Science.gov

Sample records for pim1 kinase synergizes

  1. Pim-1 kinase as cancer drug target: An update

    PubMed Central

    TURSYNBAY, YERNAR; ZHANG, JINFU; LI, ZHI; TOKAY, TURSONJAN; ZHUMADILOV, ZHAXYBAY; WU, DENGLONG; XIE, YINGQIU

    2016-01-01

    Proviral integration site for Moloney murine leukemia virus-1 (Pim-1) is a serine/threonine kinase that regulates multiple cellular functions such as cell cycle, cell survival, drug resistance. Aberrant elevation of Pim-1 kinase is associated with numerous types of cancer. Two distinct isoforms of Pim-1 (Pim-1S and Pim-1L) show distinct cellular functions. Pim-1S predominately localizes to the nucleus and Pim-1L localizes to plasma membrane for drug resistance. Recent studies show that mitochondrial Pim-1 maintains mitochondrial integrity. Pim-1 is emerging as a cancer drug target, particularly in prostate cancer. Recently the potent new functions of Pim-1 in immunotherapy, senescence bypass, metastasis and epigenetic dynamics have been found. The aim of the present updated review is to provide brief information regarding networks of Pim-1 kinase and focus on its recent advances as a novel drug target. PMID:26893828

  2. A combination strategy to inhibit Pim-1: synergism between noncompetitive and ATP-competitive inhibitors.

    PubMed

    Mori, Mattia; Tintori, Cristina; Christopher, Robert Selwyne Arul; Radi, Marco; Schenone, Silvia; Musumeci, Francesca; Brullo, Chiara; Sanità, Patrizia; Delle Monache, Simona; Angelucci, Adriano; Kissova, Miroslava; Crespan, Emmanuele; Maga, Giovanni; Botta, Maurizio

    2013-03-01

    Pim-1 is a serine/threonine kinase critically involved in the initiation and progression of various types of cancer, especially leukemia, lymphomas and solid tumors such as prostate, pancreas and colon, and is considered a potential drug target against these malignancies. In an effort to discover new potent Pim-1 inhibitors, a previously identified ATP-competitive indolyl-pyrrolone scaffold was expanded to derive structure-activity relationship data. A virtual screening campaign was also performed, which led to the discovery of additional ATP-competitive inhibitors as well as a series of 2-aminothiazole derivatives, which are noncompetitive with respect to both ATP and peptide substrate. This mechanism of action, which resembles allosteric inhibition, has not previously been characterized for Pim-1. Notably, further evaluation of the 2-aminothiazoles indicated a synergistic inhibitory effect in enzymatic assays when tested in combination with ATP-competitive inhibitors. A synergistic effect in the inhibition of cell proliferation by ATP-competitive and ATP-noncompetitive compounds was also observed in prostate cancer cell lines (PC3), where all Pim-1 inhibitors tested in showed synergism with the known anticancer agent, paclitaxel. These results further establish Pim-1 as a target in cancer therapy, and highlight the potential of these agents for use as adjuvant agents in the treatment of cancer diseases in which Pim-1 is associated with chemotherapeutic resistance.

  3. Pim-1 kinase expression during murine mammary development

    SciTech Connect

    Gapter, Leslie A.; Magnuson, Nancy S.; Ng, Ka-yun; Hosick, Howard L. . E-mail: hosick@wsu.edu

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile of progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.

  4. PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells

    PubMed Central

    XIE, YINGQIU; BAYAKHMETOV, SAMAT

    2016-01-01

    Since the last decade, the PIM family serine/threonine kinases have become a focus in cancer research. Numerous clinical data supports that overexpression of PIM1 is associated with tumor formation in various tissues. However, little is known regarding the function of PIM1 in cancer stem cells. In cancer cells, PIM1 has essential roles in the regulation of the cell cycle, cell proliferation, cell survival and multiple drug resistance. In stem cells, PIM1 kinase exhibits a significant function in stem cell proliferation, self-renewal and expansion. Thus, PIM1 shows a great promise in cancer therapy by targeting stem cells. Furthermore, it is imperative to investigate Pim-1 targeting in cancer stem cells by applicable inhibitors for improving future outcomes. The present review investigated the potential of PIM1 as a therapy target in prostate cancer stem cells. PMID:26835011

  5. IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines

    PubMed Central

    Block, Katherine M.; Hanke, Neale T.; Maine, Erin A.; Baker, Amanda F.

    2011-01-01

    Objectives We investigated the signaling pathways activated in response to Interleukin (IL-6) in pancreatic cell lines, with a focus on signal transducer and activator of transcription 3 (STAT3) and proto-oncogene serine/threonine-protein (Pim-1) kinase. Methods IL-6 receptor (IL-6R) expression and IL-6 induced cell signaling was measured by Western blotting in human pancreatic cell lines. Cucurbitacin I was used as a pharmacological tool to investigate the role of STAT3 in Pim-1 activation. Stably over-expressing Pim-1 kinase cell lines were characterized for their response to IL-6 in vitro, and for their growth rate as flank tumors in scid mice. Results IL-6R was expressed across multiple cancer cell lines. In Panc-1 cells, IL-6 treatment increased expression of P-STAT3 and Pim-1 kinase. Cucurbitacin I treatment alone increased pErk1/2 expression in wild-type and Pim-1 over-expressing cell lines and resulted in exaggerated Pim-1 kinase protein levels in control and IL-6 stimulated cells, suggesting upregulation of Pim-1 may be partially STAT3 independent. Pim-1 over-expression did not significantly impact growth rate in vitro or in vivo in Panc-1 or MiaPaCa2 cell lines. Conclusions IL-6 activates STAT3 and stimulates Pim-1 kinase in pancreatic cell line models. The regulation and consequence of Pim-1 expression appears to be highly context dependent. PMID:22273698

  6. Pim1 serine/threonine kinase regulates the number and functions of murine hematopoietic stem cells.

    PubMed

    An, Ningfei; Lin, Ying-Wei; Mahajan, Sandeep; Kellner, Joshua N; Wang, Yong; Li, Zihai; Kraft, Andrew S; Kang, Yubin

    2013-06-01

    The genes and pathways that govern the functions and expansion of hematopoietic stem cells (HSC) are not completely understood. In this study, we investigated the roles of serine/threonine Pim kinases in hematopoiesis in mice. We generated PIM1 transgenic mice (Pim1-Tx) overexpressing human PIM1 driven by vav hematopoietic promoter/regulatory elements. Compared to wild-type littermates, Pim1-Tx mice showed enhanced hematopoiesis as demonstrated by increased numbers of Lin(-) Sca-1 (+) c-Kit (+) (LSK) hematopoietic stem/progenitor cells and cobblestone area forming cells, higher BrdU incorporation in long-term HSC population, and a better ability to reconstitute lethally irradiated mice. We then extended our study using Pim1(-/-), Pim2(-/-), Pim3(-/-) single knockout (KO) mice. HSCs from Pim1(-/-) KO mice showed impaired long-term hematopoietic repopulating capacity in secondary and competitive transplantations. Interestingly, these defects were not observed in HSCs from Pim2(-/-) or Pim3(-/-) KO mice. Limiting dilution competitive transplantation assay estimated that the frequency of LSKCD34(-) HSCs was reduced by approximately 28-fold in Pim1(-/-) KO mice compared to wild-type littermates. Mechanistic studies demonstrated an important role of Pim1 kinase in regulating HSC cell proliferation and survival. Finally, our polymerase chain reaction (PCR) array and confirmatory real-time PCR (RT-PCR) studies identified several genes including Lef-1, Pax5, and Gata1 in HSCs that were affected by Pim1 deletion. Our data provide the first direct evidence for the important role of Pim1 kinase in the regulation of HSCs. Our study also dissects out the relative role of individual Pim kinase in HSC functions and regulation. PMID:23495171

  7. Expression, purification, crystallization and preliminary crystallographic analysis of human Pim-1 kinase

    SciTech Connect

    Qian, Kevin C.; Studts, Joey; Wang, Lian; Barringer, Kevin; Kronkaitis, Anthony; Peng, Charline; Baptiste, Alistair; LaFrance, Roger; Mische, Sheenah; Farmer, Bennett

    2005-01-01

    Pim kinases, belong to a distinctive serine/threonine protein-kinase family and are involved in cytokine-induced signal transduction and the development of lymphoid malignancies. Human Pim-1 kinase has been cloned, expressed and crystallized Pim kinases, including Pim-1, Pim-2 and Pim-3, belong to a distinctive serine/threonine protein-kinase family. They are involved in cytokine-induced signal transduction and the development of lymphoid malignancies. Their kinase domains are highly homologous to one another, but share low sequence identity to other kinases. Specifically, there are two proline residues in the conserved hinge-region sequence ERPXPX separated by a residue that is non-conserved among Pim kinases. Full-length human Pim-1 kinase (1–313) was cloned and expressed in Escherichia coli as a GST-fusion protein and truncated to Pim-1 (14–313) by thrombin digestion during purification. The Pim-1 (14–313) protein was purified to high homogeneity and monodispersity. This protein preparation yielded small crystals in the initial screening and large crystals after optimization. The large crystals of apo Pim-1 enzyme diffracted to 2.1 Å resolution and belong to space group P6{sub 5}, with unit-cell parameters a = b = 95.9, c = 80.0 Å, β = 120° and one molecule per asymmetric unit.

  8. Human CD180 Transmits Signals via the PIM-1L Kinase

    PubMed Central

    Egli, Nicole; Zajonz, Alexandra; Burger, Matthew T.; Schweighoffer, Tamas

    2015-01-01

    Toll-like receptors (TLRs) are important sensors of the innate immune system that recognize conserved structural motifs and activate cells via a downstream signaling cascade. The CD180/MD1 molecular complex is an unusual member of the TLR family, since it lacks the components that are normally required for signal transduction by other TLRs. Therefore the CD180/MD 1 complex has been considered of being incapable of independently initiating cellular signals. Using chemogenetic approaches we identified specifically the membrane bound long form of PIM-1 kinase, PIM-1L as the mediator of CD180-dependent signaling. A dominant negative isoform of PIM-1L, but not of other PIM kinases, inhibited signaling elicited by cross-linking of CD180, and this effect was phenocopied by PIM inhibitors. PIM-1L was directed to the cell membrane by its N-terminal extension, where it colocalized and physically associated with CD180. Triggering CD180 also induced increased phosphorylation of the anti-apoptotic protein BAD in a PIM kinase-dependent fashion. Also in primary human B cells, which are the main cells expressing CD180 in man, cross-linking of CD180 by monoclonal antibodies stimulated cell survival and proliferation that was abrogated by specific inhibitors. By associating with PIM-1L, CD180 can thus obtain autonomous signaling capabilities, and this complex is then channeling inflammatory signals into B cell survival programs. Pharmacological inhibition of PIM-1 should therefore provide novel therapeutic options in diseases that respond to innate immune stimulation with subsequently increased B cell activity, such as lupus erythematosus or myasthenia gravis. PMID:26555723

  9. Human CD180 Transmits Signals via the PIM-1L Kinase.

    PubMed

    Egli, Nicole; Zajonz, Alexandra; Burger, Matthew T; Schweighoffer, Tamas

    2015-01-01

    Toll-like receptors (TLRs) are important sensors of the innate immune system that recognize conserved structural motifs and activate cells via a downstream signaling cascade. The CD180/MD1 molecular complex is an unusual member of the TLR family, since it lacks the components that are normally required for signal transduction by other TLRs. Therefore the CD180/MD 1 complex has been considered of being incapable of independently initiating cellular signals. Using chemogenetic approaches we identified specifically the membrane bound long form of PIM-1 kinase, PIM-1L as the mediator of CD180-dependent signaling. A dominant negative isoform of PIM-1L, but not of other PIM kinases, inhibited signaling elicited by cross-linking of CD180, and this effect was phenocopied by PIM inhibitors. PIM-1L was directed to the cell membrane by its N-terminal extension, where it colocalized and physically associated with CD180. Triggering CD180 also induced increased phosphorylation of the anti-apoptotic protein BAD in a PIM kinase-dependent fashion. Also in primary human B cells, which are the main cells expressing CD180 in man, cross-linking of CD180 by monoclonal antibodies stimulated cell survival and proliferation that was abrogated by specific inhibitors. By associating with PIM-1L, CD180 can thus obtain autonomous signaling capabilities, and this complex is then channeling inflammatory signals into B cell survival programs. Pharmacological inhibition of PIM-1 should therefore provide novel therapeutic options in diseases that respond to innate immune stimulation with subsequently increased B cell activity, such as lupus erythematosus or myasthenia gravis. PMID:26555723

  10. Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation.

    PubMed

    de Vries, M; Heijink, I H; Gras, R; den Boef, L E; Reinders-Luinge, M; Pouwels, S D; Hylkema, M N; van der Toorn, M; Brouwer, U; van Oosterhout, A J M; Nawijn, M C

    2014-08-01

    Exposure to cigarette smoke (CS) is the main risk factor for developing chronic obstructive pulmonary disease and can induce airway epithelial cell damage, innate immune responses, and airway inflammation. We hypothesized that cell survival factors might decrease the sensitivity of airway epithelial cells to CS-induced damage, thereby protecting the airways against inflammation upon CS exposure. Here, we tested whether Pim survival kinases could protect from CS-induced inflammation. We determined expression of Pim kinases in lung tissue, airway inflammation, and levels of keratinocyte-derived cytokine (KC) and several damage-associated molecular patterns in bronchoalveolar lavage in mice exposed to CS or air. Human bronchial epithelial BEAS-2B cells were treated with CS extract (CSE) in the presence or absence of Pim1 inhibitor and assessed for loss of mitochondrial membrane potential, induction of cell death, and release of heat shock protein 70 (HSP70). We observed increased expression of Pim1, but not of Pim2 and Pim3, in lung tissue after exposure to CS. Pim1-deficient mice displayed a strongly enhanced neutrophilic airway inflammation upon CS exposure compared with wild-type controls. Inhibition of Pim1 activity in BEAS-2B cells increased the loss of mitochondrial membrane potential and reduced cell viability upon CSE treatment, whereas release of HSP70 was enhanced. Interestingly, we observed release of S100A8 but not of double-strand DNA or HSP70 in Pim1-deficient mice compared with wild-type controls upon CS exposure. In conclusion, we show that expression of Pim1 protects against CS-induced cell death in vitro and neutrophilic airway inflammation in vivo. Our data suggest that the underlying mechanism involves CS-induced release of S100A8 and KC. PMID:24816488

  11. New potent and selective inhibitor of Pim-1/3 protein kinases sensitizes human colon carcinoma cells to doxorubicin.

    PubMed

    Moreau, Pascale; Dezhenkova, Lyubov G; Anizon, Fabrice; Nauton, Lionel; Thery, Vincent; Liang, Shuguang; Kaluzhny, Dmitry N; Shtil, Alexander A

    2014-01-01

    The Pim protein kinases (provirus insertion site of Moloney murine leukemia virus) have been identified as important actors involved in tumor cell survival, proliferation, migration and invasion. Therefore, inhibition of Pim activity by low molecular weight compounds is under investigation as a part of anticancer therapeutic strategies. We have synthesized a series of pyrrolo[2,3-a]carbazole derivatives that significantly inhibited Pim protein kinases at submicromolar concentrations. Particularly, benzodiazocine derivative 1 potently inhibited Pim-1 and -3 isoforms in in vitro kinase assays (IC50 8 nM and 13 nM, respectively), whereas Pim-2 activity was less affected (IC50 350 nM). We show here that no inhibitory effect of 1 was detectable at 1 µM against other 22 serine/threonine and tyrosine kinases. In addition, 1, possessing a planar pyrrolocarbazole scaffold, demonstrated no significant binding to DNA, nor was it a potent topoisomerase I inhibitor, suggesting that 1 is likely to be highly selective for Pim-1 and -3. Importantly, whereas 1 exerted a negligible cytotoxicity for human colon carcinoma HCT116 cell line at concentrations >10 µM within 72 h of cell exposure, it synergized at nontoxic concentrations with the antitumor drug doxorubicin (Dox) in killing HCT116 cells: IC50 of Dox alone and Dox+1 were ~200 nM and ~25 nM, respectively. These data strongly suggest that 1 emerges as a prospective antitumor drug candidate due to its selectivity to individual Pim protein kinases and the ability to potentiate the efficacy of conventional chemotherapeutics. PMID:25175798

  12. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG.

    PubMed Central

    Saris, C J; Domen, J; Berns, A

    1991-01-01

    The pim-1 gene is frequently found activated by proviral insertion in murine T cell lymphomas. Overexpression of pim-1 in lymphoid cells by transgenesis formally proved its oncogenic potential. The pim-1 cDNA sequence predicts that both murine and human pim-1 encode a 34 kd protein with homology to protein kinases. In this study, we show that the murine pim-1 gene encodes a 44 kd protein in addition to the predicted 34 kd protein. The 44 kd protein is an amino-terminal extension of the 34 kd protein and is synthesized by alternative translation initiation at an upstream CUG codon. Contrary to previous findings by others, we provide evidence that both murine and human pim-1 gene products are protein-serine/threonine kinases. Murine 44 kd and 34 kd pim-1 proteins exhibit comparable in vitro kinase activity and are both mainly cytoplasmic, but they differ in in vivo association state and half-life. Images PMID:1825810

  13. Discovery and Optimization of Macrocyclic Quinoxaline-pyrrolo-dihydropiperidinones as Potent Pim-1/2 Kinase Inhibitors.

    PubMed

    Cee, Victor J; Chavez, Frank; Herberich, Bradley; Lanman, Brian A; Pettus, Liping H; Reed, Anthony B; Wu, Bin; Wurz, Ryan P; Andrews, Kristin L; Chen, Jie; Hickman, Dean; Laszlo, Jimmy; Lee, Matthew R; Guerrero, Nadia; Mattson, Bethany K; Nguyen, Yen; Mohr, Christopher; Rex, Karen; Sastri, Christine E; Wang, Paul; Wu, Qiong; Wu, Tian; Xu, Yang; Zhou, Yihong; Winston, Jeffrey T; Lipford, J Russell; Tasker, Andrew S; Wang, Hui-Ling

    2016-04-14

    The identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2. This molecule also potently inhibited Pim kinase activity in KMS-12-BM, a multiple myeloma cell line with relatively high endogenous levels of Pim-1/2, both in vitro (pBAD IC50 = 25 nM) and in vivo (pBAD EC50 = 30 nM, unbound), and a 100 mg/kg daily dose was found to completely arrest the growth of KMS-12-BM xenografts in mice. PMID:27096050

  14. Discovery and Optimization of Macrocyclic Quinoxaline-pyrrolo-dihydropiperidinones as Potent Pim-1/2 Kinase Inhibitors.

    PubMed

    Cee, Victor J; Chavez, Frank; Herberich, Bradley; Lanman, Brian A; Pettus, Liping H; Reed, Anthony B; Wu, Bin; Wurz, Ryan P; Andrews, Kristin L; Chen, Jie; Hickman, Dean; Laszlo, Jimmy; Lee, Matthew R; Guerrero, Nadia; Mattson, Bethany K; Nguyen, Yen; Mohr, Christopher; Rex, Karen; Sastri, Christine E; Wang, Paul; Wu, Qiong; Wu, Tian; Xu, Yang; Zhou, Yihong; Winston, Jeffrey T; Lipford, J Russell; Tasker, Andrew S; Wang, Hui-Ling

    2016-04-14

    The identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2. This molecule also potently inhibited Pim kinase activity in KMS-12-BM, a multiple myeloma cell line with relatively high endogenous levels of Pim-1/2, both in vitro (pBAD IC50 = 25 nM) and in vivo (pBAD EC50 = 30 nM, unbound), and a 100 mg/kg daily dose was found to completely arrest the growth of KMS-12-BM xenografts in mice.

  15. Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte

    PubMed Central

    Sussman, Mark A

    2014-01-01

    The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase. PMID:19673671

  16. Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase

    PubMed Central

    Siddiqi, Sailay; Sussman, Mark A

    2014-01-01

    Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure. PMID:23984924

  17. PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1).

    PubMed

    Decker, Sarah; Finter, Johannes; Forde, Aaron James; Kissel, Sandra; Schwaller, Juerg; Mack, Thomas Sebastian; Kuhn, Anabel; Gray, Nathanael; Follo, Marie; Jumaa, Hassan; Burger, Meike; Zirlik, Katja; Pfeifer, Dietmar; Miduturu, Chandrasekhar V; Eibel, Hermann; Veelken, Hendrik; Dierks, Christine

    2014-05-01

    Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 receptor. Here, we show that PIM (proviral integration site for Moloney murine leukemia virus) kinases 1-3 are overexpressed and that the CXCR4 receptor is hyperphosphorylated on Ser339 in CLL compared with normal lymphocytes. Furthermore, CXCR4 phosphorylation correlates with PIM1 protein expression and PIM1 transcript levels in CLL. PIM kinase inhibition with three different PIM kinase inhibitors induced apoptosis in CLL cells independent of the presence of protective stromal cells. In addition, PIM inhibition caused dephosphorylation of the CXCR4 receptor on Ser339, resulting in enhanced ligand-dependent CXCR4 internalization and reduced re-externalization after withdrawal of CXCL12. Furthermore, PIM inhibition in CLL cells blocked CXCR4 functions, such as migration toward CXCL12- or CXCL12-induced extracellular signal-regulated kinase (ERK) phosphorylation. In concordance, pretreatment of CLL cells with PIM kinase inhibitors strongly reduced homing of CLL cells toward the bone marrow and the spleen of Rag2(-/-)γc(-/-) mice in vivo. Interestingly, the knockdown of PIM kinases in CLL cells demonstrated diverging functions, with PIM1 regulating CXCR4 surface expression and PIM2 and PIM3 as important for the survival of CLL cells. Our results show that PIM kinase inhibitors are an effective therapeutic option for CLL, not only by impairing PIM2/3-mediated CLL cell survival, but also by blocking the PIM1/CXCR4-mediated interaction of CLL cells with their protective microenvironment. PMID:24659821

  18. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  19. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6.

    PubMed

    Uras, Iris Z; Walter, Gina J; Scheicher, Ruth; Bellutti, Florian; Prchal-Murphy, Michaela; Tigan, Anca S; Valent, Peter; Heidel, Florian H; Kubicek, Stefan; Scholl, Claudia; Fröhling, Stefan; Sexl, Veronika

    2016-06-01

    Up to 30% of patients with acute myeloid leukemia have constitutively activating internal tandem duplications (ITDs) of the FLT3 receptor tyrosine kinase. Such mutations are associated with a poor prognosis and a high propensity to relapse after remission. FLT3 inhibitors are being developed as targeted therapy for FLT3-ITD(+) acute myeloid leukemia; however, their use is complicated by rapid development of resistance, which illustrates the need for additional therapeutic targets. We show that the US Food and Drug Administration-approved CDK4/6 kinase inhibitor palbociclib induces apoptosis of FLT3-ITD leukemic cells. The effect is specific for FLT3-mutant cells and is ascribed to the transcriptional activity of CDK6: CDK6 but not its functional homolog CDK4 is found at the promoters of the FLT3 and PIM1 genes, another important leukemogenic driver. There CDK6 regulates transcription in a kinase-dependent manner. Of potential clinical relevance, combined treatment with palbociclib and FLT3 inhibitors results in synergistic cytotoxicity. Simultaneously targeting two critical signaling nodes in leukemogenesis could represent a therapeutic breakthrough, leading to complete remission and overcoming resistance to FLT3 inhibitors. PMID:27099147

  20. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6

    PubMed Central

    Uras, Iris Z.; Walter, Gina J.; Scheicher, Ruth; Bellutti, Florian; Prchal-Murphy, Michaela; Tigan, Anca S.; Valent, Peter; Heidel, Florian H.; Kubicek, Stefan; Scholl, Claudia; Fröhling, Stefan

    2016-01-01

    Up to 30% of patients with acute myeloid leukemia have constitutively activating internal tandem duplications (ITDs) of the FLT3 receptor tyrosine kinase. Such mutations are associated with a poor prognosis and a high propensity to relapse after remission. FLT3 inhibitors are being developed as targeted therapy for FLT3-ITD+ acute myeloid leukemia; however, their use is complicated by rapid development of resistance, which illustrates the need for additional therapeutic targets. We show that the US Food and Drug Administration–approved CDK4/6 kinase inhibitor palbociclib induces apoptosis of FLT3-ITD leukemic cells. The effect is specific for FLT3-mutant cells and is ascribed to the transcriptional activity of CDK6: CDK6 but not its functional homolog CDK4 is found at the promoters of the FLT3 and PIM1 genes, another important leukemogenic driver. There CDK6 regulates transcription in a kinase-dependent manner. Of potential clinical relevance, combined treatment with palbociclib and FLT3 inhibitors results in synergistic cytotoxicity. Simultaneously targeting two critical signaling nodes in leukemogenesis could represent a therapeutic breakthrough, leading to complete remission and overcoming resistance to FLT3 inhibitors. PMID:27099147

  1. Initial Testing (Stage 1) of SGI-1776, a PIM1 Kinase Inhibitor, by the Pediatric Preclinical Testing Program

    PubMed Central

    Batra, Vandana; Maris, John M.; Kang, Min H.; Reynolds, C. Patrick; Houghton, Peter J.; Alexander, Denise; Kolb, E. Anders; Gorlick, Richard; Keir, Stephen T.; Carol, Hernan; Lock, Richard; Billups, Catherine A.; Smith, Malcolm A.

    2011-01-01

    The PIM kinase inhibitor, SGI-1776, was tested against the PPTP in vitro (1.0 nM to 10 μM) and in vivo panels (148 mg/kg daily x 5 days for 3 weeks). SGI-1776 exhibited cytotoxic activity in vitro with a median relative IC50 of 3.1 μM. SGI-1776 induced significant differences in EFS distribution in vivo in 9 of 31 solid tumor xenografts and in 1 of 8 of the evaluable ALL xenografts. SGI-1776 induced tumor growth inhibition meeting criteria for intermediate EFS T/C activity in 1 of 39 evaluable models. In contrast, SGI-1776 induced complete responses of subcutaneous MV4;11 (B myeloid leukemia). PMID:22052829

  2. Nuclear PIM1 confers resistance to rapamycin-impaired endothelial proliferation

    SciTech Connect

    Walpen, Thomas; Kalus, Ina; Schwaller, Juerg; Peier, Martin A.; Battegay, Edouard J.; Humar, Rok

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumor growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation

  3. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma.

    PubMed

    Leung, Carmen Oi-ning; Wong, Carmen Chak-lui; Fan, Dorothy Ngo-yin; Kai, Alan Ka-lun; Tung, Edmund Kwok-kwan; Xu, Iris Ming-jing; Ng, Irene Oi-lin; Lo, Regina Cheuk-lam

    2015-05-10

    Hepatocellular carcinoma (HCC) is characteristically one of the most rapidly proliferating tumors which outgrows functional blood supply and results in regional oxygen deprivation. Overexpression of PIM1, a serine/threonine kinase, has been identified recently in human cancers. Knowledge on PIM1 in HCC is however, scarce. By immunohistochemical analysis on 56 human primary HCC samples, we observed overexpression of PIM1 in 39% of the cases. In two independent cohorts of paired primary and extra-hepatic metastatic HCC tissues, PIM1 expression was higher (p=0.002) in the extra-hepatic metastatic HCC tissues as compared with the corresponding primary HCCs. PIM1 was markedly up-regulated in multiple HCC cell lines in hypoxic condition (1% O2) versus normoxia (20% O2). Silencing of PIM1 suppressed HCC cell invasion in vitro as compared to non-target control, and decreased HCC cell proliferation in vitro and tumor growth and metastatic potential in vivo. Knockdown of PIM1 significantly reduced glucose uptake by HCC cells and was associated with decreased levels of p-AKT and key molecules in the glycolytic pathway. Taken together, PIM1 is up-regulated by hypoxia in HCC and promotes tumor growth and metastasis through facilitating cancer cell glycolysis. Targeting PIM1 may have potential role in the management of HCC. PMID:25834102

  4. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer.

    PubMed

    Ha, S; Iqbal, N J; Mita, P; Ruoff, R; Gerald, W L; Lepor, H; Taneja, S S; Lee, P; Melamed, J; Garabedian, M J; Logan, S K

    2013-08-22

    Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.

  5. EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation

    PubMed Central

    Banerjee, Shuvomoy; Lu, Jie; Cai, Qiliang; Sun, Zhiguo; Jha, Hem Chandra; Robertson, Erle S.

    2014-01-01

    Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. PMID:25121590

  6. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.

    PubMed

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A

    2015-05-29

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.

  7. The proto-oncogene Pim-1 is a target of miR-33a.

    PubMed

    Thomas, M; Lange-Grünweller, K; Weirauch, U; Gutsch, D; Aigner, A; Grünweller, A; Hartmann, R K

    2012-02-16

    The constitutively active serine/threonine kinase Pim-1 is upregulated in different cancer types, mainly based on the action of several interleukines and growth factors at the transcriptional level. So far, a regulation of oncogenic Pim-1 by microRNAs (miRNAs) has not been reported. Here, we newly establish miR-33a as a miRNA with potential tumor suppressor activity, acting through inhibition of Pim-1. A screen for miRNA expression in K562 lymphoma, LS174T colon carcinoma and several other cell lines revealed generally low endogenous miR-33a levels relative to other miRNAs. Transfection of K562 and LS174T cells with a miR-33a mimic reduced Pim-1 levels substantially. In contrast, the cell-cycle regulator cyclin-dependent kinase 6 predicted to be a conserved miR-33a target, was not downregulated by the miR-33a mimic. Seed mutagenesis of the Pim-1 3'-untranslated region in a luciferase reporter construct and in a Pim-1 cDNA expressed in Pim-1-deficient Skov-3 cells demonstrated specific and direct downregulation of Pim-1 by the miR-33a mimic. The persistence of this effect was comparable to that of a small interfering RNA-mediated knockdown of Pim-1, resulting in decelerated cell proliferation. In conclusion, we demonstrate the potential of miR-33a to act as a tumor suppressor miRNA, which suggests miR-33a replacement therapy through delivery of miR mimics as a novel therapeutic strategy.

  8. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies.

    PubMed

    Burger, Matthew T; Nishiguchi, Gisele; Han, Wooseok; Lan, Jiong; Simmons, Robert; Atallah, Gordana; Ding, Yu; Tamez, Victoriano; Zhang, Yanchen; Mathur, Michelle; Muller, Kristine; Bellamacina, Cornelia; Lindvall, Mika K; Zang, Richard; Huh, Kay; Feucht, Paul; Zavorotinskaya, Tatiana; Dai, Yumin; Basham, Steve; Chan, Julie; Ginn, Elaine; Aycinena, Alex; Holash, Jocelyn; Castillo, Joseph; Langowski, John L; Wang, Yingyun; Chen, Min Y; Lambert, Amy; Fritsch, Christine; Kauffmann, Audry; Pfister, Estelle; Vanasse, K Gary; Garcia, Pablo D

    2015-11-12

    Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound 8 (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound 3, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound 8 entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies. PMID:26505898

  9. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells

    PubMed Central

    Sagar, Vinay; Caldarola, Sara; Aria, Valentina; Monteleone, Valentina; Fuoco, Claudia; Gargioli, Cesare; Cannata, Stefano; Loreni, Fabrizio

    2016-01-01

    Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress. PMID:26993775

  10. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells.

    PubMed

    Sagar, Vinay; Caldarola, Sara; Aria, Valentina; Monteleone, Valentina; Fuoco, Claudia; Gargioli, Cesare; Cannata, Stefano; Loreni, Fabrizio

    2016-04-26

    Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress. PMID:26993775

  11. PIM1 polymorphism and PIM1 expression as predisposing factors of esophageal squamous cell carcinoma in the Asian population

    PubMed Central

    Wu, Yuan-Bo; Lu, Di; He, Zhi-Feng; Jin, Chan-Guan

    2016-01-01

    Our study aimed to identify the association between a PIM1 polymorphism and PIM1 expression levels with clinicopathological features of esophageal squamous cell carcinoma (ESCC). A total of 168 patients with ESCC were recruited as the case group, and 180 healthy individuals were included as the control group. Polymerase chain reaction-direct sequencing was employed to analyze all genotypes containing the PIM1 −1 882 A>T mutation. Immunohistochemistry was used to detect PIM1 expression. The distributions of genotype AA and allele A of PIM1 −1 882 A>T were higher in the case group than in the control group (both P<0.05). AT + TT carriers had a lower risk of ESCC than AA carriers (P<0.05). PIM1 polymorphism was related to the invasion depth, degree of differentiation, and lymphatic metastasis of ESCC (P<0.05). PIM1 expression was associated with lymphatic metastasis of ESCC and PIM1 polymorphism (both P<0.05). PIM1 −1 882 A>T and the overexpression of PIM1 were associated with the clinicopathological features of ESCC, and PIM1 −1 882 A>T may help to reduce the risk of ESCC in the Asian population. PMID:27274285

  12. Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential Pim-1 inhibitors.

    PubMed

    Fan, Yin-Bo; Li, Kun; Huang, Min; Cao, Yu; Li, Ying; Jin, Shu-Yu; Liu, Wen-Bing; Wen, Jia-Chen; Liu, Dan; Zhao, Lin-Xiang

    2016-02-15

    A novel series of substituted pyrido[3,2-d]-1,2,3-triazines were designed and synthesized as Pim-1 inhibitors through scaffold hopping. Most of the derivatives showed potent in vitro Pim-1 inhibitory activities and anti-proliferative effects toward prostate cancer cells. Among them, 6b, 6h and 6m showed the best Pim-1 inhibitory activity with IC50 values of 0.69, 0.60 and 0.80 μM, respectively. Furthermore, compounds 6b, 6i, 6j and 6m showed strong inhibitory activity to human prostate cancer LNcap and PC-3 cell lines with IC50 values at low micromolar level. Structure-activity relationship analysis revealed that appropriate substitutions at C-6 positions contributed to the kinase inhibition and antiproliferative effects. Moreover, western blot assay suggested that 6j could decrease the levels of p-BAD and p-4E-BP1 in a dose-dependent manner in PC-3 cells. Docking studies showed that 3-N of the scaffold formed a hydrogen bond with Lys67, aromatic 4-aniline formed a key π-π stack with Phe49. Taken together, this study might provide the first sight for developing the pyrido[3,2-d]-1,2,3-triazine scaffold as novel Pim-1 inhibitors.

  13. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation

    SciTech Connect

    Vu, Hoang Anh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2009-06-05

    We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.

  14. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells.

    PubMed

    Blanco, F F; Jimbo, M; Wulfkuhle, J; Gallagher, I; Deng, J; Enyenihi, L; Meisner-Kober, N; Londin, E; Rigoutsos, I; Sawicki, J A; Risbud, M V; Witkiewicz, A K; McCue, P A; Jiang, W; Rui, H; Yeo, C J; Petricoin, E; Winter, J M; Brody, J R

    2016-05-01

    Previously, it has been shown that pancreatic ductal adenocarcinoma (PDA) tumors exhibit high levels of hypoxia, characterized by low oxygen pressure (pO2) and decreased O2 intracellular perfusion. Chronic hypoxia is strongly associated with resistance to cytotoxic chemotherapy and chemoradiation in an understudied phenomenon known as hypoxia-induced chemoresistance. The hypoxia-inducible, pro-oncogenic, serine-threonine kinase PIM1 (Proviral Integration site for Moloney murine leukemia virus 1) has emerged as a key regulator of hypoxia-induced chemoresistance in PDA and other cancers. Although its role in therapeutic resistance has been described previously, the molecular mechanism behind PIM1 overexpression in PDA is unknown. Here, we demonstrate that cis-acting AU-rich elements (ARE) present within a 38-base pair region of the PIM1 mRNA 3'-untranslated region mediate a regulatory interaction with the mRNA stability factor HuR (Hu antigen R) in the context of tumor hypoxia. Predominantly expressed in the nucleus in PDA cells, HuR translocates to the cytoplasm in response to hypoxic stress and stabilizes the PIM1 mRNA transcript, resulting in PIM1 protein overexpression. A reverse-phase protein array revealed that HuR-mediated regulation of PIM1 protects cells from hypoxic stress through phosphorylation and inactivation of the apoptotic effector BAD and activation of MEK1/2. Importantly, pharmacological inhibition of HuR by MS-444 inhibits HuR homodimerization and its cytoplasmic translocation, abrogates hypoxia-induced PIM1 overexpression and markedly enhances PDA cell sensitivity to oxaliplatin and 5-fluorouracil under physiologic low oxygen conditions. Taken together, these results support the notion that HuR has prosurvival properties in PDA cells by enabling them with growth advantages in stressful tumor microenvironment niches. Accordingly, these studies provide evidence that therapeutic disruption of HuR's regulation of PIM1 may be a key strategy in

  15. A crystallographic fragment screen identifies cinnamic acid derivatives as starting points for potent Pim-1 inhibitors.

    PubMed

    Schulz, Michèle N; Fanghänel, Jörg; Schäfer, Martina; Badock, Volker; Briem, Hans; Boemer, Ulf; Nguyen, Duy; Husemann, Manfred; Hillig, Roman C

    2011-03-01

    A crystallographic fragment screen was carried out to identify starting points for the development of inhibitors of protein kinase Pim-1, a potential target for tumour therapy. All fragment hits identified via soaking in this study turned out to bind to the unusually hydrophobic pocket at the hinge region. The most potent fragments, two cinnamic acid derivatives (with a best IC(50) of 130 µM), additionally form a well defined hydrogen bond. The balance between hydrophobic and polar interactions makes these molecules good starting points for further optimization. Pim-2 inhibitors from a recently reported high-throughput screening campaign also feature a cinnamic acid moiety. Two of these Pim-2 inhibitors were synthesized, their potencies against Pim-1 were determined and their cocrystal structures were elucidated in order to determine to what degree the binding modes identified by fragment screening are conserved in optimized inhibitors. The structures show that the cinnamic acid moieties indeed adopt the same binding mode. Fragment screening thus correctly identified binding modes which are maintained when fragments are grown into larger and higher affinity inhibitors. The high-throughput screening-derived compound (E)-3-{3-[6-(4-aminocyclohexylamino)-pyrazin-2-yl]phenyl}acrylic acid (compound 1) is the most potent inhibitor of the cinnamic acid series for which the three-dimensional binding mode is known (IC(50) = 17 nM, K(d) = 28 nM). The structure reveals the molecular basis for the large gain in potency between the initial fragment hit and this optimized inhibitor.

  16. Identification of the First Inhibitor of the GBP1:PIM1 Interaction. Implications for the Development of a New Class of Anticancer Agents against Paclitaxel Resistant Cancer Cells

    PubMed Central

    2015-01-01

    Class III β-tubulin plays a prominent role in the development of drug resistance to paclitaxel by allowing the incorporation of the GBP1 GTPase into microtubules. Once in the cytoskeleton, GBP1 binds to prosurvival kinases such as PIM1 and initiates a signaling pathway that induces resistance to paclitaxel. Therefore, the inhibition of the GBP1:PIM1 interaction could potentially revert resistance to paclitaxel. A panel of 44 4-azapodophyllotoxin derivatives was screened in the NCI-60 cell panel. The result is that 31 are active and the comparative analysis demonstrated specific activity in paclitaxel-resistant cells. Using surface plasmon resonance, we were able to prove that NSC756093 is a potent in vitro inhibitor of the GBP1:PIM1 interaction and that this property is maintained in vivo in ovarian cancer cells resistant to paclitaxel. Through bioinformatics, molecular modeling, and mutagenesis studies, we identified the putative NSC756093 binding site at the interface between the helical and the LG domain of GBP1. According to our results by binding to this site, the NSC756093 compound is able to stabilize a conformation of GBP1 not suitable for binding to PIM1. PMID:25211704

  17. Cytokine secretion effected by synergism of the immunomodulator AS101 and the protein kinase C inducer bryostatin.

    PubMed Central

    Sredni, B; Kalechman, Y; Albeck, M; Gross, O; Aurbach, D; Sharon, P; Sehgal, S N; Gurwith, M J; Michlin, H

    1990-01-01

    AS101, a synthetic organotellurium compound, was found to have immunomodulating properties by initiation of cytokine production in vitro and in vivo. Phase I/II clinical trials currently in progress on AIDS and cancer patients treated with AS101 show significant increases in various immunological parameters, with minimal toxicity. Recently, AS101 and the protein kinase C (PKC) inducer, phorbol myristate acetate (PMA), were shown to synergize in the secretion of interleukin-2 (IL-2) and colony-stimulating factor (CSF) in vitro, by human and mouse lymphoid cells. The bryostatins, a group of natural macrocyclic lactones isolated from marine invertebrates (Bugula neritina) have been reported to be potent PKC activators with no tumour promoting activity. In this study, we investigated the synergistic effect of AS101 and a partially purified preparation of bryostatin on the production of several cytokines. Our data confirm the presence of synergism, which greatly enhances cell proliferation, IL-2, tumour necrosis factor (TNF) and interferon-gamma (IFN-gamma) secretion by human mononuclear cells (MNC) and the production of IL-2 and TNF by mouse cells. The absence of tumour-promoting activity of the bryostatins makes them particularly good candidates, in combination with AS101, for immunomodulation in vivo in clinically immunosuppressed conditions. PMID:2118479

  18. The putative oncogene Pim-1 in the mouse: its linkage and variation among t haplotypes.

    PubMed

    Nadeau, J H; Phillips, S J

    1987-11-01

    Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.

  19. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer

    PubMed Central

    Zhu, Xiu-Jie; Lin, Feng; Pan, Shi-Shi; Gong, Li-Hua; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Shi, Zhi; Yan, Xiao-Jian

    2015-01-01

    Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer. PMID:25962959

  20. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer.

    PubMed

    Chen, Xiu-Xiu; Xie, Feng-Feng; Zhu, Xiu-Jie; Lin, Feng; Pan, Shi-Shi; Gong, Li-Hua; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Shi, Zhi; Yan, Xiao-Jian

    2015-06-20

    Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer. PMID:25962959

  1. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression.

    PubMed

    Suárez-Arroyo, Ivette J; Rios-Fuller, Tiffany J; Feliz-Mosquea, Yismeilin R; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J; Maldonado-Martinez, Gerónimo; Cubano, Luis A; Martínez-Montemayor, Michelle M

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors. PMID:26958085

  2. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression

    PubMed Central

    Suárez-Arroyo, Ivette J.; Rios-Fuller, Tiffany J.; Feliz-Mosquea, Yismeilin R.; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J.; Maldonado-Martinez, Gerónimo; Cubano, Luis A.; Martínez-Montemayor, Michelle M.

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors. PMID:26958085

  3. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression.

    PubMed

    Suárez-Arroyo, Ivette J; Rios-Fuller, Tiffany J; Feliz-Mosquea, Yismeilin R; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J; Maldonado-Martinez, Gerónimo; Cubano, Luis A; Martínez-Montemayor, Michelle M

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors.

  4. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria.

    PubMed Central

    Wagner, I; Arlt, H; van Dyck, L; Langer, T; Neupert, W

    1994-01-01

    ATP dependent proteolytic degradation of misfolded proteins in the mitochondrial matrix is mediated by the PIM1 protease and depends on the molecular chaperone proteins mt-hsp70 and Mdj1p. Chaperone function is essential to maintain misfolded proteins in a soluble state, a prerequisite for their degradation by PIM1 protease. In the absence of functional mt-hsp70 or Mdj1p misfolded proteins either remain associated with mt-hsp70 or form aggregates and thereby are no longer substrates for PIM1 protease. Mdj1p is shown to regulate the ATP dependent association of an unfolded polypeptide chain with mt-hsp70 affecting binding to as well as release from mt-hsp70. These findings establish a central role of molecular chaperone proteins in the degradation of misfolded proteins by PIM1 protease and thereby demonstrate a functional interrelation between components of the folding machinery and the proteolytic system within mitochondria. Images PMID:7957078

  5. Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL

    PubMed Central

    Churchman, Michelle L.; Evans, Kathryn; Richmond, Jennifer; Robbins, Alissa; Jones, Luke; Shapiro, Irina M.; Pachter, Jonathan A.; Weaver, David T.; Houghton, Peter J.; Smith, Malcolm A.; Lock, Richard B.; Mullighan, Charles G.

    2016-01-01

    BCR-ABL1+ B progenitor acute lymphoblastic leukemia (Ph+ B-ALL) is an aggressive disease that frequently responds poorly to currently available therapies. Alterations in IKZF1, which encodes the lymphoid transcription factor Ikaros, are present in over 80% of Ph+ ALL and are associated with a stem cell–like phenotype, aberrant adhesion molecule expression and signaling, leukemic cell adhesion to the bone marrow stem cell niche, and poor outcome. Here, we show that FAK1 is upregulated in Ph+ B-ALL with further overexpression in IKZF1-altered cells and that the FAK inhibitor VS-4718 potently inhibits aberrant FAK signaling and leukemic cell adhesion, potentiating responsiveness to tyrosine kinase inhibitors, inducing cure in vivo. Thus, targeting FAK with VS-4718 is an attractive approach to overcome the deleterious effects of FAK overexpression in Ph+ B-ALL, particularly in abrogating the adhesive phenotype induced by Ikaros alterations, and warrants evaluation in clinical trials for Ph+ B-ALL, regardless of IKZF1 status. PMID:27123491

  6. Synergism between ivermectin and the tyrosine kinase/P-glycoprotein inhibitor crizotinib against Haemonchus contortus larvae in vitro.

    PubMed

    Raza, Ali; Kopp, Steven R; Kotze, Andrew C

    2016-08-30

    Anthelmintic resistance is a major problem in parasitic nematodes of livestock worldwide. One means to counter resistance is to use synergists that specifically inhibit resistance mechanisms in order to restore the toxicity, and hence preserve the usefulness, of currently available anthelmintics. P-glycoproteins (P-gps) eliminate a wide variety of structurally unrelated xenobiotics from cells, and have been implicated in anthelmintic resistance. Crizotinib is a tyrosine kinase inhibitor under development as a cancer therapeutic. The compound also inhibits P-gps, and has been shown to reverse multidrug resistance in cancer cells. We were therefore interested in determining if the compound was able to increase the sensitivity of Haemonchus contortus larvae to ivermectin, as measured by in vitro larval development and migration assays with a drug-resistant and a -susceptible isolate. In migration assays, co-administration of crizotinib increased the toxicity of ivermectin to resistant larvae (up to 5.7-fold decrease in ivermectin IC50), and rendered the resistant larvae equally or more sensitive to ivermectin than the susceptible isolate. On the other hand, co-administration of crizotinib had no effect on ivermectin sensitivity in the susceptible isolate. In development assays, significant increases in the sensitivity of both the resistant (up to 1.9-fold) and susceptible (up to 1.6-fold) larvae to ivermectin were observed, although the magnitude of the observed synergism was less than seen in migration assays, and the resistant larvae retained significant levels of ivermectin resistance. By highlighting the ability of the P-gp inhibitor crizotinib to increase the sensitivity of H. contortus larvae to ivermectin, this study provides further evidence that P-gp inhibitors are potential tools for modulating the efficacy of anthelmintics. In addition, the differences in the outcomes of the two assays, with 'resistance-breaking' effects being much more marked in migration

  7. Evaluation of the Emu-pim-1 transgenic mouse model for short-term carcinogenicity testing.

    PubMed

    van Kreijl, C F; van der Houven van Oordt, C W; Kroese, E D; Sørensen, I K; Breuer, M L; Storer, R D

    1998-01-01

    The value of the chronic rodent carcinogenicity assay in adequately predicting cancer risk in humans has become a matter of debate over the past few years. Therefore, more rapid and accurate alternative tests are urgently needed. Transgenic mouse models, those harboring genetic changes that are relevant to the multistage cancer process, may provide such alternative tests. Transgenic Emu-pim-1 mice, developed by Berns and coworkers in 1989, contain the pimn-1 oncogene, which is expressed at elevated levels in their lymphoid compartments. As a result, these mice are predisposed to the development of T-cell lymphomas. Because of the low incidence of spontaneous tumors and the increased sensitivity to N-ethyl-N-nitrosourea-induced carcinogenesis, Emu-pim-1 mice were suggested to be one of the first potential and attractive candidates to be used in short-term carcinogenicity testing. In the present article, the results from 2 recent short-term assays (with mitomycin C and x-rays) are briefly presented, together with a review of all 11 performed bioassays and their corresponding histopathologic and molecular data. The overall results allow the first evaluation of the Emu-pim-1 mouse model with regard to its usefulness in short-term carcinogenicity testing. It has been shown that the model is primarily suitable as a sensitive short-term assay for genotoxic carcinogens that not only induce (at least) gene mutations and/or large deletions and rearrangements but that also sufficiently target the lymphoid system. However, the Emu-pim-1 mice lack sufficient sensitivity to justify their routine use in short-term carcinogenicity testing in general.

  8. In utero exposure to benzene increases embryonic c-Myb and Pim-1 protein levels in CD-1 mice

    SciTech Connect

    Wan, Joanne; Winn, Louise M.

    2008-05-01

    Benzene is a known human leukemogen, but its role as an in utero leukemogen remains controversial. Epidemiological studies have correlated parental exposure to benzene with an increased incidence of childhood leukemias. We hypothesize that in utero exposure to benzene may cause leukemogenesis by affecting the embryonic c-Myb/Pim-1 signaling pathway and that this is mediated by oxidative stress. To investigate this hypothesis, pregnant CD-1 mice were treated with either 800 mg/kg of benzene or corn oil (i.p.) on days 10 and 11 of gestation and in some cases pretreated with 25 kU/kg of PEG-catalase. Phosphorylated and total embryonic c-Myb and Pim-1 protein levels were assessed using Western blotting and maternal and embryonic oxidative stress were assessed by measuring reduced to oxidized glutathione ratios. Our results show increased oxidative stress at 4 and 24 h after exposure, increased phosphorylated Pim-1 protein levels 4 h after benzene exposure, and increased Pim-1 levels at 24 and 48 h after benzene exposure. Embryonic c-Myb levels were elevated at 24 h after exposure. PEG-catalase pretreatment prevented benzene-mediated increases in embryonic c-Myb and Pim-1 protein levels, and benzene-induced oxidative stress. These results support a role for ROS in c-Myb and Pim-1 alterations after in utero benzene exposure.

  9. Thalidomide alters c-MYB and PIM-1 signaling in K-562 cells.

    PubMed

    Thadani, Natasha A; McNamee, James P; Winn, Louise M

    2006-08-01

    Despite causing birth defects thalidomide is being used therapeutically to treat a number of diseases. While thalidomide's mechanism of action still remains unknown, exposure to thalidomide leads to increased reactive oxygen species (ROS), which can interfere with cell signaling. We hypothesize that thalidomide acts by interfering with the c-Myb signaling pathway. To investigate this hypothesis, human K-562 cells were transfected with plasmids expressing a Myb-responsive luciferase reporter and c-Myb. Cells were then exposed to thalidomide (0 or 40 microg/ml) for 1h and luciferase activities were measured. Cells exposed to thalidomide (40 microg/ml) had significantly decreased c-Myb activity. Pre-incubation of cells with the anti-oxidative enzyme catalase (1600 units/ml), prevented thalidomide-induced decreased c-Myb activity, suggesting a role for ROS in the c-Myb signaling pathway. This result was further substantiated by the dichlorofluorescein assay. Western blot analysis on thalidomide exposed cells showed a decrease in both Pim-1 protein expression and phosphorylated c-Myb protein expression, suggesting that the decrease in Pim-1 and the amount of phosphorylated c-Myb protein may be responsible for the observed decreases in c-Myb activity. Together these results demonstrate that thalidomide affects c-Myb signaling, in part, through increased ROS production.

  10. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1

    PubMed Central

    Althumayri, Khalid; Harrison, Wayne J.; Shin, Yuyoung; Gardiner, John M.; Casiraghi, Cinzia; Bernardo, Paola; Clarizia, Gabriele

    2016-01-01

    Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage. PMID:26712643

  11. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1.

    PubMed

    Althumayri, Khalid; Harrison, Wayne J; Shin, Yuyoung; Gardiner, John M; Casiraghi, Cinzia; Budd, Peter M; Bernardo, Paola; Clarizia, Gabriele; Jansen, Johannes C

    2016-02-13

    Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage. PMID:26712643

  12. Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas[OPEN

    PubMed Central

    Evans, Bradley S.; Li, Jia; Liu, Yu; Diamond, Spencer

    2016-01-01

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation. PMID:27600537

  13. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling.

    PubMed

    Kim, Junwon; Rose, Mark D

    2015-12-01

    Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth

  14. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling

    PubMed Central

    Kim, Junwon; Rose, Mark D.

    2015-01-01

    Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth

  15. Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression in vitro and in vivo and synergizes with radiotherapy

    PubMed Central

    Scumaci, Domenica; Barone, Agnese; Gigliotti, Francesco; Vincenza Fiumara, Claudia; Dattilo, Vincenzo; Gallo, Enzo; Visca, Paolo; Ortuso, Francesco; Abbruzzese, Claudia; Botta, Lorenzo; Schenone, Silvia; Cuda, Giovanni; Alcaro, Stefano; Bianco, Cataldo; Lavia, Patrizia; Paggi, Marco G.

    2015-01-01

    The SGK1 kinase is pivotal in signal transduction pathways operating in cell transformation and tumor progression. Here, we characterize in depth a novel potent and selective pyrazolo[3,4-d]pyrimidine-based SGK1 inhibitor. This compound, named SI113, active in vitro in the sub-micromolar range, inhibits SGK1-dependent signaling in cell lines in a dose- and time-dependent manner. We recently showed that SI113 slows down tumor growth and induces cell death in colon carcinoma cells, when used in monotherapy or in combination with paclitaxel. We now demonstrate for the first time that SI113 inhibits tumour growth in hepatocarcinoma models in vitro and in vivo. SI113-dependent tumor inhibition is dose- and time-dependent. In vitro and in vivo SI113-dependent SGK1 inhibition determined a dramatic increase in apotosis/necrosis, inhibited cell proliferation and altered the cell cycle profile of treated cells. Proteome-wide biochemical studies confirmed that SI113 down-regulates the abundance of proteins downstream of SGK1 with established roles in neoplastic transformation, e.g. MDM2, NDRG1 and RAN network members. Consistent with knock-down and over-expressing cellular models for SGK1, SI113 potentiated and synergized with radiotherapy in tumor killing. No short-term toxicity was observed in treated animals during in vivo SI113 administration. These data show that direct SGK1 inhibition can be effective in hepatic cancer therapy, either alone or in combination with radiotherapy. PMID:26462020

  16. Pim Kinase Interacts with Nonstructural 5A Protein and Regulates Hepatitis C Virus Entry

    PubMed Central

    Park, Chorong; Min, Saehong; Park, Eun-Mee; Lim, Yun-Sook; Kang, Sangmin; Suzuki, Tetsuro; Shin, Eui-Cheol

    2015-01-01

    ABSTRACT The life cycle of hepatitis C virus (HCV) is highly dependent on host cellular proteins for virus propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assay using the HCV nonstructural 5A (NS5A) protein as a probe. Of ∼9,000 human cellular proteins immobilized in a microarray, approximately 90 cellular proteins were identified as NS5A interactors. Of these candidates, Pim1, a member of serine/threonine kinase family composed of three different isoforms (Pim1, Pim2, and Pim3), was selected for further study. Pim kinases share a consensus sequence which overlaps with kinase activity. Pim kinase activity has been implicated in tumorigenesis. In the present study, we verified the physical interaction between NS5A and Pim1 by both in vitro pulldown and coimmunoprecipitation assays. Pim1 interacted with NS5A through amino acid residues 141 to 180 of Pim1. We demonstrated that protein stability of Pim1 was increased by NS5A protein and this increase was mediated by protein interplay. Small interfering RNA (siRNA)-mediated knockdown or pharmacological inhibition of Pim kinase abrogated HCV propagation. By employing HCV pseudoparticle entry and single-cycle HCV infection assays, we further demonstrated that Pim kinase was involved in HCV entry at a postbinding step. These data suggest that Pim kinase may represent a new host factor for HCV entry. IMPORTANCE Pim1 is an oncogenic serine/threonine kinase. HCV NS5A protein physically interacts with Pim1 and contributes to Pim1 protein stability. Since Pim1 protein expression level is upregulated in many cancers, NS5A-mediated protein stability may be associated with HCV pathogenesis. Either gene silencing or chemical inhibition of Pim kinase abrogated HCV propagation in HCV-infected cells. We further showed that Pim kinase was specifically required at an early entry step of the HCV life cycle. Thus, we have identified Pim kinase not only as an HCV cell

  17. Association of Nuclear PIM1 Expression with Lymph Node Metastasis and Poor Prognosis in Patients with Lung Adenocarcinoma and Squamous Cell Carcinoma

    PubMed Central

    Jiang, Richeng; Wang, Xinyue; Jin, Ziliang; Li, Kai

    2016-01-01

    Increasing evidence indicates that aberrant expression of PIM1, p-STAT3 and c-MYC is involved in the pathogenesis of various solid tumors, but its prognostic value is still unclear in non-small cell lung cancer (NSCLC). Here, we sought to evaluate the expression and prognostic role of these markers in patients with lung adenocarcinoma (AD) and squamous cell carcinoma (SCC). Real time RT-PCR and Western blotting was used to analyze the mRNA and protein expression of PIM1 in NSCLC cell lines, respectively. The expression of PIM1, p-STAT3, and c-MYC was immunohistochemically tested in archival tumor samples from 194 lung AD and SCC patients. High nuclear PIM1 expression was detected in 43.3% of ADs and SCCs, and was significantly correlated with lymph node (LN) metastasis (P = 0.028) and histology (P = 0.003). High nuclear PIM1 expression (P = 0.034), locally advanced stage (P < 0.001), AD (P = 0.007) and poor pathologic differentiation (P = 0.002) were correlated with worse disease-free survival (DFS). High nuclear PIM1 expression (P = 0.009), advanced clinical stage (P < 0.001) and poor pathologic differentiation (P = 0.004) were independent unfavorable prognostic factors for overall survival (OS). High p-STAT3 expression was not associated with OS but significantly correlated with LN metastasis, while c-MYC was not significantly correlated with any clinicopathological parameter or survival. Therefore, in AD and SCC patients, nuclear PIM1 expression level is an independent factor for DFS and OS and it might serve as a predictive biomarker for outcome. PMID:26918046

  18. Expression of pim-1 in tumors, tumor stroma and tumor-adjacent mucosa co-determines the prognosis of colon cancer patients.

    PubMed

    Peng, Yong-hai; Li, Jian-jun; Xie, Fang-wei; Chen, Jian-fang; Yu, Ying-hao; Ouyang, Xue-nong; Liang, Hou-jie

    2013-01-01

    Provirus integration site for Moloney murine leukemia virus (pim-1) is a proto-oncogene that is linked to the development and progression of several cancers. In this study, we evaluated pim-1 expression in tumors, tumor stroma and tumor-adjacent mucosa together as an independent prognostic factor for colon cancer patients. The study included 343 colon cancer patients. Immunohistochemical staining was used to detect pim-1. Multivariate cox regression for disease-free survival (DFS) were used to identify independent prognostic factors. Analytic hierarchy process (AHP) was used to calculate the weight of pim-1 in tumors, tumor stroma and tumor-adjacent mucosa in order to obtain a Pim-1 total score (PTS) for recurrence and survival. Kaplan-Meier DFS curves and OS curves for patients with different pim-1 expression levels were compared using the log-rank test. In this study, four independent prognostic factors were identified for colon cancer patients: pim-1 expression in tumors, tumor stroma, tumor-adjacent mucosa, as well as tumor stage. It has been established that clinical stage is an important prognostic factor for colon cancer patients. However, PTS can identify the patients who are likely to recur not only in the whole radical excision group but also within each stage of this group. Based on the results of this study we can conclude that the PTS combined with clinical staging system may be a better predictor of colon cancer patients' prognosis than using the clinical stage system alone. ClinicalTrials.gov Number: ChiCTR-PRCH-12002842.

  19. Time of flight and the MUSE experiment in the PIM1 Channel at the Paul Sherrer Institute

    NASA Astrophysics Data System (ADS)

    Lin, Wan; MUSE Collaboration

    2015-10-01

    The MUSE experiment in the PIM1 Channel at the Paul Sherrer Institute in Villigen, Switzerland, measures scattering of electrons and muons from a liquid hydrogen target. The intent of the experiment is to deduce from the scattering probabilities whether the radius of the proton is the same when determined from the scattering of the two different particle types. An important technique for the experiment is precise timing measurements, using high precision scintillators and a beam Cerenkov counter. We will describe the motivations for the precise timing measurement. We will present results for the timing measurements from prototype experimental detectors. We will also present results from a simulation program, Geant4, that was used to calculate energy loss corrections to the time of flight determined between the beam Cherenkov counter and the scintillator. This work is supported in part by the U.S. National Science Foundation Grant PHY 1306126 and the Douglass Project for Women in Math, Science, and Engineering.

  20. Prostaglandin E2 transactivates the colony-stimulating factor-1 receptor and synergizes with colony-stimulating factor-1 in the induction of macrophage migration via the mitogen-activated protein kinase ERK1/2.

    PubMed

    Digiacomo, Graziana; Ziche, Marina; Dello Sbarba, Persio; Donnini, Sandra; Rovida, Elisabetta

    2015-06-01

    Prostaglandin E2 (PGE2), a key mediator of immunity, inflammation, and cancer, acts through 4 G-protein-coupled E-prostanoid receptors (EPs 1-4). Crosstalk between EPs and receptor tyrosine kinases also occurs. Colony-stimulating factor-1 receptor (CSF-1R) is an RTK that sustains the survival, proliferation, and motility of monocytes/macrophages, which are an essential component of innate immunity and cancer development. The aim of this study was to investigate on a possible crosstalk between EP and CSF-1R. In BAC1.2F5 and RAW264.7 murine macrophages, CSF-1 (EC₅₀ = 18.1 and 10.2 ng/ml, respectively) and PGE2 (EC₅₀ = 1.5 and 5.5 nM, respectively) promoted migration. PGE2 induced rapid CSF-1R phosphorylation that was dependent on Src family kinases (SFKs). CSF-1R inhibition reduced PGE2-elicited ERK1/2 phosphorylation and macrophage migration, indicating that CSF-1R plays a role in PGE2-mediated immunoregulation. EP4 appeared responsible for functional PGE2/CSF-1R crosstalk. Furthermore, PGE2 synergized with CSF-1 in inducing ERK1/2 phosphorylation and macrophage migration. ERK1/2 inhibition completely blocked migration induced by the combination CSF-1/PGE2. CSF-1/PGE2 functional interaction with respect to migration also occurred in bone marrow-derived murine macrophages (EC₅₀ CSF-1, 6.7 ng/ml; EC₅₀ PGE2, 16.7 nM). These results indicated that PGE2 transactivates CSF-1R and synergizes with its signaling at ERK1/2 level in promoting macrophage migration.

  1. In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1

    PubMed Central

    Frentrup, Hendrik; Hart, Kyle E.; Colina, Coray M.; Müller, Erich A.

    2015-01-01

    We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers. PMID:25764366

  2. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities.

    PubMed

    Blanco-Aparicio, Carmen; Carnero, Amancio

    2013-03-01

    PIM proteins belong to a family of ser/thr kinases composed of 3 members, PIM1, PIM2 and PIM3, with greatly overlapping functions. PIM kinases are mainly responsible for cell cycle regulation, antiapoptotic activity and the homing and migration of receptor tyrosine kinases mediated via the JAK/STAT pathway. PIM kinases have been found to be upregulated in many hematological malignancies and solid tumors. Although these kinases have been described as weak oncogenes, they are heavily targeted for anticancer drug discovery. The present review summarizes the discoveries made to date regarding PIM kinases as driving oncogenes in the process of tumorigenesis and their validation as drug targets. PMID:23041228

  3. Towards the Development of a Potent and Selective Organoruthenium Mammalian Sterile 20 Kinase Inhibitor

    PubMed Central

    Anand, Ruchi; Maksimoska, Jasna; Pagano, Nicholas; Wong, Eric Y.; Gimotty, Phyllis A.; Diamond, Scott L.; Meggers, Eric

    2009-01-01

    Mammalian sterile 20 (MST1) kinase, a member of the sterile 20 (Ste-20) family of proteins, is a proapoptotic cytosolic kinase that plays an important role in the cellular response to oxidative stress. In this study, we report on the development of a potent and selective MST1 kinase inhibitor based on a ruthenium half-sandwich scaffold. We show that the enantiopure organoruthenium inhibitor, 9E1, has an IC50 value of 45 nM for MST1 and a greater than 25-fold inhibitor selectivity over the related Ste-20 kinases, p21 activated kinase 1 (PAK1), and p21 activated kinase 4 (PAK4) and an almost 10-fold selectivity over the related Thousand and one amino acids kinase 2 (TAO2). Compound 9E1 also displays a promising selectivity profile against unrelated protein kinases, however, the proto-oncogene serine/threonine protein kinase PIM1 (PIM-1) and glycogen synthase kinase 3 (GSK-3β) are inhibited with IC50 values in the low nanomolar range. We also show that 9E1 can inhibit MST1 function in cells. A cocrystal structure of a related compound with PIM-1 and a homology model with MST1 reveals the binding mode of this scaffold to MST1 and provides a starting point for the development of improved MST1 kinase inhibitors for possible therapeutic application. PMID:19226137

  4. Structure-based design of low-nanomolar PIM kinase inhibitors.

    PubMed

    Ishchenko, Alexey; Zhang, Lin; Le Brazidec, Jean-Yves; Fan, Junhua; Chong, Jer Hong; Hingway, Aparna; Raditsis, Annie; Singh, Latika; Elenbaas, Brian; Hong, Victor Sukbong; Marcotte, Doug; Silvian, Laura; Enyedy, Istvan; Chao, Jianhua

    2015-02-01

    PIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket. We show the SAR suggesting the importance of having a hydrogen bond donor in this pocket for inhibiting PIM2; however, this interaction is not important for inhibiting PIM1 or PIM3. In addition, we report the discovery of a new class of PIM inhibitors by using computational de novo design tool implemented in MOE software (Chemical Computing Group). These inhibitors have a different interaction profile.

  5. Structure-based design of low-nanomolar PIM kinase inhibitors.

    PubMed

    Ishchenko, Alexey; Zhang, Lin; Le Brazidec, Jean-Yves; Fan, Junhua; Chong, Jer Hong; Hingway, Aparna; Raditsis, Annie; Singh, Latika; Elenbaas, Brian; Hong, Victor Sukbong; Marcotte, Doug; Silvian, Laura; Enyedy, Istvan; Chao, Jianhua

    2015-02-01

    PIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket. We show the SAR suggesting the importance of having a hydrogen bond donor in this pocket for inhibiting PIM2; however, this interaction is not important for inhibiting PIM1 or PIM3. In addition, we report the discovery of a new class of PIM inhibitors by using computational de novo design tool implemented in MOE software (Chemical Computing Group). These inhibitors have a different interaction profile. PMID:25575657

  6. PIM kinases: an overview in tumors and recent advances in pancreatic cancer.

    PubMed

    Xu, Jianwei; Zhang, Taiping; Wang, Tianxiao; You, Lei; Zhao, Yupei

    2014-04-01

    The PIM kinases represent a family of serine/threonine kinases, which is composed of three different members (PIM1, PIM2 and PIM3). Aberrant expression of PIM kinases is observed in variety of tumors, including pancreatic cancer. The PIM kinases play pivotal roles in the regulation of cell cycle, apoptosis, properties of stem cells, metabolism, autophagy, drug resistance and targeted therapy. The roles of PIM kinases in pancreatic cancer include the regulation of proliferation, apoptosis, cell cycle, formation, angiogenesis and prediction prognosis. Blocking the activities of PIM kinases could prevent pancreatic cancer development. PIM kinases may be a novel target for cancer therapy. PMID:24799066

  7. Mapping of the Pim-1 oncogene in mouse t-haplotypes and its use to define the relative map positions of the tcl loci t0(t6) and tw12 and the marker tf (tufted).

    PubMed

    Ark, B; Gummere, G; Bennett, D; Artzt, K

    1991-06-01

    Pim-1 is an oncogene activated in mouse T-cell lymphomas induced by Moloney and AKR mink cell focus (MCF) viruses. Pim-1 was previously mapped to chromosome 17 by somatic cell hybrids, and subsequently to the region between the hemoglobin alpha-chain pseudogene 4 (Hba-4ps) and the alpha-crystalline gene (Crya-1) by Southern blot analysis of DNA obtained from panels of recombinant inbred strains. We have now mapped Pim-1 more accurately in t-haplotypes by analysis of recombinant t-chromosomes. The recombinants were derived from Tts6tf/t12 parents backcrossed to + tf/ + tf, and scored for recombination between the loci of T and tf. For simplicity all t-complex lethal genes properly named tcl-tx are shortened to tx. The Pim-1 gene was localized 0.6 cM proximal to the tw12 lethal gene, thus placing the Pim-1 gene 5.2 cM distal to the H-2 region in t-haplotypes. Once mapped, the Pim-1 gene was used as a marker for further genetic analysis of t-haplotypes. tw12 is so close to tf that even with a large number of recombinants it was not possible to determine whether it is proximal or distal to tf. Southern blot analysis of DNA from T-tf recombinants with a separation of tw12 and tf indicated that tw12 is proximal to tf. The mapping of two allelic t-lethals, t0 and t6 with respect to tw12 and tf has also been a problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The PIM family of oncoproteins: small kinases with huge implications in myeloid leukemogenesis and as therapeutic targets.

    PubMed

    Saurabh, Kumar; Scherzer, Michael T; Shah, Parag P; Mims, Alice S; Lockwood, William W; Kraft, Andrew S; Beverly, Levi J

    2014-09-30

    PIM kinases are a family of serine/threonine kinases involved in cell survival and proliferation. There is significant structural similarity between the three PIM kinases (PIM1, PIM2 and PIM3) and only few amino acid differences. Although, several studies have specifically monitored the role of PIM1 in tumorigenesis, much less is known about PIM2 and PIM3. Therefore, in this study we have used in vitro cell culture models and in vivo bone marrow infection/transplantation to assess the comparative signaling and oncogenic potential of each of the three PIM kinases. All three PIM kinases were able to protect FL5.12 cells from IL3 withdrawal induced death. Interestingly, the downstream signaling cascades were indistinguishable between the three kinases. Transplantation of murine bone marrow co-expressing MYC and PIM1, PIM2 or PIM3 caused rapid and uniformly lethal myeloid leukemia. De-induction of MYC 18 days following transplantation significantly increased the survival of mice, even with continual expression of PIM kinases. Alternatively, mice treated at the pre-leukemic stage with a PIM kinase inhibitor increased the lifespan of the mice, even with continual expression of the MYC transgene. These data demonstrate the role of PIM kinases in driving myeloid leukemia, and as candidate molecules for therapy against human malignancies. PMID:25238262

  9. Photo-physics study of an hydroxy-quinoline derivative as inhibitor of Pim-1 kinase: ultraviolet-visible linear dichroism spectroscopy and quantum chemical calculations.

    PubMed

    Lamhasni, T; Ait Lyazidi, S; Hnach, M; Haddad, M; Desmaële, D; Spanget-Larsen, J; Nguyen, D D; Ducasse, L

    2013-09-01

    The photophysical properties of the antiviral 7-nicotinoyl-styrylquinoline (MB96) were investigated by means of UV-Vis linear dichroism (LD) spectroscopy on molecular samples aligned in stretched polyvinylalcohol (PVA), supported by time dependent density functional theory (TD-DFT) calculations. Experimentally, the directions of the transitions moments with respect to the long axis of the molecule were deduced from the orientation K factors, determined by means of "trial-and-error" procedure. The absorption spectrum presents two parts. The main transition in the lowest energy part, observed around 365 nm and showing the highest K value 0.8, is longitudinally in-plane polarized. The highest energy part which is extended between 230 and 320 nm, large, diffuse, and of weak intensity, shows estimated K values between 0.2 and 0.5. This complex structure is transversally polarized with some contamination by the longitudinal character of the first strong band. The TD-DFT results agree fairly well with the LD measurements.

  10. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.

    PubMed

    Cozza, Giorgio; Sarno, Stefania; Ruzzene, Maria; Girardi, Cristina; Orzeszko, Andrzej; Kazimierczuk, Zygmunt; Zagotto, Giuseppe; Bonaiuto, Emanuela; Di Paolo, Maria Luisa; Pinna, Lorenzo A

    2013-07-01

    Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 values<100nM) and remarkable selectivity. TDB, unlike other dual PIM1/CK2 inhibitors described in the literature is readily cell permeable and displays a cytotoxic effect on cancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). PMID:23360763

  11. Dissecting and Reconstructing Synergism

    PubMed Central

    Ganner, Thomas; Bubner, Patricia; Eibinger, Manuel; Mayrhofer, Claudia; Plank, Harald; Nidetzky, Bernd

    2012-01-01

    Cellulose is the most abundant biopolymer and a major reservoir of fixed carbon on earth. Comprehension of the elusive mechanism of its enzymatic degradation represents a fundamental problem at the interface of biology, biotechnology, and materials science. The interdependence of cellulose disintegration and hydrolysis and the synergistic interplay among cellulases is yet poorly understood. Here we report evidence from in situ atomic force microscopy (AFM) that delineates degradation of a polymorphic cellulose substrate as a dynamic cycle of alternating exposure and removal of crystalline fibers. Direct observation shows that chain-end-cleaving cellobiohydrolases (CBH I, CBH II) and an internally chain-cleaving endoglucanase (EG), the major components of cellulase systems, take on distinct roles: EG and CBH II make the cellulose surface accessible for CBH I by removing amorphous-unordered substrate areas, thus exposing otherwise embedded crystalline-ordered nanofibrils of the cellulose. Subsequently, these fibrils are degraded efficiently by CBH I, thereby uncovering new amorphous areas. Without prior action of EG and CBH II, CBH I was poorly active on the cellulosic substrate. This leads to the conclusion that synergism among cellulases is morphology-dependent and governed by the cooperativity between enzymes degrading amorphous regions and those targeting primarily crystalline regions. The surface-disrupting activity of cellulases therefore strongly depends on mesoscopic structural features of the substrate: size and packing of crystalline fibers are key determinants of the overall efficiency of cellulose degradation. PMID:23118223

  12. Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1.

    PubMed

    Gu, Hao; Liu, Mingzhu; Ding, Changmao; Wang, Xin; Wang, Rui; Wu, Xinyu; Fan, Ruitai

    2016-06-01

    Cancer cells in hypoxia usually make adaptive changes in cellular metabolism, such as altered autophagy. This might be a cause of enhanced radioresistance in some types of cancer. In this study, we investigated hypoxia-responsive miRNAs in two prostate cancer cell lines (DU145 and PC3). This study firstly reported that hypoxia induces further downregulation of miR-124 and miR-144, which might be a result of impaired dicer expression. These two miRNAs can simultaneously target 3'UTR of PIM1. Functional study showed that miR-124 or miR-144 overexpression can inhibit hypoxia-induced autophagy and enhance radiosensitivity at least via downregulating PIM1. Therefore, hypoxia induced miR-124 and miR-144 downregulation may contribute to a prosurvival mechanism of prostate cancer cells to hypoxia and irradiation at least through attenuated suppressing of PIM1. This finding presents a potential therapeutic target for prostate cancer. PMID:26990493

  13. Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors.

    PubMed

    Burger, Matthew T; Han, Wooseok; Lan, Jiong; Nishiguchi, Gisele; Bellamacina, Cornelia; Lindval, Mika; Atallah, Gordana; Ding, Yu; Mathur, Michelle; McBride, Chris; Beans, Elizabeth L; Muller, Kristine; Tamez, Victoriano; Zhang, Yanchen; Huh, Kay; Feucht, Paul; Zavorotinskaya, Tatiana; Dai, Yumin; Holash, Jocelyn; Castillo, Joseph; Langowski, John; Wang, Yingyun; Chen, Min Y; Garcia, Pablo D

    2013-12-12

    Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described. PMID:24900629

  14. Long-term exposure of E-mu-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence.

    PubMed

    Utteridge, Tammy D; Gebski, Val; Finnie, John W; Vernon-Roberts, Barrie; Kuchel, Tim R

    2002-09-01

    A total of 120 E mu-Pim1 heterozygous mice and 120 wild-type mice were exposed for 1 h/day 5 days/week at each of the four exposure levels in "Ferris-wheel" exposure systems for up to 104 weeks to GSM-modulated 898.4 MHz radiation at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg. In addition, 120 heterozygous and 120 wild-type mice were sham-exposed; there was also an unrestrained negative control group. Four exposure levels were used to investigate whether a dose-response effect could be detected. Independent verification confirmed that the exposures in the current study were nonthermal. There was no significant difference in the incidence of lymphomas between exposed and sham-exposed groups at any of the exposure levels. A dose-response effect was not detected. The findings showed that long-term exposures of lymphoma-prone mice to 898.4 MHz GSM radiofrequency (RF) radiation at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg had no significant effects when compared to sham-irradiated animals. A previous study (Repacholi et al., Radiat. Res. 147, 631-640, 1997) reported that long-term exposure of lymphoma-prone mice to one exposure level of 900 MHz RF radiation significantly increased the incidence of non-lymphoblastic lymphomas when compared to sham-irradiated animals. PMID:12175314

  15. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers

    PubMed Central

    Brault, Laurent; Gasser, Christelle; Bracher, Franz; Huber, Kilian; Knapp, Stefan; Schwaller, Jürg

    2010-01-01

    The identification as cooperating targets of Proviral Integrations of Moloney virus in murine lymphomas suggested early on that PIM serine/threonine kinases play an important role in cancer biology. Whereas elevated levels of PIM1 and PIM2 were mostly found in hematologic malignancies and prostate cancer, increased PIM3 expression was observed in different solid tumors. PIM kinases are constitutively active and their activity supports in vitro and in vivo tumor cell growth and survival through modification of an increasing number of common as well as isoform-specific substrates including several cell cycle regulators and apoptosis mediators. PIM1 but not PIM2 seems also to mediate homing and migration of normal and malignant hematopoietic cells by regulating chemokine receptor surface expression. Knockdown experiments by RNA interference or dominant-negative acting mutants suggested that PIM kinases are important for maintenance of a transformed phenotype and therefore potential therapeutic targets. Determination of the protein structure facilitated identification of an increasing number of potent small molecule PIM kinase inhibitors with in vitro and in vivo anticancer activity. Ongoing efforts aim to identify isoform-specific PIM inhibitors that would not only help to dissect the kinase function but hopefully also provide targeted therapeutics. Here, we summarize the current knowledge about the role of PIM serine/threonine kinases for the pathogenesis and therapy of hematologic malignancies and solid cancers, and we highlight structural principles and recent progress on small molecule PIM kinase inhibitors that are on their way into first clinical trials. PMID:20145274

  16. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma.

    PubMed

    Yang, Qingshan; Chen, Lisa S; Neelapu, Sattva S; Miranda, Roberto N; Medeiros, L Jeffrey; Gandhi, Varsha

    2012-10-25

    Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small molecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL. PMID:22955922

  17. The PIM family of serine/threonine kinases in cancer.

    PubMed

    Narlik-Grassow, Maja; Blanco-Aparicio, Carmen; Carnero, Amancio

    2014-01-01

    The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets. PMID:23576269

  18. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression

    PubMed Central

    Li, Ying-Yi; Mukaida, Naofumi

    2014-01-01

    Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer. PMID:25071334

  19. Linking off-target kinase pharmacology to the differential cellular effects observed among PARP inhibitors.

    PubMed

    Antolín, Albert A; Mestres, Jordi

    2014-05-30

    PARP inhibitors hold promise as a novel class of targeted anticancer drugs. However, their true mechanism of action is still not well understood following recent reports that show marked differences in cellular effects. Here, we demonstrate that three PARP drug candidates, namely, rucaparib, veliparib, and olaparib, have a clearly different in vitro affinity profile across a panel of diverse kinases selected using a computational approach that relates proteins by ligand similarity. In this respect, rucaparib inhibits nine kinases with micromolar affinity, including PIM1, PIM2, PRKD2, DYRK1A, CDK1, CDK9, HIPK2, CK2, and ALK. In contrast, olaparib does not inhibit any of the sixteen kinases tested. In between, veliparib inhibits only two, namely, PIM1 and CDK9. The differential kinase pharmacology observed among PARP inhibitors provides a plausible explanation to their different cellular effects and offers unexplored opportunities for this drug class, but alerts also on the risk associated to transferring directly both preclinical and clinical outcomes from one PARP drug candidate to another. PMID:24632590

  20. Identification of pim kinases as novel targets for PJ34 with confounding effects in PARP biology.

    PubMed

    Antolín, Albert A; Jalencas, Xavier; Yélamos, José; Mestres, Jordi

    2012-12-21

    Small molecules are widely used in chemical biology without complete knowledge of their target profile, at risk of deriving conclusions that ignore potential confounding effects from unknown off-target interactions. The prediction and further experimental confirmation of novel affinities for PJ34 on Pim1 (IC(50) = 3.7 μM) and Pim2 (IC(50) = 16 μM) serine/threonine kinases, together with their involvement in many of the processes relevant to PARP biology, questions the appropriateness of using PJ34 as a chemical tool to probe the biological role of PARP1 and PARP2 at the high micromolar concentrations applied in most studies. PMID:23025350

  1. Environmental synergisms and extinctions of tropical species.

    PubMed

    Laurance, William F; Useche, Diana C

    2009-12-01

    Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni-corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic-species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation. PMID:20078643

  2. Reconceptualizing synergism and antagonism among multiple stressors

    PubMed Central

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of synergism is paradoxical because what is synergistic to one stressor's effect direction is antagonistic to the others. In their highly cited meta-analysis, Crain et al. (Ecology Letters, 11, 2008: 1304) assumed in situations with opposing individual effects that synergy only occurs when the cumulative effect is more negative than the additive sum of the opposing individual effects. We argue against this and propose a new systematic classification based on an additive effects model that combines the magnitude and response direction of the cumulative effect and the interaction effect. A new class of “mitigating synergism” is identified, where cumulative effects are reversed and enhanced. We applied our directional classification to the dataset compiled by Crain et al. (Ecology Letters, 11, 2008: 1304) to determine the prevalence of synergistic, antagonistic, and additive interactions. Compared to their original analysis, we report differences in the representation of interaction classes by interaction type and we document examples of mitigating synergism, highlighting the importance of incorporating individual stressor effect directions in the determination of synergisms and antagonisms. This is particularly pertinent given a general bias in ecology toward investigating and reporting adverse multiple stressor effects (double negative). We emphasize the need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where

  3. Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors.

    PubMed

    Pettus, Liping H; Andrews, Kristin L; Booker, Shon K; Chen, Jie; Cee, Victor J; Chavez, Frank; Chen, Yuping; Eastwood, Heather; Guerrero, Nadia; Herberich, Bradley; Hickman, Dean; Lanman, Brian A; Laszlo, Jimmy; Lee, Matthew R; Lipford, J Russell; Mattson, Bethany; Mohr, Christopher; Nguyen, Yen; Norman, Mark H; Powers, David; Reed, Anthony B; Rex, Karen; Sastri, Christine; Tamayo, Nuria; Wang, Paul; Winston, Jeffrey T; Wu, Bin; Wu, Tian; Wurz, Ryan P; Xu, Yang; Zhou, Yihong; Tasker, Andrew S; Wang, Hui-Ling

    2016-07-14

    The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable. However, cell active pan-Pim inhibitors have proven difficult to develop because Pim-2 has a low Km for ATP and therefore requires a very potent inhibitor to effectively block the kinase activity at cellular ATP concentrations. Herein, we report a series of quinazolinone-pyrrolopyrrolones as potent and selective pan-Pim inhibitors. In particular, compound 17 is orally efficacious in a mouse xenograft model (KMS-12 BM) of multiple myeloma, with 93% tumor growth inhibition at 50 mg/kg QD upon oral dosing. PMID:27285051

  4. Piperlongumine and immune cytokine TRAIL synergize to promote tumor death

    PubMed Central

    Li, Jiahe; Sharkey, Charles C.; King, Michael R.

    2015-01-01

    Malignant transformation results in increased levels of reactive oxygen species (ROS). Adaption to this toxic stress allows cancer cells to proliferate. Recently, piperlongumine (PL), a natural alkaloid, was identified to exhibit novel anticancer effects by targeting ROS signaling. PL induces apoptosis specifically in cancer cells by downregulating several anti-apoptotic proteins. Notably, the same anti-apoptotic proteins were previously found to reduce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in cancer cells. Therefore, we reasoned that PL would synergize with TRAIL to stimulate potent apoptosis in cancer cells. We demonstrate for the first time that PL and TRAIL exhibit a synergistic anti-cancer effect in cancer cell lines of various origins. PL resulted in the upregulation of TRAIL receptor DR5, which potentiated TRAIL-induced apoptosis in cancer cells. Furthermore, such upregulation was found to be dependent on ROS and the activation of JNK and p38 kinases. Treatment with combined PL and TRAIL demonstrated significant anti-proliferative effects in a triple-negative breast cancer MDA-MB-231 xenograft model. This work provides a novel therapeutic approach for inducing cancer cell death. Combination of PL and TRAIL may suggest a novel paradigm for treatment of primary and metastatic tumors. PMID:25984950

  5. Discovery of 3H-Benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as Potent, Highly Selective, and Orally Bioavailable Inhibitors of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM) Kinases

    SciTech Connect

    Tao, Zhi-Fu; Hasvold, Lisa A.; Leverson, Joel D.; Han, Edward K.; Guan, Ran; Johnson, Eric F.; Stoll, Vincent S.; Stewart, Kent D.; Stamper, Geoff; Soni, Nirupama; Bouska, Jennifer J.; Luo, Yan; Sowin, Thomas J.; Lin, Nan-Horng; Giranda, Vincent S.; Rosenberg, Saul H.; Penning, Thomas D.

    2010-02-19

    Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K{sub i} values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies. Multiple compounds exhibited potent antiproliferative activity in K562 and MV4-11 cells with submicromolar EC{sub 50} values. For example, compound 14j inhibited the growth of K562 cells with an EC{sub 50} value of 1.7 {micro}M and showed K{sub i} values of 2, 3, and 0.5 nM against Pim-1, Pim-2, and Pim-3, respectively. These novel Pim kinase inhibitors efficiently interrupted the phosphorylation of Bad in both K562 and LnCaP-Bad cell lines, indicating that their potent biological activities are mechanism-based. The pharmacokinetics of 14j was studied in CD-1 mice and shown to exhibit bioavailability of 76% after oral dosing. ADME profiling of 14j suggested a long half-life in both human and mouse liver microsomes, good permeability, modest protein binding, and no CYP inhibition below 20 {micro}M concentration.

  6. Synthesis, resolution, and biological evaluation of atropisomeric (aR)- and (aS)-16-methyllamellarins N: unique effects of the axial chirality on the selectivity of protein kinases inhibition.

    PubMed

    Yoshida, Kenyu; Itoyama, Ryosuke; Yamahira, Masashi; Tanaka, Junji; Loaëc, Nadège; Lozach, Olivier; Durieu, Emilie; Fukuda, Tsutomu; Ishibashi, Fumito; Meijer, Laurent; Iwao, Masatomo

    2013-09-26

    The total synthesis of the optically active (aR)- and (aS)-16-methyllamellarins N (3a and 3b) was achieved via resolution on HPLC chiral stationary phase. The kinase inhibitory activities of both enantiomers were evaluated on eight protein kinases relevant to cancer and neurodegenerative diseases (CDK1/cyclin B, CDK2/cyclin A, CDK5/p25, GSK-3α/β, PIM1, DYRK1A, CLK3, and CK1). Isomer (aR)-3b exhibited potent but nonselective inhibition on all protein kinases except CK1, while (aS)-3a selectively inhibited only GSK-3α/β, PIM1, and DYRK1A. The different inhibition profiles of (aS)-3a and (aR)-3b were elucidated by docking simulation studies. Although parental lamellarin N (2) inhibited the action of topoisomerase I, both (aS)-3a and (aR)-3b showed no inhibition of this enzyme. The phenotypic cytotoxic activities of 2, (aS)-3a, and (aR)-3b on three cancer cell lines (HeLa, SH-SY5Y, and IMR32) changed according to their topoisomerase I and protein kinase inhibitory activities. PMID:23981088

  7. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues.

  8. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues. PMID:26529487

  9. Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes

    SciTech Connect

    Maksimoska, Jasna; Feng, Li; Harms, Klaus; Yi, Chunling; Kissil, Joseph; Marmorstein, Ronen; Meggers, Eric

    2009-09-02

    A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds {Lambda}-FL172 and {Lambda}-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 {angstrom}cocrystal structure of PAK1 with {Lambda}-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.

  10. African swine fever virus encodes a serine protein kinase which is packaged into virions.

    PubMed Central

    Baylis, S A; Banham, A H; Vydelingum, S; Dixon, L K; Smith, G L

    1993-01-01

    Nucleotide sequencing of the SalI j region of the virulent Malawi (LIL20/1) strain of African swine fever virus (ASFV) identified an open reading frame (ORF), designated j9L, with extensive similarity to the family of protein kinases. This ORF encodes a 35.1-kDa protein of 299 amino acids which shares 24.6% amino acid identity with the human pim-1 proto-oncogene and 21.0% identity with the vaccinia virus B1R-encoded protein kinase. The ASFV ORF contains the motifs characteristic of serine-threonine protein kinases, with the exception of the presumed ATP-binding site, which is poorly conserved. The ORF was expressed to high levels in Escherichia coli, and the recombinant enzyme phosphorylated a calf thymus histone protein on serine residues in vitro. An antibody raised to an amino-terminal peptide of the ASFV protein kinase was reactive with the recombinant protein in Western immunoblot analyses and was used to demonstrate the presence of the protein kinase in ASF virions. Images PMID:8331722

  11. Synergism between maggot excretions and antibiotics.

    PubMed

    Cazander, Gwendolyn; Pawiroredjo, Janity S; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-01-01

    Maggots are successfully used to treat severe, infected wounds. This study investigated whether maggot excretions/secretions influence the antibacterial activity of different antibiotics. Minimal inhibitory concentrations and minimal bactericidal concentrations (MBC) were determined of gentamicin and flucloxacillin for Staphylococcus aureus, of penicillin for Streptococcus pyogenes, of amoxicillin and vancomycin for Enterococcus faecalis, of gentamicin for Enterobacter cloacae, and of gentamicin, tobramycin, and ciprofloxacin for Pseudomonas aeruginosa by checkerboard titration. A range of concentrations of antibiotics in combination with excretions/secretions was examined to investigate the potential of maggot excretions/secretions to affect antibacterial activity. The results showed a dose-dependent increase of the antibacterial effect of gentamicin in the presence of excretions/secretions on S. aureus. Minimal concentrations and MBC of gentamicin decreased, respectively, 64- and 32-fold. The MBC of flucloxacillin and excretions/secretions against S. aureus were also decreased. The other antibiotic and excretions/secretions combinations exerted an indifferent effect. Excretions/secretions alone did not have any antibacterial effect. The synergism between gentamicin and maggot excretions/secretions could be of direct importance in clinical practice, because it could allow the use of lower doses of gentamicin and thus minimize the risk of gentamicin-related side effects.

  12. TIGERZ I: Aerosols, Monsoon and Synergism

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Tripathi, S. N.; Schafer, J. S.; Giles, D. M.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Krishnmoorthy, K.; Sorokin, M. G.; Newcomb, W. W.; Tran, A. K.; Sikka, D. R.; Goloub, P.; O'Neill, N. T.; Abboud, I.; Randles, C.; Niranjan, K.; Dumka, U. C.; Tiwari, S.; Devara, P. C.; Kumar, S.; Remer, L. A.; Kleidman, R.; Martins, J. V.; Kahn, R.

    2008-12-01

    The Indo-Gangetic Plain of northern India encompasses a vast complex of urban and rural landscapes, cultures that serve as anthropogenic sources of fine mode aerosols mixed with coarse mode particles transported from SW Asia. The summer monsoon and fall Himalayan snowmelt provide the agricultural productivity to sustain an extremely high population density whose affluence is increasing. Variations in the annual monsoon precipitation of 10% define drought, normal and a wet season; the net effects on the ecosystems and quality of life can be dramatic. Clearly investigation of anthropogenic and natural aerosol impacts on the monsoon, either through the onset, monsoon breaks or end points are a great concern to understand and ultimately mitigate. Many national and international field campaigns are being planned and conducted to study various aspects of the Asian monsoon and some coordinated under the Asian Monsoon Years (AMY) umbrella. A small program called TIGERZ conducted during the pre-monsoon of 2008 in North Central India can serve as a model for contributing significant resources to existing field programs while meeting immediate project goals. This poster will discuss preliminary results of the TIGERZ effort including ground-based measurements of aerosol properties in the I-G from AERONET and synergism with various Indian programs, satellite observations and aerosol modeling efforts.

  13. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation.

    PubMed

    Tahvanainen, Johanna; Kyläniemi, Minna K; Kanduri, Kartiek; Gupta, Bhawna; Lähteenmäki, Hanna; Kallonen, Teemu; Rajavuori, Anna; Rasool, Omid; Koskinen, Päivi J; Rao, Kanury V S; Lähdesmäki, Harri; Lahesmaa, Riitta

    2013-02-01

    The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets. PMID:23209281

  14. Developmental synergism of steroidal estrogens in sex determination.

    PubMed Central

    Bergeron, J M; Willingham, E; Osborn, C T; Rhen, T; Crews, D

    1999-01-01

    Gonadal sex in the red-eared slider turtle, Trachemys scripta, is determined by incubation temperature during embryonic development. Evidence suggests that temperature determines sex by influencing steroid hormone metabolism and/or sensitivity: steroidogenic enzyme inhibitors or exogenous sex steroid hormones and their man-made analogs override (or enhance) temperature effects on sex determination. Specifically, nonaromatizable androgens and aromatase inhibitors induce testis differentiation at female-producing temperatures, whereas aromatizable androgens and estrogens induce ovary differentiation at male-producing temperatures. Moreover, natural estrogens and temperature synergize to produce more females than would be expected if estrogens and temperature had purely additive effects on sex determination. In this study, we use sex reversal of turtle embryos incubated at a male-producing temperature to examine synergism among steroidal estrogens: estrone, 17ss-estradiol, and estriol. A low dose of 17ss-estradiol (200 ng) showed significant synergism when administered with a single low dose of estriol (10 ng). Likewise, a single low dose of estrone (250 ng) had a synergistic effect when combined with the same low dose of estriol (10 ng). We conclude that the weak natural estrogens estrone and 17ss-estradiol synergize with a low dose of the more potent estriol to reverse gonadal sex during the critical period of sexual differentiation. These results suggest that weak environmental estrogens may also synergize with stronger natural estrogens. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924002

  15. PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways.

    PubMed

    Meja, Koremu; Stengel, Chloe; Sellar, Rob; Huszar, Dennis; Davies, Barry R; Gale, Rosemary E; Linch, David C; Khwaja, Asim

    2014-10-01

    PIM kinases (PIM1, 2 and 3) are involved in cell proliferation and survival signalling and are emerging targets for the therapy of various malignancies. We found that a significant proportion of primary acute myeloid leukaemia (AML) samples showed PIM1 and PIM2 expression by quantitative reverse transcription polymerase chain reaction. Therefore, we investigated the effects of a novel ATP-competitive pan-PIM inhibitor, AZD1897, on AML cell growth and survival. PIM inhibition showed limited single agent activity in AML cell lines and primary AML cells, including those with or without FLT3-internal tandem duplication (ITD) mutation. However, significant synergy was seen when AZD1897 was combined with the Akt inhibitor AZD5363, a compound that is in early-phase clinical trials. AML cells from putative leukaemia stem cell subsets, including CD34+38- and CD34+38+ fractions, were equivalently affected by dual PIM/Akt inhibition when compared with bulk tumour cells. Analysis of downstream signalling pathways showed that combined PIM/Akt inhibition downregulated mTOR outputs (phosphorylation of 4EBP1 and S6) and markedly reduced levels of the anti-apoptotic protein MCL1. The combination of PIM and Akt inhibition holds promise for the treatment of AML. PMID:24975213

  16. Synergism between soluble and dietary fiber bound antioxidants.

    PubMed

    Çelik, Ecem Evrim; Gökmen, Vural; Skibsted, Leif H

    2015-03-01

    This study investigates the synergism between antioxidants bound to dietary fibers (DF) of grains and soluble antioxidants of highly consumed beverages or their pure antioxidants. The interaction between insoluble fractions of grains containing bound antioxidants and soluble antioxidants was investigated using (i) a liposome-based system by measuring the lag phase before the onset of oxidation and (ii) an ESR-based system by measuring the reduction percentage of Fremy's salt radical. In both procedures, antioxidant capacities of DF-bound and soluble antioxidants were measured as well as their combinations, which were prepared at different ratios. The simple addition effects of DF-bound and soluble antioxidants were compared with measured values. The results revealed a clear synergism for almost all combinations in both liposome- and ESR-based systems. The synergism observed in DF-bound-soluble antioxidant system paints a promising picture considering the role of fiber in human gastrointestinal (GI) tract health.

  17. Tests of pesticidal synergism with young pheasants and Japanese quail

    USGS Publications Warehouse

    Kreitzer, J.F.; Spann, J.W.

    1973-01-01

    Thirteen pairs of chemicals involving 18 pesticides and two polychlorinated biphenyl preparations were each fed for 5 days to Japanese quail or ring-necked pheasant chicks 7 to 16 days of age. Malathion + EPN, and malathion + trichlorofon were moderately synergistic in tests with both species, whereas joint toxicities of the other chemicals tended to be additive. Comparisons with other studies of joint action of pesticides against mammals and insects suggest that the two species of birds tested are less susceptible to synergism than are mammals or insects. The results also suggest that the likelihood of a factor of synergism greater than three in birds is not great.

  18. Synergic effect of methanol and water on pine liquefaction.

    PubMed

    Zhao, Yun-Peng; Zhu, Wei-Wei; Wei, Xian-Yong; Fan, Xing; Cao, Jing-Pei; Dou, You-Quan; Zong, Zhi-Min; Zhao, Wei

    2013-08-01

    Pine liquefaction (PL) and re-liquefaction of its liquefaction residues in sub- and supercritical methanol, water or methanol/water mixed solvents (MWMSs) was investigated. The results show that isometric MWMS has the highest synergic effect on PL. Moreover, the total yield of bio-oil (BO) and conversion from pine and its residue both liquefied in the MWMS were obvious higher than those from PL in methanol (water) and re-liquefaction of its residue in water (methanol), suggesting that the interaction between the two solvents is responsible for synergic effect. This approach facilitates understanding the mechanism for biomass liquefaction in mixed solvents and developing efficient utilization process of biomass.

  19. Enhance-Synergism and Suppression Effects in Multiple Regression

    ERIC Educational Resources Information Center

    Lipovetsky, Stan; Conklin, W. Michael

    2004-01-01

    Relations between pairwise correlations and the coefficient of multiple determination in regression analysis are considered. The conditions for the occurrence of enhance-synergism and suppression effects when multiple determination becomes bigger than the total of squared correlations of the dependent variable with the regressors are discussed. It…

  20. Mechanism of Chloramphenicol-Cephaloridine Synergism on Enterobacteriaceae

    PubMed Central

    Michel, J.; Bornstein, H.; Luboshitzky, R.; Sacks, T.

    1975-01-01

    A synergistic in vitro bactericidal effect of combinations of chloramphenicol and beta-lactams on strains of Enterobacteriaceae is described. The synergism is seen with strains which are resistant to the beta-lactam and is due to chloramphenicol-induced inhibition of beta-lactamase production. PMID:1155928

  1. The essential role of PIM kinases in sarcoma growth and bone invasion.

    PubMed

    Narlik-Grassow, Maja; Blanco-Aparicio, Carmen; Cecilia, Yolanda; Peregrina, Sandra; Garcia-Serelde, Beatriz; Muñoz-Galvan, Sandra; Cañamero, Marta; Carnero, Amancio

    2012-08-01

    PIM kinases are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM 2 and PIM 3) that are highly homologous. Their expression is mediated by the JAK/STAT signalling pathway, providing survival and cell cycle transition signals. PIM kinases are heavily targeted for anticancer drug discovery. However, very little is known about the relative contribution of the different isoforms to the tumourigenesis process in vivo, and how their individual inhibition might affect tumour growth. Taking advantage of genetically modified mice, we explored whether the inhibition of specific isoforms is required to prevent sarcomas induced by 3-methylcholanthrene carcinogenic treatment. We found that absence of Pim2 and Pim3 greatly reduced sarcoma growth to a similar extent to the absence of all three isoforms. This model of sarcoma generally produces bone invasion by the tumour cells. Lack of Pim2 and Pim3 reduced tumour-induced bone invasion by 70%, which is comparable with the reduction of tumour-induced bone invasion in the absence of all three isoforms. Similar results were obtained in mouse embryonic fibroblasts (MEFs) derived from these knockout (KO) mice, where double Pim2/3 KO MEFs already showed reduced proliferation and were resistant to oncogenic transformation by the RAS oncogene. Our data also suggest an important role of Gsk3β phosphorylation in the process of tumourigenesis. PMID:22623646

  2. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells

    PubMed Central

    Mazzacurati, Lucia; Lambert, Que T.; Pradhan, Anuradha; Griner, Lori N.; Huszar, Dennis; Reuther, Gary W.

    2015-01-01

    Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that exhibit excess mature myeloid cells, bone marrow fibrosis, and risk of leukemic transformation. Aberrant JAK2 signaling plays an etiological role in MPN formation. Because neoplastic cells in patients are largely insensitive to current anti-JAK2 therapies, effective therapies remain needed. Members of the PIM family of serine/threonine kinases are induced by JAK/STAT signaling, regulate hematopoietic stem cell growth, protect hematopoietic cells from apoptosis, and exhibit hematopoietic cell transforming properties. We hypothesized that PIM kinases may offer a therapeutic target for MPNs. We treated JAK2-V617F-dependent MPN model cells as well as primary MPN patient cells with the PIM kinase inhibitors SGI-1776 and AZD1208 and the JAK2 inhibitor ruxolitinib. While MPN model cells were rather insensitive to PIM inhibitors, combination of PIM inhibitors with ruxolitinib led to a synergistic effect on MPN cell growth due to enhanced apoptosis. Importantly, PIM inhibitor mono-therapy inhibited, and AZD1208/ruxolitinib combination therapy synergistically suppressed, colony formation of primary MPN cells. Enhanced apoptosis by combination therapy was associated with activation of BAD, inhibition of downstream components of the mTOR pathway, including p70S6K and S6 protein, and activation of 4EBP1. Importantly, PIM inhibitors re-sensitized ruxolitinib-resistant MPN cells to ruxolitinib by inducing apoptosis. Finally, exogenous expression of PIM1 induced ruxolitinib resistance in MPN model cells. These data indicate that PIMs may play a role in MPNs and that combining PIM and JAK2 kinase inhibitors may offer a more efficacious therapeutic approach for MPNs over JAK2 inhibitor mono-therapy. PMID:26472029

  3. Metabolic Dysfunction Consistent with Premature Aging Results from Deletion of Pim Kinases

    PubMed Central

    Din, Shabana; Konstandin, Mathias H; Johnson, Bevan; Emathinger, Jacqueline; Völkers, Mirko; Toko, Haruhiro; Collins, Brett; Ormachea, Lucy; Samse, Kaitlen; Kubli, Dieter A; De La Torre, Andrea; Kraft, Andrew S; Gustafsson, Asa B; Kelly, Daniel P; Sussman, Mark A

    2014-01-01

    Rationale The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention since Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight regarding cardiac mitochondrial biology and the aging phenotype. Objective Demonstrate myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. Methods and Results Cardiac myocyte senescence was evident at three months of age in Pim Triple KnockOut (PTKO) mice, where all three isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation was followed by heart failure at six months in PTKO mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMPK, exposing an energy deficiency in PTKO mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ coactivator-1 (PGC-1) α and β were diminished in PTKO hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc, a downstream target of Pim kinases. Conclusion Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics. PMID:24916111

  4. Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase-inhibitor complex crystal structure data and potential therapeutics for preterm labour.

    PubMed

    Shao, Qing-Chun; Zhang, Cui-Juan; Li, Jie

    2014-10-14

    The protein kinase C (PKC) is a family of serine/threonine kinases with a broad range of cellular targets. Members of the PKC family participate at the diverse biological events involved in cellular proliferation, differentiation and survival. The PKC isoform zeta (PKCζ) is an atypical member that has recently been found to play an essential role in promoting human uterine contractility and thus been raised as a new target for treating preterm labour and other tocolytic diseases. In this study, an integrative protocol was described to graft hundreds of inhibitor ligands from their complex crystal structures with cognate kinases into the active pocket of PKCζ and, based on the modeled structures, to evaluate the binding strength of these inhibitors to the non-cognate PKCζ receptor by using a consensus scoring strategy. A total of 32 inhibitors with top score were compiled, and eight out of them were tested for inhibitory potency against PKCζ. Consequently, five compounds, i.e. CDK6 inhibitor fisetin, PIM1 inhibitor myricetin, CDK9 inhibitor flavopiridol and PknB inhibitor mitoxantrone as well as the promiscuous kinase inhibitor staurosporine showed high or moderate inhibitory activity on PKCζ, with IC50 values of 58 ± 9, 1.7 ± 0.4, 108 ± 17, 280 ± 47 and 0.019 ± 0.004 μM, respectively, while other three compounds, including two marketed drugs dasatinib and sunitinib as well as the Rho inhibitor fasudil, have not been detected to possess observable activity. Next, based on the modeled structure data we modified three flavonoid kinase inhibitors, i.e. fisetin, myricetin and flavopiridol, to generate a number of more potential molecular entities, two of which were found to have a moderately improved activity as compared to their parent compounds.

  5. Mechanism and Synergism in Epithelial Fluid and Electrolyte Secretion

    PubMed Central

    Hong, Jeong Hee; Park, Seonghee; Shcheynikov, Nikolay; Muallem, Shmuel

    2014-01-01

    A central function of epithelia is the control of the volume and electrolyte composition of bodily fluids through vectorial transport of electrolytes and the obligatory H2O. In exocrine glands fluid and electrolyte secretion is carried out by both acinar and duct cells, with the portion of fluid secreted by each cell type vary among glands. All acinar cells secrete isotonic, plasma-like fluid, while the duct determines the final electrolyte composition of the fluid by absorbing most of the Cl− and secreting HCO3−. The key transporters mediating acinar fluid and electrolyte secretion are the basolateral Na+/K+/2Cl− cotransporter, the luminal Ca2+-activated Cl− channel ANO1 and basolateral and luminal Ca2+-activated K+ channels. Ductal fluid and HCO3− secretion are mediated by the basolateral membrane Na+-HCO3− cotransporter NBCe1-B and the luminal membrane Cl−/HCO3− exchanger slc26a6 and the Cl− channel CFTR. The function of the transporters is regulated by multiple inputs, which in the duct include major regulation by the WNK/SPAK pathway that inhibit secretion and the IRBIT/PP1 pathway that antagonize the effects of the WNK/SPAK pathway to both stimulate and coordinate the secretion. The function of these regulatory pathways in secretory glands acinar cells is yet to be examined. An important concept in biology is synergism among signaling pathways to generate the final physiological response that ensures regulation with high fidelity and guards against cell toxicity. While synergism is observed in all epithelial functions, the molecular mechanism mediating the synergism is not known. Recent work reveals a central role for IRBIT as a third messenger that integrates and synergizes the function of the Ca2+ and cAMP signaling pathways in activation of epithelial fluid and electrolyte secretion. These concepts are discussed in this review using secretion by the pancreatic and salivary gland ducts as model systems. PMID:24240699

  6. Endo-exo Synergism in Cellulose Hydrolysis Revisited*

    PubMed Central

    Jalak, Jürgen; Kurašin, Mihhail; Teugjas, Hele; Väljamäe, Priit

    2012-01-01

    Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and “steady state” conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the “steady state” rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on 14C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios. PMID:22733813

  7. Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B.

    PubMed

    Tahtouh, Tania; Elkins, Jonathan M; Filippakopoulos, Panagis; Soundararajan, Meera; Burgy, Guillaume; Durieu, Emilie; Cochet, Claude; Schmid, Ralf S; Lo, Donald C; Delhommel, Florent; Oberholzer, Anselm E; Pearl, Laurence H; Carreaux, François; Bazureau, Jean-Pierre; Knapp, Stefan; Meijer, Laurent

    2012-11-01

    DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) are implicated in the onset and development of Alzheimer's disease and Down syndrome. The marine sponge alkaloid leucettamine B was recently identified as an inhibitor of DYRKs/CLKs. Synthesis of analogues (leucettines) led to an optimized product, leucettine L41. Leucettines were cocrystallized with DYRK1A, DYRK2, CLK3, PIM1, and GSK-3β. The selectivity of L41 was studied by activity and interaction assays of recombinant kinases and affinity chromatography and competition affinity assays. These approaches revealed unexpected potential secondary targets such as CK2, SLK, and the lipid kinase PIKfyve/Vac14/Fig4. L41 displayed neuroprotective effects on glutamate-induced HT22 cell death. L41 also reduced amyloid precursor protein-induced cell death in cultured rat brain slices. The unusual multitarget selectivity of leucettines may account for their neuroprotective effects. This family of kinase inhibitors deserves further optimization as potential therapeutics against neurodegenerative diseases such as Alzheimer's disease. PMID:22998443

  8. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  9. Multi-gate synergic modulation in laterally coupled synaptic transistors

    NASA Astrophysics Data System (ADS)

    Zhu, Li Qiang; Xiao, Hui; Liu, Yang Hui; Wan, Chang Jin; Shi, Yi; Wan, Qing

    2015-10-01

    Laterally coupled oxide-based synaptic transistors with multiple gates are fabricated on phosphorosilicate glass electrolyte films. Electrical performance of the transistor can be evidently improved when the device is operated in a tri-gate synergic modulation mode. Excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked, and PPF index can be effectively tuned by the voltage applied on the modulatory terminal. At last, superlinear to sublinear synaptic integration regulation is also mimicked by applying a modulatory pulse on the third modulatory terminal. The multi-gate oxide-based synaptic transistors may find potential applications in biochemical sensors and neuromorphic systems.

  10. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Insulin receptor substrate 1 is a substrate of the Pim protein kinases

    PubMed Central

    Song, Jin H.; Padi, Sathish K. R.; Luevano, Libia A.; Minden, Mark D.; DeAngelo, Daniel J.; Hardiman, Gary; Ball, Lauren E.; Warfel, Noel A.; Kraft, Andrew S.

    2016-01-01

    The Pim family of serine/threonine protein kinases (Pim 1, 2, and 3) contribute to cellular transformation by regulating glucose metabolism, protein synthesis, and mitochondrial oxidative phosphorylation. Drugs targeting the Pim protein kinases are being tested in phase I/II clinical trials for the treatment of hematopoietic malignancies. The goal of these studies was to identify Pim substrate(s) that could help define the pathway regulated by these enzymes and potentially serve as a biomarker of Pim activity. To identify novel substrates, bioinformatics analysis was carried out to identify proteins containing a consensus Pim phosphorylation site. This analysis identified the insulin receptor substrate 1 and 2 (IRS1/2) as potential Pim substrates. Experiments were carried out in tissue culture, animals, and human samples from phase I trials to validate this observation and define the biologic readout of this phosphorylation. Our study demonstrates in both malignant and normal cells using either genetic or pharmacological inhibition of the Pim kinases or overexpression of this family of enzymes that human IRS1S1101 and IRS2S1149 are Pim substrates. In xenograft tumor experiments and in a human phase I clinical trial, a pan-Pim inhibitor administered in vivo to animals or humans decreased IRS1S1101 phosphorylation in tumor tissues. This phosphorylation was shown to have effects on the half-life of the IRS family of proteins, suggesting a role in insulin or IGF signaling. These results demonstrate that IRS1S1101 is a novel substrate for the Pim kinases and provide a novel marker for evaluation of Pim inhibitor therapy. PMID:26956053

  12. Regulation of Btk by Src family tyrosine kinases.

    PubMed Central

    Afar, D E; Park, H; Howell, B W; Rawlings, D J; Cooper, J; Witte, O N

    1996-01-01

    Loss of function of Bruton's tyrosine kinase (Btk) results in X-linked immunodeficiencies characterized by a broad spectrum of signaling defects, including those dependent on Src family kinase-linked cell surface receptors. A gain-of-function mutant, Btk*, induces the growth of fibroblasts in soft agar and relieves the interleukin-5 dependence of a pre-B-cell line. To genetically define Btk signaling pathways, we used a strategy to either activate or inactivate Src family kinases in fibroblasts that express Btk*. The transformation potential of Btk* was dramatically increased by coexpression with a partly activated c-Src mutant (E-378 --> G). This synergy was further potentiated by deletion of the Btk Src homology 3 domain. Downregulation of Src family kinases by the C-terminal Src kinase (Csk) suppressed Btk* activation and biological potency. In contrast, kinase-inactive Csk (K-222 --> R), which functioned as a dominant negative molecule, synergized with Btk* in biological transformation. Activation of Btk* correlated with increased phosphotyrosine on transphosphorylation and autophosphorylation sites. These findings suggest that the Src and Btk kinase families form specific signaling units in tissues in which both are expressed. PMID:8668162

  13. Synergism between permethrin and propoxur against Culex quinquefasciatus mosquito larvae.

    PubMed

    Corbel, V; Chandre, F; Darriet, F; Lardeux, F; Hougard, J-M

    2003-06-01

    To see if synergism occurs between carbamate and pyrethroid insecticides, we tested permethrin and propoxur as representatives of these two classes of compounds used for mosquito control. Larvicidal activity of both insecticides was assessed separately and together on a susceptible strain of the mosquito Culex quinquefasciatus (Diptera: Culicidae) by two methods. When mixed at a constant ratio (permethrin : propoxur 1 : 60 based on LC50) and tested at serial concentrations to plot dose/mortality regression, significant synergy occurred between them (co-toxicity coefficient = 2.2), not just an additive effect. For example, when the mixture gave 50% mortality, the same concentrations of permethrin and propoxur alone would have given merely 2 x 1% mortality. When a sublethal dose (LC0) of permethrin or propoxur was added to the other (range LC10-LC95), synergism occurred up to the LC80 level. Synergistic effects were attributed to the complementary modes of action by these two insecticide classes acting on different components of nerve impulse transmission. Apart from raising new possibilities for Culex control, it seems appropriate to consider using such mixtures or combinations for insecticide-treated mosquito nets in situations with insecticide-resistant Anopheles malaria vectors.

  14. Synergism in education: An innovative approach to practice teaching supervision

    NASA Astrophysics Data System (ADS)

    Mereni, Joseph Ibewuike

    1985-12-01

    The problem of effective teacher education is central to the pressing needs of Nigerian education at all levels. Scholars have identified many of them, including the general problems relating to the supervision, guidance, and evaluation of student-practice teaching. The purpose of this essay is briefly to describe an innovative approach undertaken by the Imo State School Board (Nigeria), in collaboration with the Ministry of Education, to resolve some of the problems identified. The underlying assumption is that the student teachers' internship is best conducted with closer collaboration, supervision, and guidance of the teachers. The study employed a theoretical framework synergism in education which integrated earlier studies by both American and Nigerian scholars. The concept of synergism has been defined as the combined healthy action of all `elements' of a system. Application of the theory showed how the State Ministry of Education, the State School Board, the Teacher Training Colleges and the Nigeria Union of Teachers of Imo State collectively resolved in 1980 the problems of inadequate supervisory personnel, high cost of student-teaching internship, and poor student assessment and evaluation. With the synergetic supervisory process, the functions of planning, changing, and decision-making about instructional improvement are shared, with a certain degree of power equalization, among the student teachers, supervisors, co-operating teachers, and the school executives.

  15. Investigation of synergism in binary mixtures of sweeteners.

    PubMed

    Schiffman, S S; Booth, B J; Carr, B T; Losee, M L; Sattely-Miller, E A; Graham, B G

    1995-01-01

    The purpose of the present study was to determine the presence and degree of synergism among all binary mixtures of 14 sweeteners varying in chemical structure. A trained panel evaluated binary combinations of the following sweeteners: three sugars (fructose, glucose, sucrose), two polyhydric alcohols (mannitol, sorbitol), two diterpenoid glycosides (rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), one sulfamate (sodium cyclamate), one protein (thaumatin), two N-sulfonyl amides (acesulfame-K, sodium saccharin), and one dihydrochalcone (neohesperidin dihydrochalcone). Each sweetener was tested at three concentrations that were isosweet with 3%, 5%, and 7% sucrose. Two methods of analysis were performed to determine synergistic effects. In Method I, an ANOVA was performed for each intensity level to determine if the mean sweetness intensity ratings of each binary mixture were equal to nominal sweetness (i.e., additivity) or not equal to nominal sweetness (i.e., synergism or suppression). In Method II, an additional ANOVA was performed to determine if the sweetness intensity ratings of any given mixture were equal to or greater than the average of the sweetness ratings of the two pure components in that blend.

  16. AZDAST the new horizon in antimicrobial synergism detection.

    PubMed

    Ziaei-Darounkalaei, Navid; Ameri, Mehrdad; Zahraei-Salehi, Taghi; Ziaei-Darounkalaei, Omid; Mohajer-Tabrizi, Tahereh; Bornaei, Lotfollah

    2016-01-01

    The attempts via introducing many methods have been conducted to select the best antibiotic combination in the treatment of seriously ill patients. Operational or interpretational complexity or time-consuming along with sufficient accuracy led to postpone routine clinical use of these tests until today, despite the urgent need for them. By this study and proposed method, selection of the best double antibiotic synergistic combination against resistant pathogen is simply same as Kirby-Bauer antibiotic susceptibility test. It seems, precise and reliable results (very low coefficient of variation) will be introduced it as a routine accurate diagnostic doubled antimicrobial synergism test.•The objective of this study was to introduce a novel method in antibiotic interaction detection.•It demonstrates high sensitivity and accuracy.•Easy implementation by routine microbiology labs materials and equipment and so easy stand-alone interpretation seems to make it friendly test be able to replacing the previous methods. PMID:27408829

  17. Synergic effects of tryptamine and octopamine on ophiuroid luminescence (Echinodermata).

    PubMed

    Vanderlinden, C; Mallefet, J

    2004-10-01

    In ophiuroids, bioluminescence is under nervous control. Previous studies have shown that acetylcholine is the main neurotransmitter triggering light emission in Amphipholis squamata and Amphiura filiformis. By contrast, none of the neurotransmitters tested so far induced luminescence in two other ophiuroid species, Ophiopsila aranea and Ophiopsila californica. The aim of this work was thus to investigate the putative involvement of two biogenic amines, tryptamine and octopamine, in light emission of three ophiuroid species. A. filiformis responds to both tryptamine and octopamine, mainly on its arm segments, while O. californica only responds to tryptamine stimulation. By contrast, tryptamine and octopamine do not seem to be involved in O. aranea luminescence control since none of these substances induced light emission in this species. The synergic effects of several other drugs with tryptamine and octopamine were also tested.

  18. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    PubMed

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  19. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    PubMed

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  20. Novel synergic antidiabetic effects of Astragalus polysaccharides combined with Crataegus flavonoids via improvement of islet function and liver metabolism.

    PubMed

    Cui, Kai; Zhang, Shaobo; Jiang, Xin; Xie, Weidong

    2016-06-01

    The present study investigated the synergic effects and potential mechanisms of action of Astragalus polysaccharides (APS) combined with Crataegus flavonoids (CF) in the treatment of type 1 diabetes. Diabetes was induced by intraperitoneal injection of 100 mg/kg streptozotocin in mice. Normal and untreated diabetic control mice were used, and CF‑treated (200 mg/kg/day), APS‑treated (200 mg/kg/day), APS + CF (AC)‑treated (200 mg/kg/day of each) and metformin‑treated (200 mg/kg/day) diabetic mice were orally administrated the appropriate therapeutic agent for 4 weeks. The results demonstrated that AC treatment significantly reduced the fasting blood glucose, food and water intake in the diabetic mice. The AC group demonstrated increased serum insulin levels and islet cell function was restored. Furthermore, the AC‑treated mice demonstrated significant increases in the protein expression levels of pancreatic and duodenal homeobox‑1 and phosphorylated adenosine 5'‑monophosphate‑activated protein kinase in the pancreatic and liver tissue samples, respectively. In addition, AC significantly increased the mRNA expression levels of neurogenin 3, v‑maf musculoaponeurotic fibrosarcoma oncogene family, protein A and insulin, and simultaneously decreased the expressions of interleukin 6, tumor necrosis factor‑α and chemokine (C‑C motif) ligand 2 in the pancreatic islet cells of diabetic mice. The anti‑inflammatory activity of APS and the islet‑restoring effect of CF may contribute to the improvement of islet function. AC exerted greater antidiabetic effects compared with APS or CF treatments alone. These results indicated that AC treatment had a synergic antidiabetic effect, which may involve improvements in islet function and liver metabolism. These effects of AC may facilitate the treatment of type 1 or 2 diabetes, as these patients frequently experience impaired islet function and disordered extrapancreatic metabolism. PMID

  1. Influence of serotype and virus strain on synergism between Marek's disease vaccine viruses.

    PubMed

    Witter, R L

    1992-12-01

    The enhanced protective effect (synergism) when certain Marek's disease (MD) vaccine viruses are combined has been widely used in the development of improved vaccines, but the mechanism is poorly understood. To better characterize the basis for synergism among MD vaccine viruses, three vaccine viruses from each of the three MD viral serotypes were evaluated alone and in various combinations for protection against early challenge with very virulent MD viruses in four replicate trials. Synergism seemed to be influenced by viral serotype because significant enhancement occurred frequently between viruses of serotypes 2 and 3 (five of nine bivalent vaccines positive), but rarely between viruses of serotypes 1 and 3 (one of nine bivalent vaccines positive) and 1 and 2 (one of nine bivalent vaccines positive), and was not detectable between viruses of the same serotype (none of nine bivalent vaccines positive). With some exceptions, the degree of synergism tended to vary inversely with the mean protective efficacy of the most protective component virus. Little effect of virus dose, virus dose ratio or type and route of viral challenge was noted. The combination of strains 281MI/1 (serotype 2) and WTHV-1/1 (serotype 3), both poorly protective as monovalent vaccines, consistently demonstrated high levels of synergism (over 300%) in antibody-positive chickens challenged 5 days post-vaccination with Md5 virus. This protocol may be a useful model system for further studies on mechanisms of synergism. However, mixtures that optimize synergism are not necessarily as protective as commercial vaccines.

  2. Cyclic AMP synergizes with butyrate in promoting β-defensin 9 expression in chickens.

    PubMed

    Sunkara, Lakshmi T; Zeng, Xiangfang; Curtis, Amanda R; Zhang, Guolong

    2014-02-01

    Host defense peptides (HDP) have both microbicidal and immunomodulatory properties. Specific induction of endogenous HDP synthesis has emerged as a novel approach to antimicrobial therapy. Cyclic adenosine monophosphate (cAMP) and butyrate have been implicated in HDP induction in humans. However, the role of cAMP signaling and the possible interactions between cAMP and butyrate in regulating HDP expression in other species remain unknown. Here we report that activation of cAMP signaling induces HDP gene expression in chickens as exemplified by β-defensin 9 (AvBD9). We further showed that, albeit being weak inducers, cAMP agonists synergize strongly with butyrate or butyrate analogs in AvBD9 induction in macrophages and primary jejunal explants. Additionally, oral supplementation of forskolin, an adenylyl cyclase agonist in the form of a Coleus forskohlii extract, was found to induce AvBD9 expression in the crop of chickens. Furthermore, feeding with both forskolin and butyrate showed an obvious synergy in triggering AvBD9 expression in the crop and jejunum of chickens. Surprisingly, inhibition of the MEK-ERK mitogen-activated protein kinase (MAPK) pathway augmented the butyrate-FSK synergy, whereas blocking JNK or p38 MAPK pathway significantly diminished AvBD9 induction in chicken macrophages and jejunal explants in response to butyrate and FSK individually or in combination. Collectively, these results suggest the potential for concomitant use of butyrate and cAMP signaling activators in enhancing HDP expression, innate immunity, and disease resistance in both animals and humans.

  3. Propolis: anti-Staphylococcus aureus activity and synergism with antimicrobial drugs.

    PubMed

    Fernandes Júnior, Ary; Balestrin, Elaine Cristina; Betoni, Joyce Elaine Cristina; Orsi, Ricardo de Oliveira; da Cunha, Maria de Lourdes Ribeiro de Souza; Montelli, Augusto Cezar

    2005-08-01

    Propolis is a natural resinous substance collected by bees from tree exudates and secretions. Its antimicrobial activity has been investigated and inhibitory action on Staphylococcus aureus growth was evaluated. The in vitro synergism between ethanolic extract of propolis (EEP) and antimicrobial drugs by two susceptibility tests (Kirby and Bauer and E-Test) on 25 S. aureus strains was evaluated. Petri dishes with sub-inhibitory concentrations of EEP were incubated with 13 drugs using Kirby and Bauer method and synergism between EEP and five drugs [choramphenicol (CLO), gentamicin (GEN), netilmicin (NET), tetracycline (TET), and vancomycin (VAN)] was observed. Nine drugs were assayed by the E-test method and five of them exhibited a synergism [CLO, GEN, NET, TET, and clindamycin (CLI)]. The results demonstrated the synergism between EEP and antimicrobial drugs, especially those agents that interfere on bacterial protein synthesis.

  4. Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse.

    PubMed

    Jia, Lili; Gonçalves, Geisa A L; Takasugi, Yusaku; Mori, Yutaro; Noda, Shuhei; Tanaka, Tsutomu; Ichinose, Hirofumi; Kamiya, Noriho

    2015-06-01

    The effect of pretreatment with peracetic acid (PAA) or an ionic liquid (1-ethyl-3-methylimidazolium acetate, [Emim][OAc]) on the synergism between endoglucanase and endoxylanase in the hydrolysis of bagasse was investigated. An endoglucanase, Cel6A, with a carbohydrate-binding module (CBM) and two endoxylanases, XynZ-C without a CBM and Xyn11A with an intrinsic xylan/cellulose binding module (XBM), were selected. The hemicellulose content, especially arabinan, and the cellulose crystallinity of bagasse were found to affect the cellulase-xylanase synergism. More specifically, higher synergism (above 3.4) was observed for glucan conversion, at low levels of arabinan (0.9%), during the hydrolysis of PAA pretreated bagasse. In contrast, [Emim][OAc] pretreated bagasse, showed lower cellulose crystallinity and achieved higher synergism (over 1.9) for xylan conversion. Ultimately, the combination of Cel6A and Xyn11A resulted in higher synergism for glucan conversion than the combination of Cel6A with XynZ-C, indicating the importance of the molecular architecture of enzymes for metabolic synergism. PMID:25768418

  5. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    PubMed

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. PMID:26821651

  6. Evidence of cue synergism in termite corpse response behavior.

    PubMed

    Ulyshen, Michael D; Shelton, Thomas G

    2012-02-01

    Subterranean termites of the genus Reticulitermes are known to build walls and tubes and move considerable amounts of soil into wood but the causes of this behavior remain largely unexplored. In laboratory assays, we tested the hypothesis that Reticulitermes virginicus (Banks) would carry more sand into wooden blocks containing corpses compared to corpse-free controls. We further predicted that the corpses of predatory ants would elicit a stronger response than those of a benign beetle species or nestmates. As hypothesized, significantly more sand was carried into blocks containing corpses and this material was typically used to build partitions separating the dead from the rest of the colony. Contrary to expectations, however, this behavior did not vary among corpse types. We then tested the hypothesis that oleic acid, an unsaturated fatty acid released during arthropod decay and used by ants and other arthropod taxa in corpse recognition, would induce a similar building response in R. virginicus. To additionally determine the role of foreign objects in giving rise to this behavior, the experiment was carried out with and without imitation corpses (i.e., small glass beads). As predicted, oleic acid induced building (a tenfold increase) but only when applied to beads, suggesting strong synergism between tactile and chemical cues. Oleic acid also significantly reduced the amount of wood consumed by R. virginicus and may possess useful repellent properties. PMID:22167071

  7. Physiological growth synergizes with pathological genes in experimental cardiomyopathy.

    PubMed

    Syed, Faisal; Odley, Amy; Hahn, Harvey S; Brunskill, Eric W; Lynch, Roy A; Marreez, Yehia; Sanbe, Atsushi; Robbins, Jeffrey; Dorn, Gerald W

    2004-12-10

    Hundreds of signaling molecules have been assigned critical roles in the pathogenesis of myocardial hypertrophy and heart failure based on cardiac phenotypes from alpha-myosin heavy chain-directed overexpression mice. Because permanent ventricular transgene expression in this system begins during a period of rapid physiological neonatal growth, resulting phenotypes are the combined consequences of transgene effects and normal trophic influences. We used temporally-defined forced gene expression to investigate synergy between postnatal physiological cardiac growth and two functionally divergent cardiomyopathic genes. Phenotype development was compared various times after neonatal (age 2 to 3 days) and adult (age 8 weeks) expression. Proapoptotic Nix caused ventricular dilation and severe contractile depression in neonates, but not adults. Myocardial apoptosis was minimal in adults, but was widespread in neonates, until it spontaneously resolved in adulthood. Unlike normal postnatal cardiac growth, concurrent left ventricular pressure overload hypertrophy did not synergize with Nix expression to cause cardiomyopathy or myocardial apoptosis. Prohypertrophic Galphaq likewise caused eccentric hypertrophy, systolic dysfunction, and pathological gene expression in neonates, but not adults. Thus, normal postnatal cardiac growth can be an essential cofactor in development of genetic cardiomyopathies, and may confound the interpretation of conventional alpha-MHC transgenic phenotypes. PMID:15539635

  8. Interactions of antimicrobial combinations in vitro: the relativity of synergism.

    PubMed

    Blaser, J

    1990-01-01

    Interactions of combinations of netilmicin, amikacin, piperacillin, imipenem, azlocillin, ceftazidime or moxalactam were studied in vitro against Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. Microtiter checkerboard technique was compared with standard killing curve method and with killing curves obtained in kinetic in vitro models mimicking single or multiple dosing regimens according to human pharmacokinetics. Antibiotic combinations were classified as antagonistic, indifferent or synergistic. Disagreement between classification by checkerboard and by kinetic model was found in 14 of 33 combinations studied (42%). Further analysis by standard killing curve method demonstrated that synergism or antagonism is a relative, not an absolute feature of drug combinations against given pathogens. Factors contributing to disagreements included the concentrations studied relative to the bacterial sensitivity, the ratio of concentrations of the two drugs tested, the size of the bacterial inoculum and the endpoint of the interaction assessment. Standard in vitro methods do not consider changes of antibiotic concentrations over time during combination therapy. Concentrations studied are defined according to bacterial sensitivity (fractions of MIC). Therefore, they may or may not relate to those at the infected site. The observed discrepancies between standard methods for testing drug interaction and a model which more closely reflects human pharmacokinetics support the argument that standard synergy testing provides incomplete data to reliably design clinical combination therapy.

  9. Synergism of Chinese Herbal Medicine: Illustrated by Danshen Compound.

    PubMed

    Su, Xuefeng; Yao, Zhuoting; Li, Shengting; Sun, He

    2016-01-01

    The primary therapeutic effects of Chinese herbal medicine (CHM) are based on the properties of each herb and the strategic combination of herbs in formulae. The herbal formulae are constructed according to Chinese medicine theory: the "Traditional Principles for Constructing Chinese Herbal Medicinal Formulae" and the "Principles of Combining Medicinal Substances." These principles of formulation detail how and why multiple medicinal herbs with different properties are combined together into a single formula. However, the concept of herbal synergism in CHM still remains a mystery due to lack of scientific data and modern assessment methods. The Compound Danshen Formula (CDF) is a validated formula that has been used to treat a variety of diseases for hundreds of years in China and other countries. The CDF will be employed to illustrate the theory and principle of Chinese herbal medicine formulation. The aim of this review is to describe how Chinese herbal medicinal formulae are constructed according to Chinese medicine theory and to illustrate with scientific evidence how Chinese herbs work synergistically within a formula, thereby supporting Chinese medicine theory and practice.

  10. Evidence of cue synergism in termite corpse response behavior

    NASA Astrophysics Data System (ADS)

    Ulyshen, Michael D.; Shelton, Thomas G.

    2012-02-01

    Subterranean termites of the genus Reticulitermes are known to build walls and tubes and move considerable amounts of soil into wood but the causes of this behavior remain largely unexplored. In laboratory assays, we tested the hypothesis that Reticulitermes virginicus (Banks) would carry more sand into wooden blocks containing corpses compared to corpse-free controls. We further predicted that the corpses of predatory ants would elicit a stronger response than those of a benign beetle species or nestmates. As hypothesized, significantly more sand was carried into blocks containing corpses and this material was typically used to build partitions separating the dead from the rest of the colony. Contrary to expectations, however, this behavior did not vary among corpse types. We then tested the hypothesis that oleic acid, an unsaturated fatty acid released during arthropod decay and used by ants and other arthropod taxa in corpse recognition, would induce a similar building response in R. virginicus. To additionally determine the role of foreign objects in giving rise to this behavior, the experiment was carried out with and without imitation corpses (i.e., small glass beads). As predicted, oleic acid induced building (a tenfold increase) but only when applied to beads, suggesting strong synergism between tactile and chemical cues. Oleic acid also significantly reduced the amount of wood consumed by R. virginicus and may possess useful repellent properties.

  11. Synergism of Chinese Herbal Medicine: Illustrated by Danshen Compound

    PubMed Central

    Su, Xuefeng; Yao, Zhuoting; Li, Shengting; Sun, He

    2016-01-01

    The primary therapeutic effects of Chinese herbal medicine (CHM) are based on the properties of each herb and the strategic combination of herbs in formulae. The herbal formulae are constructed according to Chinese medicine theory: the “Traditional Principles for Constructing Chinese Herbal Medicinal Formulae” and the “Principles of Combining Medicinal Substances.” These principles of formulation detail how and why multiple medicinal herbs with different properties are combined together into a single formula. However, the concept of herbal synergism in CHM still remains a mystery due to lack of scientific data and modern assessment methods. The Compound Danshen Formula (CDF) is a validated formula that has been used to treat a variety of diseases for hundreds of years in China and other countries. The CDF will be employed to illustrate the theory and principle of Chinese herbal medicine formulation. The aim of this review is to describe how Chinese herbal medicinal formulae are constructed according to Chinese medicine theory and to illustrate with scientific evidence how Chinese herbs work synergistically within a formula, thereby supporting Chinese medicine theory and practice. PMID:27190537

  12. Synergic mechanism and fabrication target for bipedal nanomotors

    PubMed Central

    Wang, Zhisong

    2007-01-01

    Inspired by the discovery of dimeric motor proteins capable of undergoing transportation in living cells, significant efforts have been expended recently to the fabrication of track-walking nanomotors possessing two foot-like components that each can bind or detach from an array of anchorage groups on the track in response to local events of reagent consumption. The central problem in fabricating bipedal nanomotors is how the motor as a whole can gain the synergic capacity of directional track-walking, given the fact that each pedal component alone often is incapable of any directional drift. Implemented bipedal motors to date solve this thermodynamically intricate problem by an intuitive strategy that requires a hetero-pedal motor, multiple anchorage species for the track, and multiple reagent species for motor operation. Here we performed realistic molecular mechanics calculations on molecule-scale models to identify a detailed molecular mechanism by which motor-level directionality arises from a homo-pedal motor along a minimally heterogeneous track. Optimally, the operation may be reduced to a random supply of a single species of reagents to allow the motor's autonomous functioning. The mechanism suggests a distinct class of fabrication targets of drastically reduced system requirements. Intriguingly, a defective form of the mechanism falls into the realm of the well known Brownian motor mechanism, yet distinct features emerge from the normal working of the mechanism. PMID:17986619

  13. Synergism between tramadol and parecoxib in the orofacial formalin test.

    PubMed

    Isiordia-Espinoza, Mario Alberto; Zapata-Morales, Juan Ramón; Castañeda-Santana, Demian Ismael; de la Rosa-Coronado, Maximiliano; Aragon-Martinez, Othoniel Hugo

    2015-05-01

    The aim of this study was to evaluate the interaction between tramadol and parecoxib in the orofacial formalin test. Tramadol (10, 31.6, 56, and 100 mg/kg ip) or parecoxib (31.6, 56, 100, and 178 mg/kg ip) were administered 10 min before formalin (2.5%) injection into the upper lip to characterize the dose-response curve of each individual drug in the orofacial pain test in mice. Once the dose-response curve of each drug was obtained, an experimental effective dose 50 (ED50 ) value was determined for each drug. The tramadol-parecoxib combination was evaluated in four different groups of animals. The isobolographic analysis and the interaction index were used to evaluate the nature of interaction between both drugs. The isobologram and the interaction index showed increased in the antinociceptive effect of the combination. The tramadol-parecoxib combination produces a synergism in the second phase of the orofacial formalin test.

  14. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol.

    PubMed

    Aftab, Nan; Likhitwitayawuid, Kittisak; Vieira, Amandio

    2010-11-01

    Resveratrol (1) and oxyresveratrol (2) are phytoalexins with antioxidant activities (AAs) and proposed effects against several pathological processes. The main objective of this study was to provide a novel, comparative assessment of their AAs, and to test for potential synergism in their combined activities, or in combination with another phytochemical antioxidant, curcumin (3). The phytochemicals were tested at 10 µM total concentrations in a heme-based assay that involved, as the final step, quantification of tetramethyl-phenylene-diamine oxidation. Significant AAs were observed for both 1 and 2, 27-33% inhibition of oxidation (p < 0.05 relative to non-phytochemical control). The combination of 1 and 2 in the same assay (5 µM each) suggested a moderate synergistic effect of about 10% (41% inhibition of oxidation by 1/2 under the same conditions as for 1 and 2 separately). Combinations of 1/3 and 2/3 were also synergistic, but 1/3 had a two-fold greater AA (p < 0.05) than 2/3 (or 1/2). Our results indicate that (i) 1 and 2 are effective antioxidants in the assay, (ii) in combination, their AAs can synergise, and (iii) in relation to 2, 1 has a much greater synergistic potential with 3. The latter suggests different synergy mechanisms of the curcuminoid with each of the two stilbene phytoalexins.

  15. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.

    PubMed

    Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi

    2016-06-01

    Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.

  16. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  17. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  18. Will Synergizing Vaccination with Therapeutics Boost Measles Virus Eradication?

    PubMed Central

    Plemper, Richard K; Hammond, Anthea L

    2014-01-01

    Introduction Measles virus is a major human pathogen responsible for approximately 150,000 measles deaths annually. The disease is vaccine preventable and eradication of the virus is considered feasible in principle. However, a herd immunity exceeding 95% is required to prevent sporadic viral outbreaks in a population. Declining disease prevalence combined with public anxieties about vaccination safety has increased vaccine refusal especially in the European region, which has resulted in measles resurgence in some areas. Areas covered Here, we discuss whether synergizing effective measles therapeutics with vaccination could contribute to solving an endgame conundrum of measles elimination by accelerating the eradication effort. Based on an anticipated use for protection of high-risk contacts of confirmed measles cases through post-exposure prophylaxis, we identify key elements of the desirable drug profile, review current disease management strategies and the state of experimental inhibitor candidates, evaluate the risk associated with viral escape from inhibition, and consider the potential of measles therapeutics for the management of persistent viral infection of the CNS. Assuming a post-measles world with waning measles immunity, we contemplate the possible impact of therapeutics on controlling the threat imposed by closely related zoonotic pathogens of the same genus as measles virus. Expert opinion Efficacious therapeutics given for post-exposure prophylaxis of high-risk social contacts of confirmed index cases may aid measles eradication by closing herd immunity gaps due to vaccine refusal or failure in populations with overall good vaccination coverage. The envisioned primarily prophylactic application of measles therapeutics to a predominantly pediatric and/or adolescent patient population dictates the drug profile; the article must be safe and efficacious, orally available, shelf-stable at ambient temperature, and amenable to cost-effective manufacture

  19. Two Kinase Family Dramas

    PubMed Central

    Leonard, Thomas A.; Hurley, James H.

    2007-01-01

    In this issue, Lietha and colleagues (2007) report the structure of focal adhesion kinase (FAK) and reveal how FAK maintains an autoinhibited state. Together with the structure of another tyrosine kinase, ZAP-70 (Deindl et al., 2007), this work highlights the diversity of mechanisms that nature has evolved within the kinase superfamily to regulate their activity through autoinhibition. PMID:17574014

  20. Regulation of cholesterol esterification by protein kinase C

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-03-05

    They have recently identified acyl-CoA cholesterol acyltransferase as the key enzyme for cholesterol esterification in the central nervous system. They found that the activity of glial acyl-CoA cholesterol acyltransferase could be controlled by a phosphorylation-dephosphorylation mechanism. However, repeated attempts to identify cyclic AMP as the bioregulator for this reaction failed. Recently, they have studied the possible involvement of protein kinase C in the regulation of glial cholesterol esterification. Phorbol-12-myristate 13-acetate (PMA) can activate cellular cholesterol esterification in a complex, time-dependent manner. Phorbol analogues inactive toward protein kinase C are also ineffective in this assay. Furthermore, oleoyl-acetyl-glycerol mimics the effect of PMA, confirming the proposal that protein kinase C mediates the effect of these compounds and that the natural bioregulator is probably diacylglycerol. Receptor-mediated polyphosphatidyl-inositol cleavage often produces diacylglycerol and inositol triphosphate. The synergic effects of these two compounds are known to be necessary to elicit other biological responses. Their preliminary studies using calcium ionophore A23187 indicates that Ca/sup + +/ is not required for cellular cholesterol esterification. In sum, glial cholesterol esterification is probably regulated by a calcium-independent and protein kinase C-dependent reaction.

  1. A combinatorial study on catalytic synergism in supported metal catalysts for fuel cell technology

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuhiko; Ueda, Atsushi; Yamada, Yusuke; Shioyama, Hiroshi

    2004-02-01

    In order to accelerate the catalyst development for the increasing demand on the fuel cell technology, it has been attempted to adopt a combinatorial approach. The catalytic synergism, often observed on the supported metal catalysts for the fuel cell utilization, has been subjected to study. It is proposed herein that not only a comparison of catalysts in one reaction, but also the comparison of interrelated reactions by use of a common catalyst library brings about important information to elucidate the catalytic synergism. Preliminary results of the comparison between the water-gas shift reaction and the steam reforming of MeOH on a given set of catalyst library are presented. An important indicator to predict the serendipitous synergism is expected to be obtained from such information by use of artificial intelligence.

  2. Treatment of infestation with Phthirus pubis: comparative efficacies of synergized pyrethrins and gamma-benzene hexachloride.

    PubMed

    Newsom, J H; Fiore, J L; Hackett, E

    1979-01-01

    In recent years there has been a steady increase in the incidence of infestation with Phthirus pubis, a sexually transmitted louse. A recently introduced nonprescription liquid pediculicide, whose major ingredient is 0.3% pyrethrins synergized by 3.0% piperonyl butoxide (RiD), was compared for efficacy and safety with a prescription-only pediculicidal lotion whose major ingredient is 1% gamma-benzene hexachloride (Kwell). Thirty adult man and women with P. pubis infestation were assigned randomly to treatment with either the synergized pyrethrins or gamma-benzene hexachloride. A single 10-min application of the synergized-pyrethrin liquid produced the same results as a single 12-hr application of the gamma-benze hexachloride lotion: total eradication of adult lice and nymphs, cessation of pruritus, and no treatment-induced side effect. A follow-up visit a week after treatment verified all eradications.

  3. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose

    SciTech Connect

    Henrissat, B.; Driguez, H.; Viet, C.; Schuelein, M.

    1985-08-01

    The action of cellobiohydrolases I and II (CBHI and CBHII) and endoglucanases I and II (EGI and EGII) purified from Trichoderma reesei was evaluated against various substrates. CBHI degraded the ..beta..-D-glucan from barley in a typical endo pattern. With cellulose substrates, the synergism between CBHI and endoglucanase I or II depended on the structural and ultrastructural features of the substrate. This effect, unrelated to endo-exo cooperation, was found with substrates of intermediate crystallinity whereas weak or no synergism was recorded with cellulose microcrystals or the soluble carboxy-methyl cellulose derivative. Synergistic degradation of cellulose was also recorded with mixtures of CBHI and CBHII. On the other hand, synergism between endoglucanases and CBHII followed the pattern expected for an endo-exo cooperation. These results presented support evidence for multiple types of cooperation between the cellulolytic enzymes. 30 references, 7 figures, 1 table.

  4. 75 FR 42743 - Synergics Roth Rock North Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Synergics Roth Rock North Wind Energy, LLC; Supplemental Notice That Initial... supplemental notice in the above-referenced proceeding of Synergics Roth Rock North Wind Energy,...

  5. 75 FR 42744 - Synergics Roth Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Synergics Roth Rock Wind Energy, LLC; Supplemental Notice That Initial... supplemental notice in the above-referenced proceeding of Synergics Roth Rock Wind Energy, LLC's...

  6. Prokaryotic Diacylglycerol Kinase and Undecaprenol Kinase

    PubMed Central

    Van Horn, Wade D.; Sanders, Charles R.

    2013-01-01

    Prokaryotic diacylglycerol kinase (DAGK) and undecaprenol kinase (UDPK) are the lone members of a family of multispan membrane enzymes that are very small, lack relationships to any other family of proteins—including water soluble kinases, and that exhibit an unusual structure and active site architecture. Escherichia coli DAGK plays an important role in recycling diacylglycerol produced as a byproduct of biosynthesis of molecules located in the periplasmic space. UDPK seems to play an analogous role in Gram-positive bacteria, where its importance is evident by the fact that UDPK is essential for biofilm formation by the oral pathogen Streptococcus mutans. DAGK has also long served as a model system for studies of membrane protein biocatalysis, folding, stability, and structure. This review explores our current understanding of the microbial physiology, enzymology, structural biology, and folding of the prokaryotic diacylglycerol kinase family, which is based on over 40 years of studies. PMID:22224599

  7. Synergism between fluoxetine and the mGlu2/3 receptor agonist, LY379268, in an in vitro model for antidepressant drug-induced neurogenesis.

    PubMed

    Matrisciano, F; Zusso, M; Panaccione, I; Turriziani, B; Caruso, A; Iacovelli, L; Noviello, L; Togna, G; Melchiorri, D; Debetto, P; Tatarelli, R; Battaglia, G; Nicoletti, F; Giusti, P; Girardi, P

    2008-02-01

    We examined the interaction between the selective serotonin reuptake inhibitor, fluoxetine, and group-II metabotropic glutamate (mGlu) receptors using progenitor cells isolated from cultured cerebellar granule cells, considered as an in vitro model of antidepressant-drug induced neurogenesis. These cells expressed mGlu3 receptors negatively coupled to adenylyl cyclase. A 72-h treatment with either fluoxetine or low concentrations of mGlu2/3 receptor agonists (LY379268 or 2R,4R-APDC) enhanced cell proliferation. The action of fluoxetine was mediated by the activation of 5-HT(1A) receptors. We found a strong synergism between fluoxetine and LY379268 in enhancing cell proliferation and inhibiting cAMP formation. The increased cell proliferation induced by fluoxetine+LY379268 was abrogated by the cAMP analogue, 8-Br-cAMP, as well as by drugs that inhibit the mitogen-activated protein kinase and phosphatidyilinositol-3-kinase pathways. Interestingly, fluoxetine and LY379268 also acted synergistically in promoting neuronal differentiation when progenitor cells were incubated in the presence of serum. These data support the hypothesis that a combination between classical antidepressants and mGlu2/3 receptor agonists may be helpful in the experimental treatment of depression. PMID:18082849

  8. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae).

    PubMed

    Faraone, Nicoletta; Hillier, N Kirk; Cutler, G Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur.

  9. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose

    SciTech Connect

    Medve, J.; Tjerneld, F. . Dept. of Biochemistry); Staahlberg, J. . Dept. of Molecular Biology)

    1994-11-05

    Hydrolysis of microcrystalline cellulose (Avicel) by cellobiohydrolase I and II (CBH I and II) from Trichoderma reesei has been studied. Adsorption and synergism of the enzymes were investigated. Experiments were performed at different temperatures and enzyme/substrate ratios using CBH I and CBH II alone and in reconstituted equimolar mixtures. Fast protein liquid chromatography (FPLC) analysis was found to be an accurate and reproducible method to follow the enzyme adsorption. A linear correlation was found between the conversion and the amount of adsorbed enzyme when Avicel was hydrolyzed by increasing amounts of CBH I and/or CBH II. CBH I had lower specific activity compared to CBH II although, over a wide concentration range, more CBH I was adsorbed than CBH II. Synergism between the cellobiohydrolases during hydrolysis of the amorphous fraction of Avicel showed a maximum as a function of total enzyme concentration. Synergism measured as a function of bound enzyme showed a continuous increase, which indicates that by decreasing the distance between the two enzymes the synergism is enhanced. The adsorption process for both enzymes was slow. Depending on the enzyme/substrate ratio it took 30--90 min to reach 95% of the equilibrium binding. The amount of bound enzyme decreased with increasing temperature. The two enzymes compete for the adsorption sites but also bind to specific sites. Stronger competition for adsorption sites was shown by CBH I.

  10. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae).

    PubMed

    Faraone, Nicoletta; Hillier, N Kirk; Cutler, G Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  11. Antimicrobial synergism against Mycobacterium avium complex strains isolated from patients with acquired immune deficiency syndrome.

    PubMed Central

    Yajko, D M; Kirihara, J; Sanders, C; Nassos, P; Hadley, W K

    1988-01-01

    Pairs of 11 antimicrobial agents were tested in vitro for their ability to act synergistically against three strains of Mycobacterium avium complex isolated from patients with acquired immune deficiency syndrome. From the combinations tested, four drugs (ethambutol, rifampin, ciprofloxacin, and erythromycin) were selected for more extensive study against 20 strains of M. avium complex. The inhibitory and killing synergism obtained with combinations of two, three, or four drugs was assessed by determining the fractional inhibitory concentration index and fractional bactericidal concentration index. Inhibitory synergism occurred against 90 to 100% of the strains for all drug combinations in which ethambutol was included. Killing synergism occurred against 85 to 95% of the strains when ethambutol was used in combinations which included either rifampin or ciprofloxacin. However, killing synergism occurred against only 45% of the strains when drugs were tested at concentrations that can be obtained in patient serum. In other experiments, rifabutin (Ansamycin) gave results that were comparable to those obtained with rifampin. Clofazimine did not show synergistic killing activity at a concentration that is achievable in serum for any of the drugs tested. Our results indicate that there is considerable variability in the antimicrobial susceptibility of M. avium isolates obtained from patients with acquired immune deficiency syndrome. This variability could have significant impact on the clinical response to various therapies. PMID:3196000

  12. What Is Institutional Synergism? An Analysis of a Consortium of Health and Education Providers

    ERIC Educational Resources Information Center

    Sapadin, David; Carmel, Harvey

    1977-01-01

    The authors offer an operational definition of institutional integration and synergism, with reference to the Health and Education Council (a consortium of Essex Community College, Baltimore County Health Department, and Franklin Square Hospital). Key elements that appear to be essential to successful cooperative efforts are noted and described.…

  13. Influence of temperature and artificially-created physical barriers on the efficacy of synergized pyrethrin aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour mills in the United States are utilizing synergized pyrethrin aerosol for management of stored product insects. However, the dispersal of the aerosol within a facility may be hampered by barriers created from machinery and other equipment that block dispersion. Additionally, seasonal temperatu...

  14. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    PubMed Central

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  15. Efficacy of aerosol applications of methoprene and synergized pyrethrin against Tribolium castaneum adults and eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were performed to determine the efficacy of a single aerosol application of the insecticides methoprene and piperonyl butoxide-synergized pyrethrin, alone or in combination, and the insecticide carrier, Isopar M, against Tribolium castaneum (Herbst), the red flour beetle. The initial tes...

  16. Effects of methoprene and synergized pyrethrin aerosol applications on Tribolium castaneum (Herbst) populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were performed to investigate the effects of horizontal transfer of the insect growth regulator (IGR) methoprene on confined populations of Tribolium castaneum (Herbst) either with or without hidden refugia. Multiple applications were made with the IGR alone or combined with synergized p...

  17. The Secretory Pathway Kinases

    PubMed Central

    Sreelatha, Anju; Kinch, Lisa N.; Tagliabracci, Vincent S.

    2015-01-01

    Protein phosphorylation is a nearly universal post-translation modification involved in a plethora of cellular events. Even though phosphorylation of extracellular proteins had been observed, the identity of the kinases that phosphorylate secreted proteins remained a mystery until recently. Advances in genome sequencing and genetic studies have paved the way for the discovery of a new class of kinases that localize within the endoplasmic reticulum, Golgi apparatus and the extracellular space. These novel kinases phosphorylate proteins and proteoglycans in the secretory pathway and appear to regulate various extracellular processes. Mutations in these kinases cause human disease, thus underscoring the biological importance of phosphorylation within the secretory pathway. PMID:25862977

  18. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  19. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    PubMed

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  20. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer

    NASA Astrophysics Data System (ADS)

    Arya, Neha; Arora, Aditya; Vasu, K. S.; Sood, A. K.; Katti, Dhirendra S.

    2013-03-01

    Heterogeneity in tumors has led to the development of combination therapies that enable enhanced cell death. Previously explored combination therapies mostly involved the use of bioactive molecules. In this work, we explored a non-conventional strategy of using carbon nanostructures (CNs) [single walled carbon nanotube (SWNT) and graphene oxide (GO)] for potentiating the efficacy of a bioactive molecule [paclitaxel (Tx)] for the treatment of lung cancer. The results demonstrated enhanced cell death following combination treatment of SWNT/GO and Tx indicating a synergistic effect. In addition, synergism was abrogated in the presence of an anti-oxidant, N-acetyl cysteine (NAC), and was therefore shown to be reactive oxygen species (ROS) dependent. It was further demonstrated using bromodeoxyuridine (BrdU) incorporation assay that treatment with CNs was associated with enhanced mitogen associated protein kinase (MAPK) activation that was ROS mediated. Hence, these results for the first time demonstrated the potential of SWNT/GO as co-therapeutic agents with Tx for the treatment of lung cancer.Heterogeneity in tumors has led to the development of combination therapies that enable enhanced cell death. Previously explored combination therapies mostly involved the use of bioactive molecules. In this work, we explored a non-conventional strategy of using carbon nanostructures (CNs) [single walled carbon nanotube (SWNT) and graphene oxide (GO)] for potentiating the efficacy of a bioactive molecule [paclitaxel (Tx)] for the treatment of lung cancer. The results demonstrated enhanced cell death following combination treatment of SWNT/GO and Tx indicating a synergistic effect. In addition, synergism was abrogated in the presence of an anti-oxidant, N-acetyl cysteine (NAC), and was therefore shown to be reactive oxygen species (ROS) dependent. It was further demonstrated using bromodeoxyuridine (BrdU) incorporation assay that treatment with CNs was associated with enhanced

  1. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa.

    PubMed

    Knezevic, Petar; Curcin, Sanja; Aleksic, Verica; Petrusic, Milivoje; Vlaski, Ljiljana

    2013-01-01

    Pseudomonas aeruginosa is a highly resistant opportunistic pathogen and an important etiological agent of various types of infections. During the last decade, P. aeruginosa phages have been extensively examined as alternative antimicrobial agents. The aim of the study was to determine antimicrobial effectiveness of combining subinhibitory concentrations of gentamicin, ceftriaxone, ciprofloxacin or polymyxin B with P. aeruginosa-specific bacteriophages belonging to families Podoviridae and Siphoviridae. The time-kill curve method showed that a combination of bacteriophages and subinhibitory concentrations of ceftriaxone generally reduced bacterial growth, and synergism was proven for a Siphoviridae phage σ-1 after 300 min of incubation. The detected alteration in morphology after ceftriaxone application, resulting in cell elongation, along with its specific mode of action, seemed to be a necessary but was not a sufficient reason for phage-antibiotic synergism. The phenomenon offers an opportunity for future development of treatment strategies for potentially lethal infections caused by P. aeruginosa.

  2. Synergism by co-assembly at the origin of ion selectivity in liquid-liquid extraction

    SciTech Connect

    Dourdain, S.; Hofmeister, I.; Dufreche, J.F.; Turgis, R.; Pellet-Rostaing, S.; Zemb, T.; Pecheur, O.; Leydier, A.; Jestin, J.; Testard, F.

    2012-08-15

    In liquid-liquid extraction, synergism emerges when for a defined formulation of the solvent phase, there is an increase of distribution coefficients for some cations in a mixture. To characterize the synergistic mechanisms, we determine the free energy of mixed co-assembly in aggregates. Aggregation in any point of a phase diagram can be followed not only structurally by SANS, SAXS, and SLS, but also thermodynamically by determining the concentration of monomers coexisting with reverse aggregates. Using the industrially used couple HDEHP/TOPO forming mixed reverse aggregates, and the representative couple U/Fe, we show that there is no peculiarity in the aggregates microstructure at the maximum of synergism. Nevertheless, the free energy of aggregation necessary to form mixed aggregates containing extracted ions in their polar core is comparable to the transfer free energy difference between target and nontarget ions, as deduced from the synergistic selectivity peak. (authors)

  3. Opioid Mechanism Involvement in the Synergism Produced by the Combination of Diclofenac and Caffeine in the Formalin Model

    PubMed Central

    Flores-Ramos, José María; Díaz-Reval, M. Irene

    2013-01-01

    Analgesics can be administered in combination with caffeine for improved analgesic effectiveness in a process known as synergism. The mechanisms by which these combinations produce synergism are not yet fully understood. The aim of this study was to analyze whether the administration of diclofenac combined with caffeine produced antinociceptive synergism and whether opioid mechanisms played a role in this event. The formalin model was used to evaluate the antinociception produced by the oral administration of diclofenac, caffeine, or their combination. Opioid involvement was analyzed through intracerebroventricular (i.c.v.) administration of naloxone followed by the oral administration of the study drugs. Diclofenac presented a dose-dependent effect, with a mean effective dose (ED50) of 6.7 mg/kg. Caffeine presented an analgesic effect with a 17–36% range. The combination of subeffective doses of each of the two drugs presented the greatest synergism with an effect of 57.7 ± 5.6%. The maximal antinociceptive effect was obtained with the combination of 10.0 mg/kg diclofenac and 1.0 mg/kg of caffeine, with an effect of 76.7 ± 5.6%. The i.c.v. administration of naloxone inhibited the effect of diclofenac, both separately and combined. In conclusion, caffeine produces antinociceptive synergism when administered in combination with diclofenac, and this synergism is partially mediated by opioid mechanisms at the central level. PMID:27335871

  4. Synergism in binary mixture of surfactants 11. Mixtures containing mono- and disulfonated alkyl- and dialkyldiphenylethers

    SciTech Connect

    Rosen, M.J.; Zhen Huo Zhu; Tao Gao

    1993-04-01

    Interaction and synergism at 25C of some alkyl- and dialkyl-diphenylether mono- and disulfonates with a second surfactant containing a single hydrophilic and a single hydrophobic group (a nonionic, a betaine, or an amine oxide type of surfactant) in aqueous solutions containing swamping amounts of NaCl were studied by calculating interaction parameters from surface tension-concentration data. Attractive interaction in mixed monolayers at the aqueous solution/water interface increased in the order: monoalkyl monosulfonate (MAMS) < monoalkyl disulfonate (MADS) < dialkyl disulfonate (DADS). In mixed micelles, by contrast, the DADS interaction was always weaker than that of either the MAMS or MADS. This is believed to be due to greater steric inhibition of micelle formation by the DADS structure. As a result of these differences in interaction, the DADS (gemini-type) structure is more prone than the other two types of structures to show synergism in both surface tension reduction efficiency and effectiveness, and less prone to show synergism in mixed micelle formation.

  5. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins.

    PubMed

    Verthelyi, Daniela; Wang, Vivian

    2010-12-22

    Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs) that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS) and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st) dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  6. Synergic co-activation of muscles in elbow flexion via fractional Brownian motion.

    PubMed

    Chang, Shyang; Hsyu, Ming-Chun; Cheng, Hsiu-Yao; Hsieh, Sheng-Hwu

    2008-12-31

    In reflex and volitional actions, co-activations of agonist and antagonist muscles are believed to be present. Recent studies indicate that such co-activations can be either synergic or dyssynergic. The aim of this paper is to investigate if the co-activations of biceps brachii, brachialis, and triceps brachii during volitional elbow flexion are in the synergic or dyssynergic state. In this study, two groups with each containing six healthy male volunteers participated. Each person of the first group performed 30 trials of volitional elbow flexion while each of the second group performed 30 trials of passive elbow flexion as control experiments. Based on the model of fractional Brownian motion, the intensity and frequency information of the surface electromyograms (EMGs) could be extracted simultaneously. No statistically significant changes were found in the control group. As to the other group, results indicated that the surface EMGs of all five muscle groups were temporally synchronized in frequencies with persistent intensities during each elbow flexion. In addition, the mean values of fractal dimensions for rest and volitional flexion states revealed significant differences with P < 0.01. The obtained positive results suggest that these muscle groups work together synergically to facilitate elbow flexion during the co-activations.

  7. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.

    PubMed

    Cho, Min; Kim, Jae-Hong; Yoon, Jeyong

    2006-08-01

    The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes.

  8. Efficacy of aerosol applications of methoprene and synergized pyrethrin against Tribolium castaneum adults and eggs.

    PubMed

    Tucker, Angela M; Campbell, James F; Arthur, Frank H; Zhu, Kun Yan

    2014-06-01

    Experiments were performed to determine the efficacy of a single aerosol application of the insecticides methoprene and piperonyl butoxide-synergized pyrethrin, alone or in combination, and the insecticide carrier, Isopar M, against Tribolium castaneum (Herbst), the red flour beetle. The initial test exposed adults to insecticide treatments and placed male/female pairs in flour. All adults exposed to synergized pyrethrin were knocked down for at least 24 h after exposure but they recovered. High adult survival and similar average numbers of living F1 progeny were produced regardless of treatment exposure. In a separate test, insecticide treatments were directly applied to newly laid eggs, which resulted in the suppression of egg hatch. Synergized pyrethrin was the most effective insecticide (P < or = 0.001) for suppressing egg hatch. The effect of flour on insecticide activity to eggs and consequent insect development was also evaluated. An amount of 0.01 g of flour in the exposure arena, 62-cm2 area, was not sufficient for individuals to develop beyond the early larval stages, regardless of the treatment. As the flour amount in the arena increased from 1 to 5 g, the number of eggs that could develop to the adult stage increased, but this number was significantly lower in the insecticide treatments than in the control or carrier treatments. The results of the later tests indicate a high efficacy of the insecticides alone or in combination on T. castaneum egg hatch and development to the adult stage.

  9. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  10. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers

    PubMed Central

    Heilmann, Andreas M.; Perera, Rushika M.; Ecker, Veronika; Nicolay, Brandon N.; Bardeesy, Nabeel; Benes, Cyril H.; Dyson, Nicholas J.

    2014-01-01

    Loss-of-function mutations in p16INK4A (CDKN2A) occur in approximately 80% of sporadic pancreatic ductal adenocarcinoma (PDAC), contributing to its early progression. While this loss activates the cell cycle-dependent kinases CDK4/6, which have been considered as drug targets for many years, p16INK4A-deficient PDAC cells are inherently resistant to CDK4/6 inhibitors. This study searched for targeted therapies that might synergize with CDK4/6 inhibition in this setting. We report that the IGF1R/IR inhibitor BMS-754807 cooperated with the CDK4/6 inhibitor PD-0332991 to strongly block proliferation of p16INK4A-deficient PDAC cells in vitro and in vivo. Sensitivity to this drug combination correlated with reduced activity of the master cell growth regulator mTORC1. Accordingly, replacing the IGF1R/IR inhibitor with the rapalog inhibitor temsirolimus broadened the sensitivity of PDAC cells to CDK4/6 inhibition. Our results establish targeted therapy combinations with robust cytostatic activity in p16INK4A-deficient PDAC cells and possible implications for improving treatment of a broad spectrum of human cancers characterized by p16INK4A loss. PMID:24986516

  11. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism

    PubMed Central

    Rotin, Lianne E.; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L.; Minden, Mark D.; Slassi, Malik; Schimmer, Aaron D.

    2016-01-01

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease. PMID:26624983

  12. All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo.

    PubMed

    Ma, Hayley S; Greenblatt, Sarah M; Shirley, Courtney M; Duffield, Amy S; Bruner, J Kyle; Li, Li; Nguyen, Bao; Jung, Eric; Aplan, Peter D; Ghiaur, Gabriel; Jones, Richard J; Small, Donald

    2016-06-01

    FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) portends a poor prognosis, and ineffective targeting of the leukemic stem cell (LSC) population remains one of several obstacles in treating this disease. All-trans retinoic acid (ATRA) has been used in several clinical trials for the treatment of nonpromyelocytic AML with limited clinical activity observed. FLT3 tyrosine kinase inhibitors (TKIs) used as monotherapy also achieve limited clinical responses and are thus far unable to affect cure rates in AML patients. We explored the efficacy of combining ATRA and FLT3 TKIs to eliminate FLT3/internal tandem duplication (ITD)(+) LSCs. Our studies reveal highly synergistic drug activity, preferentially inducing apoptosis in FLT3/ITD(+) cell lines and patient samples. Colony-forming unit assays further demonstrate decreased clonogenicity of FLT3/ITD(+) cells upon treatment with ATRA and TKI. Most importantly, the drug combination depletes FLT3/ITD(+) LSCs in a genetic mouse model of AML, and prolongs survival of leukemic mice. Furthermore, engraftment of primary FLT3/ITD(+) patient samples is reduced in mice following treatment with FLT3 TKI and ATRA in combination, with evidence of cellular differentiation occurring in vivo. Mechanistically, we provide evidence that the synergism of ATRA and FLT3 TKIs is at least in part due to the observation that FLT3 TKI treatment upregulates the antiapoptotic protein Bcl6, limiting the drug's apoptotic effect. However, cotreatment with ATRA reduces Bcl6 expression to baseline levels through suppression of interleukin-6 receptor signaling. These studies provide evidence of the potential of this drug combination to eliminate FLT3/ITD(+) LSCs and reduce the rate of relapse in AML patients with FLT3 mutations. PMID:27103744

  13. Synergic chemoprevention with dietary carbohydrate restriction and supplementation of AMPK-activating phytochemicals: the role of SIRT1.

    PubMed

    Lee, Jong Doo; Choi, Min-Ah; Ro, Simon Weonsang; Yang, Woo Ick; Cho, Arthur E H; Ju, Hye-Lim; Baek, Sinhwa; Chung, Sook In; Kang, Won Jun; Yun, Mijin; Park, Jeon Han

    2016-01-01

    Calorie restriction or a low-carbohydrate diet (LCD) can increase life span in normal cells while inhibiting carcinogenesis. Various phytochemicals also have calorie restriction-mimetic anticancer properties. We investigated whether an isocaloric carbohydrate-restriction diet and AMP-activated protein kinase (AMPK)-activating phytochemicals induce synergic tumor suppression. We used a mixture of AMPK-activating phytochemical extracts including curcumin, quercetin, catechins, and resveratrol. Survival analysis was carried out in a B16F10 melanoma model fed a control diet (62.14% kcal carbohydrate, 24.65% kcal protein and 13.2% kcal fat), a control diet with multiple phytochemicals (MP), LCD (16.5, 55.2, and 28.3% kcal, respectively), LCD with multiple phytochemicals (LCDmp), a moderate-carbohydrate diet (MCD, 31.9, 62.4, and 5.7% kcal, respectively), or MCD with phytochemicals (MCDmp). Compared with the control group, MP, LCD, or MCD intervention did not produce survival benefit, but LCDmp (22.80±1.58 vs. 28.00±1.64 days, P=0.040) and MCDmp (23.80±1.08 vs. 30.13±2.29 days, P=0.008) increased the median survival time significantly. Suppression of the IGF-1R/PI3K/Akt/mTOR signaling, activation of the AMPK/SIRT1/LKB1pathway, and NF-κB suppression were the critical tumor-suppression mechanisms. In addition, SIRT1 suppressed proliferation of the B16F10 and A375SM cells under a low-glucose condition. Alterations in histone methylation within Pten and FoxO3a were observed after the MCDmp intervention. In the transgenic liver cancer model developed by hydrodynamic transfection of the HrasG12V and shp53, MCDmp and LCDmp interventions induced significant cancer-prevention effects. Microarray analysis showed that PPARα increased with decreased IL-6 and NF-κB within the hepatocytes after an MCDmp intervention. In conclusion, an isocaloric carbohydrate-restriction diet and natural AMPK-activating agents induce synergistic anticancer effects. SIRT1 acts as a

  14. Phosphatidylinositol kinase from rabbit reticulocytes

    SciTech Connect

    Tuazon, P.T.; Heng, A.B.W.; Traugh, J.A.

    1986-05-01

    Phosphatidylinositol (PI) kinase was isolated from the postribosomal supernatant of rabbit reticulocytes. This activity was identified by the formation of a product that comigrated with phosphatidylinositol-4-phosphate (PIP) when purified PI was phosphorylated in the presence of (/sup 32/P)ATP and Mg/sup 2 +/. Three major peaks of PI kinase activity were resolved by chromatography on DEAE-cellulose. The first peak eluted at 50-100 mM NaCl together with several serine protein kinases, casein kinase (CK) I and protease activated kinase (PAK) I and II. The PI kinase was subsequently separated from the protein kinases by chromatography on phosphocellulose. The second peak eluted at 125-160 mM NaCl and contained another lipid kinase activity that produced a product which comigrated with phosphatidic acid on thin layer chromatography. The third peak, which eluted at 165-200 mM NaCl, partly comigrated with casein kinase (CK) II and an active protein kinase(s) which phosphorylated mixed histone and histone I. CK II and the histone kinase activities were also separated by chromatography on phosphocelluslose. The different forms of PI kinase were characterized and compared with respect to substrate and salt requirements.

  15. Microbial Protein-tyrosine Kinases*

    PubMed Central

    Chao, Joseph D.; Wong, Dennis; Av-Gay, Yossef

    2014-01-01

    Microbial ester kinases identified in the past 3 decades came as a surprise, as protein phosphorylation on Ser, Thr, and Tyr amino acids was thought to be unique to eukaryotes. Current analysis of available microbial genomes reveals that “eukaryote-like” protein kinases are prevalent in prokaryotes and can converge in the same signaling pathway with the classical microbial “two-component” systems. Most microbial tyrosine kinases lack the “eukaryotic” Hanks domain signature and are designated tyrosine kinases based upon their biochemical activity. These include the tyrosine kinases termed bacterial tyrosine kinases (BY-kinases), which are responsible for the majority of known bacterial tyrosine phosphorylation events. Although termed generally as bacterial tyrosine kinases, BY-kinases can be considered as one family belonging to the superfamily of prokaryotic protein-tyrosine kinases in bacteria. Other members of this superfamily include atypical “odd” tyrosine kinases with diverse mechanisms of protein phosphorylation and the “eukaryote-like” Hanks-type tyrosine kinases. Here, we discuss the distribution, phylogeny, and function of the various prokaryotic protein-tyrosine kinases, focusing on the recently discovered Mycobacterium tuberculosis PtkA and its relationship with other members of this diverse family of proteins. PMID:24554699

  16. Synergism between rocuronium and cisatracurium: comparison of the Minto and Greco interaction models

    PubMed Central

    Kwon, Jae Young; Kim, Hae-Kyu

    2016-01-01

    Background This study was conducted to investigate the pharmacodynamic interaction between rocuronium and cisatracurium using the response surface model, which is not subject to the limitations of traditional isobolographic analysis. Methods One hundred and twenty patients were randomly allocated to receive one of the fifteen predefined combinations of rocuronium and cisatracurium. To study single drugs, cisatracurium 0.2, 0.15, or 0.1 mg/kg or rocuronium 0.8, 0.6 or 0.4 mg/kg doses were administered alone. To study the pharmacodynamic interaction, drugs were applied in three types of combination ratio, i.e., half dose of each drug alone, 75% of each single dose of rocuronium and 25% of each single dose of cisatracurium, and vice versa. Train-of-four (TOF) ratio and T1% (first twitch of the TOF presented as percentage compared to the initial T1) were used as pharmacodynamic endpoints, and the Greco and Minto models were used as surface interaction models. Results The interaction term α of the Greco model for TOF ratio and T1% measurements showed synergism with values of 0.977 and 1.12, respectively. Application of the Minto model resulted in U50 (θ) values (normalized unit of concentration that produces 50% of the maximal effect in the 0 < θ < 1 region) less than 1 for both TOF ratio and T1% measurements, indicating that rocuronium and cisatracurium exhibit synergism. Conclusions Response surface modeling of the interaction between rocuronium and cisatracurium, based on considerations of their effects on muscle relaxation as measured by TOF ratio and T1%, indicated that the two drugs show considerable synergism. PMID:27482310

  17. PSA-operations synergism for the advanced test reactor shutdown operations PSA

    SciTech Connect

    Atkinson, S.A.

    1996-08-01

    The Advanced Test Reactor (ATR) Probabilistic Safety Assessment (PSA) for shutdown operations, cask handling, and canal draining is a successful example of the importance of good PSA-operations synergism for achieving a realistic and accepted assessment of the risks and for achieving desired risk reduction and safety improvement in a best and cost-effective manner. The implementation of the agreed-upon upgrades and improvements resulted in the reductions of the estimated mean frequency for core or canal irradiated fuel uncovery events, a total reduction in risk by a factor of nearly 1000 to a very low and acceptable risk level for potentially severe events.

  18. Synergization of silicone with developed crosslinking to soy-based polyurethane foam matrix

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2014-06-01

    Flexible polyurethane foam obtained from reaction of soybased polyol with TDI:MDI (80:20), and surfactant. The goal of this research is to determine the synergization effect of silicone with low molecular alcohols; methanol and ethylene glycol (EG) in soy-polyurethane formula on holding moisture of foams to density, foam solutions capacity, and cellular morphology. The optimized of polyol was achieved by ratio of epoxide/methanol 1:6 (mol/mol), and epoxide/EG 1:3 (mol/mol). It was found silicone surfactant can minimize solution absorbency in polyurethane foam matrix.

  19. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  1. Plant 5-Methylthioribose Kinase

    PubMed Central

    Guranowski, Andrzej

    1983-01-01

    Activity of 5-methylthioribose kinase, the enzyme which catalyzes the ATP-dependent formation of 1-phospho-5-methylthioribose, has been revealed in the extracts from various higher plant species. Almost 2,000-fold-purified enzyme has been obtained from yellow lupin (Lupinus luteus L. cv Topaz) seed extract. Molecular weight of the native enzyme is 70,000 as judged by gel filtration. The lupin 5-methylthioribose kinase exhibits a strict requirement for divalent metal ions. Among the ions tested, only Mg2+ and Mn2+ acted as cofactors. The curve of kinase initial velocity versus pH reaches plateau at pH 10 to 10.5. The Km values calculated for 5-methylthioribose and ATP are 4.3 and 8.3 micromolar, respectively. Among nucleoside triphosphates tested as potential phosphate donors, only dATP could substitute in the reaction for ATP. 5-Isobutylthioribose, an analog of 5-methylthioribose, proved to be the γ-ATP-phosphate acceptor, too. The compound inhibits competitively synthesis of 1-phospho-5-methylthioribose (Ki = 1.4 micromolar). Lupin 5-methylthioribose kinase is completely and irreversibly inhibited by the antisulfhydryl reagent, p-hydroxymercuribenzoate. As in bacteria (Ferro, Barrett, Shapiro 1978 J Biol Chem 253: 6021-6025), the enzyme may be involved in a new, alternative pathway of methionine synthesis in plant tissues. PMID:16662931

  2. Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric-double-layer transistors

    SciTech Connect

    Liu, Ning; Hui Liu, Yang; Qiang Zhu, Li; Feng, Ping Shi, Yi; Wan, Qing

    2015-02-16

    The sensitivity of a standard ion-sensitive field-effect transistor is limited to be 59.2 mV/pH (Nernst limit) at room temperature. Here, a concept based on laterally synergic electric-double-layer (EDL) modulation is proposed in order to overcome the Nernst limit. Indium-zinc-oxide EDL transistors with two laterally coupled gates are fabricated, and the synergic modulation behaviors of the two asymmetric gates are investigated. A high sensitivity of ∼168 mV/pH is realized in the dual-gate operation mode. Laterally synergic modulation in oxide-based EDL transistors is interesting for high-performance bio-chemical sensors.

  3. Antioxidant synergism between tocopherols and ascorbyl palmitate in cooked, minced turkey.

    PubMed

    Bruun-Jensen, L; Skovgaard, I M; Skibsted, L H; Bertelsen, G

    1994-09-01

    In an attempt to reduce oxidative deterioration, including the development of warmed-over flavour (WOF), in cooked, minced turkey meat, a combined strategy using natural antioxidants and modified atmosphere packaging (MAP) was adapted. Tocopherols (200 ppm) each significantly reduced lipid oxidation during 9 days of cold storage (5 degrees C), measured as 2-thiobarbituric-acid-reactive substances (TBARS). Synergism between the two antioxidants was demonstrated as an increasing relative reduction in TBARS values over time when both antioxidants were added, as opposed to the almost constant relative reduction when only one antioxidant was added. Notably, this synergism depended on the availability of O2, and was found to be most significant for atmospheric packaging (21% O2, 79% N2) and most significant towards the end of the storage period. A reduced O2 content in the packages (mixture of O2 and N2, initially: 1.0% O2 or 0.03% O2) had a more pronouced effect on oxidative deterioration than addition of antioxidants. However, during the 9 days of storage, meat balls with the synergistic mixture added, and packed in 1% O2, had TBARS values of 50 compared to 270 mumol malondialdehyde/kg for meat balls without antioxidants packed in 21% O2. This level of reduction in lipid oxidation is comparable with that of meat balls without antioxidants packed in a virtually O2-free atmosphere.

  4. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits.

    PubMed

    Dutta, Debashis; Mohanakumar, Kochupurackal P

    2015-10-01

    The major neurodegenerative movement disorder Parkinson's disease (PD) is characterized by rest-tremor, akinesia, rigidity and inability to initiate movements. PD syndromes result from excessive loss of dopamine from the forebrain striatal region, due to dopaminergic neuronal death in the midbrain substantia nigra pars compacta. PD with multifactorial etiology is believed to ideally require a drug or different drugs that act(s) at multiple sites of action for symptomatic relief. Replenishing striatal dopamine by providing L-3,4-dihydroxyphenylalanine (l-DOPA) along with a peripheral aromatic amino acid decarboxylase inhibitor is the mainstay treatment for PD. Such prolonged therapy leads to debilitating effects, often worsening the affection. Interestingly some under-appreciated pharmaceutical compounds, including constituents of plants and nutraceuticals can synergize with l-DOPA to support mitochondrial function, suppress inflammation, ease oxidative stress, and in turn slow the progression of the disease. Tea and other dietary polyphenols are shown to provide relief to the disease syndromes and provide neuroprotection in cellular and animal models of PD. At par with these findings, random epidemiological studies in certain populations of the world support habitual tea drinking to reduce the risk of PD. The present review addresses how these tea constituents work at the cellular level to render effective control of the disease syndromes and suggests that tea synergizes with established drugs, such as l-DOPA to maximize their effects at certain levels in the disease phenotype-inducing canonical pathways of PD. PMID:26271432

  5. Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer

    PubMed Central

    Stoyanova, Tanya; Riedinger, Mireille; Lin, Shu; Faltermeier, Claire M.; Smith, Bryan A.; Zhang, Kelvin X.; Going, Catherine C.; Goldstein, Andrew S.; Lee, John K.; Drake, Justin M.; Rice, Meghan A.; Hsu, En-Chi; Nowroozizadeh, Behdokht; Castor, Brandon; Orellana, Sandra Y.; Blum, Steven M.; Cheng, Donghui; Pienta, Kenneth J.; Reiter, Robert E.; Pitteri, Sharon J.; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer. PMID:27694579

  6. Synergic Effect of Wheat Straw Ash and Rice-Husk Ash on Strength Properties of Mortar

    NASA Astrophysics Data System (ADS)

    Goyal, Ajay; Kunio, Hattori; Ogata, Hidehiko; Garg, Monika; Anwar, A. M.; Ashraf, M.; Mandula

    Pozzolan materials obtained from various sources; when used as partial replacement for Portland cement in cement based applications play an important role not only towards sustainable development but in reducing the construction costs as well. Present study was conducted to investigate the synergic effect of Rice-Husk Ash (RHA) and Wheat Straw Ash (WSA) on the strength properties of ash substituted mortar. Ash materials were obtained after burning the wastes at 600°C for 5 h at a control rate of 2°C min. Two binary blends of mortar substituting 15% cement with WSA and RHA and three combinations of ternary blend with (10+5)%, (5+10)% and (7.5+7.5)% mix ratios of WSA and RHA, together with a control specimen were subjected to destructive (compressive and flexural strength) as well as non-destructive (ultrasonic pulse velocity) tests till 180 days of curing. Ternary blend with (7.5 + 7.5)% combination of WSA and RHA showed better strength results than control and other blends and proved to be the optimum combination for achieving maximum synergic effect.

  7. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits.

    PubMed

    Dutta, Debashis; Mohanakumar, Kochupurackal P

    2015-10-01

    The major neurodegenerative movement disorder Parkinson's disease (PD) is characterized by rest-tremor, akinesia, rigidity and inability to initiate movements. PD syndromes result from excessive loss of dopamine from the forebrain striatal region, due to dopaminergic neuronal death in the midbrain substantia nigra pars compacta. PD with multifactorial etiology is believed to ideally require a drug or different drugs that act(s) at multiple sites of action for symptomatic relief. Replenishing striatal dopamine by providing L-3,4-dihydroxyphenylalanine (l-DOPA) along with a peripheral aromatic amino acid decarboxylase inhibitor is the mainstay treatment for PD. Such prolonged therapy leads to debilitating effects, often worsening the affection. Interestingly some under-appreciated pharmaceutical compounds, including constituents of plants and nutraceuticals can synergize with l-DOPA to support mitochondrial function, suppress inflammation, ease oxidative stress, and in turn slow the progression of the disease. Tea and other dietary polyphenols are shown to provide relief to the disease syndromes and provide neuroprotection in cellular and animal models of PD. At par with these findings, random epidemiological studies in certain populations of the world support habitual tea drinking to reduce the risk of PD. The present review addresses how these tea constituents work at the cellular level to render effective control of the disease syndromes and suggests that tea synergizes with established drugs, such as l-DOPA to maximize their effects at certain levels in the disease phenotype-inducing canonical pathways of PD.

  8. Cosolubilization synergism occurrence in codesorption of PAH mixtures during surfactant-enhanced remediation of contaminated soil.

    PubMed

    Liang, Xujun; Guo, Chuling; Wei, Yanfu; Lin, Weijia; Yi, Xiaoyun; Lu, Guining; Dang, Zhi

    2016-02-01

    Surfactant-enhanced remediation (SER) has been widely applied in decontaminating PAH-polluted soil. Most researches focus on evaluating washing efficiency without considering pollutants' mutual interaction. This study aims to investigate cosolubilization effect between phenanthrene (Phe) and pyrene (Pyr) in nonionic surfactant Triton X-100 (TX100) solution on their codesorption performance from soil. Cosolubilization experiment showed that, when cosolubilized, solubility of Phe and Pyr in TX100 increased by 15.38% and 18.19%, respectively, as quantified by the deviation ratio of molar solubilization ratio in single and binary solute solubilization systems. The synergism may be due to the enlarged micelle volume caused by PAHs solubilized in the shell region of the micelle. The cosolubilization effect was further observed in the soil washing process. The strengthened TX100 solubilization capacity towards Phe and Pyr could increase the two PAHs' codesorption efficiency from soil, accompanied by synergistic extent of 6-15%. However, synergism in codesorption was weaker than that observed in the cosolubilization system, which may be related to surfactant loss to soil and PAH partition into soil organic matter and the sorbed surfactants. The improved remediation performance during codesorption of mixed PAHs implies the significance of combining PAHs' mutual interaction into evaluating SER, which may reduce the surfactant washing concentration and save remediation cost. PMID:26397474

  9. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  10. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  15. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  16. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  17. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Cyclin-dependent kinases.

    PubMed

    Malumbres, Marcos

    2014-01-01

    Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  20. Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus.

    PubMed

    Lee, Lucy E; Witter, R L; Reddy, S M; Wu, P; Yanagida, N; Yoshida, S

    2003-01-01

    Recombinant fowl poxviruses (rFPVs) were constructed to express genes from serotype 1 Marek's disease virus (MDV) coding for glycoproteins B, E, I, H, and UL32 (gB1, gE, gI, gH, and UL32). An additional rFPV was constructed to contain four MDV genes (gB1, gE, gI, and UL32). These rFPVs were evaluated for their ability to protect maternal antibody-positive chickens against challenge with highly virulent MDV isolates. The protection induced by a single rFPV/gB1 (42%) confirmed our previous finding. The protection induced by rFPV/gI (43%), rFPV/gB1UL32 (46%), rFPV/gB1gEgI (72%), and rFPV/gB1gEgIUL32 (70%) contributed to additional knowledge on MDV genes involved in protective immunity. In contrast, the rFPV containing gE, gH, or UL32 did not induce significant protection compared with turkey herpesvirus (HVT). Levels of protection by rFPV/gB1 and rFPV/gl were comparable with that of HVT. Only gB1 and gI conferred synergism in rFPV containing these two genes. Protection by both rFPV/gB1gEgI (72%) and rFPV/gB1gEgIUL32(70%) against Marek's disease was significantly enhanced compared with a single gB1 or gI gene (40%). This protective synergism between gB1 and gI in rFPVs may be the basis for better protection when bivalent vaccines between serotypes 2 and 3 were used. When rFPV/gB1gIgEUL32 + HVT were used as vaccine against Md5 challenge, the protection was significantly enhanced (94%). This synergism between rFPV/gB1gIgEUL32 and HVT indicates additional genes yet to be discovered in HVT may be responsible for the enhancement.

  1. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  2. In vitro and in vivo Evaluation of Synergism between Anti-Tubercular Spectinamides and Non-Classical Tuberculosis Antibiotics.

    PubMed

    Bruhn, David F; Scherman, Michael S; Liu, Jiuyu; Scherbakov, Dimitri; Meibohm, Bernd; Böttger, Erik C; Lenaerts, Anne J; Lee, Richard E

    2015-01-01

    Spectinamides are new semi-synthetic spectinomycin derivatives with potent anti-tubercular activity. The reported synergism of the precursor spectinomycin with other antibiotics prompted us to examine whether spectinamides sensitize M. tuberculosis to other antibiotics not traditionally used in the treatment of tuberculosis to potentially expand therapeutic options for MDR/XDR Tuberculosis. Whole cell synergy checkerboard screens were performed using the laboratory strain M. tuberculosis H37Rv, lead spectinamide 1599, and a broad panel of 27 antibiotics. In vitro, 1599 synergized with 11 drugs from 6 antibiotic classes. The observed synergy was tested against clinical isolates confirming synergy with Clarithromycin, Doxycycline and Clindamycin, combinations of which were taken forward for in vivo efficacy determination. Co-administration of 1599 and clarithromycin provided additional bacterial killing in a mouse model of acute tuberculosis infection, but not in a chronic infection model. Further studies indicated that mismatched drug exposure profiles likely permitted induction of phenotypic clarithromycin resistance and subsequent loss of synergism. These studies highlight the importance of validating in vitro synergism and the challenge of matching drug exposures to obtain a synergistic outcome in vivo. Results from this study indicate that a 1599 clarithromycin combination is potentially viable, providing the drug exposures can be carefully monitored. PMID:26365087

  3. The promiscuous and synergic molecular interaction of polyphenols in bactericidal activity: an opportunity to improve the performance of antibiotics?

    PubMed

    Tomás-Menor, Laura; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Martí, Nuria; Saura, Domingo; Menéndez, Javier A; Joven, Jorge; Micol, Vicente

    2015-03-01

    Plant polyphenols are a potential source of new antimicrobial molecules against bacteria because most newly developed antimicrobial agents do not improve the clinical management of infectious diseases. The potential synergism between the major polyphenolic compounds present in a Cistus salviifolius extract, which was characterized by HPLC-ESI-MS/MS, was investigated by the isobole method and the fractional inhibitory concentration index determination. Pairwise combinations of selected flavonoids and ellagitannins present in C. salviifolius extract were assayed against the in vitro growth of Staphylococcus aureus. Some combinations revealed synergic effects, resulting in a reduction of the minimum inhibitory concentration required to inhibit 50% growth (MIC50 ) up to 20 times lower as compared with the individual compounds. Some of the combinations exhibited MIC50 values close to drug potency level (0.5-1 µg/mL). Punicalagin and myricetin were the major contributors in the combinations. The proportion between the compounds in the synergic mixtures is crucial and may explain the superior antimicrobial activity displayed by this extract when compared with other botanical extracts. The rational optimization of these combinations could lead to the design of potent antimicrobial phytopharmaceuticals, which may improve the performance of current antibiotics, taking advantage of the multi-targeted and synergic molecular interactions of selected polyphenols.

  4. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers.

    PubMed

    Mitra, Tamoghna; Bhavsar, Rupesh S; Adams, Dave J; Budd, Peter M; Cooper, Andrew I

    2016-04-25

    High-free-volume glassy polymers, such as polymers of intrinsic microporosity (PIMs) and poly(trimethylsilylpropyne), have attracted attention as membrane materials due to their high permeability. However, loss of free volume over time, or aging, limits their applicability. Introduction of a secondary filler phase can reduce this aging but either cost or instability rules out scale up for many fillers. Here, we report a cheap, acid-tolerant, nanoparticulate hypercrosslinked polymer 'sponge' as an alternative filler. On adding the filler, permeability is enhanced and aging is strongly retarded. This is accompanied by a CO2/N2 selectivity that increases over time, surpassing the Robeson upper bound.

  5. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment

    PubMed Central

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-01-01

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar−1) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification. PMID:27782212

  6. Diagnostic dose of synergized d-phenothrin for insecticide susceptibility testing by bottle bioassay.

    PubMed

    Petersen, John L; Floore, Thomas G; Brogdon, William G

    2004-06-01

    The diagnostic dose of d-phenothrin synergized 1:1 with piperonyl butoxide for testing insecticide susceptibility of mosquitoes by bottle bioassay is reported for 2 mosquito species, Culex quinquefasciatus and Ochlerotatus taeniorhynchus. The diagnostic dose was defined as 2 times the 95% lethal concentration (LC95). LC50, LC90, and LC95 were estimated by probit analysis of dose response data. Procedures for diluting the commercial-grade off-the-shelf pesticide in acetone, treating the bottles, and calculating baseline data for insecticide-susceptible mosquito populations are described. The advantages and disadvantages of testing off-the-shelf commercial-grade pesticides that are maintained on premises by mosquito control programs, in contrast to using reagent-grade chemicals purchased from a chemical supply house, are also discussed. Data obtained by this method can be invaluable in making timely management decisions about the choice of pesticides in a control program.

  7. Cyt1A from Bacillus thuringiensis Synergizes Activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Wirth, Margaret C.; Federici, Brian A.; Walton, William E.

    2000-01-01

    Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3,600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus. PMID:10698776

  8. Proceedings of the Tenth Symposium on Energy Engineering Sciences: Synergism of Analysis, Modeling, and Experiment

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The Tenth Symposium on Energy Engineering Sciences was held on May 11-13, 1992, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the seven technical sessions held at this meeting. This was the tenth annual symposium sponsored by the Engineering Research Program of the Office of Basic Energy Sciences of the U.S. Department of Energy. The central theme of this year's meeting was synergism of analysis, modeling, and experiment and related topics. Each year a group of selected researchers in the DOE/BES Engineering Research Program are invited to present their research findings in such an open forum. This Symposium was organized into seven technical sessions: fluid mechanics (two sessions); solid mechanics; analysis, nonlinear systems (two sessions); chemical processing; and instrumentation and diagnostics. Separate abstracts were prepared for individual papers in this report.

  9. Saccharomyces cerevisiae mixed culture of blackberry (Rubus ulmifolius L.) juice: synergism in the aroma compounds production.

    PubMed

    Bautista-Rosales, Pedro Ulises; Ragazzo-Sánchez, Juan Arturo; Ruiz-Montañez, Gabriela; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains.

  10. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates.

    PubMed

    Woznica, Arielle; Cantley, Alexandra M; Beemelmanns, Christine; Freinkman, Elizaveta; Clardy, Jon; King, Nicole

    2016-07-12

    In choanoflagellates, the closest living relatives of animals, multicellular rosette development is regulated by environmental bacteria. The simplicity of this evolutionarily relevant interaction provides an opportunity to identify the molecules and regulatory logic underpinning bacterial regulation of development. We find that the rosette-inducing bacterium Algoriphagus machipongonensis produces three structurally divergent classes of bioactive lipids that, together, activate, enhance, and inhibit rosette development in the choanoflagellate Salpingoeca rosetta. One class of molecules, the lysophosphatidylethanolamines (LPEs), elicits no response on its own but synergizes with activating sulfonolipid rosette-inducing factors (RIFs) to recapitulate the full bioactivity of live Algoriphagus. LPEs, although ubiquitous in bacteria and eukaryotes, have not previously been implicated in the regulation of a host-microbe interaction. This study reveals that multiple bacterially produced lipids converge to activate, enhance, and inhibit multicellular development in a choanoflagellate. PMID:27354530

  11. Synergic Antibacterial Effect of Curcumin with Ampicillin; Free Drug Solutions in Comparison with SLN Dispersions

    PubMed Central

    Alihosseini, Faezeh; Azarmi, Shirzad; Ghaffari, Solmaz; Haghighat, Setareh; Rezayat Sorkhabadi, Seyed Mahdi

    2016-01-01

    Purpose: This study was designed to investigate benefit of using nanotechnology on increasing of synergic antibacterial effect of natural and chemical antibacterial agents. Methods: At first the MIC and MBC of Curcumin and Ampicillin as selected antibacterial agents was determined, after that Solid Lipid Nanoparticles (SLNs) of each active ingredients as well as Curcumin-Ampicillin loaded SLNs were prepared using high pressure homogenization technique. Characterization of prepared SLNs was done, then MIC, MBC and contact killing time were investigated for Curcumin-Ampicillin loaded SLNs in comparison with free Curcumin and Ampicillin solutions as well as Ampicillin and Curcumin SLNs. Results: Based on results nanoparticles with the size of 150 nm show much more decreased MIC and MBC when Ampicillin and Curcumin were loaded together on SLNs than solutions in which free Ampicillin and Curcumin were mixed. Conclusion: It seems that using nanotechnology could cause decrease the dosage of antibiotics and risk of having antibiotic resistance bacteria strains. PMID:27766232

  12. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates

    PubMed Central

    Woznica, Arielle; Cantley, Alexandra M.; Beemelmanns, Christine; Freinkman, Elizaveta; Clardy, Jon; King, Nicole

    2016-01-01

    In choanoflagellates, the closest living relatives of animals, multicellular rosette development is regulated by environmental bacteria. The simplicity of this evolutionarily relevant interaction provides an opportunity to identify the molecules and regulatory logic underpinning bacterial regulation of development. We find that the rosette-inducing bacterium Algoriphagus machipongonensis produces three structurally divergent classes of bioactive lipids that, together, activate, enhance, and inhibit rosette development in the choanoflagellate Salpingoeca rosetta. One class of molecules, the lysophosphatidylethanolamines (LPEs), elicits no response on its own but synergizes with activating sulfonolipid rosette-inducing factors (RIFs) to recapitulate the full bioactivity of live Algoriphagus. LPEs, although ubiquitous in bacteria and eukaryotes, have not previously been implicated in the regulation of a host–microbe interaction. This study reveals that multiple bacterially produced lipids converge to activate, enhance, and inhibit multicellular development in a choanoflagellate. PMID:27354530

  13. Synergism and chemiluminescence of cerium ions and ruthenium complexes in the belousov-zhabotinskii reaction

    SciTech Connect

    Karavaev, A.D.; Kazakov, V.P.; Tolstikov, G.A.

    1986-04-01

    This paper studies chemiluminescence (CL) in the system BrO/sup -//sub 3/-CH/sub 2/ (COOH)/sub 2/ -Ce/sup 3 +/,4+-RuPbipy)/sub 3/ /SUP 2+,/ /sub 3/. The tests were carried out in a CL/sup 3/ unit that included a light-tight chamber, a photoelectron multiplier (FEU-97), a VS-22 high voltage power pack, and an EPPV-60M recording potentiometer. The synergism in chemiluminescence at low concentrations of ruthenium complex does not appear in the oscillation parameters. The periodic CL of this two-catalyst system may be a convenient chemical model for the study of combined chemical reactions in more complicated biochemiluminescent processes, such as that by which the firefly flashes in the dark.

  14. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    PubMed Central

    Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606

  15. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose.

    PubMed

    Hamid, Sharifah Bee Abd; Zain, Siti Khadijah; Das, Rasel; Centi, Gabriele

    2016-03-15

    The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications. PMID:26794771

  16. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor.

    PubMed

    Pérez, Claudia; Fernandez, Luisa E; Sun, Jianguang; Folch, Jorge Luis; Gill, Sarjeet S; Soberón, Mario; Bravo, Alejandra

    2005-12-20

    Bacillus thuringiensis subsp. israelensis produces crystal proteins, Cry (4Aa, 4Ba, 10Aa, and 11Aa) and Cyt (1Aa and 2Ba) proteins, toxic to mosquito vectors of human diseases. Cyt1Aa overcomes insect resistance to Cry11Aa and Cry4 toxins and synergizes the toxicity of these toxins. However, the molecular mechanism of synergism remains unsolved. Here, we provide evidence that Cyt1Aa functions as a receptor of Cry11Aa. Sequential-binding analysis of Cyt1Aa and Cry11Aa revealed that Cyt1Aa binding to Aedes aegypti brush border membrane vesicles enhanced the binding of biotinylated-Cry11Aa. The Cyt1Aa- and Cry11Aa-binding epitopes were mapped by means of the yeast two-hybrid system, peptide arrays, and heterologous competition assays with synthetic peptides. Two exposed regions in Cyt1Aa, loop beta6-alphaE and part of beta7, bind Cry11Aa. On the other side, Cry11Aa binds Cyt1Aa proteins by means of domain II-loop alpha8 and beta-4, which are also involved in midgut receptor interaction. Characterization of single-point mutations in Cry11Aa and Cyt1Aa revealed key Cry11Aa (S259 and E266) and Cyt1Aa (K198, E204 and K225) residues involved in the interaction of both proteins and in synergism. Additionally, a Cyt1Aa loop beta6-alphaE mutant (K198A) with enhanced synergism to Cry11Aa was isolated. Data provided here strongly indicates that Cyt1Aa synergizes or suppresses resistance to Cry11Aa toxin by functioning as a membrane-bound receptor. Bacillus thuringiensis subsp. israelensis is a highly effective pathogenic bacterium because it produces a toxin and also its functional receptor, promoting toxin binding to the target membrane and causing toxicity. PMID:16339907

  17. Map kinases in fungal pathogens.

    PubMed

    Xu, J R

    2000-12-01

    MAP kinases in eukaryotic cells are well known for transducing a variety of extracellular signals to regulate cell growth and differentiation. Recently, MAP kinases homologous to the yeast Fus3/Kss1 MAP kinases have been identified in several fungal pathogens and found to be important for appressorium formation, invasive hyphal growth, and fungal pathogenesis. This MAP kinase pathway also controls diverse growth or differentiation processes, including conidiation, conidial germination, and female fertility. MAP kinases homologous to yeast Slt2 and Hog1 have also been characterized in Candida albicans and Magnaporthe grisea. Mutants disrupted of the Slt2 homologues have weak cell walls, altered hyphal growth, and reduced virulence. The Hog1 homologues are dispensable for growth but are essential for regulating responses to hyperosmotic stress in C. albicans and M. grisea. Overall, recent studies have indicated that MAP kinase pathways may play important roles in regulating growth, differentiation, survival, and pathogenesis in fungal pathogens. PMID:11273677

  18. Synergism between ozone and light stress: structural responses of polyphenols in a woody Brazilian species.

    PubMed

    Fernandes, Francine Faia; Cardoso-Gustavson, Poliana; Alves, Edenise Segala

    2016-07-01

    Microscopic studies on isolated ozone (O3) effects or on those in synergy with light stress commonly report the induction of polyphenols that exhibit different aspects within the vacuole of photosynthesizing cells. It has been assumed that these different aspects are randomly spread in the symptomatic (injured) regions of the leaf blade. Interestingly, secretory ducts that constitutively produce polyphenols also exhibit these same variations in their vacuolar aspect, in a spatial sequence related to the destiny of these cells (e.g., programmed cell death (PCD) in lytic secretion processes). Here, we demonstrate that the deposition pattern of polyphenols prior to the establishment of the hypersensitive-like response, a type of PCD caused by O3, follows the same one observed in the epithelial cells of the constitutive lysigenous secretory ducts. Astronium graveolens, an early secondary Brazilian woody species, was selected based on its susceptibility to high light and presence of secretory ducts. The synergism effects were assessed by exposing plants to the high O3 concentrations at an urban site in São Paulo City. Confocal, widefield and light microscopies were used to examine polyphenols' occurrence and aspects. The spatial pattern of polyphenols distribution along the leaflets of plants submitted to the synergism condition, in which a dense vacuolar aspect is the target of a cell destined to death, was also observed in the constitutive secretory cells prior to lysis. This similar structural pattern may be a case of homology of process involving both the constitutive (secretory ducts) and the induced (photosynthesizing cells) defenses. PMID:27155473

  19. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    PubMed

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.

  20. Trait synergisms and the rarity, extirpation, and extinction risk of desert fishes.

    PubMed

    Olden, Julian D; Poff, N LeRoy; Bestgen, Kevin R

    2008-03-01

    Understanding the causes and consequences of species extinctions is a central goal in ecology. Faced with the difficult task of identifying those species with the greatest need for conservation, ecologists have turned to using predictive suites of ecological and life-history traits to provide reasonable estimates of species extinction risk. Previous studies have linked individual traits to extinction risk, yet the nonadditive contribution of multiple traits to the entire extinction process, from species rarity to local extirpation to global extinction, has not been examined. This study asks whether trait synergisms predispose native fishes of the Lower Colorado River Basin (USA) to risk of extinction through their effects on rarity and local extirpation and their vulnerability to different sources of threat. Fish species with "slow" life histories (e.g., large body size, long life, and delayed maturity), minimal parental care to offspring, and specialized feeding behaviors are associated with smaller geographic distribution, greater frequency of local extirpation, and higher perceived extinction risk than that expected by simple additive effects of traits in combination. This supports the notion that trait synergisms increase the susceptibility of native fishes to multiple stages of the extinction process, thus making them prone to the multiple jeopardies resulting from a combination of fewer individuals, narrow environmental tolerances, and long recovery times following environmental change. Given that particular traits, some acting in concert, may differentially predispose native fishes to rarity, extirpation, and extinction, we suggest that management efforts in the Lower Colorado River Basin should be congruent with the life-history requirements of multiple species over large spatial and temporal scales. PMID:18459347

  1. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  2. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  3. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations

    PubMed Central

    PARK, EUNJU; PARK, JINAH; HAN, SAE-WON; IM, SEOCK-AH; KIM, TAE-YOU; OH, DO-YOUN; BANG, YUNG-JUE

    2012-01-01

    Aberrations of Phosphoinositide 3-kinase (PI3K)/AKT signaling are frequently observed in many types of cancer, promoting its emergence as a promising target for cancer treatment. PI3K can become activated by various pathways, one of which includes RAS. RAS can not only directly activate the PI3K/AKT pathway via binding to p110 of PI3K, but also regulates mTOR via ERK or RSK independently of the PI3K/AKT pathway. Thus, actively mutated RAS can constitutively activate PI3K signaling. Additionally, in RAS tumorigenic transformation, signal transducer and activator of transcription 3 (STAT3) has been known also to be required. In this study, we examined the efficacy of NVP-BKM120, a pan-class I PI3K inhibitor in human gastric cancer cells and hypothesized that the combined inhibition of PI3K and STAT3 would be synergistic in KRAS mutant gastric cancer cells. NVP-BKM120 demonstrated anti-proliferative activity in 11 human gastric cancer cell lines by decreasing mTOR downstream signaling. But NVP-BKM120 treatment increased p-AKT by subsequent abrogation of feedback inhibition by stabilizing insulin receptor substrate-1. In KRAS mutant gastric cancer cells, either p-ERK or p-STAT3 was also increased upon treatment of NVP-BKM120. The synergistic efficacy study demonstrated that dual PI3K and STAT3 blockade showed a synergism in cells harboring mutated KRAS by inducing apoptosis. The synergistic effect was not seen in KRAS wild-type cells. Together, these findings suggest for the first time that the dual inhibition of PI3K and STAT3 signaling may be an effective therapeutic strategy for KRAS mutant gastric cancer patients. PMID:22159814

  4. Calix[6]arene bypasses human pancreatic cancer aggressiveness: downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy.

    PubMed

    Pelizzaro-Rocha, Karin Juliane; de Jesus, Marcelo Bispo; Ruela-de-Sousa, Roberta Regina; Nakamura, Celso Vataru; Reis, Fabiano Souza; de Fátima, Angelo; Ferreira-Halder, Carmen Veríssima

    2013-12-01

    Pancreatic cancer ranks fourth among cancer-related causes of death in North America. Minimal progress has been made in the diagnosis and treatment of patients with late-stage tumors. Moreover, pancreatic cancer aggressiveness is closely related to high levels of pro-survival mediators, which can ultimately lead to rapid disease progression, resistance and metastasis. The main goal of this study was to define the mechanisms by which calix[6]arene, but not other calixarenes, efficiently decreases the aggressiveness of a drug resistant human pancreas carcinoma cell line (Panc-1). Calix[6]arene was more potent in reducing Panc-1 cell viability than gemcitabine and 5-fluorouracil. In relation to the underlying mechanisms of cytotoxic effects, it led to cell cycle arrest in the G0/G1 phase through downregulation of PIM1, CDK2, CDK4 and retinoblastoma proteins. Importantly, calix[6]arene abolished signal transduction of Mer and AXL tyrosine kinase receptors, both of which are usually overexpressed in pancreatic cancer. Accordingly, inhibition of PI3K and mTOR was also observed, and these proteins are positively modulated by Mer and AXL. Despite decreasing the phosphorylation of AKT at Thr308, calix[6]arene caused an increase in phosphorylation at Ser473. These findings in conjunction with increased BiP and IRE1-α provide a molecular basis explaining the capacity of calix[6]arene to trigger endoplasmic reticulum stress and autophagic cell death. Our findings highlight calix[6]arene as a potential candidate for overcoming pancreatic cancer aggressiveness. Importantly, we provide evidence that calix[6]arene affects a broad array of key targets that are usually dysfunctional in pancreatic cancer, a highly desirable characteristic for chemotherapeutics. PMID:23872419

  5. Calix[6]arene bypasses human pancreatic cancer aggressiveness: downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy.

    PubMed

    Pelizzaro-Rocha, Karin Juliane; de Jesus, Marcelo Bispo; Ruela-de-Sousa, Roberta Regina; Nakamura, Celso Vataru; Reis, Fabiano Souza; de Fátima, Angelo; Ferreira-Halder, Carmen Veríssima

    2013-12-01

    Pancreatic cancer ranks fourth among cancer-related causes of death in North America. Minimal progress has been made in the diagnosis and treatment of patients with late-stage tumors. Moreover, pancreatic cancer aggressiveness is closely related to high levels of pro-survival mediators, which can ultimately lead to rapid disease progression, resistance and metastasis. The main goal of this study was to define the mechanisms by which calix[6]arene, but not other calixarenes, efficiently decreases the aggressiveness of a drug resistant human pancreas carcinoma cell line (Panc-1). Calix[6]arene was more potent in reducing Panc-1 cell viability than gemcitabine and 5-fluorouracil. In relation to the underlying mechanisms of cytotoxic effects, it led to cell cycle arrest in the G0/G1 phase through downregulation of PIM1, CDK2, CDK4 and retinoblastoma proteins. Importantly, calix[6]arene abolished signal transduction of Mer and AXL tyrosine kinase receptors, both of which are usually overexpressed in pancreatic cancer. Accordingly, inhibition of PI3K and mTOR was also observed, and these proteins are positively modulated by Mer and AXL. Despite decreasing the phosphorylation of AKT at Thr308, calix[6]arene caused an increase in phosphorylation at Ser473. These findings in conjunction with increased BiP and IRE1-α provide a molecular basis explaining the capacity of calix[6]arene to trigger endoplasmic reticulum stress and autophagic cell death. Our findings highlight calix[6]arene as a potential candidate for overcoming pancreatic cancer aggressiveness. Importantly, we provide evidence that calix[6]arene affects a broad array of key targets that are usually dysfunctional in pancreatic cancer, a highly desirable characteristic for chemotherapeutics.

  6. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.

    PubMed Central

    Lu, Q; Inouye, M

    1996-01-01

    Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8650159

  7. Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers

    PubMed Central

    Cheong, Jit Kong; Zhang, Fuquan; Chua, Pei Jou; Bay, Boon Huat; Thorburn, Andrew; Virshup, David M.

    2015-01-01

    Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers. PMID:25798617

  8. Focal adhesion kinase

    PubMed Central

    Stone, Rebecca L; Baggerly, Keith A; Armaiz-Pena, Guillermo N; Kang, Yu; Sanguino, Angela M; Thanapprapasr, Duangmani; Dalton, Heather J; Bottsford-Miller, Justin; Zand, Behrouz; Akbani, Rehan; Diao, Lixia; Nick, Alpa M; DeGeest, Koen; Lopez-Berestein, Gabriel; Coleman, Robert L; Lutgendorf, Susan; Sood, Anil K

    2014-01-01

    This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAKY397 were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P < 0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P < 0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P < 0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors. PMID:24755674

  9. Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis.

    PubMed

    Kim, In Jung; Nam, Ki Hyun; Yun, Eun Ju; Kim, Sooah; Youn, Hak Jin; Lee, Hee Jin; Choi, In-Geol; Kim, Kyoung Heon

    2015-10-01

    Auxiliary activity family 9 (AA9, formerly known as glycoside hydrolase family 61 or polysaccharide monooxygenase) is a group of fungal proteins that were recently found to have a significant synergism with cellulase in cellulose hydrolysis via the oxidative cleavage of glycosidic bonds of cellulose chains. In this study, we report the active expression of a recombinant fungal AA9 from Chaetomium globosum (CgAA9) in a bacterial host, Escherichia coli, and the optimization of its synergistic activity in cellulose hydrolysis by using cellulase. The recombinant CgAA9 (0.9 mg/g cellulose) exhibited 1.7-fold synergism in the hydrolysis of Avicel when incubated with 0.9 filter paper units of Celluclast 1.5 L/g cellulose. The first study of the active expression of AA9 using a bacterial host and its synergistic optimization could be useful for the industrial application of AA9 for the saccharification of lignocellulose.

  10. [The primary role of central region of HC-pro of potato Y potyvirus in synergism of plant viruses].

    PubMed

    Lu, R F; Li, W M; Wang, H Y; Guo, M; Peng, X X

    2001-05-01

    Five deleted mutants of HC-Pro gene of Chinese isolate of potato Y potyvirus (PVY-C) were obtained by PCR mutation, and their plant expression vectors were constructed. They were transformed into tobacco K326 (Nicotina tabacum cv. K326) mediated by Agrobacterium. PCR and Southern blot analysis revealed that PVY-C HC-Pro gene and its deleted mutants were integrated into tobacco genome, and Western blot analysis showed that they were all expressed in transgenic tobacco plants. Furthermore, infection test demonstrated that the central region of PVY-C HC-Pro can mediate synergism of PVY-C/cucumber mosaic cucumovirus (CMV) and PVY-C/potato X potexvirus (PVX), identifying that it is functional domain in synergism.

  11. In Vitro Synergism Observed with Azithromycin, Clarithromycin, Minocycline, or Tigecycline in Association with Antifungal Agents against Pythium insidiosum

    PubMed Central

    Jesus, Francielli P. K.; Ferreiro, Laerte; Loreto, Érico S.; Pilotto, Maiara B.; Ludwig, Aline; Bizzi, Karine; Tondolo, Juliana S. M.; Zanette, Régis A.; Alves, Sydney H.

    2014-01-01

    We describe here the in vitro activities of azithromycin, clarithromycin, minocycline, or tigecycline alone and in combination with amphotericin B, itraconazole, terbinafine, voriconazole, anidulafungin, caspofungin, or micafungin against 30 isolates of the oomycete Pythium insidiosum. The assays were based on the CLSI M38-A2 technique and the checkerboard microdilution method. The main synergisms observed were through the combination of minocycline with amphotericin B (73.33%), itraconazole (70%), and micafungin (70%) and of clarithromycin with micafungin (73.33%). PMID:25001300

  12. In vitro synergism observed with azithromycin, clarithromycin, minocycline, or tigecycline in association with antifungal agents against Pythium insidiosum.

    PubMed

    Jesus, Francielli P K; Ferreiro, Laerte; Loreto, Érico S; Pilotto, Maiara B; Ludwig, Aline; Bizzi, Karine; Tondolo, Juliana S M; Zanette, Régis A; Alves, Sydney H; Santurio, Janio M

    2014-09-01

    We describe here the in vitro activities of azithromycin, clarithromycin, minocycline, or tigecycline alone and in combination with amphotericin B, itraconazole, terbinafine, voriconazole, anidulafungin, caspofungin, or micafungin against 30 isolates of the oomycete Pythium insidiosum. The assays were based on the CLSI M38-A2 technique and the checkerboard microdilution method. The main synergisms observed were through the combination of minocycline with amphotericin B (73.33%), itraconazole (70%), and micafungin (70%) and of clarithromycin with micafungin (73.33%). PMID:25001300

  13. A kinetic model of the synergism of endo- and exoglucanase and {beta}-glucosidase on hydrolysis of cellulose

    SciTech Connect

    Fujii, Michihiro; Homma, Taira; Ooshima, Kazuhisa; Taniguchi, Masayuki

    1991-12-31

    A kinetic model representing the synergistic action of the three components that compose cellulose on hydrolysis of solid cellulose particles is proposed. The model consists of three simultaneous differential equations: one representing the action of the endoenzyme, another representing the action of the exoenzyme, and the third representing the action of the {Beta}-glucosidase. A simultaneous solution of these three equations expresses the synergism. The experimental data fit the theory well.

  14. Bivalent Inhibitors of Protein Kinases

    PubMed Central

    Gower, Carrie M.; Chang, Matthew E. K.; Maly, Dustin J.

    2015-01-01

    Protein kinases are key players in a large number of cellular signaling pathways. Dysregulated kinase activity has been implicated in a number of diseases, and members of this enzyme family are of therapeutic interest. However, due to the fact that most inhibitors interact with the highly conserved ATP-binding sites of kinases, it is a significant challenge to develop pharmacological agents that target only one of the greater than 500 kinases present in humans. A potential solution to this problem is the development of bisubstrate and bivalent kinase inhibitors, in which an active site-directed moiety is tethered to another ligand that targets a location outside of the ATP-binding cleft. Because kinase signaling specificity is modulated by regions outside of the ATP-binding site, strategies that exploit these interactions have the potential to provide reagents with high target selectivity. This review highlights examples of kinase interaction sites that can potentially be exploited by bisubstrate and bivalent inhibitors. Furthermore, an overview of efforts to target these interactions with bisubstrate and bivalent inhibitors is provided. Finally, several examples of the successful application of these reagents in a cellular setting are described. PMID:24564382

  15. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    PubMed

    Chen, Wenbo; Liu, Chenxi; Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  16. Tramadol and Tramadol+Caffeine Synergism in the Rat Formalin Test Are Mediated by Central Opioid and Serotonergic Mechanisms

    PubMed Central

    Carrillo-Munguía, Norma; González-Trujano, Ma. Eva; Huerta, Miguel; Trujillo, Xochitl; Díaz-Reval, M. Irene

    2015-01-01

    Different analgesic combinations with caffeine have shown this drug to be capable of increasing the analgesic effect. Many combinations with nonsteroidal anti-inflammatory drugs (NSAIDs) have been carried out, but, in regard to opioids, only combinations with morphine and tramadol have been reported. The antinociceptive synergism mechanism of these combinations is not well understood. The purpose of the present study was to determine the participation of spinal and supraspinal opioidergic and serotonergic systems in the synergic effect of the tramadol+caffeine combination in the rat formalin test. At the supraspinal level, the opioid antagonist, naloxone, completely reversed the effect of the drug combination, whereas ketanserin, a 5-HT2 receptor antagonist, inhibited the effect by 60%; however, ondansetron, a 5-HT3 receptor antagonist, did not alter the combination effect. When the antagonists were intrathecally administered, there was a significant reduction in all tramadol-caffeine combination effects. With respect to tramadol alone, there was significant participation of the opioid system at the supraspinal level, whereas it was the serotonergic system that participated at the spinal level by means of the two receptors studied. In conclusion, the tramadol+caffeine combination synergically activated the opioid and serotonergic systems at the supraspinal level, as well as at the spinal level, to produce the antinociception. PMID:26146627

  17. A Toxin-Binding Alkaline Phosphatase Fragment Synergizes Bt Toxin Cry1Ac against Susceptible and Resistant Helicoverpa armigera

    PubMed Central

    Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E.; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects. PMID:25885820

  18. North American Invasion of the Tawny Crazy Ant (Nylanderia fulva) Is Enabled by Pheromonal Synergism from Two Separate Glands.

    PubMed

    Zhang, Qing-He; McDonald, Danny L; Hoover, Doreen R; Aldrich, Jeffrey R; Schneidmiller, Rodney G

    2015-09-01

    A new invader, the "tawny crazy ant", Nylanderia fulva (Hymenoptera: Formicidae; Formicinae), is displacing the red imported fire ant, Solenopsis invicta (Formicidae: Myrmicinae), in the southern U.S., likely through its superior chemical arsenal and communication. Alone, formic acid is unattractive, but this venom (= poison) acid powerfully synergizes attraction of tawny crazy ants to volatiles from the Dufour's gland secretion of N. fulva workers, including the two major components, undecane and 2-tridecanone. The unexpected pheromonal synergism between the Dufour's gland and the venom gland appears to be another key factor, in addition to previously known defensive and detoxification semiochemical features, for the successful invasion and domination of N. fulva in the southern U.S. This synergism is an efficient mechanism enabling N. fulva workers to outcompete Solenopsis and other ant species for food and territory. From a practical standpoint, judicious point-source release formulation of tawny crazy ant volatiles may be pivotal for enhanced attract-and-kill management of this pest. PMID:26315627

  19. Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus

    PubMed Central

    Walther, Elisabeth; Xu, Zhongli; Richter, Martina; Kirchmair, Johannes; Grienke, Ulrike; Rollinger, Judith M.; Krumbholz, Andi; Saluz, Hans P.; Pfister, Wolfgang; Sauerbrei, Andreas; Schmidtke, Michaela

    2016-01-01

    Secondary infections with Streptococcus pneumoniae cause severe pneumonia and enhance lethality during influenza epidemics and pandemics. Structural and functional similarities with viral neuraminidase (NA) suggest that the highly prevalent pneumococcal NAs, NanA and NanB, might contribute to this lethal synergism by supporting viral replication and that dual acting NA inhibitors (NAIs) will disrupt it. To verify this hypothesis, NanA and NanB were expressed in E. coli. After confirming their activity in enzyme assays, in vitro models with influenza virus A/Jena/8178/09 (Jena/8178) and the recombinant NanA or NanB (rNanA and rNanB) were established in A549 and MDCK cells to mimic the role of these pneumococcal NAs during co-infection. Studies on the influence of both NAs on viral receptor expression, spread, and yield revealed a distinct effect of NanA and NanB on viral replication in these in vitro models. Both enzymes were able to support Jena/8178 replication at certain concentrations. This synergism was disrupted by the NAIs oseltamivir, DANA, katsumadain A, and artocarpin exerting an inhibitory effect on viral NA and NanA. Interestingly, katsumadain A and artocarpin inhibited rNanA and rNanB similarly. Zanamivir did not show activity. These results demonstrate a key role of pneumococcal NAs in the lethal synergism with influenza viruses and reveal opportunities for its effective disruption. PMID:27047471

  20. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    PubMed

    Chen, Wenbo; Liu, Chenxi; Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects. PMID:25885820

  1. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland.

    PubMed

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  2. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells.

    PubMed

    Srivastava, Rakesh K; Tang, Su-Ni; Zhu, Wenyu; Meeker, Daniel; Shankar, Sharmila

    2011-01-01

    According to the cancer stem cell hypothesis, the aggressive growth and early metastasis of cancer may arise through dysregulation of self-renewal of stem cells. The objectives of this study were to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables) inhibits self-renewal capacity of pancreatic cancer stem cells (CSCs), and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that SFN inhibited self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by lentiviral-mediated shRNA expression enhanced the inhibitory effects of sulforaphane on self-renewal capacity of CSCs. SFN induced apoptosis by inhibiting the expression of Bcl-2 and XIAP, phosphorylation of FKHR, and activating caspase-3. Moreover, SFN inhibited expression of proteins involved in the epithelial-mesenchymal transition (beta-catenin, vimentin, twist-1, and ZEB1), suggesting the blockade of signaling involved in early metastasis. Furthermore, the combination of quercetin with SFN had synergistic effects on self-renewal capacity of pancreatic CSCs. These data suggest that SFN either alone or in combination with quercetin can eliminate cancer stem cell-characteristics.

  3. Gefitinib Synergizes with Irinotecan to Suppress Hepatocellular Carcinoma via Antagonizing Rad51-Mediated DNA-Repair

    PubMed Central

    Peng, Xueming; Chen, Min; Zhu, Yuanrun; Xu, Li; Zhu, Hong; Yang, Bo; Luo, Peihua; He, Qiaojun

    2016-01-01

    Chemotherapy is the only choice for most of the advanced hepatocellular carcinoma (HCC) patients, while few agents were available, making it an urgent need to develop new chemotherapy strategies. A phase II clinical trial suggested that the efficacy of irinotecan in HCC was limited due to dose-dependent toxicities. Here, we found that gefitinib exhibited synergistic activity in combination with SN-38, an active metabolite of irinotecan, in HCC cell lines. And the enhanced apoptosis induced by gefitinib plus SN-38 was a result from caspase pathway activation. Mechanistically, gefitinib dramatically promoted the ubiquitin–proteasome-dependent degradation of Rad51 protein, suppressed the DNA repair, gave rise to more DNA damages, and ultimately resulted in the synergism of these two agents. In addition, the increased antitumor efficacy of gefitinib combined with irinotecan was further validated in a HepG2 xenograft mice model. Taken together, our data demonstrated for the first time that the combination of irinotecan and gefitinib showed potential benefit in HCC, which suggests that Rad51 is a promising target and provides a rationale for clinical trials investigating the efficacy of the combination of topoisomerase I inhibitors and gefitinib in HCC. PMID:26752698

  4. Synergism in a HDEHP/TOPO Liquid-Liquid Extraction System: An Intrinsic Ligands Property?

    PubMed

    Pecheur, O; Dourdain, S; Guillaumont, D; Rey, J; Guilbaud, P; Berthon, L; Charbonnel, M C; Pellet-Rostaing, S; Testard, F

    2016-03-17

    Among the proposed mechanisms to predict and understand synergism in solvent extraction, the possibility of a preorganization of the mixture of extractant molecules has never been considered. Whether involving synergistic aggregation as for solubilization enhancement with reverse micelles or favored molecular interaction between the extractant molecules, evaluation of this hypothesis requires characterization of the aggregates formed by the extractant molecules at different scales. We investigate here the HDEHP/TOPO couple of extractant with methods ranging from vibrational spectroscopy and ESI-MS spectrometry to vapor pressure osmometry and neutron and X-ray scattering to cover both molecular and supramolecular scales. These experimental methods are subjected to DFT calculations and molecular dynamics calculations, allowing a rationalization of the results through the different scales. Performed in the absence of any cation, this original study allows a decorrelation of the mechanisms at the origin of synergy: it appears that no clear preorganization of the extractants can explain the synergy and therefore that the synergistic aggregation observed in the presence of cations is rather due to the chelation mechanisms than to intrinsic properties of the extractant molecules.

  5. Evidence for synergism of the antimicrobial peptide piscidin 2 with antiparasitic and antioomycete drugs.

    PubMed

    Zahran, E; Noga, E J

    2010-12-01

    Piscidins are potent, broad-spectrum, host-produced antimicrobial peptides (AMPs) that appear to constitute the most common AMP family in teleost fish. Here, we show that piscidin 2 has potent activity against the water mould Saprolegnia, one of the most important pathogens of freshwater fish. The minimum oomyceticidal concentration (MOC₁₀₀) of piscidin 2 against zoospores of three pathogenic isolates of Saprolegnia ranged from 12.5 to 25.0 μg mL⁻¹. This piscidin concentration is well within levels that have been estimated to be present in at least some fish (1-32.5 μg mL⁻¹). In the presence of either copper or malachite green, two drugs commonly used to treat water moulds, there was evidence for partial synergism (PSYN) with piscidin 2. There was also evidence for PSYN after exposure of the ciliate parasite Tetrahymena pyriformis to piscidin 2 plus copper. Our data provide further evidence that piscidins may be an important host defence against skin and gill pathogens and that the piscidin levels in host tissue might influence the success of drug treatments. PMID:21091726

  6. Synergism between two amphenicol of antibiotics, florfenicol and thiamphenicol, against Staphylococcus aureus.

    PubMed

    Wei, C-F; Chang, S-K; Shien, J-H; Kuo, H-C; Chen, W-Y; Chou, C-C

    2016-03-26

    Synergistic effects between the same class of antibiotics are rarely reported. In the current study, two amphenicols, namely florfenicol and thiamphenicol, exhibited both in vitro and in vivo synergism against clinical isolates ofStaphylococcus aureusfrom chickens, cattle and pigs. Checkerboard assays on 21S. aureusisolates showed that in 80 per cent of methicillin-susceptibleS. aureus(MSSA) and 82 per cent of methicillin-resistantS. aureus(MRSA) isolates tested, the minimal inhibitory concentration (MIC) of florfenicol could be reduced by 75 per cent (1/4 MIC) or more (up to 1/16 MIC) when combined with 1/2 MIC of thiamphenicol to exhibit antimicrobial activity comparable to the respective drugs at original strength (1×MIC). A synergistic effect (fractional inhibitory concentration index ≤0.5 or ≥2-log10decrease in colony-forming unit/ml in time-kill study) was evident against 30 per cent of MSSA and 45 per cent of MRSA strains tested. A study in mice revealed that the florfenicol/thiamphenicol combination at reduced dosages provided sufficient protection againstS. aureuschallenge. The possible mechanism warrants further study but likely includes the facilitated uptake of thiamphenicol via florfenicol action, and this facilitation was not limited to amphenicol class. The present study may offer new strategy for combination therapy and provide potential alternatives for effective treatment againstS. aureusinfections. PMID:26864028

  7. DNA demethylating agents synergize with oncolytic HSV1 against malignant gliomas

    PubMed Central

    Okemoto, Kazuo; Kasai, Kazue; Wagner, Benjamin; Haseley, Amy; Meisen, Hans; Bolyard, Chelsea; Mo, Xiaokui; Wehr, Allison; Lehman, Amy; Fernandez, Soledad; Kaur, Balveen

    2013-01-01

    Purpose Oncolytic viruses (OV) based on herpes simplex virus type 1 (HSV1) are being utilized in clinical trials for a variety of cancers. The OV, rQNestin34.5, utilizes a nestin promoter/enhancer to selectively drive robust viral replication in malignant glioma cells. We have discovered that this promoter becomes extensively methylated in infected glioma cells, reducing OV efficacy. Experimental Design We utilized demethylating drugs (5-azacytidine), Decitabine or Valproic Acid (VPA) in both in vitro and in vivo malignant glioma models to determine if they improved the efficacy of rQNestin34.5 therapy. Results Utilization of demethylating agents, such as 5-azacytidine (5-Aza), improved OV replication and tumor cell lysis in vitro and, in fact, synergized pharmacologically by Chou-Talalay analysis. In vivo the combination of the demethylating agents, 5-Aza or Decitabine, with rQNestin34.5 significantly prolonged the survivorship of athymic mice harboring intracranial human glioma xenografts over single agent alone. Conclusion These results thus provide further justification for the exploration of demethylating agents when combined with the OV, rQNestin34.5, in preclinical therapeutics and possibly clinical trials for malignant glioma. PMID:24056786

  8. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respir atory distress syndrome

    PubMed Central

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS. PMID:26261640

  9. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respiratory distress syndrome.

    PubMed

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS.

  10. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma.

    PubMed

    Kroesen, Michiel; Büll, Christian; Gielen, Paul R; Brok, Ingrid C; Armandari, Inna; Wassink, Melissa; Looman, Maaike W G; Boon, Louis; den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J

    2016-06-01

    Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.

  11. Synergic effect of GSTP1 and blood manganese concentrations in Autism Spectrum Disorder

    PubMed Central

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Ma, Jianzhong; Bressler, Jan; Dickerson, Aisha S.; Hessabi, Manouchehr; Loveland, Katherine A.; Grove, Megan L.; Shakespeare-Pellington, Sydonnie; Beecher, Compton; McLaughlin, Wayne; Boerwinkle, Eric

    2015-01-01

    We used data from 100 age- and sex-matched case-control pairs (age 2–8 years) from Jamaica to investigate whether there is an interaction between glutathione-S-transferase (GST) genes and blood manganese concentrations (BMC) in relation to Autism Spectrum Disorder (ASD). Our findings, indicate that among children who had the Ile/Ile genotype for GST pi 1 (GSTP1), those with BMC ≥ 12µg/L had about 4 times higher odds of ASD than those with BMC < 12µg/L, (P=0.03) under a co-dominant genetic model. After adjusting for potential confounders, among the subgroup of children with genotype Ile/Ile, those with BMC ≥ 12µg/L had about six times higher odds of ASD than those with BMC < 12µg/L, (P=0.04). The results were similar when a recessive genetic model was used. These findings suggest a possible synergic effect of BMC and GSTP1 in ASD. Since our analysis included a variety of genetic models and was not adjusted for multiple testing, replication in other populations is warranted. PMID:26309447

  12. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    PubMed

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel. PMID:26410224

  13. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen).

    PubMed

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca(2+) disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  14. Smac mimetics and innate immune stimuli synergize to promote tumor death

    PubMed Central

    Beug, Shawn T.; Tang, Vera A.; LaCasse, Eric C.; Cheung, Herman H.; Beauregard, Caroline E.; Brun, Jan; Nuyens, Jeffrey P.; Earl, Nathalie; St-Jean, Martine; Holbrook, Janelle; Dastidar, Himika; Mahoney, Douglas J.; Ilkow, Carolina; Le Boeuf, Fabrice; Bell, John C.; Korneluk, Robert G.

    2016-01-01

    Smac mimetic compounds (SMC), a class of drugs that sensitize cells to apoptosis by counteracting the activity of inhibitor of apoptosis (IAP) proteins, have proven safe in Phase I clinical trials in cancer patients. However, because SMCs act by enabling transduction of pro-apoptotic signals, SMC monotherapy may only be efficacious in the subset of patients whose tumors produce large quantities of death-inducing proteins such as inflammatory cytokines. As such, we reasoned that SMCs would synergize with agents that stimulate a potent yet safe “cytokine storm”. Here we show that oncolytic viruses and adjuvants such as poly(I:C) and CpG induce bystander death of cancer cells treated with SMCs that is mediated by interferon beta (IFNβ), tumor necrosis factor alpha (TNFα) and/or TNF-related apoptosis-inducing ligand (TRAIL). This combinatorial treatment resulted in tumor regression and extended survival in two mouse models of cancer. As these and other adjuvants have been proven safe in clinical trials, it may be worthwhile to explore their clinical efficacy in combination with SMCs. PMID:24463573

  15. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal.

    PubMed

    Flygare, Johan; Rayon Estrada, Violeta; Shin, Chanseok; Gupta, Sumeet; Lodish, Harvey F

    2011-03-24

    With the aim of finding small molecules that stimulate erythropoiesis earlier than erythropoietin and that enhance erythroid colony-forming unit (CFU-E) production, we studied the mechanism by which glucocorticoids increase CFU-E formation. Using erythroid burst-forming unit (BFU-E) and CFU-E progenitors purified by a new technique, we demonstrate that glucocorticoids stimulate the earliest (BFU-E) progenitors to undergo limited self-renewal, which increases formation of CFU-E cells > 20-fold. Interestingly, glucocorticoids induce expression of genes in BFU-E cells that contain promoter regions highly enriched for hypoxia-induced factor 1α (HIF1α) binding sites. This suggests activation of HIF1α may enhance or replace the effect of glucocorticoids on BFU-E self-renewal. Indeed, HIF1α activation by a prolyl hydroxylase inhibitor (PHI) synergizes with glucocorticoids and enhances production of CFU-Es 170-fold. Because PHIs are able to increase erythroblast production at very low concentrations of glucocorticoids, PHI-induced stimulation of BFU-E progenitors thus represents a conceptually new therapeutic window for treating erythropoietin-resistant anemia.

  16. Proneural and abdominal Hox inputs synergize to promote sensory organ formation in the Drosophila abdomen.

    PubMed

    Gutzwiller, Lisa M; Witt, Lorraine M; Gresser, Amy L; Burns, Kevin A; Cook, Tiffany A; Gebelein, Brian

    2010-12-15

    The atonal (ato) proneural gene specifies a stereotypic number of sensory organ precursors (SOP) within each body segment of the Drosophila ectoderm. Surprisingly, the broad expression of Ato within the ectoderm results in only a modest increase in SOP formation, suggesting many cells are incompetent to become SOPs. Here, we show that the SOP promoting activity of Ato can be greatly enhanced by three factors: the Senseless (Sens) zinc finger protein, the Abdominal-A (Abd-A) Hox factor, and the epidermal growth factor (EGF) pathway. First, we show that expression of either Ato alone or with Sens induces twice as many SOPs in the abdomen as in the thorax, and do so at the expense of an abdomen-specific cell fate: the larval oenocytes. Second, we demonstrate that Ato stimulates abdominal SOP formation by synergizing with Abd-A to promote EGF ligand (Spitz) secretion and secondary SOP recruitment. However, we also found that Ato and Sens selectively enhance abdominal SOP development in a Spitz-independent manner, suggesting additional genetic interactions between this proneural pathway and Abd-A. Altogether, these experiments reveal that genetic interactions between EGF-signaling, Abd-A, and Sens enhance the SOP-promoting activity of Ato to stimulate region-specific neurogenesis in the Drosophila abdomen.

  17. Indirect cooperative effects leading to synergism in bimetallic homogeneous catalysts containing azolates as bridging ligands

    SciTech Connect

    Esteruelas, M.A.; Garcia, M.P.; Lopez, A.M.; Oro, L.A. )

    1991-01-01

    The binuclear compounds (H(CO)(PPh{sub 3}){sub 2}Ru({mu}-bim)Ir(COD)) (1) (bim = 2,2{prime}-biimidazolate, COD = 1,5-cyclooctadiene) and (H(CO)(PPh{sub 3}){sub 2}Ru({mu}-pz){sub 2}Ir(TFB)) (2) (pz = pyrazolate, TFB = tetrafluorobenzobarrelene) are more active catalysts for the hydrogenation of cyclohexene than the mononuclear parent compounds (RuH(Hbim)(CO)(PPh{sub 3}){sub 2}), (Ir(Hbim)(COD)), (RuH(pa)(CO)(Hpz)(PPh{sub 3}){sub 2}), and (Ir(TFB)(Hpz){sub 2})BF{sub 4}. In the presence of 1, the reaction rate is first order with respect to the concentration of 1 and cyclohexene, second order with respect to hydrogen pressure, and inversely proportional to the concentration of added phosphine. For the reaction catalyzed by 2, the experimental data are in accordance with a rate expression of the form {minus}d(cyclohexene)/dt = k(2)(cyclohexene)P(H{sub 2}) (P(H{sub 2}) = hydrogen pressure). On the basis of the kinetic results and experimental evidence, the origin of the catalytic synergism is assigned to indirect cooperative effects between the metallic centers of the binuclear complexes. The kinetic investigation of the hydrogenation of cyclohexene catalyzed by (Ir({mu}-pz)(TFB)){sub 2} (3) is also reported, suggesting that the full catalytic cycle involves binuclear species.

  18. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells.

    PubMed

    Backer, Joseph M; Krivoshein, Arcadius V; Hamby, Carl V; Pizzonia, John; Gilbert, Kenneth S; Ray, Yonaton S; Brand, Harrison; Paton, Adrienne W; Paton, James C; Backer, Marina V

    2009-11-01

    Diverse physiological and therapeutic insults that increase the amount of unfolded or misfolded proteins in the endoplasmic reticulum (ER) induce the unfolded protein response, an evolutionarily conserved protective mechanism that manages ER stress. Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP) is an ER-resident protein that plays a central role in the ER stress response and is the only known substrate of the proteolytic A subunit (SubA) of a novel bacterial AB(5) toxin. Here, we report that an engineered fusion protein, epidermal growth factor (EGF)-SubA, combining EGF and SubA, is highly toxic to growing and confluent epidermal growth factor receptor-expressing cancer cells, and its cytotoxicity is mediated by a remarkably rapid cleavage of GRP78/BiP. Systemic delivery of EGF-SubA results in a significant inhibition of human breast and prostate tumor xenografts in mouse models. Furthermore, EGF-SubA dramatically increases the sensitivity of cancer cells to the ER stress-inducing drug thapsigargin, and vice versa, demonstrating the first example of mechanism-based synergism in the action of a cytotoxin and an ER-targeting drug.

  19. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  20. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.

    PubMed

    Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2014-07-01

    Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs. PMID:24722799

  1. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs.

    PubMed

    Stepanović, Srdjan; Antić, Natasa; Dakić, Ivana; Svabić-Vlahović, Milena

    2003-01-01

    The aim of this study was to investigate antimicrobial properties of ethanolic extract of 13 propolis (EEP) samples from different regions of Serbia against 39 microorganisms (14 resistant or multiresistant to antibiotics), and to determine synergistic activity between antimicrobials and propolis. Antimicrobial activity of propolis samples was evaluated by agar diffusion and agar dilution method. The synergistic action of propolis with antimicrobial drugs was assayed by the disc diffusion method on agar containing subinhibitory concentrations of propolis. Obtained results indicate that EEP, irrespectively of microbial resistance to antibiotics, showed significant antimicrobial activities against Gram-positive bacteria (MIC 0.078%-1.25% of EEP) and yeasts (0.16%-1.25%), while Gram-negative bacteria were less susceptible (1.25%-->5%). Enterococcus faecalis was the most resistant Gram-positive bacterium, Salmonella spp. the most resistant Gram-negative bacteria, and Candida albicans the most resistant yeast. EEP showed synergism with selected antibiotics, and displayed ability to enhance the activities of antifungals. The shown antimicrobial potential of propolis alone or in combination with certain antibiotics and antifungals is of potential medical interest.

  2. Diurnal change in trees as observed by optical and microwave sensors - The EOS Synergism Study

    NASA Technical Reports Server (NTRS)

    Way, Jobea; Mcdonald, Kyle; Paris, Jack; Dobson, Myron C.; Ulaby, Fawwaz T.; Weber, James A.; Ustin, Susan L.; Vanderbilt, Vern C.; Kasischke, Eric S.

    1991-01-01

    The EOS (Earth Observing System) Synergism Study examined the temporal variability of the optical and microwave backscatter due to diurnal change in canopy properties of interest to ecosystem modelers. The experiment was designed to address diurnal changes in canopy water status that relate to transpiration. Multispectral optical and multifrequency, multipolarization microwave measurements were acquired using boom-truck-based systems over a two-week period. Sensor and canopy properties were collected around the clock. The canopy studied was a walnut orchard in the San Joaquin Valley of California. The results demonstrate a large diurnal variation in the dielectric properties of the tree that in turn produces significant diurnal changes in the microwave backscatter. The results suggest that permanently orbiting spaceborne sensors such as those on EOS should be placed in orbits that are optimized for the individual sensor and need not be tied together by a tight simultaneity requirement on the order of minutes to hours for the purpose of monitoring ecosystem properties.

  3. Evaluation of synergized pyrethrin aerosol for control of Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae).

    PubMed

    Kharel, Kabita; Arthur, Frank H; Zhu, Kun Yan; Campbell, James F; Subramanyam, Bhadriraju

    2014-02-01

    Aerosol insecticides are being used in flour mill pest management programs, but there is limited information on their efficacy on different insect life stages. In this study, we evaluated the efficacy of synergized pyrethrin applied as an aerosol against eggs, larvae, pupae, and adults of the red flour beetle, Tribolium castaneum (Herbst), and the confused flour beetle, Tribolium confusum Jacquelin du Val. Effects of direct and indirect exposure were evaluated by exposing each life stage to the aerosol and then transferring to untreated flour, transferring untreated insects to treated flour, or exposing both the insects and the flour to the aerosol. The aerosol produced >88% mortality of both species and all life stages when insects were directly treated and transferred to either treated or untreated flour. Mortality was significantly reduced when insects were either treated together with flour or untreated insects were transferred to treated flour (indirect exposure to the aerosol). Larvae and adults of both species were more tolerant compared with eggs and pupae. Recovery of moribund adults in the indirect exposure treatments was greater compared with recovery of moribund insects in the direct exposure treatments. Good sanitation before aerosol application could facilitate direct exposure of insects and thus increase aerosol efficacy inside flour mills.

  4. Synergism between Medihoney and rifampicin against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Müller, Patrick; Alber, Dagmar G; Turnbull, Lynne; Schlothauer, Ralf C; Carter, Dee A; Whitchurch, Cynthia B; Harry, Elizabeth J

    2013-01-01

    Skin and chronic wound infections caused by highly antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are an increasing and urgent health problem worldwide, particularly with sharp increases in obesity and diabetes. New Zealand manuka honey has potent broad-spectrum antimicrobial activity, has been shown to inhibit the growth of MRSA strains, and bacteria resistant to this honey have not been obtainable in the laboratory. Combinational treatment of chronic wounds with manuka honey and common antibiotics may offer a wide range of advantages including synergistic enhancement of the antibacterial activity, reduction of the effective dose of the antibiotic, and reduction of the risk of antibiotic resistance. The aim of this study was to investigate the effect of Medihoney in combination with the widely used antibiotic rifampicin on S. aureus. Using checkerboard microdilution assays, time-kill curve experiments and agar diffusion assays, we show a synergism between Medihoney and rifampicin against MRSA and clinical isolates of S. aureus. Furthermore, the Medihoney/rifampicin combination stopped the appearance of rifampicin-resistant S. aureus in vitro. Methylglyoxal (MGO), believed to be the major antibacterial compound in manuka honey, did not act synergistically with rifampicin and is therefore not the sole factor responsible for the synergistic effect of manuka honey with rifampicin. Our findings support the idea that a combination of honey and antibiotics may be an effective new antimicrobial therapy for chronic wound infections. PMID:23469049

  5. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse.

    PubMed

    Li, Zhixia; Cao, Jiangfei; Huang, Kai; Hong, Yaming; Li, Cunlong; Zhou, Xinxin; Xie, Ning; Lai, Fang; Shen, Fang; Chen, Congjin

    2015-02-01

    Bagasse liquefaction (BL) in water, tetralin, and water/tetralin mixed solvents (WTMS) was investigated, and effects of tetralin content in WTMS, temperature, and alkaline pretreatment of bagasse on liquefaction efficiency were studied. At 300°C, bagasse conversion in WTMS with tetralin content higher than 50 wt% was 86-87 wt%, whereas bagasse conversion in water or tetralin was 67 wt% or 84 wt%, respectively. Because the solid conversion from liquefaction in WTMS with tetralin content higher than 50 wt% was always higher than that in water or tetralin at temperatures between 250 and 300°C, a synergic effect between water and tetralin is suggested. Alkaline pretreatment of bagasse resulted in significantly higher conversion and heavy oil yield from BL in water or WTMS. The effect of deoxygenation by the present liquefaction method is demonstrated by lower oxygen contents (16.01-19.59 wt%) and higher heating values (31.9-34.8 MJ/kg) in the produced oils.

  6. A PARP1-ERK2 synergism is required for the induction of LTP

    PubMed Central

    Visochek, L.; Grigoryan, G.; Kalal, A.; Milshtein-Parush, H.; Gazit, N.; Slutsky, I.; Yeheskel, A.; Shainberg, A.; Castiel, A.; Seger, R.; Langelier, M. F.; Dantzer, F.; Pascal, J. M.; Segal, M.; Cohen-Armon, M.

    2016-01-01

    Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence. PMID:27121568

  7. Synergisms between microbial pathogens in plant disease complexes: a growing trend

    PubMed Central

    Lamichhane, Jay Ram; Venturi, Vittorio

    2015-01-01

    Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen–pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management. PMID:26074945

  8. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen)

    PubMed Central

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca2+ disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  9. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    PubMed

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death. PMID:25622112

  10. ( sup 3 H)protein secretion in rat parotid gland: Substance P-. beta. -adrenergic synergism

    SciTech Connect

    Dreux, C.; Imhoff, V.; Rossignol, B. )

    1987-12-01

    In parotid fragment ({sup 3}H)protein, secretion induced by substance P was moderate, but strongly Ca dependent. However, secretion induced by isoproterenol was large and Ca independent. Potentiation of protein secretion was observed when substance P (SP) and isoproterenol (ISO) acted together. Addition of 10{sup {minus}8} M SP caused a shift to the left in the secretion dose-response curve caused by ISO, but did not enhance ISO-induced maximal response. The potentiating effect seems to be a postreceptor event, since it can be mimicked by forskolin (FK), known to induce directly cAMP accumulation, thus bypassing the {beta}-adrenergic receptor. The synergism described above was, therefore, investigated at the second messenger production level. Stimulation of parotid gland fragments by simultaneous addition of SP plus ISO or FK did not modify cAMP nor inositol trisphosphate (IP{sub 3}) accumulation induced independently by each secretagogue alone. The ionophore A23187 was also able to potentiate secretion induced by a {beta}-adrenergic agonist, this effect being totally abolished by external calcium omission, thus suggesting a role for external calcium in this potentiation phenomenon. These results suggest that the potentiation phenomenon observed is a postreceptor event that occurs at a step distal from the second messenger production.

  11. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  12. Protein Crystals of Raf Kinase

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  13. Tyrosine kinase gene rearrangements in epithelial malignancies.

    PubMed

    Shaw, Alice T; Hsu, Peggy P; Awad, Mark M; Engelman, Jeffrey A

    2013-11-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as 'druggable' targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours.

  14. Tyrosine kinase gene rearrangements in epithelial malignancies

    PubMed Central

    Shaw, Alice T.; Hsu, Peggy P.; Awad, Mark M.; Engelman, Jeffrey A.

    2014-01-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as ‘druggable’ targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours. PMID:24132104

  15. Stimulation of MAP-2 kinase activity in T lymphocytes by anti-CD3 or anti-Ti monoclonal antibody is partially dependent on protein kinase C.

    PubMed

    Nel, A E; Hanekom, C; Rheeder, A; Williams, K; Pollack, S; Katz, R; Landreth, G E

    1990-04-01

    Signaling via the alpha-beta T cell Ag receptor (Ti)-CD3 complex is a complicated event that implicates several protein kinases, most notably protein kinase C (PKC). We have recently identified a serine kinase in T lymphocytes with the following characteristics: molecular mass 43 kDa, in vitro substrate affinity for microtubule associated protein 2 (MAP-2) with a preference for Mn2+ during the catalytic reaction, and elution from DEAE resin over a salt range 100 to 200 mM NaCl. This kinase is activated in a rapidly reversible fashion during ligation of CD3/Ti by a process which involves prior phosphorylation; in vitro exposure of activated 43-kDa MAP-2 kinase (MAP-K) to an immobilized phosphatase abrogated its kinase activity. We now show that a MAP-2K response could also be obtained during treatment with mAb to Ti and the specific PKC agonist, PMA. Although the kinetics of the former response was rapidly reversible, PMA elicited a more prolonged response. The dose responsiveness for PMA was similar to the requirements for PKC activation in intact lymphocytes. Moreover, as with PKC, we found that the CD3-induced MAP-2K response could be further enhanced by using a second layer cross-linking antibody. The specificity of CD3/Ti in the Jurkat cell response is demonstrated by the fact that OKT-11(CD2) and anti-CD4 mAb did not stimulate a MAP-2K response. It was also not possible to elicit a response in a Jurkat cell mutant that lacks surface expression of CD3 and Ti. The specificity of PKC in these events was further explored with the cell permeant diacylglycerol, 1-oleoyl-2-acetylglycerol, and the nonagonist phorbol ester, 4 alpha-phorbol 12,13-didecanoate: whereas the former was an effective inducer of the MAP-2K response, the latter failed to yield any stimulation. Prior exposure of Jurkat cells to 100 mM PMA for 24 h eliminated greater than 60% of the MAP-2K response during anti-CD3 treatment. This response could also be inhibited in dose-dependent fashion by prior

  16. Kinase Suppressor of Ras 2 (KSR2) Regulates Tumor Cell Transformation via AMPK

    PubMed Central

    Fernandez, Mario R.; Henry, MaLinda D.

    2012-01-01

    Kinase suppressor of Ras 1 (KSR1) and KSR2 are scaffolds that promote extracellular signal-regulated kinase (ERK) signaling but have dramatically different physiological functions. KSR2−/− mice show marked deficits in energy expenditure that cause obesity. In contrast, KSR1 disruption has inconsequential effects on development but dramatically suppresses tumor formation by activated Ras. We examined the role of KSR2 in the generation and maintenance of the transformed phenotype in KSR1−/− mouse embryo fibroblasts (MEFs) expressing activated RasV12 and in tumor cell lines MIN6 and NG108-15. KSR2 rescued ERK activation and accelerated proliferation in KSR1−/− MEFs. KSR2 expression alone induced anchorage-independent growth and synergized with the transforming effects of RasV12. Similarly, RNA interference (RNAi) of KSR2 in MIN6 and NG108-15 cells inhibited proliferation and colony formation, with concomitant defects in AMP-activated protein kinase (AMPK) signaling, nutrient metabolism, and metabolic capacity. While constitutive activation of AMPK was sufficient to complement the loss of KSR2 in metabolic signaling and anchorage-independent growth, KSR2 RNAi, MEK inhibition, and expression of a KSR2 mutant unable to interact with ERK demonstrated that mitogen-activated protein (MAP) kinase signaling is dispensable for the transformed phenotype of these cells. These data show that KSR2 is essential to tumor cell energy homeostasis and critical to the integration of mitogenic and metabolic signaling pathways. PMID:22801368

  17. Unsaturated cuticular hydrocarbons synergize responses to sex attractant pheromone in the yellow peach moth, Conogethes punctiferalis.

    PubMed

    Xiao, Wei; Matsuyama, Shigeru; Ando, Tetsu; Millar, Jocelyn G; Honda, Hiroshi

    2012-09-01

    Four trienyl hydrocarbons, (Z3, Z6, Z9)-tricosatriene (Z3, Z6, Z9-23:HC), (Z3, Z6, Z9)-pentacosatriene (Z3, Z6, Z9-25:HC), (Z3, Z6, Z9)-heptacosatriene (Z3, Z6, Z9-27:HC), and (Z3, Z6, Z9)-nonacosatriene (Z3, Z6, Z9-29:HC) were identified in a non-polar fraction of the body wax of male and female yellow peach moth, Conogethes punctiferalis. The relative amounts and ratios of these hydrocarbons differed between sexes. In females, the ratios in body wax and pheromone gland extracts were similar, with lesser amounts found in gland extracts. Synergistic effects of these hydrocarbons when added to the known aldehyde pheromone components were assessed in wind tunnel tests. A blend of (E)-10-hexadecenal (E10-16: Ald) and (Z)-10-hexadecenal (Z10-16: Ald) elicited upwind flight and orientation of males to the pheromone source, but arriving males did not remain close to source for very long. Among the hydrocarbons identified, only Z3, Z6, Z9-23:HC enhanced the activity of the aldehyde blend by increasing the time spent close to the source and the number of source contacts. Z3, Z6, Z9-23:HC and (Z9)-heptacosene (Z9-27:HC) also increased close-range responses to the aldehyde blend. The activity of the aldehyde blend plus these two hydrocarbons was similar to that of crude pheromone extract. Positive dose-response relationships between the aldehyde blend and two hydrocarbon mixtures were found. The lowest doses that elicited synergism were 10(-1) female equivalents (of body wax extracts) for the two hydrocarbons, and 10(-2) female equivalents for the total unsaturated hydrocarbon mixture.

  18. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin.

    PubMed

    Narayanan, Aarthi; Neera; Mallesha; Ramana, Karna Venkata

    2013-07-01

    Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the

  19. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase

    SciTech Connect

    Mochalkin, Igor; Miller, J. Richard; Evdokimov, Artem; Lightle, Sandra; Yan, Chunhong; Stover, Charles Ken; Waldrop, Grover L.

    2008-10-24

    Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or 'flip-flop' their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF{sub 2}P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.

  20. Synergism of Glycoside Hydrolase Secretomes from Two Thermophilic Bacteria Cocultivated on Lignocellulose

    PubMed Central

    Zhang, Kundi; Chen, Xiaohua; Schwarz, Wolfgang H.

    2014-01-01

    Two cellulolytic thermophilic bacterial strains, CS-3-2 and CS-4-4, were isolated from decayed cornstalk by the addition of growth-supporting factors to the medium. According to 16S rRNA gene-sequencing results, these strains belonged to the genus Clostridium and showed 98.87% and 98.86% identity with Clostridium stercorarium subsp. leptospartum ATCC 35414T and Clostridium cellulosi AS 1.1777T, respectively. The endoglucanase and exoglucanase activities of strain CS-4-4 were approximately 3 to 5 times those of strain CS-3-2, whereas the β-glucosidase activity of strain CS-3-2 was 18 times higher than that of strain CS-4-4. The xylanase activity of strain CS-3-2 was 9 times that of strain CS-4-4, whereas the β-xylosidase activity of strain CS-4-4 was 27 times that of strain CS-3-2. The enzyme activities in spent cultures following cocultivation of the two strains with cornstalk as the substrate were much greater than those in pure cultures or an artificial mixture of samples, indicating synergism of glycoside hydrolase secretomes between the two strains. Quantitative measurement of the two strains in the cocultivation system indicated that strain CS-3-2 grew robustly during the initial stages, whereas strain CS-4-4 dominated the system in the late-exponential phase. Liquid chromatography-tandem mass spectrometry analysis of protein bands appearing in the native zymograms showed that ORF3880 and ORF3883 from strain CS-4-4 played key roles in the lignocellulose degradation process. Both these open reading frames (ORFs) exhibited endoglucanase and xylanase activities, but ORF3880 showed tighter adhesion to insoluble substrates at 4, 25, and 60°C owing to its five carbohydrate-binding modules (CBMs). PMID:24532065

  1. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski).

    PubMed

    Biddinger, David J; Robertson, Jacqueline L; Mullin, Chris; Frazier, James; Ashcraft, Sara A; Rajotte, Edwin G; Joshi, Neelendra K; Vaughn, Mace

    2013-01-01

    The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F) was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species) was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards. PMID:24039783

  2. Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1

    PubMed Central

    Alvarez-Garcia, Oscar; Rogers, Nicole H; Smith, Roy G; Lotz, Martin K

    2014-01-01

    Objectives Obesity is a major risk factor for the development of osteoarthritis (OA) that is associated with a state of low-grade inflammation, and increased circulating adipokines and free fatty acids (FFA). The aim of this study was to analyze effects of saturated (palmitate) and monounsaturated (oleate) free fatty acids (FFA) on articular chondrocytes and cartilage. Methods Human articular chondrocytes and fibroblast-like synoviocytes obtained from young healthy donors, and OA chondrocytes from patients undergoing total knee replacement were treated with palmitate or oleate alone or with interleukin 1-β (IL-1β). Cell viability, caspase activation, and gene expression of proinflammatory factors, extracellular matrix proteins, and extracellular proteases were studied. In addition, chondrocyte viability, interleukin-6 (IL-6) production and matrix damage were assessed in bovine and human articular cartilage explants cultured with FFA with or without IL-1β. Results Palmitate, but not oleate, induced caspase activation and cell death in IL-1β-stimulated normal chondrocytes, and upregulated il6 and cox2 expression in chondrocytes and fibroblast-like synoviocytes through toll-like receptor-4 signaling. In cartilage explants, palmitate induced chondrocyte death, IL-6 release and extracellular matrix degradation. Palmitate synergized with IL-1β in stimulating proapoptotic and proinflammatory cellular responses. Pharmacological inhibition of caspases or TLR-4 signaling reduced palmitate and IL-1β-induced cartilage damage. Conclusions Palmitate acts as a pro-inflammatory and catabolic factor that, in synergy with IL-1β, induces chondrocyte apoptosis and articular cartilage breakdown. Collectively, our data suggest that elevated levels of saturated FFA often found in obesity may contribute to OA pathogenesis. PMID:24591481

  3. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models.

    PubMed

    Rios-Doria, Jonathan; Durham, Nicholas; Wetzel, Leslie; Rothstein, Raymond; Chesebrough, Jon; Holoweckyj, Nicholas; Zhao, Wei; Leow, Ching Ching; Hollingsworth, Robert

    2015-08-01

    Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and liposomal doxorubicin (Doxil) were evaluated for their ability to boost the antitumor response of different cancer immunotherapies including checkpoint blockers (anti-PD-L1, PD-1, and CTLA-4 mAbs) and TNF receptor agonists (OX40 and GITR ligand fusion proteins) in syngeneic mouse models. In a preventative CT26 mouse tumor model, both doxorubicin and Doxil synergized with anti-PD-1 and CTLA-4 mAbs. Doxil was active when CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that Doxil activity is increased in the presence of a functional immune system. Using established tumors and maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models, combination groups produced strong synergistic antitumor effects, a larger percentage of complete responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased the percentage of tumor-infiltrating regulatory T cells and, in combination with anti-PD-L1, increased the percentage of tumor-infiltrating CD8(+) T cells. In the tumor, Doxil administration increased CD80 expression on mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells, suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates and antitumor activity. PMID:26408258

  4. Synergism between exposure to mercury and use of iodine supplements on thyroid hormones in pregnant women

    SciTech Connect

    Llop, Sabrina; Lopez-Espinosa, Maria-Jose; Murcia, Mario; Alvarez-Pedrerol, Mar; Vioque, Jesús; Aguinagalde, Xabier; Julvez, Jordi; and others

    2015-04-15

    Objective: To evaluate the association between mercury exposure and thyroid-stimulating hormone (TSH), total triiodothyronine (TT3) and free thyroxine (FT4) levels during pregnancy as well as to explore if there is any synergic action between mercury and intake of iodine from different sources. Methods: The study population was 1407 pregnant women participating in the Spanish INMA birth cohort study. Total mercury concentrations were analyzed in cord blood. Thyroid hormones (THs) were measured in serum samples collected at 13.2±1.5 weeks of gestation. The association between mercury and TH levels was evaluated with multivariate linear regression models. Effect modification caused by iodine intake from supplements and diet was also evaluated. Results: The geometric means of TSH, TT3, FT4 and mercury were 1.1 μU/L, 2.4 nmol/L, 10.5 pmol/L and 7.7 μg/L, respectively. Mercury levels were marginally significantly associated with TT3 (β: −0.05; 95%CI: −0.10, 0.01), but were neither associated with TSH nor FT4. The inverse association between mercury and TT3 levels was stronger among the iodine supplement consumers (−0.08; 95%CI: −0.15, −0.02, interaction p-value=0.07). The association with FT4 followed the same pattern, albeit not significant. Conclusion: Prenatal mercury exposure was inversely associated with TT3 levels among women who took iodine supplements during pregnancy. These results could be of public health concern, although further research is needed. - Highlights: • We studied the relationship between mercury and thyroid hormones among pregnant. • Mercury was marginally significantly associated with TT3, but not with TSH or FT4. • This association was stronger among the iodine supplement. • These results could be of public health concern, but further research is needed.

  5. 21st Century Extravehicular Activities: Synergizing Past and Present Training Methods for Future Spacewalking Success

    NASA Technical Reports Server (NTRS)

    Moore, Sandra K.; Gast, Matthew A.

    2009-01-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind." were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the the spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first space walk in June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill-set and subsequently the training methods, changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the Skylab, Space Shuttle; and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  6. Steroids and antihistamines synergize to inhibit rat's airway smooth muscle contractility.

    PubMed

    Liu, Shao-Cheng; Chu, Yueng-Hsiang; Kao, Chuan-Hsiang; Wu, Chi-Chung; Wang, Hsing-Won

    2015-06-01

    Both glucocorticoids and H1-antihistamines were widely used on patients with allergic rhinitis (AR) and obstructive airway diseases. However, their direct effects on airway smooth muscle were not fully explored. In this study, we tested the effectiveness of prednisolone (Kidsolone) and levocetirizine (Xyzal) on isolated rat trachea submersed in Kreb's solution in a muscle bath. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured. The following assessments of the drug were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6) M methacholine; (3) effect of the drug on electrical field stimulation (EFS) induced tracheal smooth muscle contractions. The result revealed sole use of Kidsolone or Xyzal elicited no significant effect or only a little relaxation response on tracheal tension after methacholine treatment. The tension was 90.5 ± 7.5 and 99.5 ± 0.8 % at 10(-4) M for Xyzal and 10(-5) M for Kidsolone, respectively. However, a dramatically spasmolytic effect was observed after co-administration of Kidsolone and Xyzal and the tension dropped to 67.5 ± 13.6 %, with statistical significance (p < 0.05). As for EFS-induced contractions, Kidsolone had no direct effect but Xyzal could inhibit it, with increasing basal tension. In conclusion, using glucocorticoids alone had no spasmolytic effect but they can be synergized with antihistamines to dramatically relax the trachea smooth muscle within minutes. Therefore, for AR patients with acute asthma attack, combined use of those two drugs is recommended. PMID:25115316

  7. 1-Methyl-Tryptophan Synergizes with Methotrexate to Alleviate Arthritis in a Mouse Model of Arthritis

    PubMed Central

    Pigott, Elizabeth; DuHadaway, James B.; Muller, Alexander J.; Gilmour, Susan; Prendergast, George C.; Mandik-Nayak, Laura

    2014-01-01

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with no known cure. Current strategies to treat RA, including methotrexate (MTX), target the later inflammatory stage of disease. Recently, we showed that inhibiting indoleamine-2,3-dioxygenase (IDO) with 1-methyl-tryptophan (1MT) targets autoantibodies and cytokines that drive the initiation of the autoimmune response. Therefore, we hypothesized that combining 1MT with MTX would target both the initiation and chronic inflammatory phases of the autoimmune response and be an effective co-therapeutic strategy for arthritis. To test this, we used K/BxN mice, a pre-clinical model of arthritis that develops joint-specific inflammation with many characteristics of human RA. Mice were treated with 1MT, MTX, alone or in combination, and followed for arthritis, autoantibodies, and inflammatory cytokines. Both 1MT and MTX were able to partially inhibit arthritis when used individually; however, combining MTX + 1MT was significantly more effective than either treatment alone at delaying the onset and alleviating the severity of joint inflammation. We went on to show that combination of MTX + 1MT did not lower inflammatory cytokine or autoantibody levels, nor could the synergistic co-therapeutic effect be reversed by the adenosine receptor antagonist theophylline or be mimicked by inhibition of polyamine synthesis. However, supplementation with folinic acid did reverse the synergistic co-therapeutic effect, demonstrating that, in the K/BxN model, MTX synergizes with 1MT by blocking folate metabolism. These data suggest that pharmacological inhibition of IDO with 1MT is a potential candidate for use in combination with MTX to increase its efficacy in the treatment of RA. PMID:24798341

  8. Direct in situ observation of synergism between cellulolytic enzymes during the biodegradation of crystalline cellulose fibers.

    PubMed

    Wang, Jingpeng; Quirk, Amanda; Lipkowski, Jacek; Dutcher, John R; Clarke, Anthony J

    2013-12-01

    High-resolution atomic force microscopy (AFM) was used to image the real-time in situ degradation of crystalline by three types of T. reesei cellulolytic enzymes-TrCel6A, TrCel7A, and TrCel7B-and their mixtures. TrCel6A and TrCel7A are exo-acting cellobiohydrolases processing cellulose fibers from the nonreducing and reducing ends, respectively. TrCel7B is an endoglucanase that hydrolyzes amorphous cellulose within fibers. When acting alone on native cellulose fibers, each of the three enzymes is incapable of significant degradation. However, mixtures of two enzymes exhibited synergistic effects. The degradation effects of this synergism depended on the order in which the enzymes were added. Faster hydrolysis rates were observed when TrCel7A (exo) was added to fibers pretreated first with TrCel7B (endo) than when adding the enzymes in the opposite order. Endo-acting TrCel7B removed amorphous cellulose, softened and swelled the fibers, and exposed single microfibrils, facilitating the attack by the exo-acting enzymes. AFM images revealed that exo-acting enzymes processed the TrCel7B-pretreated fibers preferentially from one specific end (reducing or nonreducing). The most efficient (almost 100%) hydrolysis was observed with the mixture of the three enzymes. In this mixture, TrCel7B softened the fiber and TrCel6A and TrCel7A were directly observed to process it from the two opposing ends. This study provides high-resolution direct visualization of the nature of the synergistic relation between T. reesei exo- and endo-acting enzymes digesting native crystalline cellulose.

  9. Toxoplasmosis complications and novel therapeutic synergism combination of diclazuril plus atovaquone

    PubMed Central

    Oz, Helieh S.

    2014-01-01

    Toxoplasmosis is a major cause of foodborne disease, congenital complication, and morbidity. There is an urgent need for safe and effective therapies to encounter congenital and persisting toxoplasmosis. The hypothesis was: combination diclazuril plus atovaquone to exert a novel therapeutic synergy to prevent toxoplasmosis syndromes. Methods: Pregnant dams were treated with diclazuril and atovaquone monotherapy or combination therapy and infected i.p with Toxoplasma tachyzoites. Results: Infected dams developed severe toxoplasmosis associated syndrome with increases in the abdominal adiposity surrounding uteri, gansterointestinal and other internal organs and excessive weight gain. Numerous organisms along with infiltration of inflammatory cells were detected scattered into adipose tissues. Combination therapy (p < 0.01) and to a lesser extent diclazuril (p < 0.05) protected dams from inflammatory fat and excess weight gains. This was consistent with pancreatitis development in infected dams (versus normal p < 0.05) with infiltration of inflammatory cells, degeneration and necrosis of pancreatic cells followed by the degeneration and loss of islets. Combination and monotherapy protected dams from these inflammatory and pathological aspects of pancreatitis. Infected dams exhibited severe colitis, and colonic tissues significantly shortened in length. Brush border epithelial cells were replaced with infiltration of lymphocytes, granulocytes, and microabscess formations into cryptic microstructures. Combination therapy synergistically preserved colonic structure and normalized pathological damages (p < 0.001) and to a lesser degree diclazuril monotherapy protected dams from colitis (p < 0.05) and gastrointestinal toxoplasmosis. Other complications included severe splenitis (p < 0.001) and hepatitis (p < 0.001) which were normalized with combination therapy. Conclusion: Combination diclazuril plus atovaquone was safe and with a novel therapeutic synergism protected

  10. Doxil Synergizes with Cancer Immunotherapies to Enhance Antitumor Responses in Syngeneic Mouse Models

    PubMed Central

    Rios-Doria, Jonathan; Durham, Nicholas; Wetzel, Leslie; Rothstein, Raymond; Chesebrough, Jon; Holoweckyj, Nicholas; Zhao, Wei; Leow, Ching Ching; Hollingsworth, Robert

    2015-01-01

    Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and liposomal doxorubicin (Doxil) were evaluated for their ability to boost the antitumor response of different cancer immunotherapies including checkpoint blockers (anti–PD-L1, PD-1, and CTLA-4 mAbs) and TNF receptor agonists (OX40 and GITR ligand fusion proteins) in syngeneic mouse models. In a preventative CT26 mouse tumor model, both doxorubicin and Doxil synergized with anti–PD-1 and CTLA-4 mAbs. Doxil was active when CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that Doxil activity is increased in the presence of a functional immune system. Using established tumors and maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models, combination groups produced strong synergistic antitumor effects, a larger percentage of complete responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased the percentage of tumor-infiltrating regulatory T cells and, in combination with anti–PD-L1, increased the percentage of tumor-infiltrating CD8+ T cells. In the tumor, Doxil administration increased CD80 expression on mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells, suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates and antitumor activity. PMID:26408258

  11. 21st Century extravehicular activities: Synergizing past and present training methods for future spacewalking success

    NASA Astrophysics Data System (ADS)

    Moore, Sandra K.; Gast, Matthew A.

    2010-10-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind" were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the true spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first spacewalk in the June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill set and subsequently the training methods changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the SkyLab, Space Shuttle, and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA's success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  12. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin.

    PubMed

    Narayanan, Aarthi; Neera; Mallesha; Ramana, Karna Venkata

    2013-07-01

    Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the

  13. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski).

    PubMed

    Biddinger, David J; Robertson, Jacqueline L; Mullin, Chris; Frazier, James; Ashcraft, Sara A; Rajotte, Edwin G; Joshi, Neelendra K; Vaughn, Mace

    2013-01-01

    The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F) was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species) was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards.

  14. The synergism of natural compounds in the pursuit of safe and healthier food.

    PubMed

    Szczepaniak, S; Polanska, M; Van Assche, A; Moloney, R; Willems, K A

    2011-01-01

    Food producers apply modern processing techniques and use a variety of preservative additives to guarantee safe food and a longer shelflife. Regrettably many of these impact the sensory characteristics of the foodstuffs, such as colour, texture, and flavour, which can result in low consumer acceptance. Additionally, strategies used to reduce growth of spoilage and pathogenic bacteria are not selective enough and may inactivate also desired microbiota. Food is usually overdosed with antimicrobials that are supplemented 'just in case.' Consequently, food producers are searching for natural preservation methods that are not harmful to humans. Nature offers a wide spectrum of biologically active (phyto) chemicals that can be used as potential natural preservatives. Compounds with bacterial growth-limiting properties are detected in all parts of plants, including their leaves, flowers, fruits, roots, etc. These are mostly acids, alcohols, medium and long-chain organic acids, terpenic compounds, and their derivatives. This study focused on the effectiveness of plant extracts, i.e., synergism between terpenoids and medium chain fatty acids in cured cooked meat. Bacterial strains that were tested include typical members of the spoilage microflora in vacuum (Lactobacillus curvatus) and MA-packed meats (Brochothrix thermosphacta). These were isolated and identified in a separate study. L. curvatus was observed to be very resistant against either terpenoids or fatty acids when used separately, whereas its growth was strongly inhibited when both chemicals were combined. Growth of B. thermosphacta was significantly inhibited when antimicrobial compounds were solely applied, whereas a blend of terpenoids and fatty acids showed an almost bactericidal effect.

  15. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski)

    PubMed Central

    Biddinger, David J.; Robertson, Jacqueline L.; Mullin, Chris; Frazier, James; Ashcraft, Sara A.; Rajotte, Edwin G.; Joshi, Neelendra K.; Vaughn, Mace

    2013-01-01

    The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD50 was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD50 was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F) was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species) was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards. PMID:24039783

  16. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  17. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    PubMed Central

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  18. Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase.

    PubMed

    Nemoto, S; DiDonato, J A; Lin, A

    1998-12-01

    IkappaB kinases (IKKalpha and IKKbeta) are key components of the IKK complex that mediates activation of the transcription factor NF-kappaB in response to extracellular stimuli such as inflammatory cytokines, viral and bacterial infection, and UV irradiation. Although NF-kappaB-inducing kinase (NIK) interacts with and activates the IKKs, the upstream kinases for the IKKs still remain obscure. We identified mitogen-activated protein kinase kinase kinase 1 (MEKK1) as an immediate upstream kinase of the IKK complex. MEKK1 is activated by tumor necrosis factor alpha (TNF-alpha) and interleukin-1 and can potentiate the stimulatory effect of TNF-alpha on IKK and NF-kappaB activation. The dominant negative mutant of MEKK1, on the other hand, partially blocks activation of IKK by TNF-alpha. MEKK1 interacts with and stimulates the activities of both IKKalpha and IKKbeta in transfected HeLa and COS-1 cells and directly phosphorylates the IKKs in vitro. Furthermore, MEKK1 appears to act in parallel to NIK, leading to synergistic activation of the IKK complex. The formation of the MEKK1-IKK complex versus the NIK-IKK complex may provide a molecular basis for regulation of the IKK complex by various extracellular signals.

  19. Hepatitis B virus infection, diabetes mellitus, and their synergism for cholangiocarcinoma development: A case-control study in Korea

    PubMed Central

    Lee, Ban Seok; Park, Eun-Cheol; Park, Seung Woo; Nam, Chung Mo; Roh, Jaehoon

    2015-01-01

    AIM: To identify possible risk factors and their synergism for cholangiocarcinoma development. METHODS: A hospital-based, case-control study in which we included 276 cholangiocarcinoma patients [193 extrahepatic cholangiocarcinoma (ECC) and 83 intrahepatic cholangiocarcinoma (ICC)], diagnosed at a training hospital in Korea between 2007 and 2013, and 552 healthy controls matched 2:1 for age, sex, and date of diagnosis. Risk factors for cholangiocarcinoma and possible synergism between those factors were evaluated using conditional logistic regression and synergism index, respectively. RESULTS: There was an association between cholangiocarcinoma and hepatitis B virus (HBV) infection, diabetes mellitus (DM), cholecystolithiasis, choledocholithiasis, and hepatolithiasis, with the adjusted odds ratios (AORs) of 4.1, 2.6, 1.7, 12.4, and 39.9, respectively. Synergistic interaction on the additive model was investigated between HBV infection and DM (AOR = 12.2; 95%CI: 1.9-80.1). In the subgroup analyses, cholecystolithiasis, choledocholithiasis, hepatolithiasis, and DM were significant risk factors for ECC (AOR = 2.0, 18.1, 14.9, and 2.0, respectively), whereas choledocholithiasis, hepatolithiasis, HBV infection, and DM were risk factors for ICC (AOR = 8.6, 157.4, 5.3 and 4.9, respectively). Synergistic interaction was also observed between HBV infection and DM (OR = 22.7; 95%CI: 2.4-214.1). However, there was no synergistic interaction between other significant risk factors for cholangiocarcinoma. CONCLUSION: In this Korean study, HBV infection and DM were found to exert independent and synergistic effects on the risk for cholangiocarcinoma, including ICC. Exploring the underlying mechanisms for such synergy may lead to the development of cholangiocarcinoma prevention strategies in high-risk individuals. PMID:25593465

  20. Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase.

    PubMed Central

    Bertrand, L; Vertommen, D; Depiereux, E; Hue, L; Rider, M H; Feytmans, E

    1997-01-01

    Simultaneous multiple alignment of available sequences of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase revealed several segments of conserved residues in the 2-kinase domain. The sequence of the kinase domain was also compared with proteins of known three-dimensional structure. No similarity was found between the kinase domain of 6-phosphofructo-2-kinase and 6-phosphofructo-1-kinase. This questions the modelling of the 2-kinase domain on bacterial 6-phosphofructo-1-kinase that has previously been proposed [Bazan, Fletterick and Pilkis (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646]. However, sequence similarities were found between the 2-kinase domain and several nucleotide-binding proteins, the most similar being adenylate kinase. A structural model of the 2-kinase domain based on adenylate kinase is proposed. It accommodates all the results of site-directed mutagenesis studies carried out to date on residues in the 2-kinase domain. It also allows residues potentially involved in catalysis and/or substrate binding to be predicted. PMID:9032445

  1. Using the synergism strategy for highly sensitive and specific electrochemical sensing of Streptococcus pneumoniae Lyt-1 gene sequence.

    PubMed

    Li, Fengqin; Yu, Zhigang; Xu, Yanmei; Ma, Huiyuan; Zhang, Guiling; Song, Yongbin; Yan, Hong; He, Xunjun

    2015-07-30

    With the help of the interaction mode of capture probe-target-signal probe (CP-T-SP), an electrochemical sensing method based on the synergism strategy of dual-hybridized signaling probes modified with 6 MB (methylene blue), background suppression and large surface area Au electrode is developed for the detection of Streptococcus pneumoniae (S. pneumoniae) Lyt-1 gene sequence. The proposed sensor features a very low detection limit (LOD) of ∼0.5 fM for the target. This method also exhibits highly versatility and can apply to the construction of other sensors for the analysis of similar designated pathogenic bacteria gene sequence (PBGS).

  2. Short, Synthetic Cationic Peptides Have Antibacterial Activity against Mycobacterium smegmatis by Forming Pores in Membrane and Synergizing with Antibiotics

    PubMed Central

    Gupta, Kajal; Singh, Sameer; van Hoek, Monique L.

    2015-01-01

    Multicellular organisms are constantly exposed to a multitude of pathogenic microbes. Infection is inhibited in vivo by the innate and adaptive immune system. Mycobacterium species have emerged that are resistant to most antibiotics. We identified several naturally occurring cationic antimicrobial peptides that were active at low micromolar concentrations against Mycobacterium smegmatis. Human-derived cathelicidin LL-37 is well characterized and studied against M. smegmatis; we compared LL-37 with Chinese cobra-derived cathelicidin NA-CATH and mouse cathelicidin (mCRAMP). Two synthetic 11-residue peptides (ATRA-1A and ATRA-2) containing variations of a repeated motif within NA-CATH were tested for their activity against M. smegmatis along with a short synthetic peptide derivative from the human beta-defensin hBD3 (hBD3-Pep4). We hypothesized that these smaller synthetic peptides may demonstrate antimicrobial effectiveness with shorter length (and at less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds or use in combination with antibiotics. These peptides have antimicrobial activity with EC50 ranging from 0.05 to 1.88 μg/mL against Mycobacterium smegmatis. The ATRA-1A short peptide was found to be the most effective antimicrobial peptide (AMP) (EC50 = 0.05 μg/mL). High bactericidal activity correlated with bacterial membrane depolarization and permeabilization activities. The efficacy of the peptides was further analyzed through Minimal Inhibitory Concentration (MIC) assays. The MICs were determined by the microdilution method. The peptide mCRAMP showed the best MIC activity at 15.6 μg/mL. Neither of the effective short synthetic peptides demonstrated synergy with the antibiotic rifampicin, although both demonstrated synergy with the cyclic peptide antibiotic polymyxin B. The peptides LL-37 and mCRAMP displayed synergism with rifampicin in MIC assays, whereas antibiotic polymyxin B displayed synergism

  3. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases.

    PubMed

    Lai, Shenshen; Safaei, Javad; Pelech, Steven

    2016-03-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies.

  4. Ethanol and cocaine: environmental place conditioning, stereotypy, and synergism in planarians.

    PubMed

    Tallarida, Christopher S; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J; Seo, Stephanie; Rawls, Scott M

    2014-09-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest 'brain,' is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shaped movements following exposure to ethanol (0.01-1%) (maximal effect: 9.9±1.1 C-shapes/5 min at 0.5%) or cocaine (0.1-5 mM) (maximal effect: 42.8±4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1-5 mM) was tested with submaximal ethanol concentrations (0.01, 0.1%); the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001-1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001-1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001-1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001-10 μM), an anesthetic and analog of cocaine, did not produce EPC or C-shaped movements. Evidence from planarians

  5. Ethanol and cocaine: environmental place conditioning, stereotypy and synergism in planarians

    PubMed Central

    Tallarida, Christopher S.; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J.; Seo, Stephanie; Rawls, Scott M.

    2015-01-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest ‘brain’, is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shape movements following exposure to ethanol (0.01 – 1%) (maximal effect: 9.9 ± 1.1 C-shapes/5 min at 0.5%) or cocaine (0.1 – 5 mM) (maximal effect: 42.8 ± 4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1 – 5 mM) were tested with submaximal ethanol concentrations (0.01, 0,1%), the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001 – 1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001 – 1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001 – 1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001 – 10 μM), an anesthetic and analog of cocaine, did not produce EPC or C

  6. Ethanol and cocaine: environmental place conditioning, stereotypy, and synergism in planarians.

    PubMed

    Tallarida, Christopher S; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J; Seo, Stephanie; Rawls, Scott M

    2014-09-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest 'brain,' is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shaped movements following exposure to ethanol (0.01-1%) (maximal effect: 9.9±1.1 C-shapes/5 min at 0.5%) or cocaine (0.1-5 mM) (maximal effect: 42.8±4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1-5 mM) was tested with submaximal ethanol concentrations (0.01, 0.1%); the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001-1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001-1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001-1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001-10 μM), an anesthetic and analog of cocaine, did not produce EPC or C-shaped movements. Evidence from planarians

  7. Digitoxin activates EGR1 and synergizes with paclitaxel on human breast cancer cells

    PubMed Central

    Einbond, Linda Saxe; Wu, Hsan-au; Su, Tao; Chang, Tangel; Panjikaran, Maya; Wang, Xiaomei; Goldsberry, Sarah

    2010-01-01

    Background: Numerous studies have suggested that digitalis derivatives promise to be superior to existing adjuvant therapy for breast cancer as to effects and side-effects. In the present study, we have used gene expression analysis to determine the molecular action of digitoxin on breast cancer cells and assessed digitoxin’s ability to synergize with the chemotherapy agent paclitaxel with respect to inhibition of cell proliferation Materials and Methods: We treated (Her2 overexpressing, ER low) MDA-MB-453 human breast cancer cells with digitoxin at four doses {20 ng/ml (26 nM) to 1 μg/ml} and collected RNA at 6 h and 24 h for gene expression analysis. To examine the effects on ER positive cells, we treated MCF7 cells with digitoxin at 1 μg/ml and collected RNA for RT-PCR analysis. In addition, we assayed the growth inhibitory effect of low doses of digitoxin combined with paclitaxel and determined combination index values. Results: To reveal primary effects, we examined digitoxin’s effect 6 h post-treatment with the highest dose, 1μg/ml, and found upregulation of the stress response genes EGR-1 and NAB2, lipid biosynthetic genes and the tumor suppressor gene p21, and downregulation of the mitotic cell cycle gene CDC16 and the replication gene PolR3B. RT-PCR analysis validated effects on stress response, apoptotic and cell cycle genes on MDA-MB-453 and MCF7 cells. Western blot analysis confirmed induction of EGR1 protein at 1 h and ATF3 at 24 h. Paclitaxel, as well as digitoxin, inhibited the in vitro activity of the purified Na+-K+-ATPase; digitoxin enhanced the growth inhibitory effects of paclitaxel on Her2 overexpressing breast cancer cells. Conclusions: Our studies show the potential of digitoxin to prevent and treat breast cancer and indicate that the combination of digitoxin and paclitaxel is a promising treatment for ER negative breast cancer. These findings are the first to alert physicians to the possible dangers to patients who take a combination

  8. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    PubMed

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  9. PPARα and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal

    PubMed Central

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M. Inmaculada; Li, Hu; Elmes, Russell R.; Peters, Luanne L.; Lodish, Harvey F.

    2015-01-01

    Summary Many acute and chronic anemias, including hemolysis, sepsis, and genetic bone marrow failure diseases such as Diamond-Blackfan Anemia (DBA), are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production 1,2,3–5,6,7,8,9. Treatment of these anemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently we showed that glucocorticoids specifically stimulate self-renewal of the early erythroid progenitor, the burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells 10,11. Here we demonstrate that activation of the peroxisome proliferator-activated receptor alpha (PPARα) by PPARα agonists, GW7647 and fenofibrate, synergizes with glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures both of mouse fetal liver BFU-Es and of mobilized human adult CD34+ peripheral blood progenitors, the latter employing a new and effective culture system that generates normal enucleated reticulocytes. While PPARα−/− mice show no hematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPARα agonists facilitate recovery of wild-type mice, but not PPARα−/− mice, from PHZ-induced acute hemolytic anemia. We also showed that PPARα alleviates anemia in a mouse model of chronic anemia. Finally, both in control and corticosteroid-treated BFU-E cells PPARα co-occupies many chromatin sites with GR; when activated by PPARα agonists, additional PPARα is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPARα agonists in stimulating self

  10. Apple volatiles synergize the response of codling moth to pear ester.

    PubMed

    El-Sayed, Ashraf M; Cole, Lyn; Revell, John; Manning, Lee-Anne; Twidle, Andrew; Knight, Alan L; Bus, Vincent G M; Suckling, David M

    2013-05-01

    Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), is a major cosmopolitan pest of apple and other pome fruits. Ethyl (E,Z)-2,4-decadienoate (pear ester) has been identified as a host-derived kairomone for female and male codling moths. However, pear ester has not performed similarly in different fruit production areas in terms of the relative magnitude of moth catch, especially the proportion of females caught. Our work was undertaken to identify host volatiles from apples, and to investigate whether these volatiles can be used to enhance the efficacy of host kairomone pear ester for monitoring female and male codling moths. Volatiles from immature apple trees were collected in the field using dynamic headspace sampling during the active period of codling moth flight. Using gas chromatography-electroantennogram detector (GC/EAD) analysis, six compounds elicited responses from antennae of females. These compounds were identified by GC/mass spectrometry (MS) and comparisons to authentic standards as nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, (Z,E)-α-farnesene, and (E,E)-α-farnesene. When the EAD-active compounds were tested individually in the field, no codling moths were caught except for a single male with decanal. However, addition of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, or (E,E)-α-farnesene to pear ester in a binary mixture enhanced the efficacy of pear ester for attracting female codling moths compared to pear ester alone. Addition of the 6-component blend to the pear ester resulted in a significant increase in the number of males attracted, and enhanced the females captured compared to pear ester alone; the number of males and females caught was similar to that with the pear ester plus acetic acid combination lure. Our results demonstrate that it is possible to synergize the response of codling moth to host kairomone by using other host volatiles. The new apple-pear ester host kairomone blend

  11. Synergized resmethrin and corticosterone alter the chicken's response to west nile virus

    SciTech Connect

    Jankowski, Mark David; Franson, J Christian; Mostl, Erich; Porter, Warren P; Hofmeister, Erik K

    2009-01-01

    Debate concerning arbovirus control strategies remains contentious because concern regarding the relative risk of viral infection and environmental toxicant exposure is high but inadequately characterized. Taking this into account, mosquito control agencies employ aerial insecticides only after arbovirus surveillance data indicate high local mosquito-infection-rates. Successfully mitigating the risk of adult-mosquito-control insecticides ('adulticides') to non-target species such as humans, domestic animals, fish, beneficial insects and wildlife, while increasing their efficacy to reduce arbovirus outbreak intensity requires targeted scientific data from animal toxicity studies and environmental monitoring activities. Wild birds are an important reservoir host for WNv and are potentially exposed to insecticides used for mosquito control. However, no risk assessments have evaluated whether insecticides augment or extend the potential transmissibility of West Nile virus (WNv) in birds. In order to augment existing resmethrin risk assessments, we aimed to determine whether synergized resmethrin (SR) may cause chickens to develop an elevated or extended WN viremia and if subacute stress may affect its immunotoxicity. We distributed 40 chickens into four groups then exposed them prior to and during WNv infection with SR (50 {mu}g/l resmethrin + 150 {mu}g/l piperonyl butoxide) and/or 20 mg/I corticosterone (CORT) in their drinking-water. Corticosterone was given for 10 continuous days and SR was given for 3 alternate days starting the 3rd day of CORT exposure, then chickens were subcutaneously inoculated with WNv on the 5th day of CORT treatment. Compared to controls, CORT treatment extended and elevated viremia, enhanced WNv-specific antibody and increased the percentage of birds that shed oral virus, whereas SR treatment extended viremia, depressed WNv-specific IgG, and increased the percentage of CORT-treated birds that shed oral virus. Corticosterone and SR

  12. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    PubMed

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  13. Rapid Fire Damage Assessment by Using a Synergic Approach with Radar and Optical Data

    NASA Astrophysics Data System (ADS)

    Cadau, Enrico G.; Burini, Alessandro; Putignano, Cosimo; Goryl, Philippe; Gascon, Ferran; Miranda, Nuno; Laur, Henri

    2010-12-01

    burnt trunks). By means of multi-temporal SAR observation, it is possible to assess fire damage (burnt surface and burnt biomass estimation) and to monitor the forest regrown. A synergic approach of automatic rapid mapping fire scars is presented by the use of high-resolution optical imagery (ALOS-AVNIR, SPOT-5) and C and L band radar images (single and dual-pol) applied on the major forest fires occurred in Sardinia during the 2009 summer season.

  14. Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact.

    PubMed

    Moon, Hyeree; Rhee, Min Suk

    2016-01-18

    Here, we examined the antimicrobial effects of soy sauce containing essential oils (EOs) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes at 22°C and 4°C. To screen a variety of combined effects, soy sauce was mixed with six different EOs (carvacrol, thymol, eugenol, trans-cinnamaldehyde, β-resorcylic acid, and vanillin), each at a concentration of 1mM for 10 min. None of the oils showed bactericidal activity when used alone. Soy sauce combined with carvacrol and thymol induced the greatest antibacterial activity against all tested bacteria; therefore, these oils were further tested at 0.25, 0.5, and 1mM (0.0039%, 0.0078%, and 0.0157%) for 1, 5, and 10 min at 4°C and 22°C. In addition, sensory evaluation of soy sauce containing each EO at 0.25, 0.5, 1, and 2mM was performed using the nine point hedonic test. Carvacrol or thymol (1mM) eliminated all the test bacteria (initial population, 7.0-7.5logCFU/ml) in 1-5 min at 22°C and within 10 min at 4°C. L. monocytogenes was slightly more tolerant at 4°C, which may be attributable to the ability of the cell membrane to adapt to low temperatures. The sensory scores for soy sauce containing EOs were not significantly different from that of soy sauce without EOs (P>0.05). The stability of EO efficacy in soy sauce was also verified. These results suggest that carvacrol and thymol act synergistically with other factors present in soy sauce to increase antimicrobial activity against major foodborne pathogens at both 4°C and 22°C. The synergism may be attributable to the combination of factors (mainly high salt concentration and low pH imparted by organic acids) present in soy sauce and the membrane attacking properties of carvacrol and thymol. This method will facilitate the production of microbiologically safe soy sauce, soy sauce-based marinades, and various marinated foods. PMID:26490647

  15. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and Complementarity with Existing Platforms

    NASA Astrophysics Data System (ADS)

    Valero, F. P.

    2011-12-01

    The Sun-Earth Lagrange points L-1 and L-2 mark positions where the gravitational pull of the Earth and Sun precisely equals the centripetal force required to rotate with the Earth about the Sun with the same orbital period as the Earth. Therefore, a satellite maintained at one of these Lagrange points would keep the same relative position to the Sun and the Earth and be able to observe most points on the planet as the Earth rotates during the day. L-1 and L-2 are of particular interest because a satellite at either location can easily be maintained near the Sun-Earth line and views the entire daytime hemisphere from L-1 and the entire nighttime hemisphere from L-2. Since L-1 and L-2 are in the ecliptic plane, synoptic, high temporal-resolution observations would be obtained as every point on the planet, including both polar regions, transits from sunrise to sunset (L-1) or from sunset to sunrise (L-2). In summary, a pair of deep-space observatories, one at L-1 (daytime) and one at L-2 (nighttime), could acquire minute by minute climate quality data for essentially every point on Earth, all observations simultaneously for the whole planet. Such unique attributes are incorporated in the Deep Space Climate Observatory (DSCOVR) that will systematically observe climate drivers (radiation, aerosols, ozone, clouds, oxygen A-band) from L-1 in ways not possible but synergistically complementary with platforms in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO). The combination of Solar Lagrange Points (located in the ecliptic plane) GEO (located in the equatorial plane) and LEO platforms would certainly provide a powerful observational tool as well as enriched data sets for Earth sciences. Such synergism is greatly enhanced when one considers the potential of utilizing LEO, GEO, and Lagrange point satellites as components of an integrated observational system. For example, satellites at L-1 and L-2 will view the Earth plus the Moon while simultaneously having in

  16. Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil.

    PubMed

    Schroeder, Maria T; Becker, Eleonora Miquel; Skibsted, Leif H

    2006-05-01

    . Regeneration of carotenes by the phenols also explains the synergism in liposomes. In the laser flash photolysis experiments, gamma-T3 was also found to be faster in regenerating carotenes than alpha-T3 and alpha-T. PMID:16637706

  17. Synergistic cytotoxicity of sorafenib with busulfan and nucleoside analogs in human FMS-like tyrosine kinase 3 internal tandem duplications-positive acute myeloid leukemia cells.

    PubMed

    Song, Guiyun; Valdez, Benigno C; Li, Yang; Liu, Yan; Champlin, Richard E; Andersson, Borje S

    2014-11-01

    Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) are used in pretransplantation conditioning therapy for patients with myeloid leukemia. To further improve their efficacy in FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD)-positive acute myeloid leukemia (AML), we investigated their synergism with sorafenib (Sor). Exposure of FLT3-ITD-positive MV-4-11 and MOLM 13 cells to Bu+Clo+Flu+Sor resulted in synergistic cytotoxicity; no such synergism was observed in the FLT3-wild type THP-1 and KBM3/Bu250(6) cell lines. The drug synergism in MV-4-11 cells could be attributed to activation of DNA damage response, histone 3 modifications, inhibition of prosurvival kinases, and activation of apoptosis. Further, the phosphorylation of kinases, including FLT3, MAPK kinase (MEK), and AKT, was inhibited. The FLT3-ITD substrate STAT5 and its target gene PIM 2 product decreased when cells were exposed to Sor alone, Bu+Clo+Flu, and Bu+Clo+Flu+Sor. The level of the proapoptotic protein p53 upregulated modulator of apoptosis (PUMA) increased, whereas the level of prosurvival protein MCL-1 decreased when cells were exposed to Bu+Clo+Flu+Sor. The interactions of PUMA with MCL-1 and/or BCL-2 were enhanced when cells were exposed to Bu+Clo+Flu or Bu+Clo+Flu+Sor. The changes in the level of these proteins, which are involved in mitochondrial control of apoptosis, correlate with changes in mitochondrial membrane potential. Bu+Clo+Flu+Sor decreased mitochondrial membrane potential by 60% and caused leakage of cytochrome c, second mitochondria-derived activator of caspases (SMAC)/direct IAP Binding protein with low pI (DIABLO), and AIF from the mitochondria to the cytoplasm, caspase activation, and cell death, suggesting the activation of apoptosis. Analogous, synergistic cytotoxicity in response to Bu, Clo, Flu, and Sor was observed in mononuclear cells isolated from FLT3-ITD-positive AML patients. Although our previous studies were aimed at standardizing the

  18. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts.

    PubMed

    Andersen, Nicholas J; Boguslawski, Elissa B; Kuk, Cynthia Y; Chambers, Christopher M; Duesbery, Nicholas S

    2015-07-01

    Angiosarcoma (AS) is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. Using tumorgraft models, we previously showed that AS is sensitive to small-molecule inhibitors that target mitogen-activated/extracellular-signal-regulated protein kinase kinases 1 and 2 (MEK). The objective of this study was to identify drugs that combine with MEK inhibitors to more effectively inhibit AS growth. We examined the in vitro synergy between the MEK inhibitor PD0325901 and inhibitors of eleven common cancer pathways in melanoma cell lines and canine angiosarcoma cell isolates. Combination indices were calculated using the Chou-Talalay method. Optimized combination therapies were evaluated in vivo for toxicity and efficacy using canine angiosarcoma tumorgrafts. Among the drugs we tested, rapamycin stood out because it showed strong synergy with PD0325901 at nanomolar concentrations. We observed that angiosarcomas are insensitive to mTOR inhibition. However, treatment with nanomolar levels of mTOR inhibitor renders these cells as sensitive to MEK inhibition as a melanoma cell line with mutant BRAF. Similar results were observed in B-Raf wild-type melanoma cells as well as in vivo, where treatment of canine AS tumorgrafts with MEK and mTOR inhibitors was more effective than monotherapy. Our data show that a low dose of an mTOR inhibitor can dramatically enhance angiosarcoma and melanoma response to MEK inhibition, potentially widening the field of applications for MEK-targeted therapy. PMID:25955301

  19. Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system.

    PubMed

    Corbel, Vincent; Stankiewicz, Maria; Bonnet, Julien; Grolleau, Françoise; Hougard, Jean Marc; Lapied, Bruno

    2006-07-01

    Although synergism between pesticides has been widely documented, the physiological mechanisms by which an insecticide synergizes another remains unclear. Toxicological and electrophysiological studies were carried out on two susceptible pest species (the mosquito Culex quinquefasciatus and the cockroach Periplaneta americana) to understand better the physiological process involved in pyrethroid and carbamate interactions. Larval bioassays were conducted with the susceptible reference strain SLAB of C. quinquefasciatus to assess the implication of multi-function oxidases and non-specific esterases in insecticide detoxification and synergism. Results showed that the general theory of synergism (competition between pesticides for a common detoxification enzyme) was unlikely to occur in the SLAB strain since the level of synergy recorded between permethrin and propoxur was unchanged in the presence of piperonyl butoxide and tribufos, two inhibitors of oxidases and esterases, respectively (synergism ratios were similar with and without synergists). We also showed that addition of a sub-lethal concentration of nicotine significantly increased the toxicity of permethrin and propoxur at the lower range of the dose-mortality regression lines, suggesting the manifestation of important physiological disruptions at synaptic level. The effects of both permethrin and propoxur were studied on the cercal-afferent giant-interneuron synapses in the terminal abdominal ganglion of the cockroach P. americana using the single-fibre oil-gap method. We demonstrated that permethrin and propoxur increased drastically the ACh concentration within the synaptic cleft, which thereby stimulated a negative feedback of ACh release. Atropine, a muscarinic receptor antagonist, reversed the effect of permethrin and propoxur mixtures. This demonstrates the implication of the presynaptic muscarinic receptors in the negative feedback regulation process and in synergism. Based on these findings, we

  20. Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses

    PubMed Central

    Julier, Ziad; de Titta, Alexandre; Grimm, Alizée J.; Simeoni, Eleonora; Swartz, Melody A.; Hubbell, Jeffrey A.

    2016-01-01

    Subunit vaccines, employing purified protein antigens rather than intact pathogens, require the addition of adjuvants for enhanced immunogenicity with a correct balance between strong activation of the immune system and low toxicity. Here we show that the endogenous (i.e., autologous) non-toxic TLR4 agonist extra domain A type III repeat of fibronectin (FNIII EDA) can synergize with the exogenous (i.e., bacterial), toxic-at-high-dose, TLR9 agonist CpG to induce efficient cellular immune responses while keeping the dose of CpG low. The efficacy of the combined TLR agonists, even at half-doses, led to stronger dendritic cell activation, enhanced cytotoxic T lymphocyte activation as well as stronger humoral response, compared to the individual agonists given at full doses. Immune cells induced after vaccination with the co-adjuvanted formulation could mediate tumor regression in an E.G7-OVA tumor model, and eradicate circulating hepatitis B virus (HBV) in a transgenic HBV model. Together, these results show that endogenous TLR agonists, such as variants of FNIII EDA, can synergize with exogenous TLR ligands, such as CpG, and strongly enhance cellular immune responses, while improving their safety profile. PMID:27016652

  1. The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization.

    PubMed

    Ma, Ding; Zhu, Qingjun; Wu, Zili; Zhou, Danhong; Shu, Yuying; Xin, Qin; Xu, Yide; Bao, Xinhe

    2005-08-21

    The acid properties of Mo/HMCM-22 catalyst, which is the precursor form of the working catalyst for methane aromatization reaction, and the synergic effect between Mo species and acid sites were studied and characterized by various characterization techniques. It is concluded that Brønsted and Lewis acidities of HMCM-22 are modified due to the introduction of molybdenum. We suggest a monomer of Mo species is formed by the exchange of Mo species with the Brønsted acid sites. On the other hand, coordinate unsaturated sites (CUS) are suggested to be responsible for the formation of newly detected Lewis acid sites. Computer modelling is established and coupling with experimental results, it is then speculated that the effective activation of methane is properly accomplished on Mo species accommodated in the 12 MR supercages of MCM-22 zeolite whereas the Brønsted acid sites in the same channel system play a key role for the formation of benzene. A much more pronounced volcano-typed reactivity curve of the Mo/HMCM-22 catalysts, as compared with that of the Mo/HZSM-5, with respect to Mo loading is found and this can be well understood due to the unique channel structure of MCM-22 zeolite and synergic effect between Mo species and acid sites.

  2. Synergism between southern rice black-streaked dwarf virus and rice ragged stunt virus enhances their insect vector acquisition.

    PubMed

    Li, Shu; Wang, Han; Zhou, Guohui

    2014-07-01

    Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus, family Reoviridae, is a novel rice virus transmitted by the white-backed planthopper (Sogatella furcifera). Since its discovery in 2001, SRBSDV has spread rapidly throughout eastern and southeastern Asia and caused large rice losses in China and Vietnam. Rice ragged stunt virus (RRSV) (genus Oryzavirus, family Reoviridae) is a common rice virus vectored by the brown planthopper (Nilaparvata lugens). RRSV is also widely distributed in eastern and southeastern Asia but has not previously caused serious problems in China owing to its low incidence. With SRBSDV's spread, however, RRSV has become increasingly common in China, and is frequently found in co-infection with SRBSDV. In this study, we show that SRBSDV and RRSV interact synergistically, the first example of synergism between plant viruses in the family Reoviridae. Rice plants co-infected with both viruses displayed enhanced stunting, earlier symptoms, and higher virus titers compared with singly infected plants. Furthermore, white-backed and brown planthoppers acquired SRBSDV and RRSV, respectively, from co-infected plants at higher rates. We propose that increased RRSV incidence in Chinese fields is partly due to synergism between SRBSDV and RRSV.

  3. Synergism between southern rice black-streaked dwarf virus and rice ragged stunt virus enhances their insect vector acquisition.

    PubMed

    Li, Shu; Wang, Han; Zhou, Guohui

    2014-07-01

    Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus, family Reoviridae, is a novel rice virus transmitted by the white-backed planthopper (Sogatella furcifera). Since its discovery in 2001, SRBSDV has spread rapidly throughout eastern and southeastern Asia and caused large rice losses in China and Vietnam. Rice ragged stunt virus (RRSV) (genus Oryzavirus, family Reoviridae) is a common rice virus vectored by the brown planthopper (Nilaparvata lugens). RRSV is also widely distributed in eastern and southeastern Asia but has not previously caused serious problems in China owing to its low incidence. With SRBSDV's spread, however, RRSV has become increasingly common in China, and is frequently found in co-infection with SRBSDV. In this study, we show that SRBSDV and RRSV interact synergistically, the first example of synergism between plant viruses in the family Reoviridae. Rice plants co-infected with both viruses displayed enhanced stunting, earlier symptoms, and higher virus titers compared with singly infected plants. Furthermore, white-backed and brown planthoppers acquired SRBSDV and RRSV, respectively, from co-infected plants at higher rates. We propose that increased RRSV incidence in Chinese fields is partly due to synergism between SRBSDV and RRSV. PMID:24915431

  4. Synergism between PGC-1α and estrogen in the survival of endometrial cancer cells via the mitochondrial pathway.

    PubMed

    Yang, Hui; Yang, Rui; Liu, Hao; Ren, Zhongqian; Kong, Fanfei; Li, Da; Ma, Xiaoxin

    2016-01-01

    Accumulating evidence shows that peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is involved in the progression of hormone-related cancers, and there may exist an association between estrogen and PGC-1α. Notably, emerging evidence has led to considerable interest in the role of PGC-1α in endometrial cancer development. However, whether the synergism exists between PGC-1α and estrogen for regulating mitochondrial function to promote the development of endometrial cancer remains largely unknown. Here, we show that: 1) knockdown of PGC-1α attenuates the survival of endometrial cancer cells by inducing cell apoptosis through the mitochondrial pathway; 2) estrogen remedies the PGC-1α efficiency-induced decline of endometrial cancer cell viability; and 3) estrogen modulates the mitochondrial function to inhibit the PGC-1α deficiency-induced apoptosis in endometrial cancer cells. Collectively, these results demonstrated that the synergism between PGC-1α and estrogen was required for the survival of endometrial cancer cells, which was dependent on the mitochondrial pathway. PMID:27418839

  5. Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses.

    PubMed

    Julier, Ziad; de Titta, Alexandre; Grimm, Alizée J; Simeoni, Eleonora; Swartz, Melody A; Hubbell, Jeffrey A

    2016-05-01

    Subunit vaccines, employing purified protein antigens rather than intact pathogens, require the addition of adjuvants for enhanced immunogenicity with a correct balance between strong activation of the immune system and low toxicity. Here we show that the endogenous (i.e., autologous) non-toxic TLR4 agonist extra domain A type III repeat of fibronectin (FNIII EDA) can synergize with the exogenous (i.e., bacterial), toxic-at-high-dose, TLR9 agonist CpG to induce efficient cellular immune responses while keeping the dose of CpG low. The efficacy of the combined TLR agonists, even at half-doses, led to stronger dendritic cell activation, enhanced cytotoxic T lymphocyte activation as well as stronger humoral response, compared to the individual agonists given at full doses. Immune cells induced after vaccination with the co-adjuvanted formulation could mediate tumor regression in an E.G7-OVA tumor model, and eradicate circulating hepatitis B virus (HBV) in a transgenic HBV model. Together, these results show that endogenous TLR agonists, such as variants of FNIII EDA, can synergize with exogenous TLR ligands, such as CpG, and strongly enhance cellular immune responses, while improving their safety profile. PMID:27016652

  6. Polyphenolic Secondary Metabolites Synergize the Activity of Commercial Antibiotics against Clinical Isolates of β-Lactamase-producing Klebsiella pneumoniae.

    PubMed

    Dey, Diganta; Ghosh, Subhalakshmi; Ray, Ratnamala; Hazra, Banasri

    2016-02-01

    Emergence of worldwide antimicrobial resistance prompted us to study the resistance modifying potential of plant-derived dietary polyphenols, mainly caffeic acid, ellagic acid, epigallocatechin-3-gallate (EGCG) and quercetin. These compounds were studied in logical combination with clinically significant antibiotics (ciprofloxacin/gentamicin/tetracycline) against Klebsiella pneumoniae, after conducting phenotypic screening of a large number of clinical isolates and selecting the relevant strains possessing extended-spectrum β-lactamase (ESBL) and K. pneumoniae carbapenemase (KPC)-type carbapenemase enzymes only. The study demonstrated that EGCG and caffeic acid could synergize the activity of tested antibiotics within a major population of β-lactamase-producing K. pneumoniae. In spectrofluorimetric assay, ~17-fold greater ciprofloxacin accumulation was observed within K. pneumoniae cells pre-treated with EGCG in comparison with the untreated control, indicating its ability to synergize ciprofloxacin to restrain active drug-efflux. Further, electron micrograph of ESBL-producing K. pneumoniae clearly demonstrated the prospective efficacy of EGCG towards biofilm degradation.

  7. System-level study on synergism and antagonism of active ingredients in traditional Chinese medicine by using molecular imprinting technology.

    PubMed

    Chen, Tengfei; Gu, Jiangyong; Zhang, Xinzhuang; Ma, Yimin; Cao, Liang; Wang, Zhenzhong; Chen, Lirong; Xu, Xiaojie; Xiao, Wei

    2014-01-01

    In this work, synergism and antagonism among active ingredients of traditional Chinese medicine (TCM) were studied at system-level by using molecular imprinting technology. Reduning Injection (RDNI), a TCM injection, was widely used to relieve fever caused by viral infection diseases in China. Molecularly imprinted polymers (MIPs) synthesized by sol-gel method were used to separate caffeic acid (CA) and analogues from RDNI without affecting other compounds. It can realize the preparative scale separation. The inhibitory effects of separated samples of RDNI and sample combinations in prostaglandin E2 biosynthesis in lipopolysaccharide-induced RAW264.7 cells were studied. The combination index was calculated to evaluate the synergism and antagonism. We found that components which had different scaffolds can produce synergistic anti-inflammatory effect inside and outside the RDNI. Components which had similar scaffolds exhibited the antagonistic effect, and the antagonistic effects among components could be reduced to some extent in RDNI system. The results indicated MIPs with the characteristics of specific adsorption ability and large scale preparation can be an effective approach to study the interaction mechanism among active ingredients of complex system such as TCM at system-level. And this work would provide a new idea to study the interactions among active ingredients of TCM. PMID:25418048

  8. KID, a Kinase Inhibitor Database project.

    PubMed

    Collin, O; Meijer, L

    1999-01-01

    The Kinase Inhibitor Database is a small specialized database dedicated to the gathering of information on protein kinase inhibitors. The database is accessible through the World Wide Web system and gives access to structural and bibliographic information on protein kinase inhibitors. The data in the database will be collected and submitted by researchers working in the kinase inhibitor field. The submitted data will be checked by the curator of the database before entry.

  9. Assessing Kinase Activity in Plants with In-Gel Kinase Assays.

    PubMed

    Wang, Pengcheng; Zhu, Jian-Kang

    2016-01-01

    The in-gel protein kinase assay is a powerful method to measure the protein phosphorylation activity of specific protein kinases. Any protein substrate can be embedded in polyacrylamide gels where they can be phosphorylated by protein kinases that are separated in the gel under denaturing conditions and then renatured. The kinase activity can be visualized in situ in the gels by autoradiography. This method has been used to compare the activities of protein kinases in parallel samples or to identify their potential substrates. Here, we describe in detail an in-gel kinase assay to measure the activity of some protein kinases in plants.

  10. Src kinase regulation by phosphorylation and dephosphorylation

    SciTech Connect

    Roskoski, Robert . E-mail: biocrr@lsuhsc.edu

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.

  11. Suppression of Cytosolic NADPH Pool by Thionicotinamide Increases Oxidative Stress and Synergizes with Chemotherapy

    PubMed Central

    Tedeschi, Philip M.; Lin, HongXia; Gounder, Murugesan; Kerrigan, John E.; Abali, Emine Ercikan; Scotto, Kathleen

    2015-01-01

    NAD+ kinase (NADK) is the only known cytosolic enzyme that converts NAD+ to NADP+, which is subsequently reduced to NADPH. The demand for NADPH in cancer cells is elevated as reducing equivalents are required for the high levels of nucleotide, protein, and fatty acid synthesis found in proliferating cells as well as for neutralizing high levels of reactive oxygen species (ROS). We determined whether inhibition of NADK activity is a valid anticancer strategy alone and in combination with chemotherapeutic drugs known to induce ROS. In vitro and in vivo inhibition of NADK with either small-hairpin RNA or thionicotinamide inhibited proliferation. Thionicotinamide enhanced the ROS produced by several chemotherapeutic drugs and produced synergistic cell kill. NADK inhibitors alone or in combination with drugs that increase ROS-mediated stress may represent an efficacious antitumor combination and should be explored further. PMID:26219913

  12. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma.

    PubMed

    Thomas, Hala Elnakat; Mercer, Carol A; Carnevalli, Larissa S; Park, Jongsun; Andersen, Jesper B; Conner, Elizabeth A; Tanaka, Kazuhiro; Matsutani, Tomoo; Iwanami, Akio; Aronow, Bruce J; Manway, Liu; Maira, S Michel; Thorgeirsson, Snorri S; Mischel, Paul S; Thomas, George; Kozma, Sara C

    2012-06-20

    Hepatocellular carcinoma (HCC) affects more than half a million people worldwide and is the third most common cause of cancer deaths. Because mammalian target of rapamycin (mTOR) signaling is up-regulated in 50% of HCCs, we compared the effects of the U.S. Food and Drug Administration-approved mTOR-allosteric inhibitor, RAD001, with a new-generation phosphatidylinositol 3-kinase/mTOR adenosine triphosphate-site competitive inhibitor, BEZ235. Unexpectedly, the two drugs acted synergistically in inhibiting the proliferation of cultured HCC cells. The synergistic effect closely paralleled eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) dephosphorylation, which is implicated in the suppression of tumor cell proliferation. In a mouse model approximating human HCC, the drugs in combination, but not singly, induced a marked regression in tumor burden. However, in the tumor, BEZ235 alone was as effective as the combination in inhibiting 4E-BP1 phosphorylation, which suggests that additional target(s) may also be involved. Microarray analyses revealed a large number of genes that reverted to normal liver tissue expression in mice treated with both drugs, but not either drug alone. These analyses also revealed the down-regulation of autophagy genes in tumors compared to normal liver. Moreover, in HCC patients, altered expression of autophagy genes was associated with poor prognosis. Consistent with these findings, the drug combination had a profound effect on UNC51-like kinase 1 (ULK1) dephosphorylation and autophagy in culture, independent of 4E-BP1, and in parallel induced tumor mitophagy, a tumor suppressor process in liver. These observations have led to an investigator-initiated phase 1B-2 dose escalation trial with RAD001 combined with BEZ235 in patients with HCC and other advanced solid tumors.

  13. MEX HRSC and MRO SHARAD synergic observations on Light-Toned Deposits (LTDs)

    NASA Astrophysics Data System (ADS)

    Rossi, A. P.; Orosei, R.; Pondrelli, M.; van Gasselt, S.; Hauber, E.; Dumke, A.; Russo, F.; Cutugni, M.; Seu, R.; Neukum, G.

    2008-09-01

    between them. Further areas We plan to extend the synergic observation campaign to further areas where extensive (and relatively rough/steep) LTDs are present: this include other crater bulges, such as Gale, close to the dichotomy boundary, and few case studies of LTDs in the Valles Marineris canyon system. Although the choice of targets is challenging, the use of high resolution DEMs will hopefully provide better chances to detect subsurface echoes. References [1] Lucchitta, B. K., et al. (1992), in Mars, edited, pp. 453-492. [2] Malin, M. C., and K. S. Edgett (2000) Science, 290(5498), 1927-1937. [3] Arvidson, R. E., et al. (2003) JGR (Planets), 108, 8073. [4] Neukum, G., et al.. (2004), ESA SP-1240. [5] Jaumann, R., et al. (2007), PSS, 55, 928-952. [6] Gwinner, K., et al. (2005), Photogrammetrie - Fernerkundung - Geoinformation, 5, 387-394. [7] Seu, R., et al. (2007) JGR (Planets), 112, E05S05, doi: 10.1029/ 2006JE002745.

  14. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing

    NASA Astrophysics Data System (ADS)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    accelerated the early process of visual cognition. There is a synergic effect between the effects of constant low-speed rotation and rotating speed of the background. Under certain conditions, they both served to facilitate the visual cognitive processing, and it had been started at the stage when extrastriate cortex perceiving the visual signal. Under the condition of constant low-speed rotation in higher cognitive load tasks, the rapid rotation of the background enhanced the magnitude of the signal transmission in the visual path, making signal to noise ratio increased and a higher signal to noise ratio is clearly in favor of target perception and recognition. This gave rise to the hypothesis that higher cognitive load tasks with higher top-down control had more power in counteracting the inhibition effect of higher velocity rotation background. Acknowledgements: This project was supported by National Natural Science Foundation of China (No. 30670715) and National High Technology Research and Development Program of China (No.2007AA04Z254).

  15. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  16. FIZ1 is Expressed During Photoreceptor Maturation, and Synergizes with NRL and CRX at Rod-Specific Promoters in vitro

    PubMed Central

    Mali, Raghuveer S.; Zhang, Xiao; Hoerauf, Widmann; Doyle, Danielle; Devitt, Jeffrey; Loffreda-Wren, Janice; Mitton, Kenneth P.

    2015-01-01

    FIZ1 (Flt-3 Interacting Zinc-finger) interacts and co-purifies with the rod-specific transcription factor NRL (Neural Retina Leucine zipper). We hypothesize that FIZ1 is part of an interface between cell-specific factors, like NRL, and more ubiquitous regulatory networks that vary the absolute expression levels of some rod-specific genes (i.e. Rhodopsin). As part of an ongoing exploration of FIZ1’s role in neural retina, in vivo, we have taken the first look at FIZ1 expression in the developing mouse retina during the retinal maturation period. Using the normal C57/B6 mouse as a model, multiple approaches were used including: immunoblotting, immunohistochemistry, and quantitative real-time PCR. Functional implications of FIZ1/NRL interaction, on NRL-and CRX-mediated activation of the Rhodopsin (Rho) and cGMP-phosphodiesterase β-subunit gene (PDE6B) promoters, were examined by co-transfection assays. Immunoblot analysis revealed that FIZ1 protein levels were lowest in immature mouse neural retina (P0). FIZ1 concentration increased at least ten-fold as the neural retina matured to the adult state (P21 and later). Immunohistochemical comparison of immature post-natal and mature adult retina revealed increasing FIZ1 protein in photoreceptors, the inner plexiform layer, and the ganglion cell layer. Total retinal Fiz1 mRNA content increased as the neural retina matured. The expected increase in Rho mRNA level was also monitored as a genetic marker of photoreceptor maturation. In transient co-transfection assays of CV1 cells, FIZ1 synergized with NRL to activate transcription from the Rho and PDE6B gene promoters with some differences. In the case of the Rho promoter, FIZ1 synergized when both NRL and CRX were present. With the PDE6B promoter, FIZ1 synergized with NRL alone, and the inclusion of CRX decreased this synergy. Conclusions These findings support previous evidence that FIZ1 is present in rod-photoreceptors. (Co-immunoprecipitation from nuclear

  17. Endocytosis of Receptor Tyrosine Kinases

    PubMed Central

    Goh, Lai Kuan

    2013-01-01

    Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work. PMID:23637288

  18. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Mevalonate kinase deficiency: current perspectives

    PubMed Central

    Favier, Leslie A; Schulert, Grant S

    2016-01-01

    Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder, recent treatment approaches have largely focused on cytokine-directed biologic therapy. Herein, we review the current genetic and pathologic understanding of MKD, its various clinical phenotypes, and the evolving treatment approach for this multifaceted disorder. PMID:27499643

  20. Synergism between NOAA-AVHRR and Meteosat data for studying vegetation development in semi-arid West Africa

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Dugdale, G.; Narracott, A. S.; Townshend, J. R. G.; Kumar, M.

    1991-01-01

    Rainfall estimates, based on cold cloud duration estimated from Meteosat data, are compared with vegetation development depicted by data of the normalized difference vegetation index (NDVI) from the NOAA AVHRR for part of the Sahel. Decadal data from the 1985 and 1986 growing seasons are examined to determine the synergism of the datasets for rangeland monitoring. There is a general correspondence between the two datasets with a marked lag between rainfall and NDVI of between 10 and 20 days. This time lag is particularly noticeable at the beginning of the rainy season and in the more northern areas where rainfall is the limiting factor for growth. Principal component analysis was used to examine deviations from the general relationship between rainfall and the NDVI. Areas of low NDVI values for a given input of rainfall were identified: at a regional scale, they give an indication o areas of low production potential and possible degradation of ecosystems.

  1. Synergism between the potato glycoalkaloids alpha-chaconine and alpha-solanine in inhibition of snail feeding.

    PubMed

    Smith, D B; Roddick, J G; Jones, J L

    2001-05-01

    Snails (Helix aspersa L.) were fed filter paper treated with the potato glycoalkaloids, alpha-solanine and alpha-chaconine, singly or together. In pure form, both glycoalkaloids deterred feeding, with chaconine being the more active compound. In combination, authentic solanine and chaconine interacted synergistically in their inhibition of feeding. The antifeedant activities of methanolic extracts of tuber peel of the potato varieties Majestic and Sharpe's Express presented via filter paper discs did not differ significantly from those of authentic glycoalkaloid solutions of comparable concentration and ratio. In contrast, feeding inhibition by diluted tuber peel extracts of the variety Homeguard was greater than that elicited by comparable authentic glycoalkaloid solutions suggesting additional inhibitory compound(s) in the peel of this variety. Comparison of data from peel extracts of all three potato varieties and authentic glycoalkaloids indicated that the level of feeding inhibition by the extracts was, at least in part, a consequence of a synergism between solanine and chaconine.

  2. Dually pH/Reduction-Responsive Vesicles for Ultrahigh-Contrast Fluorescence Imaging and Thermo-Chemotherapy-Synergized Tumor Ablation.

    PubMed

    Zhu, Aijun; Miao, Ke; Deng, Yibin; Ke, Hengte; He, Hui; Yang, Tao; Guo, Miao; Li, Yanli; Guo, Zhengqing; Wang, Yangyun; Yang, Xiangliang; Zhao, Youliang; Chen, Huabing

    2015-08-25

    Smart nanocarriers are of particular interest as nanoscale vehicles of imaging and therapeutic agents in the field of theranostics. Herein, we report dually pH/reduction-responsive terpolymeric vesicles with monodispersive size distribution, which are constructed by assembling acetal- and disulfide-functionalized star terpolymer with near-infrared cyanine dye and anticancer drug. The vesicular nanostructure exhibits multiple theranostic features including on-demand drug releases responding to pH/reduction stimuli, enhanced photothermal conversion efficiency of cyanine dye, and efficient drug translocation from lysosomes to cytoplasma, as well as preferable cellular uptakes and biodistribution. These multiple theranostic features result in ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. The dually stimuli-responsive vesicles represent a versatile theranostic approach for enhanced cancer imaging and therapy. PMID:26181349

  3. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures.

    PubMed

    Xu, Fen; Xie, Yi; Zhang, Xu; Zhang, Shuyuan; Liu, Xianming; Tian, Xiaobo

    2004-01-26

    In this paper we describe the large-scale synthesis of inorganic fullerene-like (IF-like) hexagonal boron nitride with vessel, hollow sphere, peanut, and onion structures by reacting BBr(3) with the synergic nitrogen sources NaNH(2) and NH(4)Cl at 400-450 degrees C for 6-12 h. The composition of products could be confirmed to be pure boron nitride with hexagonal structures by the XRD patterns and FT-IR, XPS, and EDXA spectra. The representative HRTEM images clearly reveal the layerlike features of the products. Here, the peanut-like structure of the IF-like BN is reported for the first time, and added to the list as one kind of new morphology of BN nanomaterials. The similarity in the structure between h-BN and graphite is responsible for the formation of IF-like BN with nanostructures of vessels, hollow spheres, peanuts, and onions. PMID:14731047

  4. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei

    NASA Astrophysics Data System (ADS)

    Torstensson, A.; Hedblom, M.; Andersson, J.; Andersson, M. X.; Wulff, A.

    2013-04-01

    Polar oceans are particularly susceptible to ocean acidification and warming. Diatoms play a significant role in sea ice biogeochemistry and provide an important food source to grazers in ice-covered oceans, especially during early spring. However, the ecophysiology of ice living organisms has received little attention in terms of ocean acidification. In this study, the synergism between temperature and partial pressure of CO2 (pCO2) was investigated in relationship to the optimal growth temperature of the Antarctic sea ice diatom Nitzschia lecointei. Diatoms were kept in cultures at controlled levels of pCO2 (∼390 and ∼960 μatm}) and temperature (-1.8 and 2.5 °C) for 14 days. Synergism between temperature and pCO2 was detected in growth rate and acyl lipid fatty acid content. Carbon enrichment only promoted (3%) growth rate closer to the optimal growth, but not at the control temperature (-1.8 °C). Optimal growth rate was observed around 5 °C in a separate experiment. Polyunsaturated fatty acids (PUFA) comprised up to 98% of the total acyl lipid fatty acid pool at -1.8 °C. However, the total content of fatty acids was reduced by 39% at elevated pCO2, but only at the control temperature. PUFAs were reduced by 30% at high pCO2. Effects of carbon enrichment may be different depending on ocean warming scenario or season, e.g. reduced food quality for higher trophic levels during spring. Synergy between temperature and pCO2 may be particularly important in polar areas since a narrow thermal window generally limits cold-water organisms.

  5. Supervillin binding to myosin II and synergism with anillin are required for cytokinesis.

    PubMed

    Smith, Tara C; Fridy, Peter C; Li, Yinyin; Basil, Shruti; Arjun, Sneha; Friesen, Ryan M; Leszyk, John; Chait, Brian T; Rout, Michael P; Luna, Elizabeth J

    2013-12-01

    Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II-binding proteins anillin and supervillin, act earlier. Anillin's role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831-1281, which bind central spindle proteins, and residues 1-170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis. PMID:24088567

  6. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing

    PubMed Central

    Tesori, Valentina; Piscaglia, Anna Chiara; Samengo, Daniela; Barba, Marta; Bernardini, Camilla; Scatena, Roberto; Pontoglio, Alessandro; Castellini, Laura; Spelbrink, Johannes N.; Maulucci, Giuseppe; Puglisi, Maria Ausiliatrice; Pani, Giovambattista; Gasbarrini, Antonio

    2015-01-01

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5–5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies. PMID:25779766

  7. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing.

    PubMed

    Tesori, Valentina; Piscaglia, Anna Chiara; Samengo, Daniela; Barba, Marta; Bernardini, Camilla; Scatena, Roberto; Pontoglio, Alessandro; Castellini, Laura; Spelbrink, Johannes N; Maulucci, Giuseppe; Puglisi, Maria Ausiliatrice; Pani, Giovambattista; Gasbarrini, Antonio

    2015-03-17

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5-5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies.

  8. Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury

    PubMed Central

    Mongan, Maureen; Tan, Zongqing; Chen, Liang; Peng, Zhimin; Dietsch, Maggie; Su, Bing; Leikauf, George; Xia, Ying

    2008-01-01

    Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury. PMID:18467339

  9. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  10. Protein Kinase D family kinases: roads start to segregate.

    PubMed

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lower. In our recent study we report that both kinases control PDAC cell invasive properties in an isoform-specific, but opposing manner. PKD1 selectively mediates anti-migratory/anti-invasive features by preferential regulation of the actin-regulatory Cofilin-phosphatase Slingshot1L (SSH1L). PKD2, on the other hand enhances invasion and angiogenesis of PDAC cells in 3D-ECM cultures and chorioallantois tumor models by stimulating expression and secretion of matrix-metalloproteinase 7 and 9 (MMP7/9). MMP9 also enhances PKD2-mediated tumor angiogenesis releasing extracellular matrix-bound VEGF-A. We thus suggest high PKD2 expression and loss of PKD1 may be beneficial for tumor cells to enhance their matrix-invading abilities. In our recent study we demonstrate for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion, in-vitro and in-vivo, defining isoform-specific regulation of PKDs as a major future issue. PMID:24847910

  11. Motexafin gadolinium modulates levels of phosphorylated Akt and synergizes with inhibitors of Akt phosphorylation.

    PubMed

    Ramos, Jason; Sirisawad, Mint; Miller, Richard; Naumovski, Louie

    2006-05-01

    Motexafin gadolinium (MGd, Xcytrin) is a tumor-selective expanded porphyrin that targets oxidative stress-related proteins. MGd treatment of the follicular lymphoma-derived cell line HF-1 resulted in growth suppression and apoptosis whereas MGd treatment of the Burkitt's lymphoma-derived cell line Ramos resulted in growth suppression but not apoptosis. Because phosphorylation status of Akt/protein kinase B is regulated by oxidative stress, we monitored total and phosphorylated Akt (pAkt) in MGd-treated HF-1 and Ramos cells. Levels of pAkt increased within 30 minutes after MGd treatment of HF-1 but after 4 hours began to show a progressive decline to below baseline levels before cells underwent apoptosis. In MGd-treated Ramos cells, pAkt increased approximately 2-fold within 4 hours and remained persistently elevated. Because pAkt activates survival pathways, we determined if MGd-induced cell death could be enhanced by inhibiting phosphorylation of Akt. The addition of specific inhibitors of Akt phosphorylation (Akt inhibitor 1 or SH-5) reduced pAkt levels in MGd-treated HF-1 and Ramos cells and synergistically enhanced MGd-induced cell death. MGd was also evaluated in combination with celecoxib, an inhibitor of Akt phosphorylation, or docetaxel, a microtubule inhibitor that can decrease Akt phosphorylation. The combination of MGd/celecoxib or MGd/docetaxel resulted in decreased Akt phosphorylation and in synergistic cytotoxicity compared with either agent alone. These data point to a potential protective role for pAkt in MGd-induced apoptosis and suggest that MGd activity may be enhanced by combining it with agents that inhibit Akt phosphorylation.

  12. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells.

    PubMed

    Liese, Juliane; Abhari, Behnaz Ahangarian; Fulda, Simone

    2015-08-28

    Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.

  13. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells.

    PubMed

    Liese, Juliane; Abhari, Behnaz Ahangarian; Fulda, Simone

    2015-08-28

    Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies. PMID:25917078

  14. Tec family kinases in inflammation and disease.

    PubMed

    Horwood, Nicole J; Urbaniak, Ania M; Danks, Lynett

    2012-04-01

    Over the last decade, the Tec family of nonreceptor tyrosine kinases (Btk, Tec, Bmx, Itk, and Rlk) have been shown to play a key role in inflammation and bone destruction. Bruton's tyrosine kinase (Btk) has been the most widely studied due to the critical role of this kinase in B-cell development and recent evidence showing that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. This review will examine the role of TFK in myeloid cell function and the potential of targeting these kinases as a therapeutic intervention in autoimmune disorders such as rheumatoid arthritis. PMID:22449071

  15. Protein kinase profiling assays: a technology review.

    PubMed

    Wang, Yuren; Ma, Haiching

    2015-11-01

    Protein kinases have become one of the most intensively pursued classes of drug targets for many diseases such as cancers and inflammatory diseases. Kinase profiling work seeks to understand general selectivity trends of lead compounds across the kinome, which help with target selection, compound prioritization, and potential implications in toxicity. Under the current drug discovery process, screening of compounds against comprehensive panels of kinases and their mutants has become the standard approach. Many screening assays and technologies which are compatible for high-throughput screening (HTS) against kinases have been extensively pursued and developed.

  16. TOPK promotes lung cancer resistance to EGFR tyrosine kinase inhibitors by phosphorylating and activating c-Jun

    PubMed Central

    Wang, Tao; Wang, Ting; Niu, Mengjie; Zhang, Shengli; Jia, Lintao; Li, Shengqing

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) have shown promising clinical efficacy in non-squamous non-small cell lung cancer (NSCLC); however, resistance is frequently observed in malignant cells, operating through a mechanism that remains largely unknown. The present study shows that T-lymphokine-activated killer cell-originated protein kinase (TOPK) is upregulated in NSCLC and excessively activated in TKI-refractory cells. TOPK dictates the responsiveness of lung cancers to the EGFR-targeted TKI gefitinib through the transcription factor AP-1 component c-Jun. TOPK binds directly to and phosphorylates c-Jun, which consequently activates the transcription of AP-1 target genes, including CCND1 and CDC2. TOPK silencing sensitizes EGFR-TKI-resistant lung cancer cells to gefitinib and increases gefitinib efficacy in preclinical lung adenocarcinoma xenograft models. These findings represent a novel mechanism of lung cancer resistance to TKIs and suggest that TOPK may have value both as a predictive biomarker and as a therapeutic target: TOPK-targeted therapy may synergize with EGFR-targeted therapy in lung cancers. PMID:26745678

  17. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates.

    PubMed

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A; Yu, Shuai; Hans, Michael; Geahlen, Robert L; Tao, W Andy

    2012-04-10

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  18. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    SciTech Connect

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated

  19. B cells assist allograft rejection in the deficiency of protein kinase c-theta.

    PubMed

    Yan, Wenwei; Xu, Rui; Ma, Lian Li; Han, Wei; Geevarghese, Sunil K; Williams, Phillip E; Sciammas, Roger; Chong, Anita S; Yin, Deng Ping

    2013-09-01

    We have previously shown that mice deficient in protein kinase C theta (PKCθ) have the ability to reject cardiac allografts, but are susceptible to tolerance induction. Here we tested role of B cells in assisting alloimmune responses in the absence of PKCθ. Mouse cardiac allograft transplantations were performed from Balb/c (H-2d) to PKCθ knockout (PKCθ(-/-)), PKCθ and B cell double-knockout (PBDK, H-2b) mice and wild-type (WT) C57BL/6 (H-2b) mice. PBDK mice spontaneously accepted the allografts with the inhibition of NF-κB activation in the donor cardiac allograft. Anti-B cell antibody (rituximab) significantly delayed allograft rejection in PKCθ(-/-), but not in WT mice. Co-transfer of PKCθ(-/-) T plus PKCθ(-/-) B cells or primed sera triggered allograft rejection in Rag1(-/-) mice, and only major histocompatibility complex class II-enriched B cells, but not class I-enriched B cells, were able to promote rejection. This, together with the inability of PKCθ(-/-) and CD28(-/-) double-deficient (PCDK) mice to acutely reject allografts, suggested that an effective cognate interaction between PKCθ(-/-) T and B cells for acute rejection is CD28 molecule dependent. We conclude that T-B cell interactions synergize with PKCθ(-/-) T cells to mediate acute allograft rejection.

  20. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria

    PubMed Central

    Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z

    2016-01-01

    Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells. PMID:27383047

  1. A novel viral thymidylate kinase with dual kinase activity.

    PubMed

    Guevara-Hernandez, Eduardo; Arvizu-Flores, Aldo A; Lugo-Sanchez, Maria E; Velazquez-Contreras, Enrique F; Castillo-Yañez, Francisco J; Brieba, Luis G; Sotelo-Mundo, Rogerio R

    2015-10-01

    Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 μM, 3.6 s(-1)), dTDP (251 μM, 0.9 s(-1)) and ATP (92 μM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 μM) and dTDP (10 μM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 μM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.

  2. Measuring the Activity of Leucine-Rich Repeat Kinase 2: A Kinase Involved in Parkinson's Disease

    PubMed Central

    Lee, Byoung Dae; Li, Xiaojie; Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Mutations in the LRRK2 (Leucine-Rich Repeat Kinase 2) gene are the most common cause of autosomal dominant Parkinson's disease. LRRK2 has multiple functional domains including a kinase domain. The kinase activity of LRRK2 is implicated in the pathogenesis of Parkinson's disease. Developing an assay to understand the mechanisms of LRRK2 kinase activity is important for the development of pharmacologic and therapeutic applications. Here, we describe how to measure in vitro LRRK2 kinase activity and its inhibition. PMID:21960214

  3. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  4. Multifunctional Abl kinases in health and disease.

    PubMed

    Khatri, Aaditya; Wang, Jun; Pendergast, Ann Marie

    2016-01-01

    The Abelson tyrosine kinases were initially identified as drivers of leukemia in mice and humans. The Abl family kinases Abl1 and Abl2 regulate diverse cellular processes during development and normal homeostasis, and their functions are subverted during inflammation, cancer and other pathologies. Abl kinases can be activated by multiple stimuli leading to cytoskeletal reorganization required for cell morphogenesis, motility, adhesion and polarity. Depending on the cellular context, Abl kinases regulate cell survival and proliferation. Emerging data support important roles for Abl kinases in pathologies linked to inflammation. Among these are neurodegenerative diseases and inflammatory pathologies. Unexpectedly, Abl kinases have also been identified as important players in mammalian host cells during microbial pathogenesis. Thus, the use of Abl kinase inhibitors might prove to be effective in the treatment of pathologies beyond leukemia and solid tumors. In this Cell Science at a Glance article and in the accompanying poster, we highlight the emerging roles of Abl kinases in the regulation of cellular processes in normal cells and diverse pathologies ranging from cancer to microbial pathogenesis.

  5. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... National (UK) Information Centre for Metabolic Diseases National Organization for Rare Disorders (NORD): Pyruvate Kinase Deficiency Genetic Testing Registry (1 link) Pyruvate kinase deficiency of red cells Scientific articles on PubMed (1 link) PubMed OMIM (1 link) ...

  6. The DNA Methyltransferase DNMT1 and Tyrosine-Protein Kinase KIT Cooperatively Promote Resistance to 5-Aza-2'-deoxycytidine (Decitabine) and Midostaurin (PKC412) in Lung Cancer Cells.

    PubMed

    Yan, Fei; Shen, Na; Pang, Jiuxia; Molina, Julian R; Yang, Ping; Liu, Shujun

    2015-07-24

    Lung cancer cells are sensitive to 5-aza-2'-deoxycytidine (decitabine) or midostaurin (PKC412), because decitabine restores the expression of methylation-silenced tumor suppressor genes, whereas PKC412 inhibits hyperactive kinase signaling, which is essential for cancer cell growth. Here, we demonstrated that resistance to decitabine (decitabine(R)) or PKC412 (PKC412(R)) eventually results from simultaneously remethylated DNA and reactivated kinase cascades. Indeed, both decitabine(R) and PKC412(R) displayed the up-regulation of DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT, the enhanced phosphorylation of KIT and its downstream effectors, and the increased global and gene-specific DNA methylation with the down-regulation of tumor suppressor gene epithelial cadherin CDH1. Interestingly, decitabine(R) and PKC412(R) had higher capability of colony formation and wound healing than parental cells in vitro, which were attributed to the hyperactive DNMT1 or KIT, because inactivation of KIT or DNMT1 reciprocally blocked decitabine(R) or PKC412(R) cell proliferation. Further, DNMT1 knockdown sensitized PKC412(R) cells to PKC412; conversely, KIT depletion synergized with decitabine in eliminating decitabine(R). Importantly, when engrafted into nude mice, decitabine(R) and PKC412(R) had faster proliferation with stronger tumorigenicity that was caused by the reactivated KIT kinase signaling and further CDH1 silencing. These findings identify functional cross-talk between KIT and DNMT1 in the development of drug resistance, implying the reciprocal targeting of protein kinases and DNA methyltransferases as an essential strategy for durable responses in lung cancer.

  7. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei

    NASA Astrophysics Data System (ADS)

    Torstensson, A.; Hedblom, M.; Andersson, J.; Andersson, M. X.; Wulff, A.

    2013-10-01

    Polar oceans are particularly susceptible to ocean acidification and warming. Diatoms play a significant role in sea ice biogeochemistry and provide an important food source to grazers in ice-covered oceans, especially during early spring. However, the ecophysiology of ice-living organisms has received little attention in terms of ocean acidification. In this study, the synergism between temperature and partial pressure of CO2 (pCO2) was investigated in relationship to the optimal growth temperature of the Antarctic sea ice diatom Nitzschia lecointei. Diatoms were kept in cultures at controlled levels of pCO2 (∼390 and ∼960 μatm) and temperature (-1.8 and 2.5 °C) for 14 days. Synergism between temperature and pCO2 was detected in growth rate and acyl lipid fatty acid (FA) content. Optimal growth rate was observed around 5 °C in a separate experiment. Carbon enrichment only promoted (6%) growth rate closer to the optimal growth, but not at the control temperature (-1.8 °C). At -1.8 °C and at ∼960 μatm pCO2, the total FA content was reduced relative to the ∼390 μatm treatment, although no difference between pCO2 treatments was observed at 2.5 °C. A large proportion (97%) of the total FAs comprised on average of polyunsaturated fatty acids (PUFA) at -1.8 °C. Cellular PUFA content was reduced at ∼960 relative to ∼390 μatm pCO2. Effects of carbon enrichment may be different depending on ocean warming scenario or season, e.g. reduced cellular FA content in response to elevated CO2 at low temperatures only, reflected as reduced food quality for higher trophic levels. Synergy between warming and acidification may be particularly important in polar areas since a narrow thermal window generally limits cold-water organisms.

  8. Emerging Synergisms Between Drugs and Physiologically-Patterned Weak Magnetic Fields: Implications for Neuropharmacology and the Human Population in the Twenty-First Century

    PubMed Central

    Whissell, P.D; Persinger, M.A

    2007-01-01

    Synergisms between pharmacological agents and endogenous neurotransmitters are familiar and frequent. The present review describes the experimental evidence for interactions between neuropharmacological compounds and the classes of weak magnetic fields that might be encountered in our daily environments. Whereas drugs mediate their effects through specific spatial (molecular) structures, magnetic fields mediate their effects through specific temporal patterns. Very weak (microT range) physiologically-patterned magnetic fields synergistically interact with drugs to strongly potentiate effects that have classically involved opiate, cholinergic, dopaminergic, serotonergic, and nitric oxide pathways. The combinations of the appropriately patterned magnetic fields and specific drugs can evoke changes that are several times larger than those evoked by the drugs alone. These novel synergisms provide a challenge for a future within an electromagnetic, technological world. They may also reveal fundamental, common physical mechanisms by which magnetic fields and chemical reactions affect the organism from the level of fundamental particles to the entire living system. PMID:19305744

  9. Synergism between wild-type Bacillus thuringiensis subsp. israelensis and B. sphaericus strains: a study based on isobolographic analysis and histopathology.

    PubMed

    Sreshty, M Asha Latha; Kumar, K Pranay; Murty, U S N

    2011-04-01

    Prevention is the best resistance management strategy in integrated vector control programs. Combined use of insecticides of different classes that interact synergistically and show multi-site actions within the insect is recognized as a potential key strategy to be implemented even before the onset of resistance. The present study is aimed at harvesting the benefits of synergism between the wild-type Bacillus thuringiensis subsp. israelensis-H14 (Bti) and Bacillus sphaericus-2362 (Bs) strains by evaluating six different combinations of mixtures toxic to Aedes and Culex mosquito larvae. Isobolographic analysis was performed to distinguish the synergistic combinations of Bti and Bs, followed by determination of the degree of synergism through synergy and improvement factors. Furthermore, the speed of activity of Bs when combined with Bti is studied by histopathological investigations on the fate of midgut muscles of mosquito larvae upon exposure to individual wild-type strains as well as their mixtures.

  10. Selective regulation of MAP kinase signaling by an endomembrane phosphatidylinositol 4-kinase.

    PubMed

    Cappell, Steven D; Dohlman, Henrik G

    2011-04-29

    Multiple MAP kinase pathways share components yet initiate distinct biological processes. Signaling fidelity can be maintained by scaffold proteins and restriction of signaling complexes to discreet subcellular locations. For example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the plasma membrane and promotes selective MAP kinase activation. Here we show that Pik1, a phosphatidylinositol 4-kinase that localizes primarily to the Golgi, also regulates MAP kinase specificity but does so independently of Ste5. Pik1 is required for full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1. Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and Ste50, components shared by all three MAP kinase pathways, through their interaction with the scaffold protein Opy2. These findings reveal a new regulator of signaling specificity functioning at endomembranes rather than at the plasma membrane. PMID:21388955

  11. Tyrosine Kinase Inhibitors and Pregnancy

    PubMed Central

    Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; Perrotti, Alessio Pio; De Fabritiis, Paolo

    2014-01-01

    The management of patients with chronic myeloid leukemia (CML) during pregnancy has become recently a matter of continuous debate. The introduction of the Tyrosine Kinase Inhibitors (TKIs) in clinical practice has dramatically changed the prognosis of CML patients; in fact, patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy, including the necessity to address issues relating to fertility and pregnancy. Physicians are frequently being asked for advice regarding the need for, and/or the appropriateness of, stopping treatment in order to conceive. In this report, we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for TKI treated CML patients, as well as how to manage a planned and/or unplanned pregnancy. PMID:24804001

  12. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae

    PubMed Central

    López-Diaz, Jazmin A.; Cantón, Pablo Emiliano; Gill, Sarjeet S.; Soberón, Mario; Bravo, Alejandra

    2014-01-01

    Summary Bacillus thuringiensis produces insecticidal Cry and Cyt proteins that are toxic to different insect orders. In addition, Cyt toxins also display haemolytic activity. Both toxins are pore-forming proteins that form oligomeric structures that insert into the target membrane to lyse cells. Cyt toxins play an important role in mosquitocidal activity since they synergize Cry toxins and are able to overcome resistance to Cry toxins. Cry and Cyt toxins interact by specific epitopes, and this interaction is important to induce the synergistic activity observed. It was proposed that Cyt toxins do not interact with protein receptors but directly interacting with the specific midgut cell lipids. Here, we analysed if oligomerization and membrane insertion of Cyt1Aa are necessary steps to synergize Cry11Aa toxicity. We characterized Cyt1Aa helix α-C mutants that were affected in oligomerization, in membrane insertion and also in haemolytic and insecticidal activities. However, these mutants were still able to synergize Cry11Aa toxicity indicating these steps are independent events of Cyt1Aa synergistic activity. Furthermore, the data indicate that formation of stable Cyt1Aa-oligomeric structure is a key step for membrane insertion, haemolysis and insecticidal activity. PMID:24112611

  13. Optochemical Activation of Kinase Function in Live Cells

    PubMed Central

    Karginov, Andrei V.; Hahn, Klaus M.; Deiters, Alexander

    2015-01-01

    Summary Manipulation of protein kinase activity is widely used to dissect signaling pathways controlling physiological and pathological processes. Common methods often cannot provide the desired spatial and temporal resolution in control of kinase activity. Regulation of kinase activity by photocaged kinase inhibitors has been successfully used to achieve tight temporal and local control, but inhibitors are limited to inactivation of kinases, and often do not provide the desired specificity. Here we report detailed methods for light-mediated activation of kinases in living cells using engineered rapamycin-regulated kinases (RapR-kinases) in conjunction with a photocaged analog of rapamycin. PMID:24718793

  14. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  15. Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity.

    PubMed

    King, B J; Keegan, A R; Phillips, R; Fanok, S; Monis, P T

    2012-10-01

    Bile salts have been identified as an important trigger for excystation of Cryptosporidium oocysts but the hierarchy or synergism of this signal in relation to other triggers involved in excystation is poorly understood. In addition to excystation, bile salts have also been reported to increase the invasiveness of sporozoites within in vitro culture, possibly by affecting the secretory pathway via modification of intracellular calcium signalling. Nevertheless, incorporation of bile or bile salts into in vitro assays is not universal, with recent reports of negative effects on parasite growth. Here we report that bile and sodium taurocholate significantly affect both excystation rate and parasite in vitro growth. We demonstrate that their effect on excystation is dose, time and pre-treatment temperature dependent, while increases in parasite replication appear to be associated with modulation of parasite intracellular calcium and increased host cell susceptibility to infection. Notably, we illustrate that bile has a significant effect on host cells and can be cytotoxic at concentrations not much higher than those currently used for in vitro assays. This work should assist with more rational design of in vitro culture systems, with significant considerations for assay format when incorporating bile or bile salts as an excystation trigger. PMID:22894830

  16. Triclosan Demonstrates Synergic Effect with Amphotericin B and Fluconazole and Induces Apoptosis-Like Cell Death in Cryptococcus neoformans

    PubMed Central

    Movahed, Elaheh; Tan, Grace Min Yi; Munusamy, Komathy; Yeow, Tee Cian; Tay, Sun Tee; Wong, Won Fen; Looi, Chung Yeng

    2016-01-01

    Objectives: Cryptococcus neoformans is an opportunistic fungus that causes fatal meningoencephalitis especially in AIDS patients. There is an increasing need for discovery of new anti-cryptococcal drugs due to emergence of resistance cases in recent years. In this study, we aim to elucidate the antifungal effect of triclosan against C. neoformans. Methods: Minimal inhibitory concentration (MIC) of triclosan in different C. neoformans strains was first examined. The in vitro interactions between triclosan and two standard anti-fungal drugs (amphotericin B and fluconazole) were further evaluated by microdilution checkerboard assay. Mechanism of triclosan fungicidal activity was then investigated by viewing the cell morphology under transmission electron microscope. Results: We reported that triclosan potently inhibited the growth of C. neoformans. A combination of triclosan with amphotericin B or with fluconazole enhanced their fungicidal effects. Triclosan-treated C. neoformans displayed characteristics such as nuclear chromatin condensation, extensive intracellular vacuolation and mitochondrial swelling, indicating that triclosan triggered apoptosis-like cell death. Conclusion: In summary, our report suggests triclosan as an independent drug or synergent for C. neoformans treatment. PMID:27047474

  17. In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin

    PubMed Central

    Le, Cheng-Foh; Yusof, Mohd Yasim Mohd; Hassan, Hamimah; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent a promising class of novel antimicrobial agents owing to their potent antimicrobial activity. In this study, two lead peptides from unrelated classes of AMPs were systematically hybridized into a series of five hybrid peptides (DM1- DM5) with conserved N- and C-termini. This approach allows sequence bridging of two highly dissimilar AMPs and enables sequence-activity relationship be detailed down to single amino acid level. Presence of specific amino acids and physicochemical properties were used to describe the antipneumococcal activity of these hybrids. Results obtained suggested that cell wall and/or membrane targeting could be the principal mechanism exerted by the hybrids leading to microbial cell killing. Moreover, the pneumocidal rate was greater than penicillin (PEN). Combination treatment with both DMs and PEN produced synergism. The hybrids were also broad spectrum against multiple common clinical bacteria. Sequence analysis showed that presence of specific residues has a major role in affecting the antimicrobial and cell toxicity of the hybrids than physicochemical properties. Future studies should continue to investigate the mechanisms of actions, in vivo therapeutic potential, and improve rational peptide design based on the current strategy. PMID:25985150

  18. Antifungal properties of 3-n-alkyn-1-ols and synergism with 2-n-alkyn-1-ols and ketoconazole.

    PubMed

    Gershon, H; Jerome, J A; McElwain, K F

    1985-05-01

    Twelve 3-n-alkyn-1-ols (C4-C12, C14, C16, and C18) were tested against Aspergillus oryzae, Aspergillus niger, Trichoderma viride, and Myrothecium verrucaria in Sabouraud dextrose agar at pH 5.6 and 7.0. Toxicity to Candida albicans, Candida tropicalis, Trichophyton mentagrophytes, and Mucor mucedo was determined in the same medium at pH 5.6 and 7.0 in the absence and presence of 10% beef serum. Fungitoxicity was strongly influenced by chain length, slightly by pH of the medium, and significantly but not strongly by the presence of beef serum. 3-n-Decyn-1-ol, 3-n-undecyn-1-ol, and 3-n-dodecyn-1-ol were the most active members of the series. Synergism toward C. albicans and C. tropicalis was observed between 3-n-undecyn-1-ol and ketoconazole, and a mixture of 3-n-undecyn-1-ol, 2-n-undecyn-1-ol, and ketoconazole in Sabouraud dextrose agar at pH 7.0 in the presence of 10% human serum.

  19. Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems.

    PubMed

    Yin, Jie; Becker, Eleonora Miquel; Andersen, Mogens L; Skibsted, Leif H

    2012-12-15

    The antioxidant effects of α-tocopherol (TOH) in combination with green tea extract (GTE), the green tea polyphenol (-)-epicatechin (EC) or the isomeric (+)-catechin (C), were investigated using different lipid systems based on high linoleic sunflower oil: bulk oil, o/w-emulsion and a phosphatidylcholine-based liposome system. Both polyphenols as well as TOH were efficient antioxidants in all systems when used alone, as detected by the formation of free radicals and conjugated dienes and by oxygen consumption. Strong synergistic effect was found for the combination of TOH and GTE in a methyl linoleate o/w-emulsion and in the pure bulk oil, while only an additive effect was observed in a liposome system. The synergism was already evident for the tendency for radical formation in the bulk oil as detected by electron spin resonance (ESR) spectroscopy. On the contrary, combinations of TOH with either EC or C showed clear synergistic effects in both heterogeneous systems, but antagonistic or additive effects in bulk oil. GTE may accordingly be used to protect both vegetable oils and their emulsions against oxidation through enhancement of the activity of their endogenous antioxidants, while GTE is less efficient in the protection of phospholipids as in liposomes.

  20. Expressions of multiple umami taste receptors in oral and gastrointestinal tissues, and umami taste synergism in chickens.

    PubMed

    Yoshida, Yuta; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-10-23

    Umami taste is one of the five basic taste qualities, along with sweet, bitter, sour, and salty, and is elicited by some l-amino acids and their salts, including monopotassium l-glutamate (MPG). The unique characteristic of umami taste is that it is synergistically enhanced by 5'-ribonucleotides such as inosine 5'-monophosphate (IMP). Unlike the other four basic taste qualities, the presence of umami taste sense in avian species is not fully understood. In this study, we demonstrated the expression of multiple umami taste receptor candidates in oral and gastrointestinal tract tissues in chickens using RT-PCR analysis. We first showed the metabotropic glutamate receptors (mGluRs) expressed in these tissues. Furthermore, we examined the preference for umami taste in chickens, focusing on the synergistic effect of umami taste as determined by the two-feed choice test. We concluded that chickens preferred feed containing both added MPG and added IMP over feeds containing either added MPG or added IMP alone and over the control feed. These results suggest that the umami taste sense and synergism are conserved in chickens. PMID:26361143

  1. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma

    PubMed Central

    Bhadury, Joydeep; Nilsson, Lisa M.; Veppil Muralidharan, Somsundar; Green, Lydia C.; Li, Zhoulei; Gesner, Emily M.; Hansen, Henrik C.; Keller, Ulrich B.; McLure, Kevin G.; Nilsson, Jonas A.

    2014-01-01

    The bromodomain and extraterminal (BET) domain family of proteins binds to acetylated lysines on histones and regulates gene transcription. Recently, BET inhibitors (BETi) have been developed that show promise as potent anticancer drugs against various solid and hematological malignancies. Here we show that the structurally novel and orally bioavailable BET inhibitor RVX2135 inhibits proliferation and induces apoptosis of lymphoma cells arising in Myc-transgenic mice in vitro and in vivo. We find that BET inhibition exhibits broad transcriptional effects in Myc-transgenic lymphoma cells affecting many transcription factor networks. By examining the genes induced by BETi, which have largely been ignored to date, we discovered that these were similar to those induced by histone deacetylase inhibitors (HDACi). HDACi also induced cell-cycle arrest and cell death of Myc-induced murine lymphoma cells and synergized with BETi. Our data suggest that BETi sensitize Myc-overexpressing lymphoma cells partly by inducing HDAC-silenced genes, and suggest synergistic and therapeutic combinations by targeting the genetic link between BETi and HDACi. PMID:24979794

  2. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice.

    PubMed

    Ramírez-Rodríguez, Gerardo; Vega-Rivera, Nelly Maritza; Oikawa-Sala, Julián; Gómez-Sánchez, Ariadna; Ortiz-López, Leonardo; Estrada-Camarena, Erika

    2014-05-01

    Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.

  3. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance

    PubMed Central

    Vukovic, Milica; Guitart, Amelie V.; Sepulveda, Catarina; Villacreces, Arnaud; O'Duibhir, Eoghan; Panagopoulou, Theano I.; Ivens, Alasdair; Menendez-Gonzalez, Juan; Iglesias, Juan Manuel; Allen, Lewis; Glykofrydis, Fokion; Subramani, Chithra; Armesilla-Diaz, Alejandro; Post, Annemarie E.M.; Schaak, Katrin; Gezer, Deniz; So, Chi Wai Eric; Holyoake, Tessa L.; Wood, Andrew; O'Carroll, Dónal; Ratcliffe, Peter J.

    2015-01-01

    Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance. PMID:26642852

  4. Huaier extract synergizes with tamoxifen to induce autophagy and apoptosis in ER-positive breast cancer cells

    PubMed Central

    Qi, Wenwen; Sun, Mingjuan; Kong, Xiangnan; Li, Yaming; Wang, Xiaolong; Lv, Shangge; Ding, Xia; Gao, Sumei; Cun, Jinjing; Cai, Chang; Wang, Xiaoting; Chen, Junfei; Yin, Aijun; Yang, Qifeng

    2016-01-01

    Tamoxifen (TAM) is the most widely used endocrine therapy for estrogen receptor (ER)-positive breast cancer patients, but side effects and the gradual development of insensitivity limit its application. We investigated whether Huaier extract, a traditional Chinese medicine, in combination with TAM would improve treatment efficacy in ER-positive breast cancers. MTT, colony formation, and invasion and migration assays revealed that the combined treatment had stronger anticancer effects than either treatment alone. Huaier extract enhanced TAM-induced autophagy, apoptosis, and G0/G1 cell cycle arrest, as measured by acidic vesicular organelle (AVO) staining, TUNEL, flow cytometry, and western blot. Additionally, combined treatment inhibited tumorigenesis and metastasis by suppressing the AKT/mTOR signaling pathway. Huaier extract also enhanced the inhibitory effects of TAM on tumor growth in vivo in a xenograft mouse model. These results show that Huaier extract synergizes with TAM to induce autophagy and apoptosis in ER-positive breast cancer cells by suppressing the AKT/mTOR pathway. PMID:27027343

  5. Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid.

    PubMed

    Mori, Kohsuke; Tanaka, Hiromasa; Dojo, Masahiro; Yoshizawa, Kazunari; Yamashita, Hiromi

    2015-08-17

    Highly dispersed PdCu alloy nanoparticles have been successfully prepared within a macroreticular basic resin bearing N(CH3 )2 functional groups. This previously unappreciated combination of alloy is first proven to be responsible for the efficient production of high-purity H2 from formic acid (HCOOH) dehydrogenation for chemical hydrogen storage. By the addition of Cu, the electronically promoted Pd sites show significantly higher catalytic activity as well as a better tolerance towards CO poisoning as compared to their monometallic Pd counterparts. Experimental and DFT calculation studies revealed not only the synergic alloying effect but also cooperative action by the N(CH3 )2 groups within the resin play crucial roles in achieving exceptional catalytic performances. In addition to the advantages such as, facile preparation method, free of additives, recyclable without leaching of active component, and suppression of unfavorable CO formation less than 3 ppm, the present catalytic system is cost-effective because of the superior catalytic activity compared with that of well-established precious PdAg or PdAu catalysts. The present catalytic system is particularly desirable for an ideal hydrogen vector in terms of potential industrial application for fuel cells. PMID:26178687

  6. Inactivation of Rb and E2f8 Synergizes To Trigger Stressed DNA Replication during Erythroid Terminal Differentiation

    PubMed Central

    Ghazaryan, Seda; Sy, Chandler; Hu, Tinghui; An, Xiuli; Mohandas, Narla; Fu, Haiqing; Aladjem, Mirit I.; Chang, Victor T.; Opavsky, Rene

    2014-01-01

    Rb is critical for promoting cell cycle exit in cells undergoing terminal differentiation. Here we show that during erythroid terminal differentiation, Rb plays a previously unappreciated and unorthodox role in promoting DNA replication and cell cycle progression. Specifically, inactivation of Rb in erythroid cells led to stressed DNA replication, increased DNA damage, and impaired cell cycle progression, culminating in defective terminal differentiation and anemia. Importantly, all of these defects associated with Rb loss were exacerbated by the concomitant inactivation of E2f8. Gene expression profiling and chromatin immunoprecipitation (ChIP) revealed that Rb and E2F8 cosuppressed a large array of E2F target genes that are critical for DNA replication and cell cycle progression. Remarkably, inactivation of E2f2 rescued the erythropoietic defects resulting from Rb and E2f8 deficiencies. Interestingly, real-time quantitative PCR (qPCR) on E2F2 ChIPs indicated that inactivation of Rb and E2f8 synergizes to increase E2F2 binding to its target gene promoters. Taken together, we propose that Rb and E2F8 collaborate to promote DNA replication and erythroid terminal differentiation by preventing E2F2-mediated aberrant transcriptional activation through the ability of Rb to bind and sequester E2F2 and the ability of E2F8 to compete with E2F2 for E2f-binding sites on target gene promoters. PMID:24865965

  7. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status.

    PubMed

    Pii, Youry; Cesco, Stefano; Mimmo, Tanja

    2015-09-01

    The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers. PMID:26004913

  8. Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection

    PubMed Central

    Ganji, Rakesh; Dhali, Snigdha; Rizvi, Arshad; Rapole, Srikanth; Banerjee, Sharmistha

    2016-01-01

    Mycobacterium tuberculosis (Mtb) is the most common co-infection in HIV patients and a serious co-epidemic. Apart from increasing the risk of reactivation of latent tuberculosis (TB), HIV infection also permits opportunistic infection of environmental non-pathogenic mycobacteria. To gain insights into mycobacterial survival inside host macrophages and identify mycobacterial proteins or processes that influence HIV propagation during co-infection, we employed proteomics approach to identify differentially expressed intracellular mycobacterial proteins during mono- and HIV co-infection of human THP-1 derived macrophage cell lines. Of the 92 proteins identified, 30 proteins were upregulated during mycobacterial mono-infection and 40 proteins during HIV-mycobacteria co-infection. We observed down-regulation of toxin-antitoxin (TA) modules, up-regulation of cation transporters, Type VII (Esx) secretion systems, proteins involved in cell wall lipid or protein metabolism, glyoxalate pathway and branched chain amino-acid synthesis during co-infection. The bearings of these mycobacterial factors or processes on HIV propagation during co-infection, as inferred from the proteomics data, were validated using deletion mutants of mycobacteria. The analyses revealed mycobacterial factors that possibly via modulating the host environment, increased viral titers during co-infection. The study provides new leads for investigations towards hitherto unknown molecular mechanisms explaining HIV-mycobacteria synergism, helping address diagnostics and treatment challenges for effective co-epidemic management. PMID:26916387

  9. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis.

    PubMed

    Xu, Xue; Wang, Xia; Li, Yan; Wang, Yonghua; Wang, Yuan

    2011-08-01

    Acute toxicity and synergism of four antifouling biocides (Irgarol 1051, dichlofluanid, tolylfluanid and Sea-Nine 211) and five heavy metals (Ni, Pb, Zn, Cd and Cu) are investigated using the sea urchin embryos of Glyptocidaris crenularis (G. crenularis) at six typical developmental stages, that is, 2-cell, 4-cell, 8-cell, blastula, gastrula and 4-arm pluteus. Our results show that the toxicity of the four biocides is in an order of Sea-Nine 211 > tolylfluanid > dichlofluanid > Irgarol 1051 and their -log EC(50) values at all stages are strongly linearly correlated with the 1-octanol/water partition coefficient (log P) values (correlation coefficients R > 0.72) indicating the importance of hydrophobicity for the embryonic toxicity. For the five heavy metals, the EC(50) ranges from 0.36 to 30.78 μM and the toxicity follows an order of Cu > Pb > Zn > Cd >Ni. The significant correlation (R > 0.79) between the -log EC50 and the bioconcentration factor (log BCF) values of metals also indicate that the bioaccumulation property of metals contributes to their aquatic toxicity. In addition, the joint effects of the biocides with the heavy metals in embryonic development are assessed by using a concentration addition model. Synergistic effects are observed in almost all 25 mixtures, showing that Cu yields the strongest while Ni the weakest synergistic toxic effects on the embryos development. PMID:20930027

  10. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B.

    PubMed

    Silva, Filomena; Ferreira, Susana; Duarte, Andreia; Mendonça, Dina I; Domingues, Fernanda C

    2011-12-15

    The increasing incidence of drug-resistant pathogens and toxicity of existing antifungal compounds has drawn attention towards the antimicrobial activity of natural products. The aim of the present study was to evaluate the antifungal activity of coriander essential oil according to classical bacteriological techniques, as well as with flow cytometry. The effect of the essential oil upon germ tube formation, seen as an important virulence factor, and potential synergism with amphotericin B were also studied. Coriander essential oil has a fungicidal activity against the Candida strains tested with MLC values equal to the MIC value and ranging from 0.05 to 0.4% (v/v). Flow cytometric evaluation of BOX, PI and DRAQ5 staining indicates that the fungicidal effect is a result of cytoplasmic membrane damage and subsequent leakage of intracellular components such as DNA. Also, concentrations bellow the MIC value caused a marked reduction in the percentage of germ tube formation for C. albicans strains. A synergetic effect between coriander oil and amphotericin B was also obtained for C. albicans strains, while for C. tropicalis strain only an additive effect was observed. This study describes the antifungal activity of coriander essential oil on Candida spp., which could be useful in designing new formulations for candidosis treatment.

  11. Ribonucleotide reductase inhibitors hydroxyurea, didox, and trimidox inhibit human cytomegalovirus replication in vitro and synergize with ganciclovir

    PubMed Central

    Bhave, Sukhada; Elford, Howard; McVoy, Michael A.

    2013-01-01

    Ganciclovir (GCV) is a deoxyguanosine analog that is effective in inhibiting human cytomegalovirus (HCMV) replication. In infected cells GCV is converted to GCV-triphosphate which competes with dGTP for incorporation into the growing DNA strand by the viral DNA polymerase. Incorporated GCV promotes chain termination as it is an inefficient substrate for elongation. Because viral DNA synthesis also relies on cellular ribonucleotide reductase (RR) to synthesize deoxynucleotides, RR inhibitors are predicted to inhibit HCMV replication. Moreover, as dGTP competes with GCV-triphosphate for incorporation, RR inhibitors may also synergize with GCV by reducing intracellular dGTP levels and there by promoting increased GCV-triphosphate utilization by DNA polymerase. To investigate potential of RR inhibitors as anti-HCMV agents both alone and in combination with GCV, HCMV-inhibitory activities of three RR inhibitors, hydroxyurea, didox, and trimidox, were determined. In both spread inhibition and yield reduction assays RR inhibitors had modest anti-HCMV activity with 50% inhibitory concentrations ranging from 36 ± 1.7 to 221 ± 52 µM. However, all three showed significant synergy with GCV at concentrations below their 50% inhibitory and 50% toxic concentrations. These results suggest that combining GCV with relatively low doses of RR inhibitors could significantly potentiate the anti-HCMV activity of GCV in vivo and could improve clinical response to therapy. PMID:23933116

  12. Synergic Effect between Adsorption and Photocatalysis of Metal-Free g-C3N4 Derived from Different Precursors

    PubMed Central

    Xu, Huan-Yan; Wu, Li-Cheng; Zhao, Hang; Jin, Li-Guo; Qi, Shu-Yan

    2015-01-01

    Graphitic carbon nitride (g-C3N4) used in this work was obtained by heating dicyandiamide and melamine, respectively, at different temperatures. The differences of g-C3N4 derived from different precursors in phase composition, functional group, surface morphology, microstructure, surface property, band gap and specific surface area were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflection spectroscopy and BET surface area analyzer, respectively. The photocatalytic discoloration of an active cationic dye, Methylene Blue (MB) under visible-light irradiation indicated that g-C3N4 derived from melamine at 500°C (CN-M500) had higher adsorption capacity and better photocatalytic activity than that from dicyandiamide at 500°C (CN-D500), which was attributed to the larger surface area of CN-M500. MB discoloration ratio over CN-M500 was affected by initial MB concentration and photocatalyst dosage. After 120 min reaction time, the blue color of MB solution disappeared completely. Subsequently, based on the measurement of the surface Zeta potentials of CN-M500 at different pHs, an active anionic dye, Methyl Orange (MO) was selected as the contrastive target pollutant with MB to reveal the synergic effect between adsorption and photocatalysis. Finally, the photocatalytic mechanism was discussed. PMID:26565712

  13. Expressions of multiple umami taste receptors in oral and gastrointestinal tissues, and umami taste synergism in chickens.

    PubMed

    Yoshida, Yuta; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-10-23

    Umami taste is one of the five basic taste qualities, along with sweet, bitter, sour, and salty, and is elicited by some l-amino acids and their salts, including monopotassium l-glutamate (MPG). The unique characteristic of umami taste is that it is synergistically enhanced by 5'-ribonucleotides such as inosine 5'-monophosphate (IMP). Unlike the other four basic taste qualities, the presence of umami taste sense in avian species is not fully understood. In this study, we demonstrated the expression of multiple umami taste receptor candidates in oral and gastrointestinal tract tissues in chickens using RT-PCR analysis. We first showed the metabotropic glutamate receptors (mGluRs) expressed in these tissues. Furthermore, we examined the preference for umami taste in chickens, focusing on the synergistic effect of umami taste as determined by the two-feed choice test. We concluded that chickens preferred feed containing both added MPG and added IMP over feeds containing either added MPG or added IMP alone and over the control feed. These results suggest that the umami taste sense and synergism are conserved in chickens.

  14. Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans.

    PubMed

    Endo, Eliana Harue; Cortez, Diógenes Aparício Garcia; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Dias Filho, Benedito Prado

    2010-09-01

    Activity-guided repeated fractionation of crude hydro alcoholic extract prepared from the fruit peel of Punica granatum on a silica-gel column yielded a compound that exhibited strong antifungal activity against Candida spp. Based on spectral analyses, the compound was identified as punicalagin. Punicalagin showed strong activity against Candida albicans and Candida parapsilosis, with MICs of 3.9 and 1.9 microg/ml, respectively. The combination of punicalagin and fluconazole showed a synergistic interaction. MIC for fluconazole decreased twofold when combined with the extract. The FIC index was 0.25. The synergism observed in disk-diffusion and checkerboard assays was confirmed in time-kill curves. The effect of punicalagin on the morphology and ultrastructure in treated yeast cells was examined by scanning and transmission electron microscopy. An irregular budding pattern and pseudohyphae were seen in treated yeasts. By transmission electron microscopy, treated cells showed a thickened cell wall, changes in the space between cell wall and the plasma membrane, vacuoles, and a reduction in cytoplasmic content. Since the punicalagin concentration effective in vitro is achievable in vivo, the combination of this agent with fluconazole represents an attractive prospect for the development of new management strategies for candidiasis, and should be investigated further in in vivo models. PMID:20541606

  15. Differential Protection of Cry1Fa Toxin against Spodoptera frugiperda Larval Gut Proteases by Cadherin Orthologs Correlates with Increased Synergism

    PubMed Central

    Rahman, Khalidur; Abdullah, Mohd Amir F.; Ambati, Suresh; Taylor, Milton D.

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin. PMID:22081566

  16. TCP10L synergizes with MAD1 in transcriptional suppression and cell cycle arrest through mutual interaction

    PubMed Central

    Shen, Suqin; Zuo, Jie; Feng, Huan; Bai, Meirong; Wang, Chenji; Wei, Youheng; Li, Yanhong; Le, Yichen; Wu, Jiaxue; Wu, Yanhua; Yu, Long

    2016-01-01

    T-complex protein 10A homolog 2 (TCP10L) was previously demonstrated to be a potential tumor suppressor in human hepatocellular carcinoma (HCC). However, little is known about the molecular mechanism. MAX dimerization protein 1 (MAD1) is a key transcription suppressor that is involved in regulating cell cycle progression and Myc-mediated cell transformation. In this study, we identified MAD1 as a novel TCP10L-interacting protein. The interaction depends on the leucine zipper domain of both TCP10L and MAD1. TCP10L, but not the interaction-deficient TCP10L mutant, synergizes with MAD1 in transcriptional repression, cell cycle G1 arrest and cell growth suppression. Mechanistic exploration further revealed that TCP10L is able to stabilize intracellular MAD1 protein level. Consistently, the MAD1-interaction-deficient TCP10L mutant exerts no effect on stabilizing the MAD1 protein. Taken together, our results strongly indicate that TCP10L stabilizes MAD1 protein level through direct interaction, and they cooperatively regulate cell cycle progression. [BMB Reports 2016; 49(6): 325-330] PMID:26698869

  17. Synergism of Dewetting and Self-Wrinkling To Create Two-Dimensional Ordered Arrays of Functional Microspheres.

    PubMed

    Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth

    2016-06-29

    Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities. PMID:27300307

  18. Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora

    PubMed Central

    Mateos-Naranjo, Enrique; Redondo-Gómez, Susana; Álvarez, Rosario; Cambrollé, Jesús; Gandullo, Jacinto; Figueroa, M. Enrique

    2010-01-01

    Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its clonal growth and its physiological plasticity to environmental factors, such as salinity. A greenhouse experiment was designed to investigate the synergic effect of 380 and 700 ppm CO2 at 0, 171, and 510 mM NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. PEPC activity and total ash, sodium, potassium, calcium, magnesium, and zinc concentrations were determined, as well as the C/N ratio. Elevated CO2 stimulated growth of S. densiflora at 0 and 171 mM NaCl external salinity after 90 d of treatment. This growth enhancement was associated with a greater leaf area and improved leaf water relations rather than with variations in net photosynthetic rate (A). Despite the fact that stomatal conductance decreased in response to 700 ppm CO2 after 30 d of treatment, A was not affected. This response of A to elevated CO2 concentration might be explained by an enhanced PEPC carboxylation capacity. On the whole, plant nutrient concentrations declined under elevated CO2, which can be ascribed to the dilution effect caused by an increase in biomass and the higher water content found at 700 ppm CO2. Finally, CO2 and salinity had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments. PMID:20194923

  19. Salt and stress synergize H. pylori-induced gastric lesions, cell proliferation, and p21 expression in Mongolian gerbils.

    PubMed

    Gamboa-Dominguez, Armando; Ubbelohde, Tom; Saqui-Salces, Milena; Romano-Mazzoti, Luis; Cervantes, Minerva; Domínguez-Fonseca, Claudia; de la Luz Estreber, Maria; Ruíz-Palacios, Guillermo M

    2007-06-01

    Our aim was to determine if salt and stress enhance Helicobacter pylori (Hp) lesions in Meriones unguiculatus. Two hundred seventy-eight pathogen-free gerbils were allocated to seven groups: Hp-Sydney strain (45), 8% higher-salt diet (38), stress (60% space reduction/water immersion; 36), Hp + salt (33), Hp + stress (34), N-methyl-N-nitro-N-nitrosoguanidine (34), and sham (58). Gerbils were sacrificed at 1 week (67), 12 weeks (73), 52 weeks (65), and 68 weeks (73). Sydney, Padova, and Lauren classifications were blindly used. Proliferation, p53, p21, and apoptosis were assessed. Follicular active gastritis (grade 2/3) was observed in 10% of Hp gerbils, 38% of Hp + salt gerbils, and 29% of Hp + stress gerbils at 52 weeks and 67%, 83%, and 43% at 68 weeks (P < 0.05). Heterotopic proliferative glands were identified in synergy groups from 52 weeks, with increases in their number and size by 68 weeks. Higher proliferative rates were observed in Hp+salt gerbils (P < 0.0001), and p21 overexpression in Hp+salt and Hp+stress gerbils (both P's < 0.0001), by 68 weeks, without p53 increases. We conclude that salt and stress synergize Hp damage and increase pseudo-invasive gland foci. PMID:17404882

  20. Synergism and Rules of the new Combination drug Yiqijiedu Formulae (YQJD) on Ischemic Stroke based on amino acids (AAs) metabolism

    PubMed Central

    Gao, Jian; Chen, Chang; Chen, Jian-Xin; Wen, Li-Mei; Yang, Geng-Liang; Duan, Fei-Peng; Huang, Zhi-Ying; Li, De-Feng; Yu, Ding-Rong; Yang, Hong-Jun; Li, Shao-Jing

    2014-01-01

    The use of combination drugs is considered to be a promising strategy to control complex diseases such as ischemic stroke. The detection of metabolites has been used as a versatile tool to reveal the potential mechanism of diverse diseases. In this study, the levels of 12 endogenous AAs were simultaneously determined quantitatively in the MCAO rat brain using RRLC-QQQ method. Seven AAs were chosen as the potential biomarkers, and using PLS-DA analysis, the effects of the new combination drug YQJD, which is composed of ginsenosides, berberine, and jasminoidin, on those 7 AAs were evaluated. Four AAs, glutamic acid, homocysteine, methionine, and tryptophan, which changed significantly in the YQJD-treated groups compared to the vehicle groups (P < 0.05), were identified and designated as the AAs to use to further explore the synergism of YQJD. The result of a PCA showed that the combination of these three drugs exhibits the strongest synergistic effect compared to other combination groups and that ginsenosides might play a pivotal role, especially when combined with jasminoidin. We successfully explored the synergetic mechanism of multi-component and provided a new method for evaluating the integrated effects of combination drugs in the treatment of complex diseases. PMID:24889025

  1. The synergism mechanism of Rhubarb Anthraquinones on constipation elucidated by comparative pharmacokinetics of Rhubarb extract between normal and diseased rats.

    PubMed

    Gong, Xiao-Hong; Li, Yan; Zhang, Ruo-Qi; Xie, Xiao-Fang; Peng, Cheng; Li, Yun-Xia

    2015-12-01

    In the study, it was hypothesized that Rhubarb Anthraquinones synergistically enhanced the purgative effect on constipation rat from the direct and indirect pathway at the same time. A validated HPLC method was successfully applied to elucidate the synergism mechanism from pharmacokinetics aspect after oral administration of Rhubarb extract with a dose of 0.25 g to normal and constipation rats. Comparison of the pharmacokinetic data of normal and constipation rats showed that there were significant differences (p < 0.05) in the main pharmacokinetic parameters. The C max and AUC of emodin in constipation rats were about ten times that of normal rats, while the t 1/2 was remarkably decreased (p < 0.05). However, a significant decrease (p < 0.05) in AUC value for aloe-emodin and rhein was observed in model group compared with normal group. The results may be attributed to the direct action of aloe-emodin and rhein on intestinal cell membranes and the indirect action of emodin on bowel movement through the adjustment by nervous system.

  2. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells

    PubMed Central

    Li, Yiming; Sun, Ying; Teng, Yanwei; Wang, Yi; Duan, Yourong

    2016-01-01

    To get better chemotherapy efficacy, the optimal synergic effect of Paclitaxel (PTX) and Temozolomide (TMZ) on glioblastoma cells lines was investigated. A dual drug-loaded delivery system based on mPEG-PLGA nanoparticles (NPs) was developed to potentiate chemotherapy efficacy for glioblastoma. PTX/TMZ-NPs were prepared with double emulsification solvent evaporation method and exhibited a relatively uniform diameter of 206.3 ± 14.7 nm. The NPs showed sustained release character. Cytotoxicity assays showed the best synergistic effects were achieved when the weight ratios of PTX to TMZ were 1:5 and 1:100 on U87 and C6 cells, respectively. PTX/TMZ-NPs showed better inhibition effect to U87 and C6 cells than single drug NPs or free drugs mixture. PTX/TMZ-NPs (PTX: TMZ was 1:5(w/w)) significantly inhibited the tumor growth in the subcutaneous U87 mice model. These results indicate that coordinate administration of PTX and TMZ combined with NPs is an efficient method for glioblastoma. PMID:26956046

  3. Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation.

    PubMed

    Hettich, Michael; Lahoti, Jayashree; Prasad, Shruthi; Niedermann, Gabriele

    2016-08-15

    T cell-recruiting bispecific antibodies (bsAb) show promise in hematologic malignancies and are also being evaluated in solid tumors. In this study, we investigated whether T cell-recruiting bsAbs synergize with hypofractionated tumor radiotherapy (hRT) and/or blockade of the programmed death-1 (PD-1) immune checkpoint, both of which can increase tumor-infiltrating lymphocyte (TIL) numbers. Unexpectedly, large melanomas treated with hRT plus bsAb (AC133×CD3) relapsed faster than those treated with hRT alone, accompanied by massive TIL apoptosis. This fast relapse was delayed by the further addition of anti-PD-1. Mechanistic investigations revealed restimulation-induced cell death mediated by BIM and FAS as an additional cause of bsAb-mediated TIL depletion. In contrast, the double combination of hRT and anti-PD-1 strongly increased TIL numbers, and even very large tumors were completely eradicated. Our study reveals the risk that CD3-engaging bsAbs can induce apoptotic TIL depletion followed by rapid tumor regrowth, reminiscent of tolerance induction by CD3 mAb-mediated T-cell depletion, warranting caution in their use for the treatment of solid tumors. Our findings also argue that combining radiotherapy and anti-PD-1 can be quite potent, including against very large tumors. Cancer Res; 76(16); 4673-83. ©2016 AACR. PMID:27302161

  4. STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation.

    PubMed

    Yan, Dongyao; Wang, Hao-Wei; Bowman, Robert L; Joyce, Johanna A

    2016-09-13

    Tumor-associated macrophages play critical roles during tumor progression by promoting angiogenesis, cancer cell proliferation, invasion, and metastasis. Cysteine cathepsin proteases, produced by macrophages and cancer cells, modulate these processes, but it remains unclear how these typically lysosomal enzymes are regulated and secreted within the tumor microenvironment. Here, we identify a STAT3 and STAT6 synergy that potently upregulates cathepsin secretion by macrophages via engagement of an unfolded protein response (UPR) pathway. Whole-genome expression analyses revealed that the TH2 cytokine interleukin (IL)-4 synergizes with IL-6 or IL-10 to activate UPR via STAT6 and STAT3. Pharmacological inhibition of the UPR sensor IRE1α blocks cathepsin secretion and blunts macrophage-mediated cancer cell invasion. Similarly, genetic deletion of STAT3 and STAT6 signaling components impairs tumor development and invasion in vivo. Together, these findings demonstrate that cytokine-activated STAT3 and STAT6 cooperate in macrophages to promote a secretory phenotype that enhances tumor progression in a cathepsin-dependent manner. PMID:27626662

  5. Isolation of Homogeneous Polysaccharide Monooxygenases from Fungal Sources and Investigation of Their Synergism with Cellulases when Acting on Cellulose.

    PubMed

    Bulakhov, A G; Gusakov, A V; Chekushina, A V; Satrutdinov, A D; Koshelev, A V; Matys, V Yu; Sinitsyn, A P

    2016-05-01

    Lytic polysaccharide monooxygenases (PMO) discovered several years ago are enzymes classified as oxidoreductases. In nature, they participate in microbial degradation of cellulose together with cellulases that belong to the hydrolytic type of enzymes (class of hydrolases). Three PMO from ascomycetes - Thielavia terrestris, Trichoderma reesei, and Myceliophthora thermophila - were isolated and purified to homogeneous state using various types of chromatography. The first two enzymes are recombinant proteins heterologously expressed by the Penicillium verruculosum fungus, while the third is a native PMO secreted by M. thermophila. When acting on microcrystalline cellulose, all these PMOs displayed synergism with the cellulase complex of the P. verruculosum fungus. Replacing 10% of cellulases (by protein concentration) with PMO in the presence of 6.25 mM gallic acid or 2.5 µM of cellobiose dehydrogenase from M. thermophila, used as electron donors for PMO, resulted in the 17-31% increase in the yield of reducing sugars after 24-48 h of the enzymatic reaction. PMID:27297903

  6. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis.

    PubMed

    Sadagurski, Marianna; Dong, X Charlie; Myers, Martin G; White, Morris F

    2014-02-01

    Insulin receptor substrates (Irs1, 2, 3 and Irs4) mediate the actions of insulin/IGF1 signaling. They have similar structure, but distinctly regulate development, growth, and metabolic homeostasis. Irs2 contributes to central metabolic sensing, partially by acting in leptin receptor (LepRb)-expressing neurons. Although Irs4 is largely restricted to the hypothalamus, its contribution to metabolic regulation is unclear because Irs4-null mice barely distinguishable from controls. We postulated that Irs2 and Irs4 synergize and complement each other in the brain. To examine this possibility, we investigated the metabolism of whole body Irs4(-/y) mice that lacked Irs2 in the CNS (bIrs2(-/-)·Irs4(-/y)) or only in LepRb-neurons (Lepr (∆Irs2) ·Irs4 (-/y) ). bIrs2(-/-)·Irs4(-/y) mice developed severe obesity and decreased energy expenditure, along with hyperglycemia and insulin resistance. Unexpectedly, the body weight and fed blood glucose levels of Lepr (∆Irs2) ·Irs4 (-/y) mice were not different from Lepr (∆Irs2) mice, suggesting that the functions of Irs2 and Irs4 converge upon neurons that are distinct from those expressing LepRb.

  7. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis★

    PubMed Central

    Sadagurski, Marianna; Dong, X. Charlie; Myers, Martin G.; White, Morris F.

    2013-01-01

    Insulin receptor substrates (Irs1, 2, 3 and Irs4) mediate the actions of insulin/IGF1 signaling. They have similar structure, but distinctly regulate development, growth, and metabolic homeostasis. Irs2 contributes to central metabolic sensing, partially by acting in leptin receptor (LepRb)-expressing neurons. Although Irs4 is largely restricted to the hypothalamus, its contribution to metabolic regulation is unclear because Irs4-null mice barely distinguishable from controls. We postulated that Irs2 and Irs4 synergize and complement each other in the brain. To examine this possibility, we investigated the metabolism of whole body Irs4−/y mice that lacked Irs2 in the CNS (bIrs2−/−·Irs4−/y) or only in LepRb-neurons (Lepr∆Irs2·Irs4−/y). bIrs2−/−·Irs4−/y mice developed severe obesity and decreased energy expenditure, along with hyperglycemia and insulin resistance. Unexpectedly, the body weight and fed blood glucose levels of Lepr∆Irs2·Irs4−/y mice were not different from Lepr∆Irs2 mice, suggesting that the functions of Irs2 and Irs4 converge upon neurons that are distinct from those expressing LepRb. PMID:24567904

  8. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia

    PubMed Central

    Silveira, André Bortolini; Laranjeira, Angelo Brunelli Albertoni; Rodrigues, Gisele Olinto Libanio; Leal, Paulo César; Cardoso, Bruno António; Barata, João Taborda; Yunes, Rosendo Augusto; Zanchin, Nilson Ivo Tonin; Brandalise, Sílvia Regina; Yunes, José Andrés

    2015-01-01

    The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. By gene expression microarray analysis of T-ALL cells treated with the PI3K inhibitor AS605240, we identified Myc as a prominent downstream target of the PI3K pathway. A significant association was found between the AS605240 gene expression signature and that of glucocorticoid resistance and relapse in T-ALL. AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy. PMID:25869207

  9. Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro.

    PubMed

    Miyahara, Akira; Hirani, Tripty A; Oakes, Marie; Kereszt, Attila; Kobe, Bostjan; Djordjevic, Michael A; Gresshoff, Peter M

    2008-09-12

    The NARK (nodule autoregulation receptor kinase) gene, a negative regulator of cell proliferation in nodule primordia in several legumes, encodes a receptor kinase that consists of an extracellular leucine-rich repeat and an intracellular serine/threonine protein kinase domain. The putative catalytic domain of NARK was expressed and purified as a maltose-binding or a glutathione S-transferase fusion protein in Escherichia coli. The recombinant NARK proteins showed autophosphorylation activity in vitro. Several regions of the NARK kinase domain were shown by mass spectrometry to possess phosphoresidues. The kinase-inactive protein K724E failed to autophosphorylate, as did three other proteins corresponding to phenotypically detected mutants defective in whole plant autoregulation of nodulation. A wild-type NARK fusion protein transphosphorylated a kinase-inactive mutant NARK fusion protein, suggesting that it is capable of intermolecular autophosphorylation in vitro. In addition, Ser-861 and Thr-963 in the NARK kinase catalytic domain were identified as phosphorylation sites through site-directed mutagenesis. The genes coding for the kinase-associated protein phosphatases KAPP1 and KAPP2, two putative interacting components of NARK, were isolated. NARK kinase domain phosphorylated recombinant KAPP proteins in vitro. Autophosphorylated NARK kinase domain was, in turn, dephosphorylated by both KAPP1 and KAPP2. Our results suggest a model for signal transduction involving NARK in the control of nodule development.

  10. Neonatal hyperbilirubinemia caused by pyruvate kinase deficiency.

    PubMed

    Hammer, S G; Lewan, R B

    1988-01-01

    We report an infant with neonatal hyperbilirubinemia due to pyruvate kinase deficiency. The initial approach involved rapid evaluation, phototherapy, and close monitoring of serum bilirubin levels. Follow-up included maintenance on folic acid, monitoring blood counts, and educating the parents about the course of pyruvate kinase deficiency, especially aplastic crisis. We suggest that the informed family practitioner can manage neonatal hyperbilirubinemia and pyruvate kinase deficiency with referrals at critical times to pediatric or surgical specialists. The practitioner must be able to recognize quickly the need for exchange transfusion for severe jaundice and for blood transfusions or splenectomy when significant anemia or aplastic crisis occurs.

  11. Functional analysis of anomeric sugar kinases.

    PubMed

    Conway, Louis P; Voglmeir, Josef

    2016-09-01

    Anomeric sugar kinases perform fundamental roles in the metabolism of carbohydrates. Under- or overexpression of these enzymes, or mutations causing functional impairments can give rise to diseases such as galactosaemia and so the study of this class of kinase is of critical importance. In addition, anomeric sugar kinases which are naturally promiscuous, or have been artificially made so, may find application in the synthesis of libraries of drug candidates (for example, antibiotics), and natural or unnatural oligosaccharides and glycoconjugates. In this review, we provide an overview of the biological functions of these enzymes, the tools which have been developed to investigate them, and the current frontiers in their study. PMID:27351442

  12. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  13. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*

    PubMed Central

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-01-01

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157

  14. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold.

    PubMed

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-06-12

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.

  15. Crystal structures of two aminoglycoside kinases bound with a eukaryotic protein kinase inhibitor.

    PubMed

    Fong, Desiree H; Xiong, Bing; Hwang, Jiyoung; Berghuis, Albert M

    2011-05-09

    Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3')-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3')-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eukaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides.

  16. Nonnucleoside inhibitors of adenosine kinase.

    PubMed

    Gomtsyan, Arthur; Lee, Chih-Hung

    2004-01-01

    Adenosine (ADO) is an endogenous inhibitory neuromodulator that increases nociceptive thresholds in response to tissue trauma and inflammation. Adenosine kinase (AK) is a key intracellular enzyme regulating intra- and extracellular concentrations of ADO. AK inhibition selectively amplifies extracellular ADO levels at cell and tissue sites where accelerated release of ADO occurs. AK inhibitors have been shown to provide effective antinociceptive, antiinflammatory and anticonvulsant activity in animal models, thus suggesting their potential therapeutic utility for pain, inflammation, epilepsy and possibly other central and peripheral nervous system diseases associated with cellular trauma and inflammation. This beneficial outcome may potentially lack nonspecific effects associated with the systemic administration of ADO receptor agonists. Until recently all of the reported AK inhibitors contained adenosine-like structural motif. The present review will discuss design, synthesis and analgesic and antiinflammatory properties of the novel nonnucleoside AK inhibitors that do not have close structural resemblance with the natural substrate ADO. Two classes of the nonnucleoside AK inhibitors are built on pyridopyrimidine and alkynylpyrimidine cores.

  17. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  18. Characterization of protein kinases from Blepharisma intermedium.

    PubMed

    Beyer, J

    1975-12-01

    Three protein kinases (EC 2.7.1.37) were detected in Blepharisma and partially purified. The enzymes were most active with histone as substrate protein. The stability of the bond between phosphate and protein acceptor showed the characteristics of seryl- or threonylphosphate. Protein kinase I was solubilized by ultrasonication or freezing and thawing, while the enzymes II and III were readily solubilized by mild homogenization. Protein II and III were noticeably activated by cAMP and cGMP, while protein kinase I was inhibited by cAMP. Associated with protein kinase II and III activity was the ability to bind labeled cAMP. The following molecular weights were determined: 90000 for enzyme I, 280000 for enzyme II, and 95000 for enzyme III. Various apparent Michaelis constants were estimated.

  19. Genetics Home Reference: mevalonate kinase deficiency

    MedlinePlus

    ... cytoskeleton), gene activity (expression), and protein production and modification. Most MVK gene mutations that cause mevalonate kinase ... What are the different ways in which a genetic condition can be inherited? More about Inheriting Genetic ...

  20. A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases

    SciTech Connect

    Chen,H.; Ma, J.; Li, W.; Eliseenkova, A.; Xu, C.; Neubert, T.; Miller, W.; Mohammadi, M.

    2007-01-01

    Activating mutations in the tyrosine kinase domain of receptor tyrosine kinases (RTKs) cause cancer and skeletal disorders. Comparison of the crystal structures of unphosphorylated and phosphorylated wild-type FGFR2 kinase domains with those of seven unphosphorylated pathogenic mutants reveals an autoinhibitory 'molecular brake' mediated by a triad of residues in the kinase hinge region of all FGFRs. Structural analysis shows that many other RTKs, including PDGFRs, VEGFRs, KIT, CSF1R, FLT3, TEK, and TIE, are also subject to regulation by this brake. Pathogenic mutations activate FGFRs and other RTKs by disengaging the brake either directly or indirectly.

  1. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry

    PubMed Central

    Müller, André C.; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W.; Superti-Furga, Giulio; Jessen, Henning J.; Bennett, Keiryn L.

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[18O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  2. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  3. Twitchin kinase interacts with MAPKAP kinase 2 in Caenorhabditis elegans striated muscle

    PubMed Central

    Matsunaga, Yohei; Qadota, Hiroshi; Furukawa, Miho; Choe, Heejoo (Helen); Benian, Guy M.

    2015-01-01

    In Caenorhabditis elegans, twitchin is a giant polypeptide located in muscle A-bands. The protein kinase of twitchin is autoinhibited by 45 residues upstream (NL) and 60 residues downstream (CRD) of the kinase catalytic core. Molecular dynamics simulation on a twitchin fragment revealed that the NL is released by pulling force. However, it is unclear how the CRD is removed. To identify proteins that may remove the CRD, we performed a yeast two-hybrid screen using twitchin kinase as bait. One interactor is MAK-1, C. elegans orthologue of MAPKAP kinase 2. MAPKAP kinase 2 is phosphorylated and activated by p38 MAP kinase. We demonstrate that the CRD of twitchin is important for binding to MAK-1. mak-1 is expressed in nematode body wall muscle, and antibodies to MAK-1 localize between and around Z-disk analogues and to the edge of A-bands. Whereas unc-22 mutants are completely resistant, mak-1 mutants are partially resistant to nicotine. MAK-1 can phosphorylate twitchin NL-Kin-CRD in vitro. Genetic data suggest the involvement of two other mak-1 paralogues and two orthologues of p38 MAP kinase. These results suggest that MAK-1 is an activator of twitchin kinase and that the p38 MAP kinase pathway may be involved in the regulation of twitchin. PMID:25851606

  4. Kinase-interacting substrate screening is a novel method to identify kinase substrates

    PubMed Central

    Amano, Mutsuki; Hamaguchi, Tomonari; Shohag, Md. Hasanuzzaman; Kozawa, Kei; Kato, Katsuhiro; Zhang, Xinjian; Yura, Yoshimitsu; Matsuura, Yoshiharu; Kataoka, Chikako; Nishioka, Tomoki

    2015-01-01

    Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases. PMID:26101221

  5. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors

    PubMed Central

    Luo, Min; Fu, Li-Wu

    2014-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation. PMID:25520855

  6. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity.

    PubMed

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  7. Peptide deformylase inhibitor actinonin reduces celastrol’s HSP70 induction while synergizing proliferation inhibition in tumor cells

    PubMed Central

    2014-01-01

    Background Celastrol is a promising anti-tumor agent, yet it also elevates heat shock proteins (HSPs), especially HSP70, this effect believed to reduce its anti-tumor effects. Concurrent use of siRNA to increase celastrol’s anti-tumor effects through HSP70 interference has been reported, but because siRNA technology is difficult to clinically apply, an alternative way to curb unwanted HSP70 elevation caused by celastrol treatment is worth exploring. Methods In this work, we explore three alternative strategies to control HSP70 elevation: (1) Searching for cancer cell types that show no HSP70 elevation in the presence of celastrol (thus recommending themselves as suitable targets); (2) Modifying HSP70-inducing chemical groups, i.e.: the carboxyl group in celastrol; and (3) Using signaling molecule inhibitors to specifically block HSP70 elevation while protecting and/or enhancing anti-tumor effects. Results The first strategy was unsuccessful since celastrol treatment increased HSP70 in all 7 of the cancer cell types tested, this result related to HSF1 activation. The ubiquity of HSF1 expression in different cancer cells might explain why celastrol has no cell-type limitation for HSP70 induction. The second strategy revealed that modification of celastrol’s carboxyl group abolished its ability to elevate HSP70, but also abolished celastrol’s tumor inhibition effects. In the third strategy, 11 inhibitors for 10 signaling proteins reportedly related to celastrol action were tested, and five of these could reduce celastrol-caused HSP70 elevation. Among these, the peptide deformylase (PDF) inhibitor, actinonin, could synergize celastrol’s proliferation inhibition. Conclusions Concurrent use of the chemical agent actinonin could reduce celastrol’s HSP70 elevation and also enhance proliferation inhibition by celastrol. This combination presents a novel alternative to siRNA technology and is worth further investigation for its potentially effective anti

  8. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water.

    PubMed

    Wasana, Hewa M S; Aluthpatabendi, Dharshani; Kularatne, W M T D; Wijekoon, Pushpa; Weerasooriya, Rohan; Bandara, Jayasundera

    2016-02-01

    High prevalence of chronic kidney disease of unknown etiology (CKDu) in some regions of the world is suspected mainly due to a toxin-mediated renal failure. We examined the incidence of CKDu and potable chemical water quality in a CKDu-affected region. This region has been identified as a high-risk zone for CKDu (location: latitude: 8.3500°-9.0000°, longitude: 80.3833°-81.3000°, North Central Province, NCP, Sri Lanka) by the World Health Organization (WHO). However, within this macro-region, small pockets of CKDu non-prevalence zones do exist; notably, the residents in those pockets consume spring water. Therefore, the drinking water quality of four areas, namely high-CKDu-prevalence areas (zone I), low-CKDu-prevalence area (zone II), the CKDu-free isolated pockets (zone III) and control areas (controls) were examined for F, Al, Cd, and As, and hardness and the statistical analysis were carried out to probe possible correlations among these parameters. The fluoride and hardness concentrations of water in zone III and control areas are much lower compared to zones I and II, and the water hardness is ~61 mg/L CaCO3. In zones I and II, the harness of drinking water is ~121-180 mg/L CaCO3; however, Al, Cd and As concentrations are almost comparable and below WHO recommendations. In most of the locations in zones I and II, the F concentration in drinking water is higher than the WHO recommendations. The peculiar distribution patterns of CKDu point to a synergic effect of trace elements in water for etiology of the disease.

  9. Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice.

    PubMed

    Yi, Li-Tao; Xu, Qun; Li, Yu-Cheng; Yang, Lei; Kong, Ling-Dong

    2009-06-15

    Magnolia bark and ginger rhizome is a drug pair in many prescriptions for treatment of mental disorders in traditional Chinese medicine (TCM). However, compatibility and synergism mechanism of two herbs on antidepressant actions have not been reported. The aim of this study was to approach the rationale of the drug pair in TCM. We evaluated antidepressant-like effects of mixture of honokiol and magnolol (HMM), polysaccharides (PMB) from magnolia bark, essential oil (OGR) and polysaccharides (PGR) from ginger rhizome alone, and the possibility of synergistic interactions in their combinations in the mouse forced swimming test (FST) and tail suspension test (TST). Serotonin (5-HT) and noradrenaline (NE) levels in prefrontal cortex, hippocampus and striatum were also examined. 30 mg/kg HMM decreased immobility in the FST and TST in mice after one- and two-week treatment. OGR (19.5 or 39 mg/kg) alone was ineffective. The combination of an ineffective dose of 39 mg/kg OGR with 15 mg/kg HMM was the most effective and produced a synergistic action on behaviors after two-week treatment. Significant increase in 5-HT and synergistic increase in NE in prefrontal cortex were observed after co-administration of HMM with OGR. These results demonstrated that HMM was the principal component of this drug pair, whereas OGR served as adjuvant fraction. Compatibility of HMM with OGR was suggested to exert synergistic antidepressant actions by attenuating abnormalities in serotonergic and noradrenergic system functions. Therefore, we confirmed the rationality of drug pair in clinical application and provided a novel perspective in drug pair of TCM researches.

  10. Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora

    PubMed Central

    Redondo-Gómez, Susana; Andrades-Moreno, Luis; Mateos-Naranjo, Enrique; Parra, Raquel; Valera-Burgos, Javier; Aroca, Ricardo

    2011-01-01

    Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its physiological plasticity to environmental factors, such as salinity. It is found in coastal marshes of south-west Spain, growing over sediments with between 1 mmol l−1 and 70 mmol l−1 zinc. A glasshouse experiment was designed to investigate the synergic effect of zinc from 0 mmol l−1 to 60 mmol l−1 at 0, 1, and 3% NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters and gas exchange, and its recovery after removing zinc. Antioxidant enzyme activities and total zinc, sodium, calcium, iron, magnesium, manganese, phosphorus, potassium, and nitrogen concentrations were also determined. Spartina densiflora showed the highest growth at 1 mmol l−1 zinc and 1% NaCl after 90 d of treatment; this enhanced growth was supported by the measurements of net photosynthetic rate (A). Furthermore, there was a stimulatory effect of salinity on accumulation of zinc in tillers of this species. Zinc concentrations >1 mmol l−1 reduced growth of S. densiflora, regardless of salinity treatments. This declining growth may be attributed to a decrease in A caused by diffusional limitation of photosynthesis, owing to the modification of the potassium/calcium ratio. Also, zinc and salinity had a marked overall effect on the photochemical (photosystem II) apparatus, partially mediated by the accumulation of H2O2 and subsequent oxidative damage. However, salinity favoured the recovery of the photosynthetic apparatus to the toxic action of zinc, and enhanced the nutrient uptake. PMID:21841175

  11. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts.

    PubMed

    Damiano, Vincenzo; Caputo, Rosa; Garofalo, Sonia; Bianco, Roberto; Rosa, Roberta; Merola, Gerardina; Gelardi, Teresa; Racioppi, Luigi; Fontanini, Gabriella; De Placido, Sabino; Kandimalla, Ekambar R; Agrawal, Sudhir; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-07-24

    Synthetic agonists of Toll-like receptor 9 (TLR9), a class of agents that induce specific immune response, exhibit antitumor activity and are currently being investigated in cancer patients. Intriguingly, their mechanisms of action on tumor growth and angiogenesis are still incompletely understood. We recently discovered that a synthetic agonist of TLR9, immune modulatory oligonucleotide (IMO), acts by impairing epidermal growth factor receptor (EGFR) signaling and potently synergizes with anti-EGFR antibody cetuximab in GEO human colon cancer xenografts, whereas it is ineffective in VEGF-overexpressing cetuximab-resistant GEO cetuximab-resistant (GEO-CR) tumors. VEGF is activated by EGFR, and its overexpression causes resistance to EGFR inhibitors. Therefore, we used IMO and the anti-VEGF antibody bevacizumab as tools to study IMO's role on EGFR and angiogenesis and to explore its therapeutic potential in GEO, LS174T, and GEO-CR cancer xenografts. We found that IMO enhances the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of cetuximab, that bevacizumab has no ADCC, and IMO is unable to enhance it. Nevertheless, the IMO-plus-bevacizumab combination synergistically inhibits the growth of GEO and LS174T as well as of GEO-CR tumors, preceded by inhibition of signaling protein expression, microvessel formation, and human, but not murine, VEGF secretion. Moreover, IMO inhibited the growth, adhesion, migration, and capillary formation of VEGF-stimulated endothelial cells. The antitumor activity was irrespective of the TLR9 expression on tumor cells. These studies demonstrate that synthetic agonists of TLR9 interfere with growth and angiogenesis also by EGFR- and ADCC-independent mechanisms affecting endothelial cell functions and provide a strong rationale to combine IMO with bevacizumab and EGFR inhibitory drugs in colon cancer patients.

  12. A Naturally Occurring Plant Cysteine Protease Possesses Remarkable Toxicity against Insect Pests and Synergizes Bacillus thuringiensis Toxin

    PubMed Central

    Mohan, Srinidi; Ma, Peter W. K.; Williams, W. Paul; Luthe, Dawn S.

    2008-01-01

    When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM), a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC50 values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins. PMID:18335057

  13. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin.

    PubMed

    Mohan, Srinidi; Ma, Peter W K; Williams, W Paul; Luthe, Dawn S

    2008-03-12

    When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM), a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50) values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.

  14. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    PubMed Central

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  15. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer.

    PubMed

    Ferreira, Jorge F S; Luthria, Devanand L; Sasaki, Tomikazu; Heyerick, Arne

    2010-05-01

    Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin.Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties. Although artemisinin is a major bioactive component present in the traditional Chinese herbal preparations (tea), leaf flavonoids, also present in the tea, have shown a variety of biological activities and may synergize the effects of artemisinin against malaria and cancer. However, only a few studies have focused on the potential synergistic effects between flavonoids and artemisinin. The resurgent idea that multi-component drug therapy might be better than monotherapy is illustrated by the recent resolution of the World Health Organization to support artemisinin-based combination therapies (ACT), instead of the previously used monotherapy with artemisinins. In this critical review we will discuss the possibility that artemisinin and its semi-synthetic analogs might become more effective to treat parasitic diseases (such as malaria) and cancer if simultaneously delivered with flavonoids. The flavonoids present in A. annua leaves have been linked to suppression of CYP450 enzymes responsible for altering the absorption and metabolism of artemisinin in the body, but also have been linked to a beneficial immunomodulatory activity in subjects afflicted with parasitic and chronic diseases. PMID:20657468

  16. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts

    PubMed Central

    Damiano, Vincenzo; Caputo, Rosa; Garofalo, Sonia; Bianco, Roberto; Rosa, Roberta; Merola, Gerardina; Gelardi, Teresa; Racioppi, Luigi; Fontanini, Gabriella; De Placido, Sabino; Kandimalla, Ekambar R.; Agrawal, Sudhir; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-01-01

    Synthetic agonists of Toll-like receptor 9 (TLR9), a class of agents that induce specific immune response, exhibit antitumor activity and are currently being investigated in cancer patients. Intriguingly, their mechanisms of action on tumor growth and angiogenesis are still incompletely understood. We recently discovered that a synthetic agonist of TLR9, immune modulatory oligonucleotide (IMO), acts by impairing epidermal growth factor receptor (EGFR) signaling and potently synergizes with anti-EGFR antibody cetuximab in GEO human colon cancer xenografts, whereas it is ineffective in VEGF-overexpressing cetuximab-resistant GEO cetuximab-resistant (GEO-CR) tumors. VEGF is activated by EGFR, and its overexpression causes resistance to EGFR inhibitors. Therefore, we used IMO and the anti-VEGF antibody bevacizumab as tools to study IMO's role on EGFR and angiogenesis and to explore its therapeutic potential in GEO, LS174T, and GEO-CR cancer xenografts. We found that IMO enhances the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of cetuximab, that bevacizumab has no ADCC, and IMO is unable to enhance it. Nevertheless, the IMO-plus-bevacizumab combination synergistically inhibits the growth of GEO and LS174T as well as of GEO-CR tumors, preceded by inhibition of signaling protein expression, microvessel formation, and human, but not murine, VEGF secretion. Moreover, IMO inhibited the growth, adhesion, migration, and capillary formation of VEGF-stimulated endothelial cells. The antitumor activity was irrespective of the TLR9 expression on tumor cells. These studies demonstrate that synthetic agonists of TLR9 interfere with growth and angiogenesis also by EGFR- and ADCC-independent mechanisms affecting endothelial cell functions and provide a strong rationale to combine IMO with bevacizumab and EGFR inhibitory drugs in colon cancer patients. PMID:17636117

  17. Systemic genotoxic effects produced by light, and synergism with cigarette smoke in the respiratory tract of hairless mice.

    PubMed

    Balansky, Roumen M; Izzotti, Alberto; D'Agostini, Francesco; Camoirano, Anna; Bagnasco, Maria; Lubet, Ronald A; De Flora, Silvio

    2003-09-01

    No information is available on the interaction between cigarette smoke, the most important man-made carcinogen, and light, the most widespread natural carcinogen. In order to clarify this issue, SKH-1 hairless mice were exposed to environmental smoke and/or to the light emitted by sunlight-simulating halogen quartz bulbs. After 28 days, intermediate biomarkers were evaluated in skin, respiratory tract, bone marrow and peripheral blood. The results showed that, individually, the light produced extensive alterations not only in the skin but even at a systemic level, as shown by formation of bulky DNA adducts in both lung and bone marrow and induction of cytogenetic damage in bone marrow and peripheral blood erythrocytes. Smoke damaged the respiratory tract and produced significant alterations in the skin as well as an evident cytogenetic damage in both bone marrow and peripheral blood. Interestingly, as compared with exposure to smoke only, alternate daily cycles of exposure to both light and smoke significantly increased malondialdehyde concentrations and DNA adduct levels in lung and the frequency of micronuclei in pulmonary alveolar macrophages. The oral administration of sulindac, a non-steroidal anti-inflammatory drug, attenuated several biomarker alterations due to the combined exposure of mice to light and smoke. In conclusion, the light induces a systemic genotoxic damage, which is presumably due to the UV-mediated formation in the skin of long-lived derivatives, such as aldehydes. This damage may mechanistically be involved in light-related hematopoietic malignancies. In addition, the light displayed an insofar unsuspected synergism with smoke in the induction of DNA damage in the respiratory tract.

  18. Non-ATP competitive protein kinase inhibitors.

    PubMed

    Garuti, L; Roberti, M; Bottegoni, G

    2010-01-01

    Protein kinases represent an attractive target in oncology drug discovery. Most of kinase inhibitors are ATP-competitive and are called type I inhibitors. The ATP-binding pocket is highly conserved among members of the kinase family and it is difficult to find selective agents. Moreover, the ATP-competitive inhibitors must compete with high intracellular ATP levels leading to a discrepancy between IC50s measured by biochemical versus cellular assays. The non-ATP competitive inhibitors, called type II and type III inhibitors, offer the possibility to overcome these problems. These inhibitors act by inducing a conformational shift in the target enzyme such that the kinase is no longer able to function. In the DFG-out form, the phenylalanine side chain moves to a new position. This movement creates a hydrophobic pocket available for occupation by the inhibitor. Some common features are present in these inhibitors. They contain a heterocyclic system that forms one or two hydrogen bonds with the kinase hinge residue. They also contain a hydrophobic moiety that occupies the pocket formed by the shift of phenylalanine from the DFG motif. Moreover, all the inhibitors bear a hydrogen bond donor-acceptor pair, usually urea or amide, that links the hinge-binding portion to the hydrophobic moiety and interacts with the allosteric site. Examples of non ATP-competitive inhibitors are available for various kinases. In this review small molecules capable of inducing the DFG-out conformation are reported, especially focusing on structural feature, SAR and biological properties.

  19. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma

    SciTech Connect

    Baumann, Philipp Mandl-Weber, Sonja; Oduncu, Fuat; Schmidmaier, Ralf

    2009-02-01

    NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.

  20. Methods to Purify and Assay Secretory Pathway Kinases.

    PubMed

    Tagliabracci, Vincent S; Wen, Jianzhong; Xiao, Junyu

    2016-01-01

    Members of the four-jointed and VLK families of secretory pathway kinases appear to be responsible for the phosphorylation of secreted proteins and proteoglycans. These enzymes have been implicated in many biological processes and mutations in several of these kinases cause human diseases. Here, we describe methods to purify and assay two members of the four-jointed family of secretory kinases: the Fam20C protein kinase and the Fam20B proteoglycan kinase. PMID:27632012

  1. Ubiquitin-Mediated Degradation of Aurora Kinases

    PubMed Central

    Lindon, Catherine; Grant, Rhys; Min, Mingwei

    2016-01-01

    The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting

  2. Mediator kinase module and human tumorigenesis

    PubMed Central

    Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.

    2016-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352

  3. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  4. Non-degradative Ubiquitination of Protein Kinases.

    PubMed

    Ball, K Aurelia; Johnson, Jeffrey R; Lewinski, Mary K; Guatelli, John; Verschueren, Erik; Krogan, Nevan J; Jacobson, Matthew P

    2016-06-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  5. Western Spruce Budworm Outbreaks Did Not Increase Fire Risk over the Last Three Centuries: A Dendrochronological Analysis of Inter-Disturbance Synergism

    PubMed Central

    Flower, Aquila; G. Gavin, Daniel; Heyerdahl, Emily K.; Parsons, Russell A.; Cohn, Gregory M.

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future

  6. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: a dendrochronological analysis of inter-disturbance synergism.

    PubMed

    Flower, Aquila; Gavin, Daniel G; Heyerdahl, Emily K; Parsons, Russell A; Cohn, Gregory M

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future

  7. Functional Promoter Polymorphisms of MMP-2 C-735T and MMP-9 C-1562T and Their Synergism with MMP-7 A-181G in Multiple Sclerosis.

    PubMed

    Rahimi, Zohreh; Abdan, Zahra; Rahimi, Ziba; Razazian, Nazanin; Shiri, Hadis; Vaisi-Raygani, Asad; Shakiba, Ebrahim; Vessal, Mahmood; Moradi, Mohammad-Taher

    2016-08-01

    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system. Matrix metalloproteinases (MMPs) play an important role in breakdown of blood-brain barrier, transmigration, and invasion of immune cells and formation of MS lesions. The aim of present study was to investigate the influence of MMP-2 C-735T and MMP-9 C-1562T variants and their synergism with MMP-7 A-181G on susceptibility to MS. In a case-control study 125 MS patients and 235 healthy individuals from Western Iran were investigated. The various genotypes of MMP-2, MMP-9, and MMP-7 were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In females the presence of MMP-2 C allele was associated with an increased risk of MS (OR = 1.69, p = 0.041). No significant difference was detected between the frequency of MMP-9 T allele in MS patients (8.2%) and controls (12.8%, p = 0.068). The concomitant presence of both MMP-2 C and MMP-7 G alleles was associated with 1.82-fold increased risk of MS (p = 0.002). Also, a synergism was detected between MMP-9 C and MMP-7 G alleles that elevated the risk of MS by 1.5-times (p = 0.035). The presence of haplotype MMP-9 T, MMP-7 G, and MMP-2 C (TGC) compared to haplotype CAG increased the risk of MS by 3.13-fold (p = 0.16). The present study suggests that gene-gene interactions and variants of more genes instead of single gene might play a role in susceptibility to MS. We indicated that synergism between variants of MMP-2, MMP-7, and MMP-9 genes might increase the risk of MS.

  8. Synergic phototoxic effect of visible light or Gallium-Arsenide laser in the presence of different photo-sensitizers on Porphyromonas gingivalis and Fusobacterium nucleatum

    PubMed Central

    Ghanbari, Habibollah; Mousavi, Seyed Amir; Forouzanfar, Ali; Zakeri, Mahdi; Shafaee, Hooman; Shahnaseri, Shirin

    2015-01-01

    Background: According to the development of resistant strains of pathogenic bacteria following treatment with antimicrobial chemotherapeutic agents, alternative approaches such as lethal photosensitization are being used. The aim of this study was to evaluate the effect of visible light and laser beam radiation in conjugation with three different photosensitizers on the survival of two main periodontopathogenic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum in different exposure periods. Materials and Methods: In this in vitro prospective study, strains of P. gingivalis and F. nucleatum. were exposed to visible light at wavelengths of 440 nm and diode laser light, Gallium-Arsenide, at wavelength of 830 nm in the presence of a photosensitizer (erythrosine, curcuma, or hydrogen peroxide). They were exposed 1-5 min to each light. Each experiment was repeated 3 times for each strain of bacteria. Data were analyzed by two-ways ANOVA and least significant difference post-hoc tests. P < 0.05 was considered as significant. After 4 days the colonies were counted. Results: Viability of P. gingivalis was reduced 10% and 20% subsequent to exposure to visible light and diode laser, respectively. The values were 65% and 75% for F. nucleatum in a period of 5-min, respectively. Exposure to visible light or laser beam in conjugation with the photosensitizers suspension caused significant reduction in the number of P. gingivalis in duration of 5-min, suggesting a synergic phototoxic effect. However, the survival rate of F. nucleatum following the exposure to laser with hydrogen peroxide, erythrosine and rhizome of Curcuma longa (curcumin) after 5-min was 10%, 20% and 90% respectively. Conclusion: Within the limitations of this study, the synergic phototoxic effect of visible light in combination with each of the photosensitizers on P. gingivalis and F. nucleatum. However, the synergic phototoxic effect of laser exposure and hydrogen peroxide and curcumin as

  9. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis

    PubMed Central

    Yang, Pengyi; Patrick, Ellis; Humphrey, Sean J.; Ghazanfar, Shila; James, David E.; Jothi, Raja; Yang, Jean Yee Hwa

    2016-01-01

    Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the “directPA” R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org). PMID:27145998

  10. Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe

    PubMed Central

    Li, Jingjing; Hong, Myung Jin; Chow, Jeremy P.H.; Man, Wing Yu; Mak, Joyce P.Y.; Ma, Hoi Tang; Poon, Randy Y.C.

    2015-01-01

    Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined. Using concentrations of inhibitors that did not induce severe mitotic defects on their own, we found that both the metaphase arrest and mitotic slippage induced by inhibitors targeting Aurora A and Aurora B (MK-5108 and Barasertib respectively) were enhanced by a PLK1 inhibitor (BI 2536). We found that PLK1 is overexpressed in cells from nasopharyngeal carcinoma, a highly invasive cancer with poor prognosis, in comparison to normal nasopharyngeal epithelial cells. Nasopharyngeal carcinoma cells were more sensitive to BI 2536 as a single agent and co-inhibition with Aurora kinases than normal cells. These observations underscore the mechanism and potential benefits of targeting PLK1 and Aurora kinases to induce mitotic catastrophe in cancer cells. PMID:25871386

  11. Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe.

    PubMed

    Li, Jingjing; Hong, Myung Jin; Chow, Jeremy P H; Man, Wing Yu; Mak, Joyce P Y; Ma, Hoi Tang; Poon, Randy Y C

    2015-04-20

    Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined. Using concentrations of inhibitors that did not induce severe mitotic defects on their own, we found that both the metaphase arrest and mitotic slippage induced by inhibitors targeting Aurora A and Aurora B (MK-5108 and Barasertib respectively) were enhanced by a PLK1 inhibitor (BI 2536). We found that PLK1 is overexpressed in cells from nasopharyngeal carcinoma, a highly invasive cancer with poor prognosis, in comparison to normal nasopharyngeal epithelial cells. Nasopharyngeal carcinoma cells were more sensitive to BI 2536 as a single agent and co-inhibition with Aurora kinases than normal cells. These observations underscore the mechanism and potential benefits of targeting PLK1 and Aurora kinases to induce mitotic catastrophe in cancer cells. PMID:25871386

  12. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    PubMed Central

    Mahajan, S; Fargnoli, J; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-01-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation. PMID:7565679

  13. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    PubMed

    Mahajan, S; Fargnoli, J; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-10-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation. PMID:7565679

  14. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis.

    PubMed

    Yang, Pengyi; Patrick, Ellis; Humphrey, Sean J; Ghazanfar, Shila; James, David E; Jothi, Raja; Yang, Jean Yee Hwa

    2016-07-01

    Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the "directPA" R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org).

  15. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  16. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    NASA Astrophysics Data System (ADS)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  17. Schedule-dependent synergism of edatrexate and cisplatin in combination in the A549 lung-cancer cell line as assessed by median-effect analysis.

    PubMed

    Perez, E A; Hack, F M; Webber, L M; Chou, T C

    1993-01-01

    The methotrexate analog edatrexate has been shown to have greater antitumor activity and an improved therapeutic index as compared with its parent compound in preclinical systems. These studies suggest that edatrexate may have a broad role in the treatment of solid tumors. Information regarding edatrexate in combination with other chemotherapeutic agents is limited. We evaluated the interaction of edatrexate with cisplatin in vitro as assessed by median-effect analysis in the A549 human lung-cancer cell line. The effects of dose, exposure time, and schedule dependence were assessed. Cytotoxicity was evaluated using the tetrazolium-based colorimetric (MTT) assay. The inhibitory concentration producing 50% absorbance (IC50 for edatrexate with 1 h exposure was 1.4 microM. For all combination experiments, the edatrexate dose was fixed at 0.2 microM (IC10) whereas cisplatin (CDDP) concentrations were varied for 1-, 3-, and 24-h exposures either before or after edatrexate treatment. Drug interactions were assessed using the combination-index method as defined by median-effect analysis. A synergistic interaction was documented in experiments when edatrexate was applied prior to CDDP (combination index, < 1). The combination studies in which edatrexate was used prior to CDDP resulted in significant reduction of all three CDDP IC50 values: 1-h IC50, from 30.0 to 3.9 microM; 3-h IC50, from 21.3 to 1.4 microM; and 24-h IC50, from 1.7 to 0.03 microM. In contrast, synergism was not observed in experiments in which edatrexate treatment occurred after cisplatin exposure. Median-effect analysis is a useful method of determining drug interactions. In the present study, the combination of edatrexate and CDDP demonstrated schedule-dependent synergism, with the synergism being observed only in the setting of edatrexate treatment before CDDP exposure. Due to the potential broad spectrum of activity of edatrexate plus CDDP, further studies are warranted to determine the mechanism

  18. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  19. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  20. Kinase cascades regulating entry into apoptosis.

    PubMed Central

    Anderson, P

    1997-01-01

    All cells are constantly exposed to conflicting environment cues that signal cell survival or cell death. Survival signals are delivered by autocrine or paracrine factors that actively suppress a default death pathway. In addition to survival factor withdrawal, cell death can be triggered by environmental stresses such as heat, UV light, and hyperosmolarity or by dedicated death receptors (e.g., FAS/APO-1 and tumor necrosis factor [TNF] receptors) that are counterparts of growth factor or survival receptors at the cell surface. One of the ways that cells integrate conflicting exogenous stimuli is by phosphorylation (or dephosphorylation) of cellular constituents by interacting cascades of serine/threonine and tyrosine protein kinases (and phosphatases). Survival factors (e.g., growth factors and mitogens) activate receptor tyrosine kinases and selected mitogen-activated, cyclin-dependent, lipid-activated, nucleic acid-dependent, and cyclic AMP-dependent kinases to promote cell survival and proliferation, whereas environmental stress (or death factors such as FAS/APO-1 ligand and TNF-alpha) activates different members of these kinase families to inhibit cell growth and, under some circumstances, promote apoptotic cell death. Because individual kinase cascades can interact with one another, they are able to integrate conflicting exogenous stimuli and provide a link between cell surface receptors and the biochemical pathways leading to cell proliferation or cell death. PMID:9106363

  1. RTKdb: database of Receptor Tyrosine Kinase.

    PubMed

    Grassot, Julien; Mouchiroud, Guy; Perrière, Guy

    2003-01-01

    Receptor Tyrosine Kinases (RTK) are transmembrane receptors specifically found in metazoans. They represent an excellent model for studying evolution of cellular processes in metazoans because they encompass large families of modular proteins and belong to a major family of contingency generating molecules in eukaryotic cells: the protein kinases. Because tyrosine kinases have been under close scrutiny for many years in various species, they are associated with a wealth of information, mainly in mammals. Presently, most categories of RTK were identified in mammals, but in a near future other model species will be sequenced, and will bring us RTKs from other metazoan clades. Thus, collecting RTK sequences would provide a good starting point as a new model for comparative and evolutionary studies applying to multigene families. In this context, we are developing the Receptor Tyrosine Kinase database (RTKdb), which is the only database on tyrosine kinase receptors presently available. In this database, protein sequences from eight model metazoan species are organized under the format previously used for the HOVERGEN, HOBACGEN and NUREBASE systems. RTKdb can be accessed through the PBIL (Pôle Bioinformatique Lyonnais) World Wide Web server at http://pbil.univ-lyon1.fr/RTKdb/, or through the FamFetch graphical user interface available at the same address.

  2. Src Kinase Regulation in Progressively Invasive Cancer

    PubMed Central

    Xu, Weichen; Allbritton, Nancy; Lawrence, David S.

    2012-01-01

    Metastatic progression is a multistep process that involves tumor growth and survival, motility and invasion, and subsequent proliferation in an inappropriate environment. The Src protein tyrosine kinase has been implicated in many of the biochemical pathways that drive these behaviors. Although Src itself is only rarely mutated in human tumors, its aberrant activity has been noted in various cancers and suggested to serve as a barometer of metastatic potential. With these features in mind, we examined Src kinase regulation at the structural, enzymatic, and expression levels as a function of progressively invasive prostate cancer cell lines. Surprisingly, both total Src content and kinase activity decrease with increasing cell line aggressiveness, an observation that appears to be inconsistent with the well-documented role of Src in the signaling pathways that drive growth and invasion. However, we do observe a direct correlation between Src kinase specific activity (total Src kinase activity/total Src content) and metastatic aggressiveness, possibly suggesting that in highly aggressive cell lines, key signaling enzymes are globally recruited to drive the cancerous phenotype. In addition, although the expected enhanced phosphorylation of Src at Tyr-416 (activation site) is present in the most aggressive prostate cancer cell lines, unexpectedly high phosphorylation levels at the Tyr-527 inhibitory site are observed as well. The latter, rather than representative of inhibited enzyme, is more indicative of primed Src responsive to local phosphorylated binding partners. PMID:23145001

  3. Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors.

    PubMed

    Ceribelli, Michele; Kelly, Priscilla N; Shaffer, Arthur L; Wright, George W; Xiao, Wenming; Yang, Yibin; Mathews Griner, Lesley A; Guha, Rajarshi; Shinn, Paul; Keller, Jonathan M; Liu, Dongbo; Patel, Paresma R; Ferrer, Marc; Joshi, Shivangi; Nerle, Sujata; Sandy, Peter; Normant, Emmanuel; Thomas, Craig J; Staudt, Louis M

    2014-08-01

    In the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB-driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug-drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.

  4. Additive Synergism between Asbestos and Smoking in Lung Cancer Risk: A Systematic Review and Meta-Analysis

    PubMed Central

    Ngamwong, Yuwadee; Tangamornsuksan, Wimonchat; Lohitnavy, Ornrat; Chaiyakunapruk, Nathorn; Scholfield, C. Norman; Reisfeld, Brad; Lohitnavy, Manupat

    2015-01-01

    Smoking and asbestos exposure are important risks for lung cancer. Several epidemiological studies have linked asbestos exposure and smoking to lung cancer. To reconcile and unify these results, we conducted a systematic review and meta-analysis to provide a quantitative estimate of the increased risk of lung cancer associated with asbestos exposure and cigarette smoking and to classify their interaction. Five electronic databases were searched from inception to May, 2015 for observational studies on lung cancer. All case-control (N = 10) and cohort (N = 7) studies were included in the analysis. We calculated pooled odds ratios (ORs), relative risks (RRs) and 95% confidence intervals (CIs) using a random-effects model for the association of asbestos exposure and smoking with lung cancer. Lung cancer patients who were not exposed to asbestos and non-smoking (A-S-) were compared with; (i) asbestos-exposed and non-smoking (A+S-), (ii) non-exposure to asbestos and smoking (A-S+), and (iii) asbestos-exposed and smoking (A+S+). Our meta-analysis showed a significant difference in risk of developing lung cancer among asbestos exposed and/or smoking workers compared to controls (A-S-), odds ratios for the disease (95% CI) were (i) 1.70 (A+S-, 1.31–2.21), (ii) 5.65; (A-S+, 3.38–9.42), (iii) 8.70 (A+S+, 5.8–13.10). The additive interaction index of synergy was 1.44 (95% CI = 1.26–1.77) and the multiplicative index = 0.91 (95% CI = 0.63–1.30). Corresponding values for cohort studies were 1.11 (95% CI = 1.00–1.28) and 0.51 (95% CI = 0.31–0.85). Our results point to an additive synergism for lung cancer with co-exposure of asbestos and cigarette smoking. Assessments of industrial health risks should take smoking and other airborne health risks when setting occupational asbestos exposure limits. PMID:26274395

  5. Additive Synergism between Asbestos and Smoking in Lung Cancer Risk: A Systematic Review and Meta-Analysis.

    PubMed

    Ngamwong, Yuwadee; Tangamornsuksan, Wimonchat; Lohitnavy, Ornrat; Chaiyakunapruk, Nathorn; Scholfield, C Norman; Reisfeld, Brad; Lohitnavy, Manupat

    2015-01-01

    Smoking and asbestos exposure are important risks for lung cancer. Several epidemiological studies have linked asbestos exposure and smoking to lung cancer. To reconcile and unify these results, we conducted a systematic review and meta-analysis to provide a quantitative estimate of the increased risk of lung cancer associated with asbestos exposure and cigarette smoking and to classify their interaction. Five electronic databases were searched from inception to May, 2015 for observational studies on lung cancer. All case-control (N = 10) and cohort (N = 7) studies were included in the analysis. We calculated pooled odds ratios (ORs), relative risks (RRs) and 95% confidence intervals (CIs) using a random-effects model for the association of asbestos exposure and smoking with lung cancer. Lung cancer patients who were not exposed to asbestos and non-smoking (A-S-) were compared with; (i) asbestos-exposed and non-smoking (A+S-), (ii) non-exposure to asbestos and smoking (A-S+), and (iii) asbestos-exposed and smoking (A+S+). Our meta-analysis showed a significant difference in risk of developing lung cancer among asbestos exposed and/or smoking workers compared to controls (A-S-), odds ratios for the disease (95% CI) were (i) 1.70 (A+S-, 1.31-2.21), (ii) 5.65; (A-S+, 3.38-9.42), (iii) 8.70 (A+S+, 5.8-13.10). The additive interaction index of synergy was 1.44 (95% CI = 1.26-1.77) and the multiplicative index = 0.91 (95% CI = 0.63-1.30). Corresponding values for cohort studies were 1.11 (95% CI = 1.00-1.28) and 0.51 (95% CI = 0.31-0.85). Our results point to an additive synergism for lung cancer with co-exposure of asbestos and cigarette smoking. Assessments of industrial health risks should take smoking and other airborne health risks when setting occupational asbestos exposure limits.

  6. Interactive effect of light colours and temporal synergism of circadian neural oscillations in reproductive regulation of Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2016-09-01

    Avian literature reports the modulation of 'photoperiodic gonadal responses' by the temporal phase relation of serotonergic and dopaminergic oscillations in Japanese quail. But, the modulation of 'light colour responses' by the temporal synergism of neural oscillations is not yet known. Hence the present study was designed to investigate the interaction of the light colour (blue, red) and the phase relation of neural oscillations in the reproductive regulation of Japanese quail. Three week old male Japanese quail were divided into two groups and maintained under a long day length condition (16L:8D) and were exposed to a 30 lux intensity of blue LED (light emitting diode) (B LED) and a red LED light (R LED). At the age of 15.5weeks, quail of one subgroup of B LED were injected with serotonin precursor (5-HTP) and dopamine precursor (l-DOPA) 12hrs apart (B LED+12-hr) and those of the R LED group were injected with the same drugs (5mg/100g body weight over a period of thirteen days) but 8hrs apart (R LED+8-hr). The remaining subgroups of both the light colour groups (B LED & R LED) received normal saline twice daily and served as controls. Cloacal gland volume was recorded weekly until 35.5weeks of age when the study was terminated and reproductive parameters (testicular volume, GSI, seminiferous tubule diameter and plasma testosterone) were assessed. Results indicate that the 8-hr temporal phase relation of neural oscillations suppresses reproductive activity even during the photosensitive phase of the red light exposed quail (R LED+8-hr) compare to the R LED controls. On the other hand, the 12-hr temporal phase relation stimulates the gonadal development of the B LED+12-hr quail compared to the B LED controls which after completing one cycle entered into a regressive phase and remained sexually quiescent. These experiments suggest that the temporal phase relations of circadian neural oscillations, in addition to modulating the classical photoperiodic responses, may

  7. Testing independent and interactive effects of corticosterone and synergized resmethrin on the immune response to West Nile virus in chickens

    PubMed Central

    Franson, J Christian; Möstl, Erich; Porter, Warren P; Hofmeister, Erik K

    2010-01-01

    Public health agencies utilize aerial insecticides to interrupt an active West Nile virus (WNV) transmission cycle, which may expose WNV-infected birds to these agents. Although resmethrin has been considered benign to birds, no studies have evaluated whether the environmentally employed form of resmethrin with PBO synergist (synergized resmethrin (SR)) can suppress avian immunity to WNV infection and enhance a bird's host competence. Recognizing that wild birds confront toxicological stressors in the context of various physiological states, we exposed four groups (n = 9–11) of 9-week old chickens (Gallus domesticus) to drinking water with either SR (three alternate days at 50 µg/l resmethrin + 150 µg/l piperonyl butoxide), CORT (10 days at 20 mg/l to induce subacute stress), the combination of SR and CORT, or 0.10% ethanol vehicle coincident with WNV infection. Compared to controls, SR treatment did not magnify but extended viremia by one day, and depressed IgG; CORT treatment elevated (mean, 4.26 log10 PFU/ml) and extended viremia by two days, enhanced IgM and IgG, and increased oral virus. The combination of SR and CORT increased the number of chickens that shed oral virus compared to those treated with CORT alone. None of the chickens developed a readily infectious viremia to mosquitoes (none ≥ 5 log10 PFU/ml), but viremia in a CORT-exposed chicken was up to 4.95 log10 PFU/ml. Given that SR is utilized during WNV outbreaks, continued work toward a complete risk assessment of the potential immunotoxic effects of SR is warranted. This would include parameterization of SR exposures with immunological consequences in wild birds using both replicating (in the laboratory) and non-replicating (in the field) antigens. As a start, this study indicates that SR can alter some immunological parameters, but with limited consequences to primary WNV infection outcome, and that elevated CORT mildly enhances SR's immunotoxicity in chickens. PMID:20096745

  8. Synergism of theophylline and anticholinergics to inhibit haloperidol-induced catalepsy: a potential treatment for extrapyramidal syndromes.

    PubMed

    González-Lugo, Olga E; Ceballos-Huerta, Fátima; Jiménez-Capdeville, María E; Arankowsky-Sandoval, Gloria; Góngora-Alfaro, José L

    2010-12-01

    Extrapyramidal syndromes (EPS) impose a heavy burden on patients receiving antipsychotic therapy. Anticholinergics are the drugs of choice for preventing EPS, but they also produce many adverse reactions. Using the EPS model of haloperidol-induced catalepsy we evaluated the potential therapeutic value of a mixture of low doses of the non-selective adenosine antagonist theophylline (0.93 and 1.86 mg/kg), and the muscarinic antagonists benztropine (0.134 and 0.268 mg/kg) and ethopropazine (0.116 and 0.232 mg/kg). In rats pretreated with vehicle (distilled water), the cumulative catalepsy time over 5 h was 4199±228 s, and the mean latency was 67.5±7.8 min. Applied separately, neither of the drugs at the doses used caused significant changes of catalepsy intensity vs. control rats. However, the combination of the larger doses of theophylline and benztropine caused a significant reduction of catalepsy intensity (-41±10%) compared with the effects of the vehicle, vs. the lower dose of benztropine, and vs. both doses of theophylline alone. The mixture of the larger doses of theophylline and benztropine also delayed catalepsy onset (156±21 min) as compared with the lower doses of these same drugs applied alone. In the case of theophylline plus ethopropazine, only the association of the larger doses showed a non-significant tendency to inhibit catalepsy (-21±8%) and to prolong its latency (108±13 min). Further, neither catalepsy intensity nor its latency was affected by a combination of the selective A(1)R antagonist DPCPX (1 mg/kg), with the larger doses of both anticholinergics. In contrast, the anticholinergics showed synergism with a subthreshold dose of the selective A(2A)R antagonist ZM 241395 (0.5 mg/kg), causing a significant reduction of catalepsy intensity (ethopropazine, -27±5%; benztropine, -35±9%) and prolonging its latency (ethopropazine, 65±9 min; benztropine, 78±11 min), compared with the effect of their respective vehicle (DMSO plus mineral oil

  9. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells.

    PubMed

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-08-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP‑dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  10. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells.

    PubMed

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-08-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP‑dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  11. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells

    PubMed Central

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-01-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  12. Interactive effect of light colours and temporal synergism of circadian neural oscillations in reproductive regulation of Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2016-09-01

    Avian literature reports the modulation of 'photoperiodic gonadal responses' by the temporal phase relation of serotonergic and dopaminergic oscillations in Japanese quail. But, the modulation of 'light colour responses' by the temporal synergism of neural oscillations is not yet known. Hence the present study was designed to investigate the interaction of the light colour (blue, red) and the phase relation of neural oscillations in the reproductive regulation of Japanese quail. Three week old male Japanese quail were divided into two groups and maintained under a long day length condition (16L:8D) and were exposed to a 30 lux intensity of blue LED (light emitting diode) (B LED) and a red LED light (R LED). At the age of 15.5weeks, quail of one subgroup of B LED were injected with serotonin precursor (5-HTP) and dopamine precursor (l-DOPA) 12hrs apart (B LED+12-hr) and those of the R LED group were injected with the same drugs (5mg/100g body weight over a period of thirteen days) but 8hrs apart (R LED+8-hr). The remaining subgroups of both the light colour groups (B LED & R LED) received normal saline twice daily and served as controls. Cloacal gland volume was recorded weekly until 35.5weeks of age when the study was terminated and reproductive parameters (testicular volume, GSI, seminiferous tubule diameter and plasma testosterone) were assessed. Results indicate that the 8-hr temporal phase relation of neural oscillations suppresses reproductive activity even during the photosensitive phase of the red light exposed quail (R LED+8-hr) compare to the R LED controls. On the other hand, the 12-hr temporal phase relation stimulates the gonadal development of the B LED+12-hr quail compared to the B LED controls which after completing one cycle entered into a regressive phase and remained sexually quiescent. These experiments suggest that the temporal phase relations of circadian neural oscillations, in addition to modulating the classical photoperiodic responses, may

  13. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade.

    PubMed Central

    Enslen, H; Tokumitsu, H; Stork, P J; Davis, R J; Soderling, T R

    1996-01-01

    Membrane depolarization of NG108 cells gives rapid (< 5 min) activation of Ca2+/calmodulin-dependent protein kinase IV (CaM-KIV), as well as activation of c-Jun N-terminal kinase (JNK). To investigate whether the Ca2+-dependent activation of mitogen-activated protein kinases (ERK, JNK, and p38) might be mediated by the CaM kinase cascade, we have transfected PC12 cells, which lack CaM-KIV, with constitutively active mutants of CaM kinase kinase and/or CaM-KIV (CaM-KKc and CaM-KIVc, respectively). In the absence of depolarization, CaM-KKc transfection had no effect on Elk-dependent transcription of a luciferase reporter gene, whereas CaM-KIVc alone or in combination with CaM-KKc gave 7- to 10-fold and 60- to 80-fold stimulations, respectively, which were blocked by mitogen-activated protein (MAP) kinase phosphatase cotransfection. When epitope-tagged constructs of MAP kinases were co-transfected with CaM-KKc plus CaM-KIVc, the immunoprecipitated MAP kinases were activated 2-fold (ERK-2) and 7- to 10-fold (JNK-1 and p38). The JNK and p38 pathways were further investigated using specific c-Jun or ATF2-dependent transcriptional assays. We found that c-Jun/ATF2-dependent transcriptions were enhanced 7- to 10-fold by CaM-KIVc and 20- to 30-fold by CaM-KKc plus CaM-KIVc. In the case of the Jun-dependent transcription, this effect was not due to direct phosphorylation of c-Jun by activated CaM-KIV, since transcription was blocked by a dominant-negative JNK and by two MAP kinase phosphatases. Mutation of the phosphorylation site (Thr196) in CaM-KIV, which mediates its activation by CaM-KIV kinase, prevented activation of Elk-1, c-Jun, and ATF2 by the CaM kinase cascade. These results establish a new Ca2+-dependent mechanism for regulating MAP kinase pathways and resultant transcription. Images Fig. 1 Fig. 3 Fig. 4 PMID:8855261

  14. Inhibition of T-cell antigen receptor-mediated transmembrane signaling by protein kinase C activation.

    PubMed Central

    Abraham, R T; Ho, S N; Barna, T J; Rusovick, K M; McKean, D J

    1988-01-01

    The murine T-lymphoma cell line LBRM-33 is known to require synergistic signals delivered through the antigen receptor (Ti-CD3) complex, together with interleukin 1 (IL-1), for activation of IL-2 gene expression and IL-2 production. Although 12-O-tetradecanoylphorbol-13-acetate (TPA) was capable of replacing IL-1 as an activating stimulus under certain conditions, biologic studies indicated that TPA failed to synergize with Ti-CD3-dependent stimuli under conditions in which IL-1 was clearly active. Acute exposure to TPA and other active phorbol esters resulted in a concentration-dependent inhibition of the increases in phosphoinositide hydrolysis and intracellular free Ca2+ concentration stimulated by phytohemagglutinin or anti-Ti antibodies. TPA treatment induced no direct alteration of phospholipase C enzymatic activities in LBRM-33 cells. In contrast, both Ti-CD3 cross-linkage and TPA rapidly stimulated the phosphorylation of identical CD3 complex polypeptides, presumably via activation of protein kinase C. Exposure of LBRM-33 cells to TPA resulted in a time-dependent, partial down-regulation of surface Ti-CD3 expression. Thus, TPA treatment inhibited the responsiveness of LBRM-33 cells to Ti-CD3-dependent stimuli by inducing an early desensitization of Ti-CD3 receptors, followed by a decrease in membrane receptor expression. These studies indicate that phorbol esters deliver bidirectional signals that both inhibit Ti-CD3-dependent phosphoinositide hydrolysis and augment IL-2 production in LBRM-33 cells. Images PMID:2977423

  15. LKB1, the multitasking tumour suppressor kinase.

    PubMed

    Marignani, P A

    2005-01-01

    Mutations in the lkb1 gene are found in Peutz-Jeghers syndrome (PJS), with loss of heterozygosity or somatic mutations at the lkb1 locus, suggesting the gene product, the serine/threonine kinase LKB1, may function as a tumour suppressor. Patients with PJS are at a greater risk of developing cancers of epithelial tissue origin. It is widely accepted that the presence of hamartomatous polyps in PJS does not in itself lead to the development of malignancy. The signalling mechanisms that lead to these PJS related malignancies are not well understood. However, it is evident from the recent literature that LKB1 is a multitasking kinase, with unlimited potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in chromatin remodelling, cell cycle arrest, Wnt signalling, cell polarity, and energy metabolism, all of which may require the tumour suppressor function of this kinase and/or its catalytic activity.

  16. MAP kinase pathways: The first twenty years

    PubMed Central

    Avruch, Joseph

    2007-01-01

    The MAP kinases, discovered approximately twenty years ago, together with their immediate upstream regulators, are among the most highly studied signal transduction molecules. This body of work has shaped many aspects of our present views of signal transduction by protein kinases. The effort expended in this area reflects the extensive participation of these regulatory modules in the control of cell fate decisions, i.e., proliferation, differentiation and death, across all eukaryotic phylla and in all tissues of metazoans. The discovery of these kinases is reviewed, followed by a discussion of some of the features of this signaling module that account for its broad impact on cell function and its enormous interest to many investigators. PMID:17229475

  17. Exploring the scaffold universe of kinase inhibitors.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2015-01-01

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  18. Crystal structure of human nicotinamide riboside kinase.

    PubMed

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations. PMID:17698003

  19. Crystal Structure of Human Nicotinamide Riboside Kinase

    SciTech Connect

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  20. Structure of the human dimeric ATM kinase

    PubMed Central

    Lau, Wilson C. Y.; Li, Yinyin; Liu, Zhe; Gao, Yuanzhu; Zhang, Qinfen; Huen, Michael S. Y.

    2016-01-01

    ABSTRACT DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and dissociation of inert ATM dimers into monomers that are catalytically active. Using single-particle electron microscopy (EM), we determined the structure of dimeric ATM in its resting state. The EM map could accommodate the crystal structure of the N-terminal truncated mammalian target of rapamycin (mTOR), a closely related enzyme of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, allowing for the localization of the N- and the C-terminal regions of ATM. In the dimeric structure, the actives sites are buried, restricting the access of the substrates to these sites. The unanticipated domain organization of ATM provides a basis for understanding its mechanism of inhibition. PMID:27097373

  1. Structure of the human dimeric ATM kinase.

    PubMed

    Lau, Wilson C Y; Li, Yinyin; Liu, Zhe; Gao, Yuanzhu; Zhang, Qinfen; Huen, Michael S Y

    2016-01-01

    DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and disso