Science.gov

Sample records for pimiento capsicum annuurn

  1. Capsicum

    MedlinePlus

    ... as red pepper or chili pepper, is an herb. The fruit of the capsicum plant is used ... of adverse effects of the cocaine in coca.Herbs and supplements that might slow blood clottingCapsicum might ...

  2. Pepper, sweet (Capsicum annuum).

    PubMed

    Heidmann, Iris; Boutilier, Kim

    2015-01-01

    Capsicum (pepper) species are economically important crops that are recalcitrant to genetic transformation by Agrobacterium (Agrobacterium tumefaciens). A number of protocols for pepper transformation have been described but are not routinely applicable. The main bottleneck in pepper transformation is the low frequency of cells that are both susceptible for Agrobacterium infection and have the ability to regenerate. Here, we describe a protocol for the efficient regeneration of transgenic sweet pepper (C. annuum) through inducible activation of the BABY BOOM (BBM) AP2/ERF transcription factor. Using this approach, we can routinely achieve a transformation efficiency of at least 0.6 %. The main improvements in this protocol are the reproducibility in transforming different genotypes and the ability to produce fertile shoots. An added advantage of this protocol is that BBM activity can be induced subsequently in stable transgenic lines, providing a novel regeneration system for clonal propagation through somatic embryogenesis.

  3. Pepper, sweet (Capsicum annuum).

    PubMed

    Heidmann, Iris; Boutilier, Kim

    2015-01-01

    Capsicum (pepper) species are economically important crops that are recalcitrant to genetic transformation by Agrobacterium (Agrobacterium tumefaciens). A number of protocols for pepper transformation have been described but are not routinely applicable. The main bottleneck in pepper transformation is the low frequency of cells that are both susceptible for Agrobacterium infection and have the ability to regenerate. Here, we describe a protocol for the efficient regeneration of transgenic sweet pepper (C. annuum) through inducible activation of the BABY BOOM (BBM) AP2/ERF transcription factor. Using this approach, we can routinely achieve a transformation efficiency of at least 0.6 %. The main improvements in this protocol are the reproducibility in transforming different genotypes and the ability to produce fertile shoots. An added advantage of this protocol is that BBM activity can be induced subsequently in stable transgenic lines, providing a novel regeneration system for clonal propagation through somatic embryogenesis. PMID:25300852

  4. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin.

    PubMed

    2007-01-01

    Capsicum-derived ingredients function as skin-conditioning agents--miscellaneous, external analgesics, flavoring agents, or fragrance components in cosmetics. These ingredients are used in 19 cosmetic products at concentrations as high as 5%. Cosmetic-grade material may be extracted using hexane, ethanol, or vegetable oil and contain the full range of phytocompounds that are found in the Capsicum annuum or Capsicum frutescens plant (aka red chiles), including Capsaicin. Aflatoxin and N-nitroso compounds (N-nitrosodimethylamine and N-nitrosopyrrolidine) have been detected as contaminants. The ultraviolet (UV) absorption spectrum for Capsicum Annuum Fruit Extract indicates a small peak at approximately 275 nm, and a gradual increase in absorbance, beginning at approximately 400 nm. Capsicum and paprika are generally recognized as safe by the U.S. Food and Drug Administration for use in food. Hexane, chloroform, and ethyl acetate extracts of Capsicum Frutescens Fruit at 200 mg/kg resulted in death of all mice. In a short-term inhalation toxicity study using rats, no difference was found between vehicle control and a 7% Capsicum Oleoresin solution. In a 4-week feeding study, red chilli (Capsicum annuum) in the diet at concentrations up to 10% was relatively nontoxic in groups of male mice. In an 8-week feeding study using rats, intestinal exfoliation, cytoplasmic fatty vacuolation and centrilobular necrosis of hepatocytes, and aggregation of lymphocytes in the portal areas were seen at 10% Capsicum Frutescens Fruit, but not 2%. Rats fed 0.5 g/kg day-1 crude Capsicum Fruit Extract for 60 days exhibited no significant gross pathology at necropsy, but slight hyperemia of the liver and reddening of the gastric mucosa were observed. Weanling rats fed basal diets supplemented with whole red pepper at concentrations up to 5.0% for up to 8 weeks had no pathology of the large intestines, livers, and kidneys, but destruction of the taste buds and keratinization and erosion of

  5. Compositional characterization of native Peruvian chili peppers (Capsicum spp.).

    PubMed

    Meckelmann, Sven W; Riegel, Dieter W; van Zonneveld, Maarten J; Ríos, Llermé; Peña, Karla; Ugas, Roberto; Quinonez, Lourdes; Mueller-Seitz, Erika; Petz, Michael

    2013-03-13

    The national Capsicum germplasm bank of Peru at INIA holds a unique collection of more than 700 Capsicum accessions, including many landraces. These conserved accessions have never been thoroughly characterized or evaluated. Another smaller collection exists at UNALM, and CIDRA provided taxonomically characterized fruits from the Amazon region of Ucayali. Of these collections, 147 accessions have been selected to represent the biodiversity of Peruvian Capsicum annuum , Capsicum baccatum , Capsicum chinense , and Capsicum frutescens by morphological traits as well as by agronomic characteristics and regional origin. All fruits from the selected accessions have been oven-dried and ground in Peru and analyzed in Germany. Results are reported for each accession by total capsaicinoids and capsaicinoid pattern, total polyphenol content, antioxidant capacity, specific flavonoids (quercetin, kaempferol, luteolin, apigenin), fat content, vitamin C, surface color, and extractable color. A wide variability in phytochemical composition and concentration levels was found.

  6. Compositional characterization of native Peruvian chili peppers (Capsicum spp.).

    PubMed

    Meckelmann, Sven W; Riegel, Dieter W; van Zonneveld, Maarten J; Ríos, Llermé; Peña, Karla; Ugas, Roberto; Quinonez, Lourdes; Mueller-Seitz, Erika; Petz, Michael

    2013-03-13

    The national Capsicum germplasm bank of Peru at INIA holds a unique collection of more than 700 Capsicum accessions, including many landraces. These conserved accessions have never been thoroughly characterized or evaluated. Another smaller collection exists at UNALM, and CIDRA provided taxonomically characterized fruits from the Amazon region of Ucayali. Of these collections, 147 accessions have been selected to represent the biodiversity of Peruvian Capsicum annuum , Capsicum baccatum , Capsicum chinense , and Capsicum frutescens by morphological traits as well as by agronomic characteristics and regional origin. All fruits from the selected accessions have been oven-dried and ground in Peru and analyzed in Germany. Results are reported for each accession by total capsaicinoids and capsaicinoid pattern, total polyphenol content, antioxidant capacity, specific flavonoids (quercetin, kaempferol, luteolin, apigenin), fat content, vitamin C, surface color, and extractable color. A wide variability in phytochemical composition and concentration levels was found. PMID:23410113

  7. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and

  8. Antioxidants in Capsicum chinense: Variation among countries of origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The worldwide search for sources of beneficial phytochemicals continues. In this vein, many pepper (Capsicum L.) species and their cultivars have not been analyzed for their concentrations of the health-promoting antioxidants ß-carotene, ascorbic acid, phenols, or capsaicin. Capsicum chinense has be...

  9. Pungency in Capsicum Chinense: Variation Among Countries of Origin.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits of 63 accessions of Capsicum chinense Jacq. from the USDA/ARS Capsicum germplasm collection were analyzed for two major capsaicinoids, capsaicin and dihydrocapsaicin, content using gas chromatography with nitrogen phosphorus detectin (GC/NPD). The objectives of the present investigation were:...

  10. Anther culture of chili pepper (Capsicum spp.).

    PubMed

    Ochoa-Alejo, Neftalí

    2012-01-01

    Chili pepper (Capsicum spp.) is a very important horticultural crop around the world and is especially important for Mexicans because of its impact in the culture and the cuisine. Biotechnological tools such as tissue culture techniques and specifically anther culture may be applied successfully for plant breeding and genetic improvement in order to generate isogenic lines (100% homozygous) in a shorter time in comparison with the classic breeding methods. In this chapter, a protocol for efficient recovery of chili pepper haploid plants from in vitro cultured anthers is described. PMID:22610631

  11. Oleoresin Capsicum toxicology evaluation and hazard review

    SciTech Connect

    Archuleta, M.M.

    1995-10-01

    Oleoresin Capsicum (OC) is an extract of the pepper plant used for centuries as a culinary spice (hot peppers). This material has been identified as a safe and effective Less-Than- Lethal weapon for use by Law enforcement and security professionals against assault. The National Institute of Justice (NIJ) is currently also evaluating its use in conjunction with other Less-Than-Lethal agents such as aqueous foam for use in corrections applications. Therefore, a comprehensive toxicological review of the literature was performed for the National Institute of Justice Less-Than-Lethal Force program to review and update the information available on the toxicity and adverse health effects associated with OC exposure. The results of this evaluation indicate that exposure to OC can result in dermatitis, as well as adverse nasal, pulmonary, and gastrointestinal effects in humans. The primary effects of OC exposure include pain and irritation of the mucous membranes of the eyes, nose, and lining of the mouth. Blistering and rash have been shown to occur after chronic or prolonged dermal exposure. Ingestion of capsicum may cause acute stinging of the lips, tongue, and oral mucosa and may lead to vomiting and diarrhea with large doses. OC vapors may also cause significant pulmonary irritation and prolonged cough. There is no evidence of long term effects associated with an acute exposure to OC, and extensive use as a culinary additive and medicinal ointment has further provided no evidence of long term adverse effects following repeated or prolonged exposure.

  12. New insights into Capsicum spp relatedness and the diversification process of Capsicum annuum in Spain.

    PubMed

    González-Pérez, Susana; Garcés-Claver, Ana; Mallor, Cristina; Sáenz de Miera, Luis E; Fayos, Oreto; Pomar, Federico; Merino, Fuencisla; Silvar, Cristina

    2014-01-01

    The successful exploitation of germplasm banks, harbouring plant genetic resources indispensable for plant breeding, will depend on our ability to characterize their genetic diversity. The Vegetable Germplasm Bank of Zaragoza (BGHZ) (Spain) holds an important Capsicum annuum collection, where most of the Spanish pepper variability is represented, as well as several accessions of other domesticated and non-domesticated Capsicum spp from all over the five continents. In the present work, a total of 51 C. annuum landraces (mainly from Spain) and 51 accessions from nine Capsicum species maintained at the BGHZ were evaluated using 39 microsatellite (SSR) markers spanning the whole genome. The 39 polymorphic markers allowed the detection of 381 alleles, with an average of 9.8 alleles per locus. A sizeable proportion of alleles (41.2%) were recorded as specific alleles and the majority of these were present at very low frequencies (rare alleles). Multivariate and model-based analyses partitioned the collection in seven clusters comprising the ten different Capsicum spp analysed: C. annuum, C. chinense, C. frutescens, C. pubescens, C. bacatum, C. chacoense and C. eximium. The data clearly showed the close relationships between C. chinense and C. frutescens. C. cardenasii and C. eximium were indistinguishable as a single, morphologically variable species. Moreover, C. chacoense was placed between C. baccatum and C. pubescens complexes. The C. annuum group was structured into three main clusters, mostly according to the pepper fruit shape, size and potential pungency. Results suggest that the diversification of C. annuum in Spain may occur from a rather limited gene pool, still represented by few landraces with ancestral traits. This ancient population would suffer from local selection at the distinct geographical regions of Spain, giving way to pungent and elongated fruited peppers in the South and Center, while sweet blocky and triangular types in Northern Spain. PMID

  13. New insights into Capsicum spp relatedness and the diversification process of Capsicum annuum in Spain.

    PubMed

    González-Pérez, Susana; Garcés-Claver, Ana; Mallor, Cristina; Sáenz de Miera, Luis E; Fayos, Oreto; Pomar, Federico; Merino, Fuencisla; Silvar, Cristina

    2014-01-01

    The successful exploitation of germplasm banks, harbouring plant genetic resources indispensable for plant breeding, will depend on our ability to characterize their genetic diversity. The Vegetable Germplasm Bank of Zaragoza (BGHZ) (Spain) holds an important Capsicum annuum collection, where most of the Spanish pepper variability is represented, as well as several accessions of other domesticated and non-domesticated Capsicum spp from all over the five continents. In the present work, a total of 51 C. annuum landraces (mainly from Spain) and 51 accessions from nine Capsicum species maintained at the BGHZ were evaluated using 39 microsatellite (SSR) markers spanning the whole genome. The 39 polymorphic markers allowed the detection of 381 alleles, with an average of 9.8 alleles per locus. A sizeable proportion of alleles (41.2%) were recorded as specific alleles and the majority of these were present at very low frequencies (rare alleles). Multivariate and model-based analyses partitioned the collection in seven clusters comprising the ten different Capsicum spp analysed: C. annuum, C. chinense, C. frutescens, C. pubescens, C. bacatum, C. chacoense and C. eximium. The data clearly showed the close relationships between C. chinense and C. frutescens. C. cardenasii and C. eximium were indistinguishable as a single, morphologically variable species. Moreover, C. chacoense was placed between C. baccatum and C. pubescens complexes. The C. annuum group was structured into three main clusters, mostly according to the pepper fruit shape, size and potential pungency. Results suggest that the diversification of C. annuum in Spain may occur from a rather limited gene pool, still represented by few landraces with ancestral traits. This ancient population would suffer from local selection at the distinct geographical regions of Spain, giving way to pungent and elongated fruited peppers in the South and Center, while sweet blocky and triangular types in Northern Spain.

  14. New Insights into Capsicum spp Relatedness and the Diversification Process of Capsicum annuum in Spain

    PubMed Central

    González-Pérez, Susana; Garcés-Claver, Ana; Mallor, Cristina; Sáenz de Miera, Luis E.; Fayos, Oreto; Pomar, Federico; Merino, Fuencisla; Silvar, Cristina

    2014-01-01

    The successful exploitation of germplasm banks, harbouring plant genetic resources indispensable for plant breeding, will depend on our ability to characterize their genetic diversity. The Vegetable Germplasm Bank of Zaragoza (BGHZ) (Spain) holds an important Capsicum annuum collection, where most of the Spanish pepper variability is represented, as well as several accessions of other domesticated and non-domesticated Capsicum spp from all over the five continents. In the present work, a total of 51 C. annuum landraces (mainly from Spain) and 51 accessions from nine Capsicum species maintained at the BGHZ were evaluated using 39 microsatellite (SSR) markers spanning the whole genome. The 39 polymorphic markers allowed the detection of 381 alleles, with an average of 9.8 alleles per locus. A sizeable proportion of alleles (41.2%) were recorded as specific alleles and the majority of these were present at very low frequencies (rare alleles). Multivariate and model-based analyses partitioned the collection in seven clusters comprising the ten different Capsicum spp analysed: C. annuum, C. chinense, C. frutescens, C. pubescens, C. bacatum, C. chacoense and C. eximium. The data clearly showed the close relationships between C. chinense and C. frutescens. C. cardenasii and C. eximium were indistinguishable as a single, morphologically variable species. Moreover, C. chacoense was placed between C. baccatum and C. pubescens complexes. The C. annuum group was structured into three main clusters, mostly according to the pepper fruit shape, size and potential pungency. Results suggest that the diversification of C. annuum in Spain may occur from a rather limited gene pool, still represented by few landraces with ancestral traits. This ancient population would suffer from local selection at the distinct geographical regions of Spain, giving way to pungent and elongated fruited peppers in the South and Center, while sweet blocky and triangular types in Northern Spain. PMID

  15. Lectotypifications, synonymy, and a new name in Capsicum (Solanoideae, Solanaceae)

    PubMed Central

    Barboza, Gloria E.

    2011-01-01

    Abstract Considerable confusion exists within Capsicum (Solanaceae) regarding the status and typification of several names, in part due to misidentifications. Some types were destroyed in Berlin during the Second World War, some have not been found by modern systematics, while others exhibit uncertain locality data or contain material from more than one species. Fourteen lectotypes, synonyms, and a new name, Capsicum eshbaughii Barboza nom. nov.,are proposed here. PMID:22171173

  16. Carotenoid Extraction and Quantification from Capsicum annuum

    PubMed Central

    Richins, Richard D.; Kilcrease, James; Rodgriguez-Uribe, Laura; O'Connell, Mary A.

    2016-01-01

    Carotenoids are ubiquitous pigments that play key roles in photosynthesis and also accumulate to high levels in fruit and flowers. Specific carotenoids play essential roles in human health as these compounds are precursors for Vitamin A; other specific carotenoids are important sources of macular pigments and all carotenoids are important anti-oxidants. Accurate determination of the composition and concentration of this complex set of natural products is therefore important in many different scientific areas. One of the richest sources of these compounds is the fruit of Capsicum; these red, yellow and orange fruit accumulate multiple carotenes and xanthophylls. This report describes the detailed method for the extraction and quantification of specific carotenes and xanthophylls. PMID:27570797

  17. Characterization of Capsicum species using anatomical and molecular data.

    PubMed

    Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M

    2013-02-28

    Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.

  18. Cytomorphology of induced octoploid Chili pepper (Capsicum annuum L.).

    PubMed

    Panda, R C; Kumar, O A; Rao, K G

    1984-10-01

    Octoploidy was induced in Chili pepper (Capsicum annuum cultivar 'cerasiformis') through the application of colchicine and the cytomorphological features of two octoploid plants were described. In general, the octoploids did not exhibit gigas characters when compared to the tetraploids; on the contrary they were less vigorous, suggesting that the optimum and desirable ploidy level for Capsicum is probably tetraploid. Chromosome associations such as octovalents and hexavalents, in addition to IVs, IIIs, IIs and Is, were recorded at diakinesis and metaphase I. Meiosis was highly irregular and the pollen and seed fertility was very low. Cytological features of octoploid Chili peppers are compared with octoploids of Physalis and Petunia.

  19. Dissipation pattern of flubendiamide residues on capsicum fruit (Capsicum annuum L.) under field and controlled environmental conditions.

    PubMed

    Buddidathi, Radhika; Mohapatra, Soudamini; Siddamallaiah, Lekha; Manikrao, Gourishankar; Hebbar, Shibara Shankara

    2016-01-01

    This investigation was undertaken to compare the dissipation pattern of flubendiamide in capsicum fruits under poly-house and open field after giving spray applications at the recommended and double doses of 48 g a.i. ha(-1) and 96 g a.i. ha(-1). Extraction and purification of capsicum fruit samples were carried out by the QuEChERS method. Residues of flubendiamide and its metabolite, des-iodo flubendiamide, were analyzed by high-performance liquid chromatography-photodiode array, and confirmed by liquid chromatography-mass spectrometry/mass spectrometry. Limit of quantification of the method was 0.05 mg kg(-1), and recovery of the insecticides was in the range of 89.6-104.3%, with relative standard deviation being 4.5-11.5%. The measurement uncertainty of the analytical method was in the range of 10.7-15.7%. Initial residue deposits of flubendiamide on capsicum fruits grown under poly-house conditions were (0.977 and 1.834 mg kg(-1)) higher than that grown in the field (0.665 and 1.545 mg kg(-1)). Flubendiamide residues persisted for 15 days in field-grown and for 25 days in poly-house-grown capsicum fruits. The residues were degraded with the half-lives of 4.3-4.7 and 5.6-6.6 days in field and poly-house respectively. Des-iodo flubendiamide was not detected in capsicum fruits or soil. The residues of flubendiamide degraded to below the maximum residue limit notified by Codex Alimentarius Commission (FAO/WHO) after 1 and 6 days in open field, and 3 and 10 days in poly-house. The results of the study indicated that flubendiamide applied to capsicum under controlled environmental conditions required longer pre-harvest interval to allow its residues to dissipate to the safe level.

  20. Seed oil and fatty acid composition in Capsicum spp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  1. Determination of capsinoids by HPLC-DAD in capsicum species.

    PubMed

    Singh, Satyavan; Jarret, Robert; Russo, Vincent; Majetich, George; Shimkus, Joel; Bushway, Rodney; Perkins, Brian

    2009-05-13

    Capsicum fruits contain a newly discovered phytochemical called capsinoids. Because little is known about the quantities of these compounds in both sweet and pungent pepper fruits, a high-performance liquid chromatography (HPLC) method was developed to identify and quantify the capsinoids (naturally present E-capsiate and dihydrocapsiate) utilizing fruit obtained from a variety of Capsicum spp. in the U.S. Department of Agriculture's Capsicum germplasm collection. Capsinoids were extracted with acetonitrile, filtered, and analyzed using an HPLC system equipped with a C(18) monolithic column, gradient pump, and diode array detector. The elution solvents were acetonitrile and water (60:40) with an isocratic flow rate of 1.0 mL/min. Forty-nine samples representing distinct morphotypes of four cultivated species ( C. annuum var. annuum, C. annuum var. glabriusculum, C. baccatum , C. chinense , and C. frutescens ) contained detectable levels (11-369 microg/g) of E-capsiate quantified at a wavelength of 280 nm. Nine of the E-capsiate-containing samples also had dihydrocapsiate (18-86 micro/g). Gas chromatography with a mass spectrometry detector (GC-MS) confirmed the presence of these compounds in the Capsicum spp.

  2. Construction of an integrated genetic map for Capsicum baccatum L.

    PubMed

    Moulin, M M; Rodrigues, R; Ramos, H C C; Bento, C S; Sudré, C P; Gonçalves, L S A; Viana, A P

    2015-01-01

    Capsicum baccatum L. is one of the five Capsicum domesticated species and has multiple uses in the food, pharmaceutical and cosmetic industries. This species is also a valuable source of genes for chili pepper breeding, especially genes for disease resistance and fruit quality. However, knowledge of the genetic structure of C. baccatum is limited. A reference map for C. baccatum (2n = 2x = 24) based on 42 microsatellite, 85 inter-simple sequence repeat, and 56 random amplified polymorphic DNA markers was constructed using an F2 population consisting of 203 individuals. The map was generated using the JoinMap software (version 4.0) and the linkage groups were formed and ordered using a LOD score of 3.0 and maximum of 40% recombination. The genetic map consisted of 12 major and four minor linkage groups covering a total genome distance of 2547.5 cM with an average distance of 14.25 cM between markers. Of the 152 pairs of microsatellite markers available for Capsicum annuum, 62 were successfully transferred to C. baccatum, generating polymorphism. Forty-two of these markers were mapped, allowing the introduction of C. baccatum in synteny studies with other species of the genus Capsicum. PMID:26125877

  3. Construction of an integrated genetic map for Capsicum baccatum L.

    PubMed

    Moulin, M M; Rodrigues, R; Ramos, H C C; Bento, C S; Sudré, C P; Gonçalves, L S A; Viana, A P

    2015-06-18

    Capsicum baccatum L. is one of the five Capsicum domesticated species and has multiple uses in the food, pharmaceutical and cosmetic industries. This species is also a valuable source of genes for chili pepper breeding, especially genes for disease resistance and fruit quality. However, knowledge of the genetic structure of C. baccatum is limited. A reference map for C. baccatum (2n = 2x = 24) based on 42 microsatellite, 85 inter-simple sequence repeat, and 56 random amplified polymorphic DNA markers was constructed using an F2 population consisting of 203 individuals. The map was generated using the JoinMap software (version 4.0) and the linkage groups were formed and ordered using a LOD score of 3.0 and maximum of 40% recombination. The genetic map consisted of 12 major and four minor linkage groups covering a total genome distance of 2547.5 cM with an average distance of 14.25 cM between markers. Of the 152 pairs of microsatellite markers available for Capsicum annuum, 62 were successfully transferred to C. baccatum, generating polymorphism. Forty-two of these markers were mapped, allowing the introduction of C. baccatum in synteny studies with other species of the genus Capsicum.

  4. Determination of capsinoids by HPLC-DAD in Capsicum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capsicum fruit contain a number of phytochemicals, including the newly characterized capsinoids that have been shown to have positive effects on human health (10-15). Closely related to the pungent capsaicinoids, the non-pungent casinoids exhibit antioxidant activity, promote energy metabolism and r...

  5. Natural Capsaicin in Capsicum chinense: Concentration vs. Origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capsaicin [N-vanillyl-8-methyl-6-(E) noneamide] is the most pungent of the group of compounds known as capsaicinoids in chili peppers. A survey was conducted to screen fruits of 307 hot pepper accessions of Capsicum chinense selected from the USDA germplasm collection for their major capsaicinoids c...

  6. Paprika rhinoconjunctivitis case reveals new occupational Capsicum allergens.

    PubMed

    Airaksinen, Liisa; Riekki, Riitta; Vuokko, Aki; Puustinen, Anne

    2015-07-01

    No allergens related to paprika or cayenne respiratory allergy have been identified thus far. We describe a previously healthy 28-year woman who developed work-related rhinoconjunctivitis after four years of kebab-restaurant work. The allergy was studied using skin prick tests, serum specific IgE and nasal provocation tests. Specific IgE protein reactions were studied by Western blot analysis. Paprika, cayenne and curry allergens were identified from the strongest immunoblot bands using tandem mass spectrometry. A positive skin prick test, high specific IgE and positive nasal provocation test confirmed occupational rhinoconjunctivitis from Capsicum spices. Defensin J1 and Vicilin were identified as major paprika and cayenne allergens in this case. Vicilin was detected also from the curry ingredients. Two new occupational respiratory allergens from the Capsicum species were identified. These differ from previously reported bell pepper allergens. We emphasize that substantial spice handling at work poses an allergy risk.

  7. Paprika rhinoconjunctivitis case reveals new occupational Capsicum allergens.

    PubMed

    Airaksinen, Liisa; Riekki, Riitta; Vuokko, Aki; Puustinen, Anne

    2015-07-01

    No allergens related to paprika or cayenne respiratory allergy have been identified thus far. We describe a previously healthy 28-year woman who developed work-related rhinoconjunctivitis after four years of kebab-restaurant work. The allergy was studied using skin prick tests, serum specific IgE and nasal provocation tests. Specific IgE protein reactions were studied by Western blot analysis. Paprika, cayenne and curry allergens were identified from the strongest immunoblot bands using tandem mass spectrometry. A positive skin prick test, high specific IgE and positive nasal provocation test confirmed occupational rhinoconjunctivitis from Capsicum spices. Defensin J1 and Vicilin were identified as major paprika and cayenne allergens in this case. Vicilin was detected also from the curry ingredients. Two new occupational respiratory allergens from the Capsicum species were identified. These differ from previously reported bell pepper allergens. We emphasize that substantial spice handling at work poses an allergy risk. PMID:25944018

  8. Capsicum annum, a new host of watermelon mosaic virus.

    PubMed

    Hajizadeh, Mohammad; Mohammadi, Kazhal

    2016-03-01

    The occurrence of Watermelon mosaic virus (WMV) in sweet pepper (Capsicum annuum L.) in Kurdistan province, Iran was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and partial characterization of coat protein. To the best of our knowledge, this is the first report of WMV infecting C. annuum, adding a new host to list of more than 170 species infected by this virus.

  9. The capsicum transcriptome DB: a "hot" tool for genomic research.

    PubMed

    Góngora-Castillo, Elsa; Fajardo-Jaime, Rubén; Fernández-Cortes, Araceli; Jofre-Garfias, Alba E; Lozoya-Gloria, Edmundo; Martínez, Octavio; Ochoa-Alejo, Neftalí; Rivera-Bustamante, Rafael

    2012-01-01

    Chili pepper (Capsicum annuum) is an economically important crop with no available public genome sequence. We describe a genomic resource to facilitate Capsicum annuum research. A collection of Expressed Sequence Tags (ESTs) derived from five C. annuum organs (root, stem, leaf, flower and fruit) were sequenced using the Sanger method and multiple leaf transcriptomes were deeply sampled using with GS-pyrosequencing. A hybrid assembly of 1,324,516 raw reads yielded 32,314 high quality contigs as validated by coverage and identity analysis with existing pepper sequences. Overall, 75.5% of the contigs had significant sequence similarity to entries in nucleic acid and protein databases; 23% of the sequences have not been previously reported for C. annuum and expand sequence resources for this species. A MySQL database and a user-friendly Web interface were constructed with search-tools that permit queries of the ESTs including sequence, functional annotation, Gene Ontology classification, metabolic pathways, and assembly information. The Capsicum Transcriptome DB is free available from http://www.bioingenios.ira.cinvestav.mx:81/Joomla/

  10. Mycobiota and co-occurrence of mycotoxins in Capsicum powder.

    PubMed

    Santos, L; Marín, S; Mateo, E M; Gil-Serna, J; Valle-Algarra, F M; Patiño, B; Ramos, A J

    2011-12-15

    This study aimed to: (1) determine the mycobiota of Capsicum powder samples, paying a special attention to the mycotoxigenic moulds; (2) evaluate the contamination levels of aflatoxins (AF), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), T2 and HT2 toxins in those samples. Thirty-two samples were obtained through the methods of sampling established by the European Union legislation. Aspergillus and Eurotium were the most frequently found genera. Aspergillus section Nigri had the higher relative frequency in the samples, A. niger aggregate being the most representative group of this section. Other potentially mycotoxigenic Aspergillus, Fusarium and Penicillium species were found, but in a lower frequency. Co-occurrence of mycotoxins was confirmed in the 32 Capsicum powder samples. All samples were contaminated with AF and OTA, 27% with ZEA (36% of chilli and 18% of paprika samples), 9% with DON (18% of chilli and 6% of paprika samples), 6% with T2 (18% of chilli samples) and none of the samples contained HT2. Although in the present study the most common genera found (Aspergillus and Eurotium) belong to storage moulds, some field fungi such as Fusarium spp. were also found, and their toxins were sometimes detected. This fact supports the hypothesis that mycotoxin contamination of Capsicum products may occur both in the field and/or during storage.

  11. Screening of wild and cultivated Capsicum germplasm reveals new sources of Verticillium wilt resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt caused by Verticillium dahliae is an important soilborne disease of pepper (Capsicum species) worldwide. Most commercial pepper cultivars lack resistance to this pathogen. Our objective was to identify resistance to multiple V. dahliae isolates in wild and cultivated Capsicum acces...

  12. Variation for Fruit Morphological Characteristics within a Germplasm Collection of Capsicum Chinense Jacq.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature fruit of 330 accessions of Capsicum chinense Jacq. from the USDA/ARS Capsicum germplasm collection were characterized for fruit length, width, weight and color. Mean fruit length was determined to be 47 mm with a range from 7.9 mm to 113.7 mm. Mean fruit width was 21.17 mm with a range of 6...

  13. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).

    PubMed

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2014-05-01

    The genetic control of the transition to flowering has mainly been studied in model species, while few data are available in crop species such as pepper (Capsicum spp.). To elucidate the genetic control of the transition to flowering in pepper, mutants that lack flowers were isolated and characterized. Genetic mapping and sequencing allowed the identification of the gene disrupted in the mutants. Double mutants and expression analyses were used to characterize the relationships between the mutated gene and other genes controlling the transition to flowering and flower differentiation. The mutants were characterized by a delay in the initiation of sympodial growth, a delay in the termination of sympodial meristems and complete inhibition of flower formation. Capsicum annuum S (CaS), the pepper (Capsicum annuum) ortholog of tomato (Solanum lycopersicum) COMPOUND INFLORESCENCE and petunia (Petunia hybrida) EVERGREEN, was found to govern the mutant phenotype. CaS is required for the activity of the flower meristem identity gene Ca-ANANTHA and does not affect the expression of CaLEAFY. CaS is epistatic over other genes controlling the transition to flowering with respect to flower formation. Comparative homologous mutants in the Solanaceae indicate that CaS has uniquely evolved to have a critical role in flower formation, while its role in meristem maturation is conserved in pepper, tomato and petunia.

  14. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.).

    PubMed

    Romero-Castillo, Rafael A; Roy Choudhury, Swarup; León-Félix, Josefina; Pandey, Sona

    2015-05-01

    Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop.

  15. The complete chloroplast genome of Capsicum frutescens (Solanaceae)1

    PubMed Central

    Shim, Donghwan; Raveendar, Sebastin; Lee, Jung-Ro; Lee, Gi-An; Ro, Na-Young; Jeon, Young-Ah; Cho, Gyu-Taek; Lee, Ho-Sun; Ma, Kyung-Ho; Chung, Jong-Wook

    2016-01-01

    Premise of the study: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. Methods and Results: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. Conclusions: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species. PMID:27213127

  16. [Analysis of microsatellite loci of the chloroplast genome in the genus Capsicum (Pepper)].

    PubMed

    Ryzhova, N N; Kochieva, E Z

    2004-08-01

    Six plastome microsatellites were examined in 43 accessions of the genus Capsicum. In total, 33 allelic variants were detected. A specific haplotype of chloroplast DNA was identified for each Capsicum species. Species-specific allelic variants were found for most wild Capsicum species. The highest intraspecific variation was observed for the C. baccatum plastome. Low cpDNA polymorphism was characteristic of C. annuum: the cpSSRs were either monomorphic or dimorphic. The vast majority of C. annuum accessions each had alleles of one type. Another allele type was rare and occurred only in wild accessions. The results testified again to genetic conservation of C. annuum and especially its cultivated forms. The phylogenetic relationships established for the Capsicum species on the basis of plastome analysis were similar to those inferred from the morphological traits, isozyme patterns, and molecular analysis of the nuclear genome.

  17. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    PubMed

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.

  18. Identifying potential sources of Sudan I contamination in Capsicum fruits over its growth period.

    PubMed

    Wu, Naiying; Gao, Wei; Zhou, Li; Lian, Yunhe; Li, Fengfei; Han, Wenjie

    2015-04-15

    Sudan dyes in spices are often assumed to arise from cross-contamination or malicious addition. Here, experiments were carried out to identify the potential source of Sudan I-IV in Capsicum fruits through investigation of their contents in native Capsicum tissues, soils and associated agronomic materials. Sudan II-IV was not detected in any of the tested samples. Sudan I was found in almost all samples except for the mulching film. Sudan I concentrations decreased from stems to leaves and then to fruits or roots. Sudan I levels in soils were significantly elevated by vegetation treatment. These results exclude the possibility of soil as the main source for Sudan I contamination in Capsicum fruits. Further study found out pesticide and fertilizer constitutes the major source of Sudan I contamination. This work represents a preliminary step for a detailed Sudan I assessment to support Capsicum management and protection in the studied region.

  19. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    PubMed

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species. PMID:24441736

  20. Method for the flotation oil extraction of light filth from ground capsicums.

    PubMed

    Thrasher, J J; Colliflower, E J

    1977-05-01

    The present official first action method for ground capsicums, 44.123, was adopted in 1945 and there have been great changes in processing and examination of spices since that time. The proposed method involves isopropanol pretreatment, followed by wet sieving and extraction of the light filth from 60% ethanol with flotation oil. The filter papers were clean and recoveries were good (95%) for 5 different lots of capsicums and annato spiked with insect fragments and rodent hairs. PMID:870482

  1. Genetic diversity in Capsicum germplasm based on microsatellite and random amplified microsatellite polymorphism markers.

    PubMed

    Rai, Ved Prakash; Kumar, Rajesh; Kumar, Sanjay; Rai, Ashutosh; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap; Rai, Awadesh Bahadur; Paliwal, Rajneesh

    2013-10-01

    A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 landraces derived from natural interspecific crosses. Out of 106 SSR markers, 25 polymorphic SSR markers (24 %) detected a total of 76 alleles (average, 3.04; range, 2-5). The average polymorphic information content (PIC) was 0.69 (range, 0.29-0.92). Seventeen RAMPO markers produced 87 polymorphic fragments with average PIC of 0.63 (range, 0.44-0.81). Dendrograms based on SSRs and RAMPOs generated two clusters. All 38 Capsicum annuum genotypes and an interspecific landrace clustered together, whereas nine non-annuum (three Capsicum frutescens, one Capsicum chinense, one Capsicum baccatum and four interspecific landraces) genotypes clustered separately. Genetic variation within non-annuum genotypes was greater than the C. annuum genotypes. Distinctness of interspecific derivative landraces grown in northeast India was validated; natural crossing between sympatric Capsicum species has been proposed as the mechanism of their origin. PMID:24431527

  2. Properties and detection of two cryptoviruses from pepper (Capsicum annuum).

    PubMed

    Sabanadzovic, Sead; Valverde, Rodrigo A

    2011-10-01

    Pepper (Capsicum annuum L.) contains a range of endogenous dsRNA molecules resembling the genomes of cryptoviruses. In this work, we have completed the molecular characterization of Pepper cryptic virus 1 (PCV-1) from cv "Jalapeño M" and generated complete genomic sequences of another cryptovirus from cv "Hungarian Wax" designated Pepper cryptic virus 2 (PCV-2). The two viruses share limited identical amino acid content in both genomic segments and appear phylogenetically closer to cryptoviruses reported from other crops (i.e. Raphanus sativus cryptic virus 3, Black raspberry cryptic virus) than to each other. Two sets of virus-specific primers were successfully used in RT-PCR tests for the simultaneous and discriminative detection of these two viruses in pepper leaves and seeds. Both viruses were detected in several pepper cultivars tested, either as single or mixed infections.

  3. Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

    PubMed Central

    Wai, Khin Pa Pa; Siddique, Muhammad Irfan; Mo, Hwang-Sung; Yoo, Hee Ju; Byeon, Si-Eun; Jegal, Yoonhyuk; Mekuriaw, Alebel A.; Kim, Byung-Soo

    2015-01-01

    Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying Bs1, Bs2 and Bs3, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047. PMID:26674555

  4. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru.

    PubMed

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Ríos, Llermé; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in

  5. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru.

    PubMed

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Ríos, Llermé; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in

  6. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru

    PubMed Central

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E.; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in

  7. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana.

    PubMed

    Seo, Eunyoung; Yeom, Seon-In; Jo, Sunghwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-04-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

  8. The occurrence and control of pepper mild mottle virus(PMMoV)in the USDA/ARS Capsicum germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four-thousand-four-hundred and three seed inventories of Capsicum spp. obtained from the USDA/ARS Capsicum germplasm collection were tested for the presence of Pepper Mild Mottle Virus (PMMoV). Approximately 32% of these inventories tested positive for PMMoV and the virus distribution was nearly un...

  9. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    PubMed

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  10. Occurrence of rhodamine B contamination in capsicum caused by agricultural materials during the vegetation process.

    PubMed

    Gao, Wei; Wu, Naiying; Du, Jingjing; Zhou, Li; Lian, Yunhe; Wang, Lei; Liu, Dengshuai

    2016-08-15

    This paper reports on the environmental rhodamine B (RhB) contamination in capsicum caused by agricultural materials during the vegetation process. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect 64 capsicum samples from China, Peru, India and Burma. Results demonstrated that RhB was found in all samples at low concentrations (0.11-0.98 μg/kg), indicating RhB contamination in capsicums is probably a ubiquitous phenomenon. In addition, studies into soils, roots, stems and leaves in Handan of Hebei province, China showed that the whole ecologic chain had been contaminated with RhB with the highest levels in leaves. The investigation into the agricultural environment in Handan of Hebei province and Korla of Xinjiang province, China demonstrated that the appearances of RhB contamination in the tested capsicums are mainly due to the agricultural materials contamination. The study verified that environmental contamination should be an important origin for the RhB contamination in capsicum fruits.

  11. Purification and structure determination of glucosides of capsaicin and dihydrocapsaicin from various Capsicum fruits.

    PubMed

    Higashiguchi, Fumiharu; Nakamura, Hiroyasu; Hayashi, Hideo; Kometani, Takashi

    2006-08-01

    Two new glucosides, capsaicin-beta-D-glucopyranoside (1) and dihydrocapsaicin-beta-D-glucopyranoside (2), were discovered in the fruit of the Capsicum annuum cultivar 'High Heat'. They were sequentially purified by acetone extraction, n-hexane extraction, and acetonitrile extraction, followed by medium-pressure liquid chromatography and high-performance liquid chromatography performed on an octadecylsilane column. Their chemical structures were elucidated by proton nuclear magnetic resonance, carbon nuclear magnetic resonance, and hydrolysis with alpha- and beta-glucosidases. The glucosides were also detected in various pungent cultivars of C. annuum, Capsicum frutescens, and Capsicum chinense by liquid chromatography-mass spectrometry. However, they were not detected in nonpungent cultivars of C. annuum. Furthermore, a positive correlation was observed between the quantity of the capsaicinoids, capsaicin, and dihydrocapsaicin and their glucosides.

  12. Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum

    NASA Astrophysics Data System (ADS)

    Chen, Long; Xu, Wang-Hua; Zhao, Ying-Guo; Kang, Yan; Liu, Shao-Hua; Zhang, Zai-Yong

    2012-12-01

    In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.

  13. [Studies on protein-based identification method of genetically modified capsicum].

    PubMed

    Liu, Jianjun; Deng, Pingjian; Fang, Shisong; Zhao, Jin

    2003-03-01

    The detection system based on protein is a method to evaluate the safety of genetically modified foods (GMF). Using cecropin BD gene in capsicum, a detecting method was set up. It is a system of evaluating the real expressive condition and safety of the foreign target protein of GMF. In this studies, with the preformative technic method, a satisfactory results by making use of hemolymph of immunized pupae of Antheraea pernyi as standard experimental material was achieved, comparing with the realities of the goal protein expressive condition of cecropin D gene in capsicum. The detecting steps were as following: the goal protein from material was extracted roughly, then with CM-Sepharose-FF ion-exchange chromatography twice, the goal protein was purified moderately. The purified product was identified by detecting the anti-bacterial activity, electrophoresis, biological auto-photography of the goal protein and MADDI-TOF mass spectrum. The results showed that the expressive foreign target protein in transgenic capsicum was in accordance with standard protein in the physical and chemical property, anti-bacterial activity and molecular weight. It indicated that expression of the target gene in capsicum is real, it corresponded to expected value. The separation, purification and identification methods of cecropin D were established in the study. By means of the comparative experiments about anti-bacterial activity and molecular weight of anti-bacterial peptide(ABP) from GM-capsicum and hemolymph of immunized pupae of Antheraea pernyi, the identification method of target protein from GM-capsicum was set up. The method is easy to be operated, fast and feasible.

  14. Nitrate Promotes Capsaicin Accumulation in Capsicum chinense Immobilized Placentas

    PubMed Central

    Aldana-Iuit, Jeanny G.; Sauri-Duch, Enrique; Miranda-Ham, María de Lourdes; Castro-Concha, Lizbeth A.; Cuevas-Glory, Luis F.; Vázquez-Flota, Felipe A.

    2015-01-01

    In chili pepper's pods, placental tissue is responsible for the synthesis of capsaicinoids (CAPs), the compounds behind their typical hot flavor or pungency, which are synthesized from phenylalanine and branched amino acids. Placental tissue sections from Habanero peppers (Capsicum chinense Jacq.) were immobilized in a calcium alginate matrix and cultured in vitro, either continuously for 28 days or during two 14-day subculture periods. Immobilized placental tissue remained viable and metabolically active for up to 21 days, indicating its ability to interact with media components. CAPs contents abruptly decreased during the first 7 days in culture, probably due to structural damage to the placenta as revealed by scanning electron microcopy. CAPs levels remained low throughout the entire culture period, even though a slight recovery was noted in subcultured placentas. However, doubling the medium's nitrate content (from 40 to 80 mM) resulted in an important increment, reaching values similar to those of intact pod's placentas. These data suggest that isolated pepper placentas cultured in vitro remain metabolically active and are capable of metabolizing inorganic nitrogen sources, first into amino acids and, then, channeling them to CAP synthesis. PMID:25710024

  15. Nitrate promotes capsaicin accumulation in Capsicum chinense immobilized placentas.

    PubMed

    Aldana-Iuit, Jeanny G; Sauri-Duch, Enrique; Miranda-Ham, María de Lourdes; Castro-Concha, Lizbeth A; Cuevas-Glory, Luis F; Vázquez-Flota, Felipe A

    2015-01-01

    In chili pepper's pods, placental tissue is responsible for the synthesis of capsaicinoids (CAPs), the compounds behind their typical hot flavor or pungency, which are synthesized from phenylalanine and branched amino acids. Placental tissue sections from Habanero peppers (Capsicum chinense Jacq.) were immobilized in a calcium alginate matrix and cultured in vitro, either continuously for 28 days or during two 14-day subculture periods. Immobilized placental tissue remained viable and metabolically active for up to 21 days, indicating its ability to interact with media components. CAPs contents abruptly decreased during the first 7 days in culture, probably due to structural damage to the placenta as revealed by scanning electron microcopy. CAPs levels remained low throughout the entire culture period, even though a slight recovery was noted in subcultured placentas. However, doubling the medium's nitrate content (from 40 to 80 mM) resulted in an important increment, reaching values similar to those of intact pod's placentas. These data suggest that isolated pepper placentas cultured in vitro remain metabolically active and are capable of metabolizing inorganic nitrogen sources, first into amino acids and, then, channeling them to CAP synthesis. PMID:25710024

  16. Genetic dissection of agronomic traits in Capsicum baccatum var. pendulum.

    PubMed

    Moulin, M M; Rodrigues, R; Bento, C S; Gonçalves, L S A; Santos, J O; Sudré, C P; Viana, A P

    2015-03-20

    Genetic mapping is very useful for dissecting complex agronomic traits. Genetic mapping allows for identification of quantitative trait loci (QTL), provide knowledge on a gene position and its adjacent region, and enable prediction of evolutionary mechanisms, in addition to contributing to synteny studies. The aim of this study was to predict genetic values associated with different agronomic traits evaluated in an F2 population of Capsicum baccatum var. pendulum. Previously, a reference genetic map for C. baccatum was constructed, which included 183 markers (42 microsatellite, 85 inter-simple sequence repeat, and 56 random amplification of polymorphic DNA) arranged in 16 linkage groups. The map was used to identify QTL associated with 11 agronomic traits, including plant height, crown diameter, number of days to flowering, days to fruiting, number of fruits per plant, average fruit weight, fruit length, fruit diameter, fruit pulp thickness, soluble solids, and fruit dry weight. QTL mapping was performed by standard interval mapping. The number of small QTL effects ranged from 3-11, with a total of 61 QTL detected in 9 linkage groups. This is the first report involving QTL analysis for C. baccatum species.

  17. Nitrate promotes capsaicin accumulation in Capsicum chinense immobilized placentas.

    PubMed

    Aldana-Iuit, Jeanny G; Sauri-Duch, Enrique; Miranda-Ham, María de Lourdes; Castro-Concha, Lizbeth A; Cuevas-Glory, Luis F; Vázquez-Flota, Felipe A

    2015-01-01

    In chili pepper's pods, placental tissue is responsible for the synthesis of capsaicinoids (CAPs), the compounds behind their typical hot flavor or pungency, which are synthesized from phenylalanine and branched amino acids. Placental tissue sections from Habanero peppers (Capsicum chinense Jacq.) were immobilized in a calcium alginate matrix and cultured in vitro, either continuously for 28 days or during two 14-day subculture periods. Immobilized placental tissue remained viable and metabolically active for up to 21 days, indicating its ability to interact with media components. CAPs contents abruptly decreased during the first 7 days in culture, probably due to structural damage to the placenta as revealed by scanning electron microcopy. CAPs levels remained low throughout the entire culture period, even though a slight recovery was noted in subcultured placentas. However, doubling the medium's nitrate content (from 40 to 80 mM) resulted in an important increment, reaching values similar to those of intact pod's placentas. These data suggest that isolated pepper placentas cultured in vitro remain metabolically active and are capable of metabolizing inorganic nitrogen sources, first into amino acids and, then, channeling them to CAP synthesis.

  18. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense

    PubMed Central

    2014-01-01

    Background The conversion of vanillin to vanillylamine is a key step in the biosynthetic route towards capsaicinoids in pungent cultivars of Capsicum sp. The reaction has previously been annotated to be catalysed by PAMT (putative aminotransferase; [GenBank: AAC78480.1, Swiss-Prot: O82521]), however, the enzyme has previously not been biochemically characterised in vitro. Results The biochemical activity of the transaminase was confirmed by direct measurement of the reaction with purified recombinant enzyme. The enzyme accepted pyruvate, and oxaloacetate but not 2-oxoglutarate as co-substrate, which is in accordance with other characterised transaminases from the plant kingdom. The enzyme was also able to convert (S)-1-phenylethylamine into acetophenone with high stereo-selectivity. Additionally, it was shown to be active at a broad pH range. Conclusions We suggest PAMT to be renamed to VAMT (vanillin aminotransferase, abbreviation used in this study) as formation of vanillin from vanillylamine could be demonstrated. Furthermore, due to high stereoselectivity and activity at physiological pH, VAMT is a suitable candidate for biocatalytic transamination in a recombinant whole-cell system. PMID:24712445

  19. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts.

    PubMed

    Siddique, Muhammad Asim; Grossmann, Jonas; Gruissem, Wilhelm; Baginsky, Sacha

    2006-12-01

    We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.

  20. Evaluation of oleoresin capsicum of Capsicum frutescenes var. Nagahari containing various percentages of capsaicinoids following inhalation as an active ingredient for tear gas munitions.

    PubMed

    Kumar, Pravin; Deb, Utsab; Kaushik, M P

    2012-08-01

    Comparative efficacy as peripheral sensory irritant, oral and inhalation exposure studies were carried out on oleoresin capsicum (OC) of Capsicum frutescence var. Nagahari containing various percentages of capsaicinoids and two synthetic isomers of capsaicin in Swiss albino male mouse model to come up with a suitable active ingredient from natural source for tear gas munitions. The compounds screened were OC having varying percentages of capsaicinoids (20, 40 and 80%, respectively) and synthetic isomers (E and Z) of capsaicin (8-methyl-N-vanillyl-6-nonenamide). Mice were exposed to pyrotechnically generated smoke of the compounds in an all glass static exposure chamber for 15 min to determine acute inhalation toxicity (LC₅₀) and quantitative sensory irritation potential (RD₅₀). Acute oral median lethal dose (LD₅₀) was also evaluated. Safety index of tear gas (SITG), a ratio of lethal concentration 50% (LC₅₀) and the concentration which depresses respiration by 50% (RD₅₀) due to peripheral sensory irritation is also proposed. The compound having highest SITG is considered as the most suitable to be used for tear gas munitions. The study revealed that oleoresin capsicum containing 40% capsaicinoids had the highest SITG among the compounds studied. The oral dosage versus mortality pattern of some compounds did not follow a true dose-response curve (DRC); however, following inhalation, all the compounds followed DRC. It was concluded that oleoresin capsicum (40% capsaicinoids) may be considered as the most suitable and environmental friendly compound from natural source to be used as an active ingredient for tear gas munitions.

  1. Dissipation pattern and risk assessment studies of triazophos residues on capsicum (Capsicum annuum L.) using GLC-FPD and GC-MS.

    PubMed

    Singh, Yadwinder; Mandal, Kousik; Singh, Balwinder

    2015-10-01

    The present study was carried out to observe the dissipation pattern of triazophos on capsicum and risk assessment of its residues on human beings and to suggest a waiting period for the safety of consumers. Following two applications of triazophos (Truzo 40 EC) at 500 and 1000 g a.i. ha(-1), the average initial deposits were found to be 3.61 and 6.26 mg kg(-1), respectively. These residues dissipated below the limit of quantification (LOQ) of 0.05 mg kg(-1) in 10 and 15 days at the recommended and double the recommended dosages, respectively. The calculated values of half-life were 2.31 and 2.14 days at recommended and double the recommended dosages, respectively. Theoretical maximum residue contribution (TMRC) values were found to be 28.8 and 41.6 μg person(-1) day(-1) at 500 and 1000 g a.i. ha(-1), respectively, and found to be below the maximum permissible intake on capsicum fruit on the 7th day. Therefore, a waiting period of 7 days is suggested for consumption of capsicum sprayed with triazophos at the recommended dosages.

  2. The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capsicum (chili peppers) is a New World genus with five crop species of great economic importance for food and spices. An up-to-date summary of the karyotypic knowledge is presented, including data on classical staining (chromosome number, size and morphology), silver impregnation (number and positi...

  3. Genetic diversity, population structure, and heritability of fruit traits in Capsicum annuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungenc...

  4. Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Clostridium-related poultry disease, necrotic enteritis (NE), causes substantial economic losses on a global scale. In this study, a mixture of two plant-derived phytonutrients, Capsicum oleoresin and turmeric oleoresin (XT), was evaluated for its effects on local and systemic immune responses ...

  5. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (capsicum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of post-harvest fruit quality during commercial marketing. We’ve examined the fruit cuticles from 50 diverse pepper genotypes from a world c...

  6. Chili leaf curl betasatellite is associated with a distinct recombinant begomovirus, Pepper leaf curl Lahore virus, in Capsicum in Pakistan.

    PubMed

    Tahir, Muhammad; Haider, Muhammad Saleem; Briddon, Rob W

    2010-04-01

    Capsium spp. are an important vegetable crop cultivated through Pakistan. Leaf curl disease is the major disease of Capsicum spp. in Pakistan caused by viruses. The disease has previously been shown to be associated with begomoviruses and betasatellites. We have cloned and sequenced a begomovirus and its associated betasatellite from Capsicum originating from central Pakistan. The begomovirus isolated was distinct from all previously characterised viruses and we propose the name Pepper leaf curl Lahore virus (PepLCLV) for this new species. Comparison of the sequence of PepLCLV with previously characterised begomoviruses shows it likely to have resulted from recombination between Papaya leaf curl virus and Chili leaf curl virus (ChiLCV), two species that have previously been identified in Pakistan. The betasatellite associated with PepLCLV in Capsicum was identified as Chili leaf curl betasatellite (ChLCB). This is the first identification of a cognate begomovirus for ChLCB infecting Capsicum, although this betasatellite has been shown in association with ChiLCV infecting potato in Pakistan. PepLCLV is one of an increasing number of monopartite begomoviruses shown to be associated with a betasatellite and one of the numerous species that affect Capsicum. In view of their only having been identified in Pakistan, PepLCLV and ChLCB likely represent a geographically distinct, Capsicum adapted, begomovirus-betasatellite complex.

  7. Virus diseases of peppers (Capsicum spp.) and their control.

    PubMed

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  8. Effect of sucrose and binary solution on osmotic dehydration of bell pepper (chilli) (Capsicum spp.) varieties.

    PubMed

    Raji Abdul Ganiy, O; Falade Kolawole, O; Abimbolu Fadeke, W

    2010-06-01

    Pepper (chilli) (Capsicum annum) varieties, 'Tatase' and 'Rodo', (Capsicum frutescens) 'Sombo' and 'Bawa' were osmotically dehydrated in sucrose solutions of 40, 50 and 60o Brix and binary solutions of 50° sucrose with 5, 10 and 15% salt at 20, 30 and 40°C for 9 h. Samples osmosed at higher sugar concentrations (50° and 60°Brix) gave better results while improved solute gain were obtained using binary mixture with lower processing time, energy and cost. Effects of varietal differences on solid gain and water loss showed a descending in the order 'Sombo', 'Rodo', 'Bawa' and 'Tatase'. The colours were retained and stabilized after osmotic dehydration. Therefore, the solid gain and colour retention are indications of value addition.

  9. fs3.1: a major fruit shape QTL conserved in Capsicum.

    PubMed

    Ben Chaim, Arnon; Borovsky, Yelena; Rao, G U; Tanyolac, Bahattin; Paran, Ilan

    2003-02-01

    fs3.1 is a major fruit shape (defined as the ratio of fruit length to fruit width) quantitative trait locus (QTL) originally detected in an intraspecific cross of Capsicum annuum between the blocky and elongated-fruited inbreds 'Maor' and 'Perennial', respectively. In addition to increasing fruit shape index, the 'Perennial' allele at fs3.1 increased fruit elongation and decreased fruit width and pericarp thickness. We verified the effect of fs3.1 in backcross inbred lines (BILs) derived from crossing 'Perennial' with 'Maor' and with a second blocky-type inbred line of C. annuum. To determine the effect of the fs3.1 region in additional Capsicum species, we constructed an advanced backcross population from the cross of 'Maor' and the oval-fruited Capsicum frutescens BG 2816 and an F2 of the introgression line IL 152 that contains an introgression of the fs3.1 region from Capsicum chinense PI 152225. QTLs for fruit shape, fruit width, and pericarp thickness, but not for fruit length, were detected in both crosses, indicating the conservation of the fs3.1 region as a QTL affecting fruit shape in pepper. We also tested tomato (Lycopersicon spp.) introgression lines containing the corresponding fs3.1 region from L. pennellii and L. hirsutum, but we did not detect a significant fruit shape QTL in these lines. The effect of fs3.1 on the growth of fruit dimensions varied with the genetic background. By measuring the length and width of ovaries and fruits of near-isogenic C. annuum lines that differ in fs3.1 during fruit development, we determined that fs3.1 controls shape predominantly by increasing the growth rate of the longitudinal axis in the first 2 weeks after pollination. However, in the crosses of C. annuum with C. frutescens and C. chinense, fs3.1 predominantly exerted its effect on the width dimension.

  10. DNA Barcoding in a Crop Genebank: Resolving the Capsicum annuum Species Complex.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability within eight cpDNA introns including trnS-trnfM, trnL-trnT, trnH-psbA, trnF-trnL, trnD-trnT, trnC-rpoB, rps16, and matK, and the nuclear waxy intron was examined in seven species of Capsicum (C. annuum, C. baccatum, C. chinense, C. frutescens, C. pubescens, C. chacoense, and C. rhomboide...

  11. Effect of osmotic pretreatment on air drying characteristics and colour of pepper (Capsicum spp) cultivars.

    PubMed

    Falade, Kolawole Olumuyiwa; Oyedele, Olaniyi O

    2010-10-01

    Air-drying characteristics of fresh and osmotically pretreated (40°B, 50°B and 60°B sucrose solutions for 9 h) four pepper cultivars namely, Rodo (Capsicum annuum), Shombo (Capsicum frutescens), Bawa (Capsicum frutenscens) and Tatashe (Capsicum annuum), and CIE L*a*b* parameters of air-dried (50, 60, 70 and 80 °C) peppers were investigated. Moisture diffusivity and activation energy (Ea) were calculated from Fick's law and analogous Arrhenius equation, respectively. Colour difference, chroma and hue angle of fresh- and osmo-oven dried peppers were evaluated. Drying rates occurred predominantly in the falling rate. Moisture diffusivity varied from 8.071 × 10(-10)-1.048 × 10(-8), 7.710 × 10(-11)-1.018 × 10(-9), 9.807 × 10(-9)-1.746 × 10(-8) and 8.748 × 10(-10)-1.464 × 10(-9) m(2)/s for Bawa, Rodo, Shombo, and Tatashe, respectively. Ea for moisture diffusion during drying of peppers varied from 53.86 to 84.86 kJ/mol and was affected by cultivars and osmotic pretreatment concentration. Osmotic pretreatment and drying temperature had significant effect (p < 0.05) on a*, b*, chroma and hue angle values of dried peppers. PMID:23572676

  12. Molecular and Morphological Characterization of Endophytic Heterobasidion araucariae from Roots of Capsicum annuum L. in Korea.

    PubMed

    Paul, Narayan Chandra; Deng, Jian Xin; Shin, Kyu Seop; Yu, Seung Hun

    2012-06-01

    A species of Heterobasidion was encountered during a diversity study of endophytic fungi from healthy root tissues of chili pepper (Capsicum annuum L.) in Korea. The fungal species (CNU081069) was identified as Heterobasidion araucariae based on phylogenetic analyses of the internal transcribed spacer and translation elongation factor gene sequences. Morphological descriptions of the endophytic isolate matched well with the previous references and supported the molecular identification. The fungus Heterobasidion araucariae CNU081069 is new to Korea. PMID:22870048

  13. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination.

    PubMed

    Giuffrida, Daniele; Dugo, Paola; Torre, Germana; Bignardi, Chiara; Cavazza, Antonella; Corradini, Claudio; Dugo, Giacomo

    2013-10-15

    In this research 12 different varieties of Capsicum cultivars belonging to three species (Capsicum chinense, Capsicum annuum, Capsicum frutescens) and of various colour, shape, and dimension have been characterised by their carotenoids and capsaicinoids content. The berries were cultivated in the region Emilia-Romagna, in Northern Italy. The native carotenoid composition was directly investigated by an HPLC-DAD-APCI-MS methodology, for the first time. In total, 52 carotenoids have been identified and considerable variation in carotenoid composition was observed among the various cultivars investigated. Among the cultivars with red colour, some Habanero, Naga morich and Sinpezon showed an high β-carotene content, whereas Serrano, Tabasco and Jalapeno showed an high capsanthin content and the absence of β-carotene. Habanero golden and Scotch Bonnet showed a high lutein, α-carotene and β-carotene amounts, and Habanero orange was rich in antheraxanthin, capsanthin and zeaxanthin. Cis-cryptocapsin was present in high amount in Habanero chocolate. The qualitative and quantitative determination of the capsaicinoids, alkaloids responsible for the pungency level, has also been estimated by a validated chromatographic procedure (HPLC-DAD) after a preliminary drying step and an opportune extraction procedure. Results have also been expressed in Scoville units. Dry matter and water activity have also been established on the fresh berries. The dried peppers of each variety were then submitted to the evaluation of the total nitrogen content, measured by a Dumas system, permitting to provide information on the protein content that was found to be in the range between 7 and 16%.

  14. Effect of osmotic pretreatment on air drying characteristics and colour of pepper (Capsicum spp) cultivars.

    PubMed

    Falade, Kolawole Olumuyiwa; Oyedele, Olaniyi O

    2010-10-01

    Air-drying characteristics of fresh and osmotically pretreated (40°B, 50°B and 60°B sucrose solutions for 9 h) four pepper cultivars namely, Rodo (Capsicum annuum), Shombo (Capsicum frutescens), Bawa (Capsicum frutenscens) and Tatashe (Capsicum annuum), and CIE L*a*b* parameters of air-dried (50, 60, 70 and 80 °C) peppers were investigated. Moisture diffusivity and activation energy (Ea) were calculated from Fick's law and analogous Arrhenius equation, respectively. Colour difference, chroma and hue angle of fresh- and osmo-oven dried peppers were evaluated. Drying rates occurred predominantly in the falling rate. Moisture diffusivity varied from 8.071 × 10(-10)-1.048 × 10(-8), 7.710 × 10(-11)-1.018 × 10(-9), 9.807 × 10(-9)-1.746 × 10(-8) and 8.748 × 10(-10)-1.464 × 10(-9) m(2)/s for Bawa, Rodo, Shombo, and Tatashe, respectively. Ea for moisture diffusion during drying of peppers varied from 53.86 to 84.86 kJ/mol and was affected by cultivars and osmotic pretreatment concentration. Osmotic pretreatment and drying temperature had significant effect (p < 0.05) on a*, b*, chroma and hue angle values of dried peppers.

  15. Response of carcinoma in situ (actinic keratosis) to green tea concentrate plus capsicum.

    PubMed

    Morré, D James; Geilen, Christoph C; Welch, Anna M; Morré, Dorothy M

    2009-01-01

    A single case of carcinoma in situ (actinic keratosis) was treated topically with a patch consisting of an aqueous paste of a commercially available mixture (50:1) of green tea concentrate plus Capsicum (Capsol-T®) for approximately 14 days. The carcinoma responded by the formation of apoptotic blisters whereas surrounding normal tissue showed no response. A second untreated carcinoma 17 cm distant from the treated area also responded indicative of a systemic action of the substance.

  16. Molecular profiling for genetic variability in Capsicum species based on ISSR and RAPD markers.

    PubMed

    Thul, Sanjog T; Darokar, Mahendra P; Shasany, Ajit K; Khanuja, Suman P S

    2012-06-01

    The taxonomic identity of Capsicum species is found to be difficult as it displays variations at morpho-chemical characters. Twenty-two accessions of six Capsicum species, namely, C. annuum, C. baccatum, C. chinense, C. eximium, C. frutescens, and C. luteum were investigated for phenotypic diversity based on flower color and for genetic differences by molecular makers. The genetic cluster analyses of 27 RAPD and eight ISSR primers, respectively, revealed genetic similarities in the ranges of 23-88% and 11-96%. Principal component analysis of the pooled RAPD and ISSR data further supports the genetic similarity and groupings. Different species showed variations in relation to corolla shade of flower. C. annuum accessions formed a single cluster in the molecular analysis as maintaining their flower characteristic. C. chinense accession shared flower features with the accessions of C. frutescens and were found to be closer at genotypic level. C. luteum was found to be rather closer to C. baccatum complex, both phenotypically and genetically. The only accession of C. eximium presenting purple flowers falls apart from the groupings. The floral characteristics and the molecular markers are found to be useful toward the delineation of the species specificity in Capsicum collection and identification of genetic stock.

  17. The capsicum transcriptome DB: a “hot” tool for genomic research

    PubMed Central

    Góngora-Castillo, Elsa; Fajardo-Jaime, Rubén; Fernández-Cortes, Araceli; Jofre-Garfias, Alba E; Lozoya-Gloria, Edmundo; Martínez, Octavio; Ochoa-Alejo, Neftalí; Rivera-Bustamante, Rafael

    2012-01-01

    Chili pepper (Capsicum annuum) is an economically important crop with no available public genome sequence. We describe a genomic resource to facilitate Capsicum annuum research. A collection of Expressed Sequence Tags (ESTs) derived from five C. annuum organs (root, stem, leaf, flower and fruit) were sequenced using the Sanger method and multiple leaf transcriptomes were deeply sampled using with GS-pyrosequencing. A hybrid assembly of 1,324,516 raw reads yielded 32,314 high quality contigs as validated by coverage and identity analysis with existing pepper sequences. Overall, 75.5% of the contigs had significant sequence similarity to entries in nucleic acid and protein databases; 23% of the sequences have not been previously reported for C. annuum and expand sequence resources for this species. A MySQL database and a user-friendly Web interface were constructed with search-tools that permit queries of the ESTs including sequence, functional annotation, Gene Ontology classification, metabolic pathways, and assembly information. The Capsicum Transcriptome DB is free available from http://www.bioingenios.ira.cinvestav.mx:81/Joomla/ PMID:22359434

  18. Morphoagronomic and molecular profiling of Capsicum spp from southwest Mato Grosso, Brazil.

    PubMed

    Campos, A L; Marostega, T N; Cabral, N S S; Araújo, K L; Serafim, M E; Seabra-Júnior, S; Sudré, C P; Rodrigues, R; Neves, L G

    2016-01-01

    The genus Capsicum ranks as the second most exported vegetable in Brazil, which is also considered to be a center of diversity for this genus. The aim of this study was to rescue genetic variability in the genus Capsicum in the southwest region of Mato Grosso, and to characterize and estimate the genetic diversity of accessions based on morphoagronomic descriptors and inter-simple sequence repeat molecular markers. Data were obtained following the criteria of the International Plant Genetic Resources Institute, renamed Bioversity International for Capsicum. Data were analyzed using different multivariate statistical techniques. An array of binary data was used to analyze molecular data, and the arithmetic complement of the Jaccard index was used to estimate the genetic dissimilarity among accessions. Six well-defined groups were formed based on the morphological characterization. The most divergent accessions were 142 and 126, with 125 and 126 being the most similar. The groups formed following agronomic characterization differed from those formed by morphological characterization, and there was a need to subdivide the groups for better distinction of accessions. Based on molecular analysis, accessions were divided into two groups, and there was also a need to subdivide the groups. Based on joint analysis (morphological + agronomic + molecular), six groups were formed with no duplicates. For all groups, the cophenetic correlation coefficient was higher than 0.8. These results provide useful information for the better management of the work collection. All correlations between the combined distance matrix were significant by the Mantel test. PMID:27525842

  19. Detection of gene expression changes in Capsicum annuum L. leaf foliar blight caused by Phytophthora capsici Leon. using qRT-PCR and leaf discs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora capsici is responsible for multiple disease syndromes of Capsicum annuum but the resistance mechanism is still unknown. Evaluating gene expression during foliar blight can be used to identify expression patterns associated with resistance in Capsicum species. This study reports a direct...

  20. Tolerability of Capsaicinoids from Capsicum Extract in a Beadlet Form: A Pilot Study

    PubMed Central

    Deshpande, Jayant; Jeyakodi, Shankaranarayanan; Juturu, Vijaya

    2016-01-01

    A single center, open-label, dose-finding adaptive study was conducted in twelve healthy overweight female subjects. The study was to evaluate the safety and tolerability of the capsaicinoids (CAPs) from Capsicum extract in a beadlet form compared to placebo in a healthy overweight population. The investigational product capsaicinoids (CAPs) from Capsicum extract in a beadlet form (Capsimax®) a proprietary encapsulated form of Capsicum extract in beadlet form supplemented at 2 mg, 4 mg, 6 mg, 8 mg and 10 mg of CAPs. An ascending dose protocol evaluated a total dose of 10 mg daily given in five divided doses (2 mg, 4 mg, 6 mg, 8 mg and 10 mg of CAPs). Each dose was given for a week. Safety and tolerability were assessed. Primary outcomes were tolerability assessments and reports of adverse events. Tolerability assessments were observed on skin color and any changes in skin, bowel movement, digestion, mouth or throat, hair color or changes in hair color, urination includes frequency and burning sensations, breathing, any changes in their health. Secondary outcomes were body weight, body mass index (BMI), blood pressure (SBP/DBP), vital signs, electrocardiograms, clinical chemistry parameters including liver function tests, lung function tests and kidney function tests and complete blood count (CBC). No dose effective changes were observed. The escalating dose levels of CAPs in a beadlet form product found was tolerable and safe for weight management studies. Tolerability assessments and safety blood markers showed no significant changes from baseline. No significant serious adverse events were reported throughout the duration of the study. Further longer term studies are required to explore the tolerability of the product. This trial is registered with ISRCTN: #  ISRCTN10975080. PMID:27066073

  1. ToF-SIMS imaging of capsaicinoids in Scotch Bonnet peppers (Capsicum chinense).

    PubMed

    Tyler, Bonnie J; Peterson, Richard E; Lee, Therese G; Draude, Felix; Pelster, Andreas; Arlinghaus, Heinrich F

    2016-06-13

    Peppers (Capsicum spp.) are well known for their ability to cause an intense burning sensation when eaten. This organoleptic response is triggered by capsaicin and its analogs, collectively called capsaicinoids. In addition to the global popularity of peppers as a spice, there is a growing interest in the use of capsaicinoids to treat a variety of human ailments, including arthritis, chronic pain, digestive problems, and cancer. The cellular localization of capsaicinoid biosynthesis and accumulation has previously been studied by fluorescence microscopy and electron microscopy, both of which require immunostaining. In this work, ToF-SIMS has been used to image the distribution of capsaicinoids in the interlocular septum and placenta of Capsicum chinense (Scotch Bonnet peppers). A unique cryo-ToF-SIMS instrument has been used to prepare and analyze the samples with minimal sample preparation. Samples were frozen in liquid propane, cryosectioned in vacuum, and analyzed without exposure to ambient pressure. ToF-SIMS imaging was performed at -110 °C using a Bi3 (+) primary ion beam. Molecular ions for capsaicin and four other capsaicinoids were identified in both the positive and negative ToF-SIMS spectra. The capsaicinoids were observed concentrated in pockets between the outer walls of the palisade cells and the cuticle of the septum, as well as in the intercellular spaces in both the placenta and interlocular septum. This is the first report of label-free direct imaging of capsaicinoids at the cellular level in Capsicum spp. These images were obtained without the need for labeling or elaborate sample preparation. The study demonstrates the usefulness of ToF-SIMS imaging for studying the distribution of important metabolites in plant tissues.

  2. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.

    PubMed

    Cremer, D R; Eichner, K

    2000-06-01

    Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.

  3. ToF-SIMS imaging of capsaicinoids in Scotch Bonnet peppers (Capsicum chinense).

    PubMed

    Tyler, Bonnie J; Peterson, Richard E; Lee, Therese G; Draude, Felix; Pelster, Andreas; Arlinghaus, Heinrich F

    2016-06-01

    Peppers (Capsicum spp.) are well known for their ability to cause an intense burning sensation when eaten. This organoleptic response is triggered by capsaicin and its analogs, collectively called capsaicinoids. In addition to the global popularity of peppers as a spice, there is a growing interest in the use of capsaicinoids to treat a variety of human ailments, including arthritis, chronic pain, digestive problems, and cancer. The cellular localization of capsaicinoid biosynthesis and accumulation has previously been studied by fluorescence microscopy and electron microscopy, both of which require immunostaining. In this work, ToF-SIMS has been used to image the distribution of capsaicinoids in the interlocular septum and placenta of Capsicum chinense (Scotch Bonnet peppers). A unique cryo-ToF-SIMS instrument has been used to prepare and analyze the samples with minimal sample preparation. Samples were frozen in liquid propane, cryosectioned in vacuum, and analyzed without exposure to ambient pressure. ToF-SIMS imaging was performed at -110 °C using a Bi3 (+) primary ion beam. Molecular ions for capsaicin and four other capsaicinoids were identified in both the positive and negative ToF-SIMS spectra. The capsaicinoids were observed concentrated in pockets between the outer walls of the palisade cells and the cuticle of the septum, as well as in the intercellular spaces in both the placenta and interlocular septum. This is the first report of label-free direct imaging of capsaicinoids at the cellular level in Capsicum spp. These images were obtained without the need for labeling or elaborate sample preparation. The study demonstrates the usefulness of ToF-SIMS imaging for studying the distribution of important metabolites in plant tissues. PMID:27075215

  4. Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    NASA Technical Reports Server (NTRS)

    Chapman, D. K.; Brown, A. H.; Dahl, A. O.

    1975-01-01

    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force.

  5. Structural investigation of a heteropolysaccharide isolated from the green fruits of Capsicum annuum.

    PubMed

    Mondal, Subhas; Das, Debsankar; Maiti, Debabrata; Roy, Sadhan K; Islam, Syed S

    2009-06-12

    A water-soluble polysaccharide isolated from the hot water extract of the green fruits of Capsicum annuum was found to consist of 3-O-acyl-L-rhamnose, D-methyl galacturonate, 6-O-methyl-D-galactose in a molar proportion of nearly 1:2:1. Structural investigation of the polysaccharide was carried out using total hydrolysis, methylation analysis, periodate oxidation followed by GLC-MS, and NMR experiments. On the basis of the above-mentioned experiments it is concluded that the following repeating unit is present in the polysaccharide.

  6. Capsaicin from chili ( Capsicum spp.) inhibits vascular smooth muscle cell proliferation.

    PubMed

    Liu, Rongxia; Heiss, Elke H; Guo, Dean; Dirsch, Verena M; Atanasov, Atanas G

    2015-01-01

    Accelerated vascular smooth muscle cell (VSMC) proliferation is implied in cardiovascular disease and significantly contributes to vessel lumen reduction following surgical interventions such as percutaneous transluminal coronary angioplasty or bypass surgery. Therefore, identification and characterization of compounds and mechanisms able to counteract VSMC proliferation is of potential therapeutic relevance. This work reveals the anti-proliferative effect of the natural product capsaicin from Capsicum spp. by quantification of metabolic activity and DNA synthesis in activated VSMC. The observed in vitro activity profile of capsaicin warrants further research on its mechanism of action and potential for therapeutic application. PMID:25685327

  7. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta).

    PubMed

    Nascimento, Patrícia L A; Nascimento, Talita C E S; Ramos, Natália S M; Silva, Girliane R; Gomes, José Erick Galindo; Falcão, Rosângela E A; Moreira, Keila A; Porto, Ana L F; Silva, Tania M S

    2014-04-24

    This paper presents the quantification, antioxidant and antimicrobial activity of capsaicin, dihydrocapsaicin and the flavonoid chrysoeriol isolated from different extracts (hexane and acetonitrile extracts from whole fruit, peel and seed) of Capsicum frutescens (pimenta malagueta). The acetonitrile extract of the seeds, peel and whole fruits contained capsaicin as a major component, followed in abundance by dihydrocapsaicin and chrysoeriol. The antimicrobial activity of the isolated compounds against seven microorganisms showed chrysoeriol was the most active compound. In the antioxidant test, the acetonitrile extract from the whole fruit showed the highest activity. The antioxidant activity of pimenta malagueta may be correlated with its phenolic content, principally with the most active compound, capsaicin.

  8. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas.

    PubMed

    Perry, Linda; Dickau, Ruth; Zarrillo, Sonia; Holst, Irene; Pearsall, Deborah M; Piperno, Dolores R; Berman, Mary Jane; Cooke, Richard G; Rademaker, Kurt; Ranere, Anthony J; Raymond, J Scott; Sandweiss, Daniel H; Scaramelli, Franz; Tarble, Kay; Zeidler, James A

    2007-02-16

    Chili peppers (Capsicum spp.) are widely cultivated food plants that arose in the Americas and are now incorporated into cuisines worldwide. Here, we report a genus-specific starch morphotype that provides a means to identify chili peppers from archaeological contexts and trace both their domestication and dispersal. These starch microfossils have been found at seven sites dating from 6000 years before present to European contact and ranging from the Bahamas to southern Peru. The starch grain assemblages demonstrate that maize and chilies occurred together as an ancient and widespread Neotropical plant food complex that predates pottery in some regions.

  9. EcoTILLING in Capsicum species: searching for new virus resistances

    PubMed Central

    2010-01-01

    Background The EcoTILLING technique allows polymorphisms in target genes of natural populations to be quickly analysed or identified and facilitates the screening of genebank collections for desired traits. We have developed an EcoTILLING platform to exploit Capsicum genetic resources. A perfect example of the utility of this EcoTILLING platform is its application in searching for new virus-resistant alleles in Capsicum genus. Mutations in translation initiation factors (eIF4E, eIF(iso)4E, eIF4G and eIF(iso)4G) break the cycle of several RNA viruses without affecting the plant life cycle, which makes these genes potential targets to screen for resistant germplasm. Results We developed and assayed a cDNA-based EcoTILLING platform with 233 cultivated accessions of the genus Capsicum. High variability in the coding sequences of the eIF4E and eIF(iso)4E genes was detected using the cDNA platform. After sequencing, 36 nucleotide changes were detected in the CDS of eIF4E and 26 in eIF(iso)4E. A total of 21 eIF4E haplotypes and 15 eIF(iso)4E haplotypes were identified. To evaluate the functional relevance of this variability, 31 possible eIF4E/eIF(iso)4E combinations were tested against Potato virus Y. The results showed that five new eIF4E variants (pvr210, pvr211, pvr212, pvr213 and pvr214) were related to PVY-resistance responses. Conclusions EcoTILLING was optimised in different Capsicum species to detect allelic variants of target genes. This work is the first to use cDNA instead of genomic DNA in EcoTILLING. This approach avoids intronic sequence problems and reduces the number of reactions. A high level of polymorphism has been identified for initiation factors, showing the high genetic variability present in our collection and its potential use for other traits, such as genes related to biotic or abiotic stresses, quality or production. Moreover, the new eIF4E and eIF(iso)4E alleles are an excellent collection for searching for new resistance against other RNA

  10. Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L.

    PubMed

    Maoka, T; Mochida, K; Kozuka, M; Ito, Y; Fujiwara, Y; Hashimoto, K; Enjo, F; Ogata, M; Nobukuni, Y; Tokuda, H; Nishino, H

    2001-10-30

    Capsanthin and related carotenoids isolated from the fruits of red paprika Capsicum annuum L. showed potent in vitro anti-tumor-promoting activity with inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Among them, capsanthin diester and capsorbin diester showed strong inhibitory effects. Furthermore, capsanthin , capsanthin 3'-ester and capsanthin 3,3'-diester , major carotenoids in paprika, exhibited potent anti-tumor-promoting activity in an in vivo mouse skin two-stage carcinogenesis assay using 7, 12-dimethylbenz[a]anthracene as an initiator and TPA as a promoter.

  11. Pungency in paprika (Capsicum annuum). 1. Decrease of capsaicinoid content following cellular disruption.

    PubMed

    Kirschbaum-Titze, Petra; Hiepler, Constanze; Mueller-Seitz, Erika; Petz, Michael

    2002-02-27

    The capsaicinoid content in fruits of Capsicum annuum decreased within several days to a level of only 10% of the starting value when cells were disrupted by homogenization. This decrease was not observed in fruits that were carefully cut into halves. The analysis of one half made it possible to determine the reference content at time zero for the second half. A much lower decrease was observed when minced fruits were stored under nitrogen, whereas storage under oxygen resulted in considerable losses of capsaicinoids, indicating oxidative processes as a cause for the decrease of capsaicinoid content.

  12. Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders.

    PubMed

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Mota, T; Morais, H; Ramos, A

    2000-08-11

    The efficiency of microwave-assisted extraction (MAE) for the extraction of colour pigments from paprika (Capsicum annuum) powders was evaluated using 30 extracting solvent mixtures. The separation efficacy and selectivity of MAE was carried out using a spectral mapping technique and the relationship between the efficacy and selectivity of extraction and the physicochemical parameters of solvent mixtures was calculated by stepwise regression analysis. The calculation results were verified experimentally by the separation of pigment fractions by high-performance liquid chromatography. It was established that both the efficacy and selectivity of MAE depend significantly on the dielectric constant of the extraction solvent mixture.

  13. Oil flotation extraction of light filth from ground capsicums excluding paprika: collaborative study.

    PubMed

    Thrasher, J J; Colliflower, E J

    1978-07-01

    A collaborative study has been completed on an improved method for the isolation of light filth from ground capsicums other than paprika. The proposed method involves isopropanol pretreatment, wet-sieving, and extraction from cooled 60% ethanol with a mineral oil-heptane mixture. The collaborative tests by the proposed method showed an approximate 2-fold increase in recoveries of insect fragments and rodent hairs with acceptable coefficients of variation and clean filter papers. The proposed method has been adopted as official first action to replace 44.123. PMID:681260

  14. Whole-Genome Sequencing and Annotation of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum annuum (Bird's Eye Chili) and Capsicum chinense (Yellow Lantern Chili), Respectively.

    PubMed

    Gan, Huan You; Gan, Han Ming; Savka, Michael A; Triassi, Alexander J; Wheatley, Matthew S; Naqvi, Kubra F; Foxhall, Taylor E; Anauo, Michael J; Baldwin, Mariah L; Burkhardt, Russell N; O'Bryon, Isabelle G; Dailey, Lucas K; Busairi, Nurfatini Idayu; Keith, Robert C; Khair, Megat Hazmah Megat Mazhar; Rasul, Muhammad Zamir Mohd; Rosdi, Nur Aiman Mohd; Mountzouros, James R; Rhoads, Aleigha C; Selochan, Melissa A; Tautanov, Timur B; Polter, Steven J; Marks, Kayla D; Caraballo, Alexander A; Hudson, André O

    2015-01-01

    Here, we report the genome sequences of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum spp. Annotation revealed gene clusters for the synthesis of bacilysin, lichensin, and bacillibactin and sporulation killing factor (skfA) in Bacillus safensis RIT372 and turnerbactin and carotenoid in Pseudomonas oryzihabitans RIT370. PMID:25883290

  15. Whole-Genome Sequencing and Annotation of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum annuum (Bird’s Eye Chili) and Capsicum chinense (Yellow Lantern Chili), Respectively

    PubMed Central

    Gan, Huan You; Gan, Han Ming; Savka, Michael A.; Triassi, Alexander J.; Wheatley, Matthew S.; Naqvi, Kubra F.; Foxhall, Taylor E.; Anauo, Michael J.; Baldwin, Mariah L.; Burkhardt, Russell N.; O’Bryon, Isabelle G.; Dailey, Lucas K.; Busairi, Nurfatini Idayu; Keith, Robert C.; Khair, Megat Hazmah Megat Mazhar; Rasul, Muhammad Zamir Mohd; Rosdi, Nur Aiman Mohd; Mountzouros, James R.; Rhoads, Aleigha C.; Selochan, Melissa A.; Tautanov, Timur B.; Polter, Steven J.; Marks, Kayla D.; Caraballo, Alexander A.

    2015-01-01

    Here, we report the genome sequences of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum spp. Annotation revealed gene clusters for the synthesis of bacilysin, lichensin, and bacillibactin and sporulation killing factor (skfA) in Bacillus safensis RIT372 and turnerbactin and carotenoid in Pseudomonas oryzihabitans RIT370. PMID:25883290

  16. Whole-Genome Sequencing and Annotation of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum annuum (Bird's Eye Chili) and Capsicum chinense (Yellow Lantern Chili), Respectively.

    PubMed

    Gan, Huan You; Gan, Han Ming; Savka, Michael A; Triassi, Alexander J; Wheatley, Matthew S; Naqvi, Kubra F; Foxhall, Taylor E; Anauo, Michael J; Baldwin, Mariah L; Burkhardt, Russell N; O'Bryon, Isabelle G; Dailey, Lucas K; Busairi, Nurfatini Idayu; Keith, Robert C; Khair, Megat Hazmah Megat Mazhar; Rasul, Muhammad Zamir Mohd; Rosdi, Nur Aiman Mohd; Mountzouros, James R; Rhoads, Aleigha C; Selochan, Melissa A; Tautanov, Timur B; Polter, Steven J; Marks, Kayla D; Caraballo, Alexander A; Hudson, André O

    2015-04-16

    Here, we report the genome sequences of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum spp. Annotation revealed gene clusters for the synthesis of bacilysin, lichensin, and bacillibactin and sporulation killing factor (skfA) in Bacillus safensis RIT372 and turnerbactin and carotenoid in Pseudomonas oryzihabitans RIT370.

  17. [Identification and localization of virus RNA in pepper (Capsicum anuum L.) chloroplasts by means of the PCR method].

    PubMed

    Mel'nichuk, M D; Dubin, A V; Sytnik, S K; Kozhukalo, B E; Alekseenko, I P; D'iachkova, O A

    2003-01-01

    Localization of virus RNA in stroma of Capsicum anuum L. chloroplasts was determined by the PCR method. Accumulation of virus protein in the membranes and stroma of infected pepper chloroplasts has been studied. It is concluded that the virus protein synthesis takes place in the pepper chloroplasts.

  18. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During postharvest storage, pepper (Capsicum sp.) fruit commonly wilts (or shrivels) early because of rapid water loss combined with the hollow fruit’s limited water storage capacity, a condition that greatly reduces its shelf-life and market value. To understand the role of fruit cuticle lipid comp...

  19. Capsicum and capsaicin--a review: case report of the use of hot peppers in child abuse.

    PubMed

    Tominack, R L; Spyker, D A

    1987-01-01

    Capsaicin, the active principle of hot peppers of the genus Capsicum, exhibits broad bioactivity. It targets neuronal structures which contain substance P, clinically seen as gastrointestinal and dermatologic irritation, bronchospasm and fibrinolysis. As a research tool, capsaicin profoundly alters neurologic anatomy and function. We review the toxicity of capsaicin and comment briefly on the use of hot peppers in child abuse. PMID:3328791

  20. Dietary Capsicum and Curcuma longa oleoresins alter the intestinal microbiome and Necrotic Enteritis Severity in three commercial broiler breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three commercial broiler breeds were fed from hatch with a diet supplemented with Capsicum and Curcuma longa oleoresins, and co-infected with Eimeria maxima and Clostridium perfringens to induce necrotic enteritis (NE). Pyrotag deep sequencing of bacterial 16S rRNA showed that gut microbiota compos...

  1. Capsicum--production, technology, chemistry, and quality. Part III. Chemistry of the color, aroma, and pungency stimuli.

    PubMed

    Govindarajan, V S

    1986-01-01

    The spice capsicum, the fruits of the genus Capsicum (Family Solanaceae), is a very popular food additive in many parts of the world, valued for the important sensory attributes of color, pungency, and aroma. A large number of varieties are widely cultivated and traded. The characteristic carotenoids of the bright red paprika and cayenne-type chillies, the high character impact aroma stimuli, the methoxy pyrazine of green bell capsicum, the esters of ripe tabasco and the highly potent pungency stimuli, and the capsaicinoids of African and other Asian varieties of chillies, have been of great interest to chemists and biochemists. Research workers in other disciplines such as genetics and breeding, agriculture, and technology have been interested in this spice to develop new varieties with combinations of different optimal levels of the stimuli for the sensory attributes and to maximize production of storable products for specific end uses. Physiologists have been intensely studying the action of the highly potent pungency stimuli and social psychologists the curious aspect of growing acceptance and preference for the initially unacceptable pungency sensation. In the sequential review of all these aspects of the fruit spice Capsicum, the earlier two parts covered history, botany, cultivation and primary processing, and processed products, standards, world production, and trade. In Part III, the chemistry, the compositional variations, synthesis and biosynthesis of the functional components, the carotenoids, the volatiles, and the capsaicinoids are comprehensively reviewed. PMID:3527565

  2. High-throughput gene expression analysis of intestinal intraepithelial lymphocytes following oral feeding of Carvacrol, cinnamaldehyde, or capsicum oleoresin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among dietary phytonutrients, carvacrol, cinnamaldehyde, and Capsicum oleoresin are well-known for their anti-inflammatory and antibiotic effects in human and veterinary medicine. To further define the molecular and genetic mechanisms responsible for these properties, broiler chickens were fed a st...

  3. Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry.

    PubMed

    Moscone, Eduardo A; Baranyi, Monika; Ebert, Irma; Greilhuber, Johann; Ehrendorfer, Friedrich; Hunziker, Armando T

    2003-07-01

    Flow cytometric measurements of nuclear DNA content were performed using ethidium bromide as the DNA stain (internal standard, Hordeum vulgare 'Ditta', 1C = 5.063 pg) in 25 samples belonging to nine diploid species and four varieties of Capsicum: C. chacoense, C. parvifolium, C. frutescens, C. chinense, C. annuum var. annuum, C. baccatum var. baccatum, C. baccatum var. pendulum, C. baccatum var. umbilicatum, C. eximium and C. pubescens, all with 2n = 24, and C. campylopodium with 2n = 26. In addition, one sample each of C. annuum var. annuum and C. pubescens were also analysed using Feulgen densitometry (standard, Allium cepa 'Stuttgarter Riesen', 1C = 16.75 pg). Both staining methods resulted in very similar relative values. Genome size displays significant variation between but not within species (except in C. campylopodium), and contributes to their taxonomic grouping. 1C-values range from 3.34-3.43 pg (3273-3361 Mbp) in C. chacoense and the C. annuum complex to 4.53-5.77 pg (4439-5655 Mbp) in C. campylopodium and C. parvifolium. The data obtained support conclusions on phylogenetic relationships in the genus derived from karyotype analyses using chromosome banding approaches. In Capsicum, constitutive heterochromatin amount is correlated with genome size, except in C. parvifolium, and is regarded as an additive genomic component.

  4. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit.

    PubMed

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A

    2014-02-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile.

  5. Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense.

    PubMed

    Liu, Kede; Jiang, Hui; Moore, Shanna L; Watkins, Christopher B; Jahn, Molly M

    2006-03-01

    A novel LTP (CcLTP) from a Capsicum chinense cv Habanero was isolated from a fruit-specific SSH library. While this gene shares similarity with other LTPs, it is considerably larger than any lipid transfer protein reported to date and has a neutral predicted pI. CcLTP is consistently expressed in seedlings from three Capsicum species. It is also present at very high levels in ripening and mature fruit in C. chinense, but not in fruit of any C. annuum or C. frutescens varieties examined. We have obtained 3.8 kb of sequence containing the CcLTP gene and isolated two forms of mRNA transcripts which result from an alternative splicing event. Both transcripts are full-length cDNAs with putative open reading frames of 492 bp and 519 bp, encoding proteins of 164 and 173 amino acids, respectively, which differ only by an insertion of 9 amino acids. Both splice variants are detected consistently via RT-PCR. A 19 bp deletion in the promoter region differentiates C. chinense CcLTP from that of C. annuum and C. frutescens. The protein and its expression are characterized in C. chinense fruit, and a possible role in pepper fruit ripening and maturation is discussed.

  6. Capsicum Species: Symptomless Hosts and Reservoirs of Tomato yellow leaf curl virus.

    PubMed

    Polston, J E; Cohen, L; Sherwood, T A; Ben-Joseph, R; Lapidot, M

    2006-05-01

    ABSTRACT Five Capsicum species were tested for susceptibility to Tomato yellow leaf curl virus (TYLCV) and the mild strain of TYLCV (TYLCV-Mld). TYLCV was able to infect 30 of 55 genotypes of C. annuum, one of six genotypes of C. chinense, one of two genotypes of C. baccatum, and the only genotype of C. frutescens tested but was unable to infect the one genotype of C. pubescens tested. This is the first evidence for the susceptibility of C. baccatum, C. chinense, and C. frutescens to TYLCV. Unlike TYLCV isolates, TYLCV-Mld was unable to infect C. chinense. No host differences were observed between the Israeli and Florida isolates of TYLCV. None of the Capsicum species showed symptoms after infection with TYLCV or TYLCV-Mld. TYLCV was detected in fruits of C. annuum, but whiteflies were unable to transmit virus from fruits to plants. White-flies were able to transmit both TYLCV and TYLCV-Mld from infected pepper plants to tomato plants. Pepper plants in research plots were found infected with TYLCV at rates as much as 100%. These data demonstrate the ability of some genotypes of pepper to serve as reservoirs for the acquisition and transmission of TYLCV and TYLCV-Mld.

  7. A molecular marker for in situ genetic resource conservation of Capsicum annuum var. acuminatum (Solanaceae).

    PubMed

    Kaewdoungdee, N; Tanee, T

    2013-02-28

    The Thailand cultivar pepper 'phrik man bangchang' (Capsicum annuum var. acuminatum, Solanaceae) was originally cultivated in the Bangchang Subdistrict, Amphawa District in Samut Songkhram Province. The cultivated areas are limited; we verified its distribution in Thailand for in situ 'phrik man bangchang' genetic resource conservation. Samples were collected from the original cultivation area of Bangchang Subdistrict (Or) and were randomly explored in Ratchaburi Province (RB), Khon Kaen Province (KK), and Sakon Nakhon Province (SN). A pure line from The Tropical Vegetable Research Center at Kasetsart University was used as the standard indicator. Two more Capsicum species, C. chinensis and C. frutescens, and a species from another genus in the family, Solanum melongena, were included. A dendrogram constructed from random amplified polymorphic DNA fingerprints indicated that the Or, RB, KK, and SN samples were C. annuum var. acuminatum with supportive similarity coefficients of 0.79 to 0.98. Finally, DNA barcodes, from psbA-trnH spacer region, were provided for the 3 wild species, C. annuum var. acuminatum, C. chinensis, and C. frutescens under GenBank accession Nos. JQ087869-JQ087871. The nucleotide variations between species were 0.23 to 0.26. In summary, 'phrik man bangchang' is still being planted in Bangchang Subdistrict, but only in small areas. The distribution of planting areas is expected to be throughout Thailand.

  8. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization.

    PubMed

    Qin, Cheng; Yu, Changshui; Shen, Yaou; Fang, Xiaodong; Chen, Lang; Min, Jiumeng; Cheng, Jiaowen; Zhao, Shancen; Xu, Meng; Luo, Yong; Yang, Yulan; Wu, Zhiming; Mao, Likai; Wu, Haiyang; Ling-Hu, Changying; Zhou, Huangkai; Lin, Haijian; González-Morales, Sandra; Trejo-Saavedra, Diana L; Tian, Hao; Tang, Xin; Zhao, Maojun; Huang, Zhiyong; Zhou, Anwei; Yao, Xiaoming; Cui, Junjie; Li, Wenqi; Chen, Zhe; Feng, Yongqiang; Niu, Yongchao; Bi, Shimin; Yang, Xiuwei; Li, Weipeng; Cai, Huimin; Luo, Xirong; Montes-Hernández, Salvador; Leyva-González, Marco A; Xiong, Zhiqiang; He, Xiujing; Bai, Lijun; Tan, Shu; Tang, Xiangqun; Liu, Dan; Liu, Jinwen; Zhang, Shangxing; Chen, Maoshan; Zhang, Lu; Zhang, Li; Zhang, Yinchao; Liao, Weiqin; Zhang, Yan; Wang, Min; Lv, Xiaodan; Wen, Bo; Liu, Hongjun; Luan, Hemi; Zhang, Yonggang; Yang, Shuang; Wang, Xiaodian; Xu, Jiaohui; Li, Xueqin; Li, Shuaicheng; Wang, Junyi; Palloix, Alain; Bosland, Paul W; Li, Yingrui; Krogh, Anders; Rivera-Bustamante, Rafael F; Herrera-Estrella, Luis; Yin, Ye; Yu, Jiping; Hu, Kailin; Zhang, Zhiming

    2014-04-01

    As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.

  9. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization

    PubMed Central

    Qin, Cheng; Yu, Changshui; Shen, Yaou; Fang, Xiaodong; Chen, Lang; Min, Jiumeng; Cheng, Jiaowen; Zhao, Shancen; Xu, Meng; Luo, Yong; Yang, Yulan; Wu, Zhiming; Mao, Likai; Wu, Haiyang; Ling-Hu, Changying; Zhou, Huangkai; Lin, Haijian; González-Morales, Sandra; Trejo-Saavedra, Diana L.; Tian, Hao; Tang, Xin; Zhao, Maojun; Huang, Zhiyong; Zhou, Anwei; Yao, Xiaoming; Cui, Junjie; Li, Wenqi; Chen, Zhe; Feng, Yongqiang; Niu, Yongchao; Bi, Shimin; Yang, Xiuwei; Li, Weipeng; Cai, Huimin; Luo, Xirong; Montes-Hernández, Salvador; Leyva-González, Marco A.; Xiong, Zhiqiang; He, Xiujing; Bai, Lijun; Tan, Shu; Tang, Xiangqun; Liu, Dan; Liu, Jinwen; Zhang, Shangxing; Chen, Maoshan; Zhang, Lu; Zhang, Li; Zhang, Yinchao; Liao, Weiqin; Zhang, Yan; Wang, Min; Lv, Xiaodan; Wen, Bo; Liu, Hongjun; Luan, Hemi; Zhang, Yonggang; Yang, Shuang; Wang, Xiaodian; Xu, Jiaohui; Li, Xueqin; Li, Shuaicheng; Wang, Junyi; Palloix, Alain; Bosland, Paul W.; Li, Yingrui; Krogh, Anders; Rivera-Bustamante, Rafael F.; Herrera-Estrella, Luis; Yin, Ye; Yu, Jiping; Hu, Kailin; Zhang, Zhiming

    2014-01-01

    As an economic crop, pepper satisfies people’s spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs. PMID:24591624

  10. Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. Seeds.

    PubMed

    Dias, Germana Bueno; Gomes, Valdirene Moreira; Pereira, Umberto Zottich; Ribeiro, Suzanna F Ferreira; Carvalho, André O; Rodrigues, Rosana; Machado, Olga L Tavares; Fernandes, Kátia Valevski Sales; Ferreira, André Teixeira S; Perales, Jonas; Da Cunha, Maura

    2013-01-01

    Capsicum species belong to the Solanaceae family and have great social, economic and agronomical significance. The present research presents data on the isolation and characterization of Capsicum chinense Jacq. peptides which were scrutinized in relation to their toxicity towards a diverse set of yeast species. The protein extract was separated with C18 reverse-phase chromatography in high performance liquid chromatography, resulting in three different peptide enriched fractions (PEFs) termed PEF1, PEF2 and PEF3. Tricine-SDS-PAGE of the PEF2 revealed peptides with molecular masses of approximately 5.0 and 8.5 kDa. These PEFs also exhibited strong antifungal activity against different yeasts. In the presence of the PEF2, Candida tropicalis exhibited morphological changes, including cellular agglomeration and formation of pseudohyphae. Determined N-terminal sequences of PEF2 and PEF3 were proven to be highly homologous to serine proteinase inhibitors, when analysed by comparative database sequence tools. For this reason were performed protease inhibitory activity assay. The PEFs displayed high inhibitory activity against trypsin and low inhibitory activity against chymotrypsin. PEF2 and PEF3 were considerably unsusceptible to a broad interval of pH and temperatures. Due to the myriad of application of Proteinase inhibitors (PIs) in fields ranging from plant protection against pathogens and pests to medicine such as in cancer and virus replication inhibition, the discovery of new PIs with new properties are of great interest.

  11. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes.

    PubMed

    Patade, Vikas Yadav; Khatri, Deepti; Manoj, Kamble; Kumari, Maya; Ahmed, Zakwan

    2012-12-01

    Benefits of seed priming in seedling establishment and tolerance to subsequent stress exposure are well reported. However, the molecular mechanisms underlying the priming mediated benefits are not much discovered. Results of our earlier experiments established that thiourea (TU) seed priming imparts cold tolerance to capsicum seedlings. Therefore, to understand molecular mechanisms underlying priming mediated cold stress tolerance, quantitative transcript expression of stress responsive genes involved in transcript regulation (CaCBF1A, CaCBF1B, Zinc Finger protein, CaWRKY30), osmotic adjustment (PROX1, P5CS, Osmotin), antioxidant defence (CAT2, APX, GST, GR1, Cu/Zn SOD, Mn SOD, Fe SOD), signaling (Annexin), movement of solutes and water (CaPIP1), and metabolite biosynthesis through phenylpropanoid pathway (CAH) was studied in response to cold (4 °C; 4 and 24 h) stress in seedlings grown from the TU primed, hydroprimed and unsoaked seeds. The transcript expression of CaWRKY30, PROX1, Osmotin, Cu/Zn SOD and CAH genes was either higher or induced earlier on cold exposure in thiourea priming than that of hydroprimed and unsoaked over the respective unstressed controls. The results thus suggest that the TU priming modulate expression of these genes thereby imparting cold tolerance in capsicum seedlings.

  12. Bell pepper endornavirus: molecular and biological properties, and occurrence in the genus Capsicum.

    PubMed

    Okada, Ryo; Kiyota, Eri; Sabanadzovic, Sead; Moriyama, Hiromitsu; Fukuhara, Toshiyuki; Saha, Prasenjit; Roossinck, Marilyn J; Severin, Ake; Valverde, Rodrigo A

    2011-11-01

    Bell peppers (Capsicum annuum) harbour a large dsRNA virus. The linear genome (14.7 kbp) of two isolates from Japanese and USA bell pepper cultivars were completely sequenced and compared. They shared extensive sequence identity and contained a single, long ORF encoding a 4815 aa protein. This polyprotein contained conserved motifs of putative viral methyltransferase (MTR), helicase 1 (Hel-1), UDP-glycosyltransferase and RNA-dependent RNA polymerase. This unique arrangement of conserved domains has not been reported in any of the known endornaviruses. Hence this virus, for which the name Bell pepper endornavirus (BPEV) is proposed, is a distinct species in the genus Endornavirus (family Endornaviridae). The BPEV-encoded polyprotein contains a cysteine-rich region between the MTR and Hel-1 domains, with conserved CXCC motifs shared among several endornaviruses, suggesting an additional functional domain. In agreement with general endornavirus features, BPEV contains a nick in the positive-strand RNA molecule. The virus was detected in all bell pepper cultivars tested and transmitted through seed but not by graft inoculations. Analysis of dsRNA patterns and RT-PCR using degenerate primers revealed putative variants of BPEV, or closely related species, infecting other C. annuum genotypes and three other Capsicum species (C. baccatum, C. chinense and C. frutescens).

  13. Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum L.).

    PubMed

    Lee, Jung-Hoon; Yoon, Yong-Hwi; Kim, Hak-Yoon; Shin, Dong-Hyun; Kim, Dal-Ung; Lee, In-Jung; Kim, Kil-Ung

    2002-06-30

    We isolated and artificially expressed a cDNA clone of the Capsicum annuum squalene synthase (CASS) gene to elucidate the pattern of alternatively regulated two-branch point enzymes. The 1,674-bp CASS cDNA contained an open reading frame of 411 amino acids, yielding a predicted molecular mass of about 45 kDa. A deduced amino acid sequence comparison to other squalene syntheses showed identities with Nicotiana tabacum (91%), Nicotiana benthamiana (90%), Arabidopsis thaliana (79%), and rats (40%). The artificially expressed soluble form of the CASS enzyme was identified by the enzyme activity that converted FPP to squalene and by SDS-PAGE. A Southern blot analysis indicated that at least two copies of the squalene synthase gene exist in the hot pepper genome. In hot pepper, the regulation of the branch point enzymes, squalene synthase and sesquiterpene cyclase was investigated in the UV-challenged leaves of Capsicum annuum. The transcript level and enzyme activity of the CASS were slightly reduced by UV. However, those of the CASC were rapidly induced within 24 h and slowly decreased thereafter. PMID:12132584

  14. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.).

    PubMed

    Nagy, István; Stágel, Anikó; Sasvári, Zsuzsanna; Röder, Marion; Ganal, Martin

    2007-07-01

    A novel set of informative microsatellite markers for pepper (Capsicum annuum L.) is provided. Screening of approximately 168 000 genomic clones and 23 174 public database entries resulted in a total of 411 microsatellite-containing sequences that could be used for primer design and functional testing. A set of 154 microsatellite markers originated from short-insert genomic libraries and 257 markers originated from database sequences. Of those markers, 147 (61 from genomic libraries and 86 from database sequences) showed specific and scoreable amplification products and detected polymorphisms between at least 2 of the 33 lines of a test panel consisting of cultivated and wild Capsicum genotypes. These informative markers were subsequently surveyed for allelic variation and information content. The usefulness of the new markers for diversity and taxonomic studies was demonstrated by the construction of consistent phylogenetic trees based on the microsatellite polymorphisms. Conservation of a subset of microsatellite loci in pepper, tomato, and potato was proven by cross-species amplification and sequence comparisons. For several informative pepper microsatellite markers, homologous expressed sequence tag (EST) counterparts could be identified in these related species that also carry microsatellite motifs. Such orthologs can potentially be used as reference markers and common anchoring points on the genetic maps of different solanaceous species. PMID:17893745

  15. Functional validation of Capsicum frutescens aminotransferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures.

    PubMed

    Gururaj, Harishchandra B; Padma, Mallaya N; Giridhar, Parvatam; Ravishankar, Gokare A

    2012-10-01

    Capsaicinoid biosynthesis involves the participation of two substrates viz. vanillylamine and C(9)-C(11) fatty acid moieties. Vanillylamine which is a derivative of vanillin is synthesized through a transaminase reaction in the phenylpropanoid pathway of capsaicinoid synthesis. Here we report the functional validation of earlier reported putative aminotransferase gene for vanillylamine biosynthesis in heterologous system using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Molecular analysis tools comprising PCR and Southern blot analysis have shown the integration of the foreign gene in N. tabacum and C. frutescens calli cultures. The study shows the production of vanillylamine in transformed N. tabacum callus cultures and also the reduction of vanillylamine production when whole gene based antisense binary vector construct was used in transformation of C. frutescens callus cultures. Vanillylamine production, aminotransferase assay with Western blot analysis for crude proteins of transformants established the production of putative aminotransferase (pAMT) protein in alternate plant. The result is a clear evidence of involvement of the reported putative aminotransferase responsible for vanillylamine biosynthesis in capsaicinoid biosynthesis pathway, confirming the gene function through functional validation.

  16. Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum.

    PubMed

    Bento, C S; Rodrigues, R; Gonçalves, L S A; Oliveira, H S; Santos, M H; Pontes, M C; Sudré, C P

    2013-04-10

    We investigated inheritance of resistance to Pepper yellow mosaic virus (PepYMV) in Capsicum baccatum var. pendulum accessions UENF 1616 (susceptible) crossed with UENF 1732 (resistant). Plants from generations P1, P2, F1, F2, BC1:1, and BC1:2 were inoculated and the symptoms were evaluated for 25 days. Subsequently, an area under the disease progress curve was calculated and subjected to generation means analysis. Only the average and epistatic effects were significant. The broad and narrow sense heritability estimates were 35.52 and 21.79%, respectively. The estimate of the minimum number of genes that control resistance was 7, indicating that resistance is polygenic and complex. Thus, methods to produce segregant populations that advocate selection in more advanced generations would be the most appropriate to produce chili pepper cultivars resistant to PepYMV.

  17. [Parent grouping of 31 elite inbred lines in hot pepper (Capsicum annuum L.)].

    PubMed

    Ren, Yu; Zhang, Yin-Dong; Yin, Jun-Mei; Wang, De-Yuan

    2008-02-01

    Genetic differences were examined among thirty-one elite inbred lines in Capsicum annuum L. Two types of analytic technologies, i.e. SRAP markers and genotypes of traits, were used, and their relative effectiveness was compared. 27 of 30 primer combinations could amplify 310 polymorphic bands among inbred lines, indicating SRAP marker was efficient to detect polymorphism among pepper inbred lines. A dendrogram of 31 inbred lines based on SRAP markers and Yule coefficients could basically separate lines of C. annuum var. grossum and C. annuum var. longum, and reveal the pedigrees of inbred lines. A dendrogram of 31 inbred lines based on genotypes of traits and standardized Euclidean coefficients could separate lines of C. annuum var. grossum and C. annuum var. longum. The SRAP marker genetic distances were correlated with distances based on the genotypes of traits. These results and their application in the development of hot pepper F1 hy-brids were also discussed.

  18. Differential resistances to anthracnose in Capsicum baccatum as responding to two Colletotrichum pathotypes and inoculation methods.

    PubMed

    Mahasuk, Pitchayapa; Chinthaisong, Jittima; Mongkolporn, Orarat

    2013-09-01

    Chili anthracnose, caused by Colletotrichum spp., is one of the major diseases to chili production in the tropics and subtropics worldwide. Breeding for durable anthracnose resistance requires a good understanding of the resistance mechanisms to different pathotypes and inoculation methods. This study aimed to investigate the inheritances of differential resistances as responding to two different Colletotrichum pathotypes, PCa2 and PCa3 and as by two different inoculation methods, microinjection (MI) and high pressure spray (HP). Detached ripe fruit of Capsicum baccatum 'PBC80' derived F2 and BC1s populations was assessed for anthracnose resistance. Two dominant genes were identified responsible for the differential resistance to anthracnose. One was responsible for the resistance to PCa2 and PCa3 by MI and the other was responsible for the resistance to PCa3 by HP. The two genes were linked with 16.7 cM distance. PMID:24273429

  19. Assessment of mutagenicity induced by MMS and DES in Capsicum annuum L.

    PubMed

    Gulfishan, Mohd; Khan, Ainul Haq; Jafri, Iram Fatma; Bhat, Tariq Ahmad

    2012-04-01

    Seeds of Capsicum annuum L. var. G4 were subjected to different concentrations of methyl methane sulphonate (MMS) and diethyl sulphate (DES). The effects of different mutagenic treatments on meiosis, chiasma frequency, and pollen fertility have been studied in M1 generation. Various types of meiotic aberrations such as univalent, multivalent, stickiness, bridge, laggards, cytomixis etc. were observed in all the treatments. However, the MMS treatments proved to be more effective in inducing meiotic aberrations as compared to DES. Moreover, the frequency of meiotic aberrations was at its maximum at metaphase followed by anaphase and telophase stages. As the concentrations increase, reduction in chiasma frequency and pollen fertility was observed in all the treatments and, MMS again was found to be more effective than DES treatments.

  20. Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes.

    PubMed

    Perla, Venu; Nimmakayala, Padma; Nadimi, Marjan; Alaparthi, Suresh; Hankins, Gerald R; Ebert, Andreas W; Reddy, Umesh K

    2016-07-01

    This study aimed to analyze 123 genotypes of Capsicum baccatum L. originating from 22 countries, at two stages of fruit development, for vitamin C content and its relationship with reducing sugars in fruit pericarp. Among the parametric population, vitamin C and reducing sugar concentrations ranged between 2.54 to 50.44 and 41-700mgg(-1) DW of pericarp, respectively. Overall, 14 genotypes accumulated 50-500% of the RDA of vitamin C in each 2g of fruit pericarp on a dry weight basis. Compared with ripened fruits, matured (unripened) fruits contained higher vitamin C and lower reducing sugars. About 44% variation in the vitamin C content could be ascribed to levels of reducing sugars. For the first time, this study provides comprehensive data on vitamin C in the world collection of C. baccatum genotypes that could serve as a key resource for food research in future. PMID:26920284

  1. Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum.

    PubMed

    Bento, C S; Rodrigues, R; Gonçalves, L S A; Oliveira, H S; Santos, M H; Pontes, M C; Sudré, C P

    2013-01-01

    We investigated inheritance of resistance to Pepper yellow mosaic virus (PepYMV) in Capsicum baccatum var. pendulum accessions UENF 1616 (susceptible) crossed with UENF 1732 (resistant). Plants from generations P1, P2, F1, F2, BC1:1, and BC1:2 were inoculated and the symptoms were evaluated for 25 days. Subsequently, an area under the disease progress curve was calculated and subjected to generation means analysis. Only the average and epistatic effects were significant. The broad and narrow sense heritability estimates were 35.52 and 21.79%, respectively. The estimate of the minimum number of genes that control resistance was 7, indicating that resistance is polygenic and complex. Thus, methods to produce segregant populations that advocate selection in more advanced generations would be the most appropriate to produce chili pepper cultivars resistant to PepYMV. PMID:23661433

  2. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    PubMed

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes.

  3. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development.

    PubMed

    Jang, Yu Kyung; Jung, Eun Sung; Lee, Hyun-Ah; Choi, Doil; Lee, Choong Hwan

    2015-11-01

    Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.

  4. Isolation of a series of apocarotenoids from the fruits of the red paprika Capsicum annuum L.

    PubMed

    Maoka, T; Fujiwara, Y; Hashimoto, K; Akimoto, N

    2001-03-01

    Eleven apocarotenoids (1-11) including five new compounds, 4, 6, 9, 10 and 11, were isolated from the fruits of the red paprika Capsicum annuum L. The structures of new apocarotenoids were determined to be apo-14'-zeaxanthinal (4), apo-13-zeaxanthinone (6), apo-12'-capsorubinal (9), apo-8'-capsorubinal (10), and 9,9'-diapo-10,9'-retro-carotene-9,9'-dione (11) by spectroscopic analysis. The other six known apocarotenoids were identified to be apo-8'-zeaxanthinal (1), apo-10'-zeaxanthinal (2), apo-12'-zeaxanthinal (3), apo-15-zeaxanthinal (5), apo-11-zeaxanthinal (7), and apo-9-zeaxanthinone (8) which have not been previously found in paprika. These apocarotenoids were assumed to be oxidative cleavage products of C(40) carotenoid such as capsanthin in paprika.

  5. The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum).

    PubMed

    Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi

    2016-01-01

    The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.

  6. Biocontrol of Rhizoctonia solani and Pythium ultimum on Capsicum by Trichoderma koningii in potting medium.

    PubMed

    Harris, A R

    1999-09-01

    Two isolates of Trichoderma koningii were evaluated for efficacy in control of damping-off diseases in seedlings of Capsicum annuum grown in pasteurized potting medium in a glasshouse. A selected isolate of binucleate Rhizoctonia and two fungicides were also included as standards for control of Rhizoctonia solani and Pythium ultimum var. sporangiiferum. Both isolates of T. koningii reduced seedling death caused by R. solani in one of two experiments, and by P. u. sporangii-ferum in two of three experiments. Neither isolate of T. koningii suppressed damping-off caused by either pathogen as consistently as the binucleate Rhizoctonia or fungicides. The implications of these results for commercial disease management are discussed.

  7. Transferability of microsatellite markers of Capsicum annuum L. to C. frutescens L. and C. chinense Jacq.

    PubMed

    Carvalho, S I C; Ragassi, C F; Oliveira, I B; Amaral, Z P S; Reifschneider, F J B; Faleiro, F G; Buso, G S C

    2015-07-17

    In order to support further genetic, diversity, and phylogeny studies of Capsicum species, the transferability of a Capsicum annuum L. simple sequence repeat (SSR) microsatellite set was analyzed for C. frutescens L. ("malagueta" and "tabasco" peppers) and C. chinense Jacq. (smell peppers, among other types). A total of 185 SSR primers were evaluated in 12 accessions from 115 C. frutescens L. and 480 C. chinense Jacq, representing different types within each species. Transferability to C. frutescens L. and C. chinense Jacq. occurred for 116 primers (62.7%). Nineteen (16.37%) were polymorphic in C. frutescens L. and 36 (31.03%) in C. chinense Jacq., 17 of which were coincident and could be used to analyze samples obtained for the 2 species. Among these primers, CA49 showed a different amplitude range of alleles between the 2 species (130-132 base pairs for C. frutescens L. and 120-128 base pairs for C. chinense Jacq.), and could differentiate the species. A total of 55 alleles were identified among the 19 polymorphic SSR loci among accessions of C. frutescens L., with the number of alleles per locus ranging from 2 to 5, a mean of 2.89, and the polymorphic information content ranging from 0.30 to 0.65. The number of alleles identified in C. chinense Jacq. was 119, ranging from 2 to 5 alleles per locus, an average of 3.30, and polymorphic information content from 0.19 to 0.68. The C. annuum L. SSR primers were most often transfer-able and polymorphic for C. frutescens L. and C. chinense Jacq., and we present a set of SSR for each species.

  8. Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity.

    PubMed

    Wahyuni, Yuni; Ballester, Ana-Rosa; Tikunov, Yury; de Vos, Ric C H; Pelgrom, Koen T B; Maharijaya, Awang; Sudarmonowati, Enny; Bino, Raoul J; Bovy, Arnaud G

    2013-02-01

    An overview of the metabolic diversity in ripe fruits of a collection of 32 diverse pepper (Capsicum sp.) accessions was obtained by measuring the composition of both semi-polar and volatile metabolites in fruit pericarp, using untargeted LC-MS and headspace GC-MS platforms, respectively. Accessions represented C. annuum, C. chinense, C. frutescens and C. baccatum species, which were selected based on variation in morphological characters, pungency and geographic origin. Genotypic analysis using AFLP markers confirmed the phylogenetic clustering of accessions according to Capsicum species and separated C. baccatum from the C. annuum-C. chinense-C. frutescens complex. Species-specific clustering was also observed when accessions were grouped based on their semi-polar metabolite profiles. In total 88 semi-polar metabolites could be putatively identified. A large proportion of these metabolites represented conjugates of the main pepper flavonoids (quercetin, apigenin and luteolin) decorated with different sugar groups at different positions along the aglycone. In addition, a large group of acyclic diterpenoid glycosides, called capsianosides, was found to be highly abundant in all C. annuum genotypes. In contrast to the variation in semi-polar metabolites, the variation in volatiles corresponded well to the differences in pungency between the accessions. This was particularly true for branched fatty acid esters present in pungent accessions, which may reflect the activity through the acyl branch of the metabolic pathway leading to capsaicinoids. In addition, large genetic variation was observed for many well-established pepper aroma compounds. These profiling data can be used in breeding programs aimed at improving metabolite-based quality traits such as flavour and health-related metabolites in pepper fruits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0432-6) contains supplementary material, which is available to

  9. Genetic diversity analysis of Capsicum spp germplasm bank accessions based on α/β-esterase polymorphism.

    PubMed

    Monteiro, E R; Bronzato, A R; Orasmo, G R; Lopes, A C A; Gomes, R L F; Mangolin, C A; Machado, M F P S

    2013-04-12

    Genetic diversity and structure were analyzed in 10 accessions belonging to Banco Ativo de Germoplasma de Capsicum located at Federal University of Piauí in northwestern Brazil that receives pepper samples grown in community gardens in various regions and Brazilian states. Selections were made from seeds of C. chinense (4 accessions), C. annuum (5 accessions), and C. baccatum (1 accession). Samples consisting of leaves were collected from 4-10 plants of each accession (a total of 85 plants). Native polyacrylamide gel electrophoresis was used to identify α- and β-esterase polymorphisms. Polymorphism was clearly detected in 5 loci. Sixteen alleles were found at 5 α/β-esterase loci of the three Capsicum species. In the C. chinense samples, the highest HO and HE values were 0.3625 and 0.4395, respectively, whereas in C. annuum samples, HO and HE values were 0.2980 and 0.3310, respectively; the estimated HO and HE values in C. chinense samples were higher than those detected in C. annuum samples. A deficit of homozygous individuals was found in C. chinense (FIS = -0.6978) and C. annuum (FIS = 0.7750). Genetic differentiation between C. chinense and C. annuum at these loci was high (FST = 0.1867) indicating that C. chinense and C. annuum are genetically structured species for α/β- esterase isozymes. The esterase analysis showed high genetic diversity among the C. chinense and C. annuum samples and very high genetic differentiation (FST = 0.6321) among the C. chinense and C. annuum samples and the C. baccatum accession.

  10. Transferability of microsatellite markers of Capsicum annuum L. to C. frutescens L. and C. chinense Jacq.

    PubMed

    Carvalho, S I C; Ragassi, C F; Oliveira, I B; Amaral, Z P S; Reifschneider, F J B; Faleiro, F G; Buso, G S C

    2015-01-01

    In order to support further genetic, diversity, and phylogeny studies of Capsicum species, the transferability of a Capsicum annuum L. simple sequence repeat (SSR) microsatellite set was analyzed for C. frutescens L. ("malagueta" and "tabasco" peppers) and C. chinense Jacq. (smell peppers, among other types). A total of 185 SSR primers were evaluated in 12 accessions from 115 C. frutescens L. and 480 C. chinense Jacq, representing different types within each species. Transferability to C. frutescens L. and C. chinense Jacq. occurred for 116 primers (62.7%). Nineteen (16.37%) were polymorphic in C. frutescens L. and 36 (31.03%) in C. chinense Jacq., 17 of which were coincident and could be used to analyze samples obtained for the 2 species. Among these primers, CA49 showed a different amplitude range of alleles between the 2 species (130-132 base pairs for C. frutescens L. and 120-128 base pairs for C. chinense Jacq.), and could differentiate the species. A total of 55 alleles were identified among the 19 polymorphic SSR loci among accessions of C. frutescens L., with the number of alleles per locus ranging from 2 to 5, a mean of 2.89, and the polymorphic information content ranging from 0.30 to 0.65. The number of alleles identified in C. chinense Jacq. was 119, ranging from 2 to 5 alleles per locus, an average of 3.30, and polymorphic information content from 0.19 to 0.68. The C. annuum L. SSR primers were most often transfer-able and polymorphic for C. frutescens L. and C. chinense Jacq., and we present a set of SSR for each species. PMID:26214475

  11. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows.

    PubMed

    Oh, J; Giallongo, F; Frederick, T; Pate, J; Walusimbi, S; Elias, R J; Wall, E H; Bravo, D; Hristov, A N

    2015-09-01

    This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In

  12. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows.

    PubMed

    Oh, J; Giallongo, F; Frederick, T; Pate, J; Walusimbi, S; Elias, R J; Wall, E H; Bravo, D; Hristov, A N

    2015-09-01

    This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In

  13. Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity.

    PubMed

    Wahyuni, Yuni; Ballester, Ana-Rosa; Tikunov, Yury; de Vos, Ric C H; Pelgrom, Koen T B; Maharijaya, Awang; Sudarmonowati, Enny; Bino, Raoul J; Bovy, Arnaud G

    2013-02-01

    An overview of the metabolic diversity in ripe fruits of a collection of 32 diverse pepper (Capsicum sp.) accessions was obtained by measuring the composition of both semi-polar and volatile metabolites in fruit pericarp, using untargeted LC-MS and headspace GC-MS platforms, respectively. Accessions represented C. annuum, C. chinense, C. frutescens and C. baccatum species, which were selected based on variation in morphological characters, pungency and geographic origin. Genotypic analysis using AFLP markers confirmed the phylogenetic clustering of accessions according to Capsicum species and separated C. baccatum from the C. annuum-C. chinense-C. frutescens complex. Species-specific clustering was also observed when accessions were grouped based on their semi-polar metabolite profiles. In total 88 semi-polar metabolites could be putatively identified. A large proportion of these metabolites represented conjugates of the main pepper flavonoids (quercetin, apigenin and luteolin) decorated with different sugar groups at different positions along the aglycone. In addition, a large group of acyclic diterpenoid glycosides, called capsianosides, was found to be highly abundant in all C. annuum genotypes. In contrast to the variation in semi-polar metabolites, the variation in volatiles corresponded well to the differences in pungency between the accessions. This was particularly true for branched fatty acid esters present in pungent accessions, which may reflect the activity through the acyl branch of the metabolic pathway leading to capsaicinoids. In addition, large genetic variation was observed for many well-established pepper aroma compounds. These profiling data can be used in breeding programs aimed at improving metabolite-based quality traits such as flavour and health-related metabolites in pepper fruits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0432-6) contains supplementary material, which is available to

  14. Genetic diversity analysis of Capsicum spp germplasm bank accessions based on α/β-esterase polymorphism.

    PubMed

    Monteiro, E R; Bronzato, A R; Orasmo, G R; Lopes, A C A; Gomes, R L F; Mangolin, C A; Machado, M F P S

    2013-01-01

    Genetic diversity and structure were analyzed in 10 accessions belonging to Banco Ativo de Germoplasma de Capsicum located at Federal University of Piauí in northwestern Brazil that receives pepper samples grown in community gardens in various regions and Brazilian states. Selections were made from seeds of C. chinense (4 accessions), C. annuum (5 accessions), and C. baccatum (1 accession). Samples consisting of leaves were collected from 4-10 plants of each accession (a total of 85 plants). Native polyacrylamide gel electrophoresis was used to identify α- and β-esterase polymorphisms. Polymorphism was clearly detected in 5 loci. Sixteen alleles were found at 5 α/β-esterase loci of the three Capsicum species. In the C. chinense samples, the highest HO and HE values were 0.3625 and 0.4395, respectively, whereas in C. annuum samples, HO and HE values were 0.2980 and 0.3310, respectively; the estimated HO and HE values in C. chinense samples were higher than those detected in C. annuum samples. A deficit of homozygous individuals was found in C. chinense (FIS = -0.6978) and C. annuum (FIS = 0.7750). Genetic differentiation between C. chinense and C. annuum at these loci was high (FST = 0.1867) indicating that C. chinense and C. annuum are genetically structured species for α/β- esterase isozymes. The esterase analysis showed high genetic diversity among the C. chinense and C. annuum samples and very high genetic differentiation (FST = 0.6321) among the C. chinense and C. annuum samples and the C. baccatum accession. PMID:23661440

  15. Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum.

    PubMed

    Kim, Ki-Jeong; Park, Chang-Jin; Ham, Byung-Kook; Choi, Soo Bok; Lee, Boo-Ja; Paek, Kyung-Hee

    2006-04-01

    Hot pepper (Capsicum annuum L. cv. Bugang) plants exhibit a hypersensitive response (HR) upon infection by Tobacco mosaic virus (TMV) pathotype P(0). Previously, to elucidate molecular mechanism that underlies this resistance, hot pepper cv. Bugang leaves were inoculated with TMV-P(0) and genes specifically up-regulated during the HR were isolated by microarray analysis. One of the clones, Capsicum annuum cytosolic pyruvate kinase 1 (CaPK(c)1) gene was increased specifically in the incompatible interaction with TMV-P(0). The expression of CaPK(c)1 gene was also triggered not only by various hormones such as salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), but also NaCl and wounding. These results suggest that CaPK(c)1 responds to several defense-related abiotic stresses in addition to TMV infection.

  16. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).

    PubMed

    Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro

    2016-03-01

    We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus. PMID:26959315

  17. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).

    PubMed

    Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro

    2016-03-01

    We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus.

  18. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  19. The role of some weeds as hosts of Capsicum viruses in the rift valley parts of Ethiopia.

    PubMed

    Alemu, Tameru; Hamacher, J; Dehne, H W

    2002-01-01

    Hot pepper (Capsicum annuum. L.) is a traditionally and economically important spice crop in Ethiopia. Chronic infection with viruses is reported as major constraint, that often force farmers to ban its production. However, epidemiological studies on these viruses are lacking in the country. Knowledge of the weed flora as virus reservoir is essential to reduce the spread of plant viruses. The potential role of some frequently and abundantly occurring weed species as host plants for Capsicum viruses was therefore investigated. Surveys were conducted during the 2000/2001 cropping- and off-season. Samples of various weed species revealing virus symptoms were collected from different districts. Collection was done from inside and at the border of pepper cropped and fallow fields. It was also performed along road sides and irrigation channels. The identity of the collected isolates was established based on serology, electron microscopy and host range studies. Moreover, seeds were collected from natural populations of the most prevalent weeds, namely Datura stramonium and Nicandra physalodes. They were grown under glass house conditions and tested for their ability to host viruses. To verify their role further, healthy seedlings from these weeds were artificially inoculated with all viruses isolated from weeds and Capsicum leaf samples. Natural infection of different Potyviruses with an average incidence of 33% in the weed samples were the most dominant. In addition, the occurrence of Cucumber mosaic virus, Tomato mosaic virus and Potato virus X in these weeds was demonstrated. However, none of the isolated viruses was found to be seed borne in the tested weed species and pepper crop (var.Mrkofanna) under glass house conditions. Recently, there was an explosion in population size of some solanaceous weeds, particularly Datura and Nicandra species in the area. The presence of infected weeds throughout the year means, that they are an important reservoir and source for

  20. Structure of new carotenoids with the 6-oxo-kappa end group from the fruits of paprika, Capsicum annuum.

    PubMed

    Maoka, Takashi; Akimoto, Naoshige; Fujiwara, Yasuhiro; Hashimoto, Keiji

    2004-01-01

    New carotenoids 1 and 2 were isolated as minor components from the ripe fruits of paprika (Capsicum annuum). The structures of 1 and 2 were determined to be (3R,5'R)-3-hydroxy-beta,kappa-caroten-6'-one and (5'R)-3,4-didehydro-beta,kappa-caroten-6'-one, respectively, from UV-vis, NMR, CD, HRFABMS, and FABMS/MS spectra.

  1. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum

    PubMed Central

    Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L.; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F.; Li, Shuaicheng; Hu, Kailin

    2016-01-01

    The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum. PMID:26739748

  2. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    NASA Astrophysics Data System (ADS)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  3. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum.

    PubMed

    Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F; Li, Shuaicheng; Hu, Kailin

    2016-01-07

    The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum.

  4. Prevalence, level and distribution of Salmonella in shipments of imported capsicum and sesame seed spice offered for entry to the United States: observations and modeling results.

    PubMed

    Van Doren, Jane M; Blodgett, Robert J; Pouillot, Régis; Westerman, Ann; Kleinmeier, Daria; Ziobro, George C; Ma, Yinqing; Hammack, Thomas S; Gill, Vikas; Muckenfuss, Martin F; Fabbri, Linda

    2013-12-01

    In response to increased concerns about spice safety, the United States Food and Drug Administration (FDA) initiated research to characterize the prevalence and levels of Salmonella in imported spices. 299 imported dried capsicum shipments and 233 imported sesame seed shipments offered for entry to the United States were sampled. Observed Salmonella shipment prevalence was 3.3% (1500 g examined; 95% CI 1.6-6.1%) for capsicum and 9.9% (1500 g; 95% Confidence Interval (CI) 6.3-14%) for sesame seed. Within shipment contamination was not inconsistent with a Poisson distribution. Shipment mean Salmonella level estimates among contaminated shipments ranged from 6 × 10(-4) to 0.09 (capsicum) or 6 × 10(-4) to 0.04 (sesame seed) MPN/g. A gamma-Poisson model provided the best fit to observed data for both imported shipments of capsicum and imported shipments of sesame seed sampled in this study among the six parametric models considered. Shipment mean levels of Salmonella vary widely between shipments; many contaminated shipments contain low levels of contamination. Examination of sampling plan efficacy for identifying contaminated spice shipments from these distributions indicates that sample size of spice examined is critical. Sampling protocols examining 25 g samples are predicted to be able to identify a small fraction of contaminated shipments of imported capsicum or sesame seeds.

  5. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum l. leaves.

    PubMed

    Galiová, Michaela; Kaiser, Jozef; Novotný, Karel; Hartl, Martin; Kizek, Rene; Babula, Petr

    2011-09-01

    Laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have been applied for high-resolution mapping of accumulation and distribution of heavy metal (lead) and nutrition elements (potassium, manganese) in leaves of Capsicum annuum L. samples. Lead was added in a form of Pb(NO₃)₂ at concentration up to 10 mmol L⁻¹ into the vessels that contained tap water and where the 2-months old Capsicum annuum L. plants were grown another seven days. Two dimensional maps of the elements are presented for both laser-assisted analytical methods. Elemental mapping performed on fresh (frozen) and dried Capsicum annuum L. leaves are compared.

  6. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  7. The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum.

    PubMed

    Gilardi, P; García-Luque, I; Serra, M T

    2004-07-01

    In Capsicum, the resistance conferred by the L(2) gene is effective against all of the pepper-infecting tobamoviruses except Pepper mild mottle virus (PMMoV), whereas that conferred by the L(4) gene is effective against them all. These resistances are expressed by a hypersensitive response, manifested through the formation of necrotic local lesions (NLLs) at the primary site of infection. The Capsicum L(2) gene confers resistance to Paprika mild mottle virus (PaMMV), while the L(4) gene is effective against both PaMMV and PMMoV. The PaMMV and PMMoV coat proteins (CPs) were expressed in Capsicum frutescens (L(2)L(2)) and Capsicum chacoense (L(4)L(4)) plants using the heterologous Potato virus X (PVX)-based expression system. In C. frutescens (L(2)L(2)) plants, the chimeric PVX virus containing the PaMMV CP was localized in the inoculated leaves and produced NLLs, whereas the chimeric PVX containing the PMMoV CP infected the plants systemically. Thus, the data indicated that the PaMMV CP is the only tobamovirus factor required for the induction of the host response mediated by the Capsicum L(2) resistance gene. In C. chacoense (L(4)L(4)) plants, both chimeric viruses were localized to the inoculated leaves and produced NLLs, indicating that either PaMMV or PMMoV CPs are required to elicit the L(4) gene-mediated host response. In addition, transient expression of PaMMV CP into C. frutescens (L(2)L(2)) leaves and PMMoV CP into C. chacoense (L(4)L(4)) leaves by biolistic co-bombardment with a beta-glucuronidase reporter gene led to the induction of cell death and the expression of host defence genes in both hosts. Thus, the tobamovirus CP is the elicitor of the Capsicum L(2) and L(4) gene-mediated hypersensitive response.

  8. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  9. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  10. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review.

    PubMed

    Srinivasan, Krishnapura

    2016-07-01

    Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum) has been extensively studied for its biological effects which are of pharmacological relevance. These include: cardio protective influence, antilithogenic effect, antiinflammatory, and analgesia, thermogenic influence, and beneficial effects on gastrointestinal system. Therefore, capsaicinoids may have the potential clinical value for pain relief, cancer prevention and weight loss. It has been shown that capsaicinoids are potential agonists of capsaicin receptor (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of neuropeptide Substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Topical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion, stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and antiinflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardio protective has other implications, viz., prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients.

  11. Evaluation of the effects of the powder of Capsicum frutescens on glycemia in growing rabbits

    PubMed Central

    Dougnon, Tossou Jacques; Gbeassor, Messanvi

    2016-01-01

    Aim: The present study aims to evaluate zootechnic parameters and blood sugar in rabbits submitted to diets containing different levels of pepper (Capsicum frutescens). Materials and Methods: To this end, 30 rabbits weighing on average 1252±35 g at the beginning of the experiment were subjected to five rations with three repetitions for 56 days: The food R0 (or control) which is floury provender contains 0% of C. frutescens; R5, R10, R15, and R20 provender containing, respectively, 0.5%, 1%, 1.5%, and 2% of C. frutescens fruits’ powder. Rabbits consumed on average from 75.47 to 80.97 g dry matter. Results: Digestibility ranged from 52.39% to 61.01%. The average daily gain and feed consumption index were similar for all diets. Blood glucose was amended by the various servings is 0.98 g/L and 0.88 g/L, respectively, for doses. Conclusion: It appears from this study that rabbits consumed well diets containing C. frutescens. However, C. frutescens’ effect on the growth performances of rabbits is not noticeable. Furthers experiments will be useful to evaluate C. frutescens’ mechanism of action on blood sugar. PMID:27057112

  12. An improved plant regeneration and Agrobacterium - mediated transformation of red pepper (Capsicum annuum L.).

    PubMed

    Kumar, R Vinoth; Sharma, V K; Chattopadhyay, B; Chakraborty, S

    2012-10-01

    Capsicum annuum (red pepper) is an important spice cum vegetable crop in tropical and subtropical countries. Here, we report an effective and reproducible auxin free regeneration method for six different red pepper cultivars (ACA-10, Kashi Anmol, LCA-235, PBC-535, Pusa Jwala and Supper) using hypocotyl explants and an efficient Agrobacterium-mediated transformation protocol. The explants (hypocotyls, cotyledonary leaves and leaf discs) collected from axenic seedlings of six red pepper cultivars were cultured on either hormone free MS medium or MS medium supplemented with BAP alone or in combination with IAA. Inclusion of IAA in the regeneration medium resulted in callus formation at the cut ends of explants, formation of rosette leaves and ill defined shoot buds. Regeneration of shoot buds could be achieved from hypocotyls grown in MS medium supplemented with different concentrations of BAP unlike other explants which failed to respond. Incorporation of GA3 in shoot elongation medium at 0.5 mg/l concentration enhanced the elongation in two cultivars, LCA-235 and Supper, while other cultivars showed no significant response. Chilli cultivar, Pusa Jwala was transformed with βC1 ORF of satellite DNA β molecule associated with Chilli leaf curl Joydebpur virus through Agrobacterium tumefaciens. Transgene integration in putative transformants was confirmed by PCR and Southern hybridization analysis.

  13. Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum.

    PubMed

    Gonçalves, L S A; Rodrigues, R; Diz, M S S; Robaina, R R; do Amaral Júnior, A T; Carvalho, A O; Gomes, V M

    2013-04-26

    Pathogenesis-related proteins (PRs) are among the defense mechanisms of plants that work as an important barrier to the development of pathogens. These proteins are classified into 17 families according to their amino acid sequences, serology, and/or biological or enzyme activity. The present study aimed to identify PRs associated with the pathosystem of Capsicum baccatum var. pendulum: Pepper yellow mosaic virus (PepYMV). Forty-five-day-old plants from accession UENF 1624, previously identified as resistant to PepYMV, were inoculated with the virus. Control and infected leaves were collected for analysis after 24, 48, 72, and 96 h. The inoculated and control plants were grown in cages covered with anti-aphid screens. Proteins were extracted from leaf tissue and the presence of β-1,3-glucanase, chitinase, peroxidase, and lipid transport protein was verified. No difference was observed between the protein pattern of control and infected plants when β-1,3-glucanase, chitinase, and lipid transport protein were compared. However, increased peroxidase expression was observed in infected plants at 48 and 72 h after inoculation, indicating that this PR is involved in the response of resistance to PepYMV in C. baccatum var. pendulum.

  14. Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance.

    PubMed

    Moulin, M M; Rodrigues, R; Ribeiro, S F F; Gonçalves, L S A; Bento, C S; Sudré, C P; Vasconcelos, I M; Gomes, V M

    2014-11-07

    Several plant organs contain proteinase inhibitors, which are produced during normal plant development or are induced upon pathogen attack to suppress the enzymatic activity of phytopathogenic microorganisms. In this study, we examined the presence of proteinase inhibitors, specifically trypsin inhibitors, in the leaf extract of Capsicum baccatum var. pendulum inoculated with PepYMV (Pepper yellow mosaic virus). Leaf extract from plants with the accession number UENF 1624, which is resistant to PepYMV, was collected at 7 different times (0, 24, 48, 72, 96, 120, and 144 h). Seedlings inoculated with PepYMV and control seedlings were grown in a growth chamber. Protein extract from leaf samples was partially purified by reversed-phase chromatography using a C2/C18 column. Residual trypsin activity was assayed to detect inhibitors followed by Tricine-SDS-PAGE analysis to determine the N-terminal peptide sequence. Based on trypsin inhibitor assays, trypsin inhibitors are likely constitutively synthesized in C. baccatum var. pendulum leaf tissue. These inhibitors are likely a defense mechanism for the C. baccatum var. pendulum- PepYMV pathosystem.

  15. Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico.

    PubMed

    Aguilar-Meléndez, Araceli; Morrell, Peter L; Roose, Mikeal L; Kim, Seung-Chul

    2009-06-01

    The chile of Mesoamerica, Capsicum annuum, is one of five domesticated chiles in the Americas. Among the chiles, it varies the most in size, form, and color of its fruits. Together with maize, C. annuum is one of the principal elements of the neotropical diets of Mesoamerican civilizations. Despite the great economic and cultural importance of C. annuum both worldwide and in Mexico, however, very little is known about its geographic origin and number of domestications. Here we sampled a total of 80 accessions from Mexico (58 semiwild and 22 domesticated) and examined nucleotide sequence diversity at three single- or low-copy nuclear loci, Dhn, G3pdh, and Waxy. Across the three loci, we found an average reduction of ca. 10% in the diversity of domesticates relative to semiwild chiles and geographic structure within Mexican populations. The Yucatan Peninsula contained a large number of haplotypes, many of which were unique, suggesting an important region of chile domestication and center of diversity. The present sampling of loci did not conclusively resolve the number and location of domestications, but several lines of evidence suggest multiple independent domestications from widely distributed progenitor populations.

  16. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  17. Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Valentão, Patrícia; Andrade, Paula B

    2013-03-01

    Capsicum annuum L. is reported to be the most widely cultivated species. Recently, waste of vegetable processing, like seeds, has been the subject of many studies as an attempt to find new, alternative and cheap resources of bioactive compounds with application in several industries. Despite their chemical, biological and ecological importance, C. annuum seeds are still poorly studied. To improve the knowledge on the metabolic profile of this matrix, a targeted metabolite analysis was performed in "sweet Italian" and "Reus long pairal" pepper seeds. Sterols, triterpenes, organic acids, fatty acids and volatile compounds were determined by different chromatographic methods. The antioxidant activity was assessed against DPPH(·), superoxide and nitric oxide radicals. A concentration-dependent activity was noticed against all radicals. Acetylcholinesterase inhibitory capacity was also evaluated, but no effect was found. Data provide evidence of great similarities between "sweet Italian" and "Reus long pairal" pepper seeds. The present study indicates that C. annuum seeds are a potential source of valuable bioactive compounds that could be used in food industry.

  18. Combining ability for yield and fruit quality in the pepper Capsicum annuum.

    PubMed

    do Nascimento, N F F; do Rêgo, E R; Nascimento, M F; Bruckner, C H; Finger, F L; do Rêgo, M M

    2014-04-29

    The objective of this study was to determine the effects of the general and specific combining abilities (GCA and SCA, respectively) of 15 characteristics and to evaluate the most promising crosses and the reciprocal effect between the hybrids of six parents of the Capsicum annuum species. Six parents, belonging to the Horticultural Germplasm Bank of Centro de Ciências Agrárias of Universidade Federal da Paraíba, were crossed in complete diallel manner. The 30 hybrids generated and the parents were then analyzed in a completely randomized design with three replicates. The data were submitted to analysis of variance at 1% probability, and the means were grouped by the Scott-Knott test at 1% probability. The diallel analysis was performed according to the Griffing method, model I and fixed model. Both additive and non-additive effects influenced the hybrids' performance, as indicated by the GCA/SCA ratio. The non-additive effects, epistasis and/or dominance, played a more important role than the additive effects in pedicel length, pericarp thickness, fresh matter, dry matter content, seed yield per fruit, fruit yield per plant, days to fructification, and total soluble solids. The GCA effects were more important than the SCA effects in the fruit weight, fruit length and diameter, placenta length, yield, vitamin C, and titratable acidity characteristics. The results found here clearly show that ornamental pepper varieties can be developed through hybridization in breeding programs with C. annuum.

  19. Embryogenesis in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes.

    PubMed

    Barroso, P A; Rêgo, M M; Rêgo, E R; Soares, W S

    2015-10-27

    The aim of this study was to relate flower bud size with microspore developmental stages and the induction of embryos in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes. Flower buds were randomly collected and visually divided into three classes based on both petal and sepal size. The length and diameter of the bud as well as the length of the petal, sepal, and anther were then measured. The microspore stage was also determined for each anther of the bud where it was found. The data were subjected to analysis of variance (P ≤ 0.01), and the means were separated by Tukey's test (P ≤ 0.01). The broad sense heritability, the CVg/CVe relation, and the Pearson correlation between characters were also determined. Anthers from 10 C. annuum genotypes were cultivated in four culture media types for the induction of embryos. The data were transformed by Arcsin (x) and subjected to analysis of variance (P ≤ 0.01), and the means were separated by Tukey's test (P ≤ 0.01). The majority of anthers in the second class had uninucleate microspores. No correlation was observed between bud size and the number of uninucleate microspores. Genotype 9 specimens grown in M2 medium induced the highest number of embryos (16) compared to the other treatments, which indicates a significant interaction effect between culture media and genotypes.

  20. Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids.

    PubMed

    Costa, M P S D; do Rêgo, M M; da Silva, A P G; do Rêgo, E R; Barroso, P A

    2016-05-06

    Pepper species exhibit broad genetic diversity, which enables their use in breeding programs. The objective of this study was to characterize the diversity between the parents of different species and their interspecific hybrids using morphological and molecular markers. The parents of Capsicum annuum (UFPB-01 and -137), C. baccatum (UFPB-72), and C. chinense (UFPB-128) and their interspecific hybrids (01x128, 72x128, and 137x128) were used for morphological and molecular characterization. Fruit length and seed yield per fruit (SYF) traits showed the highest variability, and three groups were formed based on these data. CVg/CVe ratio values (>1.0) were calculated for leaf length (1.67) and SYF (5.34). The trait that most contributed to divergence was the largest fruit diameter (26.42%), and the trait that least contributed was pericarp thickness (0.33%), which was subject to being discarded. The 17 primers produced 58 polymorphic bands that enabled the estimation of genetic diversity between parents and hybrids, and these results confirmed the results of the morphological data analyses. The principal component analysis results also corroborated the morphological and random-amplified polymorphic DNA data, and three groups that contained the same individuals were identified. These results confirmed reports in the literature regarding the phylogenetic relationships of the species used as parents, which demonstrated that C. annuum was closer to C. chinense as compared to C. baccatum.

  1. Biological and molecular characterization of Capsicum chlorosis virus infecting chilli and tomato in India.

    PubMed

    Kunkalikar, S R; Sudarsana, P; Rajagopalan, P; Zehr, Usha B; Ravi, K S

    2010-07-01

    Two isolates of Capsicum chlorosis virus (CaCV, genus Tospovirus) from tomato (CaCV-To-Ind) and chilli (CaCV-Ch-Pan), collected from Haryana and Uttar Pradesh states of northern India respectively, were compared. A comparison of the amino acid sequences of their N genes revealed more than 96% identity, confirming that the virus isolates in India have a high degree of sequence conservation and are closely related to Australian isolates. Analysis of the host range of CaCV revealed no biological difference between the isolates, but they differed from CaCV-Australia. The nucleotide sequences of S, M and L RNA of CaCV-Ch-Pan were determined. The S RNA contains 3,105 nucleotides (nt), with NSs and N genes of 1,320 and 828 nt, respectively. The M RNA consists of 4,821 nt, with an NSm gene of 927 nt and a Gn/Gc gene of 3,366 nt. The intergenic regions of S and M RNA contain 824 and 425 nt, respectively. The L RNA consists of 8,912 nt, with an RNA-dependent RNA polymerase gene of 8,634 nt.

  2. Characterization of Geminivirus resistance in an accession of Capsicum chinense Jacq.

    PubMed

    García-Neria, Marco A; Rivera-Bustamante, Rafael F

    2011-02-01

    Pepper golden mosaic virus (PepGMV) and Pepper huasteco yellow vein virus (PHYVV), members of the Geminiviridae family, are important pathogens of pepper (Capsicum annuum L.) and other solanaceous crops. Accession BG-3821 of C. chinense Jacq. was reported earlier as resistant to mixed infection with PepGMV and PHYVV. In this work, we characterized the Geminivirus resistance trait present in BG-3821. Segregation analysis suggested that resistance depends on two genes. Our data showed that PepGMV replication in protoplast of resistant plants is approximately 70% lower when compared with the levels observed in protoplasts from susceptible plants. Additionally, viral movement is less efficient in resistant plants. We also evaluated several characteristics commonly associated with systemic acquired resistance (SAR), which is a conserved defensive mechanism. The concentration of salicylic acid was higher in resistant plants inoculated with PepGMV than in susceptible plants. Marker genes for SAR were induced after inoculation with PepGMV in resistant leaves. Similarly, we found a higher accumulation of reactive oxygen species on resistant leaves compared with susceptible ones. A model for the mechanism acting in the Geminivirus resistance detected in BG-3821 is proposed. Finally, the importance of BG-3821 in Geminivirus resistance breeding programs is discussed.

  3. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound.

    PubMed

    Santos, Philipe; Aguiar, Ana C; Barbero, Gerardo F; Rezende, Camila A; Martínez, Julian

    2015-01-01

    Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.

  4. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.).

    PubMed

    Gómez-García, María del Rocío; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  5. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures. PMID:26578343

  6. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    PubMed

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth. PMID:24958520

  7. Generic characterization of apolar metabolites in red chili peppers (Capsicum frutescens L.) by orbitrap mass spectrometry.

    PubMed

    Bijttebier, Sebastiaan; Zhani, Kaouther; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-05-21

    The aim of the present study was to develop a generic analytical method for the identification and quantitation of apolar plant metabolites in biomass using liquid chromatography-photodiode array-accurate mass mass spectrometry (LC-PDA-amMS). During this study, a single generic sample preparation protocol was applied to extract apolar plant metabolites. Compound identification was performed using a single generic screening method for apolar compounds without the need for dedicated fractionation. Such a generic approach renders vast amounts of information and is virtually limited by only the solubility and detector response of the metabolites of interest. Method validation confirmed that this approach is applicable for quantitative purposes. Furthermore, an identification-quantitation strategy based on amMS and molar extinction coefficients was used for carotenoids, eliminating the need for reference standards for each carotenoid. To challenge the validated method, chili peppers (Capsicum frutescens L.) were analyzed to unravel their complex phytochemical composition (carotenoids, glycolipids, glycerolipids, capsaicinoids, lipid-soluble vitamins). PMID:24762165

  8. Methyl jasmonate induces extracellular pathogenesis-related proteins in cell cultures of Capsicum chinense

    PubMed Central

    Belchí-Navarro, Sarai; Barceló, Alfonso Ros

    2011-01-01

    Suspension cultured cells of Capsicum chinense secrete proteins to the culture medium in both control conditions and under methyl jasmonate treatment. The exogenous application of methyl jasmonate induced the accumulation of putative pathogenesis-related proteins, class I chitinase, leucin-rich repeat protein, NtPRp27-like protein and pectinesterase which were also found in suspension cultured cells of C. annuum elicited with methyl jasmonate. However, a germin-like protein, which has never been described in methyl jasmonate-elicited C. chinense suspension cultured cells, was found. The different effects described as being the result of exogenous application of signalling molecules like methyl jasmonate on the expression of germin-like protein suggest that germin-like proteins may play a variety of roles in protecting plants against pathogen attacks and different stresses. Further studies will be necessary to characterize the differential expression of these pathogenesis-related proteins and to throw light on the complexity of their regulation. PMID:21346408

  9. Evolution of Capsaicinoids in Peter Pepper (Capsicum annuum var. annuum) During Fruit Ripening.

    PubMed

    Barbero, Gerardo F; de Aguiar, Ana C; Carrera, Ceferino; Olachea, Ángel; Ferreiro-González, Marta; Martínez, Julian; Palma, Miguel; Barroso, Carmelo G

    2016-08-01

    The evolution of individual and total contents of capsaicinoids present in Peter peppers (Capsicum annuum var. annuum) at different ripening stages has been studied. Plants were grown in a glasshouse and the new peppers were marked in a temporal space of ten days. The extraction of capsaicinoids was performed by ultrasound-assisted extraction with MeOH. The capsaicinoids nordihydrocapsaicin (n-DHC), capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin were analyzed by ultraperformance liquid chromatography (UHPLC)-fluorescence and identified by UHPLC-Q-ToF-MS. The results indicate that the total capsaicinoids increase in a linear manner from the first point of harvest at ten days (0.283 mg/g FW) up to 90 days, at which point they reach a concentration of 1.301 mg/g FW. The evolution as a percentage of the individual capsaicinoids showed the initial predominance of capsaicin, dihydrocapsaicin, and n-DHC. Dihydrocapsaicin was the major capsaicinoid up to day 50 of maturation. After 50 days, capsaicin became the major capsaicinoid as the concentration of dihydrocapsaicin fell slightly. The time of harvest of Peter pepper based on the total capsaicinoids content should be performed as late as possible. In any case, harvesting should be performed before overripening of the fruit is observed.

  10. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    PubMed Central

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  11. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    PubMed

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth.

  12. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.).

    PubMed

    Gómez-García, María del Rocío; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  13. Generic characterization of apolar metabolites in red chili peppers (Capsicum frutescens L.) by orbitrap mass spectrometry.

    PubMed

    Bijttebier, Sebastiaan; Zhani, Kaouther; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-05-21

    The aim of the present study was to develop a generic analytical method for the identification and quantitation of apolar plant metabolites in biomass using liquid chromatography-photodiode array-accurate mass mass spectrometry (LC-PDA-amMS). During this study, a single generic sample preparation protocol was applied to extract apolar plant metabolites. Compound identification was performed using a single generic screening method for apolar compounds without the need for dedicated fractionation. Such a generic approach renders vast amounts of information and is virtually limited by only the solubility and detector response of the metabolites of interest. Method validation confirmed that this approach is applicable for quantitative purposes. Furthermore, an identification-quantitation strategy based on amMS and molar extinction coefficients was used for carotenoids, eliminating the need for reference standards for each carotenoid. To challenge the validated method, chili peppers (Capsicum frutescens L.) were analyzed to unravel their complex phytochemical composition (carotenoids, glycolipids, glycerolipids, capsaicinoids, lipid-soluble vitamins).

  14. Effect of selected factors on the effectiveness of Capsicum annuum L. anther culture.

    PubMed

    Nowaczyk, Paweł; Kisiała, Anna

    2006-01-01

    The primary aim of the study was to establish the effectiveness of induced androgenesis in in vitro anther culture of two pepper (Capsicum annuum L.) breeding lines--ATZ1 and PO, and a hybrid between these two lines (ATZ1 x PO)F1. Anther culture was maintained according to the method developed by Dumas de Vaulx et al. (1981) with some modifications. The experiment revealed that the effectiveness of androgenesis ranged from 4 %; for the ATZ1 line to 1.5 %; for the (ATZ1 x PO)F1 and strongly depended on the developmental stage of flower buds, as well as the conditions for anther culture maintenance. The development of androgenic embryos was successfully induced only in anthers which originated from the flower buds with petals equal or slightly longer than sepals and there was a clear relationship between the length of the period of anther induction on CP medium and the level of kinetin in R1 regeneration medium.

  15. Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance.

    PubMed

    Moulin, M M; Rodrigues, R; Ribeiro, S F F; Gonçalves, L S A; Bento, C S; Sudré, C P; Vasconcelos, I M; Gomes, V M

    2014-01-01

    Several plant organs contain proteinase inhibitors, which are produced during normal plant development or are induced upon pathogen attack to suppress the enzymatic activity of phytopathogenic microorganisms. In this study, we examined the presence of proteinase inhibitors, specifically trypsin inhibitors, in the leaf extract of Capsicum baccatum var. pendulum inoculated with PepYMV (Pepper yellow mosaic virus). Leaf extract from plants with the accession number UENF 1624, which is resistant to PepYMV, was collected at 7 different times (0, 24, 48, 72, 96, 120, and 144 h). Seedlings inoculated with PepYMV and control seedlings were grown in a growth chamber. Protein extract from leaf samples was partially purified by reversed-phase chromatography using a C2/C18 column. Residual trypsin activity was assayed to detect inhibitors followed by Tricine-SDS-PAGE analysis to determine the N-terminal peptide sequence. Based on trypsin inhibitor assays, trypsin inhibitors are likely constitutively synthesized in C. baccatum var. pendulum leaf tissue. These inhibitors are likely a defense mechanism for the C. baccatum var. pendulum- PepYMV pathosystem. PMID:25501145

  16. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review.

    PubMed

    Srinivasan, Krishnapura

    2016-07-01

    Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum) has been extensively studied for its biological effects which are of pharmacological relevance. These include: cardio protective influence, antilithogenic effect, antiinflammatory, and analgesia, thermogenic influence, and beneficial effects on gastrointestinal system. Therefore, capsaicinoids may have the potential clinical value for pain relief, cancer prevention and weight loss. It has been shown that capsaicinoids are potential agonists of capsaicin receptor (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of neuropeptide Substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Topical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion, stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and antiinflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardio protective has other implications, viz., prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients. PMID:25675368

  17. Physiological quality and gene expression during the development of habanero pepper (Capsicum chinense Jacquin) seeds.

    PubMed

    Santos, H O; Von Pinho, E V R; Von Pinho, I V; Dutra, S M F; Andrade, T; Guimarães, R M

    2015-05-12

    Phytohormones have different characteristics and functions, and they may be subject to changes in their gene expression and synthesis during seed development. In this study, we evaluated the physiological qualities of habanero peppers (Capsicum chinense Jacquin) during seed development and the expression of genes involved in germination. Seeds were obtained from fruits harvested at different stages of development [i.e., 14, 21, 28, 35, 42, 49, 56, 63, and 70 days after anthesis (DAA)]. Immediately after harvesting, the seeds were subjected to various tests to determine moisture content, germination, first count germination, and seedling emergence. Real-time polymerase chain reaction was used to evaluate the expression of various genes, including MAN2, NCED, B73, ICL6, and GA3ox. Electrophoresis was used to assess the expression of various enzymes, including α-amylase, isocitrate-lyase, and endo-β-mannanase. Habanero peppers harvested at 70 DAA and subjected to 7 days of rest exhibited higher germination rates and vigor compared to those harvested at all other developmental stages. Peppers harvested at 63 DAA without drying exhibited higher α amylase and AmyB73 gene expression levels. Peppers harvested at 70 DAA with 7 days of rest exhibited higher endo-β-mannanase expression levels. MAN2 gene expression increased during the development of non-dried seeds until 70 DAA. Peppers harvested at 42 DAA exhibited the highest isocitrate-lyase and ICL6 gene activity levels in comparison to those at all other developmental stages.

  18. Transcriptome analysis of Capsicum annuum varieties Mandarin and Blackcluster: assembly, annotation and molecular marker discovery.

    PubMed

    Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Cho, Young-Il; Lee, Hye-Eun; Kim, Do-Sun; Woo, Jong-Gyu; Cho, Myeong-Cheoul

    2014-01-10

    Next generation sequencing technologies have proven to be a rapid and cost-effective means to assemble and characterize gene content and identify molecular markers in various organisms. Pepper (Capsicum annuum L., Solanaceae) is a major staple vegetable crop, which is economically important and has worldwide distribution. High-throughput transcriptome profiling of two pepper cultivars, Mandarin and Blackcluster, using 454 GS-FLX pyrosequencing yielded 279,221 and 316,357 sequenced reads with a total 120.44 and 142.54Mb of sequence data (average read length of 431 and 450 nucleotides). These reads resulted from 17,525 and 16,341 'isogroups' and were assembled into 19,388 and 18,057 isotigs, and 22,217 and 13,153 singletons for both the cultivars, respectively. Assembled sequences were annotated functionally based on homology to genes in multiple public databases. Detailed sequence variant analysis identified a total of 9701 and 12,741 potential SNPs which eventually resulted in 1025 and 1059 genotype specific SNPs, for both the varieties, respectively, after examining SNP frequency distribution for each mapped unigenes. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies. PMID:24125952

  19. Antihyperglucolipidaemic and anticarbonyl stress properties in green, yellow and red sweet bell peppers (Capsicum annuum L.).

    PubMed

    Shukla, Srishti; Kumar, Dommati Anand; Anusha, Sanga Venkata; Tiwari, Ashok Kumar

    2016-01-01

    Effect of aqueous methanol extract of different colour sweet bell peppers (Capsicum annuum L.) on parameters of diabesity and carbonyl stress was analysed in vitro. Yellow pepper displayed significantly (p < 0.001) higher intestinal α-glucosidase inhibitory activity than green and red pepper. Porcine pancreatic lipase inhibitory activity was significantly (p < 0.01) high in yellow and red pepper than in green pepper. Green and red pepper inhibited vesperlysine-type advanced glycation end products (AGEs) more potently than yellow pepper; however, pentosidine-type AGEs were similarly inhibited by all three peppers. Yellow and red pepper inhibited lipid peroxidation more potently (p < 0.01) than green pepper. Total polyphenol content and free radicals scavenging activities in yellow and red bell peppers were higher than in green pepper. Total flavonoid content was high in green pepper than that present in yellow and red peppers. Green pepper displayed presence of proanthocyanins; however, oligomeric anthocyanins were detected in yellow and red peppers.

  20. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    PubMed

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  1. Embryogenesis in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes.

    PubMed

    Barroso, P A; Rêgo, M M; Rêgo, E R; Soares, W S

    2015-01-01

    The aim of this study was to relate flower bud size with microspore developmental stages and the induction of embryos in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes. Flower buds were randomly collected and visually divided into three classes based on both petal and sepal size. The length and diameter of the bud as well as the length of the petal, sepal, and anther were then measured. The microspore stage was also determined for each anther of the bud where it was found. The data were subjected to analysis of variance (P ≤ 0.01), and the means were separated by Tukey's test (P ≤ 0.01). The broad sense heritability, the CVg/CVe relation, and the Pearson correlation between characters were also determined. Anthers from 10 C. annuum genotypes were cultivated in four culture media types for the induction of embryos. The data were transformed by Arcsin (x) and subjected to analysis of variance (P ≤ 0.01), and the means were separated by Tukey's test (P ≤ 0.01). The majority of anthers in the second class had uninucleate microspores. No correlation was observed between bud size and the number of uninucleate microspores. Genotype 9 specimens grown in M2 medium induced the highest number of embryos (16) compared to the other treatments, which indicates a significant interaction effect between culture media and genotypes. PMID:26535649

  2. Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum.

    PubMed

    Gonçalves, L S A; Rodrigues, R; Diz, M S S; Robaina, R R; do Amaral Júnior, A T; Carvalho, A O; Gomes, V M

    2013-01-01

    Pathogenesis-related proteins (PRs) are among the defense mechanisms of plants that work as an important barrier to the development of pathogens. These proteins are classified into 17 families according to their amino acid sequences, serology, and/or biological or enzyme activity. The present study aimed to identify PRs associated with the pathosystem of Capsicum baccatum var. pendulum: Pepper yellow mosaic virus (PepYMV). Forty-five-day-old plants from accession UENF 1624, previously identified as resistant to PepYMV, were inoculated with the virus. Control and infected leaves were collected for analysis after 24, 48, 72, and 96 h. The inoculated and control plants were grown in cages covered with anti-aphid screens. Proteins were extracted from leaf tissue and the presence of β-1,3-glucanase, chitinase, peroxidase, and lipid transport protein was verified. No difference was observed between the protein pattern of control and infected plants when β-1,3-glucanase, chitinase, and lipid transport protein were compared. However, increased peroxidase expression was observed in infected plants at 48 and 72 h after inoculation, indicating that this PR is involved in the response of resistance to PepYMV in C. baccatum var. pendulum. PMID:23661464

  3. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.

  4. Differential Proteomic Analysis of Anthers between Cytoplasmic Male Sterile and Maintainer Lines in Capsicum annuum L

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Qin, Cheng; Hu, Zhiqun; Yin, Caixia; Hu, Kailin

    2013-01-01

    Cytoplasmic male sterility (CMS), widely used in the production of hybrid seeds, is a maternally inherited trait resulting in a failure to produce functional pollen. In order to identify some specific proteins associated with CMS in pepper, two-dimensional gel electrophoresis (2-DE) was applied to proteomic analysis of anthers/buds between a CMS line (designated NA3) and its maintainer (designated NB3) in Capsicum annuum L. Thirty-three spots showed more than 1.5-fold in either CMS or its maintainer. Based on mass spectrometry, 27 spots representing 23 distinct proteins in these 33 spots were identified. Proteins down-regulated in CMS anthers/buds includes ATP synthase D chain, formate dehydrogenase, alpha-mannosidas, RuBisCO large subunit-binding protein subunit beta, chloroplast manganese stabilizing protein-II, glutathione S-transferase, adenosine kinase isoform 1T-like protein, putative DNA repair protein RAD23-4, putative caffeoyl-CoA 3-O-methyltransferase, glutamine synthetase (GS), annexin Cap32, glutelin, allene oxide cyclase, etc. In CMS anthers/buds, polyphenol oxidase, ATP synthase subunit beta, and actin are up-regulated. It was predicted that male sterility in NA3 might be related to energy metabolism turbulence, excessive ethylene synthesis, and suffocation of starch synthesis. The present study lays a foundation for future investigations of gene functions associated with pollen development and cytoplasmic male sterility, and explores the molecular mechanism of CMS in pepper. PMID:24264042

  5. Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids.

    PubMed

    Costa, M P S D; do Rêgo, M M; da Silva, A P G; do Rêgo, E R; Barroso, P A

    2016-01-01

    Pepper species exhibit broad genetic diversity, which enables their use in breeding programs. The objective of this study was to characterize the diversity between the parents of different species and their interspecific hybrids using morphological and molecular markers. The parents of Capsicum annuum (UFPB-01 and -137), C. baccatum (UFPB-72), and C. chinense (UFPB-128) and their interspecific hybrids (01x128, 72x128, and 137x128) were used for morphological and molecular characterization. Fruit length and seed yield per fruit (SYF) traits showed the highest variability, and three groups were formed based on these data. CVg/CVe ratio values (>1.0) were calculated for leaf length (1.67) and SYF (5.34). The trait that most contributed to divergence was the largest fruit diameter (26.42%), and the trait that least contributed was pericarp thickness (0.33%), which was subject to being discarded. The 17 primers produced 58 polymorphic bands that enabled the estimation of genetic diversity between parents and hybrids, and these results confirmed the results of the morphological data analyses. The principal component analysis results also corroborated the morphological and random-amplified polymorphic DNA data, and three groups that contained the same individuals were identified. These results confirmed reports in the literature regarding the phylogenetic relationships of the species used as parents, which demonstrated that C. annuum was closer to C. chinense as compared to C. baccatum. PMID:27173311

  6. Genetic diversity of Capsicum chinensis (Solanaceae) accessions based on molecular markers and morphological and agronomic traits.

    PubMed

    Finger, F L; Lannes, S D; Schuelter, A R; Doege, J; Comerlato, A P; Gonçalves, L S A; Ferreira, F R A; Clovis, L R; Scapim, C A

    2010-01-01

    We estimated the genetic diversity of 49 accessions of the hot pepper species Capsicum chinensis through analyses of 12 physicochemical traits of the fruit, eight multi-categorical variables, and with 32 RAPD primers. Data from the physicochemical traits were submitted to analysis of variance to estimate the genetic parameters, and their means were clustered by the Scott-Knott test. The matrices from the individual and combined distance were estimated by multivariate analyses before applying Tocher's optimization method. All physicochemical traits were examined for genetic variability by analysis of variance. The responses of these traits showed more contribution from genetic than from environmental factors, except the percentage of dry biomass, content of soluble solids and vitamin C level. Total capsaicin had the greatest genetic divergence. Nine clusters were formed from the quantitative data based on the generalized distance of Mahalanobis, using Tocher's method; four were formed from the multi-categorical data using the Cole-Rodgers coefficient, and eight were formed from the molecular data using the Nei and Li coefficient. The accessions were distributed into 14 groups using Tocher's method, and no significant correlation between pungency and origin was detected. Uni- and multivariate analyses permitted the identification of marked genetic diversity and fruit attributes capable of being improved through breeding programs. PMID:20882481

  7. Salicylic-acid elicited phospholipase D responses in Capsicum chinense cell cultures.

    PubMed

    Rodas-Junco, B A; Muñoz-Sánchez, J A; Vázquez-Flota, F; Hernández-Sotomayor, S M T

    2015-05-01

    The plant response to different stress types can occur through stimulus recognition and the subsequent signal transduction through second messengers that send information to the regulation of metabolism and the expression of defense genes. The phospholipidic signaling pathway forms part of the plant response to several phytoregulators, such as salicylic acid (SA), which has been widely used to stimulate secondary metabolite production in cell cultures. In this work, we studied the effects of SA treatment on [(32)-P]Pi phospholipid turnover and phospholipase D (PLD) activity using cultured Capsicum chinense cells. In cultured cells, the PIP2 turnover showed changes after SA treatment, while the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), did not show changes during the temporal course. SA treatment significantly increased phosphatidic acid (PA) turnover over time compared to control cells. The PA accumulation in cells treated with 1-butanol showed a decrease in messengers; at the same time, there was a 1.5-fold increase in phosphatidylbutanol. These results suggest that the participation of the PLD pathway is a source of PA production, and the activation of this mechanism may be important in the cell responses to SA treatment.

  8. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography.

    PubMed

    Al Othman, Zeid Abdullah; Ahmed, Yacine Badjah Hadj; Habila, Mohamed Abdelaty; Ghafar, Ayman Abdel

    2011-10-24

    The aim of the present study was to determine the content of capsaicin and dihydrocapsaicin in Capsicum samples collected from city markets in Riyadh (Saudi Arabia), calculate their pungency in Scoville heat units (SHU) and evaluate the average daily intake of capsaicin for the population of Riyadh. The investigated samples consisted of hot chillies, red chillies, green chillies, green peppers, red peppers and yellow peppers. Extraction of capsaicinoids was done using ethanol as solvent, while high performance liquid chromatography (HPLC) was used for separation, identification and quantitation of the components. The limit of detection (LOD) of the method was 0.09 and 0.10 µg/g for capsaicin and dihydrocapsaicin, respectively, while the limit of quantification (LOQ) was 0.30 and 0.36 µg/g for capsaicin and dihydrocapsaicin, respectively. Hot chillies showed the highest concentration of capsaicin (4249.0 ± 190.3 µg/g) and the highest pungency level (67984.60 SHU), whereas green peppers had the lowest detected concentration (1.0 ± 0.9 µg/g); green peppers, red peppers and yellow peppers were non pungent. The mean consumption of peppers for Riyadh city population was determined to be 15.5 g/person/day while the daily capsaicin intake was 7.584 mg/person/day.

  9. Pathway for Phloem-Dependent Movement of Pepper Mottle Potyvirus in the Stem of Capsicum annuum.

    PubMed

    Andrianifahanana, M; Lovins, K; Dute, R; Sikora, E; Murphy, J F

    1997-09-01

    ABSTRACT Phloem-dependent movement of pepper mottle potyvirus (PepMoV) through Capsicum annuum occurs in a defined pattern through the stem and into uninoculated leaves. The route of movement of PepMoV through the stem of C. annuum 'Early Calwonder' was tracked using immunotissue blot analysis and immunomicroscopy. Virus was shown to move from the inoculated leaf down the stem toward the roots via the external phloem. At some location between the cotyledonary node and the roots, PepMoV entered the internal phloem through which it rapidly spread upward the length of the stem to the young tissues. Translocation of PepMoV through the stem occurred in an asymmetric fashion, i.e., virus remained on the side of the stem to which the inoculated leaf was attached as it translocated the length of the stem. Spread and accumulation of PepMoV into uninoculated leaves appeared to occur in a source-to-sink pattern similar to that described for the flow of photoassimilates and similar to other virus and viroid-host systems. PMID:18945059

  10. Phytochemistry and gastrointestinal benefits of the medicinal spice, Capsicum annuum L. (Chilli): a review.

    PubMed

    Maji, Amal K; Banerji, Pratim

    2016-06-01

    Dietary spices and their active constituents provide various beneficial effects on the gastrointestinal system by variety of mechanisms such as influence of gastric emptying, stimulation of gastrointestinal defense and absorption, stimulation of salivary, intestinal, hepatic, and pancreatic secretions. Capsicum annuum (Solanaceae), commonly known as chilli, is a medicinal spice used in various Indian traditional systems of medicine and it has been acknowledged to treat various health ailments. Therapeutic potential of chilli and capsaicin were well documented; however, they act as double-edged sword in many physiological circumstances. In traditional medicine chilli has been used against various gastrointestinal complains such as dyspepsia, loss of appetite, gastroesophageal reflux disease, gastric ulcer, and so on. In chilli, more than 200 constituents have been identified and some of its active constituents play numerous beneficial roles in various gastrointestinal disorders such as stimulation of digestion and gastromucosal defense, reduction of gastroesophageal reflux disease (GERD) symptoms, inhibition of gastrointestinal pathogens, ulceration and cancers, regulation of gastrointestinal secretions and absorptions. However, further studies are warranted to determine the dose ceiling limit of chilli and its active constituents for their utilization as gastroprotective agents. This review summarizes the phytochemistry and various gastrointestinal benefits of chilli and its various active constituents.

  11. Combining ability for yield and fruit quality in the pepper Capsicum annuum.

    PubMed

    do Nascimento, N F F; do Rêgo, E R; Nascimento, M F; Bruckner, C H; Finger, F L; do Rêgo, M M

    2014-01-01

    The objective of this study was to determine the effects of the general and specific combining abilities (GCA and SCA, respectively) of 15 characteristics and to evaluate the most promising crosses and the reciprocal effect between the hybrids of six parents of the Capsicum annuum species. Six parents, belonging to the Horticultural Germplasm Bank of Centro de Ciências Agrárias of Universidade Federal da Paraíba, were crossed in complete diallel manner. The 30 hybrids generated and the parents were then analyzed in a completely randomized design with three replicates. The data were submitted to analysis of variance at 1% probability, and the means were grouped by the Scott-Knott test at 1% probability. The diallel analysis was performed according to the Griffing method, model I and fixed model. Both additive and non-additive effects influenced the hybrids' performance, as indicated by the GCA/SCA ratio. The non-additive effects, epistasis and/or dominance, played a more important role than the additive effects in pedicel length, pericarp thickness, fresh matter, dry matter content, seed yield per fruit, fruit yield per plant, days to fructification, and total soluble solids. The GCA effects were more important than the SCA effects in the fruit weight, fruit length and diameter, placenta length, yield, vitamin C, and titratable acidity characteristics. The results found here clearly show that ornamental pepper varieties can be developed through hybridization in breeding programs with C. annuum. PMID:24841656

  12. Antihyperglucolipidaemic and anticarbonyl stress properties in green, yellow and red sweet bell peppers (Capsicum annuum L.).

    PubMed

    Shukla, Srishti; Kumar, Dommati Anand; Anusha, Sanga Venkata; Tiwari, Ashok Kumar

    2016-01-01

    Effect of aqueous methanol extract of different colour sweet bell peppers (Capsicum annuum L.) on parameters of diabesity and carbonyl stress was analysed in vitro. Yellow pepper displayed significantly (p < 0.001) higher intestinal α-glucosidase inhibitory activity than green and red pepper. Porcine pancreatic lipase inhibitory activity was significantly (p < 0.01) high in yellow and red pepper than in green pepper. Green and red pepper inhibited vesperlysine-type advanced glycation end products (AGEs) more potently than yellow pepper; however, pentosidine-type AGEs were similarly inhibited by all three peppers. Yellow and red pepper inhibited lipid peroxidation more potently (p < 0.01) than green pepper. Total polyphenol content and free radicals scavenging activities in yellow and red bell peppers were higher than in green pepper. Total flavonoid content was high in green pepper than that present in yellow and red peppers. Green pepper displayed presence of proanthocyanins; however, oligomeric anthocyanins were detected in yellow and red peppers. PMID:25868614

  13. Capsanthone 3,6-epoxide, a new carotenoid from the fruits of the red paprika Capsicum annuum L.

    PubMed

    Maoka, T; Fujiwara, Y; Hashimoto, K; Akimoto, N

    2001-08-01

    The structure of a new carotenoid, isolated from the fruits of the red tomato-shaped paprika Capsicum annuum L., was elucidated to be (3S,5R,6S,5'R)-3,6-epoxy-5,6-dihydro-5-hydroxy-beta,kappa-carotene-3',6'-dione by spectroscopic analyses, including fast atom bombardment collision-induced dissociation-mass spectrometry/mass spectrometry (FAB CID-MS/MS) and was designated capsanthone 3,6-epoxide. Capsanthone 3,6-epoxide is assumed to be an oxidative metabolite of capsanthin 3,6-epoxide in paprika.

  14. Effects of grilling on luteolin (3',4',5,7-tetrahydroxyflavone) content in sweet green bell pepper (Capsicum annuum).

    PubMed

    Durucasu, Inci; Tokuşoğlu, Ozlem

    2007-10-01

    The content of luteloin in green bell pepper (Capsicum annuum) produced in Turkey were determined by RP-HPLC with DAD detection. The luteloin (3',4',5,7-Tetrahydroxyflavone) content of green pepper samples were 46.00 +/- 0.76 mg kg(-1) f.w. (average). The alterations of luteloin concentrations with heating process (grilling, közleme) and the loss of luteloin amount were also determined. Luteolin contents of grilled peppers were found as 29.96 +/- 0.96 mg kg(-1) f.w. The method was objective and reproducible for accurate detection of luteloin in green pepper and other pepper varieties.

  15. Physico-Phytochemical investigation and Anti-inflammatory screening of Capsicum annum L. and Hemidesmus indicus (Linn.) R. Br

    PubMed Central

    Vijayalakshmi, K.; Shyamala, R.; Thirumurugan, V.; Sethuraman, M.; Rajan, S.; Badami, Shrishailappa; Mukherjee, Pulok K.

    2010-01-01

    Capsicum annum L. (Family: Solanaceae) and Hemidesmus indicus (Linn.) R.Br. (Family: Asclepiadaceae) are commonly used in Tamilnadufor treating various ailments in the native system of medicine. The hydroalcoholic extracts of both plants at dose level of 100 mg/kg body weight showed demonstrable anti-inflammatory activity in the carrageenan-induced hind paw model in rats. Nevertheless, the overall anti-inflammatory activity exhibited by the extracts are found to be less as compared with that of standard drug Indometacin. Preliminary physico-phytochemical analysis of the plants in question were attempted. The results are highlighted and discussed. PMID:22557366

  16. Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes.

    PubMed

    Liu, W; Parrott, W A; Hildebrand, D F; Collins, G B; Williams, E G

    1990-11-01

    The objective of this research was to define an in vitro regeneration and transformation system for bell pepper (Capsicum annuum L.) using six cultivars and one Guatemalan wild accession. The wild accession exhibited the best regeneration response. Only occasional elongation of shoot buds in 'Yolo Wonder L' was achieved by culture in the dark on a medium containing 10 mg/l BA and l mg/l IAA. Transformed shoot buds and leaf-like structures were obtained, showing beta- glucuronidase activity predominantly in the vascular and perivascular tissues, with no indication of contaminating Agrobacterium in the tissues. Attempts to regenerate whole transgenic plants from transformed shoot buds were unsuccessful. PMID:24227055

  17. Characterisation of a satellite RNA of Cucumber mosaic virus that induces chlorosis in Capsicum annuum.

    PubMed

    Choi, Seung-Kook; Jeon, Yong-Woon; Yoon, Ju-Yeon; Choi, Jang-Kyung

    2011-08-01

    The presence of Cucumber mosaic virus (CMV) satellite RNA dramatically changes symptoms on some hosts. A satellite RNA present in a strain of CMV (PepY-CMV) that induced chlorosis in pepper (Capsicum annuum) was shown to induce chlorosis in pepper in combination with another strain (Fny-CMV) that by itself induced a green mosaic symptom. The location of sequences within the PepY satellite RNA (PepY-satRNA) of CMV that conferred the ability to induce chlorosis on pepper plants were analyzed by exchanging sequence domains between cDNA clones of PepY-satRNA and an attenuated mosaic satellite RNA (Paf-satRNA), as well as site-directed mutagenesis of various clusters of the 22-nt sequence differences between the two satellite RNAs in the delimited central domain. The symptoms induced by site-directed mutants of PepY-satRNA and Paf-satRNA in the presence of Fny-CMV demonstrated an insertion within PepY-satRNA of 11 nt at positions 86-96 relative to Paf-satRNA determined the chlorosis-inducing phenotype. Within the chlorosis-inducing domain, deletion of nucleotides did not affect the satRNA replication but abolished the ability of PepY-satRNA to elicit chlorosis symptom. Conversely, a mutant satellite RNA derived from Paf-satRNA in which eleven nucleotides were inserted indicated that sequences of 11 nucleotides were found to be sufficient for chlorosis induction in pepper.

  18. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico.

    PubMed

    Kraft, Kraig H; Brown, Cecil H; Nabhan, Gary P; Luedeling, Eike; Luna Ruiz, José de Jesús; Coppens d'Eeckenbrugge, Geo; Hijmans, Robert J; Gepts, Paul

    2014-04-29

    The study of crop origins has traditionally involved identifying geographic areas of high morphological diversity, sampling populations of wild progenitor species, and the archaeological retrieval of macroremains. Recent investigations have added identification of plant microremains (phytoliths, pollen, and starch grains), biochemical and molecular genetic approaches, and dating through (14)C accelerator mass spectrometry. We investigate the origin of domesticated chili pepper, Capsicum annuum, by combining two approaches, species distribution modeling and paleobiolinguistics, with microsatellite genetic data and archaeobotanical data. The combination of these four lines of evidence yields consensus models indicating that domestication of C. annuum could have occurred in one or both of two areas of Mexico: northeastern Mexico and central-east Mexico. Genetic evidence shows more support for the more northern location, but jointly all four lines of evidence support central-east Mexico, where preceramic macroremains of chili pepper have been recovered in the Valley of Tehuacán. Located just to the east of this valley is the center of phylogenetic diversity of Proto-Otomanguean, a language spoken in mid-Holocene times and the oldest protolanguage for which a word for chili pepper reconstructs based on historical linguistics. For many crops, especially those that do not have a strong archaeobotanical record or phylogeographic pattern, it is difficult to precisely identify the time and place of their origin. Our results for chili pepper show that expressing all data in similar distance terms allows for combining contrasting lines of evidence and locating the region(s) where cultivation and domestication of a crop began.

  19. Physiological and morphological changes during early and later stages of fruit growth in Capsicum annuum.

    PubMed

    Tiwari, Aparna; Vivian-Smith, Adam; Ljung, Karin; Offringa, Remko; Heuvelink, Ep

    2013-03-01

    Fruit-set involves a series of physiological and morphological changes that are well described for tomato and Arabidopsis, but largely unknown for sweet pepper (Capsicum annuum). The aim of this paper is to investigate whether mechanisms of fruit-set observed in Arabidopsis and tomato are also applicable to C. annuum. To do this, we accurately timed the physiological and morphological changes in a post-pollinated and un-pollinated ovary. A vascular connection between ovule and replum was observed in fertilized ovaries that undergo fruit development, and this connection was absent in unfertilized ovaries that abort. This indicates that vascular connection between ovule and replum is an early indicator for successful fruit development after pollination and fertilization. Evaluation of histological changes in the carpel of a fertilized and unfertilized ovary indicated that increase in cell number and cell diameter both contribute to early fruit growth. Cell division contributes more during early fruit growth while cell expansion contributes more at later stages of fruit growth in C. annuum. The simultaneous occurrence of a peak in auxin concentration and a strong increase in cell diameter in the carpel of seeded fruits suggest that indole-3-acetic acid stimulates a major increase in cell diameter at later stages of fruit growth. The series of physiological and morphological events observed during fruit-set in C. annuum are similar to what has been reported for tomato and Arabidopsis. This indicates that tomato and Arabidopsis are suitable model plants to understand details of fruit-set mechanisms in C. annuum.

  20. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum

    PubMed Central

    Naegele, Rachel P.; Mitchell, Jenna; Hausbeck, Mary K.

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation. PMID:27415818

  1. Heat Stability of Resistance to Meloidogyne incognita in Scotch Bonnet Peppers ( Capsicum chinense Jacq.).

    PubMed

    Thies, J A; Fery, R L

    2000-12-01

    Stability of resistance to Meloidogyne incognita (Kofoid &White) Chitwood was determined in pepper (Capsicum chinense Jacq. and C. annuum L.) at 24, 28, and 32 degrees C. Reactions of the C. annuum cultivars Charleston Belle and Keystone Resistant Giant and the C. chinense cultigens PA-426 and PA-350 to M. incognita were compared. Charleston Belle is homozygous for the N gene that confers resistance to M. incognita in C. annuum, and Keystone Resistant Giant is the susceptible recurrent parent of Charleston Belle. PA-426 is homozygous for a single dominant resistance gene that is allelic to the N gene, and PA-350 is susceptible. Root galling, egg-mass production, numbers of eggs per g fresh root, and reproductive factor of M. incognita increased for all pepper genotypes as temperature increased. Severity of root galling and nematode reproduction were less for PA-426 and Charleston Belle compared to PA-350 and Keystone Resistant Giant at all temperatures. However, both PA-426 and Charleston Belle exhibited a partial loss of resistance at the higher temperatures. For example, at 32 degrees C, the numbers of M. incognita eggs per g fresh root and the reproductive index for PA-426 and Charleston Belle were in the susceptible range. Nevertheless, the gall index for both cultivars was still within the resistant range. Both PA-350 and Keystone Resistant Giant exhibited highly susceptible reactions at 28 and 32 degrees C. Although the resistances of PA-426 and Charleston Belle were somewhat compromised at high temperatures, cultivars possessing these resistances will still be useful for managing M. incognita under high soil temperatures.

  2. Potato virus Y CFH, a putative recombinant isolate from Capsicum chinense cv. Habanero.

    PubMed

    Comes, S; Fanigliulo, A; Pacella, R; Parrella, G; Crescenzi, A

    2006-01-01

    Ornamental plants of Chili pepper, Capsicum chinense cv. Habanero, with symptoms of leaf mosaic, necrotic rings on fruits and necrotic stems were observed in June 2003 in a private garden in the province of Naples (Italy). Preliminary serological characterisation allowed the association of these symptoms with infections by Potato virus Y (PVY). The virus was isolated on Nicotiana tabacum cv. Xanthi and characterised by mechanical inoculation on herbaceous hosts and molecular characterisation of the P1 and the coat protein (CP) genes. Symptoms produced on indicator plants were generally consistent with those described for PVY. The identity of PVY was further confirmed by reaction with PVYN, PVYC and PVYO specific monoclonal antibodies: the isolate reacted only with the PVYC specific Mab. Immuno capture reverse transcription polymerase chain reaction (IC-RT-PCR) was performed on extracts of PVY-CFH infected N. tabacum cv. Xanthi plants, using two couples of primers specifically designed out of the P1 and the CP coding regions of the so far fully sequenced PVY isolates. PCR products were then cloned into pCRII-TOPO vector using TOPO-TA cloning kit (Invitrogen) and sequenced. Sequence analysis suggests that PVY-CFH originated from a recombination event involving a virus of the PVYO type and another parental virus, maybe resembling the PVYNP isolates, given the reasonably high similarity shared by PVY-CFH and, respectively, non potato PVY isolates in the CP coding region, PVYO isolates in the P1 coding region. Evidence for the existence of such a recombination comes, apart from similarity analysis, by the different locations of CFH within phylogenetic trees constructed from P1 and CP genomic regions.

  3. Understanding the Physiological Responses of a Tropical Crop (Capsicum chinense Jacq.) at High Temperature

    PubMed Central

    Garruña-Hernández, René; Orellana, Roger; Larque-Saavedra, Alfonso; Canto, Azucena

    2014-01-01

    Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature – leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature–leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions. PMID:25365043

  4. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico.

    PubMed

    Kraft, Kraig H; Brown, Cecil H; Nabhan, Gary P; Luedeling, Eike; Luna Ruiz, José de Jesús; Coppens d'Eeckenbrugge, Geo; Hijmans, Robert J; Gepts, Paul

    2014-04-29

    The study of crop origins has traditionally involved identifying geographic areas of high morphological diversity, sampling populations of wild progenitor species, and the archaeological retrieval of macroremains. Recent investigations have added identification of plant microremains (phytoliths, pollen, and starch grains), biochemical and molecular genetic approaches, and dating through (14)C accelerator mass spectrometry. We investigate the origin of domesticated chili pepper, Capsicum annuum, by combining two approaches, species distribution modeling and paleobiolinguistics, with microsatellite genetic data and archaeobotanical data. The combination of these four lines of evidence yields consensus models indicating that domestication of C. annuum could have occurred in one or both of two areas of Mexico: northeastern Mexico and central-east Mexico. Genetic evidence shows more support for the more northern location, but jointly all four lines of evidence support central-east Mexico, where preceramic macroremains of chili pepper have been recovered in the Valley of Tehuacán. Located just to the east of this valley is the center of phylogenetic diversity of Proto-Otomanguean, a language spoken in mid-Holocene times and the oldest protolanguage for which a word for chili pepper reconstructs based on historical linguistics. For many crops, especially those that do not have a strong archaeobotanical record or phylogeographic pattern, it is difficult to precisely identify the time and place of their origin. Our results for chili pepper show that expressing all data in similar distance terms allows for combining contrasting lines of evidence and locating the region(s) where cultivation and domestication of a crop began. PMID:24753581

  5. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum.

    PubMed

    Naegele, Rachel P; Mitchell, Jenna; Hausbeck, Mary K

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation. PMID:27415818

  6. Function of Rhizodermal Transfer Cells in the Fe Stress Response Mechanism of Capsicum annuum L

    PubMed Central

    Landsberg, Ernst-Christian

    1986-01-01

    A variety of red pepper (Capsicum annuum L., cv Yaglik) responds to Fe deficiency stress with simultaneously enhanced H+ extrusion, reduction of ferric ions and synthesis of malic and citric acid in a swollen subapical root zone densely covered with root hairs. It is demonstrated that these stress responses temporally coincide with the development of rhizodermal and hypodermal transfer cells in this root zone. During stress response the transfer cells show a marked autofluorescence which could arise from endogenous iron chelators of the phenolic acid type. The presence of organelle-rich cytoplasm which often exhibits rotational cytoplasmic streaming points to high physiological activity and makes these cells, with their increased plasmalemma surface, particularly well suited for the entire stress response mechanism. Since Fe stress-induced acidification is diminished by vanadate and erythrosin B, both specific inhibitors of plasmalemma ATPases, it seems reasonable to suppose that H+ pumping from transfer cells is activated by an ATPase located in their plasmamembrane. H+ extrusion is also shown to be inhibited by abscisic acid. Raised phosphoenolpyruvate carboxylase activity and simultaneous accumulation of malate in the swollen root zone point to the action of a pH stat preventing a detrimental rise in cytoplasmic pH of transfer cells during enhanced H+ extrusion. The simultaneous increase in citric acid concentration favors chelation of iron at the site of its uptake and thus ensures long distance transport to the areas of metabolic demand. A direct link between citrate accumulation and ferric ion reduction as proposed in recent literature further supports the crucial role of transfer cells in the response to Fe deficiency stress. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:16665060

  7. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico

    PubMed Central

    Kraft, Kraig H.; Brown, Cecil H.; Nabhan, Gary P.; Luedeling, Eike; Luna Ruiz, José de Jesús; Coppens d’Eeckenbrugge, Geo; Hijmans, Robert J.; Gepts, Paul

    2014-01-01

    The study of crop origins has traditionally involved identifying geographic areas of high morphological diversity, sampling populations of wild progenitor species, and the archaeological retrieval of macroremains. Recent investigations have added identification of plant microremains (phytoliths, pollen, and starch grains), biochemical and molecular genetic approaches, and dating through 14C accelerator mass spectrometry. We investigate the origin of domesticated chili pepper, Capsicum annuum, by combining two approaches, species distribution modeling and paleobiolinguistics, with microsatellite genetic data and archaeobotanical data. The combination of these four lines of evidence yields consensus models indicating that domestication of C. annuum could have occurred in one or both of two areas of Mexico: northeastern Mexico and central-east Mexico. Genetic evidence shows more support for the more northern location, but jointly all four lines of evidence support central-east Mexico, where preceramic macroremains of chili pepper have been recovered in the Valley of Tehuacán. Located just to the east of this valley is the center of phylogenetic diversity of Proto-Otomanguean, a language spoken in mid-Holocene times and the oldest protolanguage for which a word for chili pepper reconstructs based on historical linguistics. For many crops, especially those that do not have a strong archaeobotanical record or phylogeographic pattern, it is difficult to precisely identify the time and place of their origin. Our results for chili pepper show that expressing all data in similar distance terms allows for combining contrasting lines of evidence and locating the region(s) where cultivation and domestication of a crop began. PMID:24753581

  8. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature.

    PubMed

    Garruña-Hernández, René; Orellana, Roger; Larque-Saavedra, Alfonso; Canto, Azucena

    2014-01-01

    Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions. PMID:25365043

  9. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).

    PubMed

    Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Bosland, Paul; Bebeli, Penelope J; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A

    2013-10-01

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper.

  10. Effects of irrigation moisture regimes on yield and quality of paprika ( Capsicum annuum L)

    NASA Astrophysics Data System (ADS)

    Shongwe, Victor D.; Magongo, Bekani N.; Masarirambi, Michael T.; Manyatsi, Absalom M.

    Although paprika ( Capsicum annuum L) is not widely grown in Swaziland it is becoming increasingly popular as a spice and food colourant. It is a crop that requires irrigation at specific stages of growth as this affects not only the yield but most importantly the quality of the crop. Yield of paprika has been found to increase with relative increase in moisture whereas the quality of fruits has not followed the same trend. The objective of this study was to find the effect of varying irrigation water regimes on the yield and quality of paprika at uniform fertiliser levels. The study was carried out in the 2006/2007 cropping season at the Luyengo campus of the University of Swaziland in a greenhouse. A randomised complete block design was used with four water treatments (0.40, 0.60, 0.80, and 1.00 × Field Capacity). Parameters measured included leaf number per plant, plant height, chlorophyll content, canopy size, leaf width, leaf length, stem girth, dry mass, fresh mass, fruit length, and brix content. There were significant ( P < 0.05) increases in leaf number, plant height, chlorophyll content, canopy size, fresh and dry mass tops and fruit length at the highest moisture level (1.00 × FC) followed by the second highest regime (0.80 × FC) whilst the lower water regimes resulted in lower increases in each of the parameters. Leaf area index did not differ significantly across all treatments. In increasing order the treatments 0.80 × FC and 1.00 × FC gave higher yields but in decreasing order lower brix and thus subsequent lower paprika quality. It is recommended that growers who are aiming for optimum yield and high quality of paprika may use the 0.8 × FC treatment when irrigating.

  11. Microspore-derived embryogenesis in pepper (Capsicum annuum L.): subcellular rearrangements through development.

    PubMed

    Bárány, Ivett; González-Melendi, Pablo; Fadón, Begoña; Mitykó, Judit; Risueño, María C; Testillano, Pilar S

    2005-09-01

    Background information. In vitro-cultured microspores, after an appropriate stress treatment, can switch towards an embryogenic pathway. This process, known as microspore embryogenesis, is an important tool in plant breeding. Basic studies on this process in economically interesting crops, especially in recalcitrant plants, are very limited and the sequence of events is poorly understood. In situ studies are very convenient for an appropriate dissection of microspore embryogenesis, a process in which a mixture of different cell populations (induced and non-induced) develop asynchronically.Results. In the present study, the occurrence of defined subcellular rearrangements has been investigated during early microspore embryogenesis in pepper, an horticultural crop of agronomic interest, in relation to proliferation and differentiation events. Haploid plants of Capsicum annuum L. (var. Yolo Wonder B) have been regenerated from in vitro anther cultures by a heat treatment at 35 degrees C for 8 days. Morphogenesis of microspore-derived embryos has been analysed, at both light and electron microscopy levels, using low-temperature-processed, well-preserved specimens. The comparison with the normal gametophytic development revealed changes in cell organization after embryogenesis induction, and permitted the characterization of the time sequence of a set of structural events, not previously defined in pepper, related to the activation of proliferative activity and differentiation. These changes mainly affected the plastids, the vacuolar compartment, the cell wall and the nucleus. Further differentiation processes mimicked that of the zygotic development.Conclusions. The reported changes can be considered as markers of the microspore embryogenesis. They have increased the understanding of the mechanisms controlling the switch and progression of the microspore embryogenesis, which could help to improve its efficiency and to direct strategies, especially in agronomically

  12. Hypolipidemic and Antioxidant Properties of Hot Pepper Flower (Capsicum annuum L.).

    PubMed

    Marrelli, Mariangela; Menichini, Francesco; Conforti, Filomena

    2016-09-01

    At present, the various medical treatments of obesity involve side effects. The aim of the research is therefore to find natural compounds that have anti-obesity activity with minimum disadvantages. In this study, the hypolipidemic effect of hydroalcoholic extract of flowers from Capsicum annuum L. was examined through the evaluation of inhibition of pancreatic lipase. Antioxidant activity was assessed using different tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (˙NO) and lipid peroxidation inhibition assays. Phytochemical analysis indicated that total phenolic and flavonoid content in the extract was 128.7 ± 4.5 mg chlorogenic acid equivalent/g of crude extract and 17.66 ± 0.11 mg of quercetin equivalent/g of crude extract, respectively. The extract inhibited pancreatic lipase with IC50 value equal to 3.54 ± 0.18 mg/ml. It also inhibited lipid peroxidation with IC50 value of 27.61 ± 2.25 μg/ml after 30 min of incubation and 41.69 ± 1.13 μg/ml after 60 min of incubation. The IC50 value of radical scavenging activity was 51.90 ± 2.03 μg/ml. The extract was also able to inhibit NO production (IC50 = of 264.3 ± 7.98 μg/ml) without showing any cytotoxic effect. PMID:27372805

  13. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature.

    PubMed

    Garruña-Hernández, René; Orellana, Roger; Larque-Saavedra, Alfonso; Canto, Azucena

    2014-01-01

    Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions.

  14. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi).

    PubMed

    Kolton, Max; Green, Stefan J; Harel, Yael Meller; Sela, Noa; Elad, Yigal; Cytryn, Eddie

    2012-10-01

    Here we report the draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). Flavobacterium spp. are ubiquitous in the rhizospheres of agricultural crops; however, little is known about their physiology. To our knowledge, this is the first published genome of a root-associated Flavobacterium strain.

  15. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi).

    PubMed

    Kolton, Max; Green, Stefan J; Harel, Yael Meller; Sela, Noa; Elad, Yigal; Cytryn, Eddie

    2012-10-01

    Here we report the draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). Flavobacterium spp. are ubiquitous in the rhizospheres of agricultural crops; however, little is known about their physiology. To our knowledge, this is the first published genome of a root-associated Flavobacterium strain. PMID:22965088

  16. Draft Genome Sequence of Flavobacterium sp. Strain F52, Isolated from the Rhizosphere of Bell Pepper (Capsicum annuum L. cv. Maccabi)

    PubMed Central

    Kolton, Max; Green, Stefan J.; Harel, Yael Meller; Sela, Noa; Elad, Yigal

    2012-01-01

    Here we report the draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). Flavobacterium spp. are ubiquitous in the rhizospheres of agricultural crops; however, little is known about their physiology. To our knowledge, this is the first published genome of a root-associated Flavobacterium strain. PMID:22965088

  17. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    PubMed

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression.

  18. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  19. Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds.

    PubMed

    Kim, Ji Eun; Lillehoj, Hyun S; Hong, Yeong Ho; Kim, Geun Bae; Lee, Sung Hyen; Lillehoj, Erik P; Bravo, David M

    2015-10-01

    Three commercial broiler breeds were fed from hatch with a diet supplemented with Capsicum and Curcuma longa oleoresins, and co-infected with Eimeria maxima and Clostridium perfringens to induce necrotic enteritis (NE). Pyrotag deep sequencing of bacterial 16S rRNA showed that gut microbiota compositions were quite distinct depending on the broiler breed type. In the absence of oleoresin diet, the number of operational taxonomic units (OTUs), was decreased in infected Cobb, and increased in Ross and Hubbard, compared with the uninfected. In the absence of oleoresin diet, all chicken breeds had a decreased Candidatus Arthromitus, while the proportion of Lactobacillus was increased in Cobb, but decreased in Hubbard and Ross. Oleoresin supplementation of infected chickens increased OTUs in Cobb and Ross, but decreased OTUs in Hubbard, compared with unsupplemented/infected controls. Oleoresin supplementation of infected Cobb and Hubbard was associated with an increased percentage of gut Lactobacillus and decreased Selenihalanaerobacter, while Ross had a decreased fraction of Lactobacillus and increased Selenihalanaerobacter, Clostridium, Calothrix, and Geitlerinema. These results suggest that dietary Capsicum/Curcuma oleoresins reduced the negative consequences of NE on body weight and intestinal lesion, in part, through alteration of the gut microbiome in 3 commercial broiler breeds. PMID:26412535

  20. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.).

    PubMed

    Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Lü, Shiyou; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A

    2012-09-01

    To understand the role of fruit cuticle lipid composition in fruit water loss, an advanced backcross population, the BC(2)F(2) , was created between the Capsicum annuum (PI1154) and the Capsicum chinense (USDA162), which have high and low post-harvest water loss rates, respectively. Besides dramatic differences in fruit water loss, preliminary studies also revealed that these parents exhibited significant differences in both the amount and composition of their fruit cuticle. Cuticle analysis of the BC(2)F(2) fruit revealed that although water loss rate was not strongly associated with the total surface wax amount, there were significant correlations between water loss rate and cuticle composition. We found a positive correlation between water loss rate and the amount of total triterpenoid plus sterol compounds, and negative correlations between water loss and the alkane to triterpenoid plus sterol ratio. We also report negative correlations between water loss rate and the proportion of both alkanes and aliphatics to total surface wax amount. For the first time, we report significant correlations between water loss and cutin monomer composition. We found positive associations of water loss rate with the total cutin, total C(16) monomers and 16-dihydroxy hexadecanoic acid. Our results support the hypothesis that simple straight-chain aliphatic cuticle constituents form more impermeable cuticular barriers than more complex isoprenoid-based compounds. These results shed new light on the biochemical basis for cuticle involvement in fruit water loss.

  1. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.

    PubMed

    Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A

    2015-03-01

    The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control.

  2. Systemic and local effects of intragastric administration of the habanero fruit (Capsicum chinense Jacquin c.v.) in rats.

    PubMed

    Golynski, M; Balicki, I; Lutnicki, K; Smiech, A; Adamek, L; Szczepanik, M; Wilkolek, P; Brodzki, A; Adaszek, L

    2015-04-01

    The fruits of the habanero plant (Capsicum chinense Jacq.) are commonly used as spices. Their exceptionally hot flavour is the result of the substantial content of capsaicin that has among others the anticancer action. The experiments assess the impact of intragastric administration of a suspension of dried matter (dm) habanero fruit in peanut oil on the state of the digestive tract and parenchymal organs of rats. Habanero fruit with three different doses (0.08, 0.05 and 0.025 g of dry matter (d.m.) habanero fruit/kg b.w.) in 2 equal doses every 12 hours during 28 days was administered intragastrically in male rats. In day 8, 15 and 29 blood proofs were obtained to measure hematological parameters and alanine aminotransferase (ALT), aspartate aminotransferase (AST) activity, total bilirubin (BIL), total cholesterol (CHOL), glucose (GLUC), urea (U), and creatinine (CREA) content. Internal organs of rats were examined anatomopathologically. Between the study groups and control group there were no statistically significant differences in studied parameters. Post-mortem examinations as well as histological findings showed no pathological changes in the organs of rats. The study demonstrated a high level safety of the fruit habanero (Capsicum chinense Jacq.) administration in rats. There were no hematological, biochemical or post-mortem changes at doses that due to the amount of capsaicin can exhibit antitumor properties.

  3. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration

    PubMed Central

    Chaki, Mounira; Álvarez de Morales, Paz; Ruiz, Carmelo; Begara-Morales, Juan C.; Barroso, Juan B.; Corpas, Francisco J.; Palma, José M.

    2015-01-01

    Background and Aims Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. Methods The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. Key Results Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. Conclusions The RNS profile reported here indicates that ripening of

  4. Characterization of carotenoid high-producing Capsicum annuum cultivars selected for paprika production.

    PubMed

    Hornero-Méndez, Dámaso; Costa-García, Joaquín; Mínguez-Mosquera, Maria Isabel

    2002-09-25

    Twelve selected pepper (Capsicum annuum L.) cultivars, bred for mechanical harvesting (grouped ripeness) and adaptation to different cultivation cycles (short to long), have been characterized by their carotenoid pigment content and composition with the aim of producing high-quality paprika. A detailed analysis of the carotenogenesis was performed throughout the ripening process, but with special emphasis on the ripe stage, with the aim of selecting the best cultivar for paprika production. The MA1 cultivar (with grouped ripeness and very short cultivation cycle) showed the highest carotenoid content (12697.58 mg/kg dwt), followed by DN5 and RN2 cultivars with 11086.88 and 10393.29 mg/kg dwt, respectively. Most of the cultivars (MA3, RN1, LR2, LR7, DN3, DR6, Datler, and Mulato) showed a total carotenoid content in the range of 7000-9700 mg/kg dwt. In general, chlorophyll-retaining character was related to high carotenoid content (cultivars DN3, DN5, MA3, Mulato, RN1, and RN2). The general trend of the cultivation cycle was that the shorter the cycle, the higher the total carotenoid content (as exemplified by the cultivar MA1). The lowest total carotenoid content was found for the RR1 cultivar (4856.77 mg/kg dwt), which showed the longest cultivation cycle. Carotenogenic capacity of the cultivars has been discussed relative to total carotenoid content and the R/Y and Caps/Zeax ratios, the main quality traits for breeding cultivars for production of high-quality paprika. The cultivar MA1, with the highest total carotenoid content, high R/Y (2.11) ratio, and highest Caps/Zeax (9.85) ratio, was found to be the most suitable cultivar for paprika production in terms of carotenoid pigment biosynthesis capacity. Moreover, this cultivar has a short cultivation cycle and grouped ripeness, which are both important characteristics for a proper application of mechanical harvesting. The potential improvement of other varieties is also discussed.

  5. Fusarium semitectum, a potential mycopathogen against thrips and mites in chilli, Capsicum annuum.

    PubMed

    Mikunthan, G; Manjunatha, M

    2006-01-01

    In India, chilli (Capsicum annuum L.) suffers with a characteristic leaf curl symptoms due to the attack of mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) and thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) or both. Experiments were conducted in the fields of College of Agriculture, Shimoga, India during kharif (September 2003 to January 2004) and summer (March-June) 2004. After proving its pathogenicity, the potential of the mycopathogen, Fusarium semitectum was evaluated under field conditions using the popular chilli variety "Byadagi". Different combinations of Fusarium semitectum formulations with monocrotophos (0.025% and 0.05%) were tested. Oil-emulsion and dust-water formulations (DWF) at 1x 10(8) spore/ml, DWF with monocrotophos and 5% Neem Seed Kernal Extract (NSKE) were evaluated. Population of S. dorsalis, P. latus, predatory mite Amblyseius ovalis and damage index were estimated. Populations of thrips, mite and the predatory mite were estimated at 15 days interval after 30 days of transplanting. Damage index was assessed using a visual rating method. Plant height, fruit length and dry chilli yield of each treatment were also taken. Among the treatments, oil-emulsion formulation and dust water formulation of F. semitectum in combination with monocrotophos (0.05%) reduced the population of thrips significantly over other treatments. Dust water formulation was achieved a significant decline of thrips population in chilli plants after 60 days of transplanting. This reduction of thrips population could be achieved due to the effect of second spraying, which was given at 50 days after transplanting. Chilli plant height and fruit length did not vary significantly among the treatment in both seasons. The highest dry chilli yield of 512 and 1058 kg/ha was recorded in dust water formulation in combination with monocrotophos (0.05%) followed by oil formulation (432 kg/ha and 763 kg/ha) in Kharif and summer seasons, respectively

  6. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum)

    PubMed Central

    2012-01-01

    Background Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Results Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes

  7. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution

    PubMed Central

    2012-01-01

    Background The exotic pepper species Capsicum baccatum, also known as the aji or Peruvian hot pepper, is comprised of wild and domesticated botanical forms. The species is a valuable source of new genes useful for improving fruit quality and disease resistance in C. annuum sweet bell and hot chile pepper. However, relatively little research has been conducted to characterize the species, thus limiting its utilization. The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Together with DNA fingerprints derived from AFLP markers, we evaluated variation in fruit and plant morphology of plants collected across the species native range in South America and evaluated these characters in combination with the unique geography, climate and ecology at different sites where plants originated. Results The present study mapped the ecogeographic distribution, analyzed the spatial genetic structure, and assessed the relationship between the spatial genetic pattern and the variation of morphological traits in a diverse C. baccatum germplasm collection spanning the species distribution. A combined diversity analysis was carried out on the USDA-ARS C. baccatum germplasm collection using data from GIS, morphological traits and AFLP markers. The results demonstrate that the C. baccatum collection covers wide geographic areas and is adapted to divergent ecological conditions in South America ranging from cool Andean highland to Amazonia rainforest. A high level of morphological diversity was evident in the collection, with fruit weight the leading variable. The fruit weight distribution pattern was compatible to AFLP-based clustering analysis for the collection. A significant spatial structure was observed in the C. baccatum gene pool. Division of the domesticated germplasm into two major regional groups (Western and Eastern) was further supported by the pattern of spatial population structure. Conclusions

  8. Mycotoxin production by isolates of Fusarium lactis from greenhouse sweet pepper (Capsicum annuum).

    PubMed

    Yang, Y; Bouras, N; Yang, J; Howard, R J; Strelkov, S E

    2011-12-01

    Internal fruit rot, caused by Fusarium lactis, is an important disease of sweet pepper (Capsicum annuum) in Canadian greenhouses. Production of the mycotoxins fumonisin B₁ (FB₁), moniliformin (MON) and beauvericin (BEA) by F. lactis (17 isolates) and the related species F. proliferatum (three isolates) and F. verticillioides (one isolate), which are also associated with internal fruit rot, was evaluated on rice medium. All 21 isolates examined were found to produce BEA, at concentrations ranging from 13.28 to 1674.60 ppm, while 13 of 17 F. lactis isolates and two of three F. proliferatum isolates produced MON (0.23 to 181.85 ppm). Only one isolate of F. lactis produced detectable levels of FB₁ in culture, whereas all three F. proliferatum isolates and the F. verticilloides isolate produced this mycotoxin (0.28 to 314 ppm). Production of FB₁, MON and BEA was also evaluated in inoculated pepper fruits showing mild or severe symptoms of infection. FB₁ could be detected in both lightly and heavily diseased fruit tissue after inoculation with F. lactis, F. proliferatum or F. verticilloides, at concentrations ranging from 0.61 to 8.04 ppm. BEA was also detected in lightly and heavily diseased fruit tissue inoculated with F. lactis, as well as in heavily diseased tissue inoculated with F. proliferatum (3.00 to 19.43 ppm), but not in tissue inoculated with F. verticilloides. MON was detected in all tissues inoculated with F. proliferatum or F. verticilloides, and in heavily diseased tissue inoculated with F. lactis (0.03 to 0.27 ppm). The three mycotoxins were also found in naturally infected sweet pepper fruits exhibiting symptoms of internal fruit rot and collected from a commercial greenhouse. The production of MON, BEA and FB₁ alone or in combination by isolates of F. lactis suggests that development of internal fruit rot of sweet pepper is an important food safety concern, and that every effort should be made to cull infected fruit before it makes it to

  9. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species.

    PubMed

    Ahn, Seung-Joon; Badenes-Pérez, Francisco R; Heckel, David G

    2011-09-01

    Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than

  10. Effects of capsicum oleoresin, garlic botanical, and turmeric oleoresin on gene expression profile of ileal mucosa in weaned pigs.

    PubMed

    Liu, Y; Song, M; Che, T M; Bravo, D; Maddox, C W; Pettigrew, J E

    2014-08-01

    This study was conducted to characterize the effects of feeding 3 plant extracts on gene expression in ileal mucosa of weaned pigs. Weaned pigs (n = 32, 6.3 ± 0.2 kg BW, and 21 d old) were housed in individual pens for 9 d and fed 4 different diets: a nursery basal diet as control diet, basal diet supplemented with 10 mg/kg of capsicum oleoresin, garlic botanical, or turmeric oleoresin. Results reported elsewhere showed that the plant extracts reduced diarrhea and increased growth rate of weaning pigs. Total RNA (4 pigs/treatment) was extracted from ileal mucosa of pigs at d 9. Double-stranded cDNA was amplified, labeled, and further hybridized to the microarray. Microarray data were analyzed in R using packages from the Bioconductor project. Differential gene expression was tested by fitting a mixed linear model equivalent to ANOVA using the limma package. Bioinformatics analysis was conducted by DAVID Bioinformatics Resources. Three pairwise comparisons were used to compare each plant extract diet with the control diet. Quantitative real time PCR was applied to verify the mRNA expression detected by microarray. Compared with the control diet, feeding capsicum oleoresin altered (P < 0.05) the expression of 490 genes (280 up, 210 down), and feeding garlic botanical altered (P < 0.05) the expression of 64 genes (33 up, 31 down), while feeding turmeric oleoresin altered (P < 0.05) the expression of 327 genes (232 up, 95 down). Compared with the control diet, feeding capsicum oleoresin and turmeric oleoresin increased [Expression Analysis Systematic Explorer (EASE) < 0.05] the expression of genes related to integrity of membranes and tight junctions, indicating enhanced gut mucosa health, but decreased (EASE < 0.05) the cell cycle pathway. Feeding each of the 3 plant extracts enhanced (EASE < 0.05) the expression of genes associated with immune responses, indicating that feeding these plant extracts may stimulate the immune responses of pigs in the normal conditions

  11. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species.

    PubMed

    Ahn, Seung-Joon; Badenes-Pérez, Francisco R; Heckel, David G

    2011-09-01

    Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than

  12. Effect of combination of Capsicum frutescens and Citrullus colocynthis on growth, haematological and pathophysiological parameters of rats.

    PubMed

    AL-Qarawi, A A; Adam, S E I

    2003-01-01

    The toxicity of diet containing 10% of Capsicum frutescens or 10% of Citrullus colocynthis fruits or their 1:1 mixture (5% + 5%) to rats treated for 6 weeks was evaluated. Body weight loss, inefficiency of feed utilization, diarrhoea, and enterohepatonephropathy characterized C. colocynthis toxicosis in rats. Despite impairment of rat's growth neither nephropathy nor diarrhoea was detected in rats fed the 10% C. frutescens diet. Feeding the mixture of C. frutescens and C. colocynthis caused more pronounced effects and death of rats. Vital organ lesions accompanied by anaemia and leucopenia were correlated with changes in serum ALP, AST and ALT activities with alterations in concentrations of total protein, albumin, urea and other serum constituents. Serum bilirubin concentration did not change.

  13. [Edible coating effects on the sensory quality of green bell pepper fruits (Capsicum annuum L.) during storage].

    PubMed

    Uquiche Carrasco, Edgar; Villarroel Tudesca, Mario; Cisneros-Zevallos, Luis

    2002-03-01

    Edible coating based on carboxymethyl cellulose (CMC) and stearic acid were applied on green bell peppers (Capsicum annuum L.) samples in order to investigate its effects as protecting agent to enhance natural characteristics of products. Samples were submitted to three lots according to: (T1) uncoated; (T2) coated in lower part of the stem; (T3) coated all over the surface (T3). During storage at 5 +/- 1 degrees C, for 28 days, sensory quality and weight loss were evaluated. Sensory characteristics such as color, appearance and firmness were controlled using a composite scoring test. At the end of the study, T3 treatment showed better sensory stability than T1 (p < 0.05), none significant changes between T2 and T3 were found. The coated samples showed less firmness deterioration compared with control samples. The color was the attribute that changed less, without significant difference between treatments (p > 0.05).

  14. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131.

  15. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume.

  16. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131. PMID:27556012

  17. The effect of high hydrostatic pressure on the physiological and biochemical properties of pepper (Capsicum annuum L.) seedlings

    NASA Astrophysics Data System (ADS)

    İşlek, Cemil; Murat Altuner, Ergin; Alpas, Hami

    2015-10-01

    High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300 MPa pressure for 5 min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300 MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.

  18. Within-day Changes in the Polyribosome Content and in Synthesis of Proteins in Leaves of Capsicum annuum L

    PubMed Central

    Steer, Barrie T.; Blackwood, Graeme C.

    1978-01-01

    Capsicum annuum cv. California Wonder was grown in controlled environment with a 12-hour photoperiod. The polyribosome content of leaves varied from 60 to 72% of total ribosomes with the highest level occurring in the middle of the photoperiod and the lowest in the middle of the dark period. The variation was accounted for by changes in the content of large polyribosomes (hexamers and larger). There was no indication of an immediate effect on polyribosome content of light-on or light-off. The synthesis of proteins at two times in the 24-hour cycle was compared using a dual isotope technique. Statistically significant results were obtained that suggested that protein(s) with molecular weights of 26,000 daltons were preferentially synthesized in the photoperiod compared to the dark period. No evidence was found for the differential synthesis of proteins within the photoperiod. PMID:16660636

  19. Effect of ascorbic acid on the stability of beta-carotene and capsanthin in paprika (Capsicum annuum) powder.

    PubMed

    Morais, H; Rodrigues, P; Ramos, C; Forgács, E; Cserháti, T; Oliveira, J

    2002-10-01

    The effect of ascorbic acid, light, and storage on the stability of the pigments beta-carotene and capsanthin in red pepper (Capsicum annuum) powder has been elucidated by determining the amount of pigment in samples treated by various concentrations of ascorbic acid. Determination of pigment concentration has been performed after different storage times using high-performance liquid chromatography. The dependence of the concentration of pigments on the concentration of ascorbic acid, presence of light and the storage time has been assessed by stepwise regression analysis. The concentration of pigments decreased at longer storage time and increased at higher concentration of ascorbic acid, beta-carotene being more sensitive towards storage time and concentration of ascorbic acid than capsanthin. Interaction between the effects of light and storage time, and light and concentration of ascorbic acid has been established.

  20. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.).

    PubMed

    Barbero, Gerardo F; Ruiz, Aurora G; Liazid, Ali; Palma, Miguel; Vera, Jesús C; Barroso, Carmelo G

    2014-06-15

    The evolution of total capsaicinoids and the individual contents of the five major capsaicinoids: nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin present in the Cayenne pepper (Capsicum annuum L.), during fruit ripening, has been established. Capsaicinoids begin to accumulate gradually in the peppers from the beginning of its development up to a maximum concentration (1,789 μmol/Kg FW). From this time there is initially a sharp decrease in the total capsaicinoid content (32%), followed by a gradual decrease until day 80 of ripening. The two major capsaicinoids present in the Cayenne pepper are capsaicin and dihydrocapsaicin, which represent between 79% and 90%, respectively, of total capsaicinoids depending on fruit ripening. The relative content of capsaicin differs from the evolution of the other four capsaicinoids studied.

  1. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in capsicum under drought stress.

    PubMed

    Phimchan, Paongpetch; Chanthai, Saksit; Bosland, Paul W; Techawongstien, Suchila

    2014-07-23

    Penylalanine ammonia-lyase (PAL), cinnamic-4-hydroxylase (C4H), capsaicin synthase (CS), and peroxidase (POD) are involved in the capsaicinoid biosynthesis pathway and may be altered in cultivars with different pungency levels. This study clarified the action of these enzymes under drought stress for hot Capsicum cultivars with low, medium,and high pungency levels. At the flowering stage, control plants were watered at field capacity, whereas drought-induced plants were subjected to gradual drought stress. Under drought stress, PAL, C4H, CS, and POD enzyme activities increased as compared to the non-drought-stressed plants. A novel discovery was that PAL was the critical enzyme in capsaicinoid biosynthesis under drought stress because its activities and capsaicinoid increased across the different pungency levels of hot pepper cultivars examined.

  2. Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene

    PubMed Central

    2011-01-01

    Background Parthenocarpy is a desirable trait in Capsicum annuum production because it improves fruit quality and results in a more regular fruit set. Previously, we identified several C. annuum genotypes that already show a certain level of parthenocarpy, and the seedless fruits obtained from these genotypes often contain carpel-like structures. In the Arabidopsis bel1 mutant ovule integuments are transformed into carpels, and we therefore carefully studied ovule development in C. annuum and correlated aberrant ovule development and carpelloid transformation with parthenocarpic fruit set. Results We identified several additional C. annuum genotypes with a certain level of parthenocarpy, and confirmed a positive correlation between parthenocarpic potential and the development of carpelloid structures. Investigations into the source of these carpel-like structures showed that while the majority of the ovules in C. annuum gynoecia are unitegmic and anatropous, several abnormal ovules were observed, abundant at the top and base of the placenta, with altered integument growth. Abnormal ovule primordia arose from the placenta and most likely transformed into carpelloid structures in analogy to the Arabidopsis bel1 mutant. When pollination was present fruit weight was positively correlated with seed number, but in the absence of seeds, fruit weight proportionally increased with the carpelloid mass and number. Capsicum genotypes with high parthenocarpic potential always showed stronger carpelloid development. The parthenocarpic potential appeared to be controlled by a single recessive gene, but no variation in coding sequence was observed in a candidate gene CaARF8. Conclusions Our results suggest that in the absence of fertilization most C. annuum genotypes, have parthenocarpic potential and carpelloid growth, which can substitute developing seeds in promoting fruit development. PMID:22018057

  3. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum.

    PubMed

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan, Armando Molina; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2014-02-01

    Ozone (O3) is one of the most harmful air pollutants to crops, contributing to high losses on crop yield. Tropospheric O3 background concentrations have increased since pre-industrial times reaching phytotoxic concentrations in many world regions. Capsicum peppers are the second most traded spice in the world, but few studies concerning the O3 effects in this genus are known. Thereby, the aim of this work was to evaluate the effects of chronic exposure to elevated O3 concentrations in red pepper plant Capsicum baccatum L. var. pendulum with especial considerations on the leaf redox state and fruit yield. Fifteen C. baccatum plants were exposed to O3 in open-top chambers during fruit ripening (62 days) at a mean concentration of 171.6 µg/m(3) from 10:00 am to 4:00 pm. We found that O3 treated plants significantly decreased the amount and the total weight of fruits, which were probably a consequence of the changes on leaf oxidative status induced by ozone exposure. Ozone exposed plants increased the reactive oxygen species (ROS) levels on the leaves, which may be associated with the observed decrease on the activity of enzymatic antioxidant defense system, as well with lower levels of polyphenol and reduced thiol groups. Enhanced ROS production and the direct O3 reaction lead to biomacromolecules damages as seen in the diminished chlorophyll content and in the elevated lipid peroxidation and protein carbonylation levels. Through a correlation analysis it was possible to observe that polyphenols content was more important to protect pepper plants against oxidative damages to lipids than to proteins.

  4. Direct connection of supercritical fluid extraction and supercritical fluid chromatography as a rapid quantitative method for capsaicinoids in placentas of Capsicum.

    PubMed

    Sato, K; Sasaki, S S; Goda, Y; Yamada, T; Nunomura, O; Ishikawa, K; Maitani, T

    1999-11-01

    The fruits of Capsicum annuum L. are used worldwide as chili peppers and in folk medicines. The pungent components of C. annuum, which are irritants, are called capsaicinoids (CAPS), and the most abundant components are capsaicin, dihydrocapsaicin, and nordihydrocapsaicin. To analyze CAPS in the placentas of Capsicum fruits rapidly and safely, we used a directly connected system of supercritical fluid extraction and supercritical fluid chromatography (SFE/SFC). As a column for SFE/SFC, only a silica-type column was found to be suitable. The CAPS contents in placentas of C. annuum cv. Jalapeno (hot type) and C. annuum cv. Shishitoh (less-hot type) determined by the SFE/SFC method agreed well with those in the range of 0-13.81 mg g(-1) fr. wt determined by the usual extraction-HPLC method. The SFE/SFC method has the advantages of no need for pretreatment and no (or minimal) need for organic solvents. We conclude that this method is useful as a rapid (20 min) and safe screening test for the pungency of various Capsicum fruits.

  5. Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense).

    PubMed

    Tanaka, Yoshiyuki; Hosokawa, Munetaka; Miwa, Tetsuya; Watanabe, Tatsuo; Yazawa, Susumu

    2010-11-24

    Capsinoids are a group of nonpungent capsaicinoid analogues produced in Capsicum fruits. They have similar bioactivities to capsaicinoids such as suppression of fat accumulation and antioxidant activity. They are more palatable ingredients in dietary supplements than capsaicinoids because of their low pungency. Previous studies on nonpungent Capsicum annuum cultivars showed that capsinoid biosynthesis is caused by loss-of-function putative aminotransferase (p-amt) alleles. This study showed that three mildly pungent cultivars of Capsicum chinense (Zavory Hot, Aji Dulce strain 2, and Belize Sweet) contain high levels of capsinoid. It was shown that these cultivars have novel p-amt alleles, which contain mutations that differ from those of C. annuum. Sequence analysis of p-amt in Belize Sweet revealed that a 5 bp insertion (TGGGC) results in a frameshift mutation. A transposable element (Tcc) was found in the p-amt of Zavory Hot and Aji Dulce strain 2. Tcc has features similar to those of the hAT transposon family. This was inserted in the fifth intron of Zavory Hot and in third intron of Aji Dulce strain 2. The p-amt alleles harboring Tcc cannot produce an active p-AMT. These mildly pungent cultivars will provide a new natural source of capsinoids.

  6. Antioxidant capacity and total phenolic content in fruit tissues from accessions of Capsicum chinense Jacq. (Habanero pepper) at different stages of ripening.

    PubMed

    Castro-Concha, Lizbeth A; Tuyub-Che, Jemina; Moo-Mukul, Angel; Vazquez-Flota, Felipe A; Miranda-Ham, Maria L

    2014-01-01

    In the past few years, there has been a renewed interest in studying a wide variety of food products that show beneficial effects on human health. Capsicum is an important agricultural crop, not only because its economic importance, but also for the nutritional values of its pods, mainly due to the fact that they are an excellent source of antioxidant compounds, and also of specific constituents such as the pungent capsaicinoids localized in the placental tissue. This current study was designed to evaluate the antioxidant capacity and total phenolic contents from fruits tissues of two Capsicum chinense accessions, namely, Chak k'an-iik (orange) and MR8H (red), at contrasting maturation stages. Results showed that red immature placental tissue, with a Trolox equivalent antioxidant capacity (TEAC) value of 55.59 μmols TE g(-1) FW, exhibited the strongest total antioxidant capacity using both the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the CUPRAC methods. Placental tissue also had the highest total phenolic content (27 g GAE 100 g(-1) FW). The antioxidant capacity of Capsicum was directly related to the total amount of phenolic compounds detected. In particular, placentas had high levels of capsaicinoids, which might be the principal responsible for their strong antioxidant activities.

  7. In the shadow of a pepper-centric historiography: Understanding the global diffusion of capsicums in the sixteenth and seventeenth centuries.

    PubMed

    Halikowski Smith, Stefan

    2015-06-01

    Historians of the Eurasian spice trade focus on the fortunes of black pepper (Piper Nigrum L.), largely because the trading companies of the Dutch and English which they study also did. Capsicum peppers are, however, the world׳s most consumed spice, and their story needs to be told in parallel. The five species of capsicum peppers spread across the world in less than two hundred years following their discovery by Europeans in South and Central America and proved both hardier than Piper nigrum and able to reproduce spontaneously. While the taste was similar but more pungent than black pepper, capsicums provided an important vitamin C and bioflavanoid supplement to poorer people in southern and eastern Europe far from the precepts of good taste as dictated from Paris, and rapidly became a mainstay of tropical cuisine across the world. This contribution seeks both to trace and to understand that diffusion and its principal vectors from historical research amongst a plethora of primary source materials in European and Asian languages. Medical and dietetic reaction is presented from a wide range of contemporary texts. The work proceeds according to deductive reasoning and in comparison to the diffusion of black pepper consumption. It reveals the very different strategies of import substitution and commercial embargo undertaken by Portuguese and Spanish authorities, a somewhat later date of arrival in China than previously thought, and three different, competing lines of entry into an important area of later cultivation, namely Central Europe. PMID:25446579

  8. In the shadow of a pepper-centric historiography: Understanding the global diffusion of capsicums in the sixteenth and seventeenth centuries.

    PubMed

    Halikowski Smith, Stefan

    2015-06-01

    Historians of the Eurasian spice trade focus on the fortunes of black pepper (Piper Nigrum L.), largely because the trading companies of the Dutch and English which they study also did. Capsicum peppers are, however, the world׳s most consumed spice, and their story needs to be told in parallel. The five species of capsicum peppers spread across the world in less than two hundred years following their discovery by Europeans in South and Central America and proved both hardier than Piper nigrum and able to reproduce spontaneously. While the taste was similar but more pungent than black pepper, capsicums provided an important vitamin C and bioflavanoid supplement to poorer people in southern and eastern Europe far from the precepts of good taste as dictated from Paris, and rapidly became a mainstay of tropical cuisine across the world. This contribution seeks both to trace and to understand that diffusion and its principal vectors from historical research amongst a plethora of primary source materials in European and Asian languages. Medical and dietetic reaction is presented from a wide range of contemporary texts. The work proceeds according to deductive reasoning and in comparison to the diffusion of black pepper consumption. It reveals the very different strategies of import substitution and commercial embargo undertaken by Portuguese and Spanish authorities, a somewhat later date of arrival in China than previously thought, and three different, competing lines of entry into an important area of later cultivation, namely Central Europe.

  9. Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant.

    PubMed

    Lin, Shih-Yao; Hung, Mei-Hua; Hameed, Asif; Liu, You-Cheng; Hsu, Yi-Han; Wen, Cheng-Zhe; Arun, A B; Busse, Hans-Jürgen; Glaeser, Stefanie P; Kämpfer, Peter; Young, Chiu-Chung

    2015-03-01

    A novel, Gram-staining-negative, rod-shaped, aerobic and motile bacterium, designated strain CC-SKC2(T), was isolated from the root tumor of a green bell pepper (Capsicum annuum var. grossum) plant in Taiwan. Cells were positive for oxidase and catalase activities and exhibited growth at 25-37 °C, pH 4.0-9.0 and tolerated NaCl concentrations up to 4.0 % (w/v). Strain CC-SKC2(T) is able to trigger nodulation in soybean (Glycine max Merr.), but not in Capsicum annuum var. grossum, red bean (Vigna angularis), sesbania (Sesbania roxburghii Merr.) or alfalfa (Medicago varia Martin.). The novel strain shared highest 16S rRNA gene sequence similarity to Rhizobium rhizoryzae KCTC 23652(T) and Rhizobium straminoryzae CC-LY845(T) (both 97.5 %) followed by Rhizobium lemnae L6-16(T) (97.3 %), Rhizobium pseudoryzae KCTC 23294(T) (97.1 %), and Rhizobium paknamense NBRC 109338(T) (97.0 %), whereas other Rhizobium species shared <96.7 % similarity. The DNA-DNA relatedness values of strain CC-SKC2(T) with R. rhizoryzae KCTC 23652(T), R. pseudoryzae KCTC 23294(T) and R. paknamense NBRC 109338(T) were 11.4, 17.2 and 17.0 %, respectively (reciprocal values were 11.1, 28.3 and 24.0 %, respectively). Phylogenetic analysis based on 16S rRNA, atpD and recA genes revealed a distinct taxonomic position attained by strain CC-SKC2(T) with respect to other Rhizobium species. The major fatty acids in strain CC-SKC2(T) were C16:0, C19:0 cyclo ω8c, C14:0 3-OH and/or C16:1 iso I and C18:1 ω7c and/or C18:1 ω6c. The polyamine pattern showed predominance of spermidine and moderate amounts of sym-homospermidine. The predominant quinone system was ubiquinone (Q-10) and the DNA G+C content was 60.5 mol%. On the basis of polyphasic taxonomic evidence presented here, strain CC-SKC2(T) is proposed to represent a novel species within the genus Rhizobium, for which the name Rhizobium capsici sp. nov. is proposed. The type strain is CC-SKC2(T) (=BCRC 80699(T) = JCM 19535(T)).

  10. Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant.

    PubMed

    Lin, Shih-Yao; Hung, Mei-Hua; Hameed, Asif; Liu, You-Cheng; Hsu, Yi-Han; Wen, Cheng-Zhe; Arun, A B; Busse, Hans-Jürgen; Glaeser, Stefanie P; Kämpfer, Peter; Young, Chiu-Chung

    2015-03-01

    A novel, Gram-staining-negative, rod-shaped, aerobic and motile bacterium, designated strain CC-SKC2(T), was isolated from the root tumor of a green bell pepper (Capsicum annuum var. grossum) plant in Taiwan. Cells were positive for oxidase and catalase activities and exhibited growth at 25-37 °C, pH 4.0-9.0 and tolerated NaCl concentrations up to 4.0 % (w/v). Strain CC-SKC2(T) is able to trigger nodulation in soybean (Glycine max Merr.), but not in Capsicum annuum var. grossum, red bean (Vigna angularis), sesbania (Sesbania roxburghii Merr.) or alfalfa (Medicago varia Martin.). The novel strain shared highest 16S rRNA gene sequence similarity to Rhizobium rhizoryzae KCTC 23652(T) and Rhizobium straminoryzae CC-LY845(T) (both 97.5 %) followed by Rhizobium lemnae L6-16(T) (97.3 %), Rhizobium pseudoryzae KCTC 23294(T) (97.1 %), and Rhizobium paknamense NBRC 109338(T) (97.0 %), whereas other Rhizobium species shared <96.7 % similarity. The DNA-DNA relatedness values of strain CC-SKC2(T) with R. rhizoryzae KCTC 23652(T), R. pseudoryzae KCTC 23294(T) and R. paknamense NBRC 109338(T) were 11.4, 17.2 and 17.0 %, respectively (reciprocal values were 11.1, 28.3 and 24.0 %, respectively). Phylogenetic analysis based on 16S rRNA, atpD and recA genes revealed a distinct taxonomic position attained by strain CC-SKC2(T) with respect to other Rhizobium species. The major fatty acids in strain CC-SKC2(T) were C16:0, C19:0 cyclo ω8c, C14:0 3-OH and/or C16:1 iso I and C18:1 ω7c and/or C18:1 ω6c. The polyamine pattern showed predominance of spermidine and moderate amounts of sym-homospermidine. The predominant quinone system was ubiquinone (Q-10) and the DNA G+C content was 60.5 mol%. On the basis of polyphasic taxonomic evidence presented here, strain CC-SKC2(T) is proposed to represent a novel species within the genus Rhizobium, for which the name Rhizobium capsici sp. nov. is proposed. The type strain is CC-SKC2(T) (=BCRC 80699(T) = JCM 19535(T)). PMID:25555455

  11. Net Carbon Gain and Growth of Bell Peppers, Capsicum annuum 'Cubico', Following Root Infection by Pythium aphanidermatum.

    PubMed

    Johnstone, M; Chatterton, S; Sutton, J C; Grodzinski, B

    2005-04-01

    ABSTRACT The first characterization of alterations in whole-plant photosynthetic rate and carbon assimilation of bell peppers associated with infection by Pythium aphanidermatum is described. Relationships of root disease caused by P. aphanidermatum to whole-plant net carbon exchange rate (NCER), total carbon accumulation, dark respiration rates, water loss, and destructive growth parameters were quantified in vegetative, hydroponically grown pepper plants (Capsicum annuum 'Cubico'). Inoculated plants displayed lower whole-plant NCER. This translated into a loss of 28% in cumulative C gain during 7 days after inoculation and occurred before visible shoot symptoms developed. Leaf area and dry weight of shoots and roots were significantly decreased and the shoot/root ratio was higher in inoculated plants than in noninoculated plants. We propose that reduced NCER in inoculated plants was mainly due to restricted development of leaf area, because no differences in NCER and evapotranspiration were observed between control and inoculated plants when expressed based on leaf area and root dry mass, respectively. These findings indicate that Pythium infection did not affect the photosynthetic apparatus directly and that the reductions in photosynthesis and growth were not caused by inefficient water transport by diseased roots. These results enlarge on the understanding of physiological responses of host plants to early stages of root disease.

  12. Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.).

    PubMed

    Kim, Hyun Jung; Han, Jung-Heon; Kim, Seungill; Lee, Heung Ryul; Shin, Jun-Sung; Kim, Jeong-Ho; Cho, Juok; Kim, Young Ho; Lee, Hee Jae; Kim, Byung-Dong; Choi, Doil

    2011-04-01

    A relationship between pepper trichome and pepper mottle virus (PepMoV) resistance was examined. In an intraspecific F(2) mapping population from the cross between Capsicum annuum CM334 (trichome-bearing and PepMoV resistant) and Chilsungcho (glabrous and PepMoV susceptible), major QTLs for both traits were identified by composite interval mapping in linkage group (LG) 24 corresponding a telomere region on pepper chromosome 10. Ptel1 of putative trichome enhancing locus was a common major QTL for trichome density on the main stem and calyx. Ptel1 apart from HpmsE031 at a 1.03 cM interval was specifically associated to the trichome density on the main stem, whereas Ptel2 near m104 marker on LG2 was specific for the calyx trichome. Epistatic analysis indicated that Ptel1 engaged in controlling the trichome density by mutual interactions with the organ-specific QTLs. For PepMoV resistance, two QTLs (Pep1 and Pep2) were identified on the LG 24. Pep1 was located with Ptel1 in the R-gene cluster (RGC) for potyvirus resistance including Pvr4 with broad spectrum resistance to potyviruses. Pep1 flanking TG420 marker seemed to be the major factors determining correlation with PepMoV resistance. These results indicate that the level of trichome density on pepper main stem can be used as a morphological marker for Pvr4 in pepper breeding.

  13. Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum.

    PubMed

    Kumar, Sunil; Dubey, Ashvini Kumar; Karmakar, Ruma; Kini, Kukkundoor Ramachandra; Mathew, Mathew Kuriyan; Prakash, Harischandra Sripathy

    2012-12-01

    The host proteins TOM1 and TOM3 associated with tonoplast membrane are shown to be required for efficient multiplication of Tobamoviruses. In this study, homologous of TOM1 and TOM3 genes were identified in pepper (Capsicum annuum) using specific primers. Their gene sequences have similarity to Nicotiana tabacum NtTOM1 and NtTOM3. Sequence alignment showed that CaTOM1 and CaTOM3 are closely related to TOM1 and TOM3 of N. tabacum and Solanum lycopersicum with 90% and 70% nucleotide sequence identities, respectively. RNA interference approach was used to suppress the TOM1 and TOM3 gene expression which in turn prevented Tobacco mosaic virus replication in tobacco. Nicotiana plants agro-infiltrated with siRNA constructs of TOM1 or TOM3 showed no mosaic or necrotic infection symptoms upon inoculation with TMV. The results indicated that silencing of TOM1 and TOM3 of pepper using the siRNA constructs is an efficient method for generating TMV-resistant plants.

  14. Silencing of the CaCP gene delays salt- and osmotic-induced leaf senescence in Capsicum annuum L.

    PubMed

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-05-12

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper.

  15. A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang).

    PubMed

    Chung, Eunsook; Seong, Eunsoo; Kim, Yeoung-Cheol; Chung, Eun Joo; Oh, Sang-Keun; Lee, Sanghyeob; Park, Jeong Mee; Joung, Young Hee; Choi, Doil

    2004-04-30

    Using a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system, expression of phytogene desaturase (PDS) and ribulose-1,5-bisphosphate carboxylase small-subuit (rbcS) genes was suppressed in Nicotiana benthamiana and pepper plants (Capsicum annuum L. cv. Bukang). The silenced phenotypes of pale yellow (rbcS), and photobleached leaves (PDS), were invariably obvious 2 weeks after inoculation with the TRV-based vector. In a parallel experiment, the same set of genes was silenced in N. benthamiana and yielded identical phenotypes to pepper 1 week after inoculation. Northern blot analyses showed that the endogenous levels of CarbcS and CaPDS transcripts were dramatically reduced in the silenced leaf tissues. These observations confirm that the silenced phenotype is closely correlated with the pattern of tissue expression. To our knowledge, this is the first high frequency VIGS method in pepper plants. It should provide a tool for large-scale gene silencing studies in pepper functional genomics.

  16. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum 'Bugwang'.

    PubMed

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho; Jeong, Byoung Ryong

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

  17. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa; Tunali, Sibel; Akar, Tamer; Kiran, Ismail

    2005-09-30

    Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.

  18. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.

  19. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum)

    PubMed Central

    Han, Koeun; Jeong, Hee-Jin; Yang, Hee-Bum; Kang, Sung-Min; Kwon, Jin-Kyung; Kim, Seungill; Choi, Doil; Kang, Byoung-Cheorl

    2016-01-01

    Most agricultural traits are controlled by quantitative trait loci (QTLs); however, there are few studies on QTL mapping of horticultural traits in pepper (Capsicum spp.) due to the lack of high-density molecular maps and the sequence information. In this study, an ultra-high-density map and 120 recombinant inbred lines (RILs) derived from a cross between C. annuum ‘Perennial’ and C. annuum ‘Dempsey’ were used for QTL mapping of horticultural traits. Parental lines and RILs were resequenced at 18× and 1× coverage, respectively. Using a sliding window approach, an ultra-high-density bin map containing 2,578 bins was constructed. The total map length of the map was 1,372 cM, and the average interval between bins was 0.53 cM. A total of 86 significant QTLs controlling 17 horticultural traits were detected. Among these, 32 QTLs controlling 13 traits were major QTLs. Our research shows that the construction of bin maps using low-coverage sequence is a powerful method for QTL mapping, and that the short intervals between bins are helpful for fine-mapping of QTLs. Furthermore, bin maps can be used to improve the quality of reference genomes by elucidating the genetic order of unordered regions and anchoring unassigned scaffolds to linkage groups. PMID:26744365

  20. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang'

    PubMed Central

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  1. Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum).

    PubMed

    Nicolaï, M; Pisani, C; Bouchet, J-P; Vuylsteke, M; Palloix, A

    2012-08-13

    Genetic markers based on single nucleotide polymorphisms (SNPs) are in increasing demand for genome mapping and fingerprinting of breeding populations in crop plants. Recent advances in high-throughput sequencing provide the opportunity for whole-genome resequencing and identification of allelic variants by mapping the reads to a reference genome. However, for many species, such as pepper (Capsicum annuum), a reference genome sequence is not yet available. To this end, we sequenced the C. annuum cv. "Yolo Wonder" transcriptome using Roche 454 pyrosequencing and assembled de novo 23,748 isotigs and 60,370 singletons. Mapping of 10,886,425 reads obtained by the Illumina GA II sequencing of C. annuum cv. "Criollo de Morelos 334" to the "Yolo Wonder" transcriptome allowed for SNP identification. By setting a threshold value that allows selecting reliable SNPs with minimal loss of information, 11,849 reliable SNPs spread across 5919 isotigs were identified. In addition, 853 single sequence repeats were obtained. This information has been made available online.

  2. Tomato chlorotic leaf distortion virus, a new bipartite begomovirus infecting Solanum lycopersicum and Capsicum chinense in Venezuela.

    PubMed

    Zambrano, Karla; Geraud-Pouey, Francis; Chirinos, Doris; Romay, Gustavo; Marys, Edgloris

    2011-12-01

    Virus isolate T217L was obtained from a diseased tomato (Solanum lycopersicum) plant showing leaf deformation and chlorotic mottle symptoms near Maracaibo in the state of Zulia, Venezuela. Full-length DNA-A and DNA-B molecules of T217L were cloned and sequenced. The genome organization of T217L was identical to the bipartite genomes of other begomoviruses described from the Americas. Characteristic disease symptoms were reproduced in S. lycopersicum and Capsicum annum plants inoculated using the cloned viral DNA-A and DNA-B components, confirming disease aetiology. A sequence analysis of DNA-A showed that the T217L isolate has the highest sequence identity (84%) with sida yellow mosaic Yucatan virus (SiYMYuV), sida golden mosaic Honduras virus (SiGMHV) and bean dwarf mosaic virus (BDMV) isolates. This is less than the 89% identity in the DNA-A component that has been defined as the threshold value for the demarcation of species in the genus Begomovirus. The molecular data show that isolate T217L belongs to a novel tentative begomovirus species, for which the name tomato chlorotic leaf distortion virus is proposed. TCLDV was also detected in symptomatic C. chinense plants growing near the T217L-infected plant.

  3. The relationship between Pepper mottle virus source leaf and spread of infection through the stem of Capsicum sp.

    PubMed

    Murphy, J F

    2002-09-01

    Pepper mottle virus (PepMoV) systemically infects Capsicum sp. in a typical source-to-sink manner with movement through the stem occurring in a predictable pattern. This study was carried out to determine the relationship between the inoculated leaf as a source of inoculum and the spread of PepMoV infection through the stem. C. annuum 'Early Calwonder' plants were mechanically inoculated onto the first leaf with PepMoV and sets of 30 plants had their inoculated leaves removed each day from 1 through 7 days post-inoculation (dpi) with the inoculated leaves tested for infection by ELISA at the time of excision. Beginning at 2 dpi, PepMoV infection in the stem of plants with the inoculated leaf excised and plants of a nonexcision control treatment was determined using immuno-tissue blot analysis. PepMoV was detected in inoculated leaves beginning at 3 dpi with the percentage of infected leaves increasing each day through 7 dpi. PepMoV was first detected in the stem of inoculated plants of the 3 dpi excision treatment. The accumulation and extent of spread of infection in the stem was similar for plants that had their inoculated leaf removed at a time preceding detection by ELISA to plants in the nonexcision control treatment. These findings suggest that once virus is allowed to enter the stem from the inoculated leaf, subsequent spread of infection through the stem is a process independent from the source leaf.

  4. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.).

    PubMed

    Kang, Won-Hee; Hoang, Ngoc Huy; Yang, Hee-Bum; Kwon, Jin-Kyung; Jo, Sung-Hwan; Seo, Jang-Kyun; Kim, Kook-Hyung; Choi, Doil; Kang, Byoung-Cheorl

    2010-05-01

    Cucumber mosaic virus (CMV) is one of the most destructive viruses in the Solanaceae family. Simple inheritance of CMV resistance in peppers has not previously been documented; all previous studies have reported that resistance to this virus is mediated by several partially dominant and recessive genes. In this study, we showed that the Capsicum annuum cultivar 'Bukang' contains a single dominant resistance gene against CMV(Korean) and CMV(FNY) strains. We named this resistance gene Cmr1 (Cucumber mosaic resistance 1). Analysis of the cellular localization of CMV using a CMV green fluorescent protein construct showed that in 'Bukang,' systemic movement of the virus from the epidermal cell layer to mesophyll cells is inhibited. Genetic mapping and FISH analysis revealed that the Cmr1 gene is located at the centromeric region of LG2, a position syntenic to the ToMV resistance locus (Tm-1) in tomatoes. Three SNP markers were developed by comparative genetic mapping: one intron-based marker using a pepper homolog of Tm-1, and two SNP markers using tomato and pepper BAC sequences mapped near Cmr1. We expect that the SNP markers developed in this study will be useful for developing CMV-resistant cultivars and for fine mapping the Cmr1 gene.

  5. Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum.

    PubMed

    Moury, Benoît; Morel, Caroline; Johansen, Elisabeth; Guilbaud, Laurent; Souche, Sylvie; Ayme, Valérie; Caranta, Carole; Palloix, Alain; Jacquemond, Mireille

    2004-03-01

    The recessive resistance genes pot-1 and pvr2 in Lycopersicon hirsutum and Capsicum annuum, respectively, control Potato virus Y (PVY) accumulation in the inoculated leaves. Infectious cDNA molecules from two PVY isolates differing in their virulence toward these resistances were obtained using two different strategies. Chimeras constructed with these cDNA clones showed that a single nucleotide change corresponding to an amino acid substitution (Arg119His) in the central part of the viral protein genome-linked (VPg) was involved in virulence toward the pot-1 resistance. On the other hand, 15 nucleotide changes corresponding to five putative amino acid differences in the same region of the VPg affected virulence toward the pvr2(1) and pvr2(2) resistances. Substitution models identified six and five codons within the central and C terminal parts of the VPg for PVY and for the related potyvirus Potato virus A, respectively, which undergo positive selection. This suggests that the role of the VPg-encoding region is determined by the protein and not by the viral RNA apart from its protein-encoding capacity.

  6. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    PubMed Central

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  7. Determination of ochratoxin A in Capsicum spp. (paprika and chili) by immunoaffinity column cleanup and liquid chromatography: collaborative study.

    PubMed

    Kunsagi, Zoltan; Stroka, Joerg

    2014-01-01

    A method validation study for the determination of ochratoxin A in Capsicum spp. (paprika and chili) was conducted according to the International Union of Pure and Applied Chemistry harmonized protocol. The method is based on the extraction of samples with aqueous methanol, followed by an immunoaffinity column cleanup. The determination is carried out by RP-HPLC coupled with a fluorescence detector. The study involved 21 participants representing a cross-section of research, private, and official control laboratories from 14 European Union (EU) Member States and Singapore. Mean recoveries reported ranged from 83.7 to 87.5%. The RSD for repeatability (RSDr) ranged from 1.7 to 14.3%. The RSD for reproducibility (RSDR) ranged from 9.1 to 27.5%, reflecting HorRat values from 0.4 to 1.3 according to the Horwitz function modified by Thompson. The correction for recovery of results from naturally contaminated samples further improved the reproducibility of the method. The method showed acceptable within-laboratory and between-laboratory precision for each matrix, and it conforms to requirements set by current EU legislation. PMID:25051637

  8. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    PubMed

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %). PMID:25355002

  9. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells.

    PubMed

    Altúzar-Molina, Alma R; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Racagni-Di Palma, Graciela; Hernández-Sotomayor, S M Teresa

    2011-02-01

    The phospholipidic signal transduction system involves generation of second messengers by hydrolysis or changes in phosphorylation state. Several studies have shown that the signaling pathway forms part of plant response to phytoregulators such as salicylic acid (SA) and methyl jasmonate (MJ), which have been widely used to stimulate secondary metabolite production in cell cultures. An evaluation was made of the effect of SA and MJ on phospholipidic signaling and capsaicinoid production in Capsicum chinense Jacq. suspension cells. Treatment with SA inhibited phospholipase C (PLC) (EC: 3.1.4.3) and phospholipase D (PLD) (EC: 3.1.4.4) activities in vitro, but increased lipid kinase activities in vitro at different SA concentrations. Treatment with MJ produced increases in PLC and PLD activities, while lipid kinase activities were variable and dose-dependent. The production of vanillin, a precursor of capsaicinoids, increased at specific SA or MJ doses. Preincubation with neomycin, a phospholipase inhibitor, before SA or MJ treatment inhibits increase in vanillin production which suggests that phospholipidic second messengers may participate in the observed increase in vanillin production.

  10. Antioxidant Systems from Pepper (Capsicum annuum L.): Involvement in the Response to Temperature Changes in Ripe Fruits

    PubMed Central

    Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.

    2013-01-01

    Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886

  11. Isolation and characterization of CaMF3, an anther-specific gene in Capsicum annuum L.

    PubMed

    Hao, Xuefeng; Chen, Changming; Chen, Guoju; Cao, Bihao; Chen, Qinghua; Lei, Jianjun

    2012-12-01

    Previous work on gene expression analysis based on RNA sequencing identified a variety of differentially expressed cDNA fragments in the genic male sterile-fertile line 114AB of Capsicum annuum L. In this work, we examined the accumulation of one of the transcript-derived fragments (TDFs), CaMF3 (male fertile 3), in the flower buds of a fertile line. The full genomic DNA sequence of CaMF3 was 1,951 bp long and contained 6 exons and 5 introns, with the complete sequence encoding a putative 25.89 kDa protein of 234 amino acids. The predicted protein of CaMF3 shared sequence similarity with members of the isoamyl acetate-hydrolyzing esterase (IAH1) protein family. CaMF3 expression was detected only in flower buds at stages 7 and 8 and in open flowers of a male fertile line; no expression was observed in any organs of a male sterile line. Fine expression analysis revealed that CaMF3 was expressed specifically in anthers of the fertile line. These results suggest that CaMF3 is an anther-specific gene that may be essential for anther or pollen development in C. annuum. PMID:23271943

  12. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.).

    PubMed

    Cheng, Jiaowen; Qin, Cheng; Tang, Xin; Zhou, Huangkai; Hu, Yafei; Zhao, Zicheng; Cui, Junjie; Li, Bo; Wu, Zhiming; Yu, Jiping; Hu, Kailin

    2016-01-01

    The development and application of single nucleotide polymorphisms (SNPs) is in its infancy for pepper. Here, a set of 15,000 SNPs were chosen from the resequencing data to develop an array for pepper with 12,720 loci being ultimately synthesized. Of these, 8,199 (~64.46%) SNPs were found to be scorable and covered ~81.18% of the whole genome. With this array, a high-density interspecific genetic map with 5,569 SNPs was constructed using 297 F2 individuals, and genetic diversity of a panel of 399 pepper elite/landrace lines was successfully characterized. Based on the genetic map, one major QTL, named Up12.1, was detected for the fruit orientation trait. A total of 65 protein-coding genes were predicted within this QTL region based on the current annotation of the Zunla-1 genome. In summary, the thousands of well-validated SNP markers, high-density genetic map and genetic diversity information will be useful for molecular genetics and innovative breeding in pepper. Furthermore, the mapping results lay foundation for isolating the genes underlying variation in fruit orientation of Capsicum. PMID:27623541

  13. Dramatic changes in leaf development of the native Capsicum chinense from the Seychelles at temperatures below 24 degrees C.

    PubMed

    Koeda, Sota; Hosokawa, Munetaka; Kang, Byoung-Cheorl; Yazawa, Susumu

    2009-11-01

    When a pepper cultivar (Capsicum chinense cv. Seychelles-2, Sy-2) native to the Seychelles was grown in Japan, all seedlings showed seasonal developmental abnormalities such as development of abnormally shaped leaves. Other pepper cultivars grew well in all seasons while the growth of cv. Sy-2 was stunted. In this study, we first examined the effects of various changes in temperature and photoperiod on the cv. Sy-2 phenotype. The results showed that temperatures lower than 24 degrees C led to the formation of abnormal leaves. Second, morphological and anatomical analyses of cotyledons and true leaves developed at 28 and 20 degrees C were conducted. The narrower and thicker cotyledons developed at 20 degrees C had fewer palisade cells in the leaf-length direction, and more cells in the leaf-thickness direction. True leaves developed at 20 degrees C were irregularly shaped, thicker and had smaller leaf area. In addition, true leaves developed at 20 degrees C had fewer palisade cells in the leaf-length and leaf-width directions and had more cells in the leaf-thickness direction. Furthermore, abnormal periclinal cell divisions in the mesophyll and/or epidermal cell layers were observed during leaf blade development at 20 degrees C. These results suggest that the observed changes in cell proliferation and abnormal periclinal cell divisions were related, at least in part, to abnormal leaf development of cv. Sy-2 at temperatures below 24 degrees C.

  14. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  15. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.)

    PubMed Central

    Cheng, Jiaowen; Qin, Cheng; Tang, Xin; Zhou, Huangkai; Hu, Yafei; Zhao, Zicheng; Cui, Junjie; Li, Bo; Wu, Zhiming; Yu, Jiping; Hu, Kailin

    2016-01-01

    The development and application of single nucleotide polymorphisms (SNPs) is in its infancy for pepper. Here, a set of 15,000 SNPs were chosen from the resequencing data to develop an array for pepper with 12,720 loci being ultimately synthesized. Of these, 8,199 (~64.46%) SNPs were found to be scorable and covered ~81.18% of the whole genome. With this array, a high-density interspecific genetic map with 5,569 SNPs was constructed using 297 F2 individuals, and genetic diversity of a panel of 399 pepper elite/landrace lines was successfully characterized. Based on the genetic map, one major QTL, named Up12.1, was detected for the fruit orientation trait. A total of 65 protein-coding genes were predicted within this QTL region based on the current annotation of the Zunla-1 genome. In summary, the thousands of well-validated SNP markers, high-density genetic map and genetic diversity information will be useful for molecular genetics and innovative breeding in pepper. Furthermore, the mapping results lay foundation for isolating the genes underlying variation in fruit orientation of Capsicum. PMID:27623541

  16. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  17. Capsaicin Synthesis Requires in Situ Phenylalanine and Valine Formation in in Vitro Maintained Placentas from Capsicum chinense.

    PubMed

    Baas-Espinola, Fray M; Castro-Concha, Lizbeth A; Vázquez-Flota, Felipe A; Miranda-Ham, María L

    2016-01-01

    Capsaicinoids (CAP) are nitrogenous metabolites formed from valine (Val) and phenylalanine (Phe) in the placentas of hot Capsicum genotypes. Placentas of Habanero peppers can incorporate inorganic nitrogen into amino acids and have the ability to secure the availability of the required amino acids for CAP biosynthesis. In order to determine the participation of the placental tissue as a supplier of these amino acids, the effects of blocking the synthesis of Val and Phe by using specific enzyme inhibitors were analyzed. Isolated placentas maintained in vitro were used to rule out external sources' participation. Blocking Phe synthesis, through the inhibition of arogenate dehydratase, significantly decreased CAP accumulation suggesting that at least part of Phe required in this process has to be produced in situ. Chlorsulfuron inhibition of acetolactate synthase, involved in Val synthesis, decreased not only Val accumulation but also that of CAP, pointing out that the requirement for this amino acid can also be fulfilled by this tissue. The presented data demonstrates that CAP accumulation in in vitro maintained placentas can be accomplished through the in situ availability of Val and Phe and suggests that the synthesis of the fatty acid chain moiety may be a limiting factor in the biosynthesis of these alkaloids. PMID:27338325

  18. Monitoring and assessment of treated river, rain, gully pot and grey waters for irrigation of Capsicum annuum.

    PubMed

    Al-Isawi, Rawaa H K; Almuktar, Suhad A A A N; Scholz, Miklas

    2016-05-01

    This study examines the benefits and risks associated with various types of wastewater recycled for vegetable garden irrigation and proposes the best water source in terms of its water quality impact on crop yields. The aim was to evaluate the usability of river, rain, gully pot, real grey and artificial grey waters to water crops. The objectives were to evaluate variables and boundary conditions influencing the growth of chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group 'De Cayenne') both in the laboratory and in the greenhouse. A few irrigated chilli plants suffered from excess of some nutrients, which led to a relatively poor harvest. High levels of trace minerals and heavy metals were detected in river water, gully pot effluent and greywater. However, no significant differences in plant yields were observed, if compared with standards and other yields worldwide. The highest yields were associated with river water both in the laboratory and in the greenhouse. Plant productivity was unaffected by water quality due to the high manganese, potassium, cadmium and copper levels of the greywater. These results indicate the potential of river water and gully pot effluent as viable alternatives to potable water for irrigation in agriculture.

  19. Identification and molecular characterization of a new recombinant begomovirus and associated betasatellite DNA infecting Capsicum annuum in India.

    PubMed

    Bhatt, Bhavin S; Chahwala, Fenisha D; Rathod, Sangeeta; Singh, Achuit K

    2016-05-01

    Capsicum annuum (Chilli) is a perennial herbaceous plant that is cultivated as an annual crop throughout the world, including India. Chilli leaf curl disease (ChiLCD) is a major biotic constraint, causing major losses in chilli production. During 2014, leaf samples of chilli plants displaying leaf curl disease were collected from the Ahmedabad district of Gujarat, India. These samples were used to isolate, clone and sequence viral genomic DNA and an associated betasatellite DNA molecule. Sequence analysis showed 90.4 % nucleotide sequence identity to the previously reported chilli leaf curl virus-[India:Guntur:2009] (ChiLCV-[IN:Gun:09]. As per ICTV nomenclature rules, ChiLCV-Ahm represents a new species of begomovirus, and we therefore propose the name chilli leaf curl Ahmedabad virus-[India:Ahmedabad:2014] (ChiLCAV-[IN:Ahm:14]). The associated betasatellite DNA showed a maximum of 93.5 % nucleotide sequence identity to a previously reported tomato leaf curl Bangladesh betasatellite and may be named tomato leaf curl Bangladesh betasatellite-[India:Ahmedabad:Chilli:2014].

  20. In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili.

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2012-03-01

    An in vitro regeneration protocol was developed for Capsicum chinense Jacq. cv. Naga King Chili, a very pungent chili cultivar and an important horticultural crop of Nagaland (Northeast India). Maximum number of shoot (13 ± 0.70) was induced with bud-forming capacity (BFC) index of 10.8, by culturing nodal segments in Murashige and Skoog (MS) medium supplemented with 18.16 μM Thidiazuron (TDZ) followed by 35.52 μM 6-benzylaminopurine (BAP). Using shoot tips as explants, multiple shoot (10 ± 0.37) (BFC 8.3) was also induced in MS medium fortified with either 18.16 μM TDZ or 35.52 μM BAP. Elongated shoots were best rooted in MS medium containing 5.70 μM indole-3-acetic acid (IAA). Rooted plantlets thus developed were hardened in 2-3 weeks time in plastic cups containing potting mixture of a 1:1 mix of soil and cow dung manure and then subsequently transferred to earthen pots. The regenerated plants did not show any variation in the morphology and growth as compared to the parent plant. PMID:22582155

  1. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    PubMed

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  2. Thermal degradation products formed from carotenoids during a heat-induced degradation process of paprika oleoresins (Capsicum annuum L.).

    PubMed

    Pérez-Gálvez, Antonio; Rios, José J; Mínguez-Mosquera, María Isabel

    2005-06-15

    The high-temperature treatment of paprika oleoresins (Capsicum annuum L.) modified the carotenoid profile, yielding several degradation products, which were analyzed by HPLC-APCI-MS. From the initial MS data, compounds were grouped in two sets. Set 1 grouped compounds with m/z 495, and set 2 included compounds with m/z 479, in both cases for the protonated molecular mass. Two compounds of the first set were tentatively identified as 9,10,11,12,13,14,19,20-octanor-capsorubin (compound II) and 9,10,11,12,13,14,19,20-octanor-5,6-epoxide-capsanthin (compound IV), after isolation by semipreparative HPLC and analysis by EI-MS. Compounds VII, VIII, and IX from set 2 were assigned as 9,10,11,12,13,14,19,20-octanor-capsanthin and isomers, respectively. As these compounds were the major products formed in the thermal process, it was possible to apply derivatization techniques (hydrogenation and silylation) to analyze them by EI-MS, before and after chemical derivatization. Taking into account structures of the degradation products, the cyclization of polyolefins could be considered as the general reaction pathway in thermally induced reactions, yielding in the present study xylene as byproduct and the corresponding nor-carotenoids.

  3. Determination of ochratoxin A in Capsicum spp. (paprika and chili) by immunoaffinity column cleanup and liquid chromatography: collaborative study.

    PubMed

    Kunsagi, Zoltan; Stroka, Joerg

    2014-01-01

    A method validation study for the determination of ochratoxin A in Capsicum spp. (paprika and chili) was conducted according to the International Union of Pure and Applied Chemistry harmonized protocol. The method is based on the extraction of samples with aqueous methanol, followed by an immunoaffinity column cleanup. The determination is carried out by RP-HPLC coupled with a fluorescence detector. The study involved 21 participants representing a cross-section of research, private, and official control laboratories from 14 European Union (EU) Member States and Singapore. Mean recoveries reported ranged from 83.7 to 87.5%. The RSD for repeatability (RSDr) ranged from 1.7 to 14.3%. The RSD for reproducibility (RSDR) ranged from 9.1 to 27.5%, reflecting HorRat values from 0.4 to 1.3 according to the Horwitz function modified by Thompson. The correction for recovery of results from naturally contaminated samples further improved the reproducibility of the method. The method showed acceptable within-laboratory and between-laboratory precision for each matrix, and it conforms to requirements set by current EU legislation.

  4. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    PubMed Central

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  5. Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts.

    PubMed

    Guzmán-Murillo, María A; Ascencio, Felipe; Larrinaga-Mayoral, Juan A

    2013-02-01

    We evaluated the salt tolerance of hybrids of pepper (Capsicum annuum L.) during germination. Treatments were applied at 0, 25, and 50 mM NaCl with preparations of supplemental extracts of the microalgae Dunaliella salina and Phaeodactylum tricornutum to determine the percentage germination rate as well as measured indicators of oxidative stress caused by the salt treatments during seed germination. We found that root growth was favorably influenced by the microalgae leading to increased germination rate. Tissues were analyzed in terms of superoxide radical production, lipid peroxidation, and activity of antioxidant enzymes viz. superoxide dismutase, catalase, and glutathione peroxidase. Our results suggest that application of microalgae extracts significantly reduced (p < 0.05) superoxide radical production, as well as lower lipid peroxidation in comparison to plants without extracts of microalgae. The antioxidant enzymes increased in the presence of microalgae showing a significant difference (p < 0.05). The results suggest differences in oxidative metabolism in response to the magnitude of salt stress and concentrations of microalgae help mitigate salt stress in plants during the germination process.

  6. Pepper beta-galactosidase 1 (PBG1) plays a significant role in fruit ripening in bell pepper (Capsicum annuum).

    PubMed

    Ogasawara, Satoshi; Abe, Keietsu; Nakajima, Tasuku

    2007-02-01

    During bell pepper (Capsicum annuum L.) fruit ripening, beta-galactosidase activity increased markedly as compared with other glycosidases. We purified 77.5 kDa exo-1,4-beta-D-galactanase from red bell pepper fruit classified as beta-galactosidase II. A marked decrease in galactose content appeared during fruit ripening, especially in the pectic fraction. The purified enzyme hydrolyzed a considerable amount of galactose residues in this fraction. We isolated bell pepper beta-galactosidase (PBG1) cDNA. This PBG1 protein contained the putative active site, G-G-P-[LIVM]-x-Q-x-E-N-E-[FY], belonging to glycosyl hydrolase family 35. Quantitative RT-PCR revealed that the expression of PBG1 in red fruit was significantly stronger than that from any other tissues. Moreover, expression of PBG1 occurred prior to that of pepper endo-polygalacturonase 1 (PPG1), the major fruit-ripening enzyme. Based on these results, it appears that the hydrolysis of galactose residues in pectic substances is the first event in the ripening process in bell pepper fruit.

  7. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    PubMed Central

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  8. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts.

    PubMed

    Sadilova, Eva; Stintzing, Florian C; Carle, Reinhold

    2006-01-01

    Acetone extracts from eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peels both belonging to the Solanaceae plant family were characterized with respect to their anthocyanin profiles, colour qualities and antioxidant capacities. According to HPLC-DAD-MS3 analyses the major anthocyanin in eggplant was delphinidin-3-rutinoside, while the predominant pigment in violet pepper was assigned to delphinidin-3-trans-coumaroylrutinoside-5-glucoside. Since virtually all anthocyanins were delphinidin-based, the effect of acylation and glycosylation patterns on colour stability and antioxidant capacity could be assessed. Application of two in vitro-assays for antioxidant capacity assessment revealed that eggplant generally exhibited higher values compared to violet pepper which was ascribed to 3,5-diglycosylated structures predominating in the latter. The higher extent of acylation in violet pepper was reflected by a more purplish colour shade of the extracts, but did not translate into a higher stability against fading which again was attributed to additional glycosyl substitution at C5. These findings support the relevance of structure-related activities of anthocyanins both for understanding food colour and their particular nutritional value.

  9. Foliar Spray with Vermiwash Modifies the Arbuscular Mycorrhizal Dependency and Nutrient Stoichiometry of Bhut Jolokia (Capsicum assamicum)

    PubMed Central

    Gupta, Rajeev; Veer, Vijay; Singh, Lokendra; Kalita, Mohan C.

    2014-01-01

    Vermiwash (VW), a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum) exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM) in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth. PMID:24651577

  10. Comparative assessment on in vitro antioxidant activities of ethanol extracts of Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens

    PubMed Central

    Rahman, Md. Mominur; Habib, Md. Razibul; Hasan, Md. Anayet; Al Amin, Mohammad; Saha, Ayan; Mannan, Adnan

    2014-01-01

    Background: Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens are medicinal plants commonly used as traditional medicine for the treatment of various diseases. The present study was designed to investigate the antioxidant activities of Ethanolic extract of A. bilimbi, G. sylvestre and C. frutescens. Materials and Methods: The antioxidant activity of the extracts were evaluated using total phenolic and flavonoid contents, ferric reducing power and the free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). Results: Total phenolic and flavonoid contents were higher in G. sylvestre (53.63636 ± 0.454545 mg/g gallic acid equivalent) and C. frutescens (26.66667 ± 2.081666 mg/g quercetin equivalent) respectively. Reducing power of the crude ethanol extracts increased with the concentrations of the extracts and all the extracts showed moderate free radical scavenging activity against DPPH. The plant extract displayed moderate phenolic and flavonoid contents compared to gallic acid and quercetin equivalent respectively, whereas also exhibited significant scavenging of DPPH radical and reducing power compared with ascorbic acid as standard. Conclusion: Our study suggests that G. sylvestre has significant antioxidant activity. The antioxidant compound of this plant might be a therapeutic candidate against oxidative stress related diseases. Different sub-fraction of A. bilimbi and C. frutescens should be studied further to assess the effect. Further study is necessary for isolation and characterization of the active antioxidant agents for better treatment. PMID:24497740

  11. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

  12. De Novo Transcriptome Assembly in Chili Pepper (Capsicum frutescens) to Identify Genes Involved in the Biosynthesis of Capsaicinoids

    PubMed Central

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  13. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts.

    PubMed

    Sadilova, Eva; Stintzing, Florian C; Carle, Reinhold

    2006-01-01

    Acetone extracts from eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peels both belonging to the Solanaceae plant family were characterized with respect to their anthocyanin profiles, colour qualities and antioxidant capacities. According to HPLC-DAD-MS3 analyses the major anthocyanin in eggplant was delphinidin-3-rutinoside, while the predominant pigment in violet pepper was assigned to delphinidin-3-trans-coumaroylrutinoside-5-glucoside. Since virtually all anthocyanins were delphinidin-based, the effect of acylation and glycosylation patterns on colour stability and antioxidant capacity could be assessed. Application of two in vitro-assays for antioxidant capacity assessment revealed that eggplant generally exhibited higher values compared to violet pepper which was ascribed to 3,5-diglycosylated structures predominating in the latter. The higher extent of acylation in violet pepper was reflected by a more purplish colour shade of the extracts, but did not translate into a higher stability against fading which again was attributed to additional glycosyl substitution at C5. These findings support the relevance of structure-related activities of anthocyanins both for understanding food colour and their particular nutritional value. PMID:16989312

  14. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    PubMed

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %).

  15. Regulation of Carbon Partitioning in Source and Sink Leaf Parts in Sweet Pepper (Capsicum annuum L.) Plants 1

    PubMed Central

    Nielsen, Tom H.; Veierskov, Bjarke

    1990-01-01

    Area expansion rate, partitioning of photosynthetically fixed carbon, and levels of fructose 2,6-bisphosphate (fru-2,6-P2) were determined in individual parts of developing leaves of sweet pepper (Capsicum annuum L.). The base was rapidly expanding and allocated less carbon to sucrose synthesis in comparison to the leaf tip, where expansion had almost stopped. The change in leaf expansion rate and carbon partitioning happened gradually. During day time levels of fru-2,6-P2 were consistently higher in the leaf base than in the leaf tip. Leaf expansion rate and carbon partitioning were closely related to day time levels of fru-2,6-P2, suggesting that fru-2,6-P2 is an important factor in adjustment of metabolism during sink-to-source transition of leaf tissue. The levels of fru-2,6-P2 changed markedly after a dark-to-light transition in the leaf base, but not in the leaf tip, suggesting that regulatory systems based on fru-2,6-P2 are different in sink and source leaf tissue. During the period upon dark-to-light transition the variations in level of fru-2,6-P2 did not show a close correlation to changes in the carbon partitioning, until the metabolism had reached a steady state. PMID:16667515

  16. Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum).

    PubMed

    Nicolaï, M; Pisani, C; Bouchet, J-P; Vuylsteke, M; Palloix, A

    2012-01-01

    Genetic markers based on single nucleotide polymorphisms (SNPs) are in increasing demand for genome mapping and fingerprinting of breeding populations in crop plants. Recent advances in high-throughput sequencing provide the opportunity for whole-genome resequencing and identification of allelic variants by mapping the reads to a reference genome. However, for many species, such as pepper (Capsicum annuum), a reference genome sequence is not yet available. To this end, we sequenced the C. annuum cv. "Yolo Wonder" transcriptome using Roche 454 pyrosequencing and assembled de novo 23,748 isotigs and 60,370 singletons. Mapping of 10,886,425 reads obtained by the Illumina GA II sequencing of C. annuum cv. "Criollo de Morelos 334" to the "Yolo Wonder" transcriptome allowed for SNP identification. By setting a threshold value that allows selecting reliable SNPs with minimal loss of information, 11,849 reliable SNPs spread across 5919 isotigs were identified. In addition, 853 single sequence repeats were obtained. This information has been made available online. PMID:22911599

  17. Capsaicin Synthesis Requires in Situ Phenylalanine and Valine Formation in in Vitro Maintained Placentas from Capsicum chinense.

    PubMed

    Baas-Espinola, Fray M; Castro-Concha, Lizbeth A; Vázquez-Flota, Felipe A; Miranda-Ham, María L

    2016-01-01

    Capsaicinoids (CAP) are nitrogenous metabolites formed from valine (Val) and phenylalanine (Phe) in the placentas of hot Capsicum genotypes. Placentas of Habanero peppers can incorporate inorganic nitrogen into amino acids and have the ability to secure the availability of the required amino acids for CAP biosynthesis. In order to determine the participation of the placental tissue as a supplier of these amino acids, the effects of blocking the synthesis of Val and Phe by using specific enzyme inhibitors were analyzed. Isolated placentas maintained in vitro were used to rule out external sources' participation. Blocking Phe synthesis, through the inhibition of arogenate dehydratase, significantly decreased CAP accumulation suggesting that at least part of Phe required in this process has to be produced in situ. Chlorsulfuron inhibition of acetolactate synthase, involved in Val synthesis, decreased not only Val accumulation but also that of CAP, pointing out that the requirement for this amino acid can also be fulfilled by this tissue. The presented data demonstrates that CAP accumulation in in vitro maintained placentas can be accomplished through the in situ availability of Val and Phe and suggests that the synthesis of the fatty acid chain moiety may be a limiting factor in the biosynthesis of these alkaloids.

  18. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.).

    PubMed

    Cheng, Jiaowen; Qin, Cheng; Tang, Xin; Zhou, Huangkai; Hu, Yafei; Zhao, Zicheng; Cui, Junjie; Li, Bo; Wu, Zhiming; Yu, Jiping; Hu, Kailin

    2016-01-01

    The development and application of single nucleotide polymorphisms (SNPs) is in its infancy for pepper. Here, a set of 15,000 SNPs were chosen from the resequencing data to develop an array for pepper with 12,720 loci being ultimately synthesized. Of these, 8,199 (~64.46%) SNPs were found to be scorable and covered ~81.18% of the whole genome. With this array, a high-density interspecific genetic map with 5,569 SNPs was constructed using 297 F2 individuals, and genetic diversity of a panel of 399 pepper elite/landrace lines was successfully characterized. Based on the genetic map, one major QTL, named Up12.1, was detected for the fruit orientation trait. A total of 65 protein-coding genes were predicted within this QTL region based on the current annotation of the Zunla-1 genome. In summary, the thousands of well-validated SNP markers, high-density genetic map and genetic diversity information will be useful for molecular genetics and innovative breeding in pepper. Furthermore, the mapping results lay foundation for isolating the genes underlying variation in fruit orientation of Capsicum.

  19. Monitoring and assessment of treated river, rain, gully pot and grey waters for irrigation of Capsicum annuum.

    PubMed

    Al-Isawi, Rawaa H K; Almuktar, Suhad A A A N; Scholz, Miklas

    2016-05-01

    This study examines the benefits and risks associated with various types of wastewater recycled for vegetable garden irrigation and proposes the best water source in terms of its water quality impact on crop yields. The aim was to evaluate the usability of river, rain, gully pot, real grey and artificial grey waters to water crops. The objectives were to evaluate variables and boundary conditions influencing the growth of chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group 'De Cayenne') both in the laboratory and in the greenhouse. A few irrigated chilli plants suffered from excess of some nutrients, which led to a relatively poor harvest. High levels of trace minerals and heavy metals were detected in river water, gully pot effluent and greywater. However, no significant differences in plant yields were observed, if compared with standards and other yields worldwide. The highest yields were associated with river water both in the laboratory and in the greenhouse. Plant productivity was unaffected by water quality due to the high manganese, potassium, cadmium and copper levels of the greywater. These results indicate the potential of river water and gully pot effluent as viable alternatives to potable water for irrigation in agriculture. PMID:27075312

  20. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum.

    PubMed

    Yeam, Inhwa; Kang, Byoung-Cheorl; Lindeman, Wouter; Frantz, James D; Faber, Nanne; Jahn, Molly M

    2005-12-01

    Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 (1), and pvr1 (2). These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.

  1. Cellulase applied to the leaves of sweet pepper (Capsicum annuum L. var. grossum) upregulates the production of salicylic and azelaic acids.

    PubMed

    Sato, Chizuru; Oka, Norikuni; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-01-01

    Treating the leaves of sweet pepper (Capsicum annuum L. var. grossum) with an aqueous solution of cellulase resulted in a four-fold increase in the salicylic acid level compared to a control plant. The level of endogenous azelaic acid was also elevated by the cellulase treatment. Azelaic acid has recently been reported to act as a mobile "priming" agent to arm plants against pathogenic attack. Our results are consistent with this and that the cellulase treatment enhanced the ability of sweet pepper to withstand viral attack.

  2. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.).

    PubMed

    Kim, Hyoun-Joung; Nahm, Seok-Hyeon; Lee, Heung-Ryul; Yoon, Gi-Bo; Kim, Ki-Taek; Kang, Byoung-Cheorl; Choi, Doil; Kweon, Oh Yeol; Cho, Myeong-Cheoul; Kwon, Jin-Kyung; Han, Jung-Heon; Kim, Jeong-Ho; Park, Minkyu; Ahn, Jong Hwa; Choi, Soon Ho; Her, Nam Han; Sung, Joo-Hee; Kim, Byung-Dong

    2008-12-01

    Phytophthora capsici Leonian, an oomycete pathogen, is a serious problem in pepper worldwide. Its resistance in pepper is controlled by quantitative trait loci (QTL). To detect QTL associated with P. capsici resistance, a molecular linkage map was constructed using 100 F(2) individuals from a cross between Capsicum annuum 'CM334' and C. annuum 'Chilsungcho'. This linkage map consisted of 202 restriction fragment length polymorphisms (RFLPs), 6 WRKYs and 1 simple sequence repeat (SSR) covering 1482.3 cM, with an average interval marker distance of 7.09 cM. QTL mapping of Phytophthora root rot and damping-off resistance was performed in F(2:3) originated from a cross between resistant Mexican landrace C. annuum 'CM334' and susceptible Korean landrace C. annuum 'Chilsungcho' using composite interval mapping (CIM) analysis. Four QTL explained 66.3% of the total phenotypic variations for root rot resistance and three 44.9% for damping-off resistance. Of these QTL loci, two were located close to RFLP markers CDI25 on chromosome 5 (P5) and CT211A on P9. A bacterial artificial chromosome (BAC) library from C. annuum 'CM334' was screened with these two RFLP probes to obtain sequence information around the RFLP marker loci for development of PCR-based markers. CDI25 and CT211 probes identified seven and eight BAC clones, respectively. Nine positive BAC clones containing probe regions were sequenced and used for cytogenetic analysis. One single-nucleotide amplified polymorphism (SNAP) for the CDI25 locus, and two SSRs and cleaved amplified polymorphic sequence (CAPS) for CT211 were developed using sequences of the positive BAC clones. These markers will be valuable for rapid selection of genotypes and map-based cloning for resistance genes against P. capsici.

  3. Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum.

    PubMed

    Sabater-Jara, Ana Belén; Almagro, Lorena; Belchí-Navarro, Sarai; Ferrer, María Angeles; Barceló, Alfonso Ros; Pedreño, María Angeles

    2010-10-15

    Capsicum annuum suspension cell cultures were used to evaluate the effect of cyclodextrins and methyl jasmonate as elicitors of defence responses. The induced defence responses included the accumulation of sesquiterpenes and phytosterols and the activation of pathogenesis-related proteins, leading to reinforcement and modification of the cell wall architecture during elicitation and protection cells against biotic stress. The results showed that the addition of both cyclodextrins and methyl jasmonate induced the biosynthesis of two sesquiterpenes, aromadendrene and solavetivone. This response was clearly synergistic since the increase in the levels of these compounds was much greater in the presence of both elicitors than when they were used separately. The biosynthesis of phytosterols was also induced in the combined treatment, as the result of an additive effect. Likewise, the exogenous application of methyl jasmonate induced the accumulation of pathogenesis-related proteins. The analysis of the extracellular proteome showed the presence of amino acid sequences homologous to PR1 and 4, NtPRp27-like proteins and class I chitinases, peroxidases and the hydrolytic enzymes LEXYL1 and 2, arabinosidases, pectinases, nectarin IV and leucin-rich repeat protein, which suggests that methyl jasmonate plays a role in mediating defence-related gene product expression in C. annuum. Apart from these methyl jamonate-induced proteins, other PR proteins were found in both the control and elicited cell cultures of C. annuum. These included class IV chitinases, beta-1,3-glucanases, thaumatin-like proteins and peroxidases, suggesting that their expression is mainly constitutive since they are involved in growth, development and defence processes.

  4. Host preference, population growth and injuries assessment of Polyphagotarsonemus latus (banks) (ACARI: Tarsonemidae) on Capsicum annuum L. Genotypes.

    PubMed

    Breda, M O; de Oliveira, J V; Esteves Filho, A B; Barbosa, D R S; de Santana, M F

    2016-10-01

    Despite the continued efforts on the search for different genotypes, Capsicum annuum (L.) is quite susceptible to attack by pest arthropods, especially the broad mite Polyphagotarsonemus latus Banks. Thus, the host preference, population growth and the injuries assessment of P. latus was studied on six C. annuum genotypes used in Brazil (Atlantis, California Wonder, Impact, Palloma, Rubia and Tendence). Host preference was accessed in choice tests, pairing the several genotypes, and the population growth was observed through non-choice tests in laboratory. The injuries assessments were evaluated in the greenhouse, comparing the injury level among the six genotypes. The results indicate that California Wonder and Palloma genotypes were more preferred by P. latus, and Impact and Tendence were less preferred. P. latus presented positive population growth rates (ri) on all the genotypes, however, Palloma and California Wonder showed the highest values of population growth rate (ri = 0.344 and ri = 0.340, respectively), while Impact had the lowest value (ri = 0.281). All the evaluated C. annuum genotypes showed low tolerance to P. latus and exhibited several injuries, but there was no statistical difference between them. California Wonder had the highest average number of mites/leaf (57.15), while Impact and Tendence obtained the lowest values (36.67 and 35.12, respectively) at the end of the evaluation period. The total average of injuries notes at the end of the bioassay did not differ between the genotypes. The number of mites/leaf was growing for the injury scale to the note 3.0, but when the injury scale approached the note 4.0, there was observed a decrease in the number of mites/leaf for all the genotypes.

  5. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.).

    PubMed

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper.

  6. Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Abburi, Lavanya; Alaparthi, Suresh Babu; Cantrell, Robert; Park, Minkyu; Choi, Doil; Hankins, Gerald; Malkaram, Sridhar; Reddy, Umesh K

    2014-08-01

    Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R(2) of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum.

  7. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  8. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.)

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  9. First complete genome sequence of a capsicum chlorosis tospovirus isolate from Australia with an unusually large S RNA intergenic region.

    PubMed

    Widana Gamage, Shirani; Persley, Denis M; Higgins, Colleen M; Dietzgen, Ralf G

    2015-03-01

    The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.

  10. Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum frutescens L. and C. chinense Jacquin).

    PubMed

    Carvalho, S I C; Ragassi, C F; Bianchetti, L B; Reifschneider, F J B; Buso, G S C; Faleiro, F G

    2014-01-01

    Capsicum chinense and C. frutescens peppers are part of the Brazilian biodiversity, and the Amazon basin is the area of greatest diversity for them, especially for that former species. Nevertheless, little is known about their evolutionary history. Aiming to identify genotypes with wild and domesticated characteristics, 30 accessions of the germplasm bank of Embrapa were characterized using morphological descriptors and ISSR molecular markers. Of the 72 primers tested, 42% showed amplification and produced 136 amplicons with some of the primers, namely i7Pv and i57Zm, allowing the identification of each species. ISSR also revealed polymorphisms within a species, especially between domesticated and wild forms. Four wild accessions collected in the Amazon region (CNPH 4315, CNPH 4372, CNPH 4337 and CNPH 4325B) popularly known as "olho-de-peixe" or "olho-de periquito" were molecularly classified as C. chinense and showed fruit with similar characteristics as the wild species: upright position, rounded to campanulate shape, small size (1.0 cm long and 0.8 cm wide), average weight of 0.2 g, dark-red color when ripe, easy detachment of calyx and presence of calyx annular constriction (discriminative of C. chinense). The wild form CNPH 4353 known as "malaguetinha" was morphologically and molecularly classified as C. frutescens, demonstrating a more preserved morphology in C. frutescens than in C. chinense. A significant correlation was found between morphological and molecular characterization, and the combination of the two analyses was effective in identifying and classifying the wild forms and contributing to evolutionary studies in the genus. PMID:25222244

  11. Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Abburi, Lavanya; Alaparthi, Suresh Babu; Cantrell, Robert; Park, Minkyu; Choi, Doil; Hankins, Gerald; Malkaram, Sridhar; Reddy, Umesh K

    2014-08-01

    Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R(2) of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum. PMID:24585251

  12. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.).

    PubMed

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  13. Antioxidant activities of two sweet pepper Capsicum annuum L. varieties phenolic extracts and the effects of thermal treatment

    PubMed Central

    Yazdizadeh Shotorbani, Narmin; Jamei, Rashid; Heidari, Reza

    2013-01-01

    Objectives: Sweet peppers Capsicum annuum L. (C. annuum) are an excellent source of vitamins A and C as well as phenolic compounds, which are important antioxidant components that may reduce the risk of diseases. The objective of this study was to evaluate their antioxidant activity under various temperatures. Materials and Methods: To compare the antioxidant activity in various temperatures (20, 35, 50, and 65 °C), two different types of colored (red and green) sweet bell peppers C annuum were selected. The red peppers were selected from those cultivated in Shahreza, Esfahan and the green peppers with the local name of Gijlar were selected from those cultivated in Urmia, West Azarbayjan. The experiments were carried out to measure the total phenolic and flavonoid content, ferric reducing antioxidant power (FRAP), chain-breaking activity, scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), and hydrogen peroxide radicals. Results: Total phenol and flavonoid contents of pepper extracts were enhanced with increasing temperature to 65 °C. Scavenging capacity of DPPH radical of red pepper extract was enhanced because of putting at 50 °C for 30 min and for Gijlar pepper extract scavenging capacity was increased at 65 °C. Scavenging capacity of hydrogen peroxide radical of extracts was the highest at 35 °C. Chain-breaking activity of red pepper extract was increased for 60 min at 35 °C. FRAP (C) of red pepper extract was significantly different (p<0.05) in compare with Gijlar pepper. Conclusion: An appropriate temperature maintained a high antioxidant activity of phenolic compound, which could be due to the combined effect of non enzymatic reaction and phenolic compound stability. PMID:25050256

  14. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing.

    PubMed

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/C i curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions. PMID:27667994

  15. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.

  16. The relationship between Pepper mottle virus source leaf and spread of infection through the stem of Capsicum sp.

    PubMed

    Murphy, J F

    2002-09-01

    Pepper mottle virus (PepMoV) systemically infects Capsicum sp. in a typical source-to-sink manner with movement through the stem occurring in a predictable pattern. This study was carried out to determine the relationship between the inoculated leaf as a source of inoculum and the spread of PepMoV infection through the stem. C. annuum 'Early Calwonder' plants were mechanically inoculated onto the first leaf with PepMoV and sets of 30 plants had their inoculated leaves removed each day from 1 through 7 days post-inoculation (dpi) with the inoculated leaves tested for infection by ELISA at the time of excision. Beginning at 2 dpi, PepMoV infection in the stem of plants with the inoculated leaf excised and plants of a nonexcision control treatment was determined using immuno-tissue blot analysis. PepMoV was detected in inoculated leaves beginning at 3 dpi with the percentage of infected leaves increasing each day through 7 dpi. PepMoV was first detected in the stem of inoculated plants of the 3 dpi excision treatment. The accumulation and extent of spread of infection in the stem was similar for plants that had their inoculated leaf removed at a time preceding detection by ELISA to plants in the nonexcision control treatment. These findings suggest that once virus is allowed to enter the stem from the inoculated leaf, subsequent spread of infection through the stem is a process independent from the source leaf. PMID:12209317

  17. In vitro effect of some fungicides on growth and aflatoxins production by Aspergillus flavus isolated from Capsicum powder.

    PubMed

    Santos, L; Marin, S; Sanchis, V; Ramos, A J

    2011-01-01

    The aim of this study was to determine the effect of some pre-harvest fungicides on growth and aflatoxin (AF) production of three Aspergillus flavus strains found in Capsicum powder. Each isolate, previously isolated from paprika, chilli and smoked paprika, was inoculated on yeast extract sucrose agar and on a 3% paprika extract agar medium supplemented with different fungicides and incubated at 20 and 30°C during 7 days. Growth measurements were obtained on days 3, 5 and 7, and the AF production was determined on day 7. The significance of the effects of the factors (strain, medium, temperature, time and fungicides) and their interaction over colony diameter and AF production was determined. Temperature constrained the effectiveness of fungicides in reducing growth, the fungicides being most effective at 20°C. The efficacy of the fungicides over AF production depended on the medium used and temperature. The most effective fungicides in inhibiting growth and AF production, regardless of the strain tested or applied conditions, were tebuconazole 25% and mancozeb 80% applied at a concentration of 0.75 and 3.5 g l(-1), respectively. Care should thus be taken in the choice of a suitable fungicide because their effectiveness may depend on intra-specific variation and temperature. Moreover, it is necessary to take into account that the most efficient fungicide in reducing growth is not always the best choice for pre-harvest treatments because it may promote AF production. Thus, the best fungicide is the one that can simultaneous prevent growth and AF production.

  18. New cysteine-S-conjugate precursors of volatile sulfur compounds in bell peppers (Capsicum annuum L. cultivar).

    PubMed

    Starkenmann, Christian; Niclass, Yvan

    2011-04-13

    The objective of this study was to verify whether the volatile organic sulfur compounds recently discovered in bell pepper (Capsicum annuum, L. cultivars), such as the mercapto-ketones: 4-sulfanyl-2-heptanone and 2-sulfanyl-4-heptanone, the mercapto-alcohols: 4-sulfanyl-2-heptanol and 2-sulfanyl-4-heptanol, and heptane-2,4-dithiol, originate from their corresponding cysteine-S-conjugates. Analysis of aqueous extracts of red and green bell pepper by ultraperformance liquid chromatography-mass spectrometry with electrospray ionization in the positive mode (UPLC-MS ESI(+)) displayed masses corresponding to the expected cysteine-S-conjugates. To confirm this observation, four cysteine-S-conjugates were prepared as authentic samples: S-(3-hydroxy-1-methylhexyl)-L-cysteine, S-(3-hydroxy-1-propylbutyl)-L-cysteine, S-(3-oxo-1-propylbutyl)-L-cysteine, and (2R,2'R)-3,3'-(4-hydroxyheptane-2,6-diyl)bis(sulfanediyl) bis(2-aminopropanoic acid). By comparison with the fragmentation patterns and retention times of synthetic mixtures of cysteine-S-conjugate diastereoisomers, the natural occurrence of cysteine conjugates was confirmed in bell peppers. In addition, the cysteine-S-conjugates from red and green bell pepper extracts were concentrated by ion exchange chromatography and the fractions incubated with a β-lyase (apotryptophanase). The liberated thiols were concentrated by affinity chromatography, and their occurrence, detected by gas chromatography-mass spectrometry, confirmed our predictions. Moreover, 3-sulfanyl-1-hexanol was also detected and the occurrence of S-(1(2-hydroxyethyl)butyl)-L-cysteine confirmed. A quantitative estimation based on external calibration curves, established by UPLC-MS ESI(+) in selected reaction monitoring mode, showed that cysteine-S-conjugates were present at concentrations in the range of 1 to 100 μg/kg (±20%).

  19. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.

  20. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing.

    PubMed

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/C i curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.

  1. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  2. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet

    PubMed Central

    Kim, Joo-Yeon; Lee, Mak-Soon; Jung, Sunyoon; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Seo, Sangjin; Oh, Soojung; Kim, Yangha

    2014-01-01

    Purpose This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. Methods The rats were randomly separated into three groups: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. Results NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. Conclusion From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue. PMID:24403834

  3. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing

    PubMed Central

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/Ci curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions. PMID:27667994

  4. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing

    PubMed Central

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/Ci curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.

  5. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg.

    PubMed

    Perez, Kari; Yeam, Inhwa; Kang, Byoung-Cheorl; Ripoll, Daniel R; Kim, Jinhee; Murphy, John F; Jahn, Molly M

    2012-12-01

    Potyvirus resistance in Capsicum spp. has been attributed to amino acid substitutions at the pvr1 locus that cause conformational shifts in eukaryotic translation initiation factor eIF4E. The viral genome-linked protein (VPg) sequence was isolated and compared from three Tobacco etch virus (TEV) strains, highly aphid-transmissible (HAT), Mex21, and N, which differentially infect Capsicum genotypes encoding Pvr1(+), pvr1, and pvr1(2). Viral chimeras were synthesized using the TEV-HAT genome, replacing HAT VPg with Mex21 or N VPg. TEV HAT did not infect pepper plants homozygous for either the pvr1 or pvr1(2) allele. However, the novel chimeric TEV strains, TEVHAT(Mex21-VPg) and TEV-HAT(N-VPg), infected pvr1 and pvr1(2) pepper plants, respectively, demonstrating that VPg is the virulence determinant in this pathosystem. Three dimensional structural models predicted interaction between VPg and the susceptible eIF4E genotype in every case, while resistant genotypes were never predicted to interact. To determine whether there is a correlation between physical interaction of VPg with eIF4E and infectivity, the effects of amino acid variation within VPg were assessed. Interaction between pvr1(2) eIF4E and N VPg was detected in planta, implying that the six amino acid differences in N VPg relative to HAT VPg are responsible for restoring the physical interaction and infectivity.

  6. Capsicum annuum transcription factor WRKYa positively regulates defense response upon TMV infection and is a substrate of CaMK1 and CaMK2.

    PubMed

    Huh, Sung Un; Lee, Gil-Je; Jung, Ji Hoon; Kim, Yunsik; Kim, Young Jin; Paek, Kyung-Hee

    2015-01-23

    Plants are constantly exposed to pathogens and environmental stresses. To minimize damage caused by these potentially harmful factors, plants respond by massive transcriptional reprogramming of various stress-related genes via major transcription factor families. One of the transcription factor families, WRKY, plays an important role in diverse stress response of plants and is often useful to generate genetically engineered crop plants. In this study, we carried out functional characterization of CaWRKYa encoding group I WRKY member, which is induced during hypersensitive response (HR) in hot pepper (Capsicum annuum) upon Tobacco mosaic virus (TMV) infection. CaWRKYa was involved in L-mediated resistance via transcriptional reprogramming of pathogenesis-related (PR) gene expression and affected HR upon TMV-P0 infection. CaWRKYa acts as a positive regulator of this defense system and could bind to the W-box of diverse PR genes promoters. Furthermore, we found Capsicum annuum mitogen-activated protein kinase 1 (CaMK1) and 2 (CaMK2) interacted with CaWRKYa and phosphorylated the SP clusters but not the MAPK docking (D)-domain of CaWRKYa. Thus, these results demonstrated that CaWRKYa was regulated by CaMK1 and CaMK2 at the posttranslational level in hot pepper.

  7. Genomic and biological characterization of chiltepín yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico.

    PubMed

    Pagán, Israel; Betancourt, Mónica; de Miguel, Jacinto; Piñero, Daniel; Fraile, Aurora; García-Arenal, Fernando

    2010-05-01

    The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5' and 3' untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus.

  8. Susceptibility of Capsicum breeding lines to NTN strain of Potato virus Y (PVY(NTN)) and Obuda pepper virus (ObPV).

    PubMed

    Kazinczi, G; Kovács, J; Takács, A P; Horváth, J; Gáborjányi, R

    2003-01-01

    The objective of this study was to examine the reaction of 12 Capsicum breeding lines to NTN strain of Potato virus Y (PVY(NTN)) and 16 lines to Obuda pepper virus (ObPV). Inoculated plants were symptomatologically and serologically checked for virus infection. Back inoculation was also carried out to Nicotiana tabacum 'Xanthi-nc' and N. tabacum 'Samsun' as indicator plants. Out of the 12 lines tested four (32.Bogyiszlói, 4/99 F2, 17/99 F2 and VI-61 in.) proved to be resistant (immune) to PVY(NTN). Seven Capsicum lines (9/99 F2, 17/99 F2, V-21 = 28/98 F3, V-28 = 36/98 F3, V-3 = 7/98 F2, V-6 = 13/98 F2, and V-10 = 17/98 F2) showed hypersensitive reaction to ObPV. Other breeding lines were susceptible to ObPV infection. One line (17/99 F2) showed immunity to PVY(NTN) and hypersensitivity to ObPV at the same time, therefore this one is considerably valuable for breeding pepper varieties for multivirus resistance.

  9. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties.

    PubMed

    Diz, Mariângela S; Carvalho, Andre O; Ribeiro, Suzanna F F; Da Cunha, Maura; Beltramini, Leila; Rodrigues, Rosana; Nascimento, Viviane V; Machado, Olga L T; Gomes, Valdirene M

    2011-07-01

    Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1) . Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein's biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1) , showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of α-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian α-amylase activity in vitro.

  10. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae).

    PubMed

    Scaldaferro, Marisel A; da Cruz, M Victoria Romero; Cecchini, Nicolás M; Moscone, Eduardo A

    2016-02-01

    Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA. PMID:26853884

  11. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae).

    PubMed

    Scaldaferro, Marisel A; da Cruz, M Victoria Romero; Cecchini, Nicolás M; Moscone, Eduardo A

    2016-02-01

    Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA.

  12. A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene.

    PubMed

    Park, Young-Jun; Nishikawa, Tomotaro; Minami, Mineo; Nemoto, Kazuhiro; Iwasaki, Tomohiro; Matsushima, Kenichi

    2015-12-01

    The purpose of this study was to identify the genetic mechanism underlying capsinoid biosynthesis in S3212, a low-pungency genotype of Capsicum frutescens. Screening of C. frutescens accessions for capsaicinoid and capsiate contents by high-performance liquid chromatography revealed that low-pungency S3212 contained high levels of capsiate but no capsaicin. Comparison of DNA coding sequences of pungent (T1 and Bird Eye) and low-pungency (S3212) genotypes uncovered a significant 12-bp deletion mutation in exon 7 of the p-AMT gene of S3212. In addition, p-AMT gene transcript levels in placental tissue were positively correlated with the degree of pungency. S3212, the low-pungency genotype, exhibited no significant p-AMT transcript levels, whereas T1, one of the pungent genotypes, displayed high transcript levels of this gene. We therefore conclude that the deletion mutation in the p-AMT gene is related to the loss of pungency in placental tissue and has given rise to the low-pungency S3212 C. frutescens genotype. C. frutescens S3212 represents a good natural source of capsinoids. Finally, our basic characterization of the uncovered p-AMT gene mutation should contribute to future studies of capsinoid biosynthesis in Capsicum.

  13. HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum fruits from the annuum-chinense-frutescens complex.

    PubMed

    Rodríguez-Burruezo, Adrián; Kollmannsberger, Hubert; González-Mas, M Carmen; Nitz, Siegfried; Fernando, Nuez

    2010-04-14

    Volatile constituents of ripe fruits of 16 Capsicum accessions from the annuum-chinense-frutescens complex, with different aroma impressions and geographical origins, were isolated by headspace-solid phase microextraction (HS-SPME) and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-sniffing port-MS). More than 300 individual compounds could be detected in the studied genotypes; most of them could be identified by comparing mass spectra and retention times with authentic reference substances or literature data. Esters and terpenoids were the main groups, although other minor compounds, such as nitrogen and sulfur compounds, phenol derivatives, norcarotenoids, lipoxygenase derivatives, carbonyls, alcohols, and other hydrocarbons, were also identified. The sniffing test revealed that the diversity of aromas found among the studied cultivars is due to qualitative and quantitative differences of, at least, 23 odor-contributing volatiles (OCVs). C. chinense, and C. frutescens accessions, with fruity/exotic aromas, were characterized by a high contribution of several esters and ionones and a low or nil contribution of green/vegetable OCVs. Different combinations of fruity/exotic and green/vegetable OCVs would explain the range of aroma impressions found among C. annuum accessions. Implications of these findings for breeding and phylogeny studies in Capsicum are also discussed.

  14. An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps.

    PubMed

    Mimura, Yutaka; Inoue, Takahiro; Minamiyama, Yasuhiro; Kubo, Nakao

    2012-03-01

    Of the Capsicum peppers (Capsicum spp.), cultivated C. annuum is the most commercially important, but has lacked an intraspecific linkage map based on sequence-specific PCR markers in accord with haploid chromosome numbers. We constructed a linkage map of pepper using a doubled haploid (DH) population derived from a cross between two C. annuum genotypes, a bell-type cultivar 'California Wonder' and a Malaysian small-fruited cultivar 'LS2341 (JP187992)', which is used as a source of resistance to bacterial wilt (Ralstonia solanacearum). A set of 253 markers (151 SSRs, 90 AFLPs, 10 CAPSs and 2 sequence-tagged sites) was on the map which we constructed, spanning 1,336 cM. This is the first SSR-based map to consist of 12 linkage groups, corresponding to the haploid chromosome number in an intraspecific cross of C. annuum. As this map has a lot of PCR-based anchor markers, it is easy to compare it to other pepper genetic maps. Therefore, this map and the newly developed markers will be useful for cultivated C. annuum breeding.

  15. Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper ( Capsicum annuum L.).

    PubMed

    Arnedo-Andrés, S.; Gil-Ortega, R.; Luis-Arteaga, M.; Hormaza, I.

    2002-11-01

    Potato Virus Y (PVY) is the only potyvirus infecting pepper ( Capsicum annuum L.) in Europe. Currently, the development of pepper varieties resistant to PVY seems to be the most-efficient method to control PVY damage. Among the sources of resistance, a monogenic dominant gene Pvr4 confers resistance against all known PVY pathotypes. In this work, bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pvr4 gene, using segregating progenies obtained by crossing a homozygous resistant ('Serrano Criollo de Morelos-334') with a homozygous susceptible ('Yolo Wonder') cultivar. Eight hundred decamer primers were screened to identify one RAPD marker (UBC19(1432)) linked in repulsion phase to Pvr4. This marker was converted into a dominant sequence characterised amplified region (SCAR) marker (SCUBC19(1423)). This marker was mapped into a dense Capsicum genetic map in a region where several genes for resistance to different diseases are located. This marker can be useful to identify PVY-resistant genotypes in segregating progenies of pepper in marker-assisted selection (MAS) breeding programs. PMID:12582935

  16. An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps.

    PubMed

    Mimura, Yutaka; Inoue, Takahiro; Minamiyama, Yasuhiro; Kubo, Nakao

    2012-03-01

    Of the Capsicum peppers (Capsicum spp.), cultivated C. annuum is the most commercially important, but has lacked an intraspecific linkage map based on sequence-specific PCR markers in accord with haploid chromosome numbers. We constructed a linkage map of pepper using a doubled haploid (DH) population derived from a cross between two C. annuum genotypes, a bell-type cultivar 'California Wonder' and a Malaysian small-fruited cultivar 'LS2341 (JP187992)', which is used as a source of resistance to bacterial wilt (Ralstonia solanacearum). A set of 253 markers (151 SSRs, 90 AFLPs, 10 CAPSs and 2 sequence-tagged sites) was on the map which we constructed, spanning 1,336 cM. This is the first SSR-based map to consist of 12 linkage groups, corresponding to the haploid chromosome number in an intraspecific cross of C. annuum. As this map has a lot of PCR-based anchor markers, it is easy to compare it to other pepper genetic maps. Therefore, this map and the newly developed markers will be useful for cultivated C. annuum breeding. PMID:23136519

  17. Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum).

    PubMed

    Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Bonesi, Marco; Conforti, Filomena; Statti, Giancarlo; De Luca, Damiano; de Cindio, Bruno; Menichini, Francesco

    2011-09-01

    The present study aimed to evaluate for the first time the phenols, flavonoids, carotenoids, capsaicin and dihydrocapsaicin content and the antioxidant and hypoglycemic properties of Capsicum annuum var. acuminatum small and C. annuum var. cerasiferum air-dried fruits. The ethanol extract of C. annuum var. acuminatum small, characterized by the major content of total poliphenols, flavonoids, carotenoids and capsaicinoids, showed the highest radical scavenging activity (IC(50) of 152.9 μg/ml). On the contrary, C. annuum var. cerasiferum showed a significant antioxidant activity evaluated by the β-carotene bleaching test (IC(50) of 3.1 μg/ml). The lipophilic fraction of both C. annuum var. acuminatum and C. annuum var. cerasiferum exhibited an interesting and selective inhibitory activity against α-amylase (IC(50) of 6.9 and 20.1 μg/ml, respectively).

  18. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim.

    PubMed

    Villanueva-Alonzo, Hernan J; Us-Camas, Rosa Y; López-Ochoa, Luisa A; Robertson, Dominique; Guerra-Peraza, Orlene; Minero-García, Yereni; Moreno-Valenzuela, Oscar A

    2013-05-01

    Virus-induced gene silencing is based on the sequence-specific degradation of RNA. Here, a gene silencing vector derived from EuMV-YP, named pEuMV-YP:ΔAV1, was used to silence ChlI and NPR1 genes in Nicotiana benthamiana. The silencing of the ChlI transcripts was efficient in the stems, petioles and leaves as reflected in tissue bleaching and reduced transcript levels. The silencing was stable, reaching the flowers and fruits, and was observed throughout the life cycle of the plants. Additionally, the silencing of the NPR1 gene was efficient in both N. benthamiana and Capsicum annuum. After silencing, the plants' viral symptoms increased to levels similar to those seen in wild-type plants. These results suggest that NPR1 plays a role in the compatible interactions of EuMV-YP N. benthamiana and EuMV-C. annum var. anaheim.

  19. Long-Term Oral Administration of Capsicum baccatum Extracts Does Not Alter Behavioral, Hematological, and Metabolic Parameters in CF1 Mice

    PubMed Central

    Zimmer, Aline Rigon; Leonardi, Bianca; Kalinine, Eduardo; de Souza, Diogo Onofre; Portela, Luis Valmor; Gosmann, Grace

    2012-01-01

    Our group showed that crude ethanol (CE) and butanol (BUT) extracts of Capsicum baccatum presented anti-inflammatory and antioxidant properties. Furthermore, the flavonoid and total phenolic contents were positively correlated with both of these properties observed for C. baccatum extracts. The present study demonstrated that 60 days of oral administration of CE and BUT (200 mg/kg) in mice did not cause significant differences in the following parameters evaluated: hematological profile, body weight and relative weight of visceral organs, systemic lipid profile, glucose homeostasis (GTT), kidney and hepatic biochemical markers, and spontaneous locomotion and anxiety-like behavior. Altogether, these results indicate for the first time that the long-term oral administration of C. baccatum extracts does not affect specific aspects of CF1 mice physiology, suggesting their safety, building up the venue to test their efficacy in animal models underlying persistent activation of oxidative and inflammatory pathways. PMID:23320023

  20. Isocratic non-aqueous reversed-phase high-performance liquid chromatographic separation of capsanthin and capsorubin in red peppers (Capsicum annuum L.), paprika and oleoresin.

    PubMed

    Weissenberg, M; Schaeffler, I; Menagem, E; Barzilai, M; Levy, A

    1997-01-01

    A simple, rapid high-performance liquid chromatography method has been devised in order to separate and quantify the xanthophylls capsorubin and capasanthin present in red pepper (Capsicum annuum L.) fruits and preparations made from them (paprika and oleoresin). A reversed-phase isocratic non-aqueous system allows the separation of xanthophylls within a few minutes, with detection at 450 nm, using methyl red as internal standard to locate the various carotenoids and xanthophylls found in plant extracts. The selection of extraction solvents, mild saponification conditions, and chromatographic features is evaluated and discussed. The method is proposed for rapid screening of large plant populations, plant selection, as well as for paprika products and oleoresin, and also for nutrition and quality control studies.

  1. Bioaccessibility, uptake, and transport of carotenoids from peppers (Capsicum spp.) using the coupled in vitro digestion and human intestinal Caco-2 cell model.

    PubMed

    O'Sullivan, Laurie; Jiwan, Marvin A; Daly, Trevor; O'Brien, Nora M; Aherne, S Aisling

    2010-05-12

    Spanish bell peppers (Capsicum annuum L.) and chili peppers sourced from Kenya and Turkey were analyzed for their carotenoid content, bioaccessibility, and bioavailability. The order of total carotenoid content in peppers and their respective micelles was red > green > yellow. In terms of cellular carotenoid transport as a percentage of original food and micelle content, the order was yellow peppers > green > red; however, the opposite trend was seen for the actual amount of total carotenoids transported by Caco-2 cells. Although lutein was generally the most abundant carotenoid in the micelles (496.3-1565.7 microg 100 g(-1)), cellular uptake and transport of beta-carotene were the highest, 8.3-31.6 and 16.8-42.7%, respectively. Hence, the actual amount of carotenoids present in the original food and respective micelles seems to reflect the amount transported by Caco-2 cells. Therefore, color influenced the carotenoid profile, bioaccessibility, and bioavailability of carotenoids rather than pepper type.

  2. Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: possible role in prevention of diabetic complication.

    PubMed

    Khan, Ibrar; Ahmad, Haroon; Ahmad, Bashir

    2014-09-01

    The accumulation of advanced glycationend products (AGE's) in the body, due to the non-enzymatic glycation of proteins is associated with several pathological conditions like aging and diabetes mellitus. Hence a plant having anti-glycation and anti-oxidation potentials may serve as therapeutic agent for diabetic complications and aging. In this study the anti-glycation and anti-oxidation properties of crude methanolic extracts of fruits of Capsicum frutescens and Curcuma longa were investigated. Among the two C. frutescens had more anti-glycation ability with a minimum inhibitory concentration (MIC50) of 90βg/mLas compared to 324βg/mL MIC50 of C. longa. Curcuma longa had the more anti-oxidation potential i.e. 35.01, 30.83 and 28.08% at 0.5mg, 0.25mg and 0.125mg respectively.

  3. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum Desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.).

    PubMed

    Jäpelt, Rie Bak; Silvestro, Daniele; Smedsgaard, Jørn; Jensen, Poul Erik; Jakobsen, Jette

    2013-06-01

    Changes in vitamin D(3) and its metabolites were investigated following UVB- and heat-treatment in the leaves of Solanum glaucophyllum Desf., Solanum lycopersicum L. and Capsicum annuum L. The analytical method used was a sensitive and selective liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method including Diels-Alder derivatisation. Vitamin D(3) and 25-hydroxy vitamin D(3) were found in the leaves of all plants after UVB-treatment. S. glaucophyllum had the highest content, 200 ng vitamin D(3)/g dry weight and 31 ng 25-hydroxy vitamin D(3)/g dry weight, and was the only plant that also contained 1,25 dihydroxy vitamin D(3) in both free (32 ng/g dry weight) and glycosylated form (17 ng/g dry weight).

  4. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum Desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.).

    PubMed

    Jäpelt, Rie Bak; Silvestro, Daniele; Smedsgaard, Jørn; Jensen, Poul Erik; Jakobsen, Jette

    2013-06-01

    Changes in vitamin D(3) and its metabolites were investigated following UVB- and heat-treatment in the leaves of Solanum glaucophyllum Desf., Solanum lycopersicum L. and Capsicum annuum L. The analytical method used was a sensitive and selective liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method including Diels-Alder derivatisation. Vitamin D(3) and 25-hydroxy vitamin D(3) were found in the leaves of all plants after UVB-treatment. S. glaucophyllum had the highest content, 200 ng vitamin D(3)/g dry weight and 31 ng 25-hydroxy vitamin D(3)/g dry weight, and was the only plant that also contained 1,25 dihydroxy vitamin D(3) in both free (32 ng/g dry weight) and glycosylated form (17 ng/g dry weight). PMID:23411232

  5. A mixture of carvacrol, cinnamaldehyde, and capsicum oleoresin improves energy utilization and growth performance of broiler chickens fed maize-based diet.

    PubMed

    Bravo, D; Pirgozliev, V; Rose, S P

    2014-04-01

    A total of 210, 1-d-old Ross 308 male broiler chickens were used in an experiment to investigate the effects of a supplementary mixture containing 5% carvacrol, 3% cinnamaldehyde, and 2% capsicum on dietary energy utilization and growth performance. The 2 diets were offered ad libitum to the chickens from 0 to 21 d of age. These included a maize-based control diet and the control diet with 100 g/t of supplementary plant extracts. Dietary apparent ME, N retention (NR), and fat digestibility (FD) coefficients were determined in the follow-up metabolism study between 21 and 24 d of age. Feeding the mixture of carvacrol, cinnamaldehyde, and capsicum increased weight gain by 14.5% (P = 0.009), improved feed efficiency by 9.8% (P = 0.055), and tended to increase (P = 0.062) carcass energy retention and reduce (P = 0.062) total heat loss compared with feeding the control diet. There was a 16.1% increase (P = 0.015) in carcass protein retention but no difference in carcass fat retention. Feeding plant extracts improved dietary FD by 2.1% (P = 0.013) but did not influence dietary NR. Supplementation of plant extract resulted in a 12.5% increase (P = 0.021) in dietary NE for production (NEp), while no changes in dietary ME were observed. The experiment showed that although dietary essential oils did not affect dietary ME, they caused an improvement in the utilization of energy for growth. Plant extracts may affect metabolic utilization of absorbed nutrients. Studies that have focused solely on the effect of plant extracts on ME alone may well have not detected their full nutritional value.

  6. Successful Wide Hybridization and Introgression Breeding in a Diverse Set of Common Peppers (Capsicum annuum) Using Different Cultivated Ají (C. baccatum) Accessions as Donor Parents.

    PubMed

    Manzur, Juan Pablo; Fita, Ana; Prohens, Jaime; Rodríguez-Burruezo, Adrián

    2015-01-01

    Capsicum baccatum, commonly known as ají, has been reported as a source of variation for many different traits to improve common pepper (C. annuum), one of the most important vegetables in the world. However, strong interspecific hybridization barriers exist between them. A comparative study of two wide hybridization approaches for introgressing C. baccatum genes into C. annuum was performed: i) genetic bridge (GB) using C. chinense and C. frutescens as bridge species; and, ii) direct cross between C. annuum and C. baccatum combined with in vitro embryo rescue (ER). A diverse and representative collection of 18 accessions from four cultivated species of Capsicum was used, including C. annuum (12), C. baccatum (3), C. chinense (2), and C. frutescens (1). More than 5000 crosses were made and over 1000 embryos were rescued in the present study. C. chinense performed as a good bridge species between C. annuum and C. baccatum, with the best results being obtained with the cross combination [C. baccatum (♀) × C. chinense (♂)] (♀) × C. annuum (♂), while C. frutescens gave poor results as bridge species due to strong prezygotic and postzygotic barriers. Virus-like-syndrome or dwarfism was observed in F1 hybrids when both C. chinense and C. frutescens were used as female parents. Regarding the ER strategy, the best response was found in C. annuum (♀) × C. baccatum (♂) crosses. First backcrosses to C. annuum (BC1s) were obtained according to the crossing scheme [C. annuum (♀) × C. baccatum (♂)] (♀) × C. annuum (♂) using ER. Advantages and disadvantages of each strategy are discussed in relation to their application to breeding programmes. These results provide breeders with useful practical information for the regular utilization of the C. baccatum gene pool in C. annuum breeding.

  7. The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg.

    PubMed

    Kang, Byoung-Cheorl; Yeam, Inhwa; Frantz, James D; Murphy, John F; Jahn, Molly M

    2005-05-01

    Mutations in the eIF4E homolog encoded at the pvr1 locus in Capsicum result in broad-spectrum potyvirus resistance attributed to the pvr1 resistance allele, a gene widely deployed in agriculture for more than 50 years. We show that two other resistance genes, previously known to be eIF4E with narrower resistance spectra, pvr2(1) and pvr2(2), are alleles at the pvr1 locus. Based on these data and current nomenclature guidelines, we have re-designated these alleles, pvr1(1) and pvr1(2), respectively. Point mutations in pvr1, pvr1(1), and pvr1(2) grouped to similar regions of eIF4E and were predicted by protein homology models to cause conformational shifts in the encoded proteins. The avirulence determinant in this potyvirus system has previously been identified as VPg, therefore yeast two-hybrid and GST pull-down assays were carried out with proteins encoded by the pvr1 alleles and VPg from two different strains of Tobacco etch virus (TEV) that differentially infected Capsicum lines carrying these genes. While the protein encoded by the susceptible allele pvr1+ interacted strongly, proteins translated from all three resistance alleles (pvr1, pvr1(1), and pvr1(2)) failed to bind VPg from either strain of TEV. This failure to bind correlated with resistance or reduced susceptibility, suggesting that interruption of the interaction between VPg and this eIF4E paralog may be necessary, but is not sufficient for potyvirus resistance in vivo. Among the three resistance alleles, only the pvr1 gene product failed to bind m7-GTP cap-analog columns, suggesting that disrupted cap binding is not required for potyvirus resistance.

  8. Successful Wide Hybridization and Introgression Breeding in a Diverse Set of Common Peppers (Capsicum annuum) Using Different Cultivated Ají (C. baccatum) Accessions as Donor Parents

    PubMed Central

    2015-01-01

    Capsicum baccatum, commonly known as ají, has been reported as a source of variation for many different traits to improve common pepper (C. annuum), one of the most important vegetables in the world. However, strong interspecific hybridization barriers exist between them. A comparative study of two wide hybridization approaches for introgressing C. baccatum genes into C. annuum was performed: i) genetic bridge (GB) using C. chinense and C. frutescens as bridge species; and, ii) direct cross between C. annuum and C. baccatum combined with in vitro embryo rescue (ER). A diverse and representative collection of 18 accessions from four cultivated species of Capsicum was used, including C. annuum (12), C. baccatum (3), C. chinense (2), and C. frutescens (1). More than 5000 crosses were made and over 1000 embryos were rescued in the present study. C. chinense performed as a good bridge species between C. annuum and C. baccatum, with the best results being obtained with the cross combination [C. baccatum (♀) × C. chinense (♂)] (♀) × C. annuum (♂), while C. frutescens gave poor results as bridge species due to strong prezygotic and postzygotic barriers. Virus-like-syndrome or dwarfism was observed in F1 hybrids when both C. chinense and C. frutescens were used as female parents. Regarding the ER strategy, the best response was found in C. annuum (♀) × C. baccatum (♂) crosses. First backcrosses to C. annuum (BC1s) were obtained according to the crossing scheme [C. annuum (♀) × C. baccatum (♂)] (♀) × C. annuum (♂) using ER. Advantages and disadvantages of each strategy are discussed in relation to their application to breeding programmes. These results provide breeders with useful practical information for the regular utilization of the C. baccatum gene pool in C. annuum breeding. PMID:26642059

  9. Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in in pepper (Capsicum annuum L.).

    PubMed

    Djian-Caporalino, C; Pijarowski, L; Januel, A; Lefebvre, V; Daubèze, A; Palloix, A; Dalmasso, A; Abad, P

    1999-08-01

    Capsicum annuum L. has resistance to root-knot nematodes (RKN) (Meloidogyne spp.), severe polyphagous pests that occur world-wide. Several single dominant genes confer this resistance. Some are highly specific, whereas others are effective against a wide range of species. The spectrum of resistance to eight clonal RKN populations of the major Meloidogyne species, M. arenaria (2 populations), M. incognita (2 populations), M. javanica (1 population), and M. hapla (3 populations) was studied using eight lines of Capsicum annuum. Host susceptibility was determined by counting the egg masses (EM) on the roots. Plants were classified into resistant (R; EM ≤ 5) or susceptible (H; EM >5) classes. The french cultivar Doux Long des Landes was susceptible to all nematodes tested. The other seven pepper lines were highly resistant to M. arenaria, M. javanica and one population of M. hapla. Variability in resistance was observed for the other two populations of M. hapla. Only lines PM687, PM217, Criollo de Morelos 334 and Yolo NR were resistant to M. incognita. To investigate the genetic basis of resistance in the highly resistant line PM687, the resistance of two progenies was tested with the two populations of M. incognita: 118 doubled-haploid (DH) lines obtained by androgenesis from F(1) hybrids of the cross between PM687 and the susceptible cultivar Yolo Wonder, and 163 F(2) progenies. For both nematodes populations, the segregation patterns 69 R / 49 S for DH lines and 163 R / 45 S for F(2) progenies were obtained at 22°C and at high temperatures (32°C and 42°C). The presence of a single dominant gene that totally prevented multiplication of M. incognita was thus confirmed and its stability at high temperature was demonstrated. This study confirmed the value of C. annuum as a source of complete spectrum resistance to the major RKN. PMID:22665183

  10. Pepper, chili (Capsicum annuum).

    PubMed

    Min, Jung; Shin, Sun Hee; Jeon, En Mi; Park, Jung Mi; Hyun, Ji Young; Harn, Chee Hark

    2015-01-01

    Pepper is a recalcitrant plant for Agrobacterium-mediated genetic transformation. Several obstacles to genetic transformation remain such as extremely low transformation rates; the choice of correct genotype is critical; and there is a high frequency of false positives due to direct shoot formation. Here, we report a useful protocol with a suitable selection method. The most important aspect of the pepper transformation protocol is selecting shoots growing from the callus, which is referred to as callus-mediated shoot formation. This protocol is a reproducible and reliable system for pepper transformation. PMID:25300851

  11. Carotenoid composition and vitamin A value in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region.

    PubMed

    Rodríguez-Burruezo, Adrián; González-Mas, Maria del Carmen; Nuez, Fernando

    2010-10-01

    The carotenoid patterns of fully ripe fruits from 12 Bolivian accessions of the Andean peppers Capsicum baccatum (ají) and C. pubescens (rocoto) were determined by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA)-mass spectrometry (MS). We include 2 California Wonder cultivars as C. annuum controls. A total of 16 carotenoids were identified and differences among species were mostly found at the quantitative level. Among red-fruited genotypes, capsanthin was the main carotenoid in the 3 species (25% to 50% contribution to carotenoid fraction), although ajíes contained the lowest contribution of this carotenoid. In addition, the contribution of capsanthin 5,6-epoxide to total carotenoids in this species was high (11% to 27%) in comparison to rocotos and red C. annuum. Antheraxanthin and violaxanthin were, in general, the next most relevant carotenoids in the red Andean peppers (6.1% to 10.6%). Violaxanthin was the major carotenoid in yellow-/orange-fruited genotypes of the 3 species (37% to 68% total carotenoids), although yellow rocotos were characterized by lower levels (<45%). Cis-violaxanthin, antheraxanthin, and lutein were the next most relevant carotenoids in the yellow/orange Andean peppers (5% to 14%). As a whole, rocotos showed the highest contributions of provitamin A carotenoids to the carotenoid fraction. In terms of nutritional contribution, both ajíes and rocotos provide a remarkable provitamin A activity, with several accessions showing a content in retinol equivalents higher than California Wonder controls. Furthermore, levels of lutein in yellow/orange ajíes and rocotos were clearly higher than California Wonder pepper (≥1000 μg·100/g). Finally, the Andean peppers, particularly red ajíes, can be also considered as a noticeable source of capsanthin, the most powerful antioxidant compound among pepper carotenoids. Practical Application: Capsicum peppers are known for their content in carotenoids, although there is

  12. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    PubMed

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  13. RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334.

    PubMed

    Kim, Saet-Byul; Lee, Hye-Young; Seo, Seungyeon; Lee, Joo Hyun; Choi, Doil

    2015-01-01

    Potyviruses are one of the most destructive viral pathogens of Solanaceae plants. In Capsicum annuum landrace CM334, a broad-spectrum gene, Pvr4 is known to be involved in resistance against multiple potyviruses, including Pepper mottle virus (PepMoV), Pepper severe mosaic virus (PepSMV), and Potato virus Y (PVY). However, a potyvirus avirulence factor against Pvr4 has not been identified. To identify the avirulence factor corresponding to Pvr4 in potyviruses, we performed Agrobacterium-mediated transient expressions of potyvirus protein coding regions in potyvirus-resistant (Pvr4) and -susceptible (pvr4) pepper plants. Hypersensitive response (HR) was observed only when a RNA-dependent RNA polymerase (NIb) of PepMoV, PepSMV, or PVY was expressed in Pvr4-bearing pepper leaves in a genotype-specific manner. In contrast, HR was not observed when the NIb of Tobacco etch virus (TEV), a virulent potyvirus, was expressed in Pvr4-bearing pepper leaves. Our results clearly demonstrate that NIbs of PepMoV, PepSMV, and PVY serve as avirulence factors for Pvr4 in pepper plants.

  14. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum.

    PubMed

    Cai, Hanyang; Cheng, Junbin; Yan, Yan; Xiao, Zhuoli; Li, Jiazhi; Mou, Shaoliang; Qiu, Ailian; Lai, Yan; Guan, Deyi; He, Shuilin

    2015-01-01

    As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  15. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum

    PubMed Central

    Cai, Hanyang; Cheng, Junbin; Yan, Yan; Xiao, Zhuoli; Li, Jiazhi; Mou, Shaoliang; Qiu, Ailian; Lai, Yan; Guan, Deyi; He, Shuilin

    2015-01-01

    As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families. PMID:26442050

  16. RNA-Dependent RNA Polymerase (NIb) of the Potyviruses Is an Avirulence Factor for the Broad-Spectrum Resistance Gene Pvr4 in Capsicum annuum cv. CM334

    PubMed Central

    Seo, Seungyeon; Lee, Joo Hyun; Choi, Doil

    2015-01-01

    Potyviruses are one of the most destructive viral pathogens of Solanaceae plants. In Capsicum annuum landrace CM334, a broad-spectrum gene, Pvr4 is known to be involved in resistance against multiple potyviruses, including Pepper mottle virus (PepMoV), Pepper severe mosaic virus (PepSMV), and Potato virus Y (PVY). However, a potyvirus avirulence factor against Pvr4 has not been identified. To identify the avirulence factor corresponding to Pvr4 in potyviruses, we performed Agrobacterium-mediated transient expressions of potyvirus protein coding regions in potyvirus-resistant (Pvr4) and -susceptible (pvr4) pepper plants. Hypersensitive response (HR) was observed only when a RNA-dependent RNA polymerase (NIb) of PepMoV, PepSMV, or PVY was expressed in Pvr4-bearing pepper leaves in a genotype-specific manner. In contrast, HR was not observed when the NIb of Tobacco etch virus (TEV), a virulent potyvirus, was expressed in Pvr4-bearing pepper leaves. Our results clearly demonstrate that NIbs of PepMoV, PepSMV, and PVY serve as avirulence factors for Pvr4 in pepper plants. PMID:25760376

  17. Functional study of Capsicum annuum fatty acid desaturase 1 cDNA clone induced by Tobacco mosaic virus via microarray and virus-induced gene silencing.

    PubMed

    Kim, Ki-Jeong; Lim, Jee Hyuck; Lee, Sanghyeob; Kim, Young Jin; Choi, Soo Bok; Lee, Min Kyung; Choi, Doil; Paek, Kyung-Hee

    2007-10-26

    A series of microarray analyses employing the expressed sequence tags (ESTs) of hot pepper was conducted in an effort to elucidate the molecular mechanisms inherent to hypersensitive response (HR) by viral or bacterial pathogens. There were 2535 ESTs exhibiting differential expression (over 2-fold changes) among about 5000 ESTs during viral or bacterial response. Further, via virus-induced gene silencing (VIGS) and TMV-infection studies, we were able to isolate several ESTs, which may be relevant to defense response against TMV. Of these ESTs, Capsicum annuum fatty acid desaturase 1 (CaFAD1) showed the distinct phenotype against TMV infection and thus was subjected to further study. CaFAD1-silenced plants showed weaker resistance against TMV-P0 infection compared to TRV2 control plants. Also the suppression of FAD1 expression caused blocking of cell death induced by Bcl2-associated X (Bax) protein in tobacco plants. Therefore, this report presents that both microarray and VIGS approaches are feasible in hot pepper plants and the TMV-induced CaFAD1 plays a role in HR response.

  18. The coat protein gene of tobamovirus P 0 pathotype is a determinant for activation of temperature-insensitive L 1a-gene-mediated resistance in Capsicum plants.

    PubMed

    Matsumoto, Katsutoshi; Sawada, Hiromasa; Matsumoto, Kouhei; Hamada, Hiroyuki; Yoshimoto, Eri; Ito, Takao; Takeuchi, Shigeharu; Tsuda, Shinya; Suzuki, Kazumi; Kobayashi, Kappei; Kiba, Akinori; Okuno, Tetsuro; Hikichi, Yasufumi

    2008-01-01

    Tobamovirus resistance in Capsicum plants, which is mediated by L genes (L(1), L(2), L(3) or L(4)), is known to be temperature sensitive. However, the L(1a ) gene, a newly identified tobamovirus resistance gene that is mapped to the L locus, confers temperature-insensitive resistance against the tobamovirus P(0) pathotype. To identify the viral elicitor that activates the L(1a )-gene-mediated resistance, several chimeric viral genomes were constructed between tobacco mosaic virus-L (P(0) pathotype), paprika mild mottle virus-J (P(1 )pathotype) and pepper mild mottle virus-J (P(1,2) pathotype). Infection patterns of these chimeric viruses in L(1a )-harboring plants revealed that the L(1a )-gene-mediated resistance was activated by the CP of a particular pathotype of tobamovirus, like other L-gene-mediated resistances, but the L(1a )-gene-mediated resistance differs from those conferred by other L genes in terms of temperature sensitivity.

  19. Complete nucleotide sequence of capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses.

    PubMed

    Zheng, You-Xiu; Chen, Ching-Chung; Jan, Fuh-Jyh

    2011-03-01

    Phalaenopsis orchids are popular ornamentals all over the world. A tospovirus, capsicum chlorosis virus (CaCV-Ph) had been identified as the cause of chlorotic ringspots on leaves of Phalaenopsis orchids in Taiwan. The tripartite genome of CaCV-Ph was found to contain 3608, 4848 and 8916 nt of S, M and L RNAs, respectively. Phylogenetic analysis of the nucleocapsid (N) protein confirmed that CaCV-Ph is a member of the watermelon silver mottle virus (WSMoV) serogroup in the genus Tospovirus. Based on the relations among the nonstructural protein (NSs), glycoprotein (GnGc), thrips genera, host and geographical distribution, tospoviruses and thrips could be classified into two major types: WSMoV-Thrips-Asian and Tomato spotted wilt virus (TSWV)-Frankliniella-EuroAmerican. The proline (P(459)) of all tospoviral Gn proteins was indispensable for thrips transmission, but the RGD motif, which is maintained by only six tospoviruses, may not be required for thrips transmission. An RdRp catalytic domain found in the conserved region of the L protein may recognize the typically conserved sequences on the 5' and 3' terminal regions (5' AGAGCAAU 3').

  20. The Hot Pepper (Capsicum annuum) MicroRNA Transcriptome Reveals Novel and Conserved Targets: A Foundation for Understanding MicroRNA Functional Roles in Hot Pepper

    PubMed Central

    Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper. PMID:23737975

  1. Determination of the polyphenolic content of a Capsicum annuum L. extract by liquid chromatography coupled to photodiode array and mass spectrometry detection and evaluation of its biological activity.

    PubMed

    Mokhtar, Meriem; Soukup, Jan; Donato, Paola; Cacciola, Francesco; Dugo, Paola; Riazi, Ali; Jandera, Pavel; Mondello, Luigi

    2015-01-01

    The present study was aimed to investigate the polyphenolic profile of a pepper (Capsicum annuum L.) extract from Algeria and evaluate its biological activity. The total polyphenol content of the extract was determined as 1.373 mg of gallic acid equivalents (±0.0046), whereas the flavonoids were determined as 0.098 mg of quercetin (±0.0015). The determination of the complete polyphenolic profile of the extract was achieved by liquid chromatography with an RP-amide column in combination with photodiode array and mass spectrometry detection through an electrospray ionization interface. A total of 18 compounds were identified, of which five were reported for the first time in the sample tested. Quercetin rhamnoside was the most abundant compound (82.6 μg/g of fresh pepper) followed by quercetin glucoside (19.86 μg/g). The antioxidant activity and antimicrobial effects were also determined. For the antimicrobial tests assessed against Gram-positive and Gram-negative bacteria, kaempferol showed the strongest inhibitory effect followed by quercetin and caffeic acids. In the study of the cytotoxicity of the extract, the cancer cells (U937) were more affected than the normal cells (peripheral blood mononucleated cells), with more than 62% inhibition at the highest concentration.

  2. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum).

    PubMed

    Dias, Arthur Luiz Baião; Arroio Sergio, Camilla Scarelli; Santos, Philipe; Barbero, Gerardo Fernandéz; Rezende, Camila Alves; Martínez, Julian

    2016-07-01

    Extracts with bioactive compounds were obtained from the red pepper variety "dedo de moça" (Capsicum baccatum L. var. pendulum) through supercritical fluid extraction with carbon dioxide assisted by ultrasound (SFE-US). The process was tested at pressures of 15, 20 and 25 MPa; temperatures of 40, 50 and 60 °C, and ultrasonic powers of 200, 400 and 600 W applied during 40, 60 and 80 min of extraction. The CO2 mass flow rate was fixed at 1.7569 × 10(-4) kg/s. Global yield, phenolic content, antioxidant capacity and capsaicinoid concentration were evaluated in the extracts. The application of ultrasound raised the global extraction yield of SFE up to 45%. The phenolic content of the extract increased with the application of higher ultrasound power and radiation time. The capsaicinoid yield was also enhanced with ultrasound up to 12%. However, the antioxidant capacity did not increase with the ultrasound application. The BET-based model and the broken and intact cell model fitted well to the kinetic SFE curves. The BET-based model with three adjustable parameters resulted in the best fits to the experimental data. Field emission scanning electron microscopy (FESEM) images showed that SFE disturbed the vegetable matrix, releasing particles from the inner region of the plant cells to their surface. When the ultrasound was applied this effect was more pronounced. On the other hand, cracks, fissures or any sign of rupture were not identified on the sample surface.

  3. Isolation of Mexican Bacillus Species and Their Effects in Promoting Growth of Chili Pepper (Capsicum annuum L. cv Jalapeño).

    PubMed

    Peña-Yam, Laura P; Ruíz-Sánchez, Esaú; Barboza-Corona, José E; Reyes-Ramírez, Arturo

    2016-09-01

    The purpose of this work was to isolate and identify native bacteria from plants collected in the State of Yucatán, México with the ability to promote growth of chili pepper (Capsicum annuum L. cv Jalapeño). We identified nine bacterial isolates that belong to five species of Bacillus (i.e. Bacillus subtilis, B. flexus, B. cereus, B. megaterium and B. endophyticus) that produced indoleacetic acid (4.0-24.3 µg/mL) with solubilization index of 1.3-1.6. All the bacterial isolates were evaluated based on their ability to promote growth of chili pepper. Plants inoculated with B. subtilis ITC-N67 showed an increase in stem diameter and root volume, whereas inoculation with B. cereus ITC-BL18 increased the number of flower buds, fresh biomass of roots and total fresh biomass. Conversely, B. flexus ITC-P4 and B. flexus ITC-P22 showed deleterious effect on root volume and total biomass. In summary, our data showed that native B. cereus TC-BL18 and B. subtilis ITC-N67 have potential to be used as growth promoting microorganism for chili pepper, particularly in the state of Yucatán, México. PMID:27407303

  4. Characterization of different Capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature.

    PubMed

    González-Zamora, Alberto; Sierra-Campos, Erick; Luna-Ortega, J Guadalupe; Pérez-Morales, Rebeca; Rodríguez Ortiz, Juan Carlos; García-Hernández, José L

    2013-01-01

    The chili pepper is a very important plant used worldwide as a vegetable, as a spice, and as an external medicine. In this work, eight different varieties of Capsicum annuum L. have been characterized by their capsaicinoids content. The chili pepper fruits were cultivated in the Comarca Lagunera region in North of Mexico. The qualitative and quantitative determination of the major and minor capsaicinoids; alkaloids responsible for the pungency level, has been performed by a validated chromatographic procedure (HPLC-DAD) after a preliminary drying step and an opportune extraction procedure. Concentrations of total capsaicinoids varied from a not detectable value for Bell pepper to 31.84 mg g(-1) dried weight for Chiltepín. Samples were obtained from plants grown in experimental field and in greenhouse without temperature control, in order to evaluate temperature effect. Analysis of the two principal capsaicinoids in fruits showed that the amount of dihydrocapsaicin was always higher than capsaicin. In addition, our results showed that the content of total capsaicinoids for the varieties Serrano, Puya, Ancho, Guajillo and Bell pepper were increased with high temperature, while the content of total capsaicinoids and Scoville heat units (SHU) for the varieties De árbol and Jalapeño decreased. However, the pungency values found in this study were higher for all varieties analyzed than in other studies. PMID:24184818

  5. Production and Multiplication of Native Compost Fungal Activator by Using Different Substrates and Its Influence on Growth and Development of Capsicum chinensis Jacq. "Bhut Jolokia".

    PubMed

    Parkash, Vipin; Saikia, Ankur Jyoti

    2015-01-01

    In vitro experiment was carried out to see the effect of saw dusts of Pinus kesiya, Shorea robusta, and Callicarpa arborea on Trichoderma harzianum, isolate TH-13 mass production, along with its biotization effect on Capsicum chinensis Jacq. "Bhut Jolokia." Early mycelium initiation (2 days) occurred in S. robusta followed by P. kesiya and C. arborea (3.5 days). The sporulation was observed earlier in S. robusta (100% after 6 days) than P. kesiya (33.4% after 8 days) and C. arborea (16.7% after 9 days) but no sporulation was observed in control. The complete sporulation was also earlier in S. robusta (100% after 10 days) than P. kesiya (33.4% after 15 days) and C. arborea (16.4% after 18 days). Higher conidial yield (86 × 10(6)) was also in S. robusta than P. kesiya (70 × 10(6)) and C. arborea (45 × 10(6)), respectively. The increase in height (60-70 cm), number of leaves (600-650), and yield of chili (120-150 fruits) were also more in inoculated C. chinensis seedlings than control. It is concluded that S. robusta saw dust is the best substrate for mass production of compost fungal activator and can be used in nursery practices for quality stock production of various crops/plantations. PMID:25632354

  6. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum.

    PubMed

    Cai, Hanyang; Cheng, Junbin; Yan, Yan; Xiao, Zhuoli; Li, Jiazhi; Mou, Shaoliang; Qiu, Ailian; Lai, Yan; Guan, Deyi; He, Shuilin

    2015-01-01

    As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families. PMID:26442050

  7. Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.).

    PubMed

    Jing, Hua; Li, Chao; Ma, Fang; Ma, Ji-Hui; Khan, Abid; Wang, Xiao; Zhao, Li-Yang; Gong, Zhen-Hui; Chen, Ru-Gang

    2016-01-01

    Dehydrins (DHNs) play a crucial role in enhancing abiotic stress tolerance in plants. Although DHNs have been identified and characterized in many plants, there is little known about Capsicum annuum L., one of the economically important vegetable crops. In this study, seven CaDHNs in the pepper genome were identified, which could be divided into two classes: YnSKn- and SKn-type, based on their highly conserved domains. Quantitative real-time PCR (qRT-PCR) results showed that the seven DHN genes were expressed in all tissues and might be involved in the growth and development of pepper. The gene expression profiles analysis suggested that most of the CaDHN genes were induced by various stresses (low temperature, salt and mannitol) and signaling molecules (ABA, SA and MeJA). Furthermore, the CaDHN3 (YSK2)-silenced pepper plants showed obvious lower resistance to abiotic stresses (cold, salt and mannitol) than the control plants (TRV2:00). So the CaDHN3 might act as a positive role in resisting abiotic stresses. This study lays the foundation for further studies into the regulation of their expression under various conditions. PMID:27551973

  8. Red Pepper (Capsicum baccatum) Extracts Present Anti-Inflammatory Effects In Vivo and Inhibit the Production of TNF-α and NO In Vitro.

    PubMed

    Allemand, Alexandra; Leonardi, Bianca Franco; Zimmer, Aline Rigon; Moreno, Susana; Romão, Pedro Roosevelt Torres; Gosmann, Grace

    2016-08-01

    Capsicum baccatum is the most consumed red pepper species in Brazil. Our previous studies demonstrated the anti-inflammatory properties of its crude extract, whose activity is yet to be fully characterized. Herein, we examined the anti-inflammatory in vivo effects of enriched extracts obtained through bioguided fractionation as dichloromethane (DCM), butanol (BUT), and residual aqueous (RAq) extracts and its influence on inflammatory mediators produced by macrophages in vitro. We demonstrated that all C. baccatum extracts presented anti-inflammatory activity in vivo. In addition, we showed that BUT and RAq were more effective in inhibiting the neutrophil migration induced by carrageenan (Cg) to peritoneal cavity and both extracts inhibited paw edema induced by Cg, prostaglandin E2, and histamine in mice. Furthermore, the pretreatment with C. baccatum extracts significantly reduced the levels of myeloperoxidase (MPO) in the paw tissues of mice compared with the carrageenan group. Once again, RAq and BUT caused the greatest reduction in MPO levels. Moreover, it was demonstrated for the first time that C. baccatum inhibited the nitric oxide and tumor necrosis factor-alpha production by lipopolysaccharide/interferon gamma (IFN-γ)-stimulated macrophages. These anti-inflammatory effects seem to be at least, in part, independent of capsaicin. Hence, red pepper has bioactive compounds and might be used to develop food-derived extracts to treat related inflammatory diseases. PMID:27533650

  9. Production and Multiplication of Native Compost Fungal Activator by Using Different Substrates and Its Influence on Growth and Development of Capsicum chinensis Jacq. “Bhut Jolokia”

    PubMed Central

    Parkash, Vipin; Saikia, Ankur Jyoti

    2015-01-01

    In vitro experiment was carried out to see the effect of saw dusts of Pinus kesiya, Shorea robusta, and Callicarpa arborea on Trichoderma harzianum, isolate TH-13 mass production, along with its biotization effect on Capsicum chinensis Jacq. “Bhut Jolokia.” Early mycelium initiation (2 days) occurred in S. robusta followed by P. kesiya and C. arborea (3.5 days). The sporulation was observed earlier in S. robusta (100% after 6 days) than P. kesiya (33.4% after 8 days) and C. arborea (16.7% after 9 days) but no sporulation was observed in control. The complete sporulation was also earlier in S. robusta (100% after 10 days) than P. kesiya (33.4% after 15 days) and C. arborea (16.4% after 18 days). Higher conidial yield (86 × 106) was also in S. robusta than P. kesiya (70 × 106) and C. arborea (45 × 106), respectively. The increase in height (60–70 cm), number of leaves (600–650), and yield of chili (120–150 fruits) were also more in inoculated C. chinensis seedlings than control. It is concluded that S. robusta saw dust is the best substrate for mass production of compost fungal activator and can be used in nursery practices for quality stock production of various crops/plantations. PMID:25632354

  10. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    PubMed

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; Rios, Alessandro de Oliveira; Salvi, Aguisson de Oliveira; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile.

  11. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D'Arcy and Eshbaugh) germination under stressing abiotic conditions.

    PubMed

    Rueda-Puente, Edgar Omar; Murillo-Amador, Bernardo; Castellanos-Cervantes, T; García-Hernández, José Luís; Tarazòn-Herrera, Mario Antonio; Moreno Medina, Salomòn; Gerlach Barrera, Luis Ernesto

    2010-08-01

    Capsicum annuum var. aviculare to Tarahumara and Papago Indians and farmers of Sonora desert is a promising biological and commercial value as a natural resource from arid and semiarid coastal zones. Traditionally, apply synthetic fertilizers to compensate for soil nitrogen deficiency. However, indiscriminate use of these fertilizers might increase salinity. The inoculation by plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) represents an alternative as potential bio fertilizer resources for salty areas. Seeds ecotypes from four areas of Sonora desert (Mazocahui, Baviacora, Arizpe, La Tortuga), in order to inoculate them with one species of PGPB and AMF. Two germination tests were carried out to study the effect of salinity, temperature regime (night/day) and inoculation with PGPB and AMF growth factors measured on germination (percentage and rate), plant height, root length, and produced biomass (fresh and dry matter). The results indicated that from four studied ecotypes, Mazocahui was the most outstanding of all, showing the highest germination under saline and non-saline conditions. However, the PGPB and AMF influenced the others variables evaluated. This study is the first step to obtain an ideal ecotype of C. a. var. aviculare, which grows in the northwest of México and promoting this type of microorganisms as an efficient and reliable biological product. Studies of the association of PGPB and AMF with the C. a. var. aviculare-Mazocahui ecotype are recommended to determine the extent to which these observations can be reproduced under field conditions.

  12. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D'Arcy and Eshbaugh) germination under stressing abiotic conditions.

    PubMed

    Rueda-Puente, Edgar Omar; Murillo-Amador, Bernardo; Castellanos-Cervantes, T; García-Hernández, José Luís; Tarazòn-Herrera, Mario Antonio; Moreno Medina, Salomòn; Gerlach Barrera, Luis Ernesto

    2010-08-01

    Capsicum annuum var. aviculare to Tarahumara and Papago Indians and farmers of Sonora desert is a promising biological and commercial value as a natural resource from arid and semiarid coastal zones. Traditionally, apply synthetic fertilizers to compensate for soil nitrogen deficiency. However, indiscriminate use of these fertilizers might increase salinity. The inoculation by plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) represents an alternative as potential bio fertilizer resources for salty areas. Seeds ecotypes from four areas of Sonora desert (Mazocahui, Baviacora, Arizpe, La Tortuga), in order to inoculate them with one species of PGPB and AMF. Two germination tests were carried out to study the effect of salinity, temperature regime (night/day) and inoculation with PGPB and AMF growth factors measured on germination (percentage and rate), plant height, root length, and produced biomass (fresh and dry matter). The results indicated that from four studied ecotypes, Mazocahui was the most outstanding of all, showing the highest germination under saline and non-saline conditions. However, the PGPB and AMF influenced the others variables evaluated. This study is the first step to obtain an ideal ecotype of C. a. var. aviculare, which grows in the northwest of México and promoting this type of microorganisms as an efficient and reliable biological product. Studies of the association of PGPB and AMF with the C. a. var. aviculare-Mazocahui ecotype are recommended to determine the extent to which these observations can be reproduced under field conditions. PMID:20447830

  13. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought.

    PubMed

    Mena-Violante, Hortencia G; Ocampo-Jiménez, Omar; Dendooven, Luc; Martínez-Soto, Gerardo; González-Castañeda, Jaquelina; Davies, Fred T; Olalde-Portugal, Víctor

    2006-06-01

    The effect of arbuscular mycorrhizal fungi (AMF) and drought on fruit quality was evaluated in chile ancho (Capsicum annuum L. cv San Luis). AMF treatments were (1) Glomus fasciculatum (AMFG), (2) a fungal species consortium from the forest "Los Tuxtla" in Mexico (AMFT), (3) a fungal species consortium from the Sonorian desert in Mexico (AMFD), and (4) a noninoculated control (NAMF). Plants were exposed to a 26-day drought cycle. Fruit quality was determined by measuring size (length, width, and pedicel length), color, chlorophyll, and carotenoid concentration. Under nondrought conditions, AMFG produced fruits that were 13% wider and 15% longer than the NAMF treatment. Under nondrought conditions, fruit fresh weight was 25% greater in the AMFG treatment compared to the NAMF. Under drought, fruits in the AMFT and AMFD treatments showed fresh weights similar to those in the NAMF treatment not subjected to drought. Fruits of the AMFG treatment subjected to drought showed the same color intensity and chlorophyll content as those of the nondroughted NAMF treatment and carotenoid content increased 1.4 times compared to that in the NAMF not exposed to drought. It is interesting to note that fruits in the AMFD treatment subjected to drought and the NAMF treatment not exposed to drought reached the same size. AMFD treatment increased the concentration of carotenes (1.4 times) under nondrought conditions and the concentration of xanthophylls (1.5 times) under drought when compared to the nondroughted NAMF treatment.

  14. Dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), alters plasma high-density lipoprotein-cholesterol levels and hepatic gene expression in rats.

    PubMed

    Aizawa, Koichi; Inakuma, Takahiro

    2009-12-01

    The effects of dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), on lipid metabolism were examined. Young male Wistar rats were fed diets containing paprika powder, paprika organic solvent extract, residue of paprika extract, and purified capsanthin. Administration of purified capsanthin for 2 weeks resulted in a significant increase in plasma HDL-cholesterol (P < 0.05) without detectable differences in plasma total cholesterol and TAG concentrations. A statistically significant correlation (r 0.567; P < 0.001) was found between dietary capsanthin concentrations and plasma HDL-cholesterol concentrations. Animals receiving diets containing two different capsanthin concentrations exhibited dose-dependent increases in plasma HDL-cholesterol (r 0.597; P < 0.005). While capsanthin was absent in the liver of animals fed the basal diet, it increased markedly in capsanthin-fed animals (P < 0.001). Quantitative analyses of hepatic mRNA levels revealed that capsanthin administration resulted in up-regulation of mRNA for apoA5 and lecithin cholesterol acyltransferase (LCAT), without significant differences in other mRNA levels related to HDL-cholesterol metabolism. These results suggest that capsanthin had an HDL-cholesterol-raising effect on plasma, and the potential to increase cholesterol efflux to HDL particles by increasing apoA5 levels and/or enhancement of LCAT activity.

  15. Correlation of 3-isobutyl-2-methoxypyrazine to 3-isobutyl-2-hydroxypyrazine during maturation of bell pepper (Capsicum annuum) and wine grapes (Vitis vinifera).

    PubMed

    Ryona, Imelda; Leclerc, Sophie; Sacks, Gavin L

    2010-09-01

    Environmental factors affecting degradation of 3-isobutyl-2-methoxypyrazine (IBMP, "green pepper aroma") in wine grapes (V. vinifera) are widely studied, but the degradation pathway is not defined. We hypothesized that IBMP is demethylated to 3-isobutyl-2-hydroxypyrazine (IBHP) during fruit maturation effectively reversing the final putative step of IBMP biosynthesis. A quantification method for IBHP was developed using solid-phase extraction coupled to one- or two-dimensional gas chromatography-mass spectrometry with a recovery of ca. 80%. IBMP and IBHP in bell peppers (Capsicum annuum) and V. vinifera (cv. 'Cabernet Franc', 'Riesling', 'Pinot noir') were then measured at different maturities. IBMP and IBHP were inversely correlated in both bell peppers (R2=0.958) and Cabernet Franc grapes (R2=0.998) over a range of maturities. In bell peppers, we observed a significant decline in IBMP (125 to 15 ng/mL) and increase in IBHP (undetectable to 42 ng/mL) during ripening. In grapes, all cultivars had comparable IBHP concentrations preveraison (64 to 88 pg/mL) but differed in IBHP concentration by 2 orders of magnitude at the final sampling point (undetectable to 235 pg/mL). Higher preveraison IBMP was correlated with higher final IBHP across the three grape cultivars, with the order Cabernet Franc>Riesling>Pinot noir for both IBMP and IBHP. Acid hydrolysis resulted in a significant increase (33%) in IBHP in Cabernet Franc, indicating that IBHP exists partially in a bound form in grapes.

  16. Response of Resistant and Susceptible Bell Pepper (Capsicum annuum) to a Southern California Meloidogyne incognita Population from a Commercial Bell Pepper Field.

    PubMed

    Aguiar, Jose Luis; Bachie, Oli; Ploeg, Antoon

    2014-12-01

    To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.

  17. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    PubMed

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-01

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.

  18. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    PubMed Central

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Ángela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants. PMID:25429292

  19. Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum.

    PubMed

    Back, K; He, S; Kim, K U; Shin, D H

    1998-09-01

    Sesquiterpene cyclase, a branch point enzyme in the general isoprenoid pathway for the synthesis of phytoalexin capsidiol, was induced in detached leaves of Capsicum annuum (pepper) by UV treatment. The inducibility of cyclase enzyme activities paralleled the absolute amount of cyclase protein(s) of pepper immunodetected by monoclonal antibodies raised against tobacco sesquiterpene cyclase. A cDNA library was constructed with poly(A)+ RNA isolated from 24 h UV-challenged leaves of pepper. A cDNA clone for sesquiterpene cyclase in pepper was isolated by using a tobacco 5-epi aristolochene synthase gene as a heterologous probe. The predicted protein encoded by this cDNA was comprised of 559 amino acids and had a relative molecular mass of 65,095. The primary structural information from the cDNA clone revealed that it shared 77%, 72% and 49% identity with 5-epi aristolochene, vetispiradiene, and cadinene synthase, respectively. The enzymatic product catalyzed by the cDNA clone in bacteria was identified as 5-epi aristolochene, as judged by argentation TLC. RNA blot hybridization demonstrated the induction of an mRNA consistent with the induction of cyclase enzyme activity in UV-treated pepper. PMID:9816674

  20. Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.)

    PubMed Central

    Ma, Ji-Hui; Khan, Abid; Wang, Xiao; Zhao, Li-Yang; Gong, Zhen-Hui; Chen, Ru-Gang

    2016-01-01

    Dehydrins (DHNs) play a crucial role in enhancing abiotic stress tolerance in plants. Although DHNs have been identified and characterized in many plants, there is little known about Capsicum annuum L., one of the economically important vegetable crops. In this study, seven CaDHNs in the pepper genome were identified, which could be divided into two classes: YnSKn- and SKn-type, based on their highly conserved domains. Quantitative real-time PCR (qRT-PCR) results showed that the seven DHN genes were expressed in all tissues and might be involved in the growth and development of pepper. The gene expression profiles analysis suggested that most of the CaDHN genes were induced by various stresses (low temperature, salt and mannitol) and signaling molecules (ABA, SA and MeJA). Furthermore, the CaDHN3 (YSK2)-silenced pepper plants showed obvious lower resistance to abiotic stresses (cold, salt and mannitol) than the control plants (TRV2:00). So the CaDHN3 might act as a positive role in resisting abiotic stresses. This study lays the foundation for further studies into the regulation of their expression under various conditions. PMID:27551973

  1. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum).

    PubMed

    Dias, Arthur Luiz Baião; Arroio Sergio, Camilla Scarelli; Santos, Philipe; Barbero, Gerardo Fernandéz; Rezende, Camila Alves; Martínez, Julian

    2016-07-01

    Extracts with bioactive compounds were obtained from the red pepper variety "dedo de moça" (Capsicum baccatum L. var. pendulum) through supercritical fluid extraction with carbon dioxide assisted by ultrasound (SFE-US). The process was tested at pressures of 15, 20 and 25 MPa; temperatures of 40, 50 and 60 °C, and ultrasonic powers of 200, 400 and 600 W applied during 40, 60 and 80 min of extraction. The CO2 mass flow rate was fixed at 1.7569 × 10(-4) kg/s. Global yield, phenolic content, antioxidant capacity and capsaicinoid concentration were evaluated in the extracts. The application of ultrasound raised the global extraction yield of SFE up to 45%. The phenolic content of the extract increased with the application of higher ultrasound power and radiation time. The capsaicinoid yield was also enhanced with ultrasound up to 12%. However, the antioxidant capacity did not increase with the ultrasound application. The BET-based model and the broken and intact cell model fitted well to the kinetic SFE curves. The BET-based model with three adjustable parameters resulted in the best fits to the experimental data. Field emission scanning electron microscopy (FESEM) images showed that SFE disturbed the vegetable matrix, releasing particles from the inner region of the plant cells to their surface. When the ultrasound was applied this effect was more pronounced. On the other hand, cracks, fissures or any sign of rupture were not identified on the sample surface. PMID:26964951

  2. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    PubMed

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-01

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed. PMID:26888016

  3. Response of Resistant and Susceptible Bell Pepper (Capsicum annuum) to a Southern California Meloidogyne incognita Population from a Commercial Bell Pepper Field.

    PubMed

    Aguiar, Jose Luis; Bachie, Oli; Ploeg, Antoon

    2014-12-01

    To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy. PMID:25580027

  4. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences.

    PubMed

    Tomita, R; Murai, J; Miura, Y; Ishihara, H; Liu, S; Kubotera, Y; Honda, A; Hatta, R; Kuroda, T; Hamada, H; Sakamoto, M; Munemura, I; Nunomura, O; Ishikawa, K; Genda, Y; Kawasaki, S; Suzuki, K; Meksem, K; Kobayashi, K

    2008-11-01

    The tobamovirus resistance gene L(3) of Capsicum chinense was mapped using an intra-specific F2 population (2,016 individuals) of Capsicum annuum cultivars, into one of which had been introduced the C. chinense L(3) gene, and an inter-specific F2 population (3,391 individuals) between C. chinense and Capsicum frutescence. Analysis of a BAC library with an AFLP marker closely linked to L(3)-resistance revealed the presence of homologs of the tomato disease resistance gene I2. Partial or full-length coding sequences were cloned by degenerate PCR from 35 different pepper I2 homologs and 17 genetic markers were generated in the inter-specific combination. The L(3) gene was mapped between I2 homolog marker IH1-04 and BAC-end marker 189D23M, and located within a region encompassing two different BAC contigs consisting of four and one clones, respectively. DNA fiber FISH analysis revealed that these two contigs are separated from each other by about 30 kb. DNA fiber FISH results and Southern blotting of the BAC clones suggested that the L(3) locus-containing region is rich in highly repetitive sequences. Southern blot analysis indicated that the two BAC contigs contain more than ten copies of the I2 homologs. In contrast to the inter-specific F2 population, no recombinant progeny were identified to have a crossover point within two BAC contigs consisting of seven and two clones in the intra-specific F2 population. Moreover, distribution of the crossover points differed between the two populations, suggesting linkage disequilibrium in the region containing the L locus.

  5. Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle virus overcomes L3-mediated resistance in Capsicum plants.

    PubMed

    Hamada, Hiroyuki; Tomita, Reiko; Iwadate, Yasuya; Kobayashi, Kappei; Munemura, Ikuko; Takeuchi, Shigeharu; Hikichi, Yasufumi; Suzuki, Kazumi

    2007-04-01

    We found that an L3 resistance-breaking field isolate of Pepper mild mottle virus (PMMoV), designated PMMoV-Is, had two amino acid changes in its coat protein (CP), namely leucine to phenylalanine at position 13 (L13F) and glycine to valine at position 66 (G66V), as compared with PMMoV-J, which induces a resistance response in L3-harboring Capsicum plants. The mutations were located to a CP domain corresponding to the outer surface of PMMoV particles in computational molecular modeling. Analyses of PMMoV CP mutants containing either or both of these amino acid changes revealed that both changes were required to efficiently overcome L3-mediated resistance with systemic necrosis induction. Although CP mutants containing either L13F or G66V could not efficiently overcome L3-mediated resistance, these amino acid changes had different effects on the elicitor activity of PMMoV CP. L13F caused a slight reduction in the elicitor activity, resulting in virus restriction to necrotic local lesions that were apparently larger than those induced by wild-type PMMoV, while G66V rendered wild-type PMMoV the ability to overcome L3-mediated resistance, albeit with a lower efficiency than PMMoV with both changes. These results suggest that a cooperative effect of the L13F and G66V mutations on the elicitor activity of CP is responsible for overcoming the L3-mediated resistance.

  6. A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants.

    PubMed

    Kim, Su-Min; Bae, Chungyun; Oh, Sang-Keun; Choi, Doil

    2013-08-01

    Metacaspases, which belong to the cysteine-type C14 protease family, are most structurally similar to mammalian caspases than any other caspase-like protease in plants. Atmc9 (Arabidopsis thaliana metacaspase 9) has a unique domain structure, and distinct biochemical characteristics, such as Ca²⁺ binding, pH, redox status, S-nitrosylation and specific protease inhibitors. However, the biological roles of Atmc9 in plant-pathogen interactions remain largely unknown. In this study, a metacaspase gene present as a single copy in the pepper genome, and sharing 54% amino acid sequence identity with Atmc9, was isolated and named Capsicum annuum metacaspase 9 (Camc9). Camc9 encodes a 318-amino-acid polypeptide with an estimated molecular weight of 34.6 kDa, and shares approximately 40% amino acid sequence identity with known type II metacaspases in plants. Quantitative reverse transcription-polymerase chain reaction analyses revealed that the expression of Camc9 was induced by infections of Xanthomonas campestris pv. vesicatoria race 1 and race 3 and treatment with methyl jasmonate. Suppression of Camc9 expression using virus-induced gene silencing enhanced disease resistance and suppressed cell death symptom development following infection with virulent bacterial pathogens. By contrast, overexpression of Camc9 by transient or stable transformation enhanced disease susceptibility and pathogen-induced cell death by regulation of reactive oxygen species production and defence-related gene expression. These results suggest that Camc9 is a possible member of the metacaspase gene family and plays a role as a positive regulator of pathogen-induced cell death in the plant kingdom.

  7. A germin-like protein gene (CchGLP) of Capsicum chinense Jacq. is induced during incompatible interactions and displays Mn-superoxide dismutase activity.

    PubMed

    León-Galván, Fabiola; de Jesús Joaquín-Ramos, Ahuizolt; Torres-Pacheco, Irineo; Barba de la Rosa, Ana P; Guevara-Olvera, Lorenzo; González-Chavira, Mario M; Ocampo-Velazquez, Rosalía V; Rico-García, Enrique; Guevara-González, Ramón Gerardo

    2011-01-01

    A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44-47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV.

  8. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection.

    PubMed

    Wang, Yuna; Dang, Fengfeng; Liu, Zhiqin; Wang, Xu; Eulgem, Thomas; Lai, Yan; Yu, Lu; She, Jianju; Shi, Youliang; Lin, Jinhui; Chen, Chengcong; Guan, Deyi; Qiu, Ailian; He, Shuilin

    2013-02-01

    WRKY transcription factors are encoded by large gene families across the plant kingdom. So far, their biological and molecular functions in nonmodel plants, including pepper (Capsicum annuum) and other Solanaceae, remain poorly understood. Here, we report on the functional characterization of a new group I WRKY protein from pepper, termed CaWRKY58. Our data indicate that CaWRKY58 can be localized to the nucleus and can activate the transcription of the reporter β-glucuronidase (GUS) gene driven by the 35S core promoter with two copies of the W-box in its proximal upstream region. In pepper plants infected with the bacterial pathogen Ralstonia solanacearum, CaWRKY58 transcript levels showed a biphasic response, manifested in an early/transient down-regulation and late up-regulation. CaWRKY58 transcripts were suppressed by treatment with methyl jasmonate and abscisic acid. Tobacco plants overexpressing CaWRKY58 did not show any obvious morphological phenotypes, but exhibited disease symptoms of greater severity than did wild-type plants. The enhanced susceptibility of CaWRKY58-overexpressing tobacco plants correlated with the decreased expression of hypersensitive response marker genes, as well as various defence-associated genes. Consistently, CaWRKY58 pepper plants silenced by virus-induced gene silencing (VIGS) displayed enhanced resistance to the highly virulent R. solanacearum strain FJC100301, and this was correlated with enhanced transcripts of defence-related pepper genes. Our results suggest that CaWRKY58 acts as a transcriptional activator of negative regulators in the resistance of pepper to R. solanacearum infection.

  9. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection.

    PubMed

    Dang, Fengfeng; Wang, Yuna; She, Jianju; Lei, Yufen; Liu, Zhiqin; Eulgem, Thomas; Lai, Yan; Lin, Jing; Yu, Lu; Lei, Dan; Guan, Deyi; Li, Xia; Yuan, Qian; He, Shuilin

    2014-03-01

    WRKY proteins are encoded by a large gene family and are linked to many biological processes across a range of plant species. The functions and underlying mechanisms of WRKY proteins have been investigated primarily in model plants such as Arabidopsis and rice. The roles of these transcription factors in non-model plants, including pepper and other Solanaceae, are poorly understood. Here, we characterize the expression and function of a subgroup IIe WRKY protein from pepper (Capsicum annuum), denoted as CaWRKY27. The protein localized to nuclei and activated the transcription of a reporter GUS gene construct driven by the 35S promoter that contained two copies of the W-box in its proximal upstream region. Inoculation of pepper cultivars with Ralstonia solanacearum induced the expression of CaWRKY27 transcript in 76a, a bacterial wilt-resistant pepper cultivar, whereas it downregulated the expression of CaWRKY27 transcript in Gui-1-3, a bacterial wilt-susceptible pepper cultivar. CaWRKY27 transcript levels were also increased by treatments with salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH). Transgenic tobacco plants overexpressing CaWRKY27 exhibited resistance to R. solanacearum infection compared to that of wild-type plants. This resistance was coupled with increased transcript levels in a number of marker genes, including hypersensitive response genes, and SA-, JA- and ET-associated genes. By contrast, virus-induced gene silencing (VIGS) of CaWRKY27 increased the susceptibility of pepper plants to R. solanacearum infection. These results suggest that CaWRKY27 acts as a positive regulator in tobacco resistance responses to R. solanacearum infection through modulation of SA-, JA- and ET-mediated signaling pathways.

  10. Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.)

    PubMed Central

    Arisha, Mohamed H.; Shah, Syed N. M.; Gong, Zhen-Hui; Jing, Hua; Li, Chao; Zhang, Huai-Xia

    2015-01-01

    This study was conducted to enhance genetic variability in peppers (Capsicum annuum, cv B12) using ethyl methanesulphonate (EMS). Exposure to an EMS concentration of 0.6%, v/v for 12 h was used to mutagenize 2000 seeds for the first generation (M1). It was observed that the growth behaviors including plant height, flowering date, and number of seeds per first fruit were different in the M1 generation than in wild type (WT) plants. In addition one phenotypic mutation (leaf shape and plant architecture) was observed during the M1 generation. During the seedling stage in the M2 generation, the observed changes were in the form of slow growth or chlorophyll defect (e.g., albino, pale green, and yellow seedlings). At maturity, there were three kinds of phenotypic mutations observed in three different families of the mutant population. The first observed change was a plant with yellow leaf color, and the leaves of this mutant plant contained 62.19% less chlorophyll a and 64.06% less chlorophyll b as compared to the wild-type. The second mutation resulted in one dwarf plant with a very short stature (6 cm), compact internodes and the leaves and stem were rough and thick. The third type of mutation occurred in four plants and resulted in the leaves of these plants being very thick and longer than those of WT plants. Furthermore, anatomical observations of the leaf blade section of this mutant plant type contained more xylem and collenchyma tissue in the leaf midrib of the mutant plant than WT. In addition, its leaf blade contained thicker palisade and spongy tissue than the WT. PMID:26089827

  11. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum.

    PubMed

    Wu, Feinan; Eannetta, Nancy T; Xu, Yimin; Durrett, Richard; Mazourek, Michael; Jahn, Molly M; Tanksley, Steven D

    2009-05-01

    We report herein the development of a pepper genetic linkage map which comprises 299 orthologous markers between the pepper and tomato genomes (including 263 conserved ortholog set II or COSII markers). The expected position of additional 288 COSII markers was inferred in the pepper map via pepper-tomato synteny, bringing the total orthologous markers in the pepper genome to 587. While pepper maps have been previously reported, this is the first complete map in the sense that all markers could be placed in 12 linkage groups corresponding to the 12 chromosomes. The map presented herein is relevant to the genomes of cultivated C. annuum and wild C. annuum (as well as related Capsicum species) which differ by a reciprocal chromosome translocation. This map is also unique in that it is largely based on COSII markers, which permits the inference of a detailed syntenic relationship between the pepper and tomato genomes-shedding new light on chromosome evolution in the Solanaceae. Since divergence from their last common ancestor is approximately 20 million years ago, the two genomes have become differentiated by a minimum number of 19 inversions and 6 chromosome translocations, as well as numerous putative single gene transpositions. Nevertheless, the two genomes share 35 conserved syntenic segments (CSSs) within which gene/marker order is well preserved. The high resolution COSII synteny map described herein provides a platform for cross-reference of genetic and genomic information (including the tomato genome sequence) between pepper and tomato and therefore will facilitate both applied and basic research in pepper.

  12. Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Zhang, Huai-Xia; Jin, Jing-Hao; He, Yu-Mei; Lu, Bo-Ya; Li, Da-Wei; Chai, Wei-Guo; Khan, Abid; Gong, Zhen-Hui

    2016-01-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode plant-specific transcription factors that are extensively involved in many physiological and biochemical processes, including growth, development, and signal transduction. However, pepper (Capsicum annuum L.) SBP-box family genes have not been well characterized. We investigated SBP-box family genes in the pepper genome and characterized these genes across both compatible and incompatible strain of Phytophthora capsici, and also under different hormone treatments. The results indicated that total 15 members were identified and distributed on seven chromosomes of pepper. Phylogenetic analysis showed that SBP-box genes of pepper can be classified into six groups. In addition, duplication analysis within pepper genome, as well as between pepper and Arabidopsis genomes demonstrated that there are four pairs of homology of SBP-box genes in the pepper genome and 10 pairs between pepper and Arabidopsis genomes. Tissue-specific expression analysis of the CaSBP genes demonstrated their diverse spatiotemporal expression patterns. The expression profiles were similarly analyzed following exposure to P. capsici inoculation and hormone treatments. It was shown that nine of the CaSBP genes (CaSBP01, 02, 03, 04, 05, 06, 11, 12, and 13) exhibited a dramatic up-regulation after compatible HX-9 strain (P. capsici) inoculation, while CaSBP09 and CaSBP15 were down-regulated. In case of PC strain (P. capsici) infection six of the CaSBP genes (CaSBP02, 05, 06, 11, 12, and 13) were arose while CaSBP14 was down regulated. Furthermore, Salicylic acid, Methyl jasmonate and their biosynthesis inhibitors treatment indicated that some of the CaSBP genes are potentially involved in these hormone regulation pathways. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles of the pepper CaSBP genes, will help to improve pepper stress tolerance in the future. PMID:27148327

  13. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy

    PubMed Central

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene. PMID:26992080

  14. [Inhibition of decomposing leaf litter of Cinnamomum camphora on growth of Capsicum annu- um and the alleviation effect of nitrogen application].

    PubMed

    Chen, Hong; Hu, Ting-xing; Wang, Qian; Hu, Hong-ling; Jiang, Xue; Zhou, Guang-liang; Chen, Gang

    2015-02-01

    Effects of decomposing leaf litter of Cinnamomum camphora on growth, physiological and phenological traits of Capsicum annuum, and modification of these effects by nitrogen application were investigated using a pot experiment. C. camphora leaf litter was applied at rate of 0, 25, 50 100 g per pot, resulting into four treatments, i.e., CK (the control), L25, L50, and L100. Nitrogen application was firstly performed on the 39th d of decomposition (3.0 g urea was added to each pot six times). Leaf area, plant height, basal diameter and biomass production of C. annuum were all inhibited sharply by exposure to the leaf litter, and the inhibition effect increased with the increasing leaf litter in terms of both the intensity and the stability. Treated with L25, budding number reduced by 88.7% averagely during 55th-75th d, and the rate of fructification plant decreased by 40% on the 96th d of decomposition, while neither buds nor fruits were observed when exposed to L50 and L100 at that time. Pigment contents and net photosynthetic rate (Pn) were impacted due to leaf litter addition, and malonaldehyde (MDA) was only markedly promoted by L100. Inhibition on growth and development of C. annuum caused by leaf litter decomposition could be alleviated by nitrogen application. Leaf area treated with leaf litter recovered to the control level on the 52nd d after nitrogen application, and similar results appeared on the 83rd d after nitrogen application for other growth traits. Budding and fructification status were also visibly improved.

  15. Capsicum annuum tobacco mosaic virus-induced clone 1 expression perturbation alters the plant's response to ethylene and interferes with the redox homeostasis.

    PubMed

    Shin, Ryoung; An, Jong-Min; Park, Chang-Jin; Kim, Young Jin; Joo, Sunjoo; Kim, Woo Taek; Paek, Kyung-Hee

    2004-05-01

    Capsicum annuum tobacco mosaic virus (TMV)-induced clone 1 (CaTin1) gene was expressed early during incompatible interaction of hot pepper (Caspsicum annuum) plants with TMV and Xanthomonas campestris. RNA-blot analysis showed that CaTin1 gene was expressed only in roots in untreated plants and induced mainly in leaf in response to ethylene, NaCl, and methyl viologen but not by salicylic acid and methyl jasmonate. The ethylene dependence of CaTin1 induction upon TMV inoculation was demonstrated by the decrease of CaTin1 expression in response to several inhibitors of ethylene biosynthesis or its action. Transgenic tobacco (Nicotiana tabacum) plants expressing CaTin1 gene in sense- or antisense-orientation showed interesting characteristics such as the accelerated growth and the enhanced resistance to biotic as well as abiotic stresses. Such characteristics appear to be caused by the elevated level of ethylene and H2O2. Moreover, in transgenic plants expressing antisense CaTin1 gene, the expression of some pathogenesis-related genes was enhanced constitutively, which may be mainly due to the increased ethylene level. The promoter of CaTin1 has four GCC-boxes, two AT-rich regions, and an elicitor-inducible W-box. The induction of the promoter activity by ethylene depends on GCC-boxes and by TMV on W-box. Taken together, we propose that the CaTin1 up-regulation or down-regulation interferes with the redox balance of plants leading to the altered response to ethylene and biotic as well as abiotic stresses.

  16. A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: an application of chemometrics.

    PubMed

    Sora, Gisele Teixeira Souza; Haminiuk, Charles Windson Isidoro; da Silva, Marcos Vieira; Zielinski, Acácio Antonio Ferreira; Gonçalves, Geferson Almeida; Bracht, Adelar; Peralta, Rosane Marina

    2015-12-01

    This paper presents a comparison of the contents of capsaicin, dihydrocapsaicin and total phenolics as well as of the antioxidant activities of six types of peppers of the genus Capsicum. The varieties were analyzed in terms of their in vitro antioxidant activity using ferric reducing antioxidant powder (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis 3-ethylbenzothiazoline 6-sulfonate (ABTS(●+)) assays. The contents of phenolics and capsainoids as well as the antioxidant activities were higher in seeds than in pulps. The correlations (ρ < 0.01) between the phenolic composition and the capsaicinoids levels were high (r = 0.98). Similarly high were also the correlations between the antioxidant activities and the contents of total phenolics and capsaicinoids. Data were analyzed using principal component analysis (PCA), hierarchical cluster analysis (HCA) and multiple linear regression (MLR). PCA explained 97.77 % of the total variance of the data, and their separation into three groups in a scatter plot was divised. Using HCA, three clusters were suggested. Cluster one, formed by pulps (bell pepper, orange habanero, cayenne, dedo de moça and red habanero), showed the lowest levels of the compounds quantified. Most seed samples were grouped in cluster two (bell pepper, cayenne, dedo de moça and malagueta) together with malagueta pulp. Cluster three was formed by orange and red habanero seeds, which showed the highest levels of all compounds analyzed. The MRL revealed that the values of capsaicinoids and total phenols are more adequate to predict the antioxidant activity measured by the FRAP assay.

  17. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches

    PubMed Central

    Ertani, Andrea; Pizzeghello, Diego; Francioso, Ornella; Sambo, Paolo; Sanchez-Cortes, Santiago; Nardi, Serenella

    2014-01-01

    Two biostimulants, one derived from alfalfa plants (AH) and the other obtained from red grape (RG), were chemically characterized using enzyme linked immuno-sorbent assays, Fourier transform infrared (FT-IR) and Raman spectroscopies. Two doses (50 and 100 mL L−1 for RG, and 25 and 50 mL L−1 for AH) of biostimulants were applied to Capsicum chinensis L. plants cultivated in pots inside a tunnel. The experimental design consisted of the factorial combination of treatment (no biostimulant, plus AH, plus RG) at three doses (zero, low, and high) and two time-course applications (at the second and fourth week after transplantation) and the effects were recorded at flowering and maturity. Both biostimulants contained different amounts of indoleacetic acid and isopentenyladenosine; the AH spectra exhibited amino acid functional groups in the peptidic structure, while the RG spectra showed the presence of polyphenols, such as resveratrol. These results revealed that at flowering, RG and AH increased the weights of fresh leaves and fruits and the number of green fruits, whereas at maturity, the biostimulants most affected the fresh weight and number of red fruits. At flowering, the leaves of the treated plants contained high amounts of epicatechin, ascorbic acid, quercetin, and dihydrocapsaicin. At maturity, the leaves of the treated plants exhibited elevated amounts of fructose, glucose, chlorogenic, and ferulic acids. Moreover, green fruits exhibited a high content of chlorogenic acid, p-hydroxybenzoic acid, p-coumaric acid and antioxidant activity, while both AH- and RG-treated red fruits were highly endowed in capsaicin. The 1H high-resolution magic-angle spinning (HRMAS)-nuclear magnetic resonance (NMR) spectra of red fruits revealed that both products induced a high amount of NADP+, whereas RG also increased glucose, fumarate, ascorbate, thymidine and high molecular weight species. Our results suggested that AH and RG promoted plant growth and the production of

  18. MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum).

    PubMed

    Gamboa-Becerra, Roberto; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Winkler, Robert

    2015-07-01

    In cartography, the combination of colour and contour lines is used to express a three-dimensional landscape on a two-dimensional map. We transferred this concept to the analysis of mass spectrometry imaging (MSI) data and developed a collection of R scripts for the efficient evaluation of .imzML archives in a four-step strategy: (1) calculation of the density distribution of mass-to-charge ratio (m/z) signals in the .imzML file and assembling of a pseudo-master spectrum with peak list, (2) automated generation of mass images for a defined scan range and subsequent visual inspection, (3) visualisation of individual ion distributions and export of relevant .mzML spectra and (4) creation of overlay graphics of ion images and photographies. The use of a Hue-Chroma-Luminance (HCL) colour model in MSI graphics takes into account the human perception for colours and supports the correct evaluation of signal intensities. Further, readers with colour blindness are supported. Contour maps promote the visual recognition of patterns in MSI data, which is particularly useful for noisy data sets. We demonstrate the scalability of MSI.R scripts by running them on different systems: on a personal computer, on Amazon Web Services (AWS) instances and on an institutional cluster. By implementing a parallel computing strategy, the execution speed for .imzML data scanning with image generation could be improved by more than an order of magnitude. Applying our MSI.R scripts ( http://www.bioprocess.org/MSI.R ) to low-temperature plasma (LTP)-MSI data shows the localisation of volatile and semi-volatile compounds in the cross-cut of a chilli (Capsicum annuum) fruit. The subsequent identification of compounds by gas and liquid chromatography coupled to mass spectrometry (GC-MS, LC-MS) proves that LTP-MSI enables the direct measurement of volatile organic compound (VOC) distributions from biological tissues.

  19. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.

    PubMed

    Schuerger, A C; Brown, C S; Stryjewski, E C

    1997-03-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  20. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum.

    PubMed

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  1. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation

    PubMed Central

    2013-01-01

    Background Water-deficiency adversely affects crop growth by generating reactive oxygen species (ROS) at cellular level. To mitigate such stressful events, it was aimed to investigate the co-synergism of exogenous salicylic acid (SA) and symbiosis of endophytic fungus with Capsicum annuum L. (pepper). Results The findings of the study showed that exogenous SA (10-6 M) application to endophyte (Penicillium resedanum LK6) infected plants not only increased the shoot length and chlorophyll content but also improved the biomass recovery of pepper plants under polyethylene glycol (15%) induced osmotic stress (2, 4 and 8 days). Endophyte-infected plants had low cellular injury and high photosynthesis rate. SA also enhanced the colonization rate of endophyte in the host-plant roots. Endophyte and SA, in combination, reduced the production of ROS by increasing the total polyphenol, reduce glutathione, catalase, peroxidase and polyphenol oxidase as compared to control plants. Osmotic stress pronounced the lipid peroxidation and superoxide anions formation in control plants as compared to endophyte and SA-treated plants. The endogenous SA contents were significantly higher in pepper plants treated with endophyte and SA under osmotic stress as compared to control. Conclusion Endophytic fungal symbiosis and exogenous SA application can help the plants to relieve the adverse effects of osmotic stress by decreasing losses in biomass as compared to non-inoculated plants. These findings suggest that SA application positively impact microbial colonization while in combination, it reprograms the plant growth under various intervals of drought stress. Such symbiotic strategy can be useful for expanding agriculture production in drought prone lands. PMID:23452409

  2. Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.).

    PubMed

    Zhang, Huai-Xia; Jin, Jing-Hao; He, Yu-Mei; Lu, Bo-Ya; Li, Da-Wei; Chai, Wei-Guo; Khan, Abid; Gong, Zhen-Hui

    2016-01-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode plant-specific transcription factors that are extensively involved in many physiological and biochemical processes, including growth, development, and signal transduction. However, pepper (Capsicum annuum L.) SBP-box family genes have not been well characterized. We investigated SBP-box family genes in the pepper genome and characterized these genes across both compatible and incompatible strain of Phytophthora capsici, and also under different hormone treatments. The results indicated that total 15 members were identified and distributed on seven chromosomes of pepper. Phylogenetic analysis showed that SBP-box genes of pepper can be classified into six groups. In addition, duplication analysis within pepper genome, as well as between pepper and Arabidopsis genomes demonstrated that there are four pairs of homology of SBP-box genes in the pepper genome and 10 pairs between pepper and Arabidopsis genomes. Tissue-specific expression analysis of the CaSBP genes demonstrated their diverse spatiotemporal expression patterns. The expression profiles were similarly analyzed following exposure to P. capsici inoculation and hormone treatments. It was shown that nine of the CaSBP genes (CaSBP01, 02, 03, 04, 05, 06, 11, 12, and 13) exhibited a dramatic up-regulation after compatible HX-9 strain (P. capsici) inoculation, while CaSBP09 and CaSBP15 were down-regulated. In case of PC strain (P. capsici) infection six of the CaSBP genes (CaSBP02, 05, 06, 11, 12, and 13) were arose while CaSBP14 was down regulated. Furthermore, Salicylic acid, Methyl jasmonate and their biosynthesis inhibitors treatment indicated that some of the CaSBP genes are potentially involved in these hormone regulation pathways. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles of the pepper CaSBP genes, will help to improve pepper stress tolerance in the future.

  3. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings

    PubMed Central

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C.; Barroso, Juan B.; del Río, Luis A.; Palma, José M.; Corpas, Francisco J.

    2015-01-01

    Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO–) was investigated using confocal laser scanning microscopy. Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling

  4. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy.

    PubMed

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene.

  5. Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L.) Leaves under Chilling Stress

    PubMed Central

    Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei

    2013-01-01

    Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress. PMID:23825555

  6. Cancer prevention trial of a synergistic mixture of green tea concentrate plus Capsicum (CAPSOL-T) in a random population of subjects ages 40-84

    PubMed Central

    2014-01-01

    Background Experts agree that one of the more promising strategies in cancer management is early detection coupled with early intervention. In this study, we evaluated an early cancer detection strategy of cancer presence based on serum levels of the cancer-specific transcript variants of ENOX2 in serum coupled with an ENOX2-targeted nutraceutical preparation of green tea concentrate plus Capsicum (Capsol-T®) as a strategy of Curative Prevention® involving early detection coupled with early intervention in early stage cancer when in its most susceptible and manageable stages. Experimental design One hundred ten (110) subjects were tested for cancer presence using the ONCOblot® Tissue of Origin 2-D gel/western blot protocol for detection of serum presence of transcript variants of the ENOX2 protein. Subjects testing positive for ENOX2 received 350 mg of Capsol-T® in capsule form every 4 h including during the night for periods of at least 3 to 6 months or longer after which they were again tested for ENOX2 presence using the ONCOblot® Tissue of Origin Cancer Test protocol. Results Of the 110 subjects, both male and female, ages 40 to 84, with no evidence of clinical symptoms of cancer, 40% were positive for ENOX2 presence in the ONCOblot® Tissue of Origin Cancer Test. After completion of 3 to 17 months of Capsol-T® use, 94% of subjects subsequently tested negative for ENOX2 presence. Conclusions Oral Capsol-T® is well tolerated and, for ENOX2 presence in serum in the absence of clinical cancer symptoms, is consistently effective in reducing the serum ENOX2 levels to below detectable limits. PMID:24393573

  7. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  8. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.

    PubMed

    Schuerger, A C; Brown, C S; Stryjewski, E C

    1997-03-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source. PMID:11540425

  9. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches.

    PubMed

    Ertani, Andrea; Pizzeghello, Diego; Francioso, Ornella; Sambo, Paolo; Sanchez-Cortes, Santiago; Nardi, Serenella

    2014-01-01

    Two biostimulants, one derived from alfalfa plants (AH) and the other obtained from red grape (RG), were chemically characterized using enzyme linked immuno-sorbent assays, Fourier transform infrared (FT-IR) and Raman spectroscopies. Two doses (50 and 100 mL L(-1) for RG, and 25 and 50 mL L(-1) for AH) of biostimulants were applied to Capsicum chinensis L. plants cultivated in pots inside a tunnel. The experimental design consisted of the factorial combination of treatment (no biostimulant, plus AH, plus RG) at three doses (zero, low, and high) and two time-course applications (at the second and fourth week after transplantation) and the effects were recorded at flowering and maturity. Both biostimulants contained different amounts of indoleacetic acid and isopentenyladenosine; the AH spectra exhibited amino acid functional groups in the peptidic structure, while the RG spectra showed the presence of polyphenols, such as resveratrol. These results revealed that at flowering, RG and AH increased the weights of fresh leaves and fruits and the number of green fruits, whereas at maturity, the biostimulants most affected the fresh weight and number of red fruits. At flowering, the leaves of the treated plants contained high amounts of epicatechin, ascorbic acid, quercetin, and dihydrocapsaicin. At maturity, the leaves of the treated plants exhibited elevated amounts of fructose, glucose, chlorogenic, and ferulic acids. Moreover, green fruits exhibited a high content of chlorogenic acid, p-hydroxybenzoic acid, p-coumaric acid and antioxidant activity, while both AH- and RG-treated red fruits were highly endowed in capsaicin. The (1)H high-resolution magic-angle spinning (HRMAS)-nuclear magnetic resonance (NMR) spectra of red fruits revealed that both products induced a high amount of NADP(+), whereas RG also increased glucose, fumarate, ascorbate, thymidine and high molecular weight species. Our results suggested that AH and RG promoted plant growth and the production of

  10. A Germin-Like Protein Gene (CchGLP) of Capsicum chinense Jacq. Is Induced during Incompatible Interactions and Displays Mn-Superoxide Dismutase Activity

    PubMed Central

    León-Galván, Fabiola; de Jesús Joaquín-Ramos, Ahuizolt; Torres-Pacheco, Irineo; Barba de la Rosa, Ana P.; Guevara-Olvera, Lorenzo; González-Chavira, Mario M.; Ocampo-Velazquez, Rosalía V.; Rico-García, Enrique; Guevara-González, Ramón Gerardo

    2011-01-01

    A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44–47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV. PMID:22174599

  11. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.

  12. Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): possible role in pollen germination under conditions of high temperature and CO2 enrichment.

    PubMed

    Karni, Leah; Aloni, Beny

    2002-11-01

    The processes of pollen grain development and germination depend on the uptake and metabolism of pollen sugars. In pepper (Capsicum annuum L.), initial sugar metabolism includes sucrose hydrolysis by invertase and subsequent phosphorylation of glucose and fructose by hexose kinases. The main objective of this study was to investigate changes in fructokinase (EC 2.7.1.4) and hexokinase (EC.2.7.1.1) activities in pepper flowers during their development, and to study the possible roles of these enzymes in determining pollen germination capacity under high temperature and under CO(2) enrichment, previously shown to modify sugar concentrations in pepper pollen (Aloni et al., 2001 Physiologia Plantarum 112: 505-512). Fructokinase (FK) activity was predominant in pepper pollen, and increased during pollen maturation. Pollen hexokinase (HK) activity was low and did not change throughout pollen development. High-temperature treatment (day/night, 32/26 degrees C) of pepper plants reduced the percentage of pollen that germinated compared with that under normal temperatures (26/22 degrees C), and concomitantly reduced the activity of FK in mature pollen. High temperature also reduced FK and HK activity in the anther. Under high ambient CO(2) (800 micro l l(-1)) pollen FK activity was enhanced. The results suggest that pollen and anther FK may play a role in the regulation of pollen germination, possibly by providing fructose-6-phosphate for glycolysis, or through conversion to UDP-glucose (UDPG) to support the biosynthesis of cell wall material for pollen tube growth. High temperature stress and CO(2) enrichment may influence pollen germination capacity by affecting these pathways.

  13. Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.).

    PubMed

    Arisha, Mohamed H; Shah, Syed N M; Gong, Zhen-Hui; Jing, Hua; Li, Chao; Zhang, Huai-Xia

    2015-01-01

    This study was conducted to enhance genetic variability in peppers (Capsicum annuum, cv B12) using ethyl methanesulphonate (EMS). Exposure to an EMS concentration of 0.6%, v/v for 12 h was used to mutagenize 2000 seeds for the first generation (M1). It was observed that the growth behaviors including plant height, flowering date, and number of seeds per first fruit were different in the M1 generation than in wild type (WT) plants. In addition one phenotypic mutation (leaf shape and plant architecture) was observed during the M1 generation. During the seedling stage in the M2 generation, the observed changes were in the form of slow growth or chlorophyll defect (e.g., albino, pale green, and yellow seedlings). At maturity, there were three kinds of phenotypic mutations observed in three different families of the mutant population. The first observed change was a plant with yellow leaf color, and the leaves of this mutant plant contained 62.19% less chlorophyll a and 64.06% less chlorophyll b as compared to the wild-type. The second mutation resulted in one dwarf plant with a very short stature (6 cm), compact internodes and the leaves and stem were rough and thick. The third type of mutation occurred in four plants and resulted in the leaves of these plants being very thick and longer than those of WT plants. Furthermore, anatomical observations of the leaf blade section of this mutant plant type contained more xylem and collenchyma tissue in the leaf midrib of the mutant plant than WT. In addition, its leaf blade contained thicker palisade and spongy tissue than the WT.

  14. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy.

    PubMed

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene. PMID:26992080

  15. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes.

    PubMed

    Aarrouf, J; Castro-Quezada, P; Mallard, S; Caromel, B; Lizzi, Y; Lefebvre, V

    2012-02-01

    Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction. PMID:22016085

  16. A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping.

    PubMed

    Barchi, Lorenzo; Bonnet, Julien; Boudet, Christine; Signoret, Patrick; Nagy, István; Lanteri, Sergio; Palloix, Alain; Lefebvre, Véronique

    2007-01-01

    A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) was constructed from a population of 297 recombinant inbred lines. The parents were the large-fruited inbred cultivar 'Yolo Wonder' and the hot pepper line 'Criollo de Morelos 334', which is heavily used as a source of resistance to a number of diseases. A set of 587 markers (507 amplified fragment length polymorphisms, 40 simple sequence repeats, 19 restriction fragment length polymorphisms, 17 sequence-specific amplified polymorphisms, and 4 sequence tagged sites) were used to generate the map; of these, 489 were assembled into 49 linkage groups (LGs), including 14 LGs with 10 to 60 markers per LG and 35 with 2 to 9 markers per LG. The framework map covered 1857 cM with an average intermarker distance of 5.71 cM. Twenty-three LGs, composed of 69% of the markers and covering 1553 cM, were assigned to 1 of the 12 haploid pepper chromosomes, leaving 26 LGs (304 cM) unassigned. The chromosome framework map built with 250 markers led to a high level of mapping confidence and an average intermarker distance of 6.54 cM. By applying MapPop software, it was possible to select smaller subsets of 141 or 93 most informative individuals with a view to reducing the time and cost of further mapping and phenotyping. To define the smallest number of individuals sufficient for assigning any new marker to a chromosome, subsets from 12 to 45 individuals and a set of 13 markers distributed over all 12 chromosomes were screened. In most cases, the markers were correctly assigned to their expected chromosome, but the accuracy of the map position decreased as the number of individuals was reduced. PMID:17546071

  17. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    PubMed Central

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  18. A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: an application of chemometrics.

    PubMed

    Sora, Gisele Teixeira Souza; Haminiuk, Charles Windson Isidoro; da Silva, Marcos Vieira; Zielinski, Acácio Antonio Ferreira; Gonçalves, Geferson Almeida; Bracht, Adelar; Peralta, Rosane Marina

    2015-12-01

    This paper presents a comparison of the contents of capsaicin, dihydrocapsaicin and total phenolics as well as of the antioxidant activities of six types of peppers of the genus Capsicum. The varieties were analyzed in terms of their in vitro antioxidant activity using ferric reducing antioxidant powder (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis 3-ethylbenzothiazoline 6-sulfonate (ABTS(●+)) assays. The contents of phenolics and capsainoids as well as the antioxidant activities were higher in seeds than in pulps. The correlations (ρ < 0.01) between the phenolic composition and the capsaicinoids levels were high (r = 0.98). Similarly high were also the correlations between the antioxidant activities and the contents of total phenolics and capsaicinoids. Data were analyzed using principal component analysis (PCA), hierarchical cluster analysis (HCA) and multiple linear regression (MLR). PCA explained 97.77 % of the total variance of the data, and their separation into three groups in a scatter plot was divised. Using HCA, three clusters were suggested. Cluster one, formed by pulps (bell pepper, orange habanero, cayenne, dedo de moça and red habanero), showed the lowest levels of the compounds quantified. Most seed samples were grouped in cluster two (bell pepper, cayenne, dedo de moça and malagueta) together with malagueta pulp. Cluster three was formed by orange and red habanero seeds, which showed the highest levels of all compounds analyzed. The MRL revealed that the values of capsaicinoids and total phenols are more adequate to predict the antioxidant activity measured by the FRAP assay. PMID:26604381

  19. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV.

    PubMed

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G

    2015-11-25

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession.

  20. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV

    PubMed Central

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F.; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26610554

  1. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants.

    PubMed

    Elvira, Maria Isabel; Galdeano, Myriam Molina; Gilardi, Patricia; García-Luque, Isabel; Serra, Maria Teresa

    2008-01-01

    Resistance conferred by the L(3) gene is active against most of the tobamoviruses, including the Spanish strain (PMMoV-S), a P(1,2) pathotype, but not against certain strains of pepper mild mottle virus (PMMoV), termed P(1,2,3) pathotype, such as the Italian strain (PMMoV-I). Both viruses are nearly identical at their nucleotide sequence level (98%) and were used to challenge Capsicum chinense PI159236 plants harbouring the L(3) gene in order to carry out a comparative proteomic analysis of PR proteins induced in this host in response to infection by either PMMoV-S or PMMoV-I. PMMoV-S induces a hypersensitive reaction (HR) in C. chinense PI159236 plant leaves with the formation of necrotic local lesions and restriction of the virus at the primary infection sites. In this paper, C. chinense PR protein isoforms belonging to the PR-1, beta-1,3-glucanases (PR-2), chitinases (PR-3), osmotin-like protein (PR-5), peroxidases (PR-9), germin-like protein (PR-16), and PRp27 (PR-17) have been identified. Three of these PR protein isoforms were specifically induced during PMMoV-S-activation of C. chinense L(3) gene-mediated resistance: an acidic beta-1,3-glucanase isoform (PR-2) (M(r) 44.6; pI 5.1), an osmotin-like protein (PR-5) (M(r) 26.8; pI 7.5), and a basic PR-1 protein isoform (M(r) 18; pI 9.4-10.0). In addition, evidence is presented for a differential accumulation of C. chinense PR proteins and mRNAs in the compatible (PMMoV-I)-C. chinense and incompatible (PMMoV-S)-C. chinense interactions for proteins belonging to all PR proteins detected. Except for an acidic chitinase (PR-3) (M(r) 30.2; pI 5.0), an earlier and higher accumulation of PR proteins and mRNAs was detected in plants associated with HR induction. Furthermore, the accumulation rates of PR proteins and mRNA did not correlate with maximal accumulation levels of viral RNA, thus indicating that PR protein expression may reflect the physiological status of the plant.

  2. Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato.

    PubMed

    Jahn, M; Paran, I; Hoffmann, K; Radwanski, E R; Livingstone, K D; Grube, R C; Aftergoot, E; Lapidot, M; Moyer, J

    2000-06-01

    The Tsw gene conferring dominant resistance to the Tospovirus Tomato spotted wilt virus (TSWV) in Capsicum spp. has been tagged with a random amplified polymorphic DNA marker and mapped to the distal portion of chromosome 10. No mapped homologues of Sw-5, a phenotypically similar dominant TSWV resistance gene in tomato, map to this region in C. annuum, although a number of Sw-5 homologues are found at corresponding positions in pepper and tomato. The relationship between Tsw and Sw-5 was also examined through genetic studies of TSWV. The capacity of TSWV-A to overcome the Tsw gene in pepper and the Sw-5 gene in tomato maps to different TSWV genome segments. Therefore, despite phenotypic and genetic similarities of resistance in tomato and pepper, we infer that distinct viral gene products control the outcome of infection in plants carrying Sw-5 and Tsw, and that these loci do not appear to share a recent common evolutionary ancestor.

  3. Effects of fluorescent light and vacuum packaging on the rate of decomposition of pigments in paprika (Capsicum annuum) powder determined by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, H; Ramos, A C; Tibor, C; Forgács, E

    2001-11-30

    The effect of storage time, the presence of light and oxygen on the decomposition rate of carotenoid pigments in paprika (Capsicum annuum) powders was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The similarities and dissimilarities of pigment composition of samples under various storage conditions was elucidated by principal component analysis (PCA) and stepwise regression analysis (SRA). Calculations proved that the overall decomposition rate of pigment sections equally depended on the storage time and on the presence of light and oxygen, the effect of storage time being the most decisive factor while the impact of oxygen was the lowest. The selectivity of decomposition also depended on the storage time and on the presence of oxygen the influence of storage time being the most important. RP-HPLC followed by PCA and SRA can be successfully used for the study of the impact of environmental conditions on the decomposition of carotenoid pigments of paprika powders.

  4. Use of spray-cooling technology for development of microencapsulated capsicum oleoresin for the growing pig as an alternative to in-feed antibiotics: a study of release using in vitro models.

    PubMed

    Meunier, J-P; Cardot, J-M; Manzanilla, E G; Wysshaar, M; Alric, M

    2007-10-01

    The aim of this study was to develop sustained release microspheres of capsicum oleoresin as an alternative to in-feed additives. Two spray-cooling technologies, a fluidized air bed using a spray nozzle system and a vibrating nozzle system placed on top of a cooling tower, were used to microencapsulate 20% of capsicum oleoresin in a hydrogenated, rapeseed oil matrix. Microencapsulation was intended to reduce the irritating effect of capsicum oleoresin and to control its release kinetics during consumption by the animal. Particles produced by the fluidized air bed process (batch F1) ranged from 180 to 1,000 microm in size. The impact of particle size on release of capsaicin, the main active compound of capsicum oleoresin, was studied after sieving batch F1 to obtain 4 formulations: F1a (180 to 250 microm), F1b (250 to 500 microm), F1c (500 to 710 microm), and F1d (710 to 1,000 microm). The vibrating nozzle system can produce a monodispersive particle size distribution. In this study, particles of 500 to 710 microm were made (batch F2). The release kinetics of the formulations was estimated in a flow-through cell dissolution apparatus (CFC). The time to achieve a 90% dissolution value (T90%) of capsaicin for subbatches of F1 increased with the increase in particle size (P < 0.05), with the greatest value of 165.5 +/- 13.2 min for F1d. The kinetics of dissolution of F2 was slower than all F1 subbatches, with a T90% of 422.7 +/- 30.0 min. Nevertheless, because CFC systems are ill suited for experiments with solid feed and thus limit their predictive values, follow-up studies were performed on F1c and F2 using an in vitro dynamic model that simulated more closely the digestive environment. For both formulations a lower quantity of capsaicin dialyzed was recorded under fed condition vs. fasting condition with 46.9% +/- 1.0 vs. 74.7% +/- 2.7 for F1c and 32.4% +/- 1.4 vs. 44.2% +/- 2.6 for F2, respectively. This suggests a possible interaction between capsaicin and the

  5. A further analysis of the relationship between yellow ripe-fruit color and the capsanthin-capsorubin synthase gene in pepper (Capsicum sp.) indicated a new mutant variant in C. annuum and a tandem repeat structure in promoter region.

    PubMed

    Li, Zheng; Wang, Shu; Gui, Xiao-Ling; Chang, Xiao-Bei; Gong, Zhen-Hui

    2013-01-01

    Mature pepper (Capsicum sp.) fruits come in a variety of colors, including red, orange, yellow, brown, and white. To better understand the genetic and regulatory relationships between the yellow fruit phenotype and the capsanthin-capsorubin synthase gene (Ccs), we examined 156 Capsicum varieties, most of which were collected from Northwest Chinese landraces. A new ccs variant was identified in the yellow fruit cultivar CK7. Cluster analysis revealed that CK7, which belongs to the C. annuum species, has low genetic similarity to other yellow C. annuum varieties. In the coding sequence of this ccs allele, we detected a premature stop codon derived from a C to G change, as well as a downstream frame-shift caused by a 1-bp nucleotide deletion. In addition, the expression of the gene was detected in mature CK7 fruit. Furthermore, the promoter sequences of Ccs from some pepper varieties were examined, and we detected a 176-bp tandem repeat sequence in the promoter region. In all C. annuum varieties examined in this study, the repeat number was three, compared with four in two C. chinense accessions. The sequence similarity ranged from 84.8% to 97.7% among the four types of repeats, and some putative cis-elements were also found in every repeat. This suggests that the transcriptional regulation of Ccs expression is complex. Based on the analysis of the novel C. annuum mutation reported here, along with the studies of three mutation types in yellow C. annuum and C. chinense accessions, we suggest that the mechanism leading to the production of yellow color fruit may be not as complex as that leading to orange fruit production.

  6. Effect of Red Pepper (Capsicum frutescens) Powder or Red Pepper Pigment on the Performance and Egg Yolk Color of Laying Hens

    PubMed Central

    Li, Huaqiang; Jin, Liji; Wu, Feifei; Thacker, Philip; Li, Xiaoyu; You, Jiansong; Wang, Xiaoyan; Liu, Sizhao; Li, Shuying; Xu, Yongping

    2012-01-01

    Two experiments were conducted to study the effects of red pepper (Capsicum frutescens) powder or red pepper pigment on the performance and egg yolk color of laying hens. In Exp. 1, 210, thirty-wk old, Hy-line Brown laying hens were fed one of seven diets containing 0.3, 0.6, 1.2, 2.0, 4.8 or 9.6 ppm red pepper pigment or 0.3 ppm carophyll red. Each diet was fed to three replicate batteries of hens with each battery consisting of a row of five cages of hens with two hens per cage (n = 3). In Exp. 2, 180, thirty-wk old, Hyline Brown laying hens, housed similarly to those in Exp. 1, were fed an unsupplemented basal diet as well as treatments in which the basal diet was supplemented with 0.8% red pepper powder processed in a laboratory blender to an average particle size of 300 μm, 0.8% red pepper powder processed as a super fine powder with a vibrational mill (44 μm) and finally 0.8% red pepper powder processed as a super fine powder with a vibrational mill but mixed with 5% Na2CO3 either before or after grinding. A diet supplemented with 0.3 ppm carophyll red pigment was also included (n = 3). In both experiments, hens were fed the red pepper powder or pigment for 14 days. After feeding of the powder or pigment was terminated, all hens were fed the basal diet for eight more days to determine if the dietary treatments had any residual effects. In Exp. 1, there were no differences in egg-laying performance, feed consumption or feed conversion ratio due to inclusion of red pepper pigment in the diet. Average egg weight was higher (p<0.05) for birds fed 1.2, 2.4 or 9.6 ppm red pepper pigment than for birds fed the diet containing 0.3 ppm red pepper pigment. On d 14, egg color scores increased linearly as the level of red pepper pigment in the diet increased. In Exp. 2, feeding red pepper powder did not affect egg-laying performance, feed consumption or feed conversion ratio (p>0.05). However, compared with the control group, supplementation with all of the red pepper

  7. Effect of Red Pepper (Capsicum frutescens) Powder or Red Pepper Pigment on the Performance and Egg Yolk Color of Laying Hens.

    PubMed

    Li, Huaqiang; Jin, Liji; Wu, Feifei; Thacker, Philip; Li, Xiaoyu; You, Jiansong; Wang, Xiaoyan; Liu, Sizhao; Li, Shuying; Xu, Yongping

    2012-11-01

    Two experiments were conducted to study the effects of red pepper (Capsicum frutescens) powder or red pepper pigment on the performance and egg yolk color of laying hens. In Exp. 1, 210, thirty-wk old, Hy-line Brown laying hens were fed one of seven diets containing 0.3, 0.6, 1.2, 2.0, 4.8 or 9.6 ppm red pepper pigment or 0.3 ppm carophyll red. Each diet was fed to three replicate batteries of hens with each battery consisting of a row of five cages of hens with two hens per cage (n = 3). In Exp. 2, 180, thirty-wk old, Hyline Brown laying hens, housed similarly to those in Exp. 1, were fed an unsupplemented basal diet as well as treatments in which the basal diet was supplemented with 0.8% red pepper powder processed in a laboratory blender to an average particle size of 300 μm, 0.8% red pepper powder processed as a super fine powder with a vibrational mill (44 μm) and finally 0.8% red pepper powder processed as a super fine powder with a vibrational mill but mixed with 5% Na2CO3 either before or after grinding. A diet supplemented with 0.3 ppm carophyll red pigment was also included (n = 3). In both experiments, hens were fed the red pepper powder or pigment for 14 days. After feeding of the powder or pigment was terminated, all hens were fed the basal diet for eight more days to determine if the dietary treatments had any residual effects. In Exp. 1, there were no differences in egg-laying performance, feed consumption or feed conversion ratio due to inclusion of red pepper pigment in the diet. Average egg weight was higher (p<0.05) for birds fed 1.2, 2.4 or 9.6 ppm red pepper pigment than for birds fed the diet containing 0.3 ppm red pepper pigment. On d 14, egg color scores increased linearly as the level of red pepper pigment in the diet increased. In Exp. 2, feeding red pepper powder did not affect egg-laying performance, feed consumption or feed conversion ratio (p>0.05). However, compared with the control group, supplementation with all of the red pepper

  8. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.)

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Musa, N.; Manzoor, M.

    2015-08-01

    The ability of soil microorganisms and organic manure to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P utilization efficiency in soil-plant systems. Our objective was to examine the P mineralization potential of two soluble P fertilizers (SPF), i.e., single superphosphate (SSP) and diammonium phosphate (DAP), and of insoluble rock phosphate (RP) with and without phosphate-solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P utilization efficiency (PUE) of chilli (Capsicum annuum L.). An incubation study was carried out on a loam (slightly alkaline) soil with 12 treatments: T0 - control; T1 - RP; T2 - SSP; T3 - DAP; T4 - PM; T5 - 1/2 RP+1/2 SSP; T6 - 1/2 RP+1/2 DAP; T7 - 1/2 RP+1/2 PM; T8 - RP+PSB; T9 - 1/2 RP+1/2 SSP+PSB; T10 - 1/2 RP+1/2 DAP+PSB; and T11 - 1/2 RP+1/2 PM+PSB. Phosphorus mineralization was measured by analyzing extractable P from the amended soil incubated under controlled conditions at 25 °C for periods of 0, 5, 15, 25, 35 and 60 days. A complementary greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) as a test crop. Growth, yield, P uptake and PUE of the chilli was determined during the study. Results indicated that P mineralization in soil amended with RP was 6.0-11.5 mg kg-1, while both soluble P fertilizers resulted in 68-73 mg P kg-1 at day 0, which decreased by 79-82 % at the end of incubation. The integrated use of PSB and PM with RP in T11 stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Use of PSB decreased soil pH. In the greenhouse experiment, RP alone or RP+PSB did not have a significant impact on plant growth. However, the combined use of RP, PM and PSB in T11 resulted in similar growth, yield and P uptake of chilli as DAP. The PUE of applied P varied from 4 to 29 % and was higher in the treatments that included PSB. We conclude

  9. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    SciTech Connect

    Wullschleger, S.D. ); Oosterhuis, D.M. )

    1991-09-01

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leaf water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.

  10. Identification of a third haplotype of the sequence linked to the Restorer-of-fertility (Rf) gene and its implications for male-sterility phenotypes in peppers (Capsicum annuum L.).

    PubMed

    Min, Woong-ki; Lim, Heerae; Lee, Young-Pyo; Sung, Soon-Kee; Kim, Byung-Dong; Kim, Sunggil

    2008-02-29

    Cytoplasmic male sterility (CMS), one of the most important traits in crop breeding, has been used for commercial seed production by F1 hybrid cultivars of pepper (Capsicum annuum L.). To develop reliable molecular markers for allelic selection of the Restorer-of-fertility (Rf) gene, which is known to be a major determinant of pollen fertility restoration in peppers, a sequence of approximately 10 kb flanking an RAPD fragment closely linked to the Rf locus was obtained by genome walking. A homology search revealed that this sequence contained an LTR retrotransposon and a non-LTR LINE-like retrotransposon. Sequencing of this Rf-linked region to search for polymorphisms between a dominant and recessive allele revealed 98% nucleotide sequence identity between them. A third polymorphic haplotype of the Rf-linked sequence, which has 94-96% nucleotide sequence identity with the two previously isolated haplotypes, was identified among a large number of breeding lines. Utilizing polymorphic sequences in the haplotypes, PCR markers were developed for selection of particular haplotypes and used to examine the distribution of the haplotypes in diverse breeding lines, cultivars, and C. annuum germplasms. Surprisingly, the third haplotype was the predominant type in C. annuum germplasms, while its frequency in F1 hybrid cultivars was relatively low. Meanwhile, analysis of breeding lines whose Rf allele genotypes and male-sterility phenotypes were already known revealed that the third haplotype was mainly present in exotic breeding lines that cause unstable male-sterility when combined with sterile cytoplasms.

  11. The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection.

    PubMed

    Lovato, Fernanda Antinolfi; Inoue-Nagata, Alice Kazuko; Nagata, Tatsuya; de Avila, Antônio Carlos; Pereira, Luiz Alfredo Rodrigues; Resende, Renato Oliveira

    2008-11-01

    In sweet pepper, the Tsw gene, originally described in Capsicum chinense, has been widely used as an efficient gene for inducing a hypersensitivity response (HR) derived Tomato spotted wilt virus (TSWV) resistance. Since previously reported studies suggested that the TSWV-S RNA mutation(s) are associated with the breakdown of Tsw mediated TSWV resistance in peppers, the TSWV genes N (structural nucleocapsid protein) and NS(S) (non-structural silencing suppressor protein) were cloned into a Potato virus X (PVX)-based expression vector, and inoculated into the TSWV-resistant C. chinense genotype, PI 159236, to identify the Tsw-HR viral elicitor. Typical HR-like chlorotic and necrotic lesions followed by leaf abscission were observed only in C. chinense plants inoculated with the PVX-N construct. Cytopathological analyses of these plants identified fragmented genomic DNA, indicative of programmed cell death (PCD), in mesophyll cell nuclei surrounding PVX-N-induced necrotic lesions. The other constructs induced only PVX-like symptoms without HR-like lesions and there were no microscopic signs of PCD. The mechanism of TSWV N-gene HR induction is apparently species specific as the N gene of a related tospovirus, Tomato chlorotic spot virus, was not a HR elicitor and did not cause PCD in infected cells.

  12. Single amino acid substitution in the methyltransferase domain of Paprika mild mottle virus replicase proteins confers the ability to overcome the high temperature-dependent Hk gene-mediated resistance in Capsicum plants.

    PubMed

    Matsumoto, Katsutoshi; Johnishi, Kousuke; Hamada, Hiroyuki; Sawada, Hiromasa; Takeuchi, Shigeharu; Kobayashi, Kappei; Suzuki, Kazumi; Kiba, Akinori; Hikichi, Yasufumi

    2009-03-01

    Capsicum plants harboring the Hk gene (Hk) show resistance to Paprika mild mottle virus (PaMMV) at 32 degrees C but not 24 degrees C. To identify the viral elicitor that activates the Hk-mediated resistance, several chimeric viral genomes were constructed between PaMMV and Tobacco mosaic virus-L. Infection patterns of these chimeric viruses in Hk-harboring plants revealed responsibility of PaMMV replicase genes for activation of the Hk-mediated resistance. The comparison of nucleotide sequence of replicase genes between PaMMV and PaHk1, an Hk-resistance-breaking strain of PaMMV, revealed that the adenine-to-uracil substitution at the nucleotide position 721 causes an amino acid change from threonine to serine at the 241st residue in the methyltransferase domain. Introduction of the A721U mutation into the replicase genes of parental PaMMV overcame the Hk resistance at 32 degrees C. The results indicate that Hk-mediated resistance is induced by PaMMV replicase proteins and that methyltransferase domain has a role in this elicitation.

  13. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum).

    PubMed

    Chaouachi, Maher; El Malki, Redouane; Berard, Aurélie; Romaniuk, Marcel; Laval, Valérie; Brunel, Dominique; Bertheau, Yves

    2008-03-26

    The labeling of products containing genetically modified organisms (GMO) is linked to their quantification since a threshold for the presence of fortuitous GMOs in food has been established. This threshold is calculated from a combination of two absolute quantification values: one for the specific GMO target and the second for an endogenous reference gene specific to the taxon. Thus, the development of reliable methods to quantify GMOs using endogenous reference genes in complex matrixes such as food and feed is needed. Plant identification can be difficult in the case of closely related taxa, which moreover are subject to introgression events. Based on the homology of beta-fructosidase sequences obtained from public databases, two couples of consensus primers were designed for the detection, quantification, and differentiation of four Solanaceae: potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), and eggplant (Solanum melongena). Sequence variability was studied first using lines and cultivars (intraspecies sequence variability), then using taxa involved in gene introgressions, and finally, using taxonomically close taxa (interspecies sequence variability). This study allowed us to design four highly specific TaqMan-MGB probes. A duplex real time PCR assay was developed for simultaneous quantification of tomato and potato. For eggplant and pepper, only simplex real time PCR tests were developed. The results demonstrated the high specificity and sensitivity of the assays. We therefore conclude that beta-fructosidase can be used as an endogenous reference gene for GMO analysis.

  14. Effect of temperature on the occurrence of O/sub 2/ and CO/sub 2/ insensitive photosynthesis in field grown plants. [Phaseolus vulgaris; Capsicum annum; Lycopersicon esculentum, Scrophularia desertorum; Cardaria draba, Populus fremontii

    SciTech Connect

    Sage, R.F.; Sharkey, T.D.

    1987-07-01

    The sensitivity of photosynthesis to O/sub 2/ and CO/sub 2/ was measured in leaves from field grown plants of six species (Phaseolus vulgaris, Capsicum annuum, Lycopersicon esculentum, Scrophularia desertorum, Cardaria draba, and Populus fremontii) from 5/sup 0/C to 35/sup 0/C using gas-exchange techniques. In all species but Phaseolus, photosynthesis was insensitive to O/sub 2/ in normal air below a species dependent temperature. CO/sub 2/ insensitivity occurred under the same conditions that resulted in O/sub 2/ insensitivity. A complete loss of O/sub 2/ sensitivity occurred up to 22/sup 0/C in Lycopersicon but only up to 6/sup 0/C in Scrophularia. In Lycopersicon and Populus, O/sub 2/ and CO/sub 2/ insensitivity occurred under conditions regularly encountered during the cooler portions of the day. Because O/sub 2/ insensitivity is an indicator of feedback limited photosynthesis, these results indicate that feedback limitations can play a role in determining the diurnal carbon gain in the field. At higher partial pressures of CO/sub 2/ the temperature at which O/sub 2/ insensitivity occurred was higher, indicating that feedback limitations in the field will become more important as the CO/sub 2/ concentration in the atmosphere increases.

  15. Effect of temperature on the occurrence of O/sub 2/ and CO/sub 2/ insensitive photosynthesis in field grown plants. [Phaselous vulgaris; capsicum annum; lycopersicon esculentum; scrophularia desertorum; cardaria

    SciTech Connect

    Sage, R.F.; Sharkey, T.D.

    1987-04-01

    The sensitivity of photosynthesis to O/sub 2/ and CO/sub 2/ was measured in field grown plants of six species (Phaseolus vulgaris, Capsicum annum, Lycopersicon esculentum, Scrophularia desertorum, Cardaria draba and Populus Fremontii) from 5/sup 0/C to 35/sup 0/C. Photosynthesis was insensitive to O/sub 2/ in normal air below a species dependent temperature. CO/sub 2/ insensitivity occurred under the same conditions that resulted in O/sub 2/ insensitivity. A complete loss of O/sub 2/ sensitivity was observed up to 22/sup 0/C (in Lycopersicon) but only up to 6/sup 0/C (in Scrophularia). In Lycopersicon and Populus, O/sub 2/ and CO/sub 2/ insensitivity occurred under conditions regularly encountered during the cooler portions of the day. The authors believe that O/sub 2/ insensitivity is an indicator of feedback limited photosynthesis, and that these results indicate that feedback limitations can play a role in determining plant carbon gain in the field. At higher partial pressures of CO/sub 2/ the temperature at which O/sub 2/ insensitivity occurred was higher, indicating that feedback limitations in the field will become more important as the CO/sub 2/ concentration in the atmosphere increases.

  16. Utility of internally transcribed spacer region of rDNA (ITS) and β-tubulin gene sequences to infer genetic diversity and migration patterns of Colletotrichum truncatum infecting Capsicum spp.

    PubMed

    Rampersad, Kandyce; Ramdial, Hema; Rampersad, Sephra N

    2016-01-01

    Anthracnose is among the most economically important diseases affecting pepper (Capsicum spp.) production in the tropics and subtropics. Of the three species of Colletotrichum implicated as causal agents of pepper anthracnose, C. truncatum is considered to be the most destructive in agro-ecosystems worldwide. However, the genetic variation and the migration potential of C. truncatum infecting pepper are not known. Five populations were selected for study and a two-locus (internally transcribed spacer region, ITS1-5.8S-ITS2, and β-tubulin, β-TUB) sequence data set was generated and used in the analyses. Sequences of the ITS region were less informative than β -tubulin gene sequences based on comparisons of DNA polymorphism indices. Trinidad had the highest genetic diversity and also had the largest effective population size in pairwise comparisons with the other populations. The Trinidad population also demonstrated significant genetic differentiation from the other populations. AMOVA and STRUCTURE analyses both suggested significant genetic variation within populations more so than among populations. A consensus Maximum Likelihood tree based on β-TUB gene sequences revealed very little intraspecific diversity for all isolates except for Trinidad. Two clades consisting solely of Trinidad isolates may have diverged earlier than the other isolates. There was also evidence of directional migration among the five populations. These findings may have a direct impact on the development of integrated disease management strategies to control C. truncatum infection in pepper. PMID:26843942

  17. Phosphorus release capacity of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on plant growth promotion and P utilization efficiency of chilli (Capsicum annuum L.)

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Musa, N.; Manzoor, M.

    2015-01-01

    The ability of soil microorganisms and organic manures to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P solubilization and utilization in soil-plant systems. Our objective was to examine the P supplying capacity of soluble P fertilizers (SPF) i.e. single super phosphate (SSP) and di-ammonium phosphate (DAP) and insoluble rock phosphate (RP) after adding phosphate solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P-utilization efficiency (PUE) of chill (Capsicum annuum L.). An incubation study was carried-out on a sandy loam neutral soil with twelve treatments including T0: control; T1: RP; T2: SSP; T3: DAP; T4: PM; T5: 1/2 RP + 1/2 SSP; T6: 1/2 RP + 1/2 DAP; T7: 1/2 RP + 1/2 PM; T8: RP + PSB; T9: 1/2 RP + 1/2 SSP + PSB; T10: 1/2 RP + 1/2 DAP + PSB; T11: 1/2 RP + 1/2 PM + PSB. Phosphorus release capacity of added amendments was measured by analyzing extractable P from the amended soil incubated under controlled condition at 25 °C for 0, 5, 15, 25, 35, 60 days period. To complement the incubation study, a greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) used as a test crop. Growth, yield, P-uptake and PUE of the chilli was determined during the study. Results indicated that P release capacity of soil amended with RP varied between 6.0 and 11.5 mg kg-1 while the soluble P fertilizers i.e. SSP and DAP displayed a maximum of 73 and 68 mg P kg-1 at the start of the experiment (day 0). However, the P released tendency from SSP and DAP declined during incubation and at the end 82 and 79% of P initially present had been lost from the mineral pool. Integrated use of PSB and PM with RP in 1/2 RP + 1/2 PM + PSB treatment stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Application of PSB tended to decrease pH showing an acidifying effect on soil. In the greenhouse

  18. Characterization of CaHsp70-1, a pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L.

    PubMed

    Guo, Meng; Zhai, Yu-Fei; Lu, Jin-Ping; Chai, Lin; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2014-01-01

    Pepper (Capsicum annuum L.) is sensitive to heat stress (HS). Heat shock proteins 70 (Hsp70s) play a crucial role in protecting plant cells against HS and control varies characters in different plants. However, CaHsp70-1 gene was not well characterized in pepper. In this study, CaHsp70-1 was cloned from the pepper thermotolerant line R9, which encoded a protein of 652 amino acids, with a molecular weight of 71.54 kDa and an isoelectric point of 5.20. CaHsp70-1 belongs to the cytosolic Hsp70 subgroup, and best matched with tomato SlHsp70. CaHsp70-1 was highly induced in root, stem, leaf and flower in R9 with HS treatment (40 °C for 2 h). In both thermosensitive line B6 and thermotolerant line R9, CaHsp70-1 significantly increased after 0.5 h of HS (40 °C), and maintained in a higher level after 4 h HS. The expression of CaHsp70-1 induced by CaCl2, H2O2 and putrescine (Put) under HS were difference between B6 and R9 lines. The different expression patterns may be related to the differences in promoters of CaHsp70-1 from the two lines. These results suggest that CaHsp70-1 as a member of cytosolic Hsp70 subgroup, may be involved in HS defense response via a signal transduction pathway contained Ca2+, H2O2 and Put. PMID:25356507

  19. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    PubMed Central

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  20. Anther Culture in Pepper (Capsicum annuum L.).

    PubMed

    Parra-Vega, Verónica; Seguí-Simarro, Jose M

    2016-01-01

    Anther culture is the most popular of the techniques used to induce microspore embryogenesis. This technique is well set up in a wide range of crops, including pepper. In this chapter, a protocol for anther culture in pepper is described. The protocol presented hereby includes the steps from the selection of buds from donor plants to the regeneration and acclimatization of doubled haploid plants derived from the embryos, as well as a description of how to analyze the ploidy level of the regenerated plants.

  1. Anther Culture in Pepper (Capsicum annuum L.).

    PubMed

    Parra-Vega, Verónica; Seguí-Simarro, Jose M

    2016-01-01

    Anther culture is the most popular of the techniques used to induce microspore embryogenesis. This technique is well set up in a wide range of crops, including pepper. In this chapter, a protocol for anther culture in pepper is described. The protocol presented hereby includes the steps from the selection of buds from donor plants to the regeneration and acclimatization of doubled haploid plants derived from the embryos, as well as a description of how to analyze the ploidy level of the regenerated plants. PMID:26619881

  2. Inheritance of fresh-cut fruit quality attributes in Capsicum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fresh-cut fruit and vegetable industry has expanded rapidly during the past decade, due to freshness, convenience and the high nutrition that fresh-cut produce offers to consumers. The current report evaluates the inheritance of postharvest attributes that contribute to pepper fresh-cut product...

  3. 19 CFR 159.22 - Net weights and tares.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... per half box for paper wrappings, and actual tare for outer containers. Ocher, dry, in casks: Eight percent of the gross weight. Ocher, in oil, in casks: Twelve percent of the gross weight. Pimientos...

  4. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling.

    PubMed

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the transcriptional activities, signaling transduction, and metabolic homeostasis. PMID:27621739

  5. Optimization of virus-induced gene silencing in pepper (Capsicum annuum L.).

    PubMed

    Wang, J-E; Li, D-W; Gong, Z-H; Zhang, Y-L

    2013-07-24

    Virus-induced gene silencing is currently a powerful tool for the study of gene function in plants. Here, we optimized the protocol for virus-induced gene silencing, and investigated factors that affect the efficiency of tobacco rattle virus-induced gene silencing in pepper plants. Consequently, an optimal protocol was obtained by the syringe-infiltration method in the leaves of pepper plants. The protocol involves 2-leaf stage plants, preparing the Agrobacterium inoculum at a final OD600 of 1.0 and then growing the inoculated plants at 22°C. Using this protocol, we achieved high efficiency in silencing CaPDS in different cultivars of pepper plants. We further used the CaPOD gene to illustrate the general reliability of this optimized protocol. Viral symptoms were observed on the leaves of inoculated plants of the Early Calwonder cultivar 25 days post-inoculation, indicating that this protocol can also be used to silence other genes in pepper plants. Real-time polymerase chain reaction analyses revealed that the expression levels of CaPDS and CaPOD were dramatically reduced in inoculated leaves compared to control plants. These results demonstrate that the optimized protocol can be applied to functional genomic studies in pepper to investigate genes involved in a wide range of biological processes.

  6. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling

    PubMed Central

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the transcriptional activities, signaling transduction, and metabolic homeostasis. PMID:27621739

  7. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum)

    PubMed Central

    Stamler, Rio A.; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J.

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay. PMID:26020237

  8. Pepper yellow mosaic virus, a new potyvirus in sweetpepper, Capsicum annuum.

    PubMed

    Inoue-Nagata, A K; Fonseca, M E N; Resende, R O; Boiteux, L S; Monte, D C; Dusi, A N; de Avila, A C; van der Vlugt, R A A

    2002-04-01

    A potyvirus was found causing yellow mosaic and veinal banding in sweetpepper in Central and Southeast Brazil. The sequence analysis of the 3' terminal region of the viral RNA revealed a coat protein of 278 amino acids, followed by 275 nucleotides in the 3'-untranslated region preceding a polyadenylated tail. The virus shared 77.4% coat protein amino acid identity with Pepper severe mosaic virus, the closest Potyvirus species. The 3'-untranslated region was highly divergent from other potyviruses. Based on these results, the virus found in sweetpepper plants could be considered as a new potyvirus. The name Pepper yellow mosaic virus (PepYMV) is suggested.

  9. Binding, Antioxidant and Anti-proliferative Properties of Bioactive Compounds of Sweet Paprika (Capsicum annuum L.).

    PubMed

    Kim, Hong-Gi; Bae, Jong-Hyang; Jastrzebski, Zenon; Cherkas, Andriy; Heo, Buk-Gu; Gorinstein, Shela; Ku, Yang-Gyu

    2016-06-01

    The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 μg/g dry weight (DW)). The strongest antioxidant capacity (μM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants.

  10. The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. Plants.

    PubMed

    Oguchi, Riichi; Terashima, Ichiro; Chow, Wah Soon

    2009-10-01

    For plants, light is an indispensable resource. However, it also causes a loss of photosynthetic activity associated with photoinactivation of photosystem II (PSII). In studies of the mechanism of this photoinactivation, there are two conflicting hypotheses at present. One is that excess energy received by leaves, being neither utilized by photosynthesis nor dissipated safely in non-photochemical quenching, causes the photoinactivation. The other involves a two-step mechanism in which excitation of Mn by photons is the primary cause. In the former hypothesis, photoinactivation of PSII should not occur in low light that provides little excess energy, but in the latter hypothesis it should. Therefore, we tested these two hypotheses in different irradiances. We used a system that can measure the fraction of functional PSII complexes under natural conditions and over a long period in intact leaves, which were attached to a plant treated with lincomycin taken up via the roots. The leaves were photoinactivated in low, medium or high light (30, 60 or 950 micromol m(-2) s(-1)) with white, blue, green or red light-emitting diode arrays. Our results showed that the extent of photoinactivation per photon exposure was higher in high light than in low light, consistent with the abundance of excess energy. However, photoinactivation did occur in low light with little excess energy, and blue light caused the greatest extent of photoinactivation followed by white, green and red light in this order, an order that can be predicted from the Mn absorbance spectrum. These results suggest that both mechanisms occur in the photoinactivation process.

  11. Impact of human management on the genetic variation of wild pepper, Capsicum annuum var. glabriusculum.

    PubMed

    González-Jara, Pablo; Moreno-Letelier, Alejandra; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2011-01-01

    Management of wild peppers in Mexico has occurred for a long time without clear phenotypic signs of domestication. However, pre-domestication management could have implications for the population's genetic richness. To test this hypothesis we analysed 27 wild (W), let standing (LS) and cultivated (C) populations, plus 7 samples from local markets (LM), with nine polymorphic microsatellite markers. Two hundred and fifty two alleles were identified, averaging 28 per locus. Allele number was higher in W, and 15 and 40% less in LS and C populations, respectively. Genetic variation had a significant population structure. In W populations, structure was associated with ecological and geographic areas according to isolation by distance. When LM and C populations where included in the analysis, differentiation was no longer apparent. Most LM were related to distant populations from Sierra Madre Oriental, which represents their probable origin. Historical demography shows a recent decline in all W populations. Thus, pre-domestication human management is associated with a significant reduction of genetic diversity and with a loss of differentiation suggesting movement among regions by man. Measures to conserve wild and managed populations should be implemented to maintain the source and the architecture of genetic variation in this important crop relative. PMID:22163053

  12. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  13. An integrated approach for the reduction of aflatoxin contamination in chilli (Capsicum annuum L.).

    PubMed

    Sudha, S; Naik, M K; Ajithkumar, K

    2013-02-01

    An integrated approach for management of aflatoxin contamination in chilli was undertaken by evaluating the fungicides, bioagents and plant extracts against Aspergillus flavus under both in vitro and field condition. Maximum inhibition of radial growth (91.1%) was observed with 0.3% mancozeb followed by captan (85.2%). Carbendazim (73%) was effective and superior over other systemic fungicides. A complete inhibition (100%) of A. flavus was observed in neem seed kernel extract (NSKE), nimbicidin and pongamia oil at 5%. An indigenous Pseudomonas fluorescens bioagent isolate inhibited (74.9%) the growth of A. flavus over Trichoderma harzianum (70.4%). The superior performing fungicides, plant extracts and bioagents identified under in vitro were used for challenge inoculation on chilli fruits and so also for field evaluation. The captan treated fruits recorded the least infection of A. flavus (1.6%) followed by P. fluorescens (2.0%), NSKE (2.2%) and nimbicidin treated fruits (7.8%) as against control (38.3%). As regards to field evaluation, the least incidence was recorded in NSKE sprayed chilli plot (1.6%) and was on par with captan (2.2%), P. fluorescens (2.4%) and T. harzianum (2.6%) compared to control (7.4%). Hence, a pre-harvest spray of NSKE (5%) or mancozeb (0.3%) or P. fluorescens (1 × 10(8) cfu/ml) 10 days before harvest of chilli is recommended for field level management of aflatoxin. PMID:24425902

  14. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum).

    PubMed

    Stamler, Rio A; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.

  15. Impact of Human Management on the Genetic Variation of Wild Pepper, Capsicum annuum var. glabriusculum

    PubMed Central

    González-Jara, Pablo; Moreno-Letelier, Alejandra; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2011-01-01

    Management of wild peppers in Mexico has occurred for a long time without clear phenotypic signs of domestication. However, pre-domestication management could have implications for the population's genetic richness. To test this hypothesis we analysed 27 wild (W), let standing (LS) and cultivated (C) populations, plus 7 samples from local markets (LM), with nine polymorphic microsatellite markers. Two hundred and fifty two alleles were identified, averaging 28 per locus. Allele number was higher in W, and 15 and 40% less in LS and C populations, respectively. Genetic variation had a significant population structure. In W populations, structure was associated with ecological and geographic areas according to isolation by distance. When LM and C populations where included in the analysis, differentiation was no longer apparent. Most LM were related to distant populations from Sierra Madre Oriental, which represents their probable origin. Historical demography shows a recent decline in all W populations. Thus, pre-domestication human management is associated with a significant reduction of genetic diversity and with a loss of differentiation suggesting movement among regions by man. Measures to conserve wild and managed populations should be implemented to maintain the source and the architecture of genetic variation in this important crop relative. PMID:22163053

  16. Effects of surfactants on the photolysis of chlorothalonil on pepper (Capsicum annuum var. grossum Sendt).

    PubMed

    Xiong, H-X; Tan, Y-Q; Shi, T-Z; Hua, R-M; Wu, X-W; Cao, H-Q; Li, X-D; Tang, J

    2014-02-01

    Chlorothalonil is a widely used fungicide on pepper and other vegetables in China. The present study was aimed to evaluate effects of three different surfactants, sodium dodecyl sulfonate (SDS), Span-20, and cetyltrimethylammonium bromide (CTAB), on the photolysis of chlorothalonil on peppers under irradiation of either high-pressure mercury lamp (HPML) or sunlight inside and outside greenhouse. Results showed that both SDS and Span-20 at a low concentration exhibited a photosensitization effect on the photolysis of chlorothalonil under HPML. Such effect gradually decreased with increasing concentrations of either surfactant prior to photoquenching effects observed. In contrast, CTAB showed a photoquenching effect on chlorothalonil photolysis, which was gradually enhanced with an increasing CTAB concentration. SDS, Span-20, and CTAB had consistent effects on the photolysis of chlorothalonil under sunlight as those observed under HPML irradiation. The use of appropriate surfactants as pesticide additives at optimal concentrations could decrease the residue of pesticide in agricultural food and improve food safety. PMID:24280909

  17. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling

    PubMed Central

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the transcriptional activities, signaling transduction, and metabolic homeostasis.

  18. Persistence and risk assessment of cypermethrin residues on chilli (Capsicum annuum L.).

    PubMed

    Singh, Yadwinder; Mandal, Kousik; Singh, Balwinder

    2015-03-01

    The study was conducted to observe the persistence pattern and risk assessment of cypermethrin in chilli fruits following three applications of cypermethrin (Super fighter 25 EC) at 50 and 100 g a.i. ha(-1) at 10-day interval. Residues of cypermethrin in chilli were estimated by gas liquid chromatography (GLC) and were confirmed by gas chromatography-mass spectrometry (GC-MS). The average initial deposits of cypermethrin in chilli fruits were found to be 1.46 and 3.11 mg kg(-1), at recommended and double the recommended dosages, respectively, following third application of the insecticide. Half-life periods for cypermethrin were found to be 4.43 and 4.70 days at recommended and double the recommended dosages, respectively. Residues of cypermethrin declined below its limit of quantification (LOQ) of 0.05 mg kg(-1) after 25 days at both the application dosages. Theoretical maximum residue contribution (TMRC) values were calculated from the residue data generated and were found to be below maximum permissible intake (MPI) even on 0 day. Therefore, according to our risk assessment studies, a waiting period of 1 day is suggested for consumption of chilli sprayed with cypermethrin at the recommended dosages.

  19. Effects of Different Cooking Methods on the Antioxidant Properties of Red Pepper (Capsicum annuum L.)

    PubMed Central

    Hwang, In Guk; Shin, Young Jee; Lee, Seongeung; Lee, Junsoo; Yoo, Seon Mi

    2012-01-01

    We investigated the effect of various cooking methods (boiling, steaming, stir-frying, and roasting) and three cooking times (5, 10, and 15 min) on the antioxidant properties of red pepper. Raw and cooked peppers were measured for proximate composition, ascorbic acid (AsA) content, total carotenoid content (TCC), total polyphenol content (TP), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities. Results showed that the proximate composition, AsA content, TCC, TP, and antioxidant activities were significantly (p<0.05) affected by the cooking procedure; the loss rate varied among individual compounds. Boiling and steaming significantly reduced AsA content (24.3~66.5%), TP (13.9~ 54.9%), and antioxidant activity (21.7~60.5%) in red pepper, while stir-frying and roasting slightly reduced AsA content (2.7~25.9%), TP (1.8~4.9%), and antioxidant activity (4.9~17.9%). The highest loss was observed after boiling, followed by steaming, roasting, and stir-frying. Stir-frying and roasting better preserved AsA content, TCC, TP, and antioxidant activity. In conclusion, dry-heat cooking methods such as stir-frying and roasting may be preferred to retain the nutrient compositions and antioxidant properties of red pepper. PMID:24471098

  20. Polygalacturonase inhibitor protein from fruits of anthracnose resistant and susceptible varieties of Chilli (Capsicum annuum L).

    PubMed

    Shivashankar, S; Thimmareddy, C; Roy, Tapas K

    2010-08-01

    Chilli fruit is highly susceptible to anthracnose infection at the stage of harvest maturity, due to which the fruit yield in the leading commercial variety Byadgi is severely affected. Field studies on screening of several varieties for resistance to anthracnose have shown that a variety of chilli AR-4/99K is resistant to anthracnose infection. In many crops, resistance to fungal attack has been correlated with PGIP activity in developing fruits based on which transgenic varieties have been developed with resistance to fungi. The present study was carried out to determine whether anthracnose resistance in AR-4/99K was due to the increased levels of PGIP alone and/ or due to differences, if any, in the properties of PGIP. Hence, a comparative study of the properties of polygalacturonase inhibitor protein (PGIP) isolated from fruits of anthracnose resistant chilli var AR-4/99K and a susceptible variety Byadgi was conducted with the objective of utilizing the information in genetic transformation studies. Both the PGIPs from anthracnose resistant and susceptible varieties of chilli exhibited similarities in the elution pattern on Sephadex gel, DEAE cellulose, PAGE and SDS-PAGE. The two PGIPs were active over a wide range of pH and temperature. Both PGIPs showed differential inhibitory activity against polygalacturonase (PG) secreted by Colletotrichum gleosporoides, C. capsici, C. lindemuthianum, Fusarium moniliforme and Sclerotium rolfsii. The inhibitory activity of PGIP from both resistant and susceptible varieties was the highest (82% and 76%, respectively) against the PG from Colletotrichum capsici, a pathogen causing anthracnose rot of chilli, while the activity was lower (1.27 to 12.3%) on the other fungal PGs. Although PGIP activity decreased with fruit maturation in both the varieties, the resistant variety maintained a higher activity at 45 days after flowering (DAF) as compared to the susceptible variety which helped it to overcome the infection by anthracnose as against the susceptible variety (Byadgi) in which PGIP activity was drastically reduced at maturity. The molecular mass of PGIP as determined by SDS-PAGE was found to be 37 kDa. N-terminal sequence analysis of the PGIP showed the first six amino acid residues from N-terminal end were Asp-Thr-His-Lys-Ser-Glu (DTHKSE), respectively. The similarities in properties of the two PGIPs support the earlier findings that resistance of AR-4/99K to anthracnose fungus is a result of its higher PGIP activity at maturity.

  1. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.)

    PubMed Central

    Hernández-Ortega, Marcela; Ortiz-Moreno, Alicia; Hernández-Navarro, María Dolores; Chamorro-Cevallos, Germán; Dorantes-Alvarez, Lidia; Necoechea-Mondragón, Hugo

    2012-01-01

    Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH+ cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief. PMID:23091348

  2. Vitamin Variation in Capsicum Spp. Provides Opportunities to Improve Nutritional Value of Human Diets

    PubMed Central

    Lucht, Sarah A.; Mercer, Kristin; Bernau, Vivian; Case, Kyle A.; Le, Nina C.; Frederiksen, Matthew K.; DeKeyser, Haley C.; Wong, Zen-Zi; Hastings, Jennifer C.

    2016-01-01

    Chile peppers, native to the Americas, have spread around the world and have been integrated into the diets of many cultures. Much like their heat content, nutritional content can vary dramatically between different pepper types. In this study, a diverse set of chile pepper types were examined for nutrient content. Some pepper types were found to have high levels of vitamin A, vitamin C, or folate. Correlations between nutrient content, species, cultivation status, or geographic region were limited. Varietal selection or plant breeding offer tools to augment nutrient content in peppers. Integration of nutrient rich pepper types into diets that already include peppers could help combat nutrient deficiencies by providing a significant portion of recommended daily nutrients. PMID:27532495

  3. Synergistic Effect of Dietary Curcuma, Capsicum, and Lentinus on enhancing local immunity against Eimeria acervulina infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, the application of prophylactic antibiotics has been successful in reducing infection-related morbidity and mortality in animal production. However, with increasing concerns over the widespread use of feed-added chemicals in animal production and the emergence of antibiotic resistant ...

  4. Influence of vacuum packaging on seed quality and mineral contents in chilli (Capsicum annuum L.).

    PubMed

    Deepa, G T; Chetti, Mahadev B; Khetagoudar, Mahadev C; Adavirao, Gopal M

    2013-02-01

    Studies were carried out to find out the influence of vacuum packaging on physical parameters of whole chilli and biochemical constituents in chilli seeds. Chilli fruits were stored in vacuum packed and jute bags stored at room temperature (25 ± 2 °C), cold storage (4 ± 1 °C) under both light and dark conditions for a period of 24 months. At the end of the storage period, seeds were separated from fruits and various parameters viz., moisture content, capsaicin content, ascorbic acid, carbohydrates, protein and mineral elements like Fe, P, Na and K were analyzed. It was observed that the samples stored in vacuum packed bags maintained the quality with least deterioration in all the quality parameters compared to samples stored in jute bags. PMID:24425901

  5. Influence of vacuum packaging and long term storage on quality of whole chilli (Capsicum annuum L.).

    PubMed

    Chetti, Mahadev B; Deepa, G T; Antony, Roshny T; Khetagoudar, Mahadev C; Uppar, Dodappa S; Navalgatti, Channappa M

    2014-10-01

    Investigations were carried out to study the influence of vacuum packaging and long term storage on quality in red chilli. Chilli fruits were stored in vacuum packed and jute bags at two moisture levels (10 % and 12 %) in room and cold environments under both light and dark conditions for a period of 24 months. During storage period, average room and cool chamber temperatures were 25 ± 2 °C and 4 ± 1 °C, respectively. Changes of moisture (Halogen moisture analyzer), capsaicin (HPLC-UV), oleoresin and total extractable colour (spectrophotometer) were analyzed at 3 months interval up to 12 months and 6 months interval from 12 to 24 months. Statistical analysis (ANOVA) and Duncan's test were applied to the analytical data to evaluate the effect of treatments applied. It was observed that the vacuum packed chillies under cold storage were found to have the least per cent decline in various quality parameters. Chillies with 12 % moisture and stored in vacuum packaged bags recorded better quality parameters over 10 % moisture. PMID:25328233

  6. Aflatoxins contamination and prevention in red chillies (Capsicum annuum L.) in Pakistan.

    PubMed

    Khan, Mobeen Ahmed; Asghar, Muhammad Asif; Iqbal, Javed; Ahmed, Aftab; Shamsuddin, Zuzzer Ali

    2014-01-01

    During 2006-2011, 331 red chilli samples (226 whole, 69 powdered and 36 crushed) were collected from all over Pakistan for the estimation of total aflatoxins (AFs = AFB1 + AFB2 + AFG1 + AFG2) contamination by thin layer chromatography (TLC). Mean AFs levels in whole, powdered and crushed chillies were 11.7, 27.8 and 31.2 µg kg(-1), respectively. AFs levels in 62.4% of whole, 26.1% of powdered and 19.4% of crushed chillies were found lower than the maximum limit (ML = 10 µg kg(-1)) as assigned by the European Union. Furthermore, whole (27.9%), powdered (28%) and crushed (27.8%) chillies showed AFs contamination which ranged between 10 and 20 µg kg(-1). However, 9.7% of whole, 46% of powdered and 52.8% of crushed chillies showed AFs levels beyond the ML of 20 µg kg(-1) as assigned by the USDA. It was concluded that AFs contamination in chillies requires further investigation, monitoring and routine analysis. Furthermore, proper harvesting, drying, handling, storage and transport conditions need to be employed.

  7. Phytyl Fatty Acid Esters in the Pulp of Bell Pepper (Capsicum annuum).

    PubMed

    Krauß, Stephanie; Hammann, Simon; Vetter, Walter

    2016-08-17

    Phytyl fatty acid esters (PFAE) are esters of fatty acids with the isoprenoid alcohol phytol (3,7R,11R,15-tetramethylhexadec-2E-enol). In this study, PFAE were identified and quantified in bell pepper using gas chromatography with mass spectrometry (GC-MS). All red (n = 14) and yellow (n = 6) samples contained six or seven PFAE at 0.9-11.2 mg/100 g fresh weight. By contrast, PFAE were not detected in green bell pepper samples (n = 3). PFAE might eventually be a source for bioavailable phytol, which can be transformed into phytanic acid by humans. Phytanic acid cannot be properly degraded by patients who suffer from Refsum's disease (tolerable daily intake (TDI) ≤ 10 mg of phytanic acid). The phytol moiety of the PFAE (0.4-5.4 mg/100 g fresh weight) would contribute up to ∼50% to the TDI with the consumption of only one portion of bell pepper fruit pulp.

  8. Vitamin Variation in Capsicum Spp. Provides Opportunities to Improve Nutritional Value of Human Diets.

    PubMed

    Kantar, Michael B; Anderson, Justin E; Lucht, Sarah A; Mercer, Kristin; Bernau, Vivian; Case, Kyle A; Le, Nina C; Frederiksen, Matthew K; DeKeyser, Haley C; Wong, Zen-Zi; Hastings, Jennifer C; Baumler, David J

    2016-01-01

    Chile peppers, native to the Americas, have spread around the world and have been integrated into the diets of many cultures. Much like their heat content, nutritional content can vary dramatically between different pepper types. In this study, a diverse set of chile pepper types were examined for nutrient content. Some pepper types were found to have high levels of vitamin A, vitamin C, or folate. Correlations between nutrient content, species, cultivation status, or geographic region were limited. Varietal selection or plant breeding offer tools to augment nutrient content in peppers. Integration of nutrient rich pepper types into diets that already include peppers could help combat nutrient deficiencies by providing a significant portion of recommended daily nutrients. PMID:27532495

  9. Biochemical and molecular tools for the production of useful terpene products from pepper (Capsicum annuum).

    PubMed

    Lozoya-Gloria, E

    1999-01-01

    Among other natural products such as colorants and flavorants, natural fungicides like the pepper phytoalexin capsidiol, and the related biochemical pathways, may be used for practical approaches. Key enzymes such as 3-hydroxy-3-methylglutaryl Coenzyme A: reductase, the farnesyl pyrophosphate synthase and and farnesyl pyrophosphate cyclases are known and some related genes have been isolated. However, specific enzymes for important and final modifications as methylation and others, are still to be studied. Construction of chimeric enzymes allowed already the synthesis of different products and the possibilities of designing new enzymes by gene manipulation to produce unknown and useful chemicals are open. PMID:10335386

  10. Solid shape discrimination from vision and haptics: natural objects (Capsicum annuum) and Gibson's "feelies".

    PubMed

    Norman, J Farley; Phillips, Flip; Holmin, Jessica S; Norman, Hideko F; Beers, Amanda M; Boswell, Alexandria M; Cheeseman, Jacob R; Stethen, Angela G; Ronning, Cecilia

    2012-10-01

    A set of three experiments evaluated 96 participants' ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson's "feelies" and a set of naturally shaped objects--bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants' visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539-543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.

  11. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Improved understanding of the combined effects of geology, ecology and human intervention is essential for efficient conservation and use of plant germplasm. In the pr...

  12. Binding, Antioxidant and Anti-proliferative Properties of Bioactive Compounds of Sweet Paprika (Capsicum annuum L.).

    PubMed

    Kim, Hong-Gi; Bae, Jong-Hyang; Jastrzebski, Zenon; Cherkas, Andriy; Heo, Buk-Gu; Gorinstein, Shela; Ku, Yang-Gyu

    2016-06-01

    The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 μg/g dry weight (DW)). The strongest antioxidant capacity (μM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants. PMID:27184000

  13. Greenhouse evaluation of capsicum rootstocks for management of meloidogyne incognita on grafted bell pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth, development, and nematode susceptibility of various rootstock genotypes grafted to a commercial bell pepper variety scion were evaluated in a series of greenhouse experiments. Nine rootstocks including ‘Caribbean Red Habanero’, ‘ PA-136’ , ‘Keystone Resistant Giant’, ‘Yolo Wonder’, ‘Car...

  14. Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens.

    PubMed

    Sudha, Govindaswamy; Ravishankar, Gokare A

    2003-04-01

    Putrescine treatment (0.1 mmol/L) influenced enhancement of growth and capsaicin production in the cell suspension cultures of C. frutescens. The administration of polyamine inhibitor DFMA (alpha-DL-difluoromethylarginine) resulted in a reduction of the growth, capsaicin content and the endogenous titres of polyamines (PAs). The capsaicin synthase activity was also higher in the putrescine (Put) treated cultures. Ethylene levels were lower in the cultures treated with putrescine. This study suggested that Put facilitates growth and capsaicin production.

  15. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates.

    PubMed

    López-López, Rutilo; Inzunza-Ibarra, Marco Antonio; Sánchez-Cohen, Ignacio; Fierro-Álvarez, Andrés; Sifuentes-Ibarra, Ernesto

    2015-01-01

    Habanero pepper production was assessed with drip irrigation and plastic mulch, based on two transplanting dates. The objectives of the study were: (i) to evaluate the effect of two transplanting dates and the use of plastic mulch on water productivity and habanero pepper fruit yield under drip irrigation conditions; and (ii) to determine the profitability and economic viability of the product in the regional market. The work was conducted in the municipality of Huimanguillo, state of Tabasco, Mexico, in loam soils classified as Eutric Fluvisol. The Jaguar variety of habanero pepper, developed by INIFAP and possessing better genetic and productive characteristics, was used. Two transplanting dates were studied, (i) 30 January 2013 and (ii) 15 February 2013, with and without plastic mulch. The conclusions were: (i) application of irrigation depths based on crop evapotranspiration (ETc) and plastic mulch transplanted on 30 January increased the fruit yield of the crop and improved the benefit-cost ratio of the production system; and (ii) water use efficiency based on the 30 January transplanting date was 8.68 kg m⁻³ of water applied with plastic mulch, 6.51 kg m⁻³ without plastic mulch, and 3.65 kg m⁻³ for the 15 February transplanting date with plastic mulch.

  16. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates.

    PubMed

    López-López, Rutilo; Inzunza-Ibarra, Marco Antonio; Sánchez-Cohen, Ignacio; Fierro-Álvarez, Andrés; Sifuentes-Ibarra, Ernesto

    2015-01-01

    Habanero pepper production was assessed with drip irrigation and plastic mulch, based on two transplanting dates. The objectives of the study were: (i) to evaluate the effect of two transplanting dates and the use of plastic mulch on water productivity and habanero pepper fruit yield under drip irrigation conditions; and (ii) to determine the profitability and economic viability of the product in the regional market. The work was conducted in the municipality of Huimanguillo, state of Tabasco, Mexico, in loam soils classified as Eutric Fluvisol. The Jaguar variety of habanero pepper, developed by INIFAP and possessing better genetic and productive characteristics, was used. Two transplanting dates were studied, (i) 30 January 2013 and (ii) 15 February 2013, with and without plastic mulch. The conclusions were: (i) application of irrigation depths based on crop evapotranspiration (ETc) and plastic mulch transplanted on 30 January increased the fruit yield of the crop and improved the benefit-cost ratio of the production system; and (ii) water use efficiency based on the 30 January transplanting date was 8.68 kg m⁻³ of water applied with plastic mulch, 6.51 kg m⁻³ without plastic mulch, and 3.65 kg m⁻³ for the 15 February transplanting date with plastic mulch. PMID:25812098

  17. Polygalacturonase inhibitor protein from fruits of anthracnose resistant and susceptible varieties of Chilli (Capsicum annuum L).

    PubMed

    Shivashankar, S; Thimmareddy, C; Roy, Tapas K

    2010-08-01

    Chilli fruit is highly susceptible to anthracnose infection at the stage of harvest maturity, due to which the fruit yield in the leading commercial variety Byadgi is severely affected. Field studies on screening of several varieties for resistance to anthracnose have shown that a variety of chilli AR-4/99K is resistant to anthracnose infection. In many crops, resistance to fungal attack has been correlated with PGIP activity in developing fruits based on which transgenic varieties have been developed with resistance to fungi. The present study was carried out to determine whether anthracnose resistance in AR-4/99K was due to the increased levels of PGIP alone and/ or due to differences, if any, in the properties of PGIP. Hence, a comparative study of the properties of polygalacturonase inhibitor protein (PGIP) isolated from fruits of anthracnose resistant chilli var AR-4/99K and a susceptible variety Byadgi was conducted with the objective of utilizing the information in genetic transformation studies. Both the PGIPs from anthracnose resistant and susceptible varieties of chilli exhibited similarities in the elution pattern on Sephadex gel, DEAE cellulose, PAGE and SDS-PAGE. The two PGIPs were active over a wide range of pH and temperature. Both PGIPs showed differential inhibitory activity against polygalacturonase (PG) secreted by Colletotrichum gleosporoides, C. capsici, C. lindemuthianum, Fusarium moniliforme and Sclerotium rolfsii. The inhibitory activity of PGIP from both resistant and susceptible varieties was the highest (82% and 76%, respectively) against the PG from Colletotrichum capsici, a pathogen causing anthracnose rot of chilli, while the activity was lower (1.27 to 12.3%) on the other fungal PGs. Although PGIP activity decreased with fruit maturation in both the varieties, the resistant variety maintained a higher activity at 45 days after flowering (DAF) as compared to the susceptible variety which helped it to overcome the infection by anthracnose as against the susceptible variety (Byadgi) in which PGIP activity was drastically reduced at maturity. The molecular mass of PGIP as determined by SDS-PAGE was found to be 37 kDa. N-terminal sequence analysis of the PGIP showed the first six amino acid residues from N-terminal end were Asp-Thr-His-Lys-Ser-Glu (DTHKSE), respectively. The similarities in properties of the two PGIPs support the earlier findings that resistance of AR-4/99K to anthracnose fungus is a result of its higher PGIP activity at maturity. PMID:21174952

  18. Phytyl Fatty Acid Esters in the Pulp of Bell Pepper (Capsicum annuum).

    PubMed

    Krauß, Stephanie; Hammann, Simon; Vetter, Walter

    2016-08-17

    Phytyl fatty acid esters (PFAE) are esters of fatty acids with the isoprenoid alcohol phytol (3,7R,11R,15-tetramethylhexadec-2E-enol). In this study, PFAE were identified and quantified in bell pepper using gas chromatography with mass spectrometry (GC-MS). All red (n = 14) and yellow (n = 6) samples contained six or seven PFAE at 0.9-11.2 mg/100 g fresh weight. By contrast, PFAE were not detected in green bell pepper samples (n = 3). PFAE might eventually be a source for bioavailable phytol, which can be transformed into phytanic acid by humans. Phytanic acid cannot be properly degraded by patients who suffer from Refsum's disease (tolerable daily intake (TDI) ≤ 10 mg of phytanic acid). The phytol moiety of the PFAE (0.4-5.4 mg/100 g fresh weight) would contribute up to ∼50% to the TDI with the consumption of only one portion of bell pepper fruit pulp. PMID:27458658

  19. Acyclic diterpene glycosides, capsianosides VIII, IX, X, XIII, XV and XVI from the fruits of Paprika Capsicum annuum L. var. grossum BAILEY and Jalapeño Capsicum annuum L. var. annuum.

    PubMed

    Lee, Jong-Hyun; Kiyota, Naoko; Ikeda, Tsuyoshi; Nohara, Toshihiro

    2006-10-01

    Paprika and Jalapeño are used as vegetables and spices. We have obtained six new acyclic diterpene glycosides, called capsianosides XIII (2), XV (3), IX (4), XVI (5), X (6) and VIII (7) together with known capsianoside II (1) from the fruits of the Paprika and Jalapeño. The structures of these compounds have been elucidated by the (1)H- and (13)C-NMR spectra and two-dimensional NMR methods.

  20. Complete Nucleotide Sequences and Genome Organization of Two Pepper Mild Mottle Virus Isolates from Capsicum annuum in South Korea.

    PubMed

    Choi, Seung-Kook; Choi, Gug-Seoun; Kwon, Sun-Jung; Yoon, Ju-Yeon

    2016-05-19

    The complete genome sequences of pepper mild mottle virus (PMMoV)-P2 and -P3 were determined by the Sanger sequencing method. Although PMMoV-P2 and PMMoV-P3 have different pathogenicity in some pepper cultivars, the complete genome sequences of PMMoV-P2 and -P3 are composed of 6,356 nucleotides (nt). In this study, we report the complete genome sequences and genome organization of PMMoV-P2 and -P3 isolates from pepper species in South Korea.

  1. Benzothiadiazole (BTH) induces resistance to Pepper golden mosaic virus (PepGMV) in pepper (Capsicum annuum L.).

    PubMed

    Trejo-Saavedra, D L; García-Neria, M A; Rivera-Bustamante, R F

    2013-01-01

    Pepper is an economically important crop in many countries around the world but it is susceptible to many diseases. In Mexico, diseases caused by bipartite begomoviruses have emerged as important problems in pepper. Several control strategies have been explored wiht little success; most of them are based on the avoidance of virus transmission and the breeding for resistance. Abiotic inducers can act at various points in the signaling pathways involved in disease resistance, providing long-lasting, wide-spectrum resistance. Benzothiadiazole (BTH) shares the property of activating the systemic acquired resistance pathway downstream from the SA signaling. In this work, resistance to PepGMV infection was induced in pepper plants by activating the SA pathway using BTH treatment. The resistance was characterized by evaluating symptom appearance, virus accumulation and viral movement. Our results showed that BTH could be an attractive alternative to induce geminivirus resistance in pepper plants without a significant damage of the fruit quality and productivity.

  2. Complete Nucleotide Sequences and Genome Organization of Two Pepper Mild Mottle Virus Isolates from Capsicum annuum in South Korea

    PubMed Central

    Choi, Seung-Kook; Choi, Gug-Seoun; Kwon, Sun-Jung

    2016-01-01

    The complete genome sequences of pepper mild mottle virus (PMMoV)-P2 and -P3 were determined by the Sanger sequencing method. Although PMMoV-P2 and PMMoV-P3 have different pathogenicity in some pepper cultivars, the complete genome sequences of PMMoV-P2 and -P3 are composed of 6,356 nucleotides (nt). In this study, we report the complete genome sequences and genome organization of PMMoV-P2 and -P3 isolates from pepper species in South Korea. PMID:27198033

  3. [Antifungal effect of phenolic and carotenoids extracts from chiltepin (Capsicum annum var. glabriusculum) on Alternaria alternata and Fusarium oxysporum].

    PubMed

    Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica

    2015-01-01

    The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance.

  4. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.

  5. Mycotic and aflatoxin contamination in Myristica fragrans seeds (nutmeg) and Capsicum annum (chilli), packaged in Italy and commercialized worldwide.

    PubMed

    Pesavento, G; Ostuni, M; Calonico, C; Rossi, S; Capei, R; Lo Nostro, A

    2016-01-01

    Aflatoxins are secondary metabolites of moulds known to be carcinogenic for humans, and therefore should not be ingested in high doses. This study aimed to determine the level of mould and aflatoxin contamination in dehydrated chilli and nutmeg imported from India and Indonesia, respectively, packaged in Italy, and commercialized worldwide. We tested 63 samples of chilli (22 sanitized through heat treatment and 41 not heat-treated) and 52 samples of nutmeg (22 heat-treated and 30 not heat-treated) for aflatoxin, moulds and moisture content. Heat-treated samples were less contaminated than untreated samples. Spices in powder form (both chilli and nutmeg) were more contaminated than whole ones. In untreated spices, we observed a positive correlation between mould and moisture content. Of the powdered nutmeg and chilli samples, 72.5% and 50% tested positive for aflatoxin contamination, with a range of 0-17.2 μg kg(-1) and 0-10.3 μg kg(-1), respectively. The steam treatment of spices would be useful in reducing the initial amount of moulds. Although the risk from the consumption of spices contaminated with aflatoxins is minimal, owing to the small amount used in food, preventive screening of the whole food chain is very important, especially because the most frequently identified toxin was B1, which is the most dangerous of the four toxins (B1, B2, G1, G2).

  6. Effect of Capsicum carotenoids on growth and ochratoxin A production by chilli and paprika Aspergillus spp. isolates.

    PubMed

    Santos, L; Kasper, R; Gil-Serna, J; Marín, S; Sanchis, V; Ramos, A J

    2010-09-01

    The aim of this study was to determine the effect of a natural carotenoid mixture (Capsantal FS-30-NT), containing capsanthin and capsorubin, on growth and mycotoxin production of ochratoxin A-producing A. ochraceus, A. westerdijkiae, and A. tubingensis isolates. One isolate of each species, previously isolated from paprika or chilli, was inoculated on Czapek Yeast extract Agar (CYA) medium supplemented with different amounts of capsantal (0 to 1%) and incubated at 10, 15 and 25 degrees C for 21days. Growth rates and lag phases were obtained, and OTA production was determined at 7, 14 and 21days. The taxonomically related A. ochraceus and A. westerdijkiae showed the same behavior at 15 degrees C, but A. ochraceus was able to grow at 10 degrees C and had higher growth rates at 25 degrees C. A. tubingensis had the highest growth rates and lowest OTA production capacity of the assayed isolates, and it was not able to grow at 10 degrees C. Capsantal addition resulted in increased lag phases at 15 degrees C for all the strains, while growth rates remained rather constant. At 25 degrees C capsantal reduced growth rates, with rather constant lag phases. However, the effect of capsantal on OTA production was inconclusive, because it depended on temperature or time, and mostly was not significant. Low temperature has been a crucial factor in OTA production, regardless of the capsantal concentration tested, especially for A. tubingensis and A. westerdijkiae. Industrial storage temperature for paprika and chilli is approximately 10 degrees C. If this temperature is maintained, mould growth and OTA production should be reduced.

  7. Phytochemicals and antioxidant activity of fruits and leaves of paprika (Capsicum Annuum L., var. special) cultivated in Korea.

    PubMed

    Kim, Ji-Sun; Ahn, Jiyun; Lee, Sung-Joon; Moon, Bokyung; Ha, Tae-Youl; Kim, Suna

    2011-03-01

    The phytochemical composition of carotenoids, tocopherols, free sugars, organic acids, L-ascorbic acid, capsaicinoids, and flavonoids in green and red paprika (GP and RP), and paprika leaves (PL) cultivated in Korea were analyzed. The ethanolic extracts of GP, RP, and PL were obtained with 80% ethanol, and their antioxidative activities were determined by measuring their ABTS and DPPH radical scavenging activities. RP showed the highest contents of capsanthin (58.33 ± 3.91 mg/100 g dry weight) and L-ascorbic acid (1987.25 ± 19.64 mg/100 g dry weight), and main compounds of PL were lutein, chlorophyll, and γ-tocopherol (96.91 ± 14.58, 2136.71 ± 21.11, and 723.49 ± 54.10 mg/100 g dry weight, respectively). RP showed the strongest antioxidant activity (IC(50) = 55.23 ± 6.77 μg/mL in a 2, 2'-azino-di-[3-ethylbenzthiazoline sulphonate] assay and 150.40 ± 8.07 μg/mL in a 2, 2-diphenyl-2-picrylhydrazyl assay), and the antioxidant activity of PL was higher than β-carotene but lower than RP. The results indicate that the amounts of capsanthin and L-ascorbic acid in RP correlate well with antioxidant activity. PL, which has various phytochemicals such as lutein, chlorophyll, and γ-tocopherol, might be used in nutraceuticals and pharmaceuticals for improving human health.

  8. Effect of Capsicum carotenoids on growth and aflatoxins production by Aspergillus flavus isolated from paprika and chilli.

    PubMed

    Santos, L; Kasper, R; Sardiñas, N; Marín, S; Sanchis, V; Ramos, A J

    2010-12-01

    The aim of this study was to determine the effect of a carotenoid mixture (Capsantal FS-30-NT), containing capsanthin and capsorubin, on growth and aflatoxins (AF) production of AF-producing Aspergillus flavus isolates. Each isolate, previously isolated from paprika and chilli, was inoculated on Czapek Yeast extract Agar (CYA) medium supplemented with different amounts of capsantal (0-1%) and incubated at 10, 15 and 25 °C during 21 days. Growth rates and lag phases were obtained, and AF production was determined at 7, 14 and 21 days. None of the isolates grew at 10 °C and one isolate (UdLTA 3.193) hardly grew at 15 °C. Capsantal addition had no effect over lag phases and growth rates at 15 °C. At 25 °C capsantal reduced growth rates and increased lag phases. However, the effect of capsantal on AF production was inconclusive, because it depended on temperature or time, and most of the times it was not significant. Low temperature has been a crucial factor in AF production, regardless of the capsantal concentration tested. Industrial storage temperature for paprika and chilli use to be approximately 10 °C, so if this temperature is maintained mould growth and AF production should be prevented.

  9. Changes in the carotenoid metabolism of capsicum fruits during application of modelized slow drying process for paprika production.

    PubMed

    Pérez-Gálvez, Antonio; Hornero-Méndez, Dámaso; Mínguez-Mosquera, María Isabel

    2004-02-11

    A temperature profile simulating the traditional slow drying process of red pepper fruits, which is conducted in La Vera region (Spain) for paprika production, was developed. Carotenoid and ascorbic acid content, as well as moisture of fruits, were monitored during the slow drying process designed. Data obtained suggested that the evolution of carotenoid concentration, the main quality trait for paprika, directly depend on the physical conditions imposed. During the drying process, three different stages could be observed in relation to the carotenoids. The first stage corresponds to a physiological adaptation to the new imposed conditions that implied a decrease (ca. 20%) in the carotenoid content during the first 24 h. After that short period and during 5 days, a second stage was noticed, recovering the biosynthetic (carotenogenic) capability of the fruits, which denotes an accommodation of the fruits to the new environmental conditions. During the following 48 h (third stage) a sharp increase in the carotenoid content was observed. This last phenomenon seems to be related with an oxidative-thermal stress, which took place during the first stage, inducing a carotenogenesis similar to that occurring in over-ripening fruits. Results demonstrate that a fine control of the temperature and moisture content would help to positively modulate carotenogenesis and minimize catabolism, making it possible to adjust the drying process to the ripeness stage of fruits with the aim of improving carotenoid retention and therefore quality of the resulting product. In the case of ascorbic acid, data demonstrated that this compound is very sensitive to the drying process, with a decrease of about 76% during the first 24 h and remaining only at trace levels during the rest of the process. Therefore, no antioxidant role should be expected from ascorbic acid during the whole process and in the corresponding final product (paprika), despite that red pepper fruit is well-known to be rich on this compound.

  10. Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.).

    PubMed

    Yin, Yan-Xu; Wang, Shu-Bin; Zhang, Huai-Xia; Xiao, Huai-Juan; Jin, Jing-Hao; Ji, Jiao-Jiao; Jing, Hua; Chen, Ru-Gang; Arisha, Mohamed Hamed; Gong, Zhen-Hui

    2015-05-25

    Plant aquaporins are responsible for water transmembrane transport, which play an important role on abiotic and biotic stresses. A novel plasma membrane intrinsic protein of CaPIP1-1 was isolated from the pepper P70 according to transcriptome databases of Phytophthora capsici inoculation and chilling stress library. CaPIP1-1, which is 1155 bp in length with an open reading frame of 861 bp, encoded 286 amino acids. Three introns, exhibited CT/AC splice junctions, were observed in CaPIP1-1. The numbers and location of introns in CaPIP1-1 were the same as observed in tomato and potato. CaPIP1-1 was abundantly expressed in pepper fruit. Increased transcription levels of CaPIP1-1 were found in the different stresses, including chilling stress, salt stress, mannitol stress, salicylic acid, ABA treatment and Phytophthora capsici infection. The expression of CaPIP1-1 was downregulated by 50 μM HgCl2 and 100 μM fluridone. The pepper plants silenced CaPIP1-1 in cv. Qiemen showed growth inhibition and decreased tolerance to salt and mannitol stresses using detached leaf method.

  11. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods.

    PubMed

    Kim, Ji-Sun; An, Chul Geon; Park, Jong-Suk; Lim, Yong Pyo; Kim, Suna

    2016-06-15

    In this study, we investigated carotenoid profiles and contents from 27 types of paprika with different colors (red, orange, and yellow), shapes (blocky and conical), and cultivation methods (soil and soilless). We simultaneously analyzed 12 kinds of carotenoids using UPLC equipped with an HSS T3 column for 30 min, and we identified six kinds of carotenoids in red paprika and nine types in orange and yellow paprika. Zeaxanthin concentrations in orange paprika were in the range of 85.06±23.37-151.39±5.94 mg/100 g dry weight (dw), which shows that orange paprika is a great source of zeaxanthin. Generally, red paprika is a great source of capsanthin. However, a new cultivar, 'Mini Goggal Red', contained large amounts of zeaxanthin (121.41±30.10 mg/100 g dw) even though its visible color is red. This is very meaningful considering that consumers have a preference for red color and the potent functional value of zeaxanthin. Carotenoid profiles and concentrations in blocky and conical type paprika were not significantly different in red paprika except the 'Mini Goggal Red' cultivar and yellow paprika. Blocky type orange paprika contains plenty of zeaxanthin, unlike conical type orange paprika. Three new cultivars of the conical type were cultivated in both soil culture and soilless culture in the same province, and carotenoid profiles and concentrations were similar, showing that both cultivations methods can be used.

  12. Seed borne nature of Azotobacter chroococcum in chilli (Capsicum annum) and its role in seed germination and plant growth.

    PubMed

    Bhat, J M; Alagawadi, A R

    1998-01-01

    Investigations were carried out on seed borne nature of Azotobacter chroococcum in chilli and their role in plant growth at the Department of Agriculture Microbiology, University of Agricultural Sciences, Dharwad. Azotobacter chroococcum were isolated from both surface sterilized and unsterilized seeds of 14 varieties of chilli at different stages of fruit maturity. Inoculation with these strains increased the seed germination, root, shoot length and total dry matter content of chilli plants significantly in both sterilized and unsterilized soil., the results of which are presented.

  13. The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (Capsicum species).

    PubMed

    Pugliese, Alessandro; Loizzo, Monica Rosa; Tundis, Rosa; O'Callaghan, Yvonne; Galvin, Karen; Menichini, Francesco; O'Brien, Nora

    2013-12-01

    The content and bioaccessibility of carotenoids from different chili peppers were analysed and the effects of typical domestic processing were investigated. Peppers were analysed before and after cooking by conventional boiling (10 min in 100 °C water) and also following a freezing period of four months in a domestic freezer (-20 °C). The content and bioaccessibility of the eight carotenoids quantified varied, depending on cultivar, species, colour and processing. Provitamin A carotenoids (β-carotene and β-cryptoxanthin) and capsanthin were present at highest concentrations in the samples before and after processing. In general, yellow and orange peppers were the best sources of lutein, zeaxanthin and neoxanthin. Xanthophyll carotenoids were more efficiently transferred to the micelles and, therefore, were also more bioavailable. Processing decreased the carotenoid content in certain samples; however, the micellar content was generally not lower for processed peppers; therefore the bioaccessibility of carotenoids from processed peppers is enhanced relative to unprocessed peppers.

  14. Effect of pre-treatments and drying methods on quality attributes of sweet bell-pepper (Capsicum annum) powder.

    PubMed

    Sharma, Rakesh; Joshi, V K; Kaushal, M

    2015-06-01

    Pre-treatments and methods of drying for producing good quality dried bell pepper powder for use in the ready-to-eat (RTE) food products were optimized. Out of various pre-treatments used (blanching in boiling water, KMS, CA and combination of KMS + CA at different concentrations), soaking of bell pepper shreds in KMS@ 0.20 % + CA@ 0.50 % after blanching fasten the drying process (19.75 h) compared to control (22.60 h), when dried in mechanical dehydrator at 58 ± 2 °C. Blanching prior to drying improved the rate of drying and produced product with lower acidity (1.25 %). The samples (T7) treated with KMS@ 0.20 % + CA@ 0.50 % significantly (p < 0.05) retained the ascorbic acid content (47.75 mg/100 g) and also attained highest score for colour (8.0), texture (7.5) and overall acceptability (7.5) compared to rest of the treatments. Among different methods of drying, pre-treated bell peppers dried in solar poly tunnel drier produced bright red coloured powder with relatively higher amounts of sugars and ascorbic acid content, hence was optimized. Visual lump formation was observed at 19.75 % and 18.50 % critical moisture contents, which equilibrated at 42 % and 45 % RH for bell pepper powders dried in a mechanical dehydrator and solar poly tunnel drier, respectively.

  15. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum)

    PubMed Central

    Jeong, Jin-Ju; Park, Hongjae; Park, Byeong Hyeok; Mannaa, Mohamed; Sang, Mee Kyung

    2016-01-01

    Strain KJ1R5 of the rhizobacterium Chryseobacterium kwangjuense is an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, Phytophthora capsici. Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation. PMID:27103726

  16. The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (Capsicum species).

    PubMed

    Pugliese, Alessandro; Loizzo, Monica Rosa; Tundis, Rosa; O'Callaghan, Yvonne; Galvin, Karen; Menichini, Francesco; O'Brien, Nora

    2013-12-01

    The content and bioaccessibility of carotenoids from different chili peppers were analysed and the effects of typical domestic processing were investigated. Peppers were analysed before and after cooking by conventional boiling (10 min in 100 °C water) and also following a freezing period of four months in a domestic freezer (-20 °C). The content and bioaccessibility of the eight carotenoids quantified varied, depending on cultivar, species, colour and processing. Provitamin A carotenoids (β-carotene and β-cryptoxanthin) and capsanthin were present at highest concentrations in the samples before and after processing. In general, yellow and orange peppers were the best sources of lutein, zeaxanthin and neoxanthin. Xanthophyll carotenoids were more efficiently transferred to the micelles and, therefore, were also more bioavailable. Processing decreased the carotenoid content in certain samples; however, the micellar content was generally not lower for processed peppers; therefore the bioaccessibility of carotenoids from processed peppers is enhanced relative to unprocessed peppers. PMID:23871001

  17. Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L.) to be stored at room temperature.

    PubMed

    Di Cagno, Raffaella; Surico, Rosalinda F; Minervini, Giovanna; De Angelis, Maria; Rizzello, Carlo G; Gobbetti, Marco

    2009-03-31

    Strains of Lactobacillus curvatus, Leuconostoc mesenteroides, Lactobacillus plantarum and Weissella confusa were identified from raw red and yellow peppers (RYPs) by partial 16S rRNA gene sequence and subjected to typing by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis. L. plantarum PE21, L. curvatus PE4 and W. confusa PE36 were selected based on the kinetics of growth and acidification, and used as the autochthonous mixed starter for the fermentation of RYPs. A protocol which included blanching at 85 degrees C for 2 min, fermentation at 35 degrees C for 15 h in brine (1%, w/v), and heat treatment at 85 degrees C for 15 min, followed by storage at room temperature for 30 days with and without sunflower seeds oil was set up. Unstarted RYPs subjected to the same treatments were used as the control. Cell numbers of autochthonous starter in the RYPs were ca. 1000 times higher than presumptive lactic acid bacteria in unstarted RYPs. As shown by RAPD-PCR analysis, all three autochthonous strains persisted during processing and storage. Presumptive lactic acid bacteria found in started RYPs progressively decreased during storage, leading to a microbiota mainly consisting of autochthonous starters. Started RYPs showed rapid decrease of pH (<3.7), marked consumption of fermentable carbohydrates, and inhibition of total enterobacteria and yeasts. Unstarted RYPs were subjected to slight acidification (pH ca. 4.87) and considerable contamination by total enterobacteria and yeasts throughout storage. After 30 days of storage, started RYPs had significantly (P<0.05) higher firmness and colour indexes with respect to unstarted RYPs. The microbial and sensory features of started RYPs stored with sunflower seeds oil were almost similar to those of RYPs stored without suspending liquid.

  18. Greenhouse Evaluation of a commercial Bell Pepper scion grafted onto various Capsicum rootstocks for management of Meloidogyne incognita.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth, development, and nematode susceptibility of various rootstock genotypes grafted to a commercial bell pepper variety scion were evaluated in conventional and climate controlled greenhouses. Eight rootstocks including ‘Caribbean Red Habanero’, ‘PA-136’, ‘Keystone Resistant Giant’, ‘Yolo W...

  19. Mycotic and aflatoxin contamination in Myristica fragrans seeds (nutmeg) and Capsicum annum (chilli), packaged in Italy and commercialized worldwide.

    PubMed

    Pesavento, G; Ostuni, M; Calonico, C; Rossi, S; Capei, R; Lo Nostro, A

    2016-01-01

    Aflatoxins are secondary metabolites of moulds known to be carcinogenic for humans, and therefore should not be ingested in high doses. This study aimed to determine the level of mould and aflatoxin contamination in dehydrated chilli and nutmeg imported from India and Indonesia, respectively, packaged in Italy, and commercialized worldwide. We tested 63 samples of chilli (22 sanitized through heat treatment and 41 not heat-treated) and 52 samples of nutmeg (22 heat-treated and 30 not heat-treated) for aflatoxin, moulds and moisture content. Heat-treated samples were less contaminated than untreated samples. Spices in powder form (both chilli and nutmeg) were more contaminated than whole ones. In untreated spices, we observed a positive correlation between mould and moisture content. Of the powdered nutmeg and chilli samples, 72.5% and 50% tested positive for aflatoxin contamination, with a range of 0-17.2 μg kg(-1) and 0-10.3 μg kg(-1), respectively. The steam treatment of spices would be useful in reducing the initial amount of moulds. Although the risk from the consumption of spices contaminated with aflatoxins is minimal, owing to the small amount used in food, preventive screening of the whole food chain is very important, especially because the most frequently identified toxin was B1, which is the most dangerous of the four toxins (B1, B2, G1, G2). PMID:27582627

  20. Effect of pre-treatments and drying methods on quality attributes of sweet bell-pepper (Capsicum annum) powder.

    PubMed

    Sharma, Rakesh; Joshi, V K; Kaushal, M

    2015-06-01

    Pre-treatments and methods of drying for producing good quality dried bell pepper powder for use in the ready-to-eat (RTE) food products were optimized. Out of various pre-treatments used (blanching in boiling water, KMS, CA and combination of KMS + CA at different concentrations), soaking of bell pepper shreds in KMS@ 0.20 % + CA@ 0.50 % after blanching fasten the drying process (19.75 h) compared to control (22.60 h), when dried in mechanical dehydrator at 58 ± 2 °C. Blanching prior to drying improved the rate of drying and produced product with lower acidity (1.25 %). The samples (T7) treated with KMS@ 0.20 % + CA@ 0.50 % significantly (p < 0.05) retained the ascorbic acid content (47.75 mg/100 g) and also attained highest score for colour (8.0), texture (7.5) and overall acceptability (7.5) compared to rest of the treatments. Among different methods of drying, pre-treated bell peppers dried in solar poly tunnel drier produced bright red coloured powder with relatively higher amounts of sugars and ascorbic acid content, hence was optimized. Visual lump formation was observed at 19.75 % and 18.50 % critical moisture contents, which equilibrated at 42 % and 45 % RH for bell pepper powders dried in a mechanical dehydrator and solar poly tunnel drier, respectively. PMID:26028724