3P. A number of proteins have been identified which contain a FYVE domain, and in this review we discuss the functions of PtdIns3P and its FYVE-domain-containing effector proteins in membrane trafficking, cytoskeletal regulation and receptor signalling. PMID:11284710

  2. Domain conservation in several volvocalean cell wall proteins.

    PubMed

    Woessner, J P; Molendijk, A J; van Egmond, P; Klis, F M; Goodenough, U W; Haring, M A

    1994-11-01

    Based on our previous work demonstrating that (SerPro)x epitopes are common to extensin-like cell wall proteins in Chlamydomonas' reinhardtii, we looked for similar proteins in the distantly related species C. eugametos. Using a polyclonal antiserum against a (SerPro)10 oligopeptide, we found distinct sets of stage-specific polypeptides immunoprecipitated from in vitro translations of C. eugametos RNA. Screening of a C. eugametos cDNA expression library with the antiserum led to the isolation of a cDNA (WP6) encoding a (SerPro)x-rich multidomain wall protein. Analysis of a similarly selected cDNA (VSP-3) from a C. reinhardtii cDNA expression library revealed that it also coded for a (SerPro)x-rich multidomain wall protein. The C-terminal rod domains of VSP-3 and WP6 are highly homologous, while the N-terminal domains are dissimilar; however, the N-terminal domain of VSP-3 is homologous to the globular domain of a cell wall protein from Volvox carteri. Exon shuffling might be responsible for this example of domain conservation over 350 million years of volvocalean cell wall protein evolution.

  3. The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway.

    PubMed

    Suzuki, T; Park, H; Till, E A; Lennarz, W J

    2001-10-12

    Cytoplasmic peptide:N-glycanase (PNGase) is a de-N-glycosylating enzyme which may be involved in the proteasome-dependent pathway for degradation of misfolded glycoproteins formed in the endoplasmic reticulum (ER) that are exported into the cytoplasm. A cytoplasmic PNGase found in Saccharomyces cerevisiae, Png1p, is widely distributed in higher eukaryotes as well as in yeast (Suzuki, T., et al. J. Cell Biol. 149, 1039-1051, 2000). The recently uncovered complete genome sequence of Arabidopsis thaliana prompted us to search for the protein homologue of Png1p in this organism. Interestingly, when the mouse Png1p homologue sequence was used as a query, not only a Png1p homologue containing a transglutaminase-like domain that is believed to contain a catalytic triad for PNGase activity, but also four proteins which had a domain of 46 amino acids in length that exhibited significant similarity to the N-terminus of mouse Png1p were identified. Moreover, three of these homologous proteins were also found to possess a UBA or UBX domain, which are found in various proteins involved in the ubiquitin-related pathway. We name this newly found homologous region the PUB (Peptide:N-glycanase/UBA or UBX-containing proteins) domain and propose that this domain may mediate protein-protein interactions.

  4. Viral Macro Domains Reverse Protein ADP-Ribosylation

    PubMed Central

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD+ to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular

  5. A new and unexpected domain-domain interaction in the AraC protein.

    PubMed

    Cole, Stephanie Dirla; Schleif, Robert

    2012-05-01

    An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments.

  6. Global Patterns of Protein Domain Gain and Loss in Superkingdoms

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2014-01-01

    Domains are modules within proteins that can fold and function independently and are evolutionarily conserved. Here we compared the usage and distribution of protein domain families in the free-living proteomes of Archaea, Bacteria and Eukarya and reconstructed species phylogenies while tracing the history of domain emergence and loss in proteomes. We show that both gains and losses of domains occurred frequently during proteome evolution. The rate of domain discovery increased approximately linearly in evolutionary time. Remarkably, gains generally outnumbered losses and the gain-to-loss ratios were much higher in akaryotes compared to eukaryotes. Functional annotations of domain families revealed that both Archaea and Bacteria gained and lost metabolic capabilities during the course of evolution while Eukarya acquired a number of diverse molecular functions including those involved in extracellular processes, immunological mechanisms, and cell regulation. Results also highlighted significant contemporary sharing of informational enzymes between Archaea and Eukarya and metabolic enzymes between Bacteria and Eukarya. Finally, the analysis provided useful insights into the evolution of species. The archaeal superkingdom appeared first in evolution by gradual loss of ancestral domains, bacterial lineages were the first to gain superkingdom-specific domains, and eukaryotes (likely) originated when an expanding proto-eukaryotic stem lineage gained organelles through endosymbiosis of already diversified bacterial lineages. The evolutionary dynamics of domain families in proteomes and the increasing number of domain gains is predicted to redefine the persistence strategies of organisms in superkingdoms, influence the make up of molecular functions, and enhance organismal complexity by the generation of new domain architectures. This dynamics highlights ongoing secondary evolutionary adaptations in akaryotic microbes, especially Archaea. PMID:24499935

  7. Characterization of Two Dinoflagellate Cold Shock Domain Proteins

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic

    2016-01-01

    ABSTRACT Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. PMID:27303711

  8. Repeat proteins challenge the concept of structural domains.

    PubMed

    Espada, Rocío; Parra, R Gonzalo; Sippl, Manfred J; Mora, Thierry; Walczak, Aleksandra M; Ferreiro, Diego U

    2015-10-01

    Structural domains are believed to be modules within proteins that can fold and function independently. Some proteins show tandem repetitions of apparent modular structure that do not fold independently, but rather co-operate in stabilizing structural forms that comprise several repeat-units. For many natural repeat-proteins, it has been shown that weak energetic links between repeats lead to the breakdown of co-operativity and the appearance of folding sub-domains within an apparently regular repeat array. The quasi-1D architecture of repeat-proteins is crucial in detailing how the local energetic balances can modulate the folding dynamics of these proteins, which can be related to the physiological behaviour of these ubiquitous biological systems.

  9. An Algebro-Topological Description of Protein Domain Structure

    PubMed Central

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  10. Formation and organization of protein domains in the immunological synapse

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2014-11-01

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse. Here, we propose a minimal mathematical model for the dynamics of the IS that encompass membrane mechanics, hydrodynamics and protein kinetics. Simple scaling laws describe the dynamics of protein clusters as a function of membrane stiffness, rigidity of the adhesive proteins, and fluid flow in the synaptic cleft. Numerical simulations complement the scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Direct comparison with experiment suggests that passive dynamics suffices to describe the short-time formation and organization of protein clusters, while the stabilization and long time dynamics of the synapse is likely determined by active cytoskeleton processes triggered by receptor binding. Our study reveals that the fluid flow generated by the interplay between membrane deformation and protein binding kinetics can assist immune cells in regulating protein sorting.

  11. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990

  12. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  13. Pleiotropic roles of cold shock domain proteins in plants.

    PubMed

    Sasaki, Kentaro; Imai, Ryozo

    2011-01-01

    The cold shock domain (CSD) is a nucleic acid binding domain that is widely conserved from bacteria to higher plants and animals. In Escherichia coli, cold shock proteins (CSPs) are composed solely of a CSD and function as RNA chaperones that destabilize RNA secondary structures. Cellular RNAs tend to be folded into unfavorable structures under low temperature conditions, and RNA chaperones resolve these structures, recovering functionality of the RNAs. CSP functions are associated mainly with cold adaptation, but they are also involved in other biological processes under normal growth conditions. Eukaryotic CSD proteins contain auxiliary domains in addition to the CSD and regulate many biological processes such as development and stress tolerance. In plants, it has been demonstrated that CSD proteins play essential roles in acquiring freezing tolerance. In addition, it has been suggested that some plant CSD proteins regulate embryo development, flowering time, and fruit development. In this review, we summarize the pleiotropic biological functions of CSP proteins in plants and discuss possible mechanisms by which plant CSD proteins regulate the functions of RNA molecules.

  14. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  16. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    PubMed

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle.

  17. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins

    PubMed Central

    Xu, Zhixiong; Meng, Xianzhang; Cai, Ying; Liang, Hong; Nagarajan, Lalitha; Brandt, Stephen J.

    2007-01-01

    The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and β-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins. PMID:17437998

  18. Defining the boundaries: structure and function of LOB domain proteins.

    PubMed

    Majer, Christine; Hochholdinger, Frank

    2011-01-01

    The plant-specific LBD (Lateral Organ Boundaries Domain) gene family is essential in the regulation of plant lateral organ development and is involved in the regulation of anthocyanin and nitrogen metabolism. LBD proteins contain a characteristic LOB domain composed of a C-motif required for DNA-binding, a conserved glycine residue, and a leucine-zipper-like sequence required for protein-protein interactions. Recently, several LBD genes associated with mutant phenotypes related to almost all aspects of plant development, including embryo, root, leaf, and inflorescence development have been functionally characterized. These novel insights contribute to a better understanding of the molecular definition of boundaries between organs or boundaries between organs and meristems and the regulation of these processes by environmental cues and phytohormones.

  19. Membrane shape instabilities induced by BAR domain proteins

    NASA Astrophysics Data System (ADS)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  20. BC-box protein domain-related mechanism for VHL protein degradation

    PubMed Central

    Pozzebon, Maria Elena; Varadaraj, Archana; Mattoscio, Domenico; Jaffray, Ellis G.; Miccolo, Claudia; Galimberti, Viviana; Tommasino, Massimo; Hay, Ronald T.; Chiocca, Susanna

    2013-01-01

    The tumor suppressor VHL (von Hippel–Lindau) protein is a substrate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), containing a BC-box domain that associates to the adaptor Elongin B/C. VHL targets hypoxia-inducible factor 1α to proteasome-dependent degradation. Gam1 is an adenoviral protein, which also possesses a BC-box domain that interacts with the host Elongin B/C, thereby acting as a viral substrate receptor. Gam1 associates with both Cullin2 and Cullin5 to form CRL complexes targeting the host protein SUMO enzyme SAE1 for proteasomal degradation. We show that Gam1 protein expression induces VHL protein degradation leading to hypoxia-inducible factor 1α stabilization and induction of its downstream targets. We also characterize the CRL-dependent mechanism that drives VHL protein degradation via proteasome. Interestingly, expression of Suppressor of Cytokine Signaling (SOCS) domain-containing viral proteins and cellular BC-box proteins leads to VHL protein degradation, in a SOCS domain-containing manner. Our work underscores the exquisite ability of viral domains to uncover new regulatory mechanisms by hijacking key cellular proteins. PMID:24145437

  1. Analysis of the HD-GYP Domain Cyclic Dimeric GMP Phosphodiesterase Reveals a Role in Motility and the Enzootic Life Cycle of Borrelia burgdorferi ▿ †

    PubMed Central

    Sultan, Syed Z.; Pitzer, Joshua E.; Boquoi, Tristan; Hobbs, Gerry; Miller, Michael R.; Motaleb, M. A.

    2011-01-01

    HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a Km of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi. PMID:21670168

  2. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi.

    PubMed

    Sultan, Syed Z; Pitzer, Joshua E; Boquoi, Tristan; Hobbs, Gerry; Miller, Michael R; Motaleb, M A

    2011-08-01

    HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a K(m) of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi.

  3. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    PubMed Central

    2015-01-01

    Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues's method by employing the protein-protein interaction (PPI) data, domain-domain interaction (DDI) data, weighted domain frequency score (DFS), and cancer linker degree (CLD) data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I) using individual algorithm, (II) combining algorithms, and (III) combining the same classification types of algorithms. When compared with Aragues's method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis. PMID:25866773

  4. Evolutionary history and genome organization of DUF1220 protein domains.

    PubMed

    O'Bleness, Majesta S; Dickens, C Michael; Dumas, Laura J; Kehrer-Sawatzki, Hildegard; Wyckoff, Gerald J; Sikela, James M

    2012-09-01

    DUF1220 protein domains exhibit the most extreme human lineage-specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21-associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ~28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C-band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage.

  5. Control of domain swapping in bovine odorant-binding protein.

    PubMed Central

    Ramoni, Roberto; Vincent, Florence; Ashcroft, Alison E; Accornero, Paolo; Grolli, Stefano; Valencia, Christel; Tegoni, Mariella; Cambillau, Christian

    2002-01-01

    As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping. PMID:11931632

  6. Single-domain protein folding: a multi-faceted problem

    NASA Astrophysics Data System (ADS)

    Junier, Ivan; Ritort, Felix

    2006-08-01

    We review theoretical approaches, experiments and numerical simulations that have been recently proposed to investigate the folding problem in single-domain proteins. From a theoretical point of view, we emphasize the energy landscape approach. As far as experiments are concerned, we focus on the recent development of single-molecule techniques. In particular, we compare the results obtained with two main techniques: single protein force measurements with optical tweezers and single-molecule fluorescence in studies on the same protein (RNase H). This allows us to point out some controversial issues such as the nature of the denatured and intermediate states and possible folding pathways. After reviewing the various numerical simulation techniques, we show that on-lattice protein-like models can help to understand many controversial issues.

  7. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca Ellis

    2017-02-17

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith EC, et al. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins. 2013. J Biol Chem. 288, 35726). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.

  8. Proteins on the catwalk: modelling the structural domains of the CCN family of proteins.

    PubMed

    Holbourn, Kenneth P; Perbal, Bernard; Ravi Acharya, K

    2009-03-01

    The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.

  9. The β1 domain of protein G can replace the chorismate mutase domain of the T-protein.

    PubMed

    Osuna, Joel; Flores, Humberto; Saab-Rincón, Gloria

    2012-02-17

    T-protein is composed of chorismate mutase (AroQ(T)) fused to the N-terminus of prephenate dehydrogenase (TyrA). Here, we report the replacement of AroQ(T) with the β1-domain of protein G (Gβ1). The TyrA domain shows a strong dehydrogenase activity within the context of this fusion, and our data indicate that Gβ1-TyrA folds into a dimeric conformation. Amino acid substitutions in the Gβ1 domain of Gβ1-TyrA identified residues involved in stabilizing the TyrA dimeric conformation. Gβ1 substitutions in the N-terminal β-hairpin eliminated Gβ1-TyrA expression, whereas Gβ1-TyrA tolerated Gβ1 substitutions in the C-terminal β-hairpin and in the α-helix. All of the characterized variants folded into a dimeric conformation. The importance of the β2-strand in forming a Gβ1 homo-dimerization interface explains the relevance of the first-β-hairpin in stabilizing the dimeric TyrA protein.

  10. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  11. Normalized Cut Algorithm for Automated Assignment of Protein Domains

    NASA Technical Reports Server (NTRS)

    Samanta, M. P.; Liang, S.; Zha, H.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a novel computational method for automatic assignment of protein domains from structural data. At the core of our algorithm lies a recently proposed clustering technique that has been very successful for image-partitioning applications. This grap.,l-theory based clustering method uses the notion of a normalized cut to partition. an undirected graph into its strongly-connected components. Computer implementation of our method tested on the standard comparison set of proteins from the literature shows a high success rate (84%), better than most existing alternative In addition, several other features of our algorithm, such as reliance on few adjustable parameters, linear run-time with respect to the size of the protein and reduced complexity compared to other graph-theory based algorithms, would make it an attractive tool for structural biologists.

  12. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  13. Identifying the hierarchy of dynamic domains in proteins using the data of molecular dynamics simulations.

    PubMed

    Yesylevskyy, Semen O

    2010-04-01

    The Hierarchical Domain-Wise Alignment (HDWA) technique of domain identification in proteins is presented. HDWA is designed to identify hierarchically organized dynamic domains in proteins using the MD trajectories by eliminating systematic motions from MD trajectories recursively in a model-free manner. The method is tested on the proteins from different structural classes.

  14. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    PubMed

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.

  15. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    PubMed Central

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800

  16. Hydrophobic-cluster analysis of plant protein sequences. A domain homology between storage and lipid-transfer proteins.

    PubMed Central

    Henrissat, B; Popineau, Y; Kader, J C

    1988-01-01

    Hydrophobic-cluster analysis was used to characterize a conserved domain located near the C-terminal amino acid sequence of wheat (Triticum aestivum) storage proteins. This domain was transformed into a linear template for a global search for similarities in over 5200 protein sequences. In addition to proteins that had already been found to exhibit homology to wheat storage proteins, a previously unreported homology was found with non-specific lipid-transfer proteins from castor bean (Ricinus communis) and from spinach (Spinacia oleracea) leaf. Hydrophobic-cluster analysis of various members of the present protein group clearly shows a typical domain structure where (i) variable and conserved domains are located along the sequence at precise positions, (ii) the conserved domains probably reflect a common ancestor, and (iii) the unique properties of a given protein (chain cut into subunits, repetitive domains, trypsin-inhibitor active site) are associated with the variable domains. PMID:3214430

  17. Pathway logic modeling of protein functional domains in signal transduction.

    PubMed

    Talcott, C; Eker, S; Knapp, M; Lincoln, P; Laderoute, K

    2004-01-01

    Protein functional domains (PFDs) are consensus sequences within signaling molecules that recognize and assemble other signaling components into complexes. Here we describe the application of an approach called Pathway Logic to the symbolic modeling signal transduction networks at the level of PFDs. These models are developed using Maude, a symbolic language founded on rewriting logic. Models can be queried (analyzed) using the execution, search and model-checking tools of Maude. We show how signal transduction processes can be modeled using Maude at very different levels of abstraction involving either an overall state of a protein or its PFDs and their interactions. The key insight for the latter is our algebraic representation of binding interactions as a graph.

  18. Experimental mapping of soluble protein domains using a hierarchical approach.

    PubMed

    Pedelacq, Jean-Denis; Nguyen, Hau B; Cabantous, Stephanie; Mark, Brian L; Listwan, Pawel; Bell, Carolyn; Friedland, Natasha; Lockard, Meghan; Faille, Alexandre; Mourey, Lionel; Terwilliger, Thomas C; Waldo, Geoffrey S

    2011-10-01

    Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained.

  19. Experimental mapping of soluble protein domains using a hierarchical approach

    PubMed Central

    Pedelacq, Jean-Denis; Nguyen, Hau B.; Cabantous, Stephanie; Mark, Brian L.; Listwan, Pawel; Bell, Carolyn; Friedland, Natasha; Lockard, Meghan; Faille, Alexandre; Mourey, Lionel; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained. PMID:21771856

  20. AGL15, a MADS domain protein expressed in developing embryos.

    PubMed Central

    Heck, G R; Perry, S E; Nichols, K W; Fernandez, D E

    1995-01-01

    To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo. PMID:7549483

  1. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  2. Electroporation of the photosynthetic membrane: structural changes in protein and lipid-protein domains.

    PubMed Central

    Rosemberg, Y; Rotenberg, M; Korenstein, R

    1994-01-01

    A biological membrane undergoes a reversible permeability increase through structural changes in the lipid domain when exposed to high external electric fields. The present study shows the occurrence of electric field-induced changes in the conductance of the proton channel of the H(+)-ATPase as well as electric field-induced structural changes in the lipid-protein domain of photosystem (PS) II in the photosynthetic membrane. The study was carried out by analyzing the electric field-stimulated delayed luminescence (EPL), which originates from charge recombination in the protein complexes of PS I and II of photosynthetic vesicles. We established that a small fraction of the total electric field-induced conductance change was abolished by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the H(+)-ATPase. This reversible electric field-induced conductance change has characteristics of a small channel and possesses a lifetime < or = 1 ms. To detect electric field-induced changes in the lipid-protein domains of PS II, we examined the effects of phospholipase A2 (PLA2) on EPL. Higher values of EPL were observed from vesicles that were exposed in the presence of PLA2 to an electroporating electric field than to a nonelectroporating electric field. The effect of the electroporating field was a long-lived one, lasting for a period > or = 2 min. This effect was attributed to long-lived electric field-induced structural changes in the lipid-protein domains of PS II. PMID:7811916

  3. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions.

    PubMed

    Peterson, A J; Kyba, M; Bornemann, D; Morgan, K; Brock, H W; Simon, J

    1997-11-01

    The Sex comb on midleg (Scm) and polyhomeotic (ph) proteins are members of the Polycomb group (PcG) of transcriptional repressors. PcG proteins maintain differential patterns of homeotic gene expression during development in Drosophila flies. The Scm and ph proteins share a homology domain with 38% identity over a length of 65 amino acids, termed the SPM domain, that is located at their respective C termini. Using the yeast two-hybrid system and in vitro protein-binding assays, we show that the SPM domain mediates direct interaction between Scm and ph. Binding studies with isolated SPM domains from Scm and ph show that the domain is sufficient for these protein interactions. These studies also show that the Scm-ph and Scm-Scm domain interactions are much stronger than the ph-ph domain interaction, indicating that the isolated domain has intrinsic binding specificity determinants. Analysis of site-directed point mutations identifies residues that are important for SPM domain function. These binding properties, predicted alpha-helical secondary structure, and conservation of hydrophobic residues prompt comparisons of the SPM domain to the helix-loop-helix and leucine zipper domains used for homotypic and heterotypic protein interactions in other transcriptional regulators. In addition to in vitro studies, we show colocalization of the Scm and ph proteins at polytene chromosome sites in vivo. We discuss the possible roles of the SPM domain in the assembly or function of molecular complexes of PcG proteins.

  4. Computational Prediction of Protein Function Based on Weighted Mapping of Domains and GO Terms

    PubMed Central

    Teng, Zhixia; Guo, Maozu; Dai, Qiguo; Wang, Chunyu; Li, Jin; Liu, Xiaoyan

    2014-01-01

    In this paper, we propose a novel method, SeekFun, to predict protein function based on weighted mapping of domains and GO terms. Firstly, a weighted mapping of domains and GO terms is constructed according to GO annotations and domain composition of the proteins. The association strength between domain and GO term is weighted by symmetrical conditional probability. Secondly, the mapping is extended along the true paths of the terms based on GO hierarchy. Finally, the terms associated with resident domains are transferred to host protein and real annotations of the host protein are determined by association strengths. Our careful comparisons demonstrate that SeekFun outperforms the concerned methods on most occasions. SeekFun provides a flexible and effective way for protein function prediction. It benefits from the well-constructed mapping of domains and GO terms, as well as the reasonable strategy for inferring annotations of protein from those of its domains. PMID:24868539

  5. Improving protein-protein interaction article classification using biological domain knowledge.

    PubMed

    Chen, Yifei; Guo, Hongjian; Liu, Feng; Manderick, Bernard

    2015-01-01

    Interaction Article Classification (IAC) is a specific text classification application in biological domain that tries to find out which articles describe Protein-Protein Interactions (PPIs) to help extract PPIs from biological literature more efficiently. However, the existing text representation and feature weighting schemes commonly used for text classification are not well suited for IAC. We capture and utilise biological domain knowledge, i.e. gene mentions also known as protein or gene names in the articles, to address the problem. We put forward a new gene mention order-based approach that highlights the important role of gene mentions to represent the texts. Furthermore, we also incorporate the information concerning gene mentions into a novel feature weighting scheme called Gene Mention-based Term Frequency (GMTF). By conducting experiments, we show that using the proposed representation and weighting schemes, our Interaction Article Classifier (IACer) performs better than other leading systems for the moment.

  6. A functional protein pore with a "retro" transmembrane domain.

    PubMed Central

    Cheley, S.; Braha, O.; Lu, X.; Conlan, S.; Bayley, H.

    1999-01-01

    Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif. PMID:10386875

  7. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  8. Anti-idiotypic protein domains selected from protein A-based affibody libraries.

    PubMed

    Eklund, Malin; Axelsson, Lars; Uhlén, Mathias; Nygren, Per-Ake

    2002-08-15

    Three pairs of small protein domains showing binding behavior in analogy with anti-idiotypic antibodies have been selected using phage display technology. From an affibody protein library constructed by combinatorial variegation of the Fc binding surface of the 58 residue staphylococcal protein A (SPA)-derived domain Z, affibody variants have been selected to the parental SPA scaffold and to two earlier identified SPA-derived affibodies. One selected affibody (Z(SPA-1)) was shown to recognize each of the five domains of wild-type SPA with dissociation constants (K(D)) in the micromolar range. The binding of the Z(SPA-1) affibody to its parental structure was shown to involve the Fc binding site of SPA, while the Fab-binding site was not involved. Similarly, affibodies showing anti-idiotypic binding characteristics were also obtained when affibodies previously selected for binding to Taq DNA polymerase and human IgA, respectively, were used as targets for selections. The potential applications for these types of affinity pairs were exemplified by one-step protein recovery using affinity chromatography employing the specific interactions between the respective protein pair members. These experiments included the purification of the Z(SPA-1) affibody from a total Escherichia coli cell lysate using protein A-Sepharose, suggesting that this protein A/antiprotein A affinity pair could provide a basis for novel affinity gene fusion systems. The use of this type of small, robust, and easily expressed anti-idiotypic affibody pair for affinity technology applications, including self-assembled protein networks, is discussed.

  9. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    SciTech Connect

    Asojo, Oluwatoyin A.

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  10. Structural organization and interactions of transmembrane domains in tetraspanin proteins

    PubMed Central

    Kovalenko, Oleg V; Metcalf, Douglas G; DeGrado, William F; Hemler, Martin E

    2005-01-01

    Background Proteins of the tetraspanin family contain four transmembrane domains (TM1-4) linked by two extracellular loops and a short intracellular loop, and have short intracellular N- and C-termini. While structure and function analysis of the larger extracellular loop has been performed, the organization and role of transmembrane domains have not been systematically assessed. Results Among 28 human tetraspanin proteins, the TM1-3 sequences display a distinct heptad repeat motif (abcdefg)n. In TM1, position a is occupied by structurally conserved bulky residues and position d contains highly conserved Asn and Gly residues. In TM2, position a is occupied by conserved small residues (Gly/Ala/Thr), and position d has a conserved Gly and two bulky aliphatic residues. In TM3, three a positions of the heptad repeat are filled by two leucines and a glutamate/glutamine residue, and two d positions are occupied by either Phe/Tyr or Val/Ile/Leu residues. No heptad motif is apparent in TM4 sequences. Mutations of conserved glycines in human CD9 (Gly25 and Gly32 in TM1; Gly67 and Gly74 in TM2) caused aggregation of mutant proteins inside the cell. Modeling of the TM1-TM2 interface in CD9, using a novel algorithm, predicts tight packing of conserved bulky residues against conserved Gly residues along the two helices. The homodimeric interface of CD9 was mapped, by disulfide cross-linking of single-cysteine mutants, to the vicinity of residues Leu14 and Phe17 in TM1 (positions g and c) and Gly77, Gly80 and Ala81 in TM2 (positions d, g and a, respectively). Mutations of a and d residues in both TM1 and TM2 (Gly25, Gly32, Gly67 and Gly74), involved in intramolecular TM1-TM2 interaction, also strongly diminished intermolecular interaction, as assessed by cross-linking of Cys80. Conclusion Our results suggest that tetraspanin intra- and intermolecular interactions are mediated by conserved residues in adjacent, but distinct regions of TM1 and TM2. A key structural element that

  11. Mutual effects of disorder and order in fusion proteins between intrinsically disordered domains and fluorescent proteins.

    PubMed

    Lotti, Marina; Longhi, Sonia

    2012-01-01

    Intrinsically disordered proteins are being paid an increasing amount of interest due to the understanding of the crucial role that flexible regions play in molecular recognition and in signaling. Accordingly, reports focusing on the structural and functional characterization of intrinsically disordered proteins or regions are growing exponentially. Relatively few studies have however been reported on the mutual effects of ordered and disordered moieties in artificial fusion proteins. In this review, we focus on the few available experimental data based on the use of chimeras in which fluorescent proteins were fused to disordered domains of different lengths, compactness and propensity to form secondary structures. The impact of the artificial fusion on the conformational and functional properties of the resulting proteins is discussed.

  12. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.

    PubMed

    Marchler-Bauer, Aron; Bo, Yu; Han, Lianyi; He, Jane; Lanczycki, Christopher J; Lu, Shennan; Chitsaz, Farideh; Derbyshire, Myra K; Geer, Renata C; Gonzales, Noreen R; Gwadz, Marc; Hurwitz, David I; Lu, Fu; Marchler, Gabriele H; Song, James S; Thanki, Narmada; Wang, Zhouxi; Yamashita, Roxanne A; Zhang, Dachuan; Zheng, Chanjuan; Geer, Lewis Y; Bryant, Stephen H

    2017-01-04

    NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

  13. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    SciTech Connect

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  14. The SBASE protein domain library, release 2.0: a collection of annotated protein sequence segments.

    PubMed Central

    Pongor, S; Skerl, V; Cserzö, M; Hátsági, Z; Simon, G; Bevilacqua, V

    1993-01-01

    SBASE 2.0 is the second release of SBASE, a collection of annotated protein domain sequences. SBASE entries represent various structural, functional, ligand-binding and topogenic segments of proteins [Pongor, S. et al. (1993) Prot. Eng., in press]. This release contains 34,518 entries provided with standardized names and it is cross-referenced to the major protein and nucleic acid databanks as well as to the PROSITE catalog of protein sequence patterns [Bairoch, A. (1992) Nucl. Acids Res., 20 suppl, 2013-2018]. SBASE can be used for establishing domain homologies using different database-search tools such as FASTA [Lipman and Pearson (1985) Science, 227, 1436-1441], FASTDB [Brutlag et al. (1990) Comp. Appl. Biosci., 6, 237-245] or BLAST3 [Altschul and Lipman (1990) Proc. Natl. Acad. Sci. USA, 87, 5509-5513] which is especially useful in the case of loosely defined domain types for which efficient consensus patterns can not be established. SBASE 2.0 and a set of search and retrieval tools are freely available on request to the authors or by anonymous 'ftp' file transfer from mean value of ftp.icgeb.trieste.it. PMID:8332532

  15. Proteins with an Euonymus lectin-like domain are ubiquitous in Embryophyta

    PubMed Central

    2009-01-01

    Background Cloning of the Euonymus lectin led to the discovery of a novel domain that also occurs in some stress-induced plant proteins. The distribution and the diversity of proteins with an Euonymus lectin (EUL) domain were investigated using detailed analysis of sequences in publicly accessible genome and transcriptome databases. Results Comprehensive in silico analyses indicate that the recently identified Euonymus europaeus lectin domain represents a conserved structural unit of a novel family of putative carbohydrate-binding proteins, which will further be referred to as the Euonymus lectin (EUL) family. The EUL domain is widespread among plants. Analysis of retrieved sequences revealed that some sequences consist of a single EUL domain linked to an unrelated N-terminal domain whereas others comprise two in tandem arrayed EUL domains. A new classification system for these lectins is proposed based on the overall domain architecture. Evolutionary relationships among the sequences with EUL domains are discussed. Conclusion The identification of the EUL family provides the first evidence for the occurrence in terrestrial plants of a highly conserved plant specific domain. The widespread distribution of the EUL domain strikingly contrasts the more limited or even narrow distribution of most other lectin domains found in plants. The apparent omnipresence of the EUL domain is indicative for a universal role of this lectin domain in plants. Although there is unambiguous evidence that several EUL domains possess carbohydrate-binding activity further research is required to corroborate the carbohydrate-binding properties of different members of the EUL family. PMID:19930663

  16. The PDZ Domain of the LIM Protein Enigma Binds to β-Tropomyosin

    PubMed Central

    Guy, Pamela M.; Kenny, Daryn A.; Gill, Gordon N.

    1999-01-01

    PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein α-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal β-TM). The interaction between Enigma and skeletal β-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal β-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal β-TM in transfected cells. The association of Enigma with skeletal β-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells. PMID:10359609

  17. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    PubMed Central

    2012-01-01

    Background Proteins convey the majority of biochemical and cellular activities in organisms. Over the course of evolution, proteins undergo normal sequence mutations as well as large scale mutations involving domain duplication and/or domain shuffling. These events result in the generation of new proteins and protein families. Processes that affect proteome evolution drive species diversity and adaptation. Herein, change over the course of metazoan evolution, as defined by birth/death and duplication/deletion events within protein families and domains, was examined using the proteomes of 9 metazoan and two outgroup species. Results In studying members of the three major metazoan groups, the vertebrates, arthropods, and nematodes, we found that the number of protein families increased at the majority of lineages over the course of metazoan evolution where the magnitude of these increases was greatest at the lineages leading to mammals. In contrast, the number of protein domains decreased at most lineages and at all terminal lineages. This resulted in a weak correlation between protein family birth and domain birth; however, the correlation between domain birth and domain member duplication was quite strong. These data suggest that domain birth and protein family birth occur via different mechanisms, and that domain shuffling plays a role in the formation of protein families. The ratio of protein family birth to protein domain birth (domain shuffling index) suggests that shuffling had a more demonstrable effect on protein families in nematodes and arthropods than in vertebrates. Through the contrast of high and low domain shuffling indices at the lineages of Trichinella spiralis and Gallus gallus, we propose a link between protein redundancy and evolutionary changes controlled by domain shuffling; however, the speed of adaptation among the different lineages was relatively invariant. Evaluating the functions of protein families that appeared or disappeared at the

  18. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    SciTech Connect

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting in a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.

  19. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    DOE PAGES

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting inmore » a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.« less

  20. Co-evolutionary Analysis of Domains in Interacting Proteins Reveals Insights into Domain–Domain Interactions Mediating Protein–Protein Interactions

    PubMed Central

    Jothi, Raja; Cherukuri, Praveen F.; Tasneem, Asba; Przytycka, Teresa M.

    2006-01-01

    Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein–protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the noninteracting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain–domain interactions. Given a protein–protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain–domain interactions, and used known domain–domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain–domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites. PMID:16949097

  1. Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins.

    PubMed

    Jing, Hua; Takagi, Junichi; Liu, Jin-huan; Lindgren, Sara; Zhang, Rong-guang; Joachimiak, A; Wang, Jia-huai; Springer, Timothy A

    2002-10-01

    The surface layer of archaeobacteria protects cells from extreme environments and, in Methanosarcina, may regulate cell adhesion. We identify three domain types that account for the complete architecture of numerous Methanosarcina surface layer proteins (SLPs). We solve the crystal structure for two of these domains, which correspond to the two N-terminal domains of an M. mazei SLP. One domain displays a unique, highly symmetrical, seven-bladed beta propeller fold, and the other belongs to the polycystic kidney disease (PKD) superfamily fold. The third domain is predicted to adopt a beta helix fold. These domains have homologs in metazoan cell surface proteins, suggesting remarkable relationships between domains in archaeal SLPs and metazoan cell surface proteins.

  2. Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria.

    PubMed

    De Maio, Flavio; Maulucci, Giuseppe; Minerva, Mariachiara; Anoosheh, Saber; Palucci, Ivana; Iantomasi, Raffaella; Palmieri, Valentina; Camassa, Serena; Sali, Michela; Sanguinetti, Maurizio; Bitter, Wilbert; Manganelli, Riccardo; De Spirito, Marco; Delogu, Giovanni

    2014-01-01

    PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.

  3. Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots.

    PubMed

    Springer, Nathan M; Napoli, Carolyn A; Selinger, David A; Pandey, Ritu; Cone, Karen C; Chandler, Vicki L; Kaeppler, Heidi F; Kaeppler, Shawn M

    2003-06-01

    Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization. Our analysis reveals five classes of SET domain proteins in plants that can be further divided into 19 orthology groups. In some cases, such as the Enhancer of zeste-like and trithorax-like proteins, plants and animals contain homologous proteins with a similar organization of domains outside of the SET domain. However, a majority of plant SET domain proteins do not have an animal homolog with similar domain organization, suggesting that plants have unique mechanisms to establish and maintain chromatin states. Although the domains present in plant and animal SET domain proteins often differ, the domains found in the plant proteins have been generally implicated in protein-protein interactions, indicating that most SET domain proteins operate in complexes. Combined analysis of the maize and Arabidopsis SET domain proteins reveals that duplication of SET domain proteins in plants is extensive and has occurred via multiple mechanisms that preceded the divergence of monocots and dicots.

  4. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    SciTech Connect

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  5. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  6. The role of internal duplication in the evolution of multi-domain proteins.

    PubMed

    Nacher, J C; Hayashida, M; Akutsu, T

    2010-08-01

    Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.

  7. SET and MYND domain containing protein 3 in cancer

    PubMed Central

    Huang, Lei; Xu, A-Man

    2017-01-01

    Lysine methylation plays a vital role in histone modification. Deregulations of lysine methyltransferases and demethylases have been frequently observed in human cancers. The SET and MYND domain containing protein 3 (SMYD3) is a novel histone lysine methyltransferase and it functions by regulating chromatin during the development of myocardial and skeletal muscle. It has been recently unveiled to play significant roles in human cancer genesis and progression via regulating various key cancer-associated genes and pathways and promoting cell proliferation and migration. Upregulation of SMYD3 expression is present in multiple cancer types, suggesting it as a potential prognostic marker. Herein the structure, substrates and targets of SMYD3, and its effects on initiation, invasion and metastasis of diverse tumors (e.g., esophageal squamous cell carcinoma, gastric cancer, hepatocellular carcinoma, cholangiocarcinoma, breast cancer, prostate cancer, and leukemia) are systematically reviewed, providing clues for the development of novel SMYD3-specific personalized anti-cancer therapy. SMYD3 inhibitors (e.g., BCI-121 and novobiocin) could hopefully fight against tumors with efficacy. PMID:28123630

  8. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models.

    PubMed

    Hou, Tingjun; Li, Nan; Li, Youyong; Wang, Wei

    2012-05-04

    Determination of the binding specificity of SH3 domain, a peptide recognition module (PRM), is important to understand their biological functions and reconstruct the SH3-mediated protein-protein interaction network. In the present study, the SH3-peptide interactions for both class I and II SH3 domains were characterized by the intermolecular residue-residue interaction network. We developed generic MIEC-SVM models to infer SH3 domain-peptide recognition specificity that achieved satisfactory prediction accuracy. By investigating the domain-peptide recognition mechanisms at the residue level, we found that the class-I and class-II binding peptides have different binding modes even though they occupy the same binding site of SH3. Furthermore, we predicted the potential binding partners of SH3 domains in the yeast proteome and constructed the SH3-mediated protein-protein interaction network. Comparison with the experimentally determined interactions confirmed the effectiveness of our approach. This study showed that our sophisticated computational approach not only provides a powerful platform to decipher protein recognition code at the molecular level but also allows identification of peptide-mediated protein interactions at a proteomic scale. We believe that such an approach is general to be applicable to other domain-peptide interactions.

  9. Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly

    PubMed Central

    Karchin, Joshua M.; Ha, Jeung-Hoi; Namitz, Kevin E.; Cosgrove, Michael S.; Loh, Stewart N.

    2017-01-01

    Domain swapping is the process by which identical proteins exchange reciprocal segments to generate dimers. Here we introduce induced domain swapping (INDOS) as a mechanism for regulating protein function. INDOS employs a modular design consisting of the fusion of two proteins: a recognition protein that binds a triggering molecule, and a target protein that undergoes a domain swap in response to binding of the triggering ligand. The recognition protein (FK506 binding protein) is inserted into functionally-inactivated point mutants of two target proteins (staphylococcal nuclease and ribose binding protein). Binding of FK506 to the FKBP domain causes the target domain to first unfold, then refold via domain swap. The inactivating mutations become ‘swapped out’ in the dimer, increasing nuclease and ribose binding activities by 100-fold and 15-fold, respectively, restoring them to near wild-type values. INDOS is intended to convert an arbitrary protein into a functional switch, and is the first example of rational design in which a small molecule is used to trigger protein domain swapping and subsequent activation of biological function. PMID:28287617

  10. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  11. Genetic, structural, and molecular insights into the function of ras of complex proteins domains.

    PubMed

    Civiero, Laura; Dihanich, Sybille; Lewis, Patrick A; Greggio, Elisa

    2014-07-17

    Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson's disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.

  12. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    PubMed

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  13. Analysis of the Borrelia burgdorferi Cyclic-di-GMP-Binding Protein PlzA Reveals a Role in Motility and Virulence ▿

    PubMed Central

    Pitzer, Joshua E.; Sultan, Syed Z.; Hayakawa, Yoshihiro; Hobbs, Gerry; Miller, Michael R.; Motaleb, Md A.

    2011-01-01

    The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [Kd], 1.25 μM), consistent with Kd values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID50]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded. PMID:21357718

  14. Defining the Domain Arrangement of the Mammalian Target of Rapamycin Complex Component Rictor Protein

    PubMed Central

    Zhou, Ping; Zhang, Ning; Nussinov, Ruth

    2015-01-01

    Abstract Mammalian target of rapamycin (mTOR) complexes play a pivotal role in the cell. Raptor and Rictor proteins interact with mTOR to form two distinct complexes, mTORC1 and mTORC2, respectively. While the domain structure of Raptor is known, current bioinformatics tools failed to classify the domains in Rictor. Here we focus on identifying specific domains in Rictor by searching for conserved regions. We scanned the pdb structural database and constructed three protein domain datasets. Next we carried out multiple pairwise sequence alignments of the proteins in the domain dataset. By analyzing the z-scores of Rictor sequence similarity to protein sequences in the dataset, we assigned the structural and functional domains of Rictor. We found that, like Raptor, Rictor also has HEAT and WD40 domains, which could be the common motif binding to mTORC. Rictor may also have pleckstrin homology domains, which mediate cellular localization and transmit signals to downstream targets, as well as a domain that is homologous to 50S protein L17 and human 39S protein L17. This putative ribosome binding domain could mediate mTORC2–ribosome interaction. PMID:26176550

  15. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    SciTech Connect

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N.

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  16. ALP/Enigma PDZ-LIM domain proteins in the heart.

    PubMed

    Zheng, Ming; Cheng, Hongqiang; Banerjee, Indroneal; Chen, Ju

    2010-04-01

    Actinin-associated LIM protein (ALP) and Enigma are two subfamilies of Postsynaptic density 95, discs large and zonula occludens-1 (PDZ)-Lin-11, Isl1 and Mec-3 (LIM) domain containing proteins. ALP family members have one PDZ and one LIM domain, whereas Enigma proteins contain one PDZ and three LIM domains. Four ALP and three Enigma proteins have been identified in mammals, each having multiple splice variants and unique expression patterns. Functionally, these proteins bind through their PDZ domains to alpha-actinin and bind through their LIM domains or other internal protein interaction domains to other proteins, including signaling molecules. ALP and Enigma proteins have been implicated in cardiac and skeletal muscle structure, function and disease, neuronal function, bipolar disorder, tumor growth, platelet and epithelial cell motility and bone formation. This review will focus on recent advances in the biological roles of ALP/Enigma PDZ-LIM domain proteins in cardiac muscle and provide insights into mechanisms by which mutations in these proteins are related to human cardiac disease.

  17. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  18. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains.

    PubMed

    Ve, Thomas; Williams, Simon J; Kobe, Bostjan

    2015-02-01

    The Toll/interleukin-1 receptor/resistance protein (TIR) domain is a protein-protein interaction domain consisting of 125-200 residues, widely distributed in animals, plants and bacteria but absent from fungi, archea and viruses. In plants and animals, these domains are found in proteins with functions in innate immune pathways, while in bacteria, some TIR domain-containing proteins interfere with the innate immune pathways in the host. TIR domains function as protein scaffolds, mostly involving self-association and homotypic interactions with other TIR domains. In the last 15 years, the three-dimensional structures of TIR domains from several mammalian, plant and bacterial proteins have been reported. These structures, jointly with functional data including the identification of interacting proteins, have started to provide insight into the molecular basis of the assembly of animal and plant immune signaling complexes, and for host immunosuppression by bacterial pathogens. This review focuses on the current knowledge of the structures of the TIR domains and how the structure relates to function.

  19. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  20. Reconstituting Protein Interaction Networks Using Parameter-Dependent Domain-Domain Interactions

    DTIC Science & Technology

    2013-05-07

    Superfamily ( SF ) [33], and SMART [34,35]. PFAM domains: FH2, Drf_FH3, and two Drf_GBD domains; SF domains: Formin homology 2 domain (FH2 domain) and ARM...annotation data from six commonly used annotation databases: PFAM-A (release 25.0) [32], Superfamily ( SF ) [33], SMART [34,35], PRODOM [36], TIGRFAM [37... SF 3,651 62.1 962,602 33.0 1,355 1,307 0.79 SMART 3,023 51.4 455,523 15.6 392 379 0.66 PRODOM 146 2.5 19,760 0.7 111 111 0.02 TIGRFAM 3,019 51.3

  1. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

    PubMed

    Kessels, Michael M; Qualmann, Britta

    2015-09-01

    A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.

  2. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones.

    PubMed

    Miernyk, J A

    2001-07-01

    A total of 89 J-domain proteins were identified in the genome of the model flowering plant Arabidopsis thaliana. The deduced amino acid sequences of the J-domain proteins were analyzed for an assortment of structural features and motifs. Based on the results of sequence comparisons and structure and function predictions, 51 distinct families were identified. The families ranged in size from 1 to 6 members. Subcellular localizations of the A thaliana J-domain proteins were predicted; species were found in both the soluble and membrane compartments of all cellular organelles. Based on digital Northern analysis, the J-domain proteins could be separated into groups of low, medium, and moderate expression levels. This genomics-based analysis of the A thaliana J-domain proteins establishes a framework for detailed studies of biological function and specificity. It additionally provides a comprehensive basis for evolutionary comparisons.

  3. Implications of 3D domain swapping for protein folding, misfolding and function.

    PubMed

    Rousseau, Frederic; Schymkowitz, Joost; Itzhaki, Laura S

    2012-01-01

    Three-dimensional domain swapping is the process by which two identical protein chains exchange a part of their structure to form an intertwined dimer or higher-order oligomer. The phenomenon has been observed in the crystal structures of a range of different proteins. In this chapter we review the experiments that have been performed in order to understand the sequence and structural determinants of domain-swapping and these show how the general principles obtained can be used to engineer proteins to domain swap. We discuss the role of domain swapping in regulating protein function and as one possible mechanism of protein misfolding that can lead to aggregation and disease. We also review a number of interesting pathways of macromolecular assembly involving β-strand insertion or complementation that are related to the domain-swapping phenomenon.

  4. Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    PubMed Central

    Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  5. Polydom: a secreted protein with pentraxin, complement control protein, epidermal growth factor and von Willebrand factor A domains.

    PubMed Central

    Gilgès, D; Vinit, M A; Callebaut, I; Coulombel, L; Cacheux, V; Romeo, P H; Vigon, I

    2000-01-01

    To identify extracellular proteins with epidermal growth factor (EGF) domains that are potentially involved in the control of haemopoiesis, we performed degenerate reverse-transcriptase-mediated PCR on the murine bone-marrow stromal cell line MS-5 and isolated a new partial cDNA encoding EGF-like domains related to those in the Notch proteins. Cloning and sequencing of the full-length cDNA showed that it encoded a new extracellular multi-domain protein that we named polydom. This 387 kDa mosaic protein contained a signal peptide followed by a new association of eight different protein domains, including a pentraxin domain and a von Willebrand factor type A domain, ten EGF domains, and 34 complement control protein modules. The human polydom mRNA is strongly expressed in placenta, its expression in the other tissues being weak or undetectable. The particular multidomain structure of the encoded protein suggests an important biological role in cellular adhesion and/or in the immune system. PMID:11062057

  6. Structure and function of regulator of G protein signaling homology domains.

    PubMed

    Tesmer, John J G

    2009-01-01

    All regulator of G protein signaling (RGS) proteins contain a conserved domain of approximately 130 amino acids that binds to activated heterotrimeric G protein α subunits (Gα) and accelerates their rate of GTP hydrolysis. Homologous domains are found in at least six other protein families, including a family of Rho guanine nucleotide exchange factors (RhoGEFs) and the G protein-coupled receptor kinases (GRKs). Although some of the RhoGEF and GRK RGS-like domains can also bind to activated Gα subunits, they do so in distinct ways and with much lower levels of GTPase activation. In other protein families, the domains have as of yet no obvious relationship to heterotrimeric G protein signaling. These RGS homology (RH) domains are now recognized as mediators of extraordinarily diverse protein-protein interactions. Through these interactions, they play roles that range from enzyme to molecular scaffold to signal transducing module. In this review, the atomic structures of RH domains from RGS proteins, Axins, RhoGEFs, and GRKs are compared in light of what is currently known about their functional roles.

  7. Cytoplasmic Ig-Domain Proteins: Cytoskeletal Regulators with a Role in Human Disease

    PubMed Central

    Otey, Carol A.; Dixon, Richard; Stack, Christianna; Goicoechea, Silvia M.

    2009-01-01

    Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. PMID:19466753

  8. Versatile TPR domains accommodate different modes of target protein recognition and function.

    PubMed

    Allan, Rudi Kenneth; Ratajczak, Thomas

    2011-07-01

    The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.

  9. Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes

    PubMed Central

    Andreu-Fernández, Vicente; Sancho, Mónica; Genovés, Ainhoa; Lucendo, Estefanía; Todt, Franziska; Lauterwasser, Joachim; Funk, Kathrin; Jahreis, Günther; Pérez-Payá, Enrique; Mingarro, Ismael; Edlich, Frank; Orzáez, Mar

    2017-01-01

    The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax transmembrane domain interactions were implicated recently in Bax pore formation. Here, we show that the isolated transmembrane domains of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate interactions between Bax and prosurvival proteins inside the membrane in the absence of apoptotic stimuli. Bcl-2 protein transmembrane domains specifically homooligomerize and heterooligomerize in bacterial and mitochondrial membranes. Their interactions participate in the regulation of Bcl-2 proteins, thus modulating apoptotic activity. Our results suggest that interactions between the transmembrane domains of Bax and antiapoptotic Bcl-2 proteins represent a previously unappreciated level of apoptosis regulation. PMID:28028215

  10. Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins.

    PubMed

    Luchinat, Claudio; Nagulapalli, Malini; Parigi, Giacomo; Sgheri, Luca

    2012-02-01

    Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed in a single metal binding site in the protein can be used as restraints to assess the degree of mobility of the different domains. They can be used to determine the maximum occurrence (MO) of each possible protein conformation, i.e. the maximum weight that such conformations can have independently of the real structural ensemble, in agreement with the provided restraints. In the case of two-domain proteins, the metal ions can be placed all in the same domain, or distributed between the two domains. It has been demonstrated that the quantity of independent information for the characterization of the system is larger when all metals are bound in the same domain. At the same time, it has been shown that there are practical advantages in placing the metals in different domains. Here, it is shown that distributing the metals between the domains provides a tool for defining a coefficient of compatibility among the restraints obtained from different metals, without a significant decrease of the capability of the MO values to discriminate among conformations with different weights.

  11. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    SciTech Connect

    Pykäläinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Peränen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  12. Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein.

    PubMed

    Chen, Shuqing; Vincent, Sarah; Wilson, David B; Ganem, Bruce

    2003-02-01

    The Escherichia coli bifunctional T-protein transforms chorismic acid to p-hydroxyphenylpyruvic acid in the l-tyrosine biosynthetic pathway. The 373 amino acid T-protein is a homodimer that exhibits chorismate mutase (CM) and prephenate dehydrogenase (PDH) activities, both of which are feedback-inhibited by tyrosine. Fifteen genes coding for the T-protein and various fragments thereof were constructed and successfully expressed in order to characterize the CM, PDH and regulatory domains. Residues 1-88 constituted a functional CM domain, which was also dimeric. Both the PDH and the feedback-inhibition activities were localized in residues 94-373, but could not be separated into discrete domains. The activities of cloned CM and PDH domains were comparatively low, suggesting some cooperative interactions in the native state. Activity data further indicate that the PDH domain, in which NAD, prephenate and tyrosine binding sites were present, was more unstable than the CM domain.

  13. Specificity Profiling of Protein-Binding Domains Using One-Bead-One-Compound Peptide Libraries

    PubMed Central

    Kunys, Andrew R.; Lian, Wenlong; Pei, Dehua

    2013-01-01

    One-bead-one-compound (OBOC) libraries consist of structurally related compounds (e.g., peptides) covalently attached to a solid support, with each resin bead carrying a unique compound. OBOC libraries of high structural diversity can be rapidly synthesized and screened without the need of any special equipment and therefore can be employed in any chemical or biochemical laboratory. OBOC peptide libraries have been widely used to map the ligand specificity of proteins, to determine the substrate specificity of enzymes, and to develop inhibitors against macromolecular targets. They have proven particularly useful in profiling the binding specificity of protein modular domains (e.g., SH2 domains, BIR domains, and PDZ domains) and subsequently using the specificity information to predict the protein targets of these domains. The protocols outlined in this article describe the methodologies for synthesizing and screening OBOC peptide libraries against SH2 and PDZ domains and the related data analysis. PMID:23788558

  14. Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis.

    PubMed

    Lees, Jonathan G; Lee, David; Studer, Romain A; Dawson, Natalie L; Sillitoe, Ian; Das, Sayoni; Yeats, Corin; Dessailly, Benoit H; Rentzsch, Robert; Orengo, Christine A

    2014-01-01

    Gene3D (http://gene3d.biochem.ucl.ac.uk) is a database of protein domain structure annotations for protein sequences. Domains are predicted using a library of profile HMMs from 2738 CATH superfamilies. Gene3D assigns domain annotations to Ensembl and UniProt sequence sets including >6000 cellular genomes and >20 million unique protein sequences. This represents an increase of 45% in the number of protein sequences since our last publication. Thanks to improvements in the underlying data and pipeline, we see large increases in the domain coverage of sequences. We have expanded this coverage by integrating Pfam and SUPERFAMILY domain annotations, and we now resolve domain overlaps to provide highly comprehensive composite multi-domain architectures. To make these data more accessible for comparative genome analyses, we have developed novel search algorithms for searching genomes to identify related multi-domain architectures. In addition to providing domain family annotations, we have now developed a pipeline for 3D homology modelling of domains in Gene3D. This has been applied to the human genome and will be rolled out to other major organisms over the next year.

  15. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    PubMed

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (<200 amino acids) this correlation is negative. Medium-sized proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  16. Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity.

    PubMed Central

    Johnson, J D; Zhang, W; Rudnick, A; Rutter, W J; German, M S

    1997-01-01

    LIM-homeodomain proteins direct cellular differentiation by activating transcription of cell-type-specific genes, but this activation requires cooperation with other nuclear factors. The LIM-homeodomain protein Lmx1 cooperates with the basic helix-loop-helix (bHLH) protein E47/Pan-1 to activate the insulin promoter in transfected fibroblasts. In this study, we show that two proteins originally called Lmx1 are the closely related products of two distinct vertebrate genes, Lmx1.1 and Lmx1.2. We have used yeast genetic systems to delineate the functional domains of the Lmx1 proteins and to characterize the physical interactions between Lmx1 proteins and E47/Pan-1 that produce synergistic transcriptional activation. The LIM domains of the Lmx1 proteins, and particularly the second LIM domain, mediate both specific physical interactions and transcriptional synergy with E47/Pan-1. The LIM domains of the LIM-homeodomain protein Isl-1, which cannot mediate transcriptional synergy with E47/Pan-1, do not interact with E47/Pan-1. In vitro studies demonstrate that the Lmx1.1 LIM2 domain interacts specifically with the bHLH domain of E47/Pan-1. These studies provide the basis for a model of the assembly of LIM-homeodomain-containing complexes on DNA elements that direct cell-type-restricted transcription in differentiated tissues. PMID:9199284

  17. Structural basis of interactions between epidermal growth factor receptor and SH2 domain proteins.

    PubMed

    Sierke, S L; Longo, G M; Koland, J G

    1993-02-26

    The structural basis of the interactions between the activated epidermal growth factor (EGF) receptor and SH2 domain proteins was investigated. The c-src SH2 domain (second domain of src homology) was expressed as a recombinant fusion protein, and an in vitro assay was developed to monitor EGF receptor/SH2 domain interactions. EGF receptor tyrosine kinase domain (TKD) forms expressed in the baculovirus/insect cell system were shown to bind to the SH2 domain when phosphorylated. These TKD/SH2 domain interactions were characterized by dissociation constants of 60-320 nM. Deletion analysis indicated that the entire SH2 domain was required for recognition of the phosphorylated TKD. The binding of a highly truncated TKD protein to the SH2 domain suggested that the sites recognized by the SH2 domain included the EGF receptor autophosphorylation site, tyr992. A phosphorylated EGF receptor peptide containing tyr992 was also shown to interact with the SH2 domain. This residue may therefore mediate interactions between the EGF receptor and tyrosine kinases in the src family.

  18. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  19. SH2 domain proteins as high-affinity receptor tyrosine kinase substrates.

    PubMed

    Sierke, S L; Koland, J G

    1993-09-28

    Activation of a growth factor receptor tyrosine kinase (RTK) is accompanied by a rapid autophosphorylation of the receptor on tyrosine residues. Receptor activation has been shown to promote the association of signal-transducing proteins containing SH2 domains (second domain of src homology). These receptor-associated proteins can, in turn, be phosphorylated by the RTK, an event which presumably regulates their activities. It has been suggested that SH2 domains in signal-transducing proteins target these proteins as substrates of the activated RTK. To test this hypothesis, recombinant proteins were generated that contained tyrosine phosphorylation sites of the erbB3 receptor and/or the SH2 domain of c-src. Incorporation of the SH2 domain led to a decrease in KM and an increase in Vmax for the substrate. The KM determined for one chimeric SH2/erbB3 substrate was among the lowest reported for epidermal growth factor RTK substrates. Experiments with a truncated kinase lacking C-terminal autophosphorylation sites indicated that the reduction in KM for these substrates was mediated by interactions between the substrate SH2 domain and phosphotyrosine residues of the RTK. These interactions could also inhibit RTK activity. These results demonstrate that the SH2 domain can effectively target substrates to a RTK and that SH2 domain proteins can regulate RTK activity.

  20. Structure and Function of the TIR Domain from the Grape NLR Protein RPV1

    PubMed Central

    Williams, Simon J.; Yin, Ling; Foley, Gabriel; Casey, Lachlan W.; Outram, Megan A.; Ericsson, Daniel J.; Lu, Jiang; Boden, Mikael; Dry, Ian B.; Kobe, Bostjan

    2016-01-01

    The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signaling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices (“AE” interface). This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signaling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signaling. PMID:28008335

  1. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein

    NASA Astrophysics Data System (ADS)

    Gruszka, Dominika T.; Whelan, Fiona; Farrance, Oliver E.; Fung, Herman K. H.; Paci, Emanuele; Jeffries, Cy M.; Svergun, Dmitri I.; Baldock, Clair; Baumann, Christoph G.; Brockwell, David J.; Potts, Jennifer R.; Clarke, Jane

    2015-06-01

    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed `clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.

  2. Mapping of domains on HIV envelope protein mediating association with calnexin and protein-disulfide isomerase.

    PubMed

    Papandréou, Marie-Jeanne; Barbouche, Rym; Guieu, Régis; Rivera, Santiago; Fantini, Jacques; Khrestchatisky, Michel; Jones, Ian M; Fenouillet, Emmanuel

    2010-04-30

    The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents.

  3. Mapping of Domains on HIV Envelope Protein Mediating Association with Calnexin and Protein-disulfide Isomerase*

    PubMed Central

    Papandréou, Marie-Jeanne; Barbouche, Rym; Guieu, Régis; Rivera, Santiago; Fantini, Jacques; Khrestchatisky, Michel; Jones, Ian M.; Fenouillet, Emmanuel

    2010-01-01

    The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents. PMID:20202930

  4. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  5. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    SciTech Connect

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  6. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  7. Redox-coupled structural changes of the catalytic a' domain of protein disulfide isomerase.

    PubMed

    Inagaki, Koya; Satoh, Tadashi; Yagi-Utsumi, Maho; Le Gulluche, Anne-Charlotte; Anzai, Takahiro; Uekusa, Yoshinori; Kamiya, Yukiko; Kato, Koichi

    2015-09-14

    Protein disulfide isomerase functions as a folding catalyst in the endoplasmic reticulum. Its b' and a' domains provide substrate-binding sites and undergo a redox-dependent domain rearrangement coupled to an open-closed structural change. Here we determined the first solution structure of the a' domain in its oxidized form and thereby demonstrate that oxidation of the a' domain induces significant conformational changes not only in the vicinity of the active site but also in the distal b'-interfacial segment. Based on these findings, we propose that this conformational transition triggers the domain segregation coupled with the exposure of the hydrophobic surface.

  8. Role of oligomerization domains in thrombospondins and other extracellular matrix proteins.

    PubMed

    Engel, Jürgen

    2004-06-01

    Coiled coils, collagen triple helices and globular oligomerization domains mediate the subunit assembly of many proteins in vertebrates and invertebrates. Oligomerization offers functional advantages including multivalency, increased binding strength and the combined function of different domains. These features are seen in natural proteins and may be introduced by protein engineering. The special focus of this review is on oligomerization domain of extracellular matrix proteins. For thrombospondins, initial interesting results on the functional role of oligomerization have been published. Other features remain to be explored. For example, it is not clear why thrombospondin-1 and thrombospondin-2 are trimers whereas thrombospondins-3 to -5 are pentamers. To stimulate this type of research, this review makes a survey of oligomerization domains and their functional role in extracellular matrix proteins.

  9. Solid-state nanopore analysis of the PDZ2 protein domain

    NASA Astrophysics Data System (ADS)

    Freedman, Kevin; Haq, Raza; Jurgens, Maike; Mulero, Rafael; Prabhu, Anmiv; Jemth, Per; Edel, Joshua; Kim, Minjun

    2010-03-01

    The PDZ2 protein domain plays a significant role in biology; specifically as a ubiquitous binding domain for a variety of proteins found in organisms from bacteria to humans. PDZ2 and a single-point mutant were characterized using nanopores to help elucidate the structure-function relationship of this protein and provide a framework for more complex studies involving protein folding/binding. The translocation properties and unfolding of this domain was interrogated by the ionic-current blockade method using a single digit nanometer solid-state pore. By conducting these experiments under a wide variety of fluidic conditions, significantly different ionic current blockades were recorded and provided a method for sensing the folding/unfolding characteristics of the PDZ2 protein domain and its single-point mutant.

  10. LdFlabarin, a New BAR Domain Membrane Protein of Leishmania Flagellum

    PubMed Central

    Thonnus, Magali; Salin, Bénédicte; Boissier, Fanny; Blancard, Corinne; Sauvanet, Cécile; Metzler, Christelle; Espiau, Benoît; Sahin, Annelise; Merlin, Gilles

    2013-01-01

    During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein. PMID:24086735

  11. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins.

    PubMed Central

    Klappa, P; Ruddock, L W; Darby, N J; Freedman, R B

    1998-01-01

    Protein disulfide isomerase (PDI) is a very efficient catalyst of folding of many disulfide-bonded proteins. A great deal is known about the catalytic functions of PDI, while little is known about its substrate binding. We recently demonstrated by cross-linking that PDI binds peptides and misfolded proteins, with high affinity but broad specificity. To characterize the substrate-binding site of PDI, we investigated the interactions of various recombinant fragments of human PDI, expressed in Escherichia coli, with different radiolabelled model peptides. We observed that the b' domain of human PDI is essential and sufficient for the binding of small peptides. In the case of larger peptides, specifically a 28 amino acid fragment derived from bovine pancreatic trypsin inhibitor, or misfolded proteins, the b' domain is essential but not sufficient for efficient binding, indicating that contributions from additional domains are required. Hence we propose that the different domains of PDI all contribute to the binding site, with the b' domain forming the essential core. PMID:9463371

  12. The mammalian START domain protein family in lipid transport in health and disease.

    PubMed

    Clark, Barbara J

    2012-03-01

    Lipid transfer proteins of the steroidogenic acute regulatory protein-related lipid transfer (START) domain family are defined by the presence of a conserved ∼210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for ligand binding. The mammalian START proteins bind diverse ligands, such as cholesterol, oxysterols, phospholipids, sphingolipids, and possibly fatty acids, and have putative roles in non-vesicular lipid transport, thioesterase enzymatic activity, and tumor suppression. However, the biological functions of many members of the START domain protein family are not well established. Recent research has focused on characterizing the cell-type distribution and regulation of the START proteins, examining the specificity and directionality of lipid transport, and identifying disease states associated with dysregulation of START protein expression. This review summarizes the current concepts of the proposed physiological and pathological roles for the mammalian START domain proteins in cholesterol and lipid trafficking.

  13. The NHR domains of Neuralized and related proteins: Beyond Notch signalling.

    PubMed

    Liu, Sili; Boulianne, Gabrielle L

    2017-01-01

    Neuralized Homology Repeats (NHRs) were first identified in Neuralized, an E3-ubiquitin ligase that plays a key role in the Notch signalling pathway. Since their original discovery, NHR domains have been shown to regulate protein-protein interactions in a broad range of developmental processes and in a wide variety of species from flies to humans. The NHR family of proteins can be categorized into three groups: (1) those that contain a RING finger, (2) those that contain a SOCS box and, (3) those that only have NHR domains. Here we review the structure and function of NHR domains in various cellular and developmental processes.

  14. A Protein Domain and Family Based Approach to Rare Variant Association Analysis

    PubMed Central

    Richardson, Tom G.; Shihab, Hashem A.; Rivas, Manuel A.; McCarthy, Mark I.; Campbell, Colin; Timpson, Nicholas J.; Gaunt, Tom R.

    2016-01-01

    Background It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Methods Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). Results We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. Conclusion We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals. PMID:27128313

  15. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  16. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in

  17. 3DSwap: curated knowledgebase of proteins involved in 3D domain swapping.

    PubMed

    Shameer, Khader; Shingate, Prashant N; Manjunath, S C P; Karthika, M; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2011-01-01

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like 'secondary major interface' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the 'extent of swapping' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping.

  18. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein.

    PubMed

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T Sam

    2013-08-01

    The caspase-recruitment domain (CARD) mediates homotypic protein-protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein.

  19. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  20. Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains.

    PubMed

    Nakayama, Minoru; Hama, Chihiro

    2011-02-01

    Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.

  1. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  2. Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter.

    PubMed

    Skillman, Kristen M; Barnard, Travis J; Peterson, Janine H; Ghirlando, Rodolfo; Bernstein, Harris D

    2005-11-01

    Bacterial autotransporters are proteins that contain a small C-terminal 'beta domain' that facilitates translocation of a large N-terminal 'passenger domain' across the outer membrane (OM) by an unknown mechanism. Here we used EspP, an autotransporter produced by Escherichia coli 0157:H7, as a model protein to gain insight into the transport reaction. Initially we found that the passenger domain of a truncated version of EspP (EspPDelta1-851) was translocated efficiently across the OM. Blue Native polyacrylamide gel electrophoresis, analytical ultracentrifugation and other biochemical methods showed that EspPDelta1-851 behaves as a compact monomer and strongly suggest that the channel formed by the beta domain is too narrow to accommodate folded polypeptides. Surprisingly, we found that a folded protein domain fused to the N-terminus of EspPDelta1-851 was efficiently translocated across the OM. Further analysis revealed that the passenger domain of wild-type EspP also folds at least partially in the periplasm. To reconcile these data, we propose that the EspP beta domain functions primarily to target and anchor the protein and that an external factor transports the passenger domain across the OM.

  3. Methyl-CpG-binding domain proteins: readers of the epigenome.

    PubMed

    Du, Qian; Luu, Phuc-Loi; Stirzaker, Clare; Clark, Susan J

    2015-01-01

    How DNA methylation is interpreted and influences genome regulation remains largely unknown. Proteins of the methyl-CpG-binding domain (MBD) family are primary candidates for the readout of DNA methylation as they recruit chromatin remodelers, histone deacetylases and methylases to methylated DNA associated with gene repression. MBD protein binding requires both functional MBD domains and methyl-CpGs; however, some MBD proteins also bind unmethylated DNA and active regulatory regions via alternative regulatory domains or interaction with the nucleosome remodeling deacetylase (NuRD/Mi-2) complex members. Mutations within MBD domains occur in many diseases, including neurological disorders and cancers, leading to loss of MBD binding specificity to methylated sites and gene deregulation. Here, we summarize the current state of knowledge about MBD proteins and their role as readers of the epigenome.

  4. Protein domain networks: Scale-free mixing of positive and negative exponents

    NASA Astrophysics Data System (ADS)

    Nacher, J. C.; Hayashida, M.; Akutsu, T.

    2006-07-01

    Many biological studies have been focused on the study of proteins, since proteins are essential for most cell functions. Although proteins are unique, they share certain common properties. For example, well-defined regions within a protein can fold independently from the rest of the protein and have their own function. They are called protein domains, and served as protein building blocks. In this article, we present a theoretical model for studying the protein domain networks, where one node of the network corresponds to one protein and two proteins are connected if they contain the same domain. The resulting distribution of nodes with a given degree, k, shows not only a power-law with negative exponent γ=-1, but it resembles the superposition of two power-law functions, one with a negative exponent and another with a positive exponent β=1. We call this distribution pattern “ scale-free mixing”. To explain the emergence of this superposition of power-laws, we propose a basic model with two main components: (1) mutation and (2) duplication of domains. Precisely, duplication gives rise to complete subgraphs (i.e., cliques) on the network, thus for several values of k a large number of nodes with degree k is produced, which explains the positive power-law branch of the degree distribution. In order to compare our model with experimental data, we generate protein domain networks with data from the UniProt Knowledgebase-Swissprot database for protein sequences and using InterPro, Pfam and Smart for domain databases. Our results indicate that the signal of this scale-free mixing pattern is also observed in the experimental data and it is conserved among organisms as Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Mus musculus, and Homo sapiens.

  5. Histone Code Modulation by Oncogenic PWWP-domain Protein in Breast Cancers

    DTIC Science & Technology

    2013-06-01

    Hoffmann MJ. Transcription factor networks in embryonic stem cells and testicular cancer and the definition of epigenetics. Epigenetics 2007; 2(1): 37-42...PWWP-domain Protein in Breast Cancers PRINCIPAL INVESTIGATOR: Zeng-Quan Yang, Ph.D...SUBTITLE 5a. CONTRACT NUMBER Histone Code Modulation by Oncogenic PWWP-domain Protein in Breast Cancers 5b. GRANT NUMBER W81XWH-09-1-0109 5c

  6. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  7. The Transactivation Domains of the p53 Protein.

    PubMed

    Raj, Nitin; Attardi, Laura D

    2017-01-03

    The p53 tumor suppressor is a transcriptional activator, with discrete domains that participate in sequence-specific DNA binding, tetramerization, and transcriptional activation. Mutagenesis and reporter studies have delineated two distinct activation domains (TADs) and specific hydrophobic residues within these TADs that are critical for their function. Knockin mice expressing p53 mutants with alterations in either or both of the two TADs have revealed that TAD1 is critical for responses to acute DNA damage, whereas both TAD1 and TAD2 participate in tumor suppression. Biochemical and structural studies have identified factors that bind either or both TADs, including general transcription factors (GTFs), chromatin modifiers, and negative regulators, helping to elaborate a model through which p53 activates transcription. Posttranslational modifications (PTMs) of the p53 TADs through phosphorylation also regulate TAD activity. Together, these studies on p53 TADs provide great insight into how p53 serves as a tumor suppressor.

  8. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes

    NASA Astrophysics Data System (ADS)

    John, Karin; Bär, Markus

    2005-06-01

    Cell membranes are composed of a mixture of lipids. Many biological processes require the formation of spatial domains in the lipid distribution of the plasma membrane. We have developed a mathematical model that describes the dynamic spatial distribution of acidic lipids in response to the presence of GMC proteins and regulating enzymes. The model encompasses diffusion of lipids and GMC proteins, electrostatic attraction between acidic lipids and GMC proteins as well as the kinetics of membrane attachment/detachment of GMC proteins. If the lipid-protein interaction is strong enough, phase separation occurs in the membrane as a result of free energy minimization and protein/lipid domains are formed. The picture is changed if a constant activity of enzymes is included into the model. We chose the myristoyl-electrostatic switch as a regulatory module. It consists of a protein kinase C that phosphorylates and removes the GMC proteins from the membrane and a phosphatase that dephosphorylates the proteins and enables them to rebind to the membrane. For sufficiently high enzymatic activity, the phase separation is replaced by travelling domains of acidic lipids and proteins. The latter active process is typical for nonequilibrium systems. It allows for a faster restructuring and polarization of the membrane since it acts on a larger length scale than the passive phase separation. The travelling domains can be pinned by spatial gradients in the activity; thus the membrane is able to detect spatial clues and can adapt its polarity dynamically to changes in the environment.

  9. A nuclear localization domain in the hnRNP A1 protein

    PubMed Central

    1995-01-01

    The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2. PMID:7730395

  10. Protective activity of the CnaBE3 domain conserved among Staphylococcus aureus Sdr proteins.

    PubMed

    Becherelli, Marco; Prachi, Prachi; Viciani, Elisa; Biagini, Massimiliano; Fiaschi, Luigi; Chiarot, Emiliano; Nosari, Sarah; Brettoni, Cecilia; Marchi, Sara; Biancucci, Marco; Fontana, Maria Rita; Montagnani, Francesca; Bagnoli, Fabio; Barocchi, Michèle A; Manetti, Andrea G O

    2013-01-01

    Staphylococcus aureus is an opportunistic pathogen, commensal of the human skin and nares, but also responsible for invasive nosocomial as well as community acquired infections. Staphylococcus aureus adheres to the host tissues by means of surface adhesins, such as SdrC, SdrD, and SdrE proteins. The Sdr family of proteins together with a functional A domain, contain respectively two, three or five repeated sequences called B motifs which comprise the CnaB domains. SdrD and SdrE proteins were reported to be protective in animal models against invasive diseases or lethal challenge with human clinical S. aureus isolates. In this study we identified a 126 amino acid sequence containing a CnaB domain, conserved among the three Sdr proteins. The three fragments defined here as CnaBC2, D5 and E3 domains even though belonging to phylogenetically distinct strains, displayed high sequence similarity. Based on the sequence conservation data, we selected the CnaBE3 domain for further analysis and characterization. Polyclonal antibodies raised against the recombinant CnaBE3 domain recognized SdrE, SdrC and SdrD proteins of different S. aureus lineages. Moreover, we demonstrated that the CnaBE3 domain was expressed in vivo during S. aureus infections, and that immunization of this domain alone significantly reduces the bacterial load in mice challenged with S. aureus. Furthermore, we show that the reduction of bacteria by CnaBE3 vaccination is due to functional antibodies. Finally, we demonstrated that the region of the SdrE protein containing the CnaBE3 domain was resistant to trypsin digestion, a characteristic often associated with the presence of an isopeptide bond.

  11. p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families.

    PubMed

    Garcia-Ranea, J A; Mirey, Gladys; Camonis, Jacques; Valencia, Alfonso

    2002-10-09

    We identified families of proteins characterized by the presence of a domain similar to human p23 protein, which include proteins such as Sgt1, involved in the yeast kinetochore assembly; melusin, involved in specific interactions with the cytoplasmic integrin beta1 domain; Rar1, related to pathogenic resistance in plants, and to development in animals; B5+B5R flavo-hemo cytochrome NAD(P)H oxidoreductase type B in humans and mice; and NudC, involved in nucleus migration during mitosis. We also found that p23 and the HSP20/alpha-crystallin family of heat shock proteins, which share the same three-dimensional folding, show a pattern of conserved residues that points to a common origin in the evolution of both protein domains. The p23 and HSP20/alpha-crystallin phylogenetic relationship and their similar role in chaperone activity suggest a common function, probably involving protein-protein interaction, for those proteins containing p23-like domains.

  12. An alternative scenario for the formation of specialized protein nano-domains (cluster phases) in biomembranes

    NASA Astrophysics Data System (ADS)

    Destainville, N.

    2010-09-01

    We discuss a realistic scenario, accounting for the existence of sub-micrometric protein domains in cell membranes. At the biological level, such membrane domains have been shown to be specialized, in order to perform a determined biological task, in the sense that they gather one or a few protein species out of the hundreds of different ones that a cell membrane may contain. By analyzing the balance between mixing entropy and protein affinities, we propose that such protein sorting in distinct domains can be explained without appealing to pre-existing lipidic micro-phase separations, as in the lipid raft scenario. We show that the proposed scenario is compatible with known physical interactions between membrane proteins, even if thousands of different species coexist.

  13. Predicting protein N-glycosylation by combining functional domain and secretion information.

    PubMed

    Li, Sujun; Liu, Boshu; Cai, Yudong; Li, Yixue

    2007-08-01

    Protein N-glycosylation plays an important role in protein function. Yet, at present, few computational methods are available for the prediction of this protein modification. This prompted our development of a support vector machine (SVM)-based method for this task, as well as a partial least squares (PLS) regression based prediction method for comparison. A functional domain feature space was used to create SVM and PLS models, which achieved accuracies of 83.91% and 79.89%, respectively, as evaluated by a leave-one-out cross-validation. Subsequently, SVM and PLS models were developed based on functional domain and protein secretion information, which yielded accuracies of 89.13% and 86%, respectively. This analysis demonstrates that the protein functional domain and secretion information are both efficient predictors of N-glycosylation.

  14. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    SciTech Connect

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin; Sacchettini, James C.

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.

  15. Protein Domain of Unknown Function 3233 is a Translocation Domain of Autotransporter Secretory Mechanism in Gamma proteobacteria

    PubMed Central

    Prakash, Ananth; Yogeeshwari, S.; Sircar, Sanchari; Agrawal, Shipra

    2011-01-01

    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3rd of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system. PMID:22073138

  16. IS-Dom: a dataset of independent structural domains automatically delineated from protein structures

    NASA Astrophysics Data System (ADS)

    Ebina, Teppei; Umezawa, Yuki; Kuroda, Yutaka

    2013-05-01

    Protein domains that can fold in isolation are significant targets in diverse area of proteomics research as they are often readily analyzed by high-throughput methods. Here, we report IS-Dom, a dataset of Independent Structural Domains (ISDs) that are most likely to fold in isolation. IS-Dom was constructed by filtering domains from SCOP, CATH, and DomainParser using quantitative structural measures, which were calculated by estimating inter-domain hydrophobic clusters and hydrogen bonds from the full length protein's atomic coordinates. The ISD detection protocol is fully automated, and all of the computed interactions are stored in the server which enables rapid update of IS-Dom. We also prepared a standard IS-Dom using parameters optimized by maximizing the Youden's index. The standard IS-Dom, contained 54,860 ISDs, of which 25.5 % had high sequence identity and termini overlap with a Protein Data Bank (PDB) cataloged sequence and are thus experimentally shown to fold in isolation [coined autonomously folded domain (AFDs)]. Furthermore, our ISD detection protocol missed less than 10 % of the AFDs, which corroborated our protocol's ability to define structural domains that are able to fold independently. IS-Dom is available through the web server (http://domserv.lab.tuat.ac.jp/IS-Dom.html), and users can either, download the standard IS-Dom dataset, construct their own IS-Dom by interactively varying the parameters, or assess the structural independence of newly defined putative domains.

  17. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues

    PubMed Central

    Briant, Kit; Koay, Yee-Hui; Otsuka, Yuka; Swanton, Eileithyia

    2015-01-01

    ABSTRACT Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. PMID:26446255

  18. Charting the Landscape of Tandem BRCT Domain-Mediated Protein Interactions

    PubMed Central

    Woods, Nicholas T.; Mesquita, Rafael D.; Sweet, Michael; Carvalho, Marcelo A.; Li, Xueli; Liu, Yun; Nguyen, Huey; Thomas, C. Eric; Iversen, Edwin S.; Marsillac, Sylvia; Karchin, Rachel; Koomen, John; Monteiro, Alvaro N.A.

    2014-01-01

    Eukaryotic cells have evolved an intricate system to resolve DNA damage to prevent its transmission to daughter cells. This system, collectively known as the DNA damage response (DDR) network, includes a large number of proteins responsible for detection of DNA damage, promotion of repair, and coordination with cell cycle progression. Because defects in this network can lead to cancer, this network constitutes a barrier against tumorigenesis. The BRCT domain is a modular protein domain critical for relaying signals in the DDR. We performed a systematic analysis of protein-protein interactions involving tandem BRCT domains (tBRCT) in the DDR by combining literature curation, yeast two hybrid (Y2H) screens, and tandem affinity purification coupled to mass spectrometry (TAP-MS). We identified one previously unrecognized BRCT protein and generated human protein-protein interaction network for this type of modular domain. This study also reveals several novel components in DNA damage signaling such as COMMD1 and mTORC2. Additionally, integration of tBRCT domain interactions with DDR phosphoprotein studies and analysis of kinase-substrate interactions revealed signaling subnetworks that may aid in understanding the involvement of tBRCT in disease and DNA repair. PMID:22990118

  19. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.

    PubMed

    Tadokoro, Takashi; Kulikowicz, Tomasz; Dawut, Lale; Croteau, Deborah L; Bohr, Vilhelm A

    2012-06-01

    Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-wing motifs, is important for DNA binding and for many protein interactions. To better understand the critical functions of this domain, we generated recombinant WRN proteins (using a novel purification scheme) with mutations in Arg-993 within the α2-α3 loop of the RQC domain and in Phe-1037 of the -wing motif. We then studied the catalytic activities and DNA binding of these mutant proteins as well as some important functional protein interactions. The mutant proteins were defective in DNA binding and helicase activity, and interestingly, they had deficient exonuclease activity and strand annealing function. The RQC domain of WRN has not previously been implicated in exonuclease or annealing activities. The mutant proteins could not stimulate NEIL1 incision activity as did the wild type. Thus, the Arg-993 and Phe-1037 in the RQC domain play essential roles in catalytic activity, and in functional interactions mediated by WRN.

  20. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    PubMed

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-06-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.

  1. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    PubMed Central

    Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang

    2013-01-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166

  2. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    PubMed

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  3. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana

    PubMed Central

    Urbanus, Susan L; de Folter, Stefan; Shchennikova, Anna V; Kaufmann, Kerstin; Immink, Richard GH; Angenent, Gerco C

    2009-01-01

    Background MADS domain transcription factors play important roles in various developmental processes in flowering plants. Members of this family play a prominent role in the transition to flowering and the specification of floral organ identity. Several studies reported mRNA expression patterns of the genes encoding these MADS domain proteins, however, these studies do not provide the necessary information on the temporal and spatial localisation of the proteins. We have made GREEN FLUORESCENT PROTEIN (GFP) translational fusions with the four MADS domain proteins SEPALLATA3, AGAMOUS, FRUITFULL and APETALA1 from the model plant Arabidopsis thaliana and analysed the protein localisation patterns in living plant tissues by confocal laser scanning microscopy (CLSM). Results We unravelled the protein localisation patterns of the four MADS domain proteins at a cellular and subcellular level in inflorescence and floral meristems, during development of the early flower bud stages, and during further differentiation of the floral organs. The protein localisation patterns revealed a few deviations from known mRNA expression patterns, suggesting a non-cell autonomous action of these factors or alternative control mechanisms. In addition, we observed a change in the subcellular localisation of SEPALLATA3 from a predominantly nuclear localisation to a more cytoplasmic localisation, occurring specifically during petal and stamen development. Furthermore, we show that the down-regulation of the homeodomain transcription factor WUSCHEL in ovular tissues is preceded by the occurrence of both AGAMOUS and SEPALLATA3 proteins, supporting the hypothesis that both proteins together suppress WUSCHEL expression in the ovule. Conclusion This approach provides a highly detailed in situ map of MADS domain protein presence during early and later stages of floral development. The subcellular localisation of the transcription factors in the cytoplasm, as observed at certain stages during

  4. SPECTRUS: A Dimensionality Reduction Approach for Identifying Dynamical Domains in Protein Complexes from Limited Structural Datasets.

    PubMed

    Ponzoni, Luca; Polles, Guido; Carnevale, Vincenzo; Micheletti, Cristian

    2015-08-04

    Identifying dynamical, quasi-rigid domains in proteins provides a powerful means for characterizing functionally oriented structural changes via a parsimonious set of degrees of freedom. In fact, the relative displacements of few dynamical domains usually suffice to rationalize the mechanics underpinning biological functionality in proteins and can even be exploited for structure determination or refinement purposes. Here we present SPECTRUS, a general scheme that, by solely using amino acid distance fluctuations, can pinpoint the innate quasi-rigid domains of single proteins or large complexes in a robust way. Consistent domains are usually obtained by using either a pair of representative structures or thousands of conformers. The functional insights offered by the approach are illustrated for biomolecular systems of very different size and complexity such as kinases, ion channels, and viral capsids. The decomposition tool is available as a software package and web server at spectrus.sissa.it.

  5. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.

    PubMed

    Shi, Junwei; Wang, Eric; Milazzo, Joseph P; Wang, Zihua; Kinney, Justin B; Vakoc, Christopher R

    2015-06-01

    CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.

  6. Biochemical and functional significance of F-BAR domain proteins interaction with WASP/N-WASP.

    PubMed

    Chen, Yolande; Aardema, Jorie; Corey, Seth J

    2013-04-01

    The Bin-Amphiphysin-Rvs (BAR) domain family of proteins includes groups which promote positive (classical BAR, N-BAR, and F-BAR) and negative (I-BAR) membrane deformation. Of these groups, the F-BAR subfamily is the most diverse in its biochemical properties. F-BAR domain proteins dimerize to form a tight scaffold about the membrane. The F-BAR domain provides a banana-shaped, alpha-helical structure that senses membrane curvature. Different types of F-BAR domain proteins contain tyrosine kinase or GTPase activities; some interact with phosphatases and RhoGTPases. Most possess an SH3 domain that facilitates the recruitment and activation of WASP/N-WASP. Thus, F-BAR domain proteins affect remodeling of both membrane and the actin cytoskeleton. The purpose of this review is to highlight the role of F-BAR proteins in coupling WASP/N-WASP to cytoskeletal remodeling. A role for F-BAR/WASP interaction in human diseases affecting nervous, blood, and neoplastic tissues is discussed.

  7. Effect of interdomain linker length on an antagonistic folding-unfolding equilibrium between two protein domains.

    PubMed

    Cutler, Thomas A; Mills, Brandon M; Lubin, David J; Chong, Lillian T; Loh, Stewart N

    2009-02-27

    Fusion of one protein domain with another is a common event in both evolution and protein engineering experiments. When insertion is at an internal site (e.g., a surface loop or turn), as opposed to one of the termini, conformational strain can be introduced into both domains. Strain is manifested by an antagonistic folding-unfolding equilibrium between the two domains, which we previously showed can be parameterized by a coupling free-energy term (DeltaG(X)). The extent of strain is predicted to depend primarily on the ratio of the N-to-C distance of the guest protein to the distance between ends of the surface loop in the host protein. Here, we test that hypothesis by inserting ubiquitin (Ub) into the bacterial ribonuclease barnase (Bn), using peptide linkers from zero to 10 amino acids each. DeltaG(X) values are determined by measuring the extent to which Co(2+) binding to an engineered site on the Ub domain destabilizes the Bn domain. All-atom, unforced Langevin dynamics simulations are employed to gain structural insight into the mechanism of mechanically induced unfolding. Experimental and computational results find that the two domains are structurally and energetically uncoupled when linkers are long and that DeltaG(X) increases with decreasing linker length. When the linkers are fewer than two amino acids, strain is so great that one domain unfolds the other. However, the protein is able to refold as dimers and higher-order oligomers. The likely mechanism is a three-dimensional domain swap of the Bn domain, which relieves conformational strain. The simulations suggest that an effective route to mechanical unfolding begins with disruption of the hydrophobic core of Bn near the Ub insertion site.

  8. Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains*

    PubMed Central

    Kienast, Yvonne; Jucknischke, Ute; Scheiblich, Stefan; Thier, Martina; de Wouters, Mariana; Haas, Alexander; Lehmann, Christian; Brand, Verena; Bernicke, Dirk; Honold, Konrad; Lorenz, Stefan

    2016-01-01

    By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. PMID:26677222

  9. Network mapping among the functional domains of Chikungunya virus nonstructural proteins.

    PubMed

    Rana, Jyoti; Rajasekharan, Sreejith; Gulati, Sahil; Dudha, Namrata; Gupta, Amita; Chaudhary, Vijay Kumar; Gupta, Sanjay

    2014-10-01

    Formation of virus specific replicase complex is among the most important steps that determines the fate of viral transcription and replication during Chikungunya virus (CHIKV) infection. In the present study, the authors have computationally generated a 3D structure of CHIKV late replicase complex on the basis of the interactions identified among the domains of CHIKV nonstructural proteins (nsPs) which make up the late replicase complex. The interactions among the domains of CHIKV nsPs were identified using systems such as pull down, protein interaction ELISA, and yeast two-hybrid. The structures of nsPs were generated using I-TASSER and the biological assembly of the replicase complex was determined using ZRANK and RDOCK. A total of 36 interactions among the domains and full length proteins were tested and 12 novel interactions have been identified. These interactions included the homodimerization of nsP1 and nsP4 through their respective C-ter domains; the associations of nsP2 helicase domain and C-ter domain of nsP4 with methyltransferase and membrane binding domains of nsP1; the interaction of nsP2 protease domain with C-ter domain of nsP4; and the interaction of nsP3 macro and alphavirus unique domains with the C-ter domain of nsP1. The novel interactions identified in the current study form a network of organized associations that suggest the spatial arrangement of nsPs in the late replicase complex of CHIKV.

  10. Genomic and functional characterization of the diverse immunoglobulin domain-containing protein (DICP) family

    PubMed Central

    Haire, Robert N.; Cannon, John P.; O’Driscoll, Marci L.; Ostrov, David A.; Mueller, M. Gail; Turner, Poem M.; Litman, Ronda T.; Litman, Gary W.; Yoder, Jeffrey A.

    2012-01-01

    A heretofore-unrecognized multigene family encoding diverse immunoglobulin (Ig) domain-containing proteins (DICPs) was identified in the zebrafish genome. Twenty-nine distinct loci mapping to three chromosomal regions encode receptor-type structures possessing two classes of Ig ectodomains (D1 and D2). The sequence and number of Ig domains, transmembrane regions and signaling motifs varies between DICPs. Interindividual polymorphism and alternative RNA processing contribute to DICP diversity. Molecular models indicate that most D1 domains are of the variable (V) type; D2 domains are Ig-like. Sequence differences between D1 domains are concentrated in hypervariable regions on the front sheet strands of the Ig fold. Recombinant DICP Ig domains bind lipids, a property shared by mammalian CD300 and TREM family members. These findings suggest that novel multigene families encoding diversified immune receptors have arisen in different vertebrate lineages and effect parallel patterns of ligand recognition that potentially impact species-specific advantages. PMID:22386706

  11. α/β-hydrolase domain containing protein 15 (ABHD15)--an adipogenic protein protecting from apoptosis.

    PubMed

    Walenta, Evelyn; Pessentheiner, Ariane R; Pelzmann, Helmut J; Deutsch, Alexander; Goeritzer, Madeleine; Kratky, Dagmar; Hackl, Hubert; Oh, Da Young; Prokesch, Andreas; Bogner-Strauss, Juliane G

    2013-01-01

    Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15) is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic) concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.

  12. ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain.

    PubMed

    Nakagawa, N; Hoshijima, M; Oyasu, M; Saito, N; Tanizawa, K; Kuroda, S

    2000-06-07

    The Enigma homologue protein (ENH), containing an N-terminal PDZ domain and three C-terminal LIM domains, is a heart and skeletal muscle-specific protein that has been shown to preferentially interact with protein kinase C beta (PKCbeta) through the LIM domains (Kuroda et al., J. Biol. Chem. 271, 31029-31032, 1996). We here demonstrate that ENH is colocalized with a cytoskeletal protein alpha-actinin in the Z-disk region of rat neonatal cardiomyocytes. Pull-down assays using the glutathione-S-transferase-fusion system also showed the interaction of the PDZ domain of ENH with actin and alpha-actinin. Furthermore, by combined use of the in silico and conventional cDNA cloning methods, we have isolated three ENH-related clones from a mouse heart-derived cDNA library: mENH1 (591 amino acid residues) corresponding to rat ENH, mENH2 (337 residues), and mENH3 (239 residues); the latter two containing only a single PDZ domain. Deciphering their cDNA sequences, these mENH1-3 mRNAs appear to be generated from a single mENH gene by alternative splicing. Northern blot analyses using human cancer cells and mouse embryos have shown expression of each mENH mRNA to vary considerably among the cell types and during the developmental stage. Together with a recent finding that PKCbeta is markedly activated in the cardiac hypertrophic signaling, these results suggest that ENH1 plays an important role in the heart development by scaffolding PKCbeta to the Z-disk region and that ENH2 and ENH3 negatively modulate the scaffolding activity of ENH1.

  13. Purification and Structural Analysis of SUN and KASH Domain Proteins.

    PubMed

    Esra Demircioglu, F; Cruz, Victor E; Schwartz, Thomas U

    2016-01-01

    Molecular tethers span the nuclear envelope to mechanically connect the cytoskeleton and nucleoskeleton. These bridge-like tethers, termed linkers of nucleoskeleton and cytoskeleton (LINC) complexes, consist of SUN proteins at the inner nuclear membrane and KASH proteins at the outer nuclear membrane. LINC complexes are central to a variety of cell activities including nuclear positioning and mechanotransduction, and LINC-related abnormalities are associated with a spectrum of tissue-specific diseases, termed laminopathies or envelopathies. Protocols used to study the biochemical and structural characteristics of core elements of SUN-KASH complexes are described here to facilitate further studies in this new field of cell biology.

  14. Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins

    PubMed Central

    2008-01-01

    Background Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. Results The Rho GTPase-binding domain (GBD/FH3) reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm) formins that define a specific branch (Class III) of the formin family. Conclusion We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored) Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms. PMID:18430232

  15. Characterization of a Fasciola gigantica protein carrying two DM9 domains reveals cellular relocalization property.

    PubMed

    Phadungsil, Wansika; Smooker, Peter M; Vichasri-Grams, Suksiri; Grams, Rudi

    2016-01-01

    Even at the present age of whole-organism analysis, e.g., genomics, transcriptomics, and proteomics, the biological roles of many proteins remain unresolved. Classified among the proteins of unknown function is a family of proteins harboring repeats of the DM9 domain, a 60-75 amino acids motif first described in a small number of Drosophila melanogaster proteins. Proteins may carry two or more DM9 domains either in combination with other domains or as their sole constituent. Here we have characterized a 16.8 kDa Fasciola gigantica protein comprising two tandem repeated DM9 domains (FgDM9-1). The protein was located in the parenchyma of the immature and mature parasite and consequently it was not detected in the ES product of the parasite but only in the whole worm extract. Interestingly, extraction with SDS yielded a substantially higher amount of the protein suggesting association with insoluble cell components. In Sf9 insect cells a heterologously expressed EGFP-FgDM9-1 chimera showed cell-wide distribution but relocated to vesicle-like structures in the cytoplasm after stimulating cellular stress by bacteria, heat shock or chloroquine. These structures did not colocalize with the markers of endocytosis/phagocytosis ubiquitin, RAB7, GABARAP. The same behavior was noted for Aedes aegypti PRS1, a homologous mosquito DM9 protein as a positive control while EGFP did not exhibit such relocation in the insect cells. Cross-linking experiments on soluble recombinant FgDM9-1 indicated that the protein can undergo specific oligomerization. It is speculated that proteins carrying the DM9 domain have a role in vesicular transport in flatworms and insects.

  16. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  17. Insights into the evolution and domain structure of ataxin-2 proteins across eukaryotes

    PubMed Central

    2014-01-01

    Background Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. Results We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. Conclusion Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species. PMID:25027299

  18. Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains.

    PubMed

    Rahaman, Obaidur; Kalimeri, Maria; Melchionna, Simone; Hénin, Jérôme; Sterpone, Fabio

    2015-07-23

    In this work, we address the question of whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologous G domains of different stability: the mesophilic G domain of the elongation factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-1α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time scale, we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favorable for both systems, with the hyperthermophilic protein offering a slightly more favorable environment to host water molecules. We estimate that, under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that, at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that under extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue.

  19. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization.

    PubMed

    Seidl, Michael F; Van den Ackerveken, Guido; Govers, Francine; Snel, Berend

    2011-02-01

    Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.

  20. In vitro antitumor activity of Latcripin-15 regulator of chromosome condensation 1 domain protein

    PubMed Central

    Tian, Li; Wang, Xiaoli; Li, Xingyun; Liu, Ben; Zhang, Wei; Cao, Jing; Ning, Anhong; Huang, Min; Zhong, Mintao

    2016-01-01

    Cancer is one of the most significant health problems worldwide and thus the development of novel therapeutic agents with fewer side effects is required. The present study investigated the in vitro anticancer effects of a newly isolated fungal protein. In this study, Latcripin-15 (LP-15) regulator of chromosome condensation 1 (RCC1) domain protein, which is obtained from the Lentinula edodes C91-3 fungal strain, was identified, cloned, expressed, purified and re-folded to assess the in vitro antitumor activity of the protein. LP-15 RCC1 full-length cDNA was isolated from Lentinula edodes using 3′ and 5′-rapid amplification of cDNA ends and then cloned, expressed, purified and re-folded in vitro. In addition, the effects of the isolated LP-15 RCC1 protein's functional domain on the viability and apoptosis of human lung cancer A549 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, transmission electron microscopy, flow cytometry and Hoechst 33258 staining. The LP-15 RCC1 functional domain protein was successfully expressed, purified and re-folded in vitro. Treatment with the LP-15 RCC1 functional domain protein significantly reduced tumor cell viability and induced apoptosis in A549 cells. The results of the present study indicate that the LP-15 RCC1 functional domain requires further investigation as a novel therapeutic agent for cancer therapy. PMID:27899975

  1. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3/Treslin.

    PubMed

    Itou, Hiroshi; Muramatsu, Sachiko; Shirakihara, Yasuo; Araki, Hiroyuki

    2014-09-02

    The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomal DNA. Yeast Sld3 and its metazoan counterpart Treslin are the hub proteins mediating protein associations critical for the helicase formation. Here, we show the crystal structure of the central domain of Sld3 that is conserved in Sld3/Treslin family of proteins. The domain consists of two segments with 12 helices and is sufficient to bind to Cdc45, the essential helicase component. The structure model of the Sld3-Cdc45 complex, which is crucial for the formation of the active helicase, is proposed.

  2. Engineered staphylococcal protein A's IgG-binding domain with cathepsin L inhibitory activity

    SciTech Connect

    Bratkovic, Tomaz . E-mail: tomaz.bratkovic@ffa.uni-lj.si; Berlec, Ales; Popovic, Tatjana; Lunder, Mojca; Kreft, Samo; Urleb, Uros; Strukelj, Borut

    2006-10-13

    Inhibitory peptide of papain-like cysteine proteases, affinity selected from a random disulfide constrained phage-displayed peptide library, was grafted to staphylococcal protein A's B domain. Scaffold protein was additionally modified in order to allow solvent exposed display of peptide loop. Correct folding of fusion proteins was confirmed by CD-spectroscopy and by the ability to bind the Fc-region of rabbit IgG, a characteristic of parent domain. The recombinant constructs inhibited cathepsin L with inhibitory constants in the low-micromolar range.

  3. Efficient segmental isotope labeling of multi-domain proteins using Sortase A.

    PubMed

    Freiburger, Lee; Sonntag, Miriam; Hennig, Janosch; Li, Jian; Zou, Peijian; Sattler, Michael

    2015-09-01

    NMR studies of multi-domain protein complexes provide unique insight into their molecular interactions and dynamics in solution. For large proteins domain-selective isotope labeling is desired to reduce signal overlap, but available methods require extensive optimization and often give poor ligation yields. We present an optimized strategy for segmental labeling of multi-domain proteins using the S. aureus transpeptidase Sortase A. Critical improvements compared to existing protocols are (1) the efficient removal of cleaved peptide fragments by centrifugal filtration and (2) a strategic design of cleavable and non-cleavable affinity tags for purification. Our approach enables routine production of milligram amounts of purified segmentally labeled protein for NMR and other biophysical studies.

  4. Resilience of biochemical activity in protein domains in the face of structural divergence.

    PubMed

    Zhang, Dapeng; Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L

    2014-06-01

    Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function.

  5. Review the role of terminal domains during storage and assembly of spider silk proteins.

    PubMed

    Eisoldt, Lukas; Thamm, Christopher; Scheibel, Thomas

    2012-06-01

    Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process.

  6. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins

    PubMed Central

    Radakovics, Katharina; Smith, Terry K.; Bobik, Nina; Round, Adam; Djinović-Carugo, Kristina; Usón, Isabel

    2016-01-01

    Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1–83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1–83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1–240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88. PMID:27973613

  7. Alternative splicing for members of human mosaic domain superfamilies. I. The CH and LIM domains containing group of proteins.

    PubMed

    Friedberg, Felix

    2009-05-01

    In this paper we examine (restricted to homo sapiens) the products resulting from gene duplication and the subsequent alternative splicing for the members of a multidomain group of proteins which possess the evolutionary conserved calponin homology CH domain, i.e. an "actin binding domain", as a singlet and which, in addition, contain the conserved cysteine rich double Zn finger possessing Lim domain, also as a singlet. Seven genes, resulting from gene duplications, were identified that code for seven group members for which pre-mRNAs appear to have undergone multiple alternative splicing: Mical 1, 2 and 3 are located on chromosomes 6q21, 11p15 and 22q11, respectively. The LMO7 gene is present on chromosome 13q22 and the LIMCH1 gene on chromosome 4p13. Micall1 is mapped to chromosome 22q13 and Micall2 to chromosome 7p22. Translated Gen/Bank ESTs suggest the existence of multiple products alternatively spliced from the pre-mRNAs encoded by these genes. Characteristic indicators of such splicing among the proteins derived from one gene must include containment of some common extensive 100% identical regions. In some instances only one exon might be partly or completely eliminated. Sometimes alternative splicing is also associated with an increased frequency of creation of an exon or part of an exon from an intron. Not only coding regions for the body of the protein but also for its N- or -C ends could be affected by the splicing. If created forms are merely beginning at different starting points but remain identical in sequence thereafter, their existence as products of alternate splicing must be questioned. In the splicings, described in this paper, multiple isoforms rather than a single isoform appear as products during the gene expression.

  8. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  9. Activity of a Two-Domain Antifreeze Protein Is Not Dependent on Linker Sequence

    PubMed Central

    Holland, Nolan B.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Sönnichsen, Frank D.

    2007-01-01

    The reported NMR structure of RD3, a naturally occurring two-domain antifreeze protein, suggests that the two nearly identical domains are oriented to allow simultaneous binding of their active regions to the ice surface. It is implied that the nine residues linking the two domains play a role in this alignment, but this has not been established. We have designed and expressed a modified form of RD3 that replaces the nine-residue linker with a generic sequence of one serine and eight glycine residues to test the importance of the linker amino acid sequence. The modified linker is shown to have significantly different characteristics compared to the original linker. Heteronuclear nuclear Overhauser effect experiments show that the new linker residues have more mobility than the linker residues in the native protein. Further, NMR data show that the folding of the C-terminal domain is somewhat perturbed by the altered linker. Finally, distributions of residual dipolar couplings indicate that the two domains tumble and move independently of each other. Nevertheless, the thermal hysteresis activity of the modified protein is indistinguishable from that of native RD3, proving that increased activity of the two-domain antifreeze protein is not dependent on structure of the linker. PMID:17056724

  10. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton

    PubMed Central

    1992-01-01

    Interaction with extracellular matrix can trigger a variety of responses by cells including changes in specific gene expression and cell differentiation. The mechanism by which cell surface events are coupled to the transcriptional machinery is not understood, however, proteins localized at sites of cell-substratum contact are likely to function as signal transducers. We have recently purified and characterized a low abundance adhesion plaque protein called zyxin (Crawford, A. W., and M. C. Beckerle. 1991. J. Biol. Chem. 266:5847- 5853; Crawford, A. W., J. W. Michelsen, and M. C. Beckerle. 1992. J. Cell Biol. 116:1381-1393). We have now isolated and sequenced zyxin cDNA and we report here that zyxin exhibits an unusual proline-rich NH2- terminus followed by three tandemly arrayed LIM domains. LIM domains have previously been identified in proteins that play important roles in transcriptional regulation and cellular differentiation. LIM domains have been proposed to coordinate metal ions and we have demonstrated by atomic absorption spectroscopy that purified zyxin binds zinc, a result consistent with the idea that zyxin has zinc fingers. In addition, we have discovered that zyxin interacts in vitro with a 23-kD protein that also exhibits LIM domains. Microsequence analysis has revealed that the 23-kD protein (or cCRP) is the chicken homologue of the human cysteine- rich protein (hCRP). By double-label indirect immunofluorescence, we found that zyxin and cCRP are extensively colocalized in chicken embryo fibroblasts, consistent with the idea that they interact in vivo. We conclude that LIM domains are zinc-binding sequences that may be involved in protein-protein interactions. The demonstration that two cytoskeletal proteins, zyxin and cCRP, share a sequence motif with proteins important for transcriptional regulation raises the possibility that zyxin and cCRP are components of a signal transduction pathway that mediates adhesion-stimulated changes in gene

  11. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network

    PubMed Central

    Nam, Hyun-Jun; Kim, Inhae; Bowie, James U.; Kim, Sanguk

    2015-01-01

    A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms. PMID:25923201

  12. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network.

    PubMed

    Nam, Hyun-Jun; Kim, Inhae; Bowie, James U; Kim, Sanguk

    2015-04-29

    A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms.

  13. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  14. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  15. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  16. Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling

    PubMed Central

    Dohlman, Henrik G.; Jones, Janice C.

    2013-01-01

    Heterotrimeric guanine nucleotide–binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically, most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling. PMID:22649098

  17. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions.

    PubMed Central

    Peles, E; Nativ, M; Lustig, M; Grumet, M; Schilling, J; Martinez, R; Plowman, G D; Schlessinger, J

    1997-01-01

    Receptor protein tyrosine phosphatase beta (RPTPbeta) expressed on the surface of glial cells binds to the glycosylphosphatidylinositol (GPI)-anchored recognition molecule contactin on neuronal cells leading to neurite outgrowth. We describe the cloning of a novel contactin-associated transmembrane receptor (p190/Caspr) containing a mosaic of domains implicated in protein-protein interactions. The extracellular domain of Caspr contains a neurophilin/coagulation factor homology domain, a region related to fibrinogen beta/gamma, epidermal growth factor-like repeats, neurexin motifs as well as unique PGY repeats found in a molluscan adhesive protein. The cytoplasmic domain of Caspr contains a proline-rich sequence capable of binding to a subclass of SH3 domains of signaling molecules. Caspr and contactin exist as a complex in rat brain and are bound to each other by means of lateral (cis) interactions in the plasma membrane. We propose that Caspr may function as a signaling component of contactin, enabling recruitment and activation of intracellular signaling pathways in neurons. The binding of RPTPbeta to the contactin-Caspr complex could provide a mechanism for cell-cell communication between glial cells and neurons during development. PMID:9118959

  18. Spiroplasma eriocheiris Adhesin-Like Protein (ALP) Interacts with Epidermal Growth Factor (EGF) Domain Proteins to Facilitate Infection

    PubMed Central

    Hou, Libo; Liu, Yuhan; Gao, Qi; Xu, Xuechuan; Ning, Mingxiao; Bi, Jingxiu; Liu, Hui; Liu, Min; Gu, Wei; Wang, Wen; Meng, Qingguo

    2017-01-01

    Spiroplasma eriocheiris is a novel pathogen found in recent years, causing the tremor disease (TD) of Chinese mitten crab Eriocheir sinensis. Like Spiroplasma mirum, S. eriocheiris infects the newborn mouse (adult mice are not infected) and can cause cataract. Adhesion-related protein is an important protein involved in the interaction between pathogen and host. In this study, the Adhesin-like Protein (ALP) of S. eriocheiris was detected on its outer membrane by using immune electron microscopy, and was found to be involved in the bacterium's infection of mouse embryo fibroblasts (3T6-Swiss albino). Yeast two-hybrid analysis demonstrated that ALP interacts with a diverse group of mouse proteins. The interactions between recombinant partial fibulin7 (FBLN7; including two epidermal growth factor [EGF] domains) and ALP were confirmed by Far-western blotting and colocalization. We synthetized the domains of FBLN7 [EGF domain: amino acids 136–172 and complement control protein (CCP) domain: 81–134 amino acids], and demonstrated that only EGF domain of FBLN7 can interact with ALP. Because the EGF domain has high degree of similarity to EGF, it can activate the downstream EGFR signaling pathway, in key site amino acids. The EGFR pathway in 3T6 cells was restrained after rALP stimulation resulting from competitive binding of ALP to EGF. The unborn mouse, newborn mouse, and the adult mouse with cataract have a small amount of expressed FBLN7; however, none was detected in the brain and very little expression was seen in the eye of normal adult mice. In short, ALP as a S. eriocheiris surface protein, is critical for infection and further supports the role of ALP in S. eriocheiris infection by competitive effection of the EGF/EGFR axis of the target cells. PMID:28184355

  19. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis.

    PubMed

    Secco, David; Wang, Chuang; Arpat, Bulak A; Wang, Zhiye; Poirier, Yves; Tyerman, Stephen D; Wu, Ping; Shou, Huixia; Whelan, James

    2012-03-01

    Plant growth and development are strongly influenced by the availability of nutrients in the soil solution. Among them, phosphorus (P) is one of the most essential and most limiting macro-elements for plants. In the environment, plants are often confronted with P starvation as a result of extremely low concentrations of soluble inorganic phosphate (Pi) in the soil. To cope with these conditions, plants have developed a wide spectrum of mechanisms aimed at increasing P use efficiency. At the molecular level, recent studies have shown that several proteins carrying the SPX domain are essential for maintaining Pi homeostasis in plants. The SPX domain is found in numerous eukaryotic proteins, including several proteins from the yeast PHO regulon, involved in maintaining Pi homeostasis. In plants, proteins harboring the SPX domain are classified into four families based on the presence of additional domains in their structure, namely the SPX, SPX-EXS, SPX-MFS and SPX-RING families. In this review, we highlight the recent findings regarding the key roles of the proteins containing the SPX domain in phosphate signaling, as well as providing further research directions in order to improve our knowledge on P nutrition in plants, thus enabling the generation of plants with better P use efficiency.

  20. Duplex (or quadruplet) CH domain containing human multidomain proteins: an inventory.

    PubMed

    Friedberg, Felix

    2010-04-01

    In this paper, the inventory presented for singlet CH (calponin homology/actin binding) domain containing human multidomain proteins is extended to several duplex and one quadruplet CH containing forms. Invariably, the duplexes are located at the begin of the molecules. The regions connecting the two CH units suggest amino acid conservations which allows the placing of 18 duplex containing molecules into six groups wherein the gene for one member in each group created the others more recently by gene duplication. The ancient multidomain proteins, possibly, were primarily the result of an exon shuffling (transposition) mechanism that also guided the placing of the CH singlet or duplex domain at the amino end of the newly created proteins. A mechanism that creates pseudogenes could conceivably produce genes that encode multi-domain proteins. Intragenomic duplications (slippage) might have facilitated the occurrence of encoding repeats, thus allowing for the creation of multiple identical domains within one molecule. Gene duplication with subsequent modification and small domain gene recombination which formed multidomain proteins are important forces driving evolution.

  1. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence.

    PubMed

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-07-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  2. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence

    PubMed Central

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-01-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  3. Lipid-specific β-sheet formation in a mussel byssus protein domain.

    PubMed

    Heim, Markus; Elsner, Martina B; Scheibel, Thomas

    2013-09-09

    Intrinsically disordered proteins (IDP) or regions (IDR) can adopt multiple conformational states, depending on the interaction partners they encounter. This enables proteins or individual domains to fulfill multiple functions. Here, we analyzed the flank sequences of preCol-NG, one of three collagenous proteins of a mussel byssus thread governing its mechanical performance. preCol-NG comprises a collagen domain and nonrepetitive termini enclosing specific flank regions characterized by tandem repeats known from silk proteins, protein elastomers, and plant cell wall-associated proteins. We recombinantly produced a protein mimicking the M. galloprovincialis preCol-NG C-terminal flank region. The protein was intrinsically unfolded in solution, even at elevated temperatures. However, upon contact with small unilamellar vesicles (SUVs) reversible β-structure formation occurred, reminiscent of partitioning-folding coupling. This behavior of preCol-NG flank domains likely impacts byssogenesis and sheds new light on a distinct mechanism of how fibrous protein materials might be achieved by lipid-induced self-assembly in nature.

  4. delta-Opioid receptors exhibit high efficiency when activating trimeric G proteins in membrane domains.

    PubMed

    Bourova, Lenka; Kostrnova, Alexandra; Hejnova, Lucie; Moravcova, Zuzana; Moon, Hyo-Eun; Novotny, Jiri; Milligan, Graeme; Svoboda, Petr

    2003-04-01

    Low-density membrane fragments (domains) were separated from the bulk of plasma membranes of human embryonic kidney (HEK)293 cells expressing a delta-opioid (DOP) receptor-Gi1alpha fusion protein by drastic homogenization and flotation on equilibrium sucrose density gradients. The functional activity of trimeric G proteins and capacity of the DOP receptor to stimulate both the fusion protein-linked Gi1alpha and endogenous pertussis-toxin sensitive G proteins was measured as d-Ala2, d-Leu5-enkephalin stimulated high-affinity GTPase or guanosine-5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding. The maximum d-Ala2-d-Leu5 enkephalin (DADLE)-stimulated GTPase was two times higher in low-density membrane fragments than in bulk of plasma membranes; 58 and 27 pmol/mg/min, respectively. The same difference was obtained for [35S]GTPgammaS binding. Contrarily, the low-density domains contained no more than half the DOP receptor binding sites (Bmax = 6.6 pmol/mg versus 13.6 pmol/mg). Thus, when corrected for expression levels of the receptor, low-density domains exhibited four times higher agonist-stimulated GTPase and [35S]GTPgammaS binding than the bulk plasma membranes. The regulator of G protein signaling RGS1, enhanced further the G protein functional activity but did not remove the difference between domain-bound and plasma membrane pools of G protein. The potency of the agonist in functional studies and the affinity of specific [3H]DADLE binding to the receptor were, however, the same in both types of membranes - EC50 = 4.5 +/- 0.1 x 10(-8) and 3.2 +/- 1.4 x 10(-8) m for GTPase; Kd = 1.2 +/- 0.1 and 1.3 +/- 0.1 nm for [3H]DADLE radioligand binding assay. Similar results were obtained when sodium bicarbonate was used for alkaline isolation of membrane domains. By contrast, detergent-insensitive membrane domains isolated following treatment of cells with Triton X100 exhibited no DADLE-stimulated GTPase or GTPgammaS binding. Functional coupling between the DOP receptor

  5. Modeling membrane shaping by proteins: focus on EHD2 and N-BAR domains.

    PubMed

    Campelo, Felix; Fabrikant, Gur; McMahon, Harvey T; Kozlov, Michael M

    2010-05-03

    Cellular membranes are highly dynamic, undergoing both persistent and dynamic shape changes driven by specialized proteins. The observed membrane shaping can be simple deformations of existing shapes or membrane remodeling involving fission or fusion. Here we describe several mechanistic principles by which membrane shaping proteins act. We especially consider models for membrane bending and fission by EHD2 proteins and membrane bending by N-BAR domains. There are major challenges ahead to understand the general principles by which diverse membrane bending proteins act and to understand how some proteins appear to span multiple modes of action from driving curvature to inducing membrane remodeling.

  6. Rational design of FRET sensor proteins based on mutually exclusive domain interactions.

    PubMed

    Merkx, Maarten; Golynskiy, Misha V; Lindenburg, Laurens H; Vinkenborg, Jan L

    2013-10-01

    Proteins that switch between distinct conformational states are ideal to monitor and control molecular processes within the complexity of biological systems. Inspired by the modular architecture of natural signalling proteins, our group explores generic design strategies for the construction of FRET-based sensor proteins and other protein switches. In the present article, I show that designing FRET sensors based on mutually exclusive domain interactions provides a robust method to engineer sensors with predictable properties and an inherently large change in emission ratio. The modularity of this approach should make it easily transferable to other applications of protein switches in fields ranging from synthetic biology, optogenetics and molecular diagnostics.

  7. Identification of FAH Domain-containing Protein 1 (FAHD1) as Oxaloacetate Decarboxylase*

    PubMed Central

    Pircher, Haymo; von Grafenstein, Susanne; Diener, Thomas; Metzger, Christina; Albertini, Eva; Taferner, Andrea; Unterluggauer, Hermann; Kramer, Christian; Liedl, Klaus R.; Jansen-Dürr, Pidder

    2015-01-01

    Fumarylacetoacetate hydrolase (FAH) domain-containing proteins occur in both prokaryotes and eukaryotes, where they carry out diverse enzymatic reactions, probably related to structural differences in their respective FAH domains; however, the precise relationship between structure of the FAH domain and the associated enzyme function remains elusive. In mammals, three FAH domain-containing proteins, FAHD1, FAHD2A, and FAHD2B, are known; however, their enzymatic function, if any, remains to be demonstrated. In bacteria, oxaloacetate is subject to enzymatic decarboxylation; however, oxaloacetate decarboxylases (ODx) were so far not identified in eukaryotes. Based on molecular modeling and subsequent biochemical investigations, we identified FAHD1 as a eukaryotic ODx enzyme. The results presented here indicate that dedicated oxaloacetate decarboxylases exist in eukaryotes. PMID:25575590

  8. Short LOV Proteins in Methylocystis Reveal Insight into LOV Domain Photocycle Mechanisms

    PubMed Central

    El-Arab, Kaley K.; Pudasaini, Ashutosh; Zoltowski, Brian D.

    2015-01-01

    Light Oxygen Voltage (LOV) proteins are widely used in optogenetic devices, however universal signal transduction pathways and photocycle mechanisms remain elusive. In particular, short-LOV (sLOV) proteins have been discovered in bacteria and fungi, containing only the photoresponsive LOV element without any obvious signal transduction domains. These sLOV proteins may be ideal models for LOV domain function due to their ease of study as full-length proteins. Unfortunately, characterization of such proteins remains limited to select systems. Herein, we identify a family of bacterial sLOV proteins present in Methylocystis. Sequence analysis of Methylocystis LOV proteins (McLOV) demonstrates conservation with sLOV proteins from fungal systems that employ competitive dimerization as a signaling mechanism. Cloning and characterization of McLOV proteins confirms functional dimer formation and reveal unexpected photocycle mechanisms. Specifically, some McLOV photocycles are insensitive to external bases such as imidazole, in contrast to previously characterized LOV proteins. Mutational analysis identifies a key residue that imparts insensitivity to imidazole in two McLOV homologs and affects adduct decay by two orders of magnitude. The resultant data identifies a new family of LOV proteins that indicate a universal photocycle mechanism may not be present in LOV proteins. PMID:25933162

  9. Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding

    SciTech Connect

    Zhai Q.; Robinson H.; Landesman M. B.; Sundquist W. I.; Hill C. P.

    2011-12-01

    Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NC{sup Gag} protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.

  10. Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins

    PubMed Central

    Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly

    2016-01-01

    Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells. PMID:26826387

  11. Domain compatibility in Ire1 kinase is critical for the unfolded protein response.

    PubMed

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2010-07-16

    The unfolded protein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease (RNase)) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full RNase function.

  12. The macro domain protein family: structure, functions, and their potential therapeutic implications.

    PubMed

    Han, Weidong; Li, Xiaolei; Fu, Xiaobing

    2011-01-01

    Macro domains are ancient, highly evolutionarily conserved domains that are widely distributed throughout all kingdoms of life. The 'macro fold' is roughly 25kDa in size and is composed of a mixed α-β fold with similarity to the P loop-containing nucleotide triphosphate hydrolases. They function as binding modules for metabolites of NAD(+), including poly(ADP-ribose) (PAR), which is synthesized by PAR polymerases (PARPs). Although there is a high degree of sequence similarity within this family, particularly for residues that might be involved in catalysis or substrates binding, it is likely that the sequence variation that does exist among macro domains is responsible for the specificity of function of individual proteins. Recent findings have indicated that macro domain proteins are functionally promiscuous and are implicated in the regulation of diverse biological functions, such as DNA repair, chromatin remodeling and transcriptional regulation. Significant advances in the field of macro domain have occurred in the past few years, including biological insights and the discovery of novel signaling pathways. To provide a framework for understanding these recent findings, this review will provide a comprehensive overview of the known and proposed biochemical, cellular and physiological roles of the macro domain family. Recent data that indicate a critical role of macro domain regulation for the proper progression of cellular differentiation programs will be discussed. In addition, the effect of dysregulated expression of macro domain proteins will be considered in the processes of tumorigenesis and bacterial pathogenesis. Finally, a series of observations will be highlighted that should be addressed in future efforts to develop macro domains as effective therapeutic targets.

  13. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions.

    PubMed

    Bunney, Tom D; Cole, Ambrose R; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W; Katan, Matilda

    2014-12-02

    Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein,HYPE, which has remained poorly characterized.Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of auto AMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition.

  14. Structure of the SCAN Domain of Human Paternally Expressed Gene 3 Protein

    PubMed Central

    Rimsa, Vadim; Eadsforth, Thomas C.; Hunter, William N.

    2013-01-01

    Human paternally expressed gene 3 protein (PEG3) is a large multi-domain entity with diverse biological functions, including acting as a transcription factor. PEG3 contains twelve Cys2-His2 type zinc finger domains, extended regions of predicted disorder and at the N-terminus a SCAN domain. PEG3 has been identified as partner of the E3 ubiquitin-protein ligase Siah1, an association we sought to investigate. An efficient bacterial recombinant expression system of the human PEG3-SCAN domain was prepared and crystals appeared spontaneously when the protein was being concentrated after purification. The structure was determined at 1.95 Å resolution and reveals a polypeptide fold of five helices in an extended configuration. An extensive dimerization interface, using almost a quarter of the solvent accessible surface, and key salt bridge interactions explain the stability of the dimer. Comparison with other SCAN domains reveals a high degree of conservation involving residues that contribute to the dimer interface. The PEG3-SCAN domain appears to constitute an assembly block, enabling PEG3 homo- or heterodimerization to control gene expression in a combinatorial fashion. PMID:23936039

  15. Bacterial SET domain proteins and their role in eukaryotic chromatin modification

    PubMed Central

    Alvarez-Venegas, Raúl

    2014-01-01

    It has been shown by many researchers that SET-domain containing proteins modify chromatin structure and, as expected, genes coding for SET-domain containing proteins have been found in all eukaryotic genomes sequenced to date. However, during the last years, a great number of bacterial genomes have been sequenced and an important number of putative genes involved in histone post-translational modifications (histone PTMs) have been identified in many bacterial genomes. Here, I aim at presenting an overview of SET domain genes that have been identified in numbers of bacterial genomes based on similarity to SET domains of eukaryotic histone methyltransferases. I will argue in favor of the hypothesis that SET domain genes found in extant bacteria are of bacterial origin. Then, I will focus on the available information on pathogen and symbiont SET-domain containing proteins and their targets in eukaryotic organisms, and how such histone methyltransferases allow a pathogen to inhibit transcriptional activation of host defense genes. PMID:24765100

  16. A mathematically related singularity and the maximum size of protein domains.

    PubMed

    Szilágyi, András

    2008-06-01

    In a paper titled "A topologically related singularity suggests a maximum preferred size for protein domains" (Zbilut et al., Proteins 2007;66:621-629), Zbilut et al. claim to have found a singularity in certain geometrical properties of protein structures, and suggest that this singularity may limit the maximum size of protein domains. They find further support for the singularity in their analysis of G-factors calculated by the PROCHECK program. Here, we show that the claimed singularity is a mathematical artifact with no physical meaning, and we reanalyze the G-factors to show that Zbilut et al.'s results are due to a single outlier in the data. Thus, the existence of an actual singularity in the topological properties of proteins is not supported by the findings of Zbilut et al.

  17. Solution structure of the RecQ C-terminal domain of human Bloom syndrome protein.

    PubMed

    Park, Chin-Ju; Ko, Junsang; Ryu, Kyoung-Seok; Choi, Byong-Seok

    2014-02-01

    RecQ C-terminal (RQC) domain is known as the main DNA binding module of RecQ helicases such as Bloom syndrome protein (BLM) and Werner syndrome protein (WRN) that recognizes various DNA structures. Even though BLM is able to resolve various DNA structures similarly to WRN, BLM has different binding preferences for DNA substrates from WRN. In this study, we determined the solution structure of the RQC domain of human BLM. The structure shares the common winged-helix motif with other RQC domains. However, half of the N-terminal has unstructured regions (α1-α2 loop and α3 region), and the aromatic side chain on the top of the β-hairpin, which is important for DNA duplex strand separation in other RQC domains, is substituted with a negatively charged residue (D1165) followed by the polar residue (Q1166). The structurally distinctive features of the RQC domain of human BLM suggest that the DNA binding modes of the BLM RQC domain may be different from those of other RQC domains.

  18. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    PubMed

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans.

  19. Functional domains and motifs of bacterial type III effector proteins and their roles in infection.

    PubMed

    Dean, Paul

    2011-11-01

    A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.

  20. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein.

    PubMed

    Tsyrendorzhiev, D D; Orlovskaya, I A; Sennikov, S V; Tregubchak, T V; Gileva, I P; Tsyrendorzhieva, M D; Shchelkunov, S N

    2014-06-01

    The biological characteristics of a 17-kDa protein synthesized in bacterial cells, a TNF-binding domain (VARV-TNF-BP) of a 47-kDa variola virus CrmB protein (VARV-CrmB) consisting of TNF-binding and chemokine-binding domains, were studied. Removal of the C-terminal chemokine-binding domain from VARV-CrmB protein was inessential for the efficiency of its inhibition of TNF cytotoxicity towards L929 mouse fibroblast culture and for TNF-induced oxidative metabolic activity of mouse blood leukocytes. The results of this study could form the basis for further studies of VARV-TNF-BP mechanisms of activity for prospective use in practical medicine.

  1. Single domain antibodies for the knockdown of cytosolic and nuclear proteins.

    PubMed

    Böldicke, Thomas

    2017-03-08

    Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, non aggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic. This article is protected by copyright. All rights reserved.

  2. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  3. Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands

    NASA Astrophysics Data System (ADS)

    Lu, Haiyun; Li, Hao; Banu Bte Sm Rashid, Shamima; Leow, Wee Kheng; Liou, Yih-Cherng

    Studies of interactions between protein domains and ligands are important in many aspects such as cellular signaling. We present a knowledge-guided approach for docking protein domains and flexible ligands. The approach is applied to the WW domain, a small protein module mediating signaling complexes which have been implicated in diseases such as muscular dystrophy and Liddle’s syndrome. The first stage of the approach employs a substring search for two binding grooves of WW domains and possible binding motifs of peptide ligands based on known features. The second stage aligns the ligand’s peptide backbone to the two binding grooves using a quasi-Newton constrained optimization algorithm. The backbone-aligned ligands produced serve as good starting points to the third stage which uses any flexible docking algorithm to perform the docking. The experimental results demonstrate that the backbone alignment method in the second stage performs better than conventional rigid superposition given two binding constraints. It is also shown that using the backbone-aligned ligands as initial configurations improves the flexible docking in the third stage. The presented approach can also be applied to other protein domains that involve binding of flexible ligand to two or more binding sites.

  4. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins

    SciTech Connect

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-11-29

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  5. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins.

    PubMed

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-12-01

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  6. ADAR proteins: double-stranded RNA and Z-DNA binding domains.

    PubMed

    Barraud, Pierre; Allain, Frédéric H-T

    2012-01-01

    Adenosine deaminases acting on RNA (ADAR) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We review here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the dsRNA and Z-DNA binding domains.

  7. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish.

    PubMed

    Blaise, Mickaël; Alsarraf, Husam M A B; Wong, Jaslyn E M M; Midtgaard, Søren Roi; Laroche, Fabrice; Schack, Lotte; Spaink, Herman; Stougaard, Jens; Thirup, Søren

    2012-06-01

    The oxidation resistance proteins (OXR) help to protect eukaryotes from reactive oxygen species. The sole C-terminal domain of the OXR, named TLDc is sufficient to perform this function. However, the mechanism by which oxidation resistance occurs is poorly understood. We present here the crystal structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices. The fold shares low structural similarity to known structures.

  8. Interaction of the Intermembrane Space Domain of Tim23 Protein with Mitochondrial Membranes*

    PubMed Central

    Bajaj, Rakhi; Munari, Francesca; Becker, Stefan; Zweckstetter, Markus

    2014-01-01

    Tim23 mediates protein translocation into mitochondria. Although inserted into the inner membrane, the dynamic association of its intermembrane space (IMS) domain with the outer membrane promotes protein import. However, little is known about the molecular basis of this interaction. Here, we demonstrate that the IMS domain of Tim23 tightly associates with both inner and outer mitochondrial membrane-like membranes through a hydrophobic anchor at its N terminus. The structure of membrane-bound Tim23IMS is highly dynamic, allowing recognition of both the incoming presequence and other translocase components at the translocation contact. Cardiolipin enhances Tim23 membrane attachment, suggesting that cardiolipin can influence preprotein import. PMID:25349212

  9. Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development

    PubMed Central

    Dupé, Aurélien; Dumas, Carole; Papadopoulou, Barbara

    2015-01-01

    Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in

  10. Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins

    PubMed Central

    Simm, Dominic; Hatje, Klas

    2017-01-01

    Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss. PMID:28369123

  11. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding.

    PubMed

    Newcomer, Rebecca L; Fraser, LaTasha C R; Teschke, Carolyn M; Alexandrescu, Andrei T

    2015-12-15

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility.

  12. Solution structure of the zinc finger HIT domain in protein FON

    PubMed Central

    He, Fahu; Umehara, Takashi; Tsuda, Kengo; Inoue, Makoto; Kigawa, Takanori; Matsuda, Takayoshi; Yabuki, Takashi; Aoki, Masaaki; Seki, Eiko; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Sugano, Sumio; Muto, Yutaka; Yokoyama, Shigeyuki

    2007-01-01

    The zinc finger HIT domain is a sequence motif found in many proteins, including thyroid hormone receptor interacting protein 3 (TRIP-3), which is possibly involved in maturity-onset diabetes of the young (MODY). Novel zinc finger motifs are suggested to play important roles in gene regulation and chromatin remodeling. Here, we determined the high-resolution solution structure of the zinc finger HIT domain in ZNHIT2 (protein FON) from Homo sapiens, by an NMR method based on 567 upper distance limits derived from NOE intensities measured in three-dimensional NOESY spectra. The structure yielded a backbone RMSD to the mean coordinates of 0.19 Å for the structured residues 12–48. The fold consists of two consecutive antiparallel β-sheets and two short C-terminal helices packed against the second β-sheet, and binds two zinc ions. Both zinc ions are coordinated tetrahedrally via a CCCC-CCHC motif to the ligand residues of the zf-HIT domain in an interleaved manner. The tertiary structure of the zinc finger HIT domain closely resembles the folds of the B-box, RING finger, and PHD domains with a cross-brace zinc coordination mode, but is distinct from them. The unique three-dimensional structure of the zinc finger HIT domain revealed a novel zinc-binding fold, as a new member of the treble clef domain family. On the basis of the structural data, we discuss the possible functional roles of the zinc finger HIT domain. PMID:17656577

  13. dcGOR: an R package for analysing ontologies and protein domain annotations.

    PubMed

    Fang, Hai

    2014-10-01

    I introduce an open-source R package 'dcGOR' to provide the bioinformatics community with the ease to analyse ontologies and protein domain annotations, particularly those in the dcGO database. The dcGO is a comprehensive resource for protein domain annotations using a panel of ontologies including Gene Ontology. Although increasing in popularity, this database needs statistical and graphical support to meet its full potential. Moreover, there are no bioinformatics tools specifically designed for domain ontology analysis. As an add-on package built in the R software environment, dcGOR offers a basic infrastructure with great flexibility and functionality. It implements new data structure to represent domains, ontologies, annotations, and all analytical outputs as well. For each ontology, it provides various mining facilities, including: (i) domain-based enrichment analysis and visualisation; (ii) construction of a domain (semantic similarity) network according to ontology annotations; and (iii) significance analysis for estimating a contact (statistical significance) network. To reduce runtime, most analyses support high-performance parallel computing. Taking as inputs a list of protein domains of interest, the package is able to easily carry out in-depth analyses in terms of functional, phenotypic and diseased relevance, and network-level understanding. More importantly, dcGOR is designed to allow users to import and analyse their own ontologies and annotations on domains (taken from SCOP, Pfam and InterPro) and RNAs (from Rfam) as well. The package is freely available at CRAN for easy installation, and also at GitHub for version control. The dedicated website with reproducible demos can be found at http://supfam.org/dcGOR.

  14. Phase separation and bistability in a three-dimensional model for protein domain formation at biomembranes

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Bär, Markus

    2010-12-01

    Proteins in living cells interact with membranes. They may bind to or unbind from the membrane to the cytosol depending on the lipid composition of the membrane and their interaction with cytosolic enzymes. Moreover, proteins can accumulate at the membrane and assemble in spatial domains. Here, a simple model of protein cycling at biomembranes is studied, when the total number of proteins is conserved. Specifically, we consider the spatio-temporal dynamics of MARCKS proteins and their interactions with enzymes facilitating translocation from and rebinding to the membrane. The model exhibits two qualitatively different mechanisms of protein domain formation: phase separation related to a long-wave instability of a membrane state with homogeneous protein coverage and stable coexistence of two states with different homogeneous protein coverage in bistable media. We evaluate the impact of the cytosolic volume on the occurrence of protein pattern formation by simulations in a three-dimensional model. We show that the explicit treatment of the volume in the model leads to an effective rescaling of the reaction rates. For a simplified model of protein cycling, we can derive analytical expressions for the rescaling coefficients and verify them by direct simulations with the complete three-dimensional model.

  15. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.

    PubMed

    Leliveld, Sirik Rutger; Dame, Remus Thei; Wuite, Gijs J L; Stitz, Lothar; Korth, Carsten

    2006-02-10

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparently, an expanded octarepeat domain directs folding of PrP toward the PrPSc conformation and initiates a self-replicating conversion process. Here, based on three main observations, we have provided a model on how altered molecular interactions between wild-type and mutant PrP set the stage for familial Creutzfeldt Jakob disease with octarepeat insertions. First, we showed that wild-type octarepeat domains interact in a copper-dependent and reversible manner, a "copper switch." This interaction becomes irreversible upon domain expansion, possibly reflecting a loss of function. Second, expanded octarepeat domains of increasing length gradually form homogenous globular multimers of 11-21 nm in the absence of copper ions when expressed as soluble glutathione S-transferase fusion proteins. Third, octarepeat domain expansion causes a gain of function with at least 10 repeats selectively binding PrPSc in a denaturant-resistant complex in the absence of copper ions. Thus, the combination of both a loss and gain of function profoundly influences homomeric interaction behavior of PrP with an expanded octarepeat domain. A multimeric cluster of prion proteins carrying expanded octarepeat domains may therefore capture and incorporate spontaneously arising short-lived PrPSc-like conformers, thereby providing a matrix for their conversion.

  16. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.

    PubMed

    Lorent, Joseph Helmuth; Levental, Ilya

    2015-11-01

    Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.

  17. New Knowledge from Old: In silico discovery of novel protein domains in Streptomyces coelicolor

    PubMed Central

    Yeats, Corin; Bentley, Stephen; Bateman, Alex

    2003-01-01

    Background Streptomyces coelicolor has long been considered a remarkable bacterium with a complex life-cycle, ubiquitous environmental distribution, linear chromosomes and plasmids, and a huge range of pharmaceutically useful secondary metabolites. Completion of the genome sequence demonstrated that this diversity carried through to the genetic level, with over 7000 genes identified. We sought to expand our understanding of this organism at the molecular level through identification and annotation of novel protein domains. Protein domains are the evolutionary conserved units from which proteins are formed. Results Two automated methods were employed to rapidly generate an optimised set of targets, which were subsequently analysed manually. A final set of 37 domains or structural repeats, represented 204 times in the genome, was developed. Using these families enabled us to correlate items of information from many different resources. Several immediately enhance our understanding both of S. coelicolor and also general bacterial molecular mechanisms, including cell wall biosynthesis regulation and streptomycete telomere maintenance. Discussion Delineation of protein domain families enables detailed analysis of protein function, as well as identification of likely regions or residues of particular interest. Hence this kind of prior approach can increase the rate of discovery in the laboratory. Furthermore we demonstrate that using this type of in silico method it is possible to fairly rapidly generate new biological information from previously uncorrelated data. PMID:12625841

  18. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis

    PubMed Central

    Morimoto, Akihiro; Shibuya, Hiroki; Zhu, Xiaoqiang; Kim, Jihye; Ishiguro, Kei-ichiro; Han, Min

    2012-01-01

    In yeasts and worms, KASH (Klarsicht/ANC-1/Syne/homology) domain and SUN (Sad-1/UNC-84) domain nuclear envelope (NE) proteins play a crucial role in meiotic chromosome movement and homologue pairing. However, although the vertebrate SUN domain protein SUN1 is involved in these processes, its partner has remained identified. Based on subcellular localization screening in mouse spermatocytes, we identified a novel germ cell–specific protein, KASH5, that localized exclusively at telomeres from the leptotene to diplotene stages in both spermatocytes and oocytes. KASH5 possesses hitherto unknown KASH-related sequences that directly interacted with SUN1 and mediated telomere localization. Thus, KASH5 is a mammalian meiosis-specific KASH domain protein. We show that meiotic chromosome movement depended on microtubules and that KASH5 interacted with the microtubule-associated dynein–dynactin complex. These results suggest that KASH5 connects the telomere-associated SUN1 protein to the cytoplasmic force–generating mechanism involved in meiotic chromosome movement. Our study strongly suggests that the meiotic homologue-pairing mechanism mediated by the SUN–KASH NE bridge is highly conserved among eukaryotes. PMID:22826121

  19. Kelch Domain of Gigaxonin Interacts with Intermediate Filament Proteins Affected in Giant Axonal Neuropathy

    PubMed Central

    Johnson-Kerner, Bethany L.; Garcia Diaz, Alejandro; Ekins, Sean; Wichterle, Hynek

    2015-01-01

    Patients with giant axonal neuropathy (GAN) show progressive loss of motor and sensory function starting in childhood and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin (GIG), a ubiquitously-expressed BTB/Kelch cytoplasmic protein believed to be an E3 ligase substrate adaptor. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. To delineate the molecular pathway between GIG deficiency and IF pathology, we undertook a proteomic screen to identify the normal binding partners of GIG. Prominent among them were several classes of IFs, including the neurofilament subunits whose accumulation leads to the axonal swellings for which GAN is named. We showed these interactions were dependent on the Kelch domain of GIG. Furthermore, we identified the E3 ligase MYCBP2 and the heat shock proteins HSP90AA1/AB1 as interactors with the BTB domain that may result in the ubiquitination and subsequent degradation of intermediate filaments. Our open-ended proteomic screen provides support to GIG’s role as an adaptor protein, linking IF proteins through its Kelch domain to the ubiquitin pathway proteins via its BTB domain, and points to future approaches for reversing the phenotype in human patients. PMID:26460568

  20. Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease.

    PubMed

    Hossain, Manzar J; Korde, Reshma; Singh, Shivani; Mohmmed, Asif; Dasaradhi, P V N; Chauhan, V S; Malhotra, Pawan

    2008-04-01

    RNA-binding proteins play key roles in post-transcriptional regulation of gene expression. In eukaryotic cells, a multitude of RNA-binding proteins with several RNA-binding domains/motifs have been described. Here, we show the existence of two Tudor domain containing proteins, a survival of motor neuron (SMN)-like protein and a Staphylococcus aureus nuclease homologue referred to as TSN, in Plasmodium and other protozoan parasites. Activity analysis shows that Plasmodium falciparum TSN (PfTSN) possesses nuclease activity and Tudor domain is the RNA-binding domain. A specific inhibitor of micrococcal nucleases, 3',5'-deoxythymidine bisphosphate (pdTp) inhibits the nuclease as well as RNA-binding activities of the protein. PfTSN shows a predominant nuclear localization. Treatment of P. falciparum with pdTp, inhibited in vitro growth of both chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, while a four fold concentration of pdTp did not have any significant effect on the mammalian cell line, Huh-7D12. Altogether, these results suggest that PfTSN is an essential enzyme in the parasite's life cycle.

  1. Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production.

    PubMed

    Abada, Paolo; Noble, Beth; Cannon, Paula M

    2005-03-01

    Primate lentiviruses code for a protein that stimulates virus production. In human immunodeficiency virus type 1 (HIV-1), the activity is provided by the accessory protein, Vpu, while in HIV-2 and simian immunodeficiency virus it is a property of the envelope (Env) glycoprotein. Using a group of diverse retroviruses and cell types, we have confirmed the functional equivalence of the two proteins. However, despite these similarities, the two proteins have markedly different functional domains. While the Vpu activity is associated primarily with its membrane-spanning region, we have determined that the HIV-2 Env activity requires both the cytoplasmic tail and ectodomain of the protein, with the membrane-spanning domain being less important. Within the Env cytoplasmic tail, we further defined the necessary sequence as a membrane-proximal tyrosine-based motif. Providing the two Env regions separately as distinct CD8 chimeric proteins did not increase virus release. This suggests that the two domains must be either contained within a single protein or closely associated within a multiprotein oligomer, such as the Env trimer, in order to function. Finally, we observed that wild-type levels of incorporation of the HIV-2 Env into budding viruses were not required for this activity.

  2. Functional Domains within the Human Immunodeficiency Virus Type 2 Envelope Protein Required To Enhance Virus Production

    PubMed Central

    Abada, Paolo; Noble, Beth; Cannon, Paula M.

    2005-01-01

    Primate lentiviruses code for a protein that stimulates virus production. In human immunodeficiency virus type 1 (HIV-1), the activity is provided by the accessory protein, Vpu, while in HIV-2 and simian immunodeficiency virus it is a property of the envelope (Env) glycoprotein. Using a group of diverse retroviruses and cell types, we have confirmed the functional equivalence of the two proteins. However, despite these similarities, the two proteins have markedly different functional domains. While the Vpu activity is associated primarily with its membrane-spanning region, we have determined that the HIV-2 Env activity requires both the cytoplasmic tail and ectodomain of the protein, with the membrane-spanning domain being less important. Within the Env cytoplasmic tail, we further defined the necessary sequence as a membrane-proximal tyrosine-based motif. Providing the two Env regions separately as distinct CD8 chimeric proteins did not increase virus release. This suggests that the two domains must be either contained within a single protein or closely associated within a multiprotein oligomer, such as the Env trimer, in order to function. Finally, we observed that wild-type levels of incorporation of the HIV-2 Env into budding viruses were not required for this activity. PMID:15731257

  3. A novel single WAP domain-containing protein isoform with antibacterial relevance in Litopenaeus vannamei.

    PubMed

    Du, Zhi-Qiang; Yuan, Jian-Jun; Ren, Da-Ming

    2015-06-01

    Single WAP domain (SWD)-containing protein is a small protein containing a whey acidic protein (WAP) domain at the C-terminal region. SWD-containing protein exhibits structural similarity to the family of serine proteinase inhibitors. As of this writing, some SWD domain-containing proteins have been identified in crustaceans, and their functions included antibacterial and anti-proteinase activities. We identified a SWD protein isoform gene in Litopenaeus vanname (Lv-SWDi). Very high sequence similarity was found between Lv-SWDi and Lv-SWD. Results of time-course analysis for the gene expression profile showed that Lv-SWDi could produce a rapid feedback and an obvious upregulation at 12 h after Vibrio injection. Endogenous Lv-SWDi protein was obviously upregulated, and the highest expression level was reached at 24 h after Vibrio injection. The purified rLv-SWDi could directly bind to Gram-positive and Gram-negative bacteria. Results of the proteinase inhibitory assay also showed that rLv-SWDi could inhibit secretory protease activity from Bacillus subtilis. Lv-SWDi is a part of an important immunity-relevant gene and may serve important functions in defense against bacteria.

  4. Sensing Domain Dynamics in Protein Kinase A-Iα Complexes by Solution X-ray Scattering*

    PubMed Central

    Cheng, Cecilia Y.; Yang, Jie; Taylor, Susan S.; Blumenthal, Donald K.

    2009-01-01

    The catalytic (C) and regulatory (R) subunits of protein kinase A are exceptionally dynamic proteins. Interactions between the R- and C-subunits are regulated by cAMP binding to the two cyclic nucleotide-binding domains in the R-subunit. Mammalian cells express four different isoforms of the R-subunit (RIα, RIβ, RIIα, and RIIβ) that all interact with the C-subunit in different ways. Here, we investigate the dynamic behavior of protein complexes between RIα and C-subunits using small angle x-ray scattering. We show that a single point mutation in RIα, R333K (which alters the cAMP-binding properties of Domain B) results in a compact shape compared with the extended shape of the wild-type R·C complex. A double mutant complex that disrupts the interaction site between the C-subunit and Domain B in RIα, RIαABR333K·C(K285P), results in a broader P(r) curve that more closely resembles the P(r) profiles of wild-type complexes. These results together suggest that interactions between RIα Domain B and the C-subunit in the RIα·C complex involve large scale dynamics that can be disrupted by single point mutations in both proteins. In contrast to RIα·C complexes. Domain B in the RIIβ·C heterodimer is not dynamic and is critical for both inhibition and complex formation. Our study highlights the functional differences of domain dynamics between protein kinase A isoforms, providing a framework for elucidating the global organization of each holoenzyme and the cross-talk between the R- and C-subunits. PMID:19837668

  5. Mapping of Functional Subdomains in the Terminal Protein Domain of Hepatitis B Virus Polymerase.

    PubMed

    Clark, Daniel N; Flanagan, John M; Hu, Jianming

    2017-02-01

    Hepatitis B virus (HBV) encodes a multifunction reverse transcriptase or polymerase (P), which is composed of several domains. The terminal protein (TP) domain is unique to HBV and related hepadnaviruses and is required for specifically binding to the viral pregenomic RNA (pgRNA). Subsequently, the TP domain is necessary for pgRNA packaging into viral nucleocapsids and the initiation of viral reverse transcription for conversion of the pgRNA to viral DNA. Uniquely, the HBV P protein initiates reverse transcription via a protein priming mechanism using the TP domain as a primer. No structural homologs or high-resolution structure exists for the TP domain. Secondary structure prediction identified three disordered loops in TP with highly conserved sequences. A meta-analysis of mutagenesis studies indicated these predicted loops are almost exclusively where functionally important residues are located. Newly constructed TP mutations revealed a priming loop in TP which plays a specific role in protein-primed DNA synthesis beyond simply harboring the site of priming. Substitutions of potential sites of phosphorylation surrounding the priming site demonstrated that these residues are involved in interactions critical for priming but are unlikely to be phosphorylated during viral replication. Furthermore, the first 13 and 66 TP residues were shown to be dispensable for protein priming and pgRNA binding, respectively. Combining current and previous mutagenesis work with sequence analysis has increased our understanding of TP structure and functions by mapping specific functions to distinct predicted secondary structures and will facilitate antiviral targeting of this unique domain.

  6. Modular structure of chromosomal proteins HMG-14 and HMG-17: Definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain

    SciTech Connect

    Trieschmann, L.; Postnikov, Y.V.; Rickers, A.; Bustin, M.

    1995-12-01

    This report describes how deletion mutants and peptides were used to identify the transcriptional enhancement domain and the nucleosome binding domain of two chromosomal proteins, HMG-14 and HMG-17. The research indicates that mutations involving C-terminal amino acids significantly reduces the ability of the nucleoproteins to enhance transcription from chromatin templates. 42 refs., 6 figs., 1 tab.

  7. Effect of Multimerization on Membrane Association of Rous Sarcoma Virus and HIV-1 Matrix Domain Proteins

    PubMed Central

    Dick, Robert A.; Kamynina, Elena

    2013-01-01

    In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV. PMID:24109216

  8. Networking in the nucleus: A spotlight on LEM-domain proteins

    PubMed Central

    Barton, Lacy J.; Soshnev, Alexey A.; Geyer, Pamela K.

    2015-01-01

    Proteins resident in the inner nuclear membrane and underlying nuclear lamina form a network that regulates nuclear functions. This review highlights a prominent family of nuclear lamina proteins that carries the LAP2-emerin-MAN1-domain (LEM-D). LEM-D proteins share an ability to bind lamins and tether repressive chromatin at the nuclear periphery. The importance of this family is underscored by findings that loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Diverse functions of LEM-D proteins are linked to interactions with unique and overlapping partners including signal transduction effectors, transcription factors and architectural proteins. Recent investigations suggest that LEM-D proteins form hubs within the nuclear lamina that integrate external signals important for tissue homeostasis and maintenance of progenitor cell populations. PMID:25863918

  9. The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain

    PubMed Central

    Ito, Morihiro; Ohtsuka, Junpei; Hara, Kenichiro; Komada, Hiroshi; Nishio, Machiko; Nosaka, Tetsuya

    2015-01-01

    ABSTRACT Virus-specific interaction between the attachment protein (HN) and the fusion protein (F) is prerequisite for the induction of membrane fusion by parainfluenza viruses. This HN-F interaction presumably is mediated by particular amino acids in the HN stalk domain and those in the F head domain. We found in the present study, however, that a simian virus 41 (SV41) F-specific chimeric HPIV2 HN protein, SCA, whose cytoplasmic, transmembrane, and stalk domains were derived from the SV41 HN protein, could not induce cell-cell fusion of BHK-21 cells when coexpressed with an SV41 HN-specific chimeric PIV5 F protein, no. 36. Similarly, a headless form of the SV41 HN protein failed to induce fusion with chimera no. 36, whereas it was able to induce fusion with the SV41 F protein. Interestingly, replacement of 13 amino acids of the SCA head domain, which are located at or around the dimer interface of the head domain, with SV41 HN counterparts resulted in a chimeric HN protein, SCA-RII, which induced fusion with chimera no. 36 but not with the SV41 F protein. More interestingly, retroreplacement of 11 out of the 13 amino acids of SCA-RII with the SCA counterparts resulted in another chimeric HN protein, IM18, which induced fusion either with chimera no. 36 or with the SV41 F protein, similar to the SV41 HN protein. Thus, we conclude that the F protein specificity of the HN protein that is observed in the fusion event is not solely defined by the primary structure of the HN stalk domain. IMPORTANCE It is appreciated that the HN head domain initially conceals the HN stalk domain but exposes it after the head domain has bound to the receptors, which allows particular amino acids in the stalk domain to interact with the F protein and trigger it to induce fusion. However, other regulatory roles of the HN head domain in the fusion event have been ill defined. We have shown in the current study that removal of the head domain or amino acid substitutions in a particular

  10. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  11. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation

    PubMed Central

    Mitterer, Valentin; Murat, Guillaume; Réty, Stéphane; Blaud, Magali; Delbos, Lila; Stanborough, Tamsyn; Bergler, Helmut; Leulliot, Nicolas; Kressler, Dieter; Pertschy, Brigitte

    2016-01-01

    Eukaryotic ribosomes assemble by association of ribosomal RNA with ribosomal proteins into nuclear precursor particles, which undergo a complex maturation pathway coordinated by non-ribosomal assembly factors. Here, we provide functional insights into how successive structural re-arrangements in ribosomal protein S3 promote maturation of the 40S ribosomal subunit. We show that S3 dimerizes and is imported into the nucleus with its N-domain in a rotated conformation and associated with the chaperone Yar1. Initial assembly of S3 with 40S precursors occurs via its C-domain, while the N-domain protrudes from the 40S surface. Yar1 is replaced by the assembly factor Ltv1, thereby fixing the S3 N-domain in the rotated orientation and preventing its 40S association. Finally, Ltv1 release, triggered by phosphorylation, and flipping of the S3 N-domain into its final position results in the stable integration of S3. Such a stepwise assembly may represent a new paradigm for the incorporation of ribosomal proteins. PMID:26831757

  12. Single and multiple CH (calponin homology) domain containing multidomain proteins in Arabidopsis and Saccharomyces: an inventory.

    PubMed

    Friedberg, Felix

    2011-01-01

    Genes for individual domains such as CH, lim, ankyrin, PH and RhoGAP, IQ motif, Ig_FLMN, spectrin, and EF hand probably existed in early evolution before there were plants, fungi or animals so that when we examine multidomain proteins in Arabidopsis, Saccharomyces, Dictyostelium or Homo Sapiens we encounter various combinations of such domains. While all of these four species express Fimbrin and EB1, the lists of CH containing multidomain proteins, however, differ in number and in type for each of them. There was no further great increase in the number of new single domain proteins. Still many new multidomain genes evolved--but far more so in metazoans--than in plants or fungi. In both plants and fungi only singlet CH domains but no doublets (other than those forming the Fimbrin quadruplet) were incorporated. That is in these two branches one finds no alpha actinin, dystrophin or filamin even though the individual building blocks (i.e. domains such as spectrin or IG-FLMN) were available in Arabidopsis. Possibly transposons create new chimeric multidomain genes by mixing and matching genes or gene fragments.

  13. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication.

    PubMed

    Gu, Haidong

    2016-02-12

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced "conquer and compromise" strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host.

  14. Structural feature extraction protocol for classifying reversible membrane binding protein domains.

    PubMed

    Källberg, Morten; Lu, Hui

    2009-01-01

    Machine learning based classification protocols for automated function annotation of protein structures have in many instances proven superior to simpler sequence based procedures. Here we present an automated method for extracting features from protein structures by construction of surface patches to be used in such protocols. The utility of the developed patch-growing procedure is exemplified by its ability to identify reversible membrane binding domains from the C1, C2, and PH families.

  15. Mapping domain structures in silks from insects and spiders related to protein assembly.

    PubMed

    Bini, Elisabetta; Knight, David P; Kaplan, David L

    2004-01-02

    The exceptional solubility in vivo (20-30%, w/v) of the silk proteins of insects and spiders is dictated by both the need to produce solid fibres with a high packing fraction and the high mesogen concentration required for lyotropic liquid crystalline spinning. A further design requirement for silk proteins is a strong predominance of hydrophobic amino acid residues to provide for the hydrophobic interactions, water exclusion, and beta-crystallite formation required to produce strong insoluble threads. Thus, the domain structure of silk proteins needs to enable nanoscale phase separation to achieve high solubility of hydrophobic proteins in aqueous solutions. Additionally, silk proteins need to avoid premature precipitation as beta-sheets during storage and processing. Here we use mapping of domain types, sizes and distributions in silks to identify consistent design features that have evolved to meet these requirements. We show that silk proteins consist of conspicuously hydrophilic terminal domains flanking a very long central portion constructed from hydrophobic blocks separated by hydrophilic ones, discussing the domain structure in detail. The general rules of construction for silk proteins based on our observations should give a useful guide to the way in which Nature has solved the problem of processing hydrophobic proteins in water and how this can be copied industrially. Following these rules may also help in obtaining adequate expression, soluble products and controllable conformational switches in the production of genetically engineered or chemically synthesized silk analogues. Thus these insights have implications for structural biology and relevance to fundamental and applied questions in material science and engineering.

  16. Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion*

    PubMed Central

    Ader, Nadine; Brindley, Melinda A.; Avila, Mislay; Origgi, Francesco C.; Langedijk, Johannes P. M.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K.; Plattet, Philippe

    2012-01-01

    It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91–115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111–118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism. PMID:22431728

  17. The structure of the Ca{sup 2+}-binding , glycosylated F-spondin domain of F-spondin- A C2-domain variant in an extracellular matrix protein.

    SciTech Connect

    Tan, K.; Lawler, J.

    2011-05-10

    F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin{_}N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. We present the crystal structure of human F-spondin FS domain at 1.95{angstrom} resolution. The structure reveals a Ca{sup 2+}-binding C2 domain variant with an 8-stranded antiparallel {beta}-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca{sup 2+}- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.

  18. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins.

    PubMed

    van Ooijen, Gerben; Mayr, Gabriele; Kasiem, Mobien M A; Albrecht, Mario; Cornelissen, Ben J C; Takken, Frank L W

    2008-01-01

    Resistance (R) proteins in plants are involved in pathogen recognition and subsequent activation of innate immune responses. Most resistance proteins contain a central nucleotide-binding domain. This so-called NB-ARC domain consists of three subdomains: NB, ARC1, and ARC2. The NB-ARC domain is a functional ATPase domain, and its nucleotide-binding state is proposed to regulate activity of the R protein. A highly conserved methionine-histidine-aspartate (MHD) motif is present at the carboxy-terminus of ARC2. An extensive mutational analysis of the MHD motif in the R proteins I-2 and Mi-1 is reported. Several novel autoactivating mutations of the MHD invariant histidine and conserved aspartate were identified. The combination of MHD mutants with autoactivating hydrolysis mutants in the NB subdomain showed that the autoactivation phenotypes are not additive. This finding indicates an important regulatory role for the MHD motif in the control of R protein activity. To explain these observations, a three-dimensional model of the NB-ARC domain of I-2 was built, based on the APAF-1 template structure. The model was used to identify residues important for I-2 function. Substitution of the selected residues resulted in the expected distinct phenotypes. Based on the model, it is proposed that the MHD motif fulfils the same function as the sensor II motif found in AAA+ proteins (ATPases associated with diverse cellular activities)-co-ordination of the nucleotide and control of subdomain interactions. The presented 3D model provides a framework for the formulation of hypotheses on how mutations in the NB-ARC exert their effects.

  19. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins.

    PubMed

    Enz, Ralf

    2012-01-01

    Metabotropic glutamate receptors (mGluRs) regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning, and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds, and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g., night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson's disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors' C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners.

  20. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein.

    PubMed

    Zhang, Yanfeng; Gao, Xiaoli; Michael Garavito, R

    2011-04-22

    The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain (∼310 amino acids), a single transmembrane domain (∼20 amino acids) and an intracellular domain (∼19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain (∼30 amino acids), the IC domain is also involved in assembly of V(0) portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0Å (maltose-free) and 2.15Å (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.

  1. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein.

    PubMed

    Yuan, Ping; Leser, George P; Demeler, Borries; Lamb, Robert A; Jardetzky, Theodore S

    2008-09-01

    The mechanism by which the paramyxovirus hemagglutinin-neuraminidase (HN) protein couples receptor binding to activation of virus entry remains to be fully understood, but the HN stalk is thought to play an important role in the process. We have characterized ectodomain constructs of the parainfluenza virus 5 HN to understand better the underlying architecture and oligomerization properties that may influence HN functions. The PIV 5 neuraminidase (NA) domain is monomeric whereas the ectodomain forms a well-defined tetramer. The HN stalk also forms tetramers and higher order oligomers with high alpha-helical content. Together, the data indicate that the globular NA domains form weak intersubunit interactions at the end of the HN stalk tetramer, while stabilizing the stalk and overall oligomeric state of the ectodomain. Electron microscopy of the HN ectodomain reveals flexible arrangements of the NA and stalk domains, which may be important for understanding how these two HN domains impact virus entry.

  2. Strength limit of entropic elasticity in beta-sheet protein domains.

    PubMed

    Keten, Sinan; Buehler, Markus J

    2008-12-01

    Elasticity and strength of individual beta-sheet protein domains govern key biological functions and the mechanical properties of biopolymers including spider silk, amyloids, and muscle fibers. The worm-like-chain (WLC) model is commonly used to describe the entropic elasticity of polypeptides and other biomolecules. However, force spectroscopy experiments have shown pronounced deviations from the ideal WLC behavior, leading to controversial views about the appropriate elastic description of proteins at nanoscale. Here we report a simple model that explains the physical mechanism that leads to the breakdown of the WLC idealization in experiments by using only two generic parameters of the protein domain, the H-bond energy and the protein backbone's persistence length. We show that a rupture initiation condition characterized by the free energy release rate of H-bonds characterizes the limit of WLC entropic elasticity of beta-sheet protein domains and the onset of rupture. Our findings reveal that strength and elasticity are coupled and cannot be treated separately. The predictions of the model are compared with atomic force microscopy experiments of protein rupture.

  3. Strength limit of entropic elasticity in beta-sheet protein domains

    NASA Astrophysics Data System (ADS)

    Keten, Sinan; Buehler, Markus J.

    2008-12-01

    Elasticity and strength of individual beta-sheet protein domains govern key biological functions and the mechanical properties of biopolymers including spider silk, amyloids, and muscle fibers. The worm-like-chain (WLC) model is commonly used to describe the entropic elasticity of polypeptides and other biomolecules. However, force spectroscopy experiments have shown pronounced deviations from the ideal WLC behavior, leading to controversial views about the appropriate elastic description of proteins at nanoscale. Here we report a simple model that explains the physical mechanism that leads to the breakdown of the WLC idealization in experiments by using only two generic parameters of the protein domain, the H-bond energy and the protein backbone’s persistence length. We show that a rupture initiation condition characterized by the free energy release rate of H-bonds characterizes the limit of WLC entropic elasticity of beta-sheet protein domains and the onset of rupture. Our findings reveal that strength and elasticity are coupled and cannot be treated separately. The predictions of the model are compared with atomic force microscopy experiments of protein rupture.

  4. NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs

    PubMed Central

    Mineev, Konstantin S.; Goncharuk, Sergey A.; Kuzmichev, Pavel K.; Vilar, Marçal; Arseniev, Alexander S.

    2015-01-01

    P75NTR is a type I integral membrane protein that plays a key role in neurotrophin signaling. However, structural data for the receptor in various functional states are sparse and controversial. In this work, we studied the spatial structure and mobility of the transmembrane and intracellular parts of p75NTR, incorporated into lipid-protein nanodiscs of various sizes and compositions, by solution NMR spectroscopy. Our data reveal a high level of flexibility and disorder in the juxtamembrane chopper domain of p75NTR, which results in the motions of the receptor death domain being uncoupled from the motions of the transmembrane helix. Moreover, none of the intracellular domains of p75NTR demonstrated a propensity to interact with the membrane or to self-associate under the experimental conditions. The obtained data are discussed in the context of the receptor activation mechanism. PMID:26287629

  5. PR Domain-containing Protein 7 (PRDM7) Is a Histone 3 Lysine 4 Trimethyltransferase.

    PubMed

    Blazer, Levi L; Lima-Fernandes, Evelyne; Gibson, Elisa; Eram, Mohammad S; Loppnau, Peter; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2016-06-24

    PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36.

  6. PR Domain-containing Protein 7 (PRDM7) Is a Histone 3 Lysine 4 Trimethyltransferase*

    PubMed Central

    Blazer, Levi L.; Lima-Fernandes, Evelyne; Gibson, Elisa; Eram, Mohammad S.; Loppnau, Peter; Arrowsmith, Cheryl H.; Schapira, Matthieu; Vedadi, Masoud

    2016-01-01

    PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36. PMID:27129774

  7. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.

    PubMed

    Sierke, S L; Cheng, K; Kim, H H; Koland, J G

    1997-03-15

    The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase.

  8. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.

    PubMed Central

    Sierke, S L; Cheng, K; Kim, H H; Koland, J G

    1997-01-01

    The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase. PMID:9148746

  9. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  10. Multiple protein domains mediate interaction between Bcl10 and MALT1.

    PubMed

    Langel, Felicia D; Jain, Nidhi A; Rossman, Jeremy S; Kingeter, Lara M; Kashyap, Anuj K; Schaefer, Brian C

    2008-11-21

    Bcl10 and MALT1 are essential mediators of NF-kappaB activation in response to the triggering of a diverse array of transmembrane receptors, including antigen receptors. Additionally, both proteins are translocation targets in MALT lymphoma. Thus, a detailed understanding of the interaction between these mediators is of considerable biological importance. Previous studies have indicated that a 13-amino acid region downstream of the Bcl10 caspase recruitment domain (CARD) is responsible for interacting with the immunoglobulin-like domains of MALT1. We now provide evidence that the death domain of MALT1 and the CARD of Bcl10 also contribute to Bcl10-MALT1 interactions. Although a direct interaction between the MALT1 death domain and Bcl10 cannot be detected via immunoprecipitation, FRET data strongly suggest that the death domain of MALT1 contributes significantly to the association between Bcl10 and MALT1 in T cells in vivo. Furthermore, analysis of point mutants of conserved residues of Bcl10 shows that the Bcl10 CARD is essential for interaction with the MALT1 N terminus. Mutations that disrupt proper folding of the Bcl10 CARD strongly impair Bcl10-MALT1 interactions. Molecular modeling and functional analyses of Bcl10 point mutants suggest that residues Asp(80) and Glu(84) of helix 5 of the Bcl10 CARD directly contact MALT1. Together, these data demonstrate that the association between Bcl10 and MALT1 involves a complex interaction between multiple protein domains. Moreover, the Bcl10-MALT1 interaction is the second reported example of interactions between a CARD and a non-CARD protein region, which suggests that many signaling cascades may utilize CARD interactions with non-CARD domains.

  11. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins

    PubMed Central

    Pei, Jimin; Grishin, Nick V

    2012-01-01

    Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159

  12. Viral Proteins Acquired from a Host Converge to Simplified Domain Architectures

    PubMed Central

    Rappoport, Nadav; Linial, Michal

    2012-01-01

    The infection cycle of viruses creates many opportunities for the exchange of genetic material with the host. Many viruses integrate their sequences into the genome of their host for replication. These processes may lead to the virus acquisition of host sequences. Such sequences are prone to accumulation of mutations and deletions. However, in rare instances, sequences acquired from a host become beneficial for the virus. We searched for unexpected sequence similarity among the 900,000 viral proteins and all proteins from cellular organisms. Here, we focus on viruses that infect metazoa. The high-conservation analysis yielded 187 instances of highly similar viral-host sequences. Only a small number of them represent viruses that hijacked host sequences. The low-conservation sequence analysis utilizes the Pfam family collection. About 5% of the 12,000 statistical models archived in Pfam are composed of viral-metazoan proteins. In about half of Pfam families, we provide indirect support for the directionality from the host to the virus. The other families are either wrongly annotated or reflect an extensive sequence exchange between the viruses and their hosts. In about 75% of cross-taxa Pfam families, the viral proteins are significantly shorter than their metazoan counterparts. The tendency for shorter viral proteins relative to their related host proteins accounts for the acquisition of only a fragment of the host gene, the elimination of an internal domain and shortening of the linkers between domains. We conclude that, along viral evolution, the host-originated sequences accommodate simplified domain compositions. We postulate that the trimmed proteins act by interfering with the fundamental function of the host including intracellular signaling, post-translational modification, protein-protein interaction networks and cellular trafficking. We compiled a collection of hijacked protein sequences. These sequences are attractive targets for manipulation of viral

  13. The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    SciTech Connect

    Nomme, Julian; Fanning, Alan S.; Caffrey, Michael; Lye, Ming F.; Anderson, James M.; Lavie, Arnon

    2012-01-20

    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe{sup -2} and Ser{sup -3} residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.

  14. Higher-order assemblies of BAR domain proteins for shaping membranes.

    PubMed

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed.

  15. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    DTIC Science & Technology

    2008-12-02

    associated symptoms, including short stature, loose joints, blue sclearae, dentinogenesis imperfecta , hearing loss , and neurological and pulmo- nary...Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe

  16. Crystal structure of a beta-finger domain of Prp8 reveals analogy to ribosomal proteins

    SciTech Connect

    Yang, K.; Heroux, A.; Zhang, L.; Zhao, R.

    2008-09-16

    Prp8 stands out among hundreds of splicing factors as a key regulator of spliceosome activation and a potential cofactor of the splicing reaction. We present here the crystal structure of a 274-residue domain (residues 1,822-2,095) near the C terminus of Saccharomyces cerevisiae Prp8. The most striking feature of this domain is a {beta}-hairpin finger protruding out of the protein (hence, this domain will be referred to as the {beta}-finger domain), resembling many globular ribosomal proteins with protruding extensions. Mutations throughout the {beta}-finger change the conformational equilibrium between the first and the second catalytic step. Mutations at the base of the {beta}-finger affect U4/U6 unwinding-mediated spliceosome activation. Prp8 may insert its {beta}-finger into the first-step complex (U2/U5/U6/pre-mRNA) or U4/U6.U5 tri-snRNP and stabilize these complexes. Mutations on the {beta}-finger likely alter these interactions, leading to the observed mutant phenotypes. Our results suggest a possible mechanism of how Prp8 regulates spliceosome activation. These results also demonstrate an analogy between a spliceosomal protein and ribosomal proteins that insert extensions into folded rRNAs and stabilize the ribosome.

  17. Kits and methods of detection using cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  20. Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling*

    PubMed Central

    Mas, Caroline; Norwood, Suzanne J.; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E.; Davis, Jasmine L.; Teasdale, Rohan D.; Collins, Brett M.

    2014-01-01

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. PMID:25148684

  1. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    PubMed

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.

  2. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  3. Structure-based design of ligands for protein basic domains: application to the HIV-1 Tat protein.

    PubMed

    Filikov, A V; James, T L

    1998-05-01

    A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calormetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with

  4. Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein

    NASA Astrophysics Data System (ADS)

    Filikov, Anton V.; James, Thomas L.

    1998-05-01

    A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with

  5. Retromer-mediated endosomal protein sorting: The role of unstructured domains.

    PubMed

    Mukadam, Aamir S; Seaman, Matthew N J

    2015-09-14

    The retromer complex is a key element of the endosomal protein sorting machinery that is conserved through evolution and has been shown to play a role in diseases such as Alzheimer's disease and Parkinson's disease. Through sorting various membrane proteins (cargo), the function of retromer complex has been linked to physiological processes such as lysosome biogenesis, autophagy, down regulation of signalling receptors and cell spreading. The cargo-selective trimer of retromer recognises membrane proteins and sorts them into two distinct pathways; endosome-to-Golgi retrieval and endosome-to-cell surface recycling and additionally the cargo-selective trimer functions as a hub to recruit accessory proteins to endosomes where they may regulate and/or facilitate retromer-mediated endosomal proteins sorting. Unstructured domains present in cargo proteins or accessory factors play key roles in both these aspects of retromer function and will be discussed in this review.

  6. Regulation of Microtubule Dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP

    PubMed Central

    Al-Bassam, Jawdat; Chang, Fred

    2011-01-01

    The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. Here, we review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, while CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behaviors of MT plus ends. PMID:21782439

  7. Yeast Two-Hybrid Screening for Proteins that Interact with the Extracellular Domain of Amyloid Precursor Protein.

    PubMed

    Yu, You; Li, Yinan; Zhang, Yan

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which amyloid β plaques are a pathological characteristic. Little is known about the physiological functions of amyloid β precursor protein (APP). Based on its structure as a type I transmembrane protein, it has been proposed that APP might be a receptor, but so far, no ligand has been reported. In the present study, 9 proteins binding to the extracellular domain of APP were identified using a yeast two-hybrid system. After confirming the interactions in the mammalian system, mutated PLP1, members of the FLRT protein family, and KCTD16 were shown to interact with APP. These proteins have been reported to be involved in Pelizaeus-Merzbacher disease (PMD) and axon guidance. Therefore, our results shed light on the mechanisms of physiological function of APP in AD, PMD, and axon guidance.

  8. The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response[OPEN

    PubMed Central

    2015-01-01

    An integral part of auxin-regulated gene expression involves the interplay of two types of transcription factors, the DNA binding auxin response factor (ARF) activators and the interacting auxin/indole acetic acid (Aux/IAA) repressors. Insight into the mechanism of how these transcription factors interact with one another has recently been revealed from crystallographic information on ARF5 and ARF7 C-terminal domains (i.e., a protein-protein interaction domain referred to as domain III/IV that is related to domain III/IV in Aux/IAA proteins). Three-dimensional structures showed that this domain in ARF5 and ARF7 conforms to a well-known PB1 (Phox and Bem1) domain that confers protein-protein interactions with other PB1 domain proteins through electrostatic contacts. Experiments verifying the importance of charged amino acids in conferring ARF and Aux/IAA interactions have confirmed the PB1 domain structure. Some in planta experiments designed to test the validity of PB1 interactions in the auxin response have led to updated models for auxin-regulated gene expression and raised many questions that will require further investigation. In addition to the PB1 domain, a second protein interaction module that functions in ARF-ARF dimerization and facilitates DNA binding has recently been revealed from crystallography studies on the ARF1 and ARF5 DNA binding domains. PMID:25604444

  9. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15.

    PubMed Central

    Sengar, A S; Wang, W; Bishay, J; Cohen, S; Egan, S E

    1999-01-01

    Clathrin-mediated endocytosis is a multistep process which requires interaction between a number of conserved proteins. We have cloned two mammalian genes which code for a number of endocytic adaptor proteins. Two of these proteins, termed Ese1 and Ese2, contain two N-terminal EH domains, a central coiled-coil domain and five C-terminal SH3 domains. Ese1 is constitutively associated with Eps15 proteins to form a complex with at least 14 protein-protein interaction surfaces. Yeast two-hybrid assays have revealed that Ese1 EH and SH3 domains bind epsin family proteins and dynamin, respectively. Overexpression of Ese1 is sufficient to block clathrin-mediated endocytosis in cultured cells, presumably through disruption of higher order protein complexes, which are assembled on the endogenous Ese1-Eps15 scaffold. The Ese1-Eps15 scaffold therefore links dynamin, epsin and other endocytic pathway components. PMID:10064583

  10. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition.

    PubMed

    Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C

    1998-11-10

    Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

  11. From Structure to Function: A Comprehensive Compendium of Tools to Unveil Protein Domains and Understand Their Role in Cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-01-01

    Unveiling the function of a novel protein is a challenging task that requires careful experimental design. Yeast cytokinesis is a conserved process that involves modular structural and regulatory proteins. For such proteins, an important step is to identify their domains and structural organization. Here we briefly discuss a collection of methods commonly used for sequence alignment and prediction of protein structure that represent powerful tools for the identification homologous domains and design of structure-function approaches to test experimentally the function of multi-domain proteins such as those implicated in yeast cytokinesis.

  12. Evolution of a domain conserved in microtubule-associated proteins of eukaryotes

    PubMed Central

    Rajangam, Alex S; Yang, Hongqian; Teeri, Tuula T; Arvestad, Lars

    2008-01-01

    The microtubule network, the major organelle of the eukaryotic cytoskeleton, is involved in cell division and differentiation but also with many other cellular functions. In plants, microtubules seem to be involved in the ordered deposition of cellulose microfibrils by a so far unknown mechanism. Microtubule-associated proteins (MAP) typically contain various domains targeting or binding proteins with different functions to microtubules. Here we have investigated a proposed microtubule-targeting domain, TPX2, first identified in the Kinesin-like protein 2 in Xenopus. A TPX2 containing microtubule binding protein, PttMAP20, has been recently identified in poplar tissues undergoing xylogenesis. Furthermore, the herbicide 2,6-dichlorobenzonitrile (DCB), which is a known inhibitor of cellulose synthesis, was shown to bind specifically to PttMAP20. It is thus possible that PttMAP20 may have a role in coupling cellulose biosynthesis and the microtubular networks in poplar secondary cell walls. In order to get more insight into the occurrence, evolution and potential functions of TPX2-containing proteins we have carried out bioinformatic analysis for all genes so far found to encode TPX2 domains with special reference to poplar PttMAP20 and its putative orthologs in other plants. PMID:21918606

  13. Nanofibrillar hydrogel scaffolds from recombinant protein-based polymers with integrin- and proteoglycan-binding domains.

    PubMed

    Włodarczyk-Biegun, Małgorzata K; Werten, Marc W T; Posadowska, Urszula; Storm, Ingeborg M; de Wolf, Frits A; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Cohen Stuart, Martien A; Kamperman, Marleen

    2016-12-01

    This study describes the design, production, and testing of functionalized variants of a recombinant protein-based polymer that forms nanofibrillar hydrogels with self-healing properties. With a view to bone tissue engineering applications, we equipped these variants with N-terminal extensions containing either (1) integrin-binding (RGD) or (2) less commonly studied proteoglycan-binding (KRSR) cell-adhesive motifs. The polymers were efficiently produced as secreted proteins using the yeast Pichia pastoris and were essentially monodisperse. The pH-responsive protein-based polymers are soluble at low pH and self-assemble into supramolecular fibrils and hydrogels at physiological pH. By mixing functionalized and nonfunctionalized proteins in different ratios, and adjusting pH, hydrogel scaffolds with the same protein concentration but varying content of the two types of cell-adhesive motifs were readily obtained. The scaffolds were used for the two-dimensional culture of MG-63 osteoblastic cells. RGD domains had a slightly stronger effect than KRSR domains on adhesion, activity, and spreading. However, scaffolds featuring both functional domains revealed a clear synergistic effect on cell metabolic activity and spreading, and provided the highest final degree of cell confluency. The mixed functionalized hydrogels presented here thus allowed to tailor the osteoblastic cell response, offering prospects for their further development as scaffolds for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3082-3092, 2016.

  14. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain.

    PubMed

    Gruber, Tobias; Balbach, Jochen

    2015-01-01

    The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.

  15. Crystal Structure of Trimeric Carbohydrate Recognition and Neck Domains of Surfactant Protein A

    SciTech Connect

    Head,J.; Mealy, T.; McCormack, F.; Seaton, B.

    2003-01-01

    Surfactant protein A (SP-A), one of four proteins associated with pulmonary surfactant, binds with high affinity to alveolar phospholipid membranes, positioning the protein at the first line of defense against inhaled pathogens. SP-A exhibits both calcium-dependent carbohydrate binding, a characteristic of the collectin family, and specific interactions with lipid membrane components. The crystal structure of the trimeric carbohydrate recognition domain and neck domain of SP-A was solved to 2.1-{angstrom} resolution with multiwavelength anomalous dispersion phasing from samarium. Two metalbinding sites were identified, one in the highly conserved lectin site and the other 8.5 {angstrom} away. The interdomain carbohydrate recognition domain-neck angle is significantly less in SP-A than in the homologous collectins, surfactant protein D, and mannose-binding protein. This conformational difference may endow the SP-A trimer with a more extensive hydrophobic surface capable of binding lipophilic membrane components. The appearance of this surface suggests a putative binding region for membrane-derived SP-A ligands such as phosphatidylcholine and lipid A, the endotoxic lipid component of bacterial lipopolysaccharide that mediates the potentially lethal effects of Gram-negative bacterial infection.

  16. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    SciTech Connect

    Singh, Pratibha; Savithri, H.S.

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  17. Affinity purification of antibodies using immobilized FB domain of protein A.

    PubMed

    Solomon, B; Raviv, O; Leibman, E; Fleminger, G

    1992-04-24

    A continuous method for the efficient digestion of protein A into active fragments (FB, Mr = 7000) using immobilized trypsin was developed. These fragments originate from almost identical five-repeated monovalent Fc-binding units of 58 residues each. The fragments obtained were found to be similar to the recently described genetically engineered fragment B. Antibody-binding characteristics of the FB domain and also of intact protein A, immobilized on to adipic dihydrazide-modified Eupergit CB6200 beads, were investigated. Based on the experimental data obtained, a high-performance liquid chromatographic column containing C30N Eupergit C-immobilized FB domain was prepared and its performance in antibody purification was compared with that of Eupergit C-immobilized intact protein A.

  18. The Amyloid Precursor Protein Forms Plasmalemmal Clusters via Its Pathogenic Amyloid-β Domain

    PubMed Central

    Schreiber, Arne; Fischer, Sebastian; Lang, Thorsten

    2012-01-01

    The amyloid precursor protein (APP) is a large, ubiquitous integral membrane protein with a small amyloid-β (Aβ) domain. In the human brain, endosomal processing of APP produces neurotoxic Aβ-peptides, which are involved in Alzheimer's disease. Here, we show that the Aβ sequence exerts a physiological function when still present in the unprocessed APP molecule. From the extracellular site, Aβ concentrates APP molecules into plasmalemmal membrane protein clusters. Moreover, Aβ stabilization of clusters is a prerequisite for their targeting to endocytic clathrin structures. Therefore, we conclude that the Aβ domain directly mediates a central step in APP trafficking, driving its own conversion into neurotoxic peptides. PMID:22455924

  19. Subtype-specific roles of phospholipase C-β via differential interactions with PDZ domain proteins.

    PubMed

    Kim, Jung Kuk; Lim, Seyoung; Kim, Jinho; Kim, Sanguk; Kim, Jae Ho; Ryu, Sung Ho; Suh, Pann-Ghill

    2011-01-01

    Since we first identified the PLC-β isozyme, enormous studies have been conducted to investigate the functional roles of this protein (Min et al., 1993; Suh et al.,1988). It is now well-known that the four PLC-β subtypes are major effector molecules in GPCR-mediated signaling, especially for intracellular Ca2+ signaling. Nonetheless, it is still poorly understood why multiple PLC-β subtype exist. Most cells express multiple subtypes of PLC-β in different combinations, and each subtype is involved in somewhat different signaling pathways. Therefore, studying the differential roles of each PLC-β subtype is a very interesting issue. In this regard, we focus here on PDZ domain proteins which are novel PLC-β interacting proteins. As scaffolders, PDZ domain proteins recruit various target proteins ranging from membrane receptors to cytoskeletal proteins to assemble highly organized signaling complexes; this can give rise to efficiency and diversity in cellular signaling. Because PLC-β subtypes have different PDZ-binding motifs, it is possible that they are engaged with different PDZ domain proteins, and in turn participate in distinct physiological responses. To date, several PDZ domain proteins, such as the NHERF family, Shank2, and Par-3, have been reported to selectively interact with certain PLC-β subtypes and GPCRs. Systematic predictions of potential binding partners also suggests differential binding properties between PLC-β subtypes. Furthermore, we elucidated parallel signaling processes for multiple PLC-β subtypes, which still perform distinct functions resulting from differential interactions with PDZ domain proteins within a single cell. Therefore, these results highlight the novel function of PDZ domain proteins as intermediaries in subtype-specific role of PLC-β in GPCR-mediated signaling. Future studies will focus on the physiological meanings of this signaling complex formation by different PDZ domain proteins and PLC-β subtypes. It has been

  20. Protein domain of chicken alpha(1)-acid glycoprotein is responsible for chiral recognition.

    PubMed

    Sadakane, Yutaka; Matsunaga, Hisami; Nakagomi, Kazuya; Hatanaka, Yasumaru; Haginaka, Jun

    2002-07-19

    Ovoglycoprotein from chicken egg whites (OGCHI) has been used as a chiral selector to separate drug enantiomers. However, neither the amino acid sequence of OGCHI nor the responsible part for the chiral recognition (protein domain or sugar moiety) has yet to be determined. First, we isolated a cDNA clone encoding OGCHI, and clarified the amino acid sequence of OGCHI, which consists of 203 amino acids including a predictable signal peptide of 20 amino acids. The mature OGCHI shows 31-32% identities to rabbit and human alpha(1)-acid glycoproteins (alpha(1)-AGPs). Thus, OGCHI should be the chicken alpha(1)-AGP. Second, the recombinant chicken alpha(1)-AGP was prepared by the Escherichia coli expression system, and its chiral recognition ability was confirmed by capillary electrophoresis. Since proteins expressed in E. coli are not modified by any sugar moieties, this result shows that the protein domain of the chicken alpha(1)-AGP is responsible for the chiral recognition.

  1. Antibodies biotinylated using a synthetic Z-domain from protein A provide stringent in situ protein detection.

    PubMed

    Andersson, Sandra; Konrad, Anna; Ashok, Nikhil; Pontén, Fredrik; Hober, Sophia; Asplund, Anna

    2013-11-01

    Antibody-based protein profiling on a global scale using immunohistochemistry constitutes an emerging strategy for mapping of the human proteome, which is crucial for an increased understanding of biological processes in the cell. Immunohistochemistry is often performed indirectly using secondary antibodies for detection, with the benefit of signal amplification. Direct immunohistochemistry instead brings the advantage of multiplexing; however, it requires labeling of the primary antibody. Many antibody-labeling kits do not specifically target IgG and may therefore cause labeling of stabilizing proteins present in the antibody solution. A new conjugation method has been developed that utilizes a modified Z-domain of protein A (ZBPA) to specifically target the Fc part of antibodies. The aim of the present study was to compare the ZBPA conjugation method and a commercially available labeling kit, Lightning-Link, for in situ protein detection. Fourteen antibodies were biotinylated with each method and stained using immunohistochemistry. For all antibodies tested, ZBPA biotinylation resulted in distinct immunoreactivity without off-target staining, regardless of the presence of stabilizing proteins in the buffer, whereas the majority of the Lightning-Link biotinylated antibodies displayed a characteristic pattern of nonspecific staining. We conclude that biotinylated ZBPA domain provides a stringent method for antibody biotinylation, advantageous for in situ protein detection in tissues.

  2. AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling.

    PubMed

    Malbon, C C; Tao, J; Shumay, E; Wang, H-Y

    2004-11-01

    AKAPs (A-kinase anchoring proteins) are members of a diverse family of scaffold proteins that minimally possess a characteristic binding domain for the RI/RII regulatory subunit of protein kinase A and play critical roles in establishing spatial constraints for multivalent signalling assemblies. Especially for G-protein-coupled receptors, the AKAPs provide an organizing centre about which various protein kinases and phosphatases can be assembled to create solid-state signalling devices that can signal, be modulated and trafficked within the cell. The structure of AKAP250 (also known as gravin or AKAP12), based on analyses of milligram quantities of recombinant protein expressed in Escherichia coli, suggests that the AKAP is probably an unordered scaffold, acting as a necklace on which 'jewels' of structure-function (e.g. the RII-binding domain) that provide docking sites on which signalling components can be assembled. Recent results suggest that AKAP250 provides not only a 'tool box' for assembling signalling elements, but may indeed provide a basis for spatial constraint observed for many signalling paradigms. The spatial dimension of the integration of cell signalling will probably reflect many functions performed by members of the AKAP family.

  3. Detection of protein-protein interactions in plants using the transrepressive activity of the EAR motif repression domain.

    PubMed

    Matsui, Kyoko; Ohme-Takagi, Masaru

    2010-02-01

    The activities of many regulatory factors involve interactions with other proteins. We demonstrate here that the ERF-associated amphiphilic repression (EAR) motif repression domain (SRDX) can convert a transcriptional complex into a repressor via transrepression that is mediated by protein-protein interactions and show that transrepressive activity of SRDX can be used to detect such protein-protein interactions. When we fused a protein that interacts with a transcription factor with SRDX and co-expressed the product with the transcription factor in plant cells, the expression of genes that are targets of the transcription factor was suppressed by transrepression. We demonstrated the transrepressive activity of SRDX using FOS and JUN as a model system and used two MADS box plant proteins, PISTILLATA and APETALA3, which are known to form heterodimers. Furthermore, the transgenic plants that expressed TTG1, which is a WD40 protein and interacts with bHLH transcription factors, fused to SRDX exhibited a phenotype similar to ttg1 mutants by transrepression and the regions of TTG1 required for interaction to the bHLH protein were detected using our system. We also used this system to analyse a protein factor that might be incorporated into a transcriptional complex and identified an Arabidopsis WD40 protein PWP2 (AtPWP2) interacting with AtTBP1 through comparison of phenotypes induced by 35S:AtPWP2-SRDX with that induced by the chimeric repressor. Our results indicate that the transrepression mediated by SRDX can be used to detect and confirm protein-protein interactions in plants and should be useful in identifying factors that form transcriptional protein complexes.

  4. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  5. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  6. Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana.

    PubMed

    Roy, Adrita; Dutta, Arkajyoti; Roy, Dipan; Ganguly, Payel; Ghosh, Ritesh; Kar, Rajiv K; Bhunia, Anirban; Mukhopadhyay, Jayanta; Chaudhuri, Shubho

    2016-10-01

    ARID-HMG DNA-binding proteins represent a novel group of HMG-box containing protein family where the AT-rich interaction domain (ARID) is fused with the HMG-box domain in a single polypeptide chain. ARID-HMG proteins are highly plant specific with homologs found both in flowering plants as well as in moss such as Physcomitrella. The expression of these proteins is ubiquitous in plant tissues and primarily localises in the cell nucleus. HMGB proteins are involved in several nuclear processes, but the role of ARID-HMG proteins in plants remains poorly explored. Here, we performed DNA-protein interaction studies with Arabidopsis ARID-HMG protein HMGB11 (At1g55650) to understand the functionality of this protein and its individual domains. DNA binding assays revealed that AtHMGB11 can bind double-stranded DNA with a weaker affinity (Kd = 475 ± 17.9 nM) compared to Arabidopsis HMGB1 protein (Kd = 39.8 ± 2.68 nM). AtHMGB11 also prefers AT-rich DNA as a substrate and shows structural bias for supercoiled DNA. Molecular docking of the DNA-AtHMGB11 complex indicated that the protein interacts with the DNA major groove, mainly through its ARID domain and the junction region connecting the ARID and the HMG-box domain. Also, predicted by the docking model, mutation of Lys(85) from the ARID domain and Arg(199) & Lys(202) from the junction region affects the DNA binding affinity of AtHMGB11. In addition, AtHMGB11 and its truncated form containing the HMG-box domain can not only promote DNA mini-circle formation but are also capable of inducing negative supercoils into relaxed plasmid DNA suggesting the involvement of this protein in several nuclear events. Overall, the study signifies that both the ARID and the HMG-box domain contribute to the optimal functioning of ARID-HMG protein in vivo.

  7. New Helical Binding Domain Mediates a Glycosyltransferase Activity of a Bifunctional Protein*

    PubMed Central

    Zhang, Hua; Zhou, Meixian; Yang, Tiandi; Haslam, Stuart M.; Dell, Anne; Wu, Hui

    2016-01-01

    Serine-rich repeat glycoproteins (SRRPs) conserved in streptococci and staphylococci are important for bacterial colonization and pathogenesis. Fap1, a well studied SRRP is a major surface constituent of Streptococcus parasanguinis and is required for bacterial adhesion and biofilm formation. Biogenesis of Fap1 is a multistep process that involves both glycosylation and secretion. A series of glycosyltransferases catalyze sequential glycosylation of Fap1. We have identified a unique hybrid protein dGT1 (dual glycosyltransferase 1) that contains two distinct domains. N-terminal DUF1792 is a novel GT-D-type glycosyltransferase, transferring Glc residues to Glc-GlcNAc-modified Fap1. C-terminal dGT1 (CgT) is predicted to possess a typical GT-A-type glycosyltransferase, however, the activity remains unknown. In this study, we determine that CgT is a distinct glycosyltransferase, transferring GlcNAc residues to Glc-Glc-GlcNAc-modified Fap1. A 2.4-Å x-ray crystal structure reveals that CgT has a unique binding domain consisting of three α helices in addition to a typical GT-A-type glycosyltransferase domain. The helical domain is crucial for the oligomerization of CgT. Structural and biochemical studies revealed that the helix domain is required for the protein-protein interaction and crucial for the glycosyltransferase activity of CgT in vitro and in vivo. As the helix domain presents a novel structural fold, we conclude that CgT represents a new member of GT-A-type glycosyltransferases. PMID:27539847

  8. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn.

    PubMed

    Steckbeck, Jonathan D; Kuhlmann, Anne-Sophie; Montelaro, Ronald C

    2014-01-16

    Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.

  9. Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy

    PubMed Central

    Carlsson, Emil; Thwaite, Joanne E.; Jenner, Dominic C.; Spear, Abigail M.; Flick-Smith, Helen; Atkins, Helen S.; Ding, Jeak Ling

    2016-01-01

    Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence. PMID:27391310

  10. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  11. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGES

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; ...

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  12. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    SciTech Connect

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  13. Intrinsic Disorder of the C-Terminal Domain of Drosophila Methoprene-Tolerant Protein

    PubMed Central

    Kolonko, Marta; Ożga, Katarzyna; Hołubowicz, Rafał; Taube, Michał; Kozak, Maciej; Ożyhar, Andrzej; Greb-Markiewicz, Beata

    2016-01-01

    Methoprene tolerant protein (Met) has recently been confirmed as the long-sought juvenile hormone (JH) receptor. This protein plays a significant role in the cross-talk of the 20-hydroxyecdysone (20E) and JH signalling pathways, which are important for control of insect development and maturation. Met belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH-PAS) family of transcription factors. In these proteins, bHLH domains are typically responsible for DNA binding and dimerization, whereas the PAS domains are crucial for the choice of dimerization partner and the specificity of target gene activation. The C-terminal region is usually responsible for the regulation of protein complex activity. The sequence of the Met C-terminal region (MetC) is not homologous to any sequence deposited in the Protein Data Bank (PDB) and has not been structurally characterized to date. In this study, we show that the MetC exhibits properties typical for an intrinsically disordered protein (IDP). The final averaged structure obtained with small angle X-ray scattering (SAXS) experiments indicates that intrinsically disordered MetC exists in an extended conformation. This extended shape and the long unfolded regions characterise proteins with high flexibility and dynamics. Therefore, we suggest that the multiplicity of conformations adopted by the disordered MetC is crucial for its activity as a biological switch modulating the cross-talk of different signalling pathways in insects. PMID:27657508

  14. Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins.

    PubMed

    Rivera, Corban G; Bader, Joel S; Popel, Aleksander S

    2011-08-01

    Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel [Proc. Natl. Acad. Sci. USA 105(37):13775-13780, 2008] used a bioinformatics approach to identify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain of the proteins they were derived from. The families included type IV collagen fibrils, CXC chemokine ligands, and type I thrombospondin domain-containing proteins. The relationships between these families have received relatively little attention. To investigate these relationships, we approached the problem by placing the families of proteins in the context of the human interactome including >120,000 physical interactions among proteins, genes, and transcripts. We built on a graph theoretic approach to identify proteins that may represent conduits of crosstalk between protein families. We validated these findings by statistical analysis and analysis of a time series gene expression data set taken during angiogenesis. We identified six proteins at the center of the angiogenesis-associated network including three syndecans, MMP9, CD44, and versican. These findings shed light on the complex signaling networks that govern angiogenesis phenomena.

  15. The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins

    PubMed Central

    Taniguchi, Yasushi

    2016-01-01

    The Bromodomain and Extra-Terminal Domain (BET) family of proteins is characterized by the presence of two tandem bromodomains and an extra-terminal domain. The mammalian BET family of proteins comprises BRD2, BRD3, BRD4, and BRDT, which are encoded by paralogous genes that may have been generated by repeated duplication of an ancestral gene during evolution. Bromodomains that can specifically bind acetylated lysine residues in histones serve as chromatin-targeting modules that decipher the histone acetylation code. BET proteins play a crucial role in regulating gene transcription through epigenetic interactions between bromodomains and acetylated histones during cellular proliferation and differentiation processes. On the other hand, BET proteins have been reported to mediate latent viral infection in host cells and be involved in oncogenesis. Human BRD4 is involved in multiple processes of the DNA virus life cycle, including viral replication, genome maintenance, and gene transcription through interaction with viral proteins. Aberrant BRD4 expression contributes to carcinogenesis by mediating hyperacetylation of the chromatin containing the cell proliferation-promoting genes. BET bromodomain blockade using small-molecule inhibitors gives rise to selective repression of the transcriptional network driven by c-MYC These inhibitors are expected to be potential therapeutic drugs for a wide range of cancers. This review presents an overview of the basic roles of BET proteins and highlights the pathological functions of BET and the recent developments in cancer therapy targeting BET proteins in animal models. PMID:27827996

  16. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    PubMed

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation.

  17. Interactions between the Structural Domains of the RNA Replication Proteins of Plant-Infecting RNA Viruses

    PubMed Central

    O’Reilly, Erin K.; Wang, Zhaohui; French, Roy; Kao, C. Cheng

    1998-01-01

    Brome mosaic virus (BMV), a positive-strand RNA virus, encodes two replication proteins: the 2a protein, which contains polymerase-like sequences, and the 1a protein, with N-terminal putative capping and C-terminal helicase-like sequences. These two proteins are part of a multisubunit complex which is necessary for viral RNA replication. We have previously shown that the yeast two-hybrid assay consistently duplicated results obtained from in vivo RNA replication assays and biochemical assays of protein-protein interaction, thus permitting the identification of additional interacting domains. We now map an interaction found to take place between two 1a proteins. Using previously characterized 1a mutants, a perfect correlation was found between the in vivo phenotypes of these mutants and their abilities to interact with wild-type 1a (wt1a) and each other. Western blot analysis revealed that the stabilities of many of the noninteracting mutant proteins were similar to that of wt1a. Deletion analysis of 1a revealed that the N-terminal 515 residues of the 1a protein are required and sufficient for 1a-1a interaction. This intermolecular interaction between the putative capping domain and itself was detected in another tripartite RNA virus, cucumber mosaic virus (CMV), suggesting that the 1a-1a interaction is a feature necessary for the replication of tripartite RNA viruses. The boundaries for various activities are placed in the context of the predicted secondary structures of several 1a-like proteins of members of the alphavirus-like superfamily. Additionally, we found a novel interaction between the putative capping and helicase-like portions of the BMV and CMV 1a proteins. Our cumulative data suggest a working model for the assembly of the BMV RNA replicase. PMID:9696810

  18. Analysis of the Protein Domain and Domain Architecture Content in Fungi and Its Application in the Search of New Antifungal Targets

    PubMed Central

    Barrera, Alejandro; Alastruey-Izquierdo, Ana; Martín, María J.; Cuesta, Isabel; Vizcaíno, Juan Antonio

    2014-01-01

    Over the past several years fungal infections have shown an increasing incidence in the susceptible population, and caused high mortality rates. In parallel, multi-resistant fungi are emerging in human infections. Therefore, the identification of new potential antifungal targets is a priority. The first task of this study was to analyse the protein domain and domain architecture content of the 137 fungal proteomes (corresponding to 111 species) available in UniProtKB (UniProt KnowledgeBase) by January 2013. The resulting list of core and exclusive domain and domain architectures is provided in this paper. It delineates the different levels of fungal taxonomic classification: phylum, subphylum, order, genus and species. The analysis highlighted Aspergillus as the most diverse genus in terms of exclusive domain content. In addition, we also investigated which domains could be considered promiscuous in the different organisms. As an application of this analysis, we explored three different ways to detect potential targets for antifungal drugs. First, we compared the domain and domain architecture content of the human and fungal proteomes, and identified those domains and domain architectures only present in fungi. Secondly, we looked for information regarding fungal pathways in public repositories, where proteins containing promiscuous domains could be involved. Three pathways were identified as a result: lovastatin biosynthesis, xylan degradation and biosynthesis of siroheme. Finally, we classified a subset of the studied fungi in five groups depending on their occurrence in clinical samples. We then looked for exclusive domains in the groups that were more relevant clinically and determined which of them had the potential to bind small molecules. Overall, this study provides a comprehensive analysis of the available fungal proteomes and shows three approaches that can be used as a first step in the detection of new antifungal targets. PMID:25033262

  19. Structure and Function of the SWIRM Domain, a Conserved Protein Module Found in Chromatin Regulatory Complexes

    SciTech Connect

    Da,G.; Lenkart, J.; Zhao, K.; Shiekhattar, R.; Cairns, B.; Marmorstein, R.

    2006-01-01

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  20. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains.

    PubMed

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F; Srinivasan, Prakash; Nold, Michael J; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan; Lambert, Lynn; Rausch, Kelly M; Muratova, Olga; Jin, Albert; Reed, Steven G; Sinnis, Photini; Barillas-Mury, Carolina; Duffy, Patrick E; MacDonald, Nicholas J; Narum, David L

    2015-10-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine.

  1. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes.

    PubMed

    Da, Guoping; Lenkart, Jeffrey; Zhao, Kehao; Shiekhattar, Ramin; Cairns, Bradley R; Marmorstein, Ronen

    2006-02-14

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  2. Autoantibodies from patients with primary biliary cirrhosis recognize a region within the nucleoplasmic domain of inner nuclear membrane protein LBR.

    PubMed

    Lin, F; Noyer, C M; Ye, Q; Courvalin, J C; Worman, H J

    1996-01-01

    Autoantibodies from rare patients with primary biliary cirrhosis (PBC) recognize LBR, or lamin B receptor, an integral membrane protein of the inner nuclear membrane. Human LBR has a nucleoplasmic, amino-terminal domain of 208 amino acids followed by a carboxyl-terminal domain with eight putative transmembrane segments. Autoantibodies against LBR from four patients with PBC recognized the nucleoplasmic, amino-terminal domain but not the carboxyl-terminal domain. Immunoblotting of smaller fusion proteins demonstrated that these autoantibodies recognized a conformational epitope(s) contained within the stretch of amino acids from 1 to 60. These results, combined with those of previous studies, show that autoepitopes of nuclear membrane proteins are located within their nucleocytoplasmic domains and that autoantibodies from patients with PBC predominantly react with one domain of a protein antigen. This work also provides further characterization of anti-LBR antibodies that have found utility as reagents in cell biology research.

  3. Tubulin domains for the interaction of microtubule associated protein DMAP-85 from Drosophila melanogaster.

    PubMed

    Henríquez, J P; Cambiazo, V; Maccioni, R B

    1996-05-24

    The interaction of microtubule associated proteins (MAPs) with the microtubule system has been characterized in depth in neuronal cells from various mammalian species. These proteins interact with well-defined domains within the acidic tubulin carboxyl-terminal regulatory region. However, there is little information on the mechanisms of MAPs-tubulin interactions in nonmammalian systems. Recently, a novel tau-like protein designated as DMAP-85 has been identified in Drosophila melanogaster, and the regulation of its interactions with cytoskeletal elements was analyzed throughout different developmental stages of this organism. In this report, the topographic domains involved in the binding of DMAP-85 with tubulin heterodimer were investigated. Affinity chromatography of DMAP-85 in matrixes of taxol-stabilized microtubules showed the reversible interaction of DMAP-85 with domains on the microtubular surface. Co-sedimentation studies using the subtilisin-treated tubulin (S-tubulin) indicated the lack of association of DMAP-85 to this tubulin moiety. Moreover, studies on affinity chromatography of the purified 4 kDa C-terminal tubulin peptide bound to an affinity column, confirmed that DMAP-85 interacts directly with this regulatory domain on tubulin subunits. Further studies on sequential affinity chromatography using a calmodulin affinity column followed by the microtubule column confirmed the similarities in the interaction behaviour of DMAP-85 with that of tau. DMAP-85 associated to both calmodulin and the microtubular polymer. These studies support the idea that the carboxyl-terminal region on tubulin constitutes a common binding domain for most microtubule-interacting proteins.

  4. Immunoinhibitory adapter protein Src homology domain 3 lymphocyte protein 2 (SLy2) regulates actin dynamics and B cell spreading.

    PubMed

    von Holleben, Max; Gohla, Antje; Janssen, Klaus-Peter; Iritani, Brian M; Beer-Hammer, Sandra

    2011-04-15

    Appropriate B cell activation is essential for adaptive immunity. In contrast to the molecular mechanisms that regulate positive signaling in immune responses, the counterbalancing negative regulatory pathways remain insufficiently understood. The Src homology domain 3 (SH3)-containing adapter protein SH3 lymphocyte protein 2 (SLy2, also known as hematopoietic adapter-containing SH3 and sterile α-motif (SAM) domains 1; HACS1) is strongly up-regulated upon B cell activation and functions as an endogenous immunoinhibitor in vivo, but the underlying molecular mechanisms of SLy2 function have been elusive. We have generated transgenic mice overexpressing SLy2 in B and T cells and have studied the biological effects of elevated SLy2 levels in Jurkat and HeLa cells. Our results demonstrate that SLy2 induces Rac1-dependent membrane ruffle formation and regulates cell spreading and polarization and that the SLy2 SH3 domain is essential for these effects. Using immunoprecipitation and confocal microscopy, we provide evidence that the actin nucleation-promoting factor cortactin is an SH3 domain-directed interaction partner of SLy2. Consistent with an important role of SLy2 for actin cytoskeletal reorganization, we further show that SLy2-transgenic B cells are severely defective in cell spreading. Together, our findings extend our mechanistic understanding of the immunoinhibitory roles of SLy2 in vivo and suggest that the physiological up-regulation of SLy2 observed upon B cell activation functions to counteract excessive B cell spreading.

  5. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms.

    PubMed

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Nicora, Horacio D Lopez; Caetano-Anollés, Gustavo

    2011-11-08

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  6. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  7. The effect of surface tethering on the folding of the src-SH3 protein domain

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhuoyun; Jewett, Andrew I.; Soto, Patricia; Shea, Joan-Emma

    2009-03-01

    The effect of surface tethering on the folding mechanism of the src-SH3 protein domain was investigated using a coarse-grained Gō-type protein model. The protein was tethered at various locations along the protein chain and the thermodynamics and kinetics of folding were studied using replica exchange and constant temperature Langevin dynamics. Our simulations reveal that tethering in a structured part of the transition state can dramatically alter the folding mechanism, while tethering in an unstructured part leaves the folding mechanism unaltered as compared to bulk folding. Interestingly, there is only modest correlation between the tethering effect on the folding mechanism and its effect on thermodynamic stability and folding rates. We suggest locations on the protein at which tethering could be performed in single-molecule experiments so as to leave the folding mechanism unaltered from the bulk.

  8. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease.

    PubMed

    Modjtahedi, Nazanine; Tokatlidis, Kostas; Dessen, Philippe; Kroemer, Guido

    2016-03-01

    Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.

  9. Release of Plasmodium sporozoites requires proteins with histone-fold dimerization domains

    PubMed Central

    Currà, Chiara; Gessmann, Renate; Pace, Tomasino; Picci, Leonardo; Peruzzi, Giulia; Varamogianni-Mamatsi, Vassiliki; Spanos, Lefteris; Garcia, Célia R. S.; Spaccapelo, Roberta; Ponzi, Marta; Siden-Kiamos, Inga

    2016-01-01

    The sporozoite, the stage of the malaria parasite transmitted by the mosquito, first develops for ∼2 weeks in an oocyst. Rupture of the oocyst capsule is required for release of sporozoites, which then transfer to the salivary gland where they are injected into a new host. Here we identify two parasite proteins that we call oocyst rupture proteins 1 (ORP1) and ORP2. These proteins have a histone-fold domain (HFD) that promotes heterodimer formation in the oocyst capsule at the time of rupture. Oocyst rupture is prevented in mutants lacking either protein. Mutational analysis confirms the HFD as essential for ORP1 and ORP2 function, and heterodimer formation was verified in vitro. These two proteins are potential targets for blocking transmission of the parasite in the mosquito. PMID:27982038

  10. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure

    PubMed Central

    Zhang, Jinwei; Siew, Keith; Macartney, Thomas; O'Shaughnessy, Kevin M.; Alessi, Dario R.

    2015-01-01

    The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2. PMID:25994507

  11. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains

    PubMed Central

    Busse, B. L.; Bezrukov, L.; Blank, P. S.; Zimmerberg, J.

    2016-01-01

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains. PMID:27499335

  12. A SUMO-GROUCHO Q DOMAIN FUSION PROTEIN: CHARACTERIZATION AND IN VIVO ULP1-MEDIATED CLEAVAGE

    PubMed Central

    Kuo, Dennis; Nie, Minghua; De Hoff, Peter; Chambers, Michael; Phillips, Martin; Hirsch, Ann M.; Courey, Albert J.

    2010-01-01

    We describe here a system for the expression and purification of small ubiquitin-related modifier (SUMO) fusion proteins, which often exhibit dramatically increased solubility and stability during expression in bacteria relative to unfused proteins. The vector described here allows expression of a His-tagged protein of interest fused at its N-terminus to SUMO. Using this vector, we have produced a polypeptide consisting of SUMO fused to the Q-domain of Drosophila Groucho in a concentrated soluble form. Hydrodynamic analysis shows that, consistent with previous studies on full-length Groucho, the fusion protein forms an elongated tetramer, as well as higher order oligomers. After expressing a protein as a fusion to SUMO, it is often desirable to cleave the SUMO off of the fusion protein using a SUMO-specific protease such as Ulp1. To facilitate such processing, we have constructed a dual expression vector encoding two fusion proteins: one consisting of SUMO fused to Ulp1 and a second consisting of SUMO fused to a His-tagged protein of interest. The SUMO-Ulp1 cleaves both itself and the other SUMO fusion protein in the bacterial cells prior to lysis, and the proteins retain solubility after cleavage. PMID:20732424

  13. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  14. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8

    SciTech Connect

    Wang, Chengliang; Zhang, Qiongdi; Hang, Tianrong; Tao, Yue; Ma, Xukai; Wu, Minhao; Zhang, Xuan Zang, Jianye

    2015-08-28

    The structure of the complex of NO66 and Rpl8 was solved in the native state and NO66 recognizes the consensus motif NHXH . Tetramerization is required for efficient substrate binding and catalysis by NO66. The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66{sup 176–C} complexed with Rpl8{sup 204–224} in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.

  15. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli.

    PubMed Central

    Henry, L J; Xia, D; Wilke, M E; Deisenhofer, J; Gerard, R D

    1994-01-01

    The adenovirus fiber protein is used for attachment of the virus to a specific receptor on the cell surface. Structurally, the protein consists of a long, thin shaft that protrudes from the vertex of the virus capsid and terminates in a globular domain termed the knob. To verify that the knob is the domain which interacts with the cellular receptor, we have cloned and expressed the knob from adenovirus type 5 together with a single repeat of the shaft in Escherichia coli. The protein was purified by conventional chromatography and functionally characterized for its interaction with the adenovirus receptor. The recombinant knob domain bound about 4,700 sites per HeLa cell with an affinity of 3 x 10(9) M-1 and blocked adenovirus infection of human cells. Antibodies raised against the knob also blocked virus infection. By gel filtration and X-ray diffraction analysis of protein crystals, the knob was shown to consist of a homotrimer of 21-kDa subunits. The results confirm that the trimeric knob is the ligand for attachment to the adenovirus receptor. Images PMID:8035520

  16. Crystal structure of the actin binding domain of the cyclase-associated protein.

    PubMed

    Dodatko, Tetyana; Fedorov, Alexander A; Grynberg, Marcin; Patskovsky, Yury; Rozwarski, Denise A; Jaroszewski, Lukasz; Aronoff-Spencer, Eliah; Kondraskina, Elena; Irving, Tom; Godzik, Adam; Almo, Steven C

    2004-08-24

    Cyclase-associated protein (CAP or Srv2p) is a modular actin monomer binding protein that directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. The crystal structure of the C-terminal dimerization and actin monomer binding domain (C-CAP) reveals a highly unusual dimer, composed of monomers possessing six coils of right-handed beta-helix flanked by antiparallel beta-strands. Domain swapping, involving the last two strands of each monomer, results in the formation of an extended dimer with an extensive interface. This structural and biochemical characterization provides new insights into the organization and potential mechanistic properties of the multiprotein assemblies that integrate dynamic actin processes into the overall physiology of the cell. An unanticipated finding is that the unique tertiary structure of the C-CAP monomer provides a structural model for a wide range of molecules, including RP2 and cofactor C, proteins involved in X-linked retinitis pigmentosa and tubulin maturation, respectively, as well as several uncharacterized proteins that exhibit very diverse domain organizations. Thus, the unusual right-handed beta-helical fold present in C-CAP appears to support a wide range of biological functions.

  17. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family.

    PubMed

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C; Dénervaud-Tendon, Valérie; Vermeer, Joop E M; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-08-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

  18. Adsorption thermodynamics of two-domain antifreeze proteins: theory and Monte Carlo simulations.

    PubMed

    Narambuena, Claudio F; Sanchez Varretti, Fabricio O; Ramirez-Pastor, Antonio J

    2016-09-21

    In this paper we develop the statistical thermodynamics of two-domain antifreeze proteins adsorbed on ice. We use a coarse-grained model and a lattice network in order to represent the protein and ice, respectively. The theory is obtained by combining the exact analytical expression for the partition function of non-interacting linear k-mers adsorbed in one dimension, and its extension to higher dimensions. The total and partial adsorption isotherms, and the coverage and temperature dependence of the Helmholtz free energy and configurational entropy are given. The formalism reproduces the classical Langmuir equation, leads to the exact statistical thermodynamics of molecules adsorbed in one dimension, and provides a close approximation for two-dimensional systems. Comparisons with analytical data obtained using the modified Langmuir model (MLM) and Monte Carlo simulations in the grand canonical ensemble were performed in order to test the validity of the theoretical predictions. In the MC calculations, the different mechanisms proposed in the literature to describe the adsorption of two-domain antifreeze proteins on ice were analyzed. Indistinguishable results were obtained in all cases, which verifies the thermodynamic equivalence of these mechanisms and allows the choice of the most suitable mechanism for theoretical studies of equilibrium properties. Even though a good qualitative agreement is obtained between MLM and MC data, it is found that the new theoretical framework offers a more accurate description of the phenomenon of adsorption of two-domain antifreeze proteins.

  19. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1.

    PubMed

    Dobriyal, Neha; Tripathi, Prerna; Sarkar, Susrita; Tak, Yogesh; Verma, Amit K; Sahi, Chandan

    2017-03-06

    J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.

  20. Expression and purification of the extracellular domain of human myelin protein zero.

    PubMed

    Bond, J P; Saavedra, R A; Kirschner, D A

    2001-12-01

    Myelin protein zero (P0), an adhesion protein of the immunoglobulin superfamily, is the major protein of peripheral nervous system myelin in higher vertebrates. Protein zero is required for the formation and maintenance of myelin structure in the internode, likely through homophilic interactions at both the extracellular and the intracellular domains. Mutations and deletions in the P0 gene correlate with hereditary peripheral neuropathies of varying severity. Comparisons between the human and rat isoforms, whose three-dimensional structure has been determined by X-ray crystallography, suggest that these disease-associated genetic alterations lead to structural changes in the protein that alter P0-P0 interactions and hence affect myelin functionality. Knowing the crystal structures of native and altered human P0 isoforms could help to elucidate the structural changes in myelin membrane packing that underlie the altered functionality. Alterations of P0 extracellular domain (P0-ED) are of additional interest as previous X-ray diffraction studies on myelin membrane packing suggest that P0-ED molecules can assume distinct adhesive arrangements. Here, we describe an improved method to express and purify human P0-ED (hP0-ED) suitable for crystallographic analysis. A fusion protein consisting of maltose binding protein fused to hP0-ED was secreted to the periplasm of Escherichia coli to allow an appropriate folding pathway. The fusion protein was extracted via osmotic shock and purified by affinity chromatography. Factor Xa was used to cleave the fusion protein, and a combination of affinity and ion-exchange chromatography was used to further purify hP0-ED. We document several significant improvements to previous protocols, including bacterial growth to approximately 15 OD using orbital shakers and the use of diafiltration, which result in yields of approximately 150 mg highly pure protein per liter of medium.

  1. A NAC domain protein family contributing to the regulation of wood formation in poplar.

    PubMed

    Ohtani, Misato; Nishikubo, Nobuyuki; Xu, Bo; Yamaguchi, Masatoshi; Mitsuda, Nobutaka; Goué, Nadia; Shi, Fusun; Ohme-Takagi, Masaru; Demura, Taku

    2011-08-01

    Wood harvested from trees is one of the most widely utilized natural materials on our planet. Recent environmental issues have prompted an increase in the demand for wood, especially as a cost-effective and renewable resource for industry and energy, so it is important to understand the process of wood formation. In the present study, we focused on poplar (Populus trichocarpa) NAC domain protein genes which are homologous to well-known Arabidopsis transcription factors regulating the differentiation of xylem vessels and fiber cells. From phylogenetic analysis, we isolated 16 poplar NAC domain protein genes, and named them PtVNS (VND-, NST/SND- and SMB-related proteins) genes. Expression analysis revealed that 12 PtVNS (also called PtrWND) genes including both VND and NST groups were expressed in developing xylem tissue and phloem fiber, whereas in primary xylem vessels, only PtVNS/PtrWND genes of the VND group were expressed. By using the post-translational induction system of Arabidopsis VND7, a master regulator of xylem vessel element differentiation, many poplar genes functioning in xylem vessel differentiation downstream from NAC domain protein genes were identified. Transient expression assays showed the variation in PtVNS/PtrWND transactivation activity toward downstream genes, even between duplicate gene pairs. Furthermore, overexpression of PtVNS/PtrWND genes induced ectopic secondary wall thickening in poplar leaves as well as in Arabidopsis seedlings with different levels of induction efficiency according to the gene. These results suggest that wood formation in poplar is regulated by cooperative functions of the NAC domain proteins.

  2. Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli

    PubMed Central

    2004-01-01

    The monomeric D-glucose/D-galactose-binding protein (GGBP) from Escherichia coli (Mr 33000) is a periplasmic protein that serves as a high-affinity receptor for the active transport and chemotaxis towards both sugars. The effect of D-glucose binding on the thermal unfolding of the GGBP protein at pH 7.0 has been measured by differential scanning calorimetry (DSC), far-UV CD and intrinsic tryptophanyl residue fluorescence (Trp fluorescence). All three techniques reveal reversible, thermal transitions and a midpoint temperature (Tm) increase from 50 to 63 °C produced by 10 mM D-glucose. Both in the absence and presence of D-glucose a single asymmetric endotherm for GGBP is observed in DSC, although each endotherm consists of two transitions about 4 °C apart in Tm values. In the absence of D-glucose, the protein unfolding is best described by two non-ideal transitions, suggesting the presence of unfolding intermediates. In the presence of D-glucose protein, unfolding is more co-operative than in the absence of the ligand, and the experimental data are best fitted to a model that assumes two ideal (two-state) sequential transitions. Thus D-glucose binding changes the character of the GGBP protein folding/unfolding by linking the two domains such that protein unfolding becomes a cooperative, two two-state process. A KA′ value of 5.6×106 M−1 at 63 °C for D-glucose binding is estimated from DSC results. The domain with the lower stability in DSC measurements has been identified as the C-terminal domain of GGBP from thermally induced Trp fluorescence changes. PMID:15032747

  3. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain

    PubMed Central

    Proudfoot, Michael; Sanders, Stephen A.; Singer, Alex; Zhang, Rongguang; Brown, Greg; Binkowski, Andrew; Xu, Linda; Lukin, Jonathan A.; Murzin, Alexey G.; Joachimiak, Andrzej; Arrowsmith, Cheryl H.; Edwards, Aled M.; Savchenko, Alexei V.; Yakunin, Alexander F.

    2008-01-01

    We have identified a novel family of proteins, in which the N-terminal Cystathionine Beta-Synthase (CBS) domain is fused to the C-terminal Zn ribbon domain. Four proteins were over-expressed in E. coli and purified: TA0289 from Thermoplasma acidophilum, TV1335 from Thermoplasma vulcanum, PF1953 from Pyrococcus furiosus, and PH0267 from Pyrococcus horikoshii. The purified proteins had red/purple color in solution and an absorption spectrum typical of rubredoxins. Metal analysis of purified proteins revealed the presence of several metals with iron and zinc being the most abundant metals (2 to 67% of iron and 12 to 74% of zinc). Crystal structures of both mercury- and iron-bound TA0289 (1.5–2.0 Å resolution) revealed a dimeric protein whose inter-subunit contacts are formed exclusively by the α helices of two CBS sub-domains, whereas the C-terminal domain has a classical Zn-ribbon planar architecture. All proteins were reversibly reduced by chemical reductants (ascorbate or dithionite) or by the general rubredoxin reductase NorW from E. coli in the presence of NADH. Reduced TA0289 was found to be able to transfer electrons to cytochrome C from horse heart. Likewise, the purified Zn ribbon protein KTI11 from Saccharomyces cerevisiae had purple color in solution and a rubredoxin-like absorption spectrum, contained both iron and zinc, and was reduced by the rubredoxin reductase NorW from E. coli. Thus, recombinant Zn ribbon domains from archaea and yeast demonstrate a rubredoxin-like electron carrier activity in vitro. We suggest that in vivo some Zn ribbon domains might also bind iron and therefore possess an electron carrier activity adding another physiological role to this large family of important proteins. PMID:18021800

  4. Removal of the BH4 Domain from Bcl-2 Protein Triggers an Autophagic Process that Impairs Tumor Growth12

    PubMed Central

    Trisciuoglio, Daniela; De Luca, Teresa; Desideri, Marianna; Passeri, Daniela; Gabellini, Chiara; Scarpino, Stefania; Liang, Chengyu; Orlandi, Augusto; Del Bufalo, Donatella

    2013-01-01

    Here, we show that forced expression of a B-cell lymphoma 2 (bcl-2) protein lacking residues 1 to 36 at the N-terminal, including the entire Bcl-2 homology 4 (BH4) domain, determines reduction of in vitro and in vivo human melanoma growth. Noteworthy, melanoma cells in vivo exhibit markedly increased autophagy, as response to expression of bcl-2 protein deleted of its BH4 domain. This observation led to the identification of a novel gain of function for bcl-2 protein lacking the BH4 domain. In particular, upon different autophagic stimuli in vitro, overexpression of bcl-2 protein deleted of BH4 domain induces autophagosome accumulation, conversion of microtubule-associated protein 1 light chain 3B-II, reduced expression of p62/SQSTM1 protein, and thereby enhanced autophagic flux. The relevance of Beclin-1 is evidenced by the fact that 1) the autophagy-promoting and growth-inhibiting properties are partially rescued by Beclin-1 knockdown in cells expressing bcl-2 protein lacking the BH4 domain, 2) Beclin-1 only interacts with wild-type but not with deleted bcl-2, and 3) BH4 domain removal from bcl-2 protein does not influence in vitro and in vivo growth of tumor cells expressing low levels of endogenous Beclin-1. These results provide new insight into molecular mechanism of bcl-2 functions and represent a rationale for the development of agents interfering with the BH4 domain of bcl-2 protein. PMID:23479509

  5. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history.

    PubMed

    Fukami-Kobayashi, K; Tateno, Y; Nishikawa, K

    1999-02-12

    Periplasmic binding proteins (PBPs) serve as receptors for various water-soluble ligands in ATP-binding cassette (ABC) transport systems, and form one of the largest protein families in eubacterial and archaebacterial genomes. They are considered to be derived from a common ancestor, judging from their similarities of three-dimensional structure, their mechanism of ligand binding and the operon structure of their genes. Nevertheless, there are two types of topological arrangements of the central beta-sheets in their core structures. It follows that there must have been differentiation in the core structure, which we call "domain dislocation", in the course of evolution of the PBP family. To find a clue as to when the domain dislocation occurred, we constructed phylogenetic trees for PBPs based on their amino acid sequences and three-dimensional structures, respectively. The trees show that the proteins of each type clearly cluster together, strongly indicating that the change in the core structure occurred only once in the evolution of PBPs. We also constructed a phylogenetic tree for the ABC proteins that are encoded by the same operon of their partner PBP, and obtained the same result. Based on the phylogenetic relationship and comparison of the topological arrangements of PBPs, we obtained a reasonable genealogical chart of structural changes in the PBP family. The present analysis shows that the unidirectional change of protein evolution is clearly deduced at the level of protein three-dimensional structure rather than the level of amino acid sequence.

  6. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein.

    PubMed Central

    Ge, A Z; Shivarova, N I; Dean, D H

    1989-01-01

    Bacillus thuringiensis produces different types of insecticidal crystal proteins (ICPs) or delta-endotoxins. In an effort to identify the insect specificity of ICP toxins, two icp genes were cloned into the Escherichia coli expression vector pKK223-3, and bioassays were performed with purified crystals. The type A protein [from an icpA1, or 4.5-kilobase (kb) gene, from B. thuringiensis var. kurstaki HD-1] was found to be 400 times more active against Bombyx mori than type C protein (from an icpC73, or 6.6-kb gene, from B. thuringiensis var. kurstaki HD-244). The type C protein was 9 times more active against Trichoplusia ni than the type A protein, while both have similar activity against Manduca sexta. To locate the specificity domain of the type A protein for B. mori, site-directed mutagenesis was used to introduce or remove restriction enzyme sites, facilitating the exchange of regions of the two genes. The hybrid genes were overexpressed, and purified ICP was used in bioassays. The B. mori specificity domain for the ICP A toxin is located in the amino-terminal portion of the hypervariable region between amino acids 332 and 450. PMID:2542961

  7. NS3 Protease from Hepatitis C Virus: Biophysical Studies on an Intrinsically Disordered Protein Domain

    PubMed Central

    Vega, Sonia; Neira, Jose L.; Marcuello, Carlos; Lostao, Anabel; Abian, Olga; Velazquez-Campoy, Adrian

    2013-01-01

    The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the structural integrity of the protein. In addition, NS3 interacts with another cofactor, NS4A, an accessory viral protein that induces a conformational change enhancing the hydrolytic activity. Biophysical studies on the isolated protease domain, whose behavior is similar to that of the full-length protein (e.g., catalytic activity, allosteric mechanism and susceptibility to inhibitors), suggest that a considerable global conformational change in the protein is coupled to zinc binding. Zinc binding to NS3 protease can be considered as a folding event, an extreme case of induced-fit binding. Therefore, NS3 protease is an intrinsically (partially) disordered protein with a complex conformational landscape due to its inherent plasticity and to the interaction with its different effectors. Here we summarize the results from a detailed biophysical characterization of this enzyme and present new experimental data. PMID:23803659

  8. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles

    PubMed Central

    Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason

    2016-01-01

    Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636

  9. Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling?

    PubMed

    Liu, Mingyi; Grigoriev, Andrei

    2004-09-01

    We conducted a multi-genome analysis correlating protein domain organization with the exon-intron structure of genes in nine eukaryotic genomes. We observed a significant correlation between the borders of exons and domains on a genomic scale for both invertebrates and vertebrates. In addition, we found that the more complex organisms displayed consistently stronger exon-domain correlation, with substantially more significant correlations detected in vertebrates compared with invertebrates. Our observations concur with the principles of exon shuffling theory, including the prediction of predominantly symmetric phase of introns flanking the borders of correlating exons. These results suggest that extensive exon shuffling events during evolution significantly contributed to the shaping of eukaryotic proteomes.

  10. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the TIR domain from the Brucella melitensis TIR-domain-containing protein TcpB.

    PubMed

    Alaidarous, Mohammed; Ve, Thomas; Ullah, M Obayed; Valkov, Eugene; Mansell, Ashley; Schembri, Mark A; Sweet, Matthew J; Kobe, Bostjan

    2013-10-01

    In mammals, Toll-like receptors (TLRs) recognize conserved microbial molecular signatures and induce an early innate immune response in the host. TLR signalling is mediated by interactions between the cytosolic TIR (Toll/interleukin-1 receptor) domains of the receptor and the adaptor proteins. Increasingly, it is apparent that pathogens target this interaction via pathogen-expressed TIR-domain-containing proteins to modulate immune responses. A TIR-domain-containing protein TcpB has been reported in the pathogenic bacterium Brucella melitensis. Studies have shown that TcpB interferes with the TLR2 and TLR4 signalling pathways to inhibit TLR-mediated inflammatory responses. Such interference may involve TIR-TIR-domain interactions between bacterial and mammalian proteins, but there is a lack of information about these interactions at the molecular level. In this study, the cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the protein construct corresponding to the TIR domain of TcpB (residues 120-250) are reported. The crystals diffracted to 2.6 Å resolution, have the symmetry of the monoclinic space group P2₁ and are most likely to contain four molecules in the asymmetric unit. The structure should help in understanding the molecular basis of how TcpB affects the innate immunity of the host.

  11. The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation.

    PubMed

    Gao, Xue-Chao; Zhou, Chen-Jie; Zhou, Zi-Ren; Wu, Meng; Cao, Chun-Yang; Hu, Hong-Yu

    2012-02-17

    The J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70. Our in vitro study corroborates that the N terminus of HSP70 including the ATPase domain and the substrate-binding β-subdomain is not sufficient to bind with the J domain of HSJ1a. The C-terminal helical α-subdomain of HSP70, which was considered to function as a lid of the substrate-binding domain, is crucial for binding with the J domain of HSJ1a and stimulating the ATPase activity of HSP70. These fluctuating helices are likely to contribute to a proper conformation of HSP70 for J-domain binding other than directly bind with the J domain. Our findings provide an alternative mechanism of allosteric activation for functional regulation of HSP70 by its J-domain co-chaperones.

  12. VH3 family antibodies bind domain D of staphylococcal protein A.

    PubMed

    Roben, P W; Salem, A N; Silverman, G J

    1995-06-15

    Staphylococcal protein A (SpA) is a 45-kDa bacterial membrane protein that can interact with either Fc gamma, a constant region portion of IgG, or with the Fab portion that also mediates conventional Ag binding. In recent reports, SpA has been shown to specifically interact with Fab derived from the VH3 family and is little affected by VH CDR3, JH, or light chain usage. To identify a site on SpA responsible for VH3 Fab binding, we cloned and expressed in Escherichia coli the 61 amino acid sequence of SpA that represents domain D, and this small protein exhibited both the VH3 Fab and Fc gamma binding specificities. Surface plasmon resonance measurements demonstrated that domain D and native SpA had the strongest binding interactions with an IgM-kappa encoded by the germline configuration of the VH3 gene VH26c. In contrast, the apparent affinities for Fc gamma binding were at least fivefold weaker. A variant of domain D was also created that is devoid of the three-codon insertion that distinguishes domain D from all other domains in SpA. Although this deletion did not significantly affect the VH3 Fab-mediated SpA binding activity, it did improve the affinity of Fc gamma binding by an order of magnitude. These observations characterize a site on SpA responsible for binding interactions with B cell Ag receptors that are highly analogous to that of superantigens for T cell receptors.

  13. A freestanding proofreading domain is required for protein synthesis quality control in Archaea.

    PubMed

    Korencic, Dragana; Ahel, Ivan; Schelert, James; Sacher, Meik; Ruan, Benfang; Stathopoulos, Constantinos; Blum, Paul; Ibba, Michael; Söll, Dieter

    2004-07-13

    Threonyl-tRNA synthetase (ThrRS) participates in protein synthesis quality control by selectively editing the misacylated species Ser-tRNA(Thr). In bacteria and eukaryotes the editing function of ThrRS resides in a highly conserved N-terminal domain distant from the active site. Most archaeal ThrRS proteins are devoid of this editing domain, suggesting evolutionary divergence of quality-control mechanisms. Here we show that archaeal editing of Ser-tRNAThr is catalyzed by a domain unrelated to, and absent from, bacterial and eukaryotic ThrRSs. Despite the lack of sequence homology, the archaeal and bacterial editing domains are both reliant on a pair of essential histidine residues suggestive of a common catalytic mechanism. Whereas the archaeal editing module is most commonly part of full-length ThrRS, several crenarchaeal species contain individual genes encoding the catalytic (ThrRS-cat) and editing domains (ThrRS-ed). Sulfolobus solfataricus ThrRS-cat was shown to synthesize both Thr-tRNAThr and Ser-tRNAThr and to lack editing activity against Ser-tRNAThr. In contrast, ThrRS-ed lacks aminoacylation activity but can act as an autonomous protein in trans to hydrolyze specifically Ser-tRNAThr, or it can be fused to ThrRS-cat to provide the same function in cis. Deletion analyses indicate that ThrRS-ed is dispensable for growth of S. solfataricus under standard conditions but is required for normal growth in media with elevated serine levels. The growth phenotype of the ThrRS-ed deletion strain suggests that retention of the discontinuous ThrRS quaternary structure relates to specific physiological requirements still evident in certain Archaea.

  14. Measuring interactions of FERM domain-containing sorting Nexin proteins with endosomal lipids and cargo molecules.

    PubMed

    Ghai, Rajesh; Mobli, Mehdi; Collins, Brett M

    2014-01-01

    Endosomal recycling pathways regulate cellular homeostasis via the transport of internalized material back to the plasma membrane. Phox homology (PX) and band 4.1/ezrin/radixin/moesin (FERM) domain-containing proteins are a recently identified subfamily of PX proteins that are critical for the recycling of numerous transmembrane cargo molecules. The PX-FERM subfamily includes three endosome-associated proteins called sorting nexin (SNX) 17, SNX27, and SNX31. These are modular peripheral membrane proteins that act as central scaffolds mediating protein-lipid interactions, cargo binding, and regulatory protein recruitment. This chapter outlines the methodology employed to classify the PX-FERM family using combined bioinformatics and structure prediction tools. It further details the application of isothermal titration calorimetry and nuclear magnetic resonance spectroscopy to understand the mechanisms that underpin their endosomal membrane recruitment and subsequent recognition of NPxY/NxxY peptide sorting motifs, present in many cargo receptors and required for their trafficking. It is now increasingly recognized that the formation of a stable trafficking complex is dictated by a multitude of coordinated protein-protein and protein-lipid interactions, and the approaches highlighted here will be useful for future studies aimed at understanding these biomolecular interactions in greater detail.

  15. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins.

    PubMed

    Chum, Tomáš; Glatzová, Daniela; Kvíčalová, Zuzana; Malínský, Jan; Brdička, Tomáš; Cebecauer, Marek

    2016-01-01

    Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.

  16. Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.

    PubMed

    Brackley, Chris A; Liebchen, Benno; Michieletto, Davide; Mouvet, Francois; Cook, Peter R; Marenduzzo, Davide

    2017-03-28

    Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear bodies exchange rapidly with the soluble pool while the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins able to switch between an "on" (binding) and an "off" (nonbinding) state. This system provides a model for any DNA-binding protein that can be posttranslationally modified to change its affinity for DNA (e.g., through phosphorylation). Protein switching is a nonequilibrium process, and it leads to the formation of clusters of self-limiting size, where individual proteins in a cluster exchange with the soluble pool with kinetics similar to those seen in photobleaching experiments. This behavior contrasts sharply with that exhibited by nonswitching proteins, which are permanently in the on-state; when these bind to DNA nonspecifically, they form clusters that grow indefinitely in size. To explain these findings, we propose a mean-field theory from which we obtain a scaling relation between the typical cluster size and the protein switching rate. Protein switching also reshapes intrachromatin contacts to give networks resembling those seen in topologically associating domains, as switching markedly favors local (short-range) contacts over distant ones. Our results point to posttranslational modification of chromatin-bridging proteins as a generic mechanism driving the self-assembly of highly dynamic, nonequilibrium, protein clusters with the properties of nuclear bodies.

  17. Dissecting the Role of E2 Protein Domains in Alphavirus Pathogenicity

    PubMed Central

    Weger-Lucarelli, James; Aliota, Matthew T.; Wlodarchak, Nathan; Kamlangdee, Attapon; Swanson, Ryan

    2015-01-01

    ABSTRACT Alphaviruses represent a diverse set of arboviruses, many of which are important pathogens. Chikungunya virus (CHIKV), an arthritis-inducing alphavirus, is the cause of a massive ongoing outbreak in the Caribbean and South America. In contrast to CHIKV, other related alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and Semliki Forest virus (SFV), can cause encephalitic disease. E2, the receptor binding protein, has been implicated as a determinant in cell tropism, host range, pathogenicity, and immunogenicity. Previous reports also have demonstrated that E2 contains residues important for host range expansions and monoclonal antibody binding; however, little is known about what role each protein domain (e.g., A, B, and C) of E2 plays on these factors. Therefore, we constructed chimeric cDNA clones between CHIKV and VEEV or SFV to probe the effect of each domain on pathogenicity in vitro and in vivo. CHIKV chimeras containing each of the domains of the E2 (ΔDomA, ΔDomB, and ΔDomC) from SFV, but not VEEV, were successfully rescued. Interestingly, while all chimeric viruses were attenuated compared to CHIKV in mice, ΔDomB virus showed similar rates of infection and dissemination in Aedes aegypti mosquitoes, suggesting differing roles for the E2 protein in different hosts. In contrast to CHIKV; ΔDomB, and to a lesser extent ΔDomA, caused neuron degeneration and demyelination in mice infected intracranially, suggesting a shift toward a phenotype similar to SFV. Thus, chimeric CHIKV/SFV provide insights on the role the alphavirus E2 protein plays on pathogenesis. IMPORTANCE Chikungunya virus (CHIKV) has caused large outbreaks of acute and chronic arthritis throughout Africa and Southeast Asia and has now become a massive public health threat in the Americas, causing an estimated 1.2 million human cases in just over a year. No approved vaccines or antivirals exist for human use against CHIKV or any other alphavirus. Despite the threat

  18. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    SciTech Connect

    Wilbur, Jeremy D.; Hwang, Peter K.; Brodsky, Frances M.; Fletterick, Robert J.

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  19. Ring-like oligomers of Synaptotagmins and related C2 domain proteins

    PubMed Central

    Zanetti, Maria N; Bello, Oscar D; Wang, Jing; Coleman, Jeff; Cai, Yiying; Sindelar, Charles V; Rothman, James E; Krishnakumar, Shyam S

    2016-01-01

    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca2+-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca2+ involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca2+ influx. DOI: http://dx.doi.org/10.7554/eLife.17262.001 PMID:27434670

  20. A survey of schistosome protein domain types: insights into unique biological properties

    PubMed Central

    Hughes, Austin L.; Friedman, Robert

    2012-01-01

    Using the PROSITE database and search tools, we conducted a comprehensive bioinformatic analysis of the predicted protein sequences of the flatworm parasites Schistosoma mansoni and S. japonicum and seven other animal genomes in order to identify novel schistosome-specific features. Our analyses revealed a relative paucity of proline-rich domains in schistosomes in comparison with their human host and a corresponding enrichment in schistosomes of asparagine-rich, serine-rich, and threonine-rich domains. Domain types found in both schistosome species but not in human included the two-component system sensor histidine kinase/response regulator; C83 family peptidase; DyP-type peroxidase; and densovirus NS1-type domain. Unique features of the schistosome proteome may help guide development of new drugs, while the presence of a densovirus-derived protein in S. mansoni suggests that this species may be infected by a virus of this group, which might be useful as a biological control agent. PMID:21315771

  1. Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains.

    PubMed Central

    Stenberg, R M; Fortney, J; Barlow, S W; Magrane, B P; Nelson, J A; Ghazal, P

    1990-01-01

    trans activation of promoters by viral regulatory proteins provides a useful tool to study coordinate control of gene expression. Immediate-early (IE) regions 1 and 2 of human cytomegalovirus (CMV) code for a series of proteins that originate from differentially spliced mRNAs. These IE proteins are proposed to regulate the temporal expression of the viral genome. To examine the structure and function of the IE proteins, we used linker insertion mutagenesis of the IE gene region as well as cDNA expression vector cloning of the abundant IE mRNAs. We showed that IE1 and IE2 proteins of CMV exhibit promoter-specific differences in their modes of action by either trans activating early and IE promoters or repressing the major IE promoter (MIEP). Transient cotransfection experiments with permissive human cells revealed a synergistic interaction between the 72- and the 86-kilodalton (kDa) IE proteins in trans activating an early promoter. In addition, transfection studies revealed that the 72-kDa protein was capable of trans activating the MIEP. In contrast, the 86-kDa protein specifically repressed the MIEP and this repression was suppressed by the 72-kDa protein. Furthermore, observations based on the primary sequence structure revealed a modular arrangement of putative regulatory motifs that could either potentiate or repress gene expression. These modular domains are either shared or unique among the IE proteins. From these data, we propose a model for IE protein function in the coordinate control of CMV gene expression. Images PMID:2157043

  2. SSDP1 gene encodes a protein with a conserved N-terminal FORWARD domain.

    PubMed

    Bayarsaihan, Dashzeveg

    2002-09-23

    I describe the characterization of mouse, human and chicken SSDP1 orthologs that encode a highly conserved protein with over 90% identity at the amino acid level. Structurally, the protein consists of a well-preserved FWD (FORWARD)-domain at the N-terminal end and a proline-, glycine-, methionine- and serine-rich sequence in the central and C-terminal regions. The FORWARD domain, comprised of three alpha-helices, is characterized by the presence of a FWD-box of unknown function conserved not only in vertebrates, but also in nematode, plants, fly and yeast. Human SSDP1 spans about 200 kb on the chromosome 1p31-p32 region and consists of 17 exons. The SSDP1 mRNA transcripts are distributed ubiquitously in adult human and mouse tissues.

  3. A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands

    PubMed Central

    Giallourakis, Cosmas; Cao, Zhifang; Green, Todd; Wachtel, Heather; Xie, Xiaohui; Lopez-Illasaca, Marco; Daly, Mark; Rioux, John; Xavier, Ramnik

    2006-01-01

    PDZ domain-containing proteins and their interaction partners are mutated in numerous human diseases and function in complexes regulating epithelial polarity, ion channels, cochlear hair cell development, vesicular sorting, and neuronal synaptic communication. Among several properties of a collection of documented PDZ domain–ligand interactions, we discovered embedded in a large-scale expression data set the existence of a significant level of co-regulation between PDZ domain-encoding genes and these ligands. From this observation, we show how integration of expression data, a comparative genomics catalog of 899 mammalian genes with conserved PDZ-binding motifs, phylogenetic analysis, and literature mining can be utilized to infer PDZ complexes. Using molecular studies we map novel interaction partners for the PDZ proteins DLG1 and CARD11. These results provide insight into the diverse roles of PDZ–ligand complexes in cellular signaling and provide a computational framework for the genome-wide evaluation of PDZ complexes. PMID:16825666

  4. The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening.

    PubMed

    Schwarze, Simone; Zwettler, Fabian U; Johnson, Christopher M; Neuweiler, Hannes

    2013-01-01

    Web spiders assemble spidroin monomers into silk fibres of unrivalled tensile strength at remarkably high spinning speeds of up to 1 m s(-1). The spidroin N-terminal domain contains a charge-driven, pH-sensitive relay that controls self-association by an elusive mechanism. The underlying kinetics have not yet been reported. Here we engineer a fluorescence switch into the isolated N-terminal domain from spidroin 1 of the major ampullate gland of the nursery web spider E. australis that monitors dimerization. We observe ultrafast association that is surprisingly insensitive to salt, contrasting the classical screening effects in accelerated, charged protein interfaces. To gain deeper mechanistic insight, we mutate each of the protonatable residue side chains and probe their contributions. Two vicinal aspartic acids are critically involved in an unusual process of accelerated protein association that is protected from screening by electrolytes, potentially facilitating the rapid synthesis of silk fibres by web spiders.

  5. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  6. Identification and transcriptional control of Caulobacter crescentus genes encoding proteins containing a cold shock domain.

    PubMed

    Lang, Elza A S; Marques, Marilis V

    2004-09-01

    The cold shock proteins are small peptides that share a conserved domain, called the cold shock domain (CSD), that is important for nucleic acid binding. The Caulobacter crescentus genome has four csp genes that encode proteins containing CSDs. Three of these (cspA, cspB, and cspC) encode peptides of about 7 kDa and are very similar to the cold shock proteins of other bacteria. Analysis by reverse transcription-PCR of the fourth gene (cspD), which was previously annotated as encoding a 7-kDa protein, revealed that the mRNA is larger and probably encodes a putative 21-kDa protein, containing two CSDs. A search in protein sequences databases revealed that this new domain arrangement has thus far only been found among deduced peptides of alpha-proteobacteria. Expression of each Caulobacter csp gene was studied both in response to cold shock and to growth phase, and we have found that only cspA and cspB are induced by cold shock, whereas cspC and cspD are induced at stationary phase, with different induction rates. The transcription start sites were determined for each gene, and a deletion mapping of the cspD promoter region defined a sequence required for maximal levels of expression, indicating that regulation of this gene occurs at the transcriptional level. Deletion of cspA, but not cspD, caused a reduction in viability when cells were incubated at 10 degrees C for prolonged times, suggesting that cspA is important for adaptation to a low temperature.

  7. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.

    PubMed

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.

  8. The HhH domain of the human DNA repair protein XPF forms stable homodimers.

    PubMed

    Das, Devashish; Tripsianes, Konstantinos; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2008-03-01

    The human XPF-ERCC1 protein complex plays an essential role in nucleotide excision repair by catalysing positioned nicking of a DNA strand at the 5' side of the damage. We have recently solved the structure of the heterodimeric complex of the C-terminal domains of XPF and ERCC1 (Tripsianes et al., Structure 2005;13:1849-1858). We found that this complex comprises a pseudo twofold symmetry axis and that the helix-hairpin-helix motif of ERCC1 is required for DNA binding, whereas the corresponding domain of XPF is functioning as a scaffold for complex formation with ERCC1. Despite the functional importance of heterodimerization, the C-terminal domain of XPF can also form homodimers in vitro. We here compare the stabilities of homodimeric and heterodimeric complexes of the C-terminal domains of XPF and ERCC1. The higher stability of the XPF HhH complexes under various experimental conditions, determined using CD and NMR spectroscopy and mass spectrometry, is well explained by the structural differences that exist between the HhH domains of the two complexes. The XPF HhH homodimer has a larger interaction interface, aromatic stacking interactions, and additional hydrogen bond contacts as compared to the XPF/ERCC1 HhH complex, which accounts for its higher stability.

  9. Engineered domain based assays to identify individual antibodies in oligoclonal combinations targeting the same protein

    PubMed Central

    Meng, Q.; Garcia-Rodriguez, C.; Manzanarez, G.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; Pan, X.; Breece, T.; To, R.; Li, M.; Lee, D.; Thorner, L.; Tomic, M.T.; Marks, J.D.

    2014-01-01

    Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins (XOMA 3B and XOMA 3E) each consisting of three monoclonal antibodies (mAbs) that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (HN). Epitope mapping data was used to design LC-HN domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or 3E. Mutant LC-HN domains were cloned, expressed, and purified from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of ELISAs that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B, and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. PMID:22922799

  10. Miniature protein ligands for EVH1 domains: Interplay between affinity, specificity, and cell motility⊥

    PubMed Central

    Holtzman, Jennifer H.; Woronowicz, Kamil; Golemi-Kotra, Dasantila; Schepartz, Alanna

    2008-01-01

    Dynamic rearrangements of the actin cytoskeleton power cell motility in contexts ranging from intracellular microbial pathogenesis to axon guidance. The Ena/VASP family proteins--Mena, VASP, and Evl--are believed to control cell motility by serving as a direct link between signaling events and the actin cytoskeleton. Our lab has previously reported a novel miniature protein, pGolemi, which binds with high affinity to the EVH1 domain of Mena (Mena1-112) but not to those of VASP (VASP1-115) or Evl (Evl1-115) and also causes an unusual defect in actin-driven L. monocytogenes motility. Here, we use scanning mutagenesis to examine the effects of single amino acid changes within pGolemi on EVH1 domain affinity and specificity, miniature protein secondary structure, and L. monocytogenes motility. The data suggest that pGolemi contains the expected aPP-like fold and binds Mena1-112 in a manner highly analogous to the proline-rich repeat region of L. monocytogenes ActA protein. Residues throughout pGolemi contribute to both EVH1 domain affinity and paralog specificity. Moreover, the affinities of pGolemi variants for Mena1-112 correlate with selectivity against the EVH1 domains of VASP and Evl. In L. monocytogenes motility assays, speed and speed variability correlate strongly with EVH1 paralog specificity, suggesting that the Ena/VASP paralogs do not play equivalent roles in the process of L. monocytogenes actin tail maturation. PMID:17973491

  11. Structure of the N-terminal domain of the protein Expansion: an 'Expansion' to the Smad MH2 fold.

    PubMed

    Beich-Frandsen, Mads; Aragón, Eric; Llimargas, Marta; Benach, Jordi; Riera, Antoni; Pous, Joan; Macias, Maria J

    2015-04-01

    Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.

  12. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay.

    PubMed

    Joo, Chulmin; Ozkumur, Emre; Unlü, M Selim; Boer, Johannes F de

    2009-10-15

    Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning quantitative imaging method, referred to as spectral-domain optical coherence phase microscopy, as an optical platform for label-free detection of biomolecular interactions. The instrument is based on a confocal interferometric microscope that enables depth-resolved quantitative phase measurements on sensor surface with high spatial resolution and phase stability. We demonstrate picogram per square millimeter surface mass sensitivity, and show its sensing capability by presenting static and dynamic detection of multiplexed protein microarray as immobilized antigens capture their corresponding antibodies.

  13. From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins.

    PubMed

    Harami, Gábor M; Gyimesi, Máté; Kovács, Mihály

    2013-07-01

    The winged helix domain (WHD) is a widespread nucleic-acid-binding protein structural element found in all kingdoms of life. Although the overall structure of the WHD is conserved, its functional properties and interaction profiles are extremely versatile. WHD-containing proteins can exploit nearly the full spectrum of nucleic acid structural features for recognition and even covalent modification or noncovalent rearrangement of target molecules. WHD functions range from sequence-recognizing keys in transcription factors and bulldozer-like strand-separating wedges in helicases to mediators of protein-protein interactions (PPIs). Further investigations are needed to understand the contribution of WHD structural dynamics to nucleic-acid-modifying enzymatic functions.

  14. Domain-Opening and Dynamic Coupling in the α-Subunit of Heterotrimeric G Proteins

    PubMed Central

    Yao, Xin-Qiu; Grant, Barry J.

    2013-01-01

    Heterotrimeric G proteins are conformational switches that turn on intracellular signaling cascades in response to the activation of G-protein-coupled receptors. Receptor activation by extracellular stimuli promotes a cycle of GTP binding and hydrolysis on the G protein α-subunit (Gα). Important conformational transitions occurring during this cycle have been characterized from extensive crystallographic studies of Gα. However, the link between the observed conformations and the mechanisms involved in G-protein activation and effector interaction remain unclear. Here we describe a comprehensive principal component analysis of available Gα crystallographic structures supplemented with extensive unbiased conventional and accelerated molecular dynamics simulations that together characterize the response of Gα to GTP binding and hydrolysis. Our studies reveal details of activating conformational changes as well as the intrinsic flexibility of the α-helical domain that includes a large-scale 60° domain opening under nucleotide-free conditions. This result is consistent with the recently reported open crystal structure of Gs, the stimulatory G protein for adenylyl cyclase, in complex with the α2 adrenergic receptor. Sets of unique interactions potentially important for the conformational transition are also identified. Moreover simulations reveal nucleotide-dependent dynamical couplings of distal regions and residues potentially important for the allosteric link between functional sites. PMID:23870276

  15. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    SciTech Connect

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  16. Properties of natural and artificial proteins displaying multiple ubiquitin-binding domains.

    PubMed

    Lopitz-Otsoa, Fernando; Rodríguez, Manuel S; Aillet, Fabienne

    2010-02-01

    Ubiquitylation provides a rapid alternative to control the activity of crucial cellular factors through the remodelling of a target protein. Diverse ubiquitin chains are recognized by domains with affinity for UBDs (ubiquitin-binding domains) present in receptor/effector proteins. Interestingly, some proteins contain more than one UBD and the preservation of this structure in many species suggests an evolutionary advantage for this topology. Here, we review some typical proteins that naturally contain more than one UBD and emphasize how such structures contribute to the mechanism they mediate. Characteristics such as higher affinities for polyubiquitin chains and chain-linkage preferences can be replicated by the TUBEs (tandem ubiquitin-binding entities). Furthermore, TUBEs show two additional properties: protection of ubiquitylated substrates from deubiquitylating enzymes and interference with the action of the proteasome. Consequently, TUBEs behave as 'ubiquitin traps' that efficiently capture endogenous ubiquitylated proteins. Interpretations and hypothetical models proposed by different groups to understand the synchronous action of multiple UBDs are discussed herein.

  17. RNA-binding proteins with prion-like domains in ALS and FTLD-U.

    PubMed

    Gitler, Aaron D; Shorter, James

    2011-01-01

    Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.

  18. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

    PubMed Central

    Brunati, Martina; Perucca, Simone; Han, Ling; Cattaneo, Angela; Consolato, Francesco; Andolfo, Annapaola; Schaeffer, Céline; Olinger, Eric; Peng, Jianhao; Santambrogio, Sara; Perrier, Romain; Li, Shuo; Bokhove, Marcel; Bachi, Angela; Hummler, Edith; Devuyst, Olivier; Wu, Qingyu; Jovine, Luca; Rampoldi, Luca

    2015-01-01

    Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI: http://dx.doi.org/10.7554/eLife.08887.001 PMID:26673890

  19. Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1.

    PubMed

    Mizutani, Akifumi; Wang, Lei; Rajan, Harini; Vig, Parminder J S; Alaynick, William A; Thaler, Joshua P; Tsai, Chih-Cheng

    2005-09-21

    Ataxin-1 is a neurodegenerative disorder protein whose glutamine-repeat expanded form causes spinocerebellar ataxia type 1 (SCA1) in humans and exerts cytotoxicity in Drosophila and mouse. We report here that the cytotoxicity caused by ataxin-1 is modulated by association with a related protein, Brother of ataxin-1 (Boat). Boat and ataxin-1 share a conserved AXH (ataxin-1 and HMG-box protein 1) domain, which is essential for both proteins' interactions with the transcriptional corepressor SMRT and its Drosophila homolog, SMRTER. The Boat-ataxin-1 interaction is mediated through multiple regions in both proteins, including a newly identified NBA (N-terminal region of Boat and ataxin-1) domain. We investigated the physiological relevance of the Boat-ataxin-1 interaction in Drosophila and discovered that a mutant ataxin-1-mediated eye defect is suppressed by ataxin-1's association with Boat. Correspondingly, in transgenic SCA1 mouse, Boat expression is greatly reduced in Purkinje cells, the primary targets of SCA1. Our study thus establishes that Boat is an in vivo binding partner of ataxin-1 whose altered expression in Purkinje cells may contribute to their degeneration in SCA1 animals.

  20. Structure of the RecQ C-terminal domain of human Bloom syndrome protein.

    PubMed

    Kim, Sun-Yong; Hakoshima, Toshio; Kitano, Ken

    2013-11-21

    Bloom syndrome is a rare genetic disorder characterized by genomic instability and cancer predisposition. The disease is caused by mutations of the Bloom syndrome protein (BLM). Here we report the crystal structure of a RecQ C-terminal (RQC) domain from human BLM. The structure reveals three novel features of BLM RQC which distinguish it from the previous structures of the Werner syndrome protein (WRN) and RECQ1. First, BLM RQC lacks an aromatic residue at the tip of the β-wing, a key element of the RecQ-family helicases used for DNA-strand separation. Second, a BLM-specific insertion between the N-terminal helices exhibits a looping-out structure that extends at right angles to the β-wing. Deletion mutagenesis of this insertion interfered with binding to Holliday junction. Third, the C-terminal region of BLM RQC adopts an extended structure running along the domain surface, which may facilitate the spatial positioning of an HRDC domain in the full-length protein.

  1. The Alzheimer's disease-associated gamma-secretase complex: functional domains in the presenilin 1 protein.

    PubMed

    Laudon, Hanna; Winblad, Bengt; Näslund, Jan

    2007-09-10

    Alzheimer's disease is neuropathologically characterized by the presence of neurofibrillary tangles and amyloid plaques in the brain. Amyloid plaques are extracellular deposits primarily composed of the amyloid beta-peptide, which is derived from the amyloid beta-precursor protein (APP) by sequential cleavages at the beta-secretase and gamma-secretase sites. gamma-Secretase cleavage is performed by a high molecular weight protein complex containing presenilin (PS), nicastrin, Aph-1 and Pen-2. The gamma-secretase complex is an unusual transmembrane aspartyl protease that cleaves APP within the transmembrane domain. In addition to APP, a large number of other single membrane-spanning proteins have been shown to be cleaved within their transmembrane domains by the gamma-secretase complex in a process referred to as regulated intramembrane proteolysis. Here we review recent research leading to the identification and understanding of the gamma-secretase complex components with emphasis on PS, which harbors the catalytic site. In addition, we summarize our own work focused on identifying and studying domains in PS1 that are critical for mediating gamma-secretase activity. Biochemical understanding of the gamma-secretase complex is important from a basic biological and physiological point of view, and could help in the development of small molecules that modulate gamma-secretase processing in an APP-specific manner.

  2. Structural Stability of Human Protein Tyrosine Phosphatase ρ Catalytic Domain: Effect of Point Mutations

    PubMed Central

    Knapp, Stefan; Alfano, Ivan; Ardini, Matteo; Stefanini, Simonetta; Chiaraluce, Roberta

    2012-01-01

    Protein tyrosine phosphatase ρ (PTPρ) belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ∼4.0 M urea. PMID:22389709

  3. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    SciTech Connect

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  4. Functional characterisation of the WW minimal domain for delivering therapeutic proteins by adenovirus dodecahedron.

    PubMed

    Villegas-Méndez, Ana; Fender, Pascal; Garin, Marina I; Rothe, Romy; Liguori, Lavinia; Marques, Bruno; Lenormand, Jean-Luc

    2012-01-01

    Protein transduction offers a great therapeutic potential by efficient delivery of biologically active cargo into cells. The Adenovirus Dd (Dodecahedron) has recently been shown to deliver proteins fused to the tandem WW(2-3-4) structural