Lightning Pin Injection Test: MOSFETS in "ON" State
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Saha, Sankalita; Wysocki, Philip F.; Celaya, Jose R.
2011-01-01
The test objective was to evaluate MOSFETs for induced fault modes caused by pin-injecting a standard lightning waveform into them while operating. Lightning Pin-Injection testing was performed at NASA LaRC. Subsequent fault-mode and aging studies were performed by NASA ARC researchers using the Aging and Characterization Platform for semiconductor components. This report documents the test process and results, to provide a basis for subsequent lightning tests. The ultimate IVHM goal is to apply prognostic and health management algorithms using the features extracted during aging to allow calculation of expected remaining useful life. A survey of damage assessment techniques based upon inspection is provided, and includes data for optical microscope and X-ray inspection. Preliminary damage assessments based upon electrical parameters are also provided.
Lightning Pin Injection Testing on MOSFETS
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita
2009-01-01
Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.
Measurement of fault latency in a digital avionic miniprocessor
NASA Technical Reports Server (NTRS)
Mcgough, J. G.; Swern, F. L.
1981-01-01
The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test.
Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures
Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha
2017-01-01
Aims and Objectives: The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. Materials and Methods: A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Results: Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions (P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant (P < 0.001). Conclusions: Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems. PMID:28713763
Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures.
Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha
2017-06-01
The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions ( P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant ( P < 0.001). Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems.
NASA Technical Reports Server (NTRS)
Lala, J. H.; Smith, T. B., III
1983-01-01
The experimental test and evaluation of the Fault-Tolerant Multiprocessor (FTMP) is described. Major objectives of this exercise include expanding validation envelope, building confidence in the system, revealing any weaknesses in the architectural concepts and in their execution in hardware and software, and in general, stressing the hardware and software. To this end, pin-level faults were injected into one LRU of the FTMP and the FTMP response was measured in terms of fault detection, isolation, and recovery times. A total of 21,055 stuck-at-0, stuck-at-1 and invert-signal faults were injected in the CPU, memory, bus interface circuits, Bus Guardian Units, and voters and error latches. Of these, 17,418 were detected. At least 80 percent of undetected faults are estimated to be on unused pins. The multiprocessor identified all detected faults correctly and recovered successfully in each case. Total recovery time for all faults averaged a little over one second. This can be reduced to half a second by including appropriate self-tests.
The wear of cross-linked polyethylene against itself.
Joyce, T J; Ash, H E; Unsworth, A
1996-01-01
Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.
Advanced information processing system: Fault injection study and results
NASA Technical Reports Server (NTRS)
Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.
1992-01-01
The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.
Joshi, Anand C; Das, Vallabh E
2013-10-01
Previously, we showed that neurons in the supraoculomotor area (SOA), known to encode vergence angle in normal monkeys, encode the horizontal eye misalignment in strabismic monkeys. The SOA receives afferent projections from the caudal fastigial nucleus (cFN) and the posterior interposed nucleus (PIN) in the cerebellum. The objectives of the present study were to investigate the potential roles of the cFN and PIN in 1) conjugate eye movements and 2) binocular eye alignment in strabismic monkeys. We used unilateral injections of the GABAA agonist muscimol to reversibly inactivate the cFN (4 injections in exotropic monkey S1 with ≈ 4° of exotropia; 5 injections in esotropic monkey S2 with ≈ 34° of esotropia) and the PIN (3 injections in monkey S1). cFN inactivation induced horizontal saccade dysmetria in all experiments (mean 39% increase in ipsilesional saccade gain and 26% decrease in contralesional gain). Also, mean contralesional smooth-pursuit gain was decreased by 31%. cFN inactivation induced a divergent change in eye alignment in both monkeys, with exotropia increasing by an average of 9.8° in monkey S1 and esotropia decreasing by an average of 11.2° in monkey S2 (P < 0.001). Unilateral PIN inactivation in monkey S1 resulted in a mean increase in the gain of upward saccades by 13% and also induced a convergent change in eye alignment, reducing exotropia by an average of 2.7° (P < 0.001). We conclude that cFN/PIN influences on conjugate eye movements in strabismic monkeys are similar to those postulated in normal monkeys and cFN/PIN play important and complementary roles in maintaining the steady-state misalignment in strabismus.
Impact of device level faults in a digital avionic processor
NASA Technical Reports Server (NTRS)
Suk, Ho Kim
1989-01-01
This study describes an experimental analysis of the impact of gate and device-level faults in the processor of a Bendix BDX-930 flight control system. Via mixed mode simulation, faults were injected at the gate (stuck-at) and at the transistor levels and, their propagation through the chip to the output pins was measured. The results show that there is little correspondence between a stuck-at and a device-level fault model, as far as error activity or detection within a functional unit is concerned. In so far as error activity outside the injected unit and at the output pins are concerned, the stuck-at and device models track each other. The stuck-at model, however, overestimates, by over 100 percent, the probability of fault propagation to the output pins. An evaluation of the Mean Error Durations and the Mean Time Between Errors at the output pins shows that the stuck-at model significantly underestimates (by 62 percent) the impact of an internal chip fault on the output pins. Finally, the study also quantifies the impact of device fault by location, both internally and at the output pins.
Kalcheim, Yoav; Katzir, Eran; Zeides, Felix; Katz, Nadav; Paltiel, Yossi; Millo, Oded
2017-05-10
Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.
Von Bergen, Nicholas H; Subieta, Alberto; Brennan, Timothy J
2002-07-01
Excitatory amino acid receptors are important for both sensory and motor function in the spinal cord. We studied the effects of intrathecal LY293558, a competitive non-N-methyl-D-aspartate excitatory amino acid receptor antagonist, on motor and sensory function in rats to determine whether drugs blocking these receptors could potentially be used as alternative agents to local anesthetics for spinal anesthesia. Rats were tested before and 15-240 min after intrathecal injection of 5 nmol (in 10 microl) LY293558. Sensory function was tested at the hind paw using withdrawal response to pin prick and withdrawal to pinch with sharp forceps. Motor performance (ambulation, placing reflex, and Rotorod time), blood pressure, and heart rate were also evaluated. Some tests were repeated the next day. Responses after LY293558 were compared to injection of 40 microl bupivacaine, 0.75%. Pin-prick responses at the forepaw, chest, abdomen, hind leg, and hind paw were also examined after intrathecal LY293558. Intrathecal LY293558 blocked both sensory and motor responses through 180 min; complete recovery was present the following day. No change in blood pressure or heart rate occurred. The effects of LY293558 were more pronounced and sustained than those of bupivacaine. Segmental blockade of the response to pin prick was present after LY293558. Drugs like LY293558 that block alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptors may be an alternative to local anesthetics for spinal anesthesia in humans.
Effects of Lightning Injection on Power-MOSFETs
NASA Technical Reports Server (NTRS)
Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai
2009-01-01
Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.
NASA Technical Reports Server (NTRS)
O'Brien, T. Kevin; Czabaj, Michael W.; Hinkley, Jeffrey A.; Tsampas, Spiros; Greenhalgh, Emile S.; McCombe, Gregory; Bond, Ian P.; Trask, Richard
2013-01-01
A study was undertaken to develop a prototype method for adding through-thickness hollow glass tubes infused with uncured resin and hardener in a carbon Z-pin through-thickness reinforcement field embedded in a composite laminate. Two types of tube insertion techniques were attempted in an effort to ensure the glass tubes survived the panel manufacturing process. A self-healing resin was chosen with a very low viscosity, two component, liquid epoxy resin system designed to be mixed at a 2-to-1 ratio of epoxy to hardener. IM7/8552 carbon epoxy double cantilever beam (DCB) specimens were cut from the hybrid Z-pin and glass tube reinforced panels and tested. In-situ injection of resin and hardener directly into glass tubes, in a staggered pattern to allow for 2-to-1 ratio mixing, resulted in partial healing of the fracture plane, but only if the injection was performed while the specimen was held at maximum load after initial fracture. Hence, there is some potential for healing delamination via resin and hardener delivered through a network of through-thickness glass tubes, but only if the tubes are connected to a reservoir where additional material may be injected as needed.
Kamineni, Srinath; Norgren, Crystal R; Davidson, Evan M; Kamineni, Ellora P; Deane, Andrew S
2017-04-18
To provide a "patient-normalized" parameter in the proximal forearm. Sixty-three cadaveric upper extremities from thirty-five cadavers were studied. A muscle splitting approach was utilized to locate the posterior interosseous nerve (PIN) at the point where it emerges from beneath the supinator. The supinator was carefully incised to expose the midpoint length of the nerve as it passes into the forearm while preserving the associated fascial connections, thereby preserving the relationship of the nerve with the muscle. We measured the transepicondylar distance (TED), PIN distance in the forearm's neutral rotation position, pronation position, supination position, and the nerve width. Two individuals performed measurements using a digital caliper with inter-observer and intra-observer blinding. The results were analyzed with the Wilcoxon-Mann-Whitney test for paired samples. In pronation, the PIN was within two confidence intervals of 1.0 TED in 95% of cases (range 0.7-1.3 TED); in neutral, within two confidence intervals of 0.84 TED in 95% of cases (range 0.5-1.1 TED); in supination, within two confidence intervals of 0.72 TED in 95% of cases (range 0.5-0.9 TED). The mean PIN distance from the lateral epicondyle was 100% of TED in a pronated forearm, 84% in neutral, and 72% in supination. Predictive accuracy was highest in supination; in all cases the majority of specimens (90.47%-95.23%) are within 2 cm of the forearm position-specific percentage of TED. When comparing right to left sides for TEDs with the signed Wilcoxon-Mann-Whitney test for paired samples as well as a significance test (with normal distribution), the P -value was 0.0357 (significance - 0.05) indicating a significant difference between the two sides. This "patient normalized" parameter localizes the PIN crossing a line drawn between the lateral epicondyle and the radial styloid. Accurate PIN localization will aid in diagnosis, injections, and surgical approaches.
Kamineni, Srinath; Norgren, Crystal R; Davidson, Evan M; Kamineni, Ellora P; Deane, Andrew S
2017-01-01
AIM To provide a “patient-normalized” parameter in the proximal forearm. METHODS Sixty-three cadaveric upper extremities from thirty-five cadavers were studied. A muscle splitting approach was utilized to locate the posterior interosseous nerve (PIN) at the point where it emerges from beneath the supinator. The supinator was carefully incised to expose the midpoint length of the nerve as it passes into the forearm while preserving the associated fascial connections, thereby preserving the relationship of the nerve with the muscle. We measured the transepicondylar distance (TED), PIN distance in the forearm’s neutral rotation position, pronation position, supination position, and the nerve width. Two individuals performed measurements using a digital caliper with inter-observer and intra-observer blinding. The results were analyzed with the Wilcoxon-Mann-Whitney test for paired samples. RESULTS In pronation, the PIN was within two confidence intervals of 1.0 TED in 95% of cases (range 0.7-1.3 TED); in neutral, within two confidence intervals of 0.84 TED in 95% of cases (range 0.5-1.1 TED); in supination, within two confidence intervals of 0.72 TED in 95% of cases (range 0.5-0.9 TED). The mean PIN distance from the lateral epicondyle was 100% of TED in a pronated forearm, 84% in neutral, and 72% in supination. Predictive accuracy was highest in supination; in all cases the majority of specimens (90.47%-95.23%) are within 2 cm of the forearm position-specific percentage of TED. When comparing right to left sides for TEDs with the signed Wilcoxon-Mann-Whitney test for paired samples as well as a significance test (with normal distribution), the P-value was 0.0357 (significance - 0.05) indicating a significant difference between the two sides. CONCLUSION This “patient normalized” parameter localizes the PIN crossing a line drawn between the lateral epicondyle and the radial styloid. Accurate PIN localization will aid in diagnosis, injections, and surgical approaches. PMID:28473958
Pain referral and regional deep tissue hyperalgesia in experimental human hip pain models.
Izumi, Masashi; Petersen, Kristian Kjær; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas
2014-04-01
Hip disorder patients typically present with extensive pain referral and hyperalgesia. To better understand underlying mechanisms, an experimental hip pain model was established in which pain referrals and hyperalgesia could be studied under standardized conditions. In 16 healthy subjects, pain was induced by hypertonic saline injection into the gluteus medius tendon (GMT), adductor longus tendon (ALT), or gluteus medius muscle (GMM). Isotonic saline was injected contralaterally as control. Pain intensity was assessed on a visual analogue scale (VAS), and subjects mapped the pain distribution. Before, during, and after injections, passive hip joint pain provocation tests were completed, together with quantitative sensory testing as follows: pressure pain thresholds (PPTs), cuff algometry pain thresholds (cuff PPTs), cutaneous pin-prick sensitivity, and thermal pain thresholds. Hypertonic saline injected into the GMT resulted in higher VAS scores than hypertonic injections into the ALT and GMM (P<.05). Referred pain areas spread to larger parts of the leg after GMT and GMM injections compared with more regionalized pain pattern after ALT injections (P<.05). PPTs at the injection site were decreased after hypertonic saline injections into GMT and GMM compared with baseline, ALT injections, and isotonic saline. Cuff PPTs from the thigh were decreased after hypertonic saline injections into the ALT compared with baseline, GMT injections, and isotonic saline (P<.05). More subjects had positive joint pain provocation tests after hypertonic compared with isotonic saline injections (P<.05), indicating that this provocation test also assessed hyperalgesia in extra-articular soft tissues. The experimental models may open for better understanding of pain mechanisms associated with painful hip disorders. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Ion-implanted epitaxially grown ZnSe
NASA Technical Reports Server (NTRS)
Chernow, F.
1975-01-01
The use of ZnSe to obtain efficient, short wavelength injection luminescence was investigated. It was proposed that shorter wavelength emission and higher efficiency be achieved by employing a p-i-n diode structure rather than the normal p-n diode structure. The intervening i layer minimizes concentration quenching effects and the donor-acceptor pair states leading to long wavelength emission. The surface p layer was formed by ion implantation; implantation of the i layer rather than the n substrate permits higher, uncompensated p-type doping. An ion implanted p-n junction in ZnSe is efficiency-limited by high electron injection terminating in nonradiative recombination at the front surface, and by low hole injection resulting from the inability to obtain high conductivity p-type surface layers. While the injection ratio in p-n junctions was determined by the radio of majority carrier concentrations, the injection ratio in p-i-n structures was determined by the mobility ratios and/or space charge neutrality requirements in the i layer.
Transient fault behavior in a microprocessor: A case study
NASA Technical Reports Server (NTRS)
Duba, Patrick
1989-01-01
An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.
Hofmeister, Eric P.; Moran, Steven L.
2006-01-01
The purpose of this study was to determine the results of combined anterior and posterior interosseous neurectomy (AIN/PIN) in patients with chronic wrist pain secondary to dynamic instability, and to determine the predictability of selective AIN/PIN blocks with respect to pain relief, grip strength, and outcome of the neurectomy. A prospectively accrued chronic wrist pain registry was undertaken. Inclusion criteria were patients with arthroscopically confirmed dynamic wrist instability who had undergone a diagnostic AIN/PIN injection, followed by a single dorsal incision neurectomy. All patients completed Disabilities of the Arm, Shoulder and Hand outcome questionnaires preoperatively and at intervals postoperatively. Pre- and postoperative range of motion, grip strength, and percentage pain relief were recorded. Over a 3-year period, 50 wrists (48 patients) were enrolled: average follow-up was 28 months (range: 24–42 months). The average improvement in grip strength after denervation was 16% (p = 0.076), the average improvement in subjective pain rating was 51% (p < 0.0001), and the average improvement in Disabilities of the Arm, Shoulder, and Hand scores was 15 points (p = 0.0039). Improvement of pain from diagnostic injections was not predictive of final improvement of pain; however, improvement in grip strength after diagnostic injections did correlate with improved grip strength after surgery. Lack of improvement in subjective pain rating or grip strength after diagnostic injection approached statistical significance. There was no decrease in range of motion postoperatively. Fourteen patients (16 wrists) failed as defined by need for subsequent surgery. The results of AIN/PIN neurectomy demonstrate that it may be an effective alternative to wrist salvage or reconstructive procedures within the first few years of follow-up. PMID:18780027
Modeling of a sensitive time-of-flight flash LiDAR system
NASA Astrophysics Data System (ADS)
Fathipour, V.; Wheaton, S.; Johnson, W. E.; Mohseni, H.
2016-09-01
used for monitoring and profiling structures, range, velocity, vibration, and air turbulence. Remote sensing in the IR region has several advantages over the visible region, including higher transmitter energy while maintaining eye-safety requirements. Electron-injection detectors are a new class of detectors with high internal avalanche-free amplification together with an excess-noise-factor of unity. They have a cutoff wavelength of 1700 nm. Furthermore, they have an extremely low jitter. The detector operates in linear-mode and requires only bias voltage of a few volts. This together with the feedback stabilized gain mechanism, makes formation of large-format high pixel density electron-injection FPAs less challenging compared to other detector technologies such as avalanche photodetectors. These characteristics make electron-injection detectors an ideal choice for flash LiDAR application with mm scale resolution at longer ranges. Based on our experimentally measured device characteristics, a detailed theoretical LiDAR model was developed. In this model we compare the performance of the electron-injection detector with commercially available linear-mode InGaAs APD from (Hamamatsu G8931-20) as well as a p-i-n diode (Hamamatsu 11193 p-i-n). Flash LiDAR images obtained by our model, show the electron-injection detector array (of 100 x 100 element) achieves better resolution with higher signal-to-noise compared with both the InGaAs APD and the p-i-n array (of 100 x 100 element).
NASA Astrophysics Data System (ADS)
Tawara, T.; Matsunaga, S.; Fujimoto, T.; Ryo, M.; Miyazato, M.; Miyazawa, T.; Takenaka, K.; Miyajima, M.; Otsuki, A.; Yonezawa, Y.; Kato, T.; Okumura, H.; Kimoto, T.; Tsuchida, H.
2018-01-01
We investigated the relationship between the dislocation velocity and the injected carrier concentration on the expansion of single Shockley-type stacking faults by monitoring the electroluminescence from 4H-SiC PiN diodes with various anode Al concentrations. The injected carrier concentration was calculated using a device simulation that took into account the measured accumulated charge in the drift layer during diode turn-off. The dislocation velocity was strongly dependent on the injected hole concentration, which represents the excess carrier concentration. The activation energy of the dislocation velocity was quite small (below 0.001 eV between 310 and 386 K) over a fixed range of hole concentrations. The average threshold hole concentration required for the expansion of bar-shaped single Shockley-type stacking faults at the interface between the buffer layer and the substrate was determined to be 1.6-2.5 × 1016 cm-3 for diodes with a p-type epitaxial anode with various Al concentrations.
Failure analysis on false call probe pins of microprocessor test equipment
NASA Astrophysics Data System (ADS)
Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.
2017-09-01
A study has been conducted to investigate failure analysis on probe pins of test modules for microprocessor. The `health condition' of the probe pin is determined by the resistance value. A test module of 5V power supplied from Arduino UNO with "Four-wire Ohm measurement" method is implemented in this study to measure the resistance of the probe pins of a microprocessor. The probe pins from a scrapped computer motherboard is used as the test sample in this study. The functionality of the test module was validated with the pre-measurement experiment via VEE Pro software. Lastly, the experimental work have demonstrated that the implemented test module have the capability to identify the probe pin's `health condition' based on the measured resistance value.
The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice.
Barberi, Theresa J; Dunkle, Alexis; He, You-Wen; Racioppi, Luigi; Means, Anthony R
2012-01-01
Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.
Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor
NASA Technical Reports Server (NTRS)
Lyon, William F., III
1991-01-01
Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.
Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.
2006-11-21
An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.
ESD testing of the 8S actuator (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mchugh, Douglas C
2010-12-03
The 8S actuator is a hot-wire initiated explosive component used to drive the W76-1 2X Acorn 1V valve. It is known to be safe from human electrostatic discharge (ESD) pin-to-pin and all pin-to-cup stimuli as well as 1 amp/1 watt safe. However low impedance (furniture) ESD stimuli applied pin-to-pin has not been evaluated. Components were tested and the results analyzed. The 8S actuator has been shown to be immune to human and severe furniture ESD, whether applied pin-to-pin or pin-to-cup.
Retractable pin dual in-line package test clip
Bandzuch, Gregory S.; Kosslow, William J.
1996-01-01
This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.
NASA Astrophysics Data System (ADS)
Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo
2014-09-01
The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.
Preliminary Energy Deposition Calculations for GRIST-2 Tests in the TREAT Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, W. O.
1978-03-01
Preliminary studies have been made to estimate the energy deposition in GRIST-2 tests irradiated in the proposed TREAT Upgrade reactor. The objective of the GRIST-2 project is to test GCFR (gas cooled fast reactor) fuel under conditions of hypothetical core disruptive accidents (HCDA). Test requirements are (1) an energy deposition in the test of approximately 2500 J/g or higher, (2) a pin-to-pin variation in energy deposition of less than 10% and (3) the variation in the energy deposition across any pin (at a given axial position) should be less than 10%. Calculations performed by EG&G Idaho were made for 7more » and 37-pin tests using one-dimensional transport theory. These yield average energy deposition rates in the test at the axial peak which are in the 5000-5500 J/g range for the 37-pin test and are in the 8500-9000 J/g range for the 7-pin test. These values are obtained with a cadmium thermal neutron filter (TNF) surrounding the test. This hardens the flux to meet the third requirement. The central test pin is fully enriched UO{sub 2}, with the outer pins having lower enrichments to satisfy requirement 2. Addition of the TNF reduces the energy deposition by about 10%. The results in the above calculations are also compared with the Monte Carlo results computed by ANL-West personnel.« less
NASA Astrophysics Data System (ADS)
Shan, Hangying; Xiao, Jun; Chu, Qiyi
2018-05-01
The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.
Manoogian, Sarah; Lee, Adam K; Widmaier, James C
2017-08-01
No studies have assessed the effects of parameters associated with insertion temperature in modern self-drilling external fixation pins. The current study assessed how varying the presence of irrigation, insertion speed, and force impacted the insertion temperatures of 2 types of standard and self-drilling external fixation half pins. Seventy tests were conducted with 10 trials for 4 conditions on self-drilling pins, and 3 conditions for standard pins. Each test used a thermocouple inside the pin to measure temperature rise during insertion. Adding irrigation to the standard pin insertion significantly lowered the maximum temperature (P <0.001). Lowering the applied force for the standard pin did not have a significant change in temperature rise. Applying irrigation during the self-drilling pin tests dropped average rise in temperature from 151.3 ± 21.6°C to 124.1 ± 15.3°C (P = 0.005). When the self-drilling pin insertion was decreased considerably from 360 to 60 rpm, the temperature decreased significantly from 151.3 ± 21.6°C to 109.6 ± 14.0°C (P <0.001). When the force applied increased significantly, the corresponding self-drilling pin temperature increase was not significant. The standard pin had lower peak temperatures than the self-drilling pin for all conditions. Moreover, slowing down the insertion speed and adding irrigation helped mitigate the temperature increase of both pin types during insertion.
Test module development to detect the flase call probe pins on microeprocessor test equipment
NASA Astrophysics Data System (ADS)
Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.
2017-09-01
Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.
Sturges, Beverly K; Kapatkin, Amy S; Garcia, Tanya C; Anwer, Cona; Fukuda, Shimpei; Hitchens, Peta L; Wisner, Tristan; Hayashi, Kei; Stover, Susan M
2016-04-01
To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Ex vivo biomechanical, non-randomized. Cadaveric canine thoracolumbar specimens (n=16). Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens. © Copyright 2016 by The American College of Veterinary Surgeons.
NASA Technical Reports Server (NTRS)
Slaby, J. G.; Siegel, B. L.
1973-01-01
The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.
Scalable Testing Platform for CMOS Read In Integrated Circuits
2016-03-31
light - emitting - diode (SLED) current on a monitor out (MOUT) pin. The MOUT pin can produce voltage or current readings, depending on the test case. The...in it means the SPI communication works correctly. Lighting up LEDs: All the RIICs have the corner pixels brought out to output pins. Thus...external LEDs can be connected to pins in order to test the behavior of the pixel drive circuitry. Lighting up LEDs is a great visual representation that
On the use of topology optimization for improving heat transfer in molding process
NASA Astrophysics Data System (ADS)
Agazzi, A.; LeGoff, R.; Truc-Vu, C.
2016-10-01
In the plastic industry, one of the key factor is to control heat transfer. One way to achieve that goal is to design an effective cooling system. But in some area of the mold, where it is not possible to design cooling system, the use of a highly conductive material, such as copper pin, is often used. Most of the time, the location, the size and the quantity of the copper pin are made by empirical considerations, without using optimization procedures. In this article, it is proposed to use topology optimization, in order to improve transient conductive heat transfer in an injection/blowing mold. Two methodologies are applied and compared. Finally, the optimal distribution of cooper pin in the mold is given.
Variation in pin knot frequency in black walnut lumber cut from a small provenance/progeny test
Peter Y. S. Chen; Robert E. Bodkin; J. W. Van Sambeek
1995-01-01
This small study examined the frequency of knots (> 1 growth ring), pin knots (latent or suppressed buds), and pin knot clusters in 414 black walnut (Juglans nigra L.) lumber from 42 logs. 18 to 21 cm dbh, cut from a 14-year-old provenance/progeny test. Two boards from opposite sides of each log were analyzed for number of knots, pin knots, and...
Compact silicon photonic resonance-assisted variable optical attenuator
Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; ...
2016-11-17
Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.
Compact silicon photonic resonance-sssisted variable optical attenuator.
Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-11-28
A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.
Wear studies of all UHMWPE couples under various bio-tribological conditions.
Joyce, T J; Unsworth, A
2004-01-01
Wear tests were undertaken in which ultra high molecular weight polyethylene (UHMWPE) was rubbed against itself. Tests primarily employed a pin-on-plate wear test machine, with distilled water, Ringer solution and dilute bovine serum being used as the lubricants. Loads of 10N and 40N were employed, and some test pins had a rotational motion added. In all cases wear was high, with mean wear factors of up to 91 10 -6 mm3/Nm being measured, but the addition of rotation reduced the amount of material worn from the test plates. In the presence of bovine serum and under reciprocation only, pin wear was relatively low. With bovine serum as the lubricant, total mean wear factors for the UHMWPE couples were calculated to be in the range of 35 to 58 10-6mm3/Nm. Therefore the pin-on-plate tests showed that the choice of lubricant as well as the motion applied to the test pin had a significant influence on the wear volumes measured. A two-piece UHMWPE 'prosthesis' with matching hemispherical faces was fabricated and tested on a finger simulator. Distilled water was used as the lubricant and wear factors were found to be greater for the metacarpal component, 21 10 -6mm3/Nm, than the phalangeal component, 3 10-6mm3/Nm, after ten million cycles of testing. This result paralleled the greater wear seen by the plate than by the pin in the pin-on-plate tests under reciprocating motion. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 29-34).
Jeong, Yoonhwa; Jung, Mina; Kim, Myeung Ju; Hwang, Cheol Ho
2017-01-01
To develop Pleurotus eryngii varieties with improved medicinal qualities, protoplasts of P. eryngii were mutagenized using 4-nitroquinoleneoxide. The effects of the resulting variant mushrooms on a human cell were evaluated by applying their aqueous extracts to the human hepatoma cell line, HepG2, in vitro and examining any alteration in the proteomes of the treated HepG2. The P. eryngii mutant, NQ2A-12, was selected for its effects on increasing the expression level of Pin1 in HepG2. Pin1 is one of the peptidyl-prolyl cis-trans isomerases known to play an important role in repressing Alzheimer's disease pathogenesis. Validity of NQ2A-12 related to Alzheimer's disease was shown with an enhanced expression of Pin1 in a mouse brain tissue by injecting the NQ2A-12 extract. The mutant mushroom, NQ2A-12, could be developed as a new variety of P. eryngii with potential to protect against Alzheimer's disease.
Biomechanical and Cost Comparisons of Near-Far and Pin-Bar Constructs.
Whitney Kluk, Augusta; Zhang, Tina; Russell, Joseph P; Kim, Hyunchul; Hsieh, Adam H; O'Toole, Robert V
2017-03-01
Orthopedic dogma states that external fixator stiffness is improved by placing 1 pin close to the fracture and 1 as distant as possible ("near-far"). This fixator construct is thought to be less expensive than placing pins a shorter distance apart and using "pin-bar" clamps that attach pins to outriggers. The authors therefore hypothesized that the near-far construct is stiffer and less expensive. They compared mechanical stiffness and costs of near-far and pin-bar constructs commonly used for temporary external fixation of femoral shaft fractures. Their testing model simulated femoral shaft fractures in damage control situations. Fourth-generation synthetic femora (n=18) were used. The near-far construct had 2 pins that were 106 mm apart, placed 25 mm from the gap on each side of the fracture. The pin-bar construct pins were 55 mm apart, placed 40 mm from the gap. Mechanical testing was performed on a material test system machine. Stiffness was determined in the linear portion of the load-displacement curve for both constructs in 4 modes: axial compression, torsional loading, frontal plane 3-point bending, and sagittal plane 3-point bending. Costs were determined from a 2012 price guide. Compared with the near-far construct, the pin-bar construct had stiffness increased by 58% in axial compression (P<.05) and by 52% in torsional loading (P<.05). The pin-bar construct increased cost by 11%. In contrast to the authors' hypothesis and existing orthopedic dogma, the near-far construct was less stiff than the pin-bar construct and was similarly priced. Use of the pin-bar construct is mechanically and economically reasonable. [Orthopedics. 2017; 40(2):e238-e241.]. Copyright 2016, SLACK Incorporated.
Evaluation of electrical test conditions in MIL-M-38510 slash sheets
NASA Astrophysics Data System (ADS)
Sandgren, K.
1980-08-01
Adequacy of MIL-M-38510 slash sheet requirements for electrical test conditions in an automated test environment were evaluated. Military temperature range commercial devices of 13 types from 6 manufacturers were purchased. Software for testing these devices and for varying the test conditions was written for the Tektronix S-3260 test system. The devices were tested to evaluate the effects of pin-condition settling time, measurement sequence of the same and different D-C parameters, temperature sequence, differently defined temperature ambients, variable measurement conditions, sequence of time measurements, pin-application sequence, and undesignated pin condition ambiguity. An alternative to current tri-state enable and disable time measurements is proposed; S-3260 'open' and 'ground' conditions are characterized; and suggestions for changes in MIL-M-38510 slash sheet specifications and MIL-STD-883 test methods are proposed, both to correct errors and ambiguities and to facilitate the gathering of repeatable data on automated test equipment. Data obtained showed no sensitivity to measurement or temperature sequence nor to temperature ambient, provided that test times were not excessive. V sub ICP tests and some low current measurements required allowance for a pin condition settling time because of the test system speed. Some pin condition application sequences yielded incorrect measurements. Undefined terminal conditions of output pins were found to affect I sub OS and propagation delay time measurements. Truth table test results varied with test frequency and V sub IL for low-power Schottky devices.
Miller, Mark Carl; Redman, Christopher N; Mistovich, R Justin; Muriuki, Muturi; Sangimino, Mark J
2017-09-01
Pin fixation of Salter-II proximal humeral fractures in adolescents approaching skeletal maturity has potential complications that can be avoided with single-screw fixation. However, the strength of screw fixation relative to parallel and diverging pin fixation is unknown. To compare the biomechanical fixation strength between these fixation modalities, we used synthetic composite humeri, and then compared these results in composite bone with cadaveric humeri specimens. Parallel pinning, divergent pinning, and single-screw fixation repairs were performed on synthetic composite humeri with simulated fractures. Six specimens of each type were tested in axial loading and other 6 were tested in torsion. Five pair of cadaveric humeri were tested with diverging pins and single screws for comparison. Single-screw fixation was statistically stronger than pin fixation in axial and torsional loading in both composite and actual bone. There was no statistical difference between composite and cadaveric bone specimens. Single-screw fixation can offer greater stability to adolescent Salter-II fractures than traditional pinning. Single-screw fixation should be considered as a viable alternative to percutaneous pin fixation in transitional patients with little expected remaining growth.
Circuit reliability boosted by soldering pins of disconnect plugs to sockets
NASA Technical Reports Server (NTRS)
Pierce, W. B.
1964-01-01
Where disconnect pins must be used for wiring and testing a circuit, improved system reliability is obtained by making a permanent joint between pins and sockets of the disconnect plug. After the circuit has been tested, contact points may be fused through soldering, brazing, or welding.
NASA Astrophysics Data System (ADS)
Kim, Y.; Seigneur, C.; Duclaux, O.
2014-04-01
Plume-in-grid (PinG) models incorporating a host Eulerian model and a subgrid-scale model (usually a Gaussian plume or puff model) have been used for the simulations of stack emissions (e.g., fossil fuel-fired power plants and cement plants) for gaseous and particulate species such as nitrogen oxides (NOx), sulfur dioxide (SO2), particulate matter (PM) and mercury (Hg). Here, we describe the extension of a PinG model to study the impact of an oil refinery where volatile organic compound (VOC) emissions can be important. The model is based on a reactive PinG model for ozone (O3), which incorporates a three-dimensional (3-D) Eulerian model and a Gaussian puff model. The model is extended to treat PM, with treatments of aerosol chemistry, particle size distribution, and the formation of secondary aerosols, which are consistent in both the 3-D Eulerian host model and the Gaussian puff model. Furthermore, the PinG model is extended to include the treatment of volume sources to simulate fugitive VOC emissions. The new PinG model is evaluated over Greater Paris during July 2009. Model performance is satisfactory for O3, PM2.5 and most PM2.5 components. Two industrial sources, a coal-fired power plant and an oil refinery, are simulated with the PinG model. The characteristics of the sources (stack height and diameter, exhaust temperature and velocity) govern the surface concentrations of primary pollutants (NOx, SO2 and VOC). O3 concentrations are impacted differently near the power plant than near the refinery, because of the presence of VOC emissions at the latter. The formation of sulfate is influenced by both the dispersion of SO2 and the oxidant concentration; however, the former tends to dominate in the simulations presented here. The impact of PinG modeling on the formation of secondary organic aerosol (SOA) is small and results mostly from the effect of different oxidant concentrations on biogenic SOA formation. The investigation of the criteria for injecting plumes into the host model (fixed travel time and/or puff size) shows that a size-based criterion is recommended to treat the formation of secondary aerosols (sulfate, nitrate, and ammonium), in particular, farther downwind of the sources (beyond about 15 km). The impacts of PinG modeling are less significant in a simulation with a coarse grid size (10 km) than with a fine grid size (2 km), because the concentrations of the species emitted from the PinG sources are relatively less important compared to background concentrations when injected into the host model with a coarser grid size.
NASA Astrophysics Data System (ADS)
Kim, Y.; Seigneur, C.; Duclaux, O.
2013-11-01
Plume-in-grid (PinG) models incorporating a host Eulerian model and a subgrid-scale model (usually a Gaussian plume or puff model) have been used for the simulations of stack emissions (e.g., fossil fuel-fired power plants and cement plants) for gaseous and particulate species such as nitrogen oxides (NOx), sulfur dioxide (SO2), particulate matter (PM) and mercury (Hg). Here, we describe the extension of a PinG model to study the impact of an oil refinery where volatile organic compound (VOC) emissions can be important. The model is based on a reactive PinG model for ozone (O3), which incorporates a three-dimensional (3-D) Eulerian model and a Gaussian puff model. The model is extended to treat PM, with treatments of aerosol chemistry, particle size distribution, and the formation of secondary aerosols, which are consistent in both the 3-D Eulerian host model and the Gaussian puff model. Furthermore, the PinG model is extended to include the treatment of volume sources to simulate fugitive VOC emissions. The new PinG model is evaluated over Greater Paris during July 2009. Model performance is satisfactory for O3, PM2.5 and most PM2.5 components. Two industrial sources, a coal-fired power plant and an oil refinery, are simulated with the PinG model. The characteristics of the sources (stack height and diameter, exhaust temperature and velocity) govern the surface concentrations of primary pollutants (NOx, SO2 and VOC). O3 concentrations are impacted differently near the power plant than near the refinery, because of the presence of VOC emissions at the latter. The formation of sulfate is influenced by both the dispersion of SO2 and the oxidant concentration; however, the former tends to dominate in the simulations presented here. The impact of PinG modeling on the formation of secondary organic aerosols (SOA) is small and results mostly from the effect of different oxidant concentrations on biogenic SOA formation. The investigation of the criteria for injecting plumes into the host model (fixed travel time and/or puff size) shows that a size-based criterion is recommended to treat the formation of secondary aerosols (sulfate, nitrate, and ammonium), in particular, farther downwind of the sources (from about 15 km). The impacts of the PinG modeling are less significant in a simulation with a coarse grid size (10 km) than with a fine grid size (2 km), because the concentrations of the species emitted from the PinG sources are relatively less important compared to background concentrations when injected into the host model.
Shock characterization of TOAD pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirick, L.J.; Navarro, N.J.
1995-08-01
The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.« less
A study of the wear behaviour of ion implanted pure iron
NASA Astrophysics Data System (ADS)
Goode, P. D.; Peacock, A. T.; Asher, J.
1983-05-01
The technique of Thin Layer Activation (TLA) has been used to monitor disc wear in pin-on-disc wear tests. By simultaneously monitoring the pin wear the relationship between the wear rates of the two components of the wear couple has been studied. Tests were carried out using untreated pins wearing against ion implanted and untreated pure iron discs. The ratio of pin/disc volumetric wear rates was found to be constant in tests with unimplanted discs. In the implanted case the ratio was 8 initially, rising to the unimplatned value of 24 by a sliding distance of 25 km. The relationship between pin and disc wear after nitrogen implantation of the disc was approximately independent of dose between values of 7×10 16 and 1.2×10 18 N atoms cm -2. The actual wear rates of both pin and disc were significantly lower after implantation with the greater effects being observed om the unimplanted pin. The effects are explained in terms of the model of oxidative wear. In the unimplanted case the high pin wear relative to disc wear is considered to result from the higher mean temperature of pin asperities. Implantation appears to alter the mean asperity temperatures in such a way as to reduce the oxidation rate of the pin preferentially. Alternatively the effect of the implantation could be to reduce the critical thickness for removal of oxide formed on disc asperities.
Benchmarking of calculation schemes in APOLLO2 and COBAYA3 for WER lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleva, N.; Ivanov, P.; Todorova, G.
This paper presents solutions of the NURISP WER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2 mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes withmore » the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs. TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of Generalized Equivalence Theory (GET) or Black Box Homogenization (BBH) type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors. (authors)« less
NASA Astrophysics Data System (ADS)
Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal
2014-03-01
Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.
Scholes, S C; Unsworth, A
2007-04-01
In an attempt to prolong the lives of rubbing implantable devices, several 'new' materials have been examined to determine their suitability as joint couplings. Tests were performed on a multidirectional pin-on-plate machine to determine the wear of both pitch and PAN (polyacrylonitrile)-based carbon fibre reinforced-polyetheretherketone (CFR-PEEK-OPTIMA) pins articulating against both BioLox Delta and BioLox Forte plates (ceramic materials). Both reciprocation and rotational motion were applied to the samples. The tests were conducted using 24.5 per cent bovine serum as the lubricant (protein concentration 15 g/l). Although all four material combinations gave similar low wear with no statistically significant difference (p > 0.25), the lowest average total wear of these pin-on-plate tests was provided by CFR-PEEK-OPTIMA pitch pins versus BioLox Forte plates. This was much lower than the wear produced by conventional joint materials (metal-on-polyethylene) and metal-on-metal combinations when tested on the pin-on-plate machine. This therefore indicates optimism that these PEEK-OPTIMA-based material combinations may perform well in joint applications.
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...
2017-07-10
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
NASA Astrophysics Data System (ADS)
Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.
2017-10-01
This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.
Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes
NASA Astrophysics Data System (ADS)
Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime
2017-08-01
Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.
Study of Damped Set-Back Pins for S and A Mechanisms.
1976-11-01
arm device for artillery munitions. This damped set-back pin assembly is one of two safety features on a S and A device used in the M739 PD/XM587 ET...The damped set-back pin study program was for the design, testing, fabrication, and delivery and damped set-back pin assemblies for use in a safe and...fuzes for a rotating projectile. A pin, porous disc, return spring, floating O-ring, and sleeve comprise the selected damped set-back pin assembly
Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF
NASA Astrophysics Data System (ADS)
Porter, D. L.; Tsai, Hanchung
2012-08-01
The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.
Experimental and numerical study of Bondura® 6.6 PIN joints
NASA Astrophysics Data System (ADS)
Berkani, I.; Karlsen, Ø.; Lemu, H. G.
2017-12-01
Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.
NASA Astrophysics Data System (ADS)
Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.
2017-09-01
Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.
Shock characterization of toad pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirick, L.J.; Navarro, M.J.
1996-05-01
The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degree}, 60{degree} and 80{degree}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degree}C (125{degree}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degree}C for nine weeks and then heated to 50.2{degree}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves. {copyright} {ital 1996 American Institute of Physics.}« less
Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins
NASA Astrophysics Data System (ADS)
Sakhuja, Amit; Brevick, Jerald R.
2004-06-01
In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.
Natural convection and radiation heat transfer from an array of inclined pin fins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessio, M.E.; Kaminski, D.A.
1989-02-01
Natural convection and radiation from an air-cooled, highly populated pin-fin array were studied experimentally. the effects of pin density, pin length, and the angle of the pin to the horizontal were measured. Previous work by Sparrow and Vemuri treated the case of a vertical base plate with horizontal fins. recently, Sparrow and Vemuri (1986) extended their study to include results for vertical fins with a horizontal down-facing base plate, as well as vertical fins with a horizontal up-facing base plate. In this study, the base plate is maintained in a vertical position and the angle of the pins is variedmore » from the horizontal. The main intent of this study was to compare the performance of inclined pin fins with straight pin fins. In all cases studied, the straight, horizontal fins were superior to the inclined fins. It was possible to obtain a single general correlation of the test data. While this correlation is recommended within the range of parameters that were tested here, one significant parameter, the size of the base plate, was not varied.« less
Teeter, Matthew G; Langohr, G Daniel G; Medley, John B; Holdsworth, David W
2014-02-01
The purpose of this study was to determine the ability of micro-computed tomography to quantify wear in preclinical pin-on-plate testing of materials for use in joint arthroplasty. Wear testing of CoCr pins articulating against six polyetheretherketone plates was performed using a pin-on-plate apparatus over 2 million cycles. Change in volume due to wear was quantified with gravimetric analysis and with micro-computed tomography, and the volumes were compared. Separately, the volume of polyetheretherketone pin-on-plate specimens that had been soaking in fluid for 52 weeks was quantified with both gravimetric analysis and micro-computed tomography, and repeated after drying. The volume change with micro-computed tomography was compared to the mass change with gravimetric analysis. The mean wear volume measured was 8.02 ± 6.38 mm(3) with gravimetric analysis and 6.76 ± 5.38 mm(3) with micro-computed tomography (p = 0.06). Micro-computed tomography volume measurements did not show a statistically significant change with drying for either the plates (p = 0.60) or the pins (p = 0.09), yet drying had a significant effect on the gravimetric mass measurements for both the plates (p = 0.03) and the pins (p = 0.04). Micro-computed tomography provided accurate measurements of wear in polyetheretherketone pin-on-plate test specimens, and no statistically significant change was caused by fluid uptake. Micro-computed tomography quantifies wear depth and wear volume, mapped to the specific location of damage on the specimen, and is also capable of examining subsurface density as well as cracking. Its noncontact, nondestructive nature makes it ideal for preclinical testing of materials, in which further additional analysis techniques may be utilized.
Thermal shock testing for assuring reliability of glass-sealed microelectronic packages
NASA Technical Reports Server (NTRS)
Thomas, Walter B., III; Lewis, Michael D.
1991-01-01
Tests were performed to determine if thermal shocking is destructive to glass-to-metal seal microelectronic packages and if thermal shock step stressing can compare package reliabilities. Thermal shocking was shown to be not destructive to highly reliable glass seals. Pin-pull tests used to compare the interfacial pin glass strengths showed no differences between thermal shocked and not-thermal shocked headers. A 'critical stress resistance temperature' was not exhibited by the 14 pin Dual In-line Package (DIP) headers evaluated. Headers manufactured in cryogenic nitrogen based and exothermically generated atmospheres showed differences in as-received leak rates, residual oxide depths and pin glass interfacial strengths; these were caused by the different manufacturing methods, in particular, by the chemically etched pins used by one manufacturer. Both header types passed thermal shock tests to temperature differentials of 646 C. The sensitivity of helium leak rate measurements was improved up to 70 percent by baking headers for two hours at 200 C after thermal shocking.
NASA Astrophysics Data System (ADS)
Hoggan, Rita E.; Harp, Jason M.
2018-02-01
Injection casting has historically been used to fabricate metallic nuclear fuel on a large scale. Casting of intermetallic fuel forms, such as U3Si2, may be an alternative pathway for fabrication of fuel pins to powder metallurgy. To investigate casting on a small scale, arc melt gravity drop casting was employed to cast a one-off pin of U3Si2 for evaluation as a fabrication method for U3Si2 as a light water reactor fuel. The pin was sectioned and examined via optical microscopy and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy (EDS). Image analysis was used to estimate the volume fraction of phase impurities as well as porosity. The primary phase determined by EDS was U3Si2 with U-O and U-Si-W phase impurities. Unusually high levels of tungsten were observed because of accidental tungsten introduction during arc melting. No significant changes in microstructure were observed after annealing a section of the pin at 800°C for 72 h. The average density of the sectioned specimens was 12.4 g/cm3 measured via Archimedes principle immersion density and He gas displacement.
Test probe for surface mounted leadless chip carrier
Meyer, Kerry L.; Topolewski, John
1989-05-23
A test probe for a surface mounted leadless chip carrier is disclosed. The probed includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe.
Test probe for surface mounted leadless chip carrier
Meyer, K.L.; Topolewski, J.
1987-10-02
A test probe for a surface mounted leadless chip carrier is disclosed. The probe includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe. 1 fig.
Analysis of the OPERA 15-pin experiment with SABRE-2P. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The OPERA (Out-of-Pile Expulsion and Reentry Apparatus) experiment simulates the initial phase of a pump coastdown without scram of a liquid-metal fast breeder reactor, specifically the Fast Flux Test Facility. The test section is a 15-pin 60/sup 0/ triangular sector designed to simulate a full-size 61-pin hexagonal bundle. A previous study indicates this to be an adequate simulation. In this paper, experimental results from the OPERA 15-pin experiment performed at ANL in 1982 are compared to analytical calculations obtained with the SABRE-2P code at ORNL.
Open circuit voltage-decay behavior in amorphous p-i-n solar due to injection
NASA Astrophysics Data System (ADS)
Smrity, Manu; Dhariwal, S. R.
2018-05-01
The paper deals with the basic recombination processes at the dangling bond and the band tail states at various levels of injection, expressed in terms of short-circuit current density and their role in the behavior of amorphous solar cells. As the level of injection increases the fill factor decreases whereas the open circuit voltage increases very slowly, showing a saturation tendency. Calculations have been done for two values of tail state densities and shows that with an increase in tail state densities both, the fill factor and open circuit voltage decreases, results an overall degradation of the solar cell.
NASA Astrophysics Data System (ADS)
McKenzie, Neil
1989-12-01
We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.
Small scale mechanical characterization of thin foil materials via pin load microtesting
Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...
2015-05-06
In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less
In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.
Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung
2013-07-01
Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Fabrication of capsule assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1973-01-01
Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.
Kautzner, J; Držík, M; Handl, M; Povýšil, C; Kos, P; Trč, T; Havlas, V
2017-01-01
PURPOSE OF THE STUDY Hamstring grafts are commonly used for ACL reconstruction. The purpose of our study is to determine the effects of the suspension fixation compared to graft cross-pinning transfixation, and the effect(s) of structural damage during the preparation of the graft on biomechanical properties of the graft. MATERIAL AND METHODS The design of the study is a cadaveric biomechanical laboratory study. 38 fresh-frozen human hamstring specimens from 19 cadaveric donors were used. The grafts were tested for their loading properties. One half of each specimen was suspended over a 3.3mm pin, the other half was cross-pinned by a 3.3mm pin to simulate the graft cross-pinning technique. Single impact testing was performed and the failure force, elongation and acceleration/deceleration of each graft was recorded and the loading force vs. elongation of the graft specimens was calculated. Results for suspended and cross-pinned grafts were analysed using ANOVA method, comparing the grafts from each donor. RESULTS The ultimate strength of a double-strand gracilis graft was 1287 ± 134 N when suspended over a pin, the strength of a cross-pinned graft was 833 ± 111 N. For double-strand semitendinosus grafts the strengths were 1883 ± 198 and 997 ± 234 N, respectively. Thus, the failure load for the cross-pinning method is only 64.7% or 52.9% for the suspension method. DISCUSSION Structural damage to the graft significantly reduces the graft strength. Also, extensive suturing during preparation of the graft reduces its strength. CONCLUSIONS Fixation methods that do not interfere with the graft's structure should be used to reduce the risk of graft failure. Key words: ACL reconstruction, hamstring graft, biomechanical testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.
1996-12-31
The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affectedmore » the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.« less
An Accelerated Method for Testing Soldering Tendency of Core Pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Qingyou; Xu, Hanbing; Ried, Paul
2010-01-01
An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Oelgoetz, Peter A.
1999-01-01
The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.
Dong, Huan; Mukinay, Tatiana; Li, Maojun; Hood, Richard; Soo, Sein Leung; Cockshott, Simon; Sammons, Rachel; Li, Xiaoying
2017-01-01
In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO 2 rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.
A hip wear simulator with 100 test stations.
Saikko, V
2005-09-01
A novel high-capacity hip wear simulator of the pin-on-disc type was designed, built, and validated. This so-called Super-CTPOD (circularly translating pin-on-disc) device has as many as 100 separate test stations, being an advanced version of the previously validated 12-station CTPOD. A validity test was done so that in all stations the specimens and the test conditions were as similar as possible. Hence, for the first time in this field, an adequate number of similar tests was done for a proper statistical analysis of wear data. The pins were conventional, gamma-sterilized ultra-high molecular weight polyethylene, and the discs were polished CoCr. The lubricant was diluted calf serum and the test length 3 million cycles. In the course of the test, the pins became highly polished, whereas the discs remained practically unchanged. The majority of the polyethylene wear particles were rounded, with a mean diameter of 0.25 microm. The 100 wear factor values computed from the 100 steady state wear rate values of the pins were normally distributed, the mean +/- 95 per cent confidence interval being 1.63 +/- 0.017 x 10(-6) mm3 /N m. The standard deviation was 5.4 per cent of the mean. There were no outliers. The wear mechanisms and the wear factor agreed well with clinical findings. Altogether, the Super-CTPOD test system was shown to be a unique combination of validity, low variation, capacity, efficiency, reliability, productivity, economy, ease of operation, and compact size.
Fabrication of fuel pin assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1972-01-01
Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.
Heat transfer coefficients for staggered arrays of short pin fins
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1981-01-01
Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
Van Berkel, Gary J.
2015-10-06
A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.
Fuel Pin Behavior Under the Slow Power Ramp Transients in the CABRI-2 Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpenel, Jean; Lemoine, Francette; Sato, Ikken
Slow ramp-type transient-overpower tests were performed within the framework of the international CABRI-2 experimental program. The implemented power transients of {approx}1% nominal power/s correspond to a control rod withdrawal-type accident in a liquid-metal-cooled fast breeder reactor (FBR). The analysis of the tests includes the information elements derived from the hodoscope signals, which were assessed quantitatively and supported by destructive and nondestructive posttest examinations. These tests, performed with fuels of various geometries, demonstrated the high margin to failure of such FBR fuel pins within the expected power level before the emergency reactor shutdown. At the same time, these tests performed withmore » high- and low-smear-density industrial pins led to clarification of the influence of pellet design on fuel pin behavior under high overpower condition. With the high-smear-density solid fuel pellet pin of high burnup level, the retained gaseous fission products played an important role in the solid fuel swelling, leading to clad deformation and failure at a maximum heating rate of 81 kW.m{sup -1}, which is much greater than the end-of-life (EOL) linear rating of the pin. With the low smear-density annular pellet pin, an important fuel swelling takes place, leading to degradation of the fuel thermal conductivity. This effect was detected at the power level around 73 kW.m{sup -1}, which is also much higher than the EOL value of the pin. Furthermore, the absence of clad deformation, and consequently of failure even at the power level going up to 134.7 kW.m{sup -1}, confirmed the very high margin to failure. In consequence, it was clarified that gaseous fission products have significant effects on failure threshold as well as on thermal performance during overpower condition, and such effects are significantly dependent on fuel design and power operation conditions.« less
Summary and evaluation: fuel dynamics loss-of-flow experiments (tests L2, L3, and L4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barts, E.W.; Deitrich, L.W.; Eberhart, J.G.
1975-09-01
Three similar experiments conducted to support the analyses of hypothetical LMFBR unprotected-loss-of-flow accidents are summarized and evaluated. The tests, designated L2, L3, and L4, provided experimental data against which accident-analysis codes could be compared, so as to guide further analysis and modeling of the initiating phases of the hypothetical accident. The tests were conducted using seven-pin bundles of mixed-oxide fuel pins in Mark-II flowing-sodium loops in the TREAT reactor. Test L2 used fresh fuel. Tests L3 and L4 used irradiated fuel pins having, respectively, ''intermediate-power'' (no central void) and ''high-power'' (fully developed central void) microstructure. 12 references. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C. E.; Sowa, E. S.; Okrent, D.
1961-08-01
Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)
NASA Technical Reports Server (NTRS)
Thoms, K. R.
1975-01-01
Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.
Experimental Modal Analysis of Rectangular and Circular Beams
ERIC Educational Resources Information Center
Emory, Benjamin H.; Zhu, Wei Dong
2006-01-01
Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…
Pneumatic fractures in confined granular media
NASA Astrophysics Data System (ADS)
Eriksen, Fredrik K.; Toussaint, Renaud; Turquet, Antoine L.; Mâløy, Knut J.; Flekkøy, Eirik G.
2017-06-01
We perform experiments where air is injected at a constant overpressure Pin, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for Pin below 10 kPa, to large thick channels formed by erosion and fingers merging for high Pin around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w (d ) ∝dβ , where β =0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d2d /d w2˜κ ˜d1 -2 β , but not of the slope d w /d d ˜dβ -1 , i.e., more rounded tips rather than pointy cusps, as they would be for the case β >1 . For increasing Pin, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v0 is found to scale with injection pressure as v0∝Pin3/2 , while at a critical time tc there is a cross-over to the behavior v (t ) ∝t-α , where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully developed patterns. For example, for patterns resulting from intermediate Pin around 100-150 kPa, we find that the box-counting dimensions lie within the range DB∈[1.53 ,1.62 ] , similar to viscous fingering fractals in porous media.
NASA Astrophysics Data System (ADS)
Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi
2018-02-01
Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Krueger, Ronald
2006-01-01
One particular concern of polymer matrix composite laminates is the relatively low resistance to delamination cracking, in particular when the dominant type of failure is mode I opening. One method proposed for alleviating this problem involves the insertion pultruded carbon pins through the laminate thickness. The pins, known as z-pins, are inserted into the prepreg laminate using an ultrasonic hammer prior to the curing process, resulting in a field of pins embedded normal to the laminate plane as illustrated in Figure. 1. Pin diameters range between 0.28-mm to 0.5-mm and standard areal densities range from 0.5% to 4%. The z-pins are provided by the manufacturer, Aztex(Registered TradeMark) , in a low-density foam preform, which acts to stabilize orientation of the pins during the insertion process [1-3]. Typical pin materials include boron and carbon fibers embedded in a polymer matrix. A number of methods have been developed for predicting delamination growth in laminates reinforced with z-pins. During a study on the effect of z-pin reinforcement on mode I delamination resistance, finite element analyses of z-pin reinforced double cantilever beam (DCB) specimens were performed by Cartie and Partridge [4]. The z-pin bridging stresses were modeled by applying equivalent forces at the pin locations. Single z-pin pull-out tests were performed to characterize the traction law of the pins under mode I loading conditions. Analytical solutions for delamination growth in z-pin reinforced DCB specimens were independently derived by Robinson and Das [5] and Ratcliffe and O'Brien [6]. In the former case, pin bridging stresses were modeled using a distributed load and in the latter example the bridging stresses were discretely modeled by way of grounded springs. Additionally, Robinson and Das developed a data reduction strategy for calculating mode I fracture toughness, G(sub Ic), from a z-pin reinforced DCB specimen test [5]. In both cases a traction law similar to that adopted by Cartie and Partridge was used to represent z-pin failure under mode I loading conditions. In the current work spring elements available in most commercial finite element codes were used to model z-pins. The traction law used in previous analyses [4-6] was employed to represent z-pin damage. This method is intended for and is limited to simulating z-pins in composite laminate structure containing mode I-dominated delamination cracking. The current technique differs from previous analyses in that spring finite elements (available in commercial codes) are employed for simulating zpins, reducing the complexity of the analysis construction process. Furthermore, the analysis method can be applied to general structure that experiences mode I-dominated delamination cracking, in contrast to existing analytical solutions that are only applicable to coupon DCB specimens.
Study of the influence of hole quality on composite materials
NASA Technical Reports Server (NTRS)
Pengra, J. J.
1980-01-01
The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.
NASA Astrophysics Data System (ADS)
Chen, Cao; Bing, Zhang; Xin, Li; Longsheng, Wu; Junfeng, Wang
2014-11-01
A design of an inverse U-shape buried doping in a pinned photodiode (PPD) of CMOS image sensors is proposed for electrical crosstalk suppression between adjacent pixels. The architecture achieves no extra fill factor consumption, and proper built-in electric fields can be established according to the doping gradient created by the injections of the extremely low P-type doping buried regions in the epitaxial layer, causing the excess electrons to easily drift back to the photosensitive area rarely with a diffusion probability; the overall junction capacitance and photosensitive area extensions for a full well capacity (FWC) and internal quantum efficiency (IQE) improving are achieved by the injection of a buried N-type doping. By considering the image lag issue, the process parameters of all the injections have been precisely optimized. Optical simulation results based on the finite difference time domain method show that compared to the conventional PPD, the electrical crosstalk rate of the proposed architecture can be decreased by 60%-80% at an incident wavelength beyond 450 nm, IQE can be clearly improved at an incident wavelength between 400 and 600 nm, and the FWC can be enhanced by 107.5%. Furthermore, the image lag performance is sustained to a perfect low level. The present study provides important guidance on the design of ultra high resolution image sensors.
[Determination of antiphospholipid antibodies in serum using ELISA].
Fialová, L; Mikulíková, L; Malbohan, I; Průcha, M; Palecková, A; Cerný, V
1994-05-01
The authors compare two ELISA methods for the assessment of antiphospholipid antibodies, classes IgG and IgM, in serum: ELISA Pin Plate System ALPHA DIALAB Co. and the ELISA method developed in the Research Institute of Rheumatic Diseases. Both methods use cardiolipin as antigen. In the Pin Plate test the immunochemical reaction antigen/antibody does not take place at the surface of the pits of the microtitration plates but on the tip of the next plate. The results of examinations of antiphospholipid antibodies obtained by the tested methods are comparable, the Pin Plate test is quicker and more sensitive, but its price limits routine use.
Wang, Shengguang; Zhang, Hua; Zhu, Jianquan; Li, Chenguang; Zhu, Jinfang; Shi, Bowen; Zhang, Bin
2017-01-01
PinX1 has been identified as a suppressor of telomerase enzymatic activity. However, the tumour-suppressive roles of PinX1 in different types of human cancers are unclear. PinX1 expression status and its correlation with clinicopathological features in non-small-cell lung cancer (NSCLC) have not been investigated. Accordingly, in this study, we aimed to evaluate the roles of PinX1 in NSCLC. PinX1 expression status was examined by immunohistochemistry using tissue microarray from a total of 158 patients. Correlations among PinX1 expression, clinicopathological variables, and patient survival were analysed. Furthermore, we overexpressed PinX1 in NSCLC cells and tested telomerase activity using real-time quantitative telomeric repeat amplification protocol (qTRAP) assays. Proliferation and migration of NSCLC cells were examined using the MTS method, wound healing assays, and transwell assays, respectively. Our results showed that negative PinX1 expression was associated with a poor prognosis in NSCLC. Sex, smoking status, lymph gland status, subcarinal lymph node status, pathological stage, and PinX1 expression were related to survival. PinX1 was not an independent prognostic factor in NSCLC. PinX1 overexpression inhibited proliferation and migration in NSCLC cells by suppressing telomerase activity. Our findings suggested that PinX1 could be a potential tumour suppressor in NSCLC and that loss of PinX1 promoted NSCLC progression. PMID:28815183
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
NASA Astrophysics Data System (ADS)
Hong, Ling; Bian, Guangdong; Hu, Shugen; Wang, Linlin; Dacosta, Herbert
2015-07-01
We investigated the tribological properties of CrAlN and TiN coatings produced by electron beam plasma-assisted physical vapor deposition by nano- and micro-scale wear tests. For comparison, we also conducted nano-indentation, nano-scanning wear tests, and pin-on-disk tribotests on uncoated M2 steel. The results indicate that, after nano-scale sliding tests against diamond indenter and pin-on-disk tests against ceramic alumina counterface pins, the CrAlN coating presents superior abrasive wear resistance compared to the TiN-coated and uncoated M2 steel samples. Against aluminum counterface, aluminum is more prone to attach on the CrAlN coating surface compared to TiN coating, but no apparent adhesive wear was observed, which has occurred on the TiN coating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with ceiling fan light kits that have medium screw base sockets shall conform to the requirements... testing pin-based fluorescent lamps packaged with ceiling fan light kits that have pin-based sockets shall... base sockets, measure the efficacy, expressed in lumens per watt, in accordance with the test...
Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins
NASA Astrophysics Data System (ADS)
Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus
2018-05-01
The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.
NASA Astrophysics Data System (ADS)
Hasegawa, N.; Koike, F.; Ikarashi, K.; Ishizone, M.; Kawamura, M.; Nakazawa, Y.; Takahashi, A.; Tomita, H.; Iwasaki, H.; Sahashi, M.
2002-05-01
To implement the specular nano-oxide-layer (NOL) spin valve (SV) heads for use in practical applications, it is key to simultaneously achieve a good specular effect of the NOL inserted in the synthetic ferrimagnet pinned layer (i.e., high magnetoresistance MR performance) and a strong pinning field through the NOL. By using CoFe+X as a substance to be subjected to oxidation, we obtained the NOL specular SV films simultaneously achieving a high MR ratio of 17%-18% and a high pinning field of 1100-1500 Oe. Narrow track (0.12 μm) heads were fabricated and they showed a high sensitivity of 10 mV/μm. Several reliability tests were done both at the sheet film level and the actual head level. The oxygen inside NOL was found to be stable up to 350 °C, and pinned layer magnetization canting after orthogonal field annealing was found to be almost the same as today's non-NOL SV films. An electrostatic discharge test and accelerated lifetime test were also performed and NOL specular heads were demonstrated to have almost the same robustness as today's non-NOL heads.
Joyce, T J; Unsworth, A
1996-01-01
Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.
Li, Nianhu; Xu, Zhanwang; Wooley, Paul H; Zhang, Jianxin; Yang, Shang-You
2014-01-01
Wear debris associated periprosthetic osteolysis represents a major pathological process associated with the aseptic loosening of joint prostheses. Naringin is a major flavonoid identified in grapefruit. Studies have shown that naringin possesses many pharmacological properties including effects on bone metabolism. The current study evaluated the influence of naringin on wear debris induced osteoclastic bone resorption both in vitro and in vivo. The osteoclast precursor cell line RAW 264.7 was cultured and stimulated with polymethylmethacrylate (PMMA) particles followed by treatment with naringin at several doses. Tartrate resistant acid phosphatase (TRAP), calcium release, and gene expression profiles of TRAP, cathepsin K, and receptor activator of nuclear factor-kappa B were sequentially evaluated. PMMA challenged murine air pouch and the load bearing tibia titanium pin-implantation mouse models were used to evaluate the effects of naringin in controlling PMMA induced bone resorption. Histological analyses and biomechanical pullout tests were performed following the animal experimentation. The in vitro data clearly demonstrated the inhibitory effects of naringin in PMMA induced osteoclastogenesis. The naringin dose of 10 μg/mL exhibited the most significant influence on the suppression of TRAP activities. Naringin treatment also markedly decreased calcium release in the stimulated cell culture medium. The short-term air pouch mouse study revealed that local injection of naringin ameliorated the PMMA induced inflammatory tissue response and subsequent bone resorption. The long-term tibia pin-implantation mouse model study suggested that daily oral gavage of naringin at 300 mg/kg dosage for 30 days significantly alleviated the periprosthetic bone resorption. A significant increase of periprosthetic bone volume and regaining of the pin stability were found in naringin treated mice. Overall, this study suggests that naringin may serve as a potential therapeutic agent to treat wear debris associated osteolysis. PMID:24376342
Internally damped, self-arresting vertical drop-weight impact test apparatus
NASA Technical Reports Server (NTRS)
Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)
1996-01-01
A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.
Internally damped, self-arresting vertical drop-weight impact test apparatus
NASA Technical Reports Server (NTRS)
Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Water, Manfred A. (Inventor)
1995-01-01
A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.
Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.
2009-01-01
Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.
Evaluating authentication options for mobile health applications in younger and older adults
Khan, Hassan; Hengartner, Urs; Ong, Stephanie; Logan, Alexander G.; Vogel, Daniel; Gebotys, Robert; Yang, Jilan
2018-01-01
Objective Apps promoting patient self-management may improve health outcomes. However, methods to secure stored information on mobile devices may adversely affect usability. We tested the reliability and usability of common user authentication techniques in younger and older adults. Methodology Usability testing was conducted in two age groups, 18 to 30 years and 50 years and older. After completing a demographic questionnaire, each participant tested four authentication options in random order: four-digit personal identification number (PIN), graphical password (GRAPHICAL), Android pattern-lock (PATTERN), and a swipe-style Android fingerprint scanner (FINGERPRINT). Participants rated each option using the Systems Usability Scale (SUS). Results A total of 59 older and 43 younger participants completed the study. Overall, PATTERN was the fastest option (3.44s), and PIN had the fewest errors per attempt (0.02). Participants were able to login using PIN, PATTERN, and GRAPHICAL at least 98% of the time. FINGERPRINT was the slowest (26.97s), had an average of 1.46 errors per attempt, and had a successful login rate of 85%. Overall, PIN and PATTERN had higher SUS scores than FINGERPRINT and GRAPHICAL. Compared to younger participants, older participants were also less likely to find PATTERN to be tiring, annoying or time consuming and less likely to consider PIN to be time consuming. Younger participants were more likely to rate GRAPHICAL as annoying, time consuming and tiring than older participants. Conclusions On mobile devices, PIN and pattern-lock outperformed graphical passwords and swipe-style fingerprints. All participants took longer to authenticate using the swipe-style fingerprint compared to other options. Older participants also took two to three seconds longer to authenticate using the PIN, pattern and graphical passwords though this did not appear to affect perceived usability. PMID:29300736
Evaluating authentication options for mobile health applications in younger and older adults.
Grindrod, Kelly; Khan, Hassan; Hengartner, Urs; Ong, Stephanie; Logan, Alexander G; Vogel, Daniel; Gebotys, Robert; Yang, Jilan
2018-01-01
Apps promoting patient self-management may improve health outcomes. However, methods to secure stored information on mobile devices may adversely affect usability. We tested the reliability and usability of common user authentication techniques in younger and older adults. Usability testing was conducted in two age groups, 18 to 30 years and 50 years and older. After completing a demographic questionnaire, each participant tested four authentication options in random order: four-digit personal identification number (PIN), graphical password (GRAPHICAL), Android pattern-lock (PATTERN), and a swipe-style Android fingerprint scanner (FINGERPRINT). Participants rated each option using the Systems Usability Scale (SUS). A total of 59 older and 43 younger participants completed the study. Overall, PATTERN was the fastest option (3.44s), and PIN had the fewest errors per attempt (0.02). Participants were able to login using PIN, PATTERN, and GRAPHICAL at least 98% of the time. FINGERPRINT was the slowest (26.97s), had an average of 1.46 errors per attempt, and had a successful login rate of 85%. Overall, PIN and PATTERN had higher SUS scores than FINGERPRINT and GRAPHICAL. Compared to younger participants, older participants were also less likely to find PATTERN to be tiring, annoying or time consuming and less likely to consider PIN to be time consuming. Younger participants were more likely to rate GRAPHICAL as annoying, time consuming and tiring than older participants. On mobile devices, PIN and pattern-lock outperformed graphical passwords and swipe-style fingerprints. All participants took longer to authenticate using the swipe-style fingerprint compared to other options. Older participants also took two to three seconds longer to authenticate using the PIN, pattern and graphical passwords though this did not appear to affect perceived usability.
Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.
Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D
2015-12-01
A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
High Performance Double-null Plasma Operation Under Radiating Divertor Conditions
NASA Astrophysics Data System (ADS)
Petrie, T. W.; Osborne, T.; Leonard, A. W.; Luce, T. C.; Petty, C. C.; Fenstermacher, M. E.; Lasnier, C. J.; Turco, F.; Watkins, J. G.
2017-10-01
We report on heat flux reduction experiments in which deuterium/neon- or deuterium/argon-based radiating mantle/divertor approaches were applied to high performance double-null (DN) plasmas (H98 1.4-1.7,βN 4 , q 95 6) with a combined neutral beam and ECH power input PIN 15 MW. When the radial location of the ECH deposition is close to the magnetic axis (e.g., ρ <=0.20), the radial profiles of both injected and intrinsic impurities are flat to somewhat hollow. For deposition farther out (e.g., ρ=0.45), the impurity profiles are highly peaked on axis, which would make high performance DN operation with impurity injection more problematical. Comparison of neon with argon `seeding' with respect to core dilution, energy confinement, and heat flux reduction under these conditions favors argon. Conditions that lead to an improved τE as predicted previously from ELITE code analysis, i.e., very high PIN, proximity to magnetic balance, and higher q95, are largely consistent with this data. Work was supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54761, and DE-AC04-94AL85000.
Clint, S A; Eastwood, D M; Chasseaud, M; Calder, P R; Marsh, D R
2010-02-01
Although there is much in the literature regarding pin site infections, there is no accepted, validated method for documenting their state. We present a system for reliably labelling pin sites on any ring fixator construct and an easy-to-remember grading system to document the state of each pin site. Each site is graded in terms of erythema, pain and discharge to give a 3-point scale, named "Good", "Bad" and "Ugly" for ease of recall. This system was tested for intra- and inter-observer reproducibility. 15 patients undergoing elective limb reconstruction were recruited. A total of 218 pin sites were independently scored by 2 examiners. 82 were then re-examined later by the same examiners. 514 pin sites were felt to be "Good", 80 "Bad" and 6 "Ugly". The reproducibility of the system was found to be excellent. We feel our system gives a quick, reliable and reproducible method to monitor individual pin sites and their response to treatment. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Mohammed, Riazuddin; Johnson, Karl; Bache, Ed
2010-07-01
Multiple radiographic images may be necessary during the standard procedure of in-situ pinning of slipped capital femoral epiphysis (SCFE) hips. This procedure can be performed with the patient positioned on a fracture table or a radiolucent table. Our study aims to look at any differences in the amount and duration of radiation exposure for in-situ pinning of SCFE performed using a traction table or a radiolucent table. Sixteen hips in thirteen patients who were pinned on radiolucent table were compared for the cumulative radiation exposure to 35 hips pinned on a fracture table in 33 patients during the same time period. Cumulative radiation dose was measured as dose area product in Gray centimeter2 and the duration of exposure was measured in minutes. Appropriate statistical tests were used to test the significance of any differences. Mean cumulative radiation dose for SCFE pinned on radiolucent table was statistically less than for those pinned on fracture table (P<0.05). The mean duration of radiation exposure on either table was not significantly different. Lateral projections may increase the radiation doses compared with anteroposterior projections because of the higher exposure parameters needed for side imaging. Our results showing decreased exposure doses on the radiolucent table are probably because of the ease of a frog leg lateral positioning obtained and thereby the ease of lateral imaging. In-situ pinning of SCFE hips on a radiolucent table has an additional advantage that the radiation dose during the procedure is significantly less than that of the procedure that is performed on a fracture table.
Shen, Congxiang; Liu, Yanhui; Wen, Zhong; Yang, Keke; Li, Guanxue; Zhang, Shenhua; Zhang, Xinyu
2015-06-23
To explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. Transfected nasopharyngeal carcinoma 5-8F cell lines with pCDH-CMV-PinX1-copGFP vector constructed by lentivirus to generate Lenti-PinX1-5-8F cells containing PinX1 gene, using Lenti-Ctrl-5-8F cell (blank vector without PinX1 gene was used to transfect 5-8F cell lines) and 5-8F cell as controls. Expression of PinX1 gene, telomerase activity, the inhibition of cancer cells proliferation, combined anticancer effect with Cisplatin and the expression of lung resistance protein (LRP) and Bcl-2 were detected with fluorescent quantitation polymerase chain reaction (PCR), flow cytometry, thiazolyl blue (MTT) method, areole test, Western blot and drug sensitivity test, respectively, in four groups (Lenti-PinX1-5-8F cell + Cisplatin, Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell) so as to explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. The telomerase activity in Lenti-PinX1-5-8F cell (0.146 ± 0.004) was lower than those in the other two control cells (Lenti-Ctrl-5-8F cell: 0.967 ± 0.016, 5-8F cell: 1.000 ± 0.034, both P < 0.01). The cancer cell biological activity could be intensively inhibited by 16 µg/ml Cisplatin after lower level telomerase activity induced by PinX1 gene. Proliferation index (PI) (%) in Lenti-PinX1-5-8F cell + Cisplatin (14.39 ± 3.66) was also less than the other groups (Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell groups, 32.97 ± 3.00, 31.18 ± 4.24 and 47.19 ± 4.19, all P < 0.01). And same time, the expressions of LRP (0.64 ± 0.14) and Bcl-2 (0.57 ± 0.12) protein in Lenti-PinX1-5-8F cells were obviously reduced than those in other two group cells (Lenti-Ctrl-5-8F cell: 0.84 ± 0.19 and 0.81 ± 0.16; 5-8F cell: 0.83 ± 0.35 and 0.78 ± 0.27; all P < 0.01). PinX1 gene can enhance the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin, which may be mediated by the down-regulation of telomerase activity and the inhibition of LRP and Bcl-2 gene in nasopharyngeal carcinoma cells.
An Engineering Methodology for Implementing and Testing VLSI (Very Large Scale Integrated) Circuits
1989-03-01
the pad frame and associated routing, conducted additional testing. and submitted the finished design effort to MOSIS for manufacturing. Throughout...register bank TSTCON Allows the XNOR circuitry to enter the TEST register bank PADIN Test signal to check operation of the input pad VCC Power connection...MOSSIM II simulation program. but the design offered little observability within the circuit. The initial design used 35 pins of a 40 pin pad frame
Zheng, Zhigang; Yang, Xiaoming; Fu, Yaping; Zhu, Longfei; Wei, Hantian; Lin, Xinchun
2017-01-01
Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1, a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis-acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo. PMID:28951734
Zheng, Zhigang; Yang, Xiaoming; Fu, Yaping; Zhu, Longfei; Wei, Hantian; Lin, Xinchun
2017-01-01
Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1 , a homolog of Pin1At , from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis -acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis . On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.
Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.; Smith, R. L.
1973-01-01
Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.
Analysis of Full-Test tools and their limitations as applied to terminal junction blocks
NASA Technical Reports Server (NTRS)
Smith, J. L.
1983-01-01
Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.
Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian
The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less
A double tuned rail damper—increased damping at the two first pinned-pinned frequencies
NASA Astrophysics Data System (ADS)
Maes, J.; Sol, H.
2003-10-01
Railway-induced vibrations are a growing matter of environmental concern. The rapid development of transportation, the increase of vehicle speeds and vehicle weights have resulted in higher vibration levels. In the meantime vibrations that were tolerated in the past are now considered to be a nuisance. Numerous solutions have been proposed to remedy these problems. The majority only acts on a specific part of the dynamic behaviour of the track. This paper presents a possible solution to reduce the noise generated by the 'pinned-pinned' frequencies. Pinned-pinned frequencies correspond with standing waves whose nodes are positioned exactly at the sleeper supports. The two first pinned-pinned frequencies are situated approximately at 950 and 2200 Hz (UIC60-rail and sleeper spacing of 0.60 m). To attenuate these vibrations, the Department of MEMC at the VUB has developed a dynamic vibration absorber called the Double Tuned Rail Damper (DTRD). The DTRD is mounted between two sleepers on the rail and is powered by the motion of the rail. The DTRD consists of two major parts: a steel plate which is connected to the rail with an interface of an elastic layer, and a rubber mass. The two first resonance frequencies of the steel plate coincide with the targeted pinned-pinned frequencies of the rail. The rubber mass acts as a motion controller and energy absorber. Measurements at a test track of the French railway company (SNCF) have shown considerable attenuation of the envisaged pinned-pinned frequencies. The attenuation rate surpasses 5 dB/m at certain frequency bands.
Irradiation of three T-111 clad uranium nitride fuel pins for 8070 hours at 990 C (1815 F)
NASA Technical Reports Server (NTRS)
Slaby, J. G.; Siegel, B. L.; Gedeon, L.; Galbo, R. J.
1973-01-01
The design and successful operation of three tantalum alloy (Ta-8W-2Hf) clad uranium mononitride (UN) fuel pins irradiated for 8070 hr at 990 C (1815 F) is described. Two pin diameters having measured burnups of 0.47 and 0.90 uranium atom percent were tested. No clad failures or swelling was detected; however, postirradiation clad samples tested failed with 1 percent strain. The fuel density decrease was 2 percent, and the fission gas release was less than 0.05 percent. Isotropic fuel swelling, which averaged about 0.5 percent, was less than fuel pin assembly clearances. Thus the clad was not strained. Thermocouples with a modified hot zone operated at average temperatures to 1100 C (2012 F) without failure. Factors that influence the ability to maintain uniform clad temperature as well as the results of the heat transfer calculations are discussed.
PINS Testing and Modification for Explosive Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; A.J. Caffrey
2011-09-01
The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test,more » the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.« less
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena
2011-04-11
We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America
TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.
Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less
Nondestrucive analysis of fuel pins
Stepan, I.E.; Allard, N.P.; Suter, C.R.
1972-11-03
Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.
Brattgjerd, Jan Egil; Loferer, Martin; Niratisairak, Sanyalak; Steen, Harald; Strømsøe, Knut
2018-06-01
In undisplaced femoral neck fractures, internal fixation remains the main treatment, with mechanical failure as a frequent complication. As torsional stable fixation promotes femoral neck fracture healing, the Hansson Pinloc® System with a plate interlocking pins, was developed from the original hook pins. Since its effect on torsional stability is undocumented, the novel implant was compared with the original configurations. Forty-two proximal femur models custom made of two blocks of polyurethane foam were tested. The medial block simulated the cancellous head, while the lateral was laminated with a glass fiber filled epoxy sheet simulating trochanteric cortical bone. Two hollow metal cylinders with a circumferential ball bearing in between mimicked the neck, with a perpendicular fracture in the middle. Fractures were fixated by two or three independent pins or by five configurations involving the interlocking plate (two pins with an optional peg in a small plate, or three pins in a small, medium or large plate). Six torsional tests were performed on each configuration to calculate torsional stiffness, torque at failure and failure energy. The novel configurations improved parameters up to an average of 12.0 (stiffness), 19.3 (torque) and 19.9 (energy) times higher than the original two pins (P < 0.001). The plate, its size and its triangular configuration improved all parameters (P = 0.03), the plate being most effective, also preventing permanent failure (P < 0.001). The novel plate design with its pin configuration enhanced torsional stability. To reveal clinical relevance a clinical study is planned. Copyright © 2018 Elsevier Ltd. All rights reserved.
Establishing the need for an engineering standard for agricultural hitch pins.
Deboy, G R; Knapp, W M; Field, W E; Krutz, G W; Corum, C L
2012-04-01
Documented incidents have occurred in which failure or unintentional disengagement of agricultural hitch pins has contributed to property damage and personal injury. An examination of current hitch pin use on a convenience sample of farm operations in Indiana revealed a variety of non-standard, worn and damaged, and inappropriately sized hitch pins in use. Informal interviews with the farm operators confirmed that hitch pin misuse, failure, or disengagement is a relatively widespread problem that remains largely unaddressed. On-site observations also suggested a low use of hitch pin retaining devices or safety chains. A review of prior research revealed that little attention has been given to this problem, and currently no documentation allows for an estimate of the frequency or severity of losses associated with hitch pin misuse, failure, or disengagement. No specific engineering standards were found that directly applied to the design, appropriate selection, or loading capacity of agricultural hitch pins. Major suppliers of replacement hitch pins currently provide little or no information on matching hitch pin size to intended applications, and most replacement hitch pins examined were of foreign origin, with the overwhelming majority imported from China or India. These replacement hitch pins provided no specifications other than diameter, length, and, in some cases, labeling that indicated that the pins had been "heat treated. " Testing of a sample of 11 commercially available replacement hitch pins found variation along the length of the pin shaft and between individual pins in surface hardness, a potential predictor of pin failure. Examination of 17 commercially available replacement pins also revealed a variety of identifiers used to describe pin composition and fabrication methods, e.g., "heat treated." None of the pins examined provided any specifications on loading capacity. It was therefore concluded that there is a need to develop an agricultural hitch pin engineering standard that would reflect current agricultural applications and practices and that would be promoted to both original equipment manufacturers and manufacturers and suppliers of replacement hitch pins. The standard should address the design of composite pins, heat treating, surface hardening, loading capacity and labeling of such, incorporation of unintentional disengagement prevention devices, indicators of the need for replacement due to wear, and safety information that should be included in operator instructions. ASABE is the most appropriate organization to develop such a standard. It was also concluded that agricultural safety and health programs and professionals need to raise the awareness of farmers concerning the appropriate selection and use of agricultural hitch pins, including the need to replace non-standard pins with pins less likely to fail or disengage during use, the need to replace hitch pins with indications of potential failure, and the importance of using appropriate safety chains, especially during transport of equipment behind tractors and trucks on public roads.
SPE5 Sub-Scale Test Series Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, Kevin S.; Reeves, Robert V.; DeHaven, Martin R.
2016-01-14
A series of 2 SPE5 sub-scale tests were performed to experimentally confirm that a booster system designed and evaluated in prior tests would properly initiate the PBXN-110 case charge fill. To conduct the experiments, a canister was designed to contain the nominally 50 mm diameter booster tube with an outer fill of approximately 150 mm diameter by 150 mm in length. The canisters were filled with PBXN-110 at NAWS-China Lake and shipped back to LLNL for testing in the High Explosives Applications Facility (HEAF). Piezoelectric crystal pins were placed on the outside of the booster tube before filling, and amore » series of piezoelectric crystal pins along with Photonic Doppler Velocimetry (PDV) probes were placed on the outer surface of the canister to measure the relative timing and magnitude of the detonation. The 2 piezoelectric crystal pins integral to the booster design were also utilized along with a series of either piezoelectric crystal pins or piezoelectric polymer pads on the top of the canister or outside case that utilized direct contact, gaps, or different thicknesses of RTV cushions to obtain time of arrival data to evaluate the response in preparation for the large-scale SPE5 test. To further quantify the margin of the booster operation, the 1st test (SPE5SS1) was functioned with both detonators and the 2nd test (SPE5SS2) was functioned with only 1 detonator. A full detonation of the material was observed in both experiments as observed by the pin timing and PDV signals. The piezoelectric pads were found to provide a greater measured signal magnitude during the testing with an RTV layer present, and the improved response is due to the larger measurement surface area of the pad. This report will detail the experiment design, canister assembly for filling, final assembly, experiment firing, presentation of the diagnostic results, and a discussion of the results.« less
Pneumatic fractures in confined granular media.
Eriksen, Fredrik K; Toussaint, Renaud; Turquet, Antoine L; Måløy, Knut J; Flekkøy, Eirik G
2017-06-01
We perform experiments where air is injected at a constant overpressure P_{in}, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for P_{in} below 10 kPa, to large thick channels formed by erosion and fingers merging for high P_{in} around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w(d)∝d^{β}, where β=0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d^{2}d/dw^{2}∼κ∼d^{1-2β}, but not of the slope dw/dd∼d^{β-1}, i.e., more rounded tips rather than pointy cusps, as they would be for the case β>1. For increasing P_{in}, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v_{0} is found to scale with injection pressure as v_{0}∝P_{in}^{3/2}, while at a critical time t_{c} there is a cross-over to the behavior v(t)∝t^{-α}, where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully developed patterns. For example, for patterns resulting from intermediate P_{in} around 100-150 kPa, we find that the box-counting dimensions lie within the range D_{B}∈[1.53,1.62], similar to viscous fingering fractals in porous media.
Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J
2008-04-01
Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.
1973-12-27
Systems Test Equipment Comparator, ASTEC ) at NAEC can provide a very accurate Ion a pin by pin basis) match between the UUT and ATE in their data bank...In addition, abbreviated summary data on the ATE is also available to users. ASTEC will also file the UUT data as part of its data bank so that
The new Section 23 of DO160C/ED14C lightning testing of externally mounted electrical equipment
NASA Astrophysics Data System (ADS)
Burrows, B. J. C.
1991-08-01
The new Section 23 is introduced which has only very recently been fully approved by the RTCA for incorporation into the first revision of DO160C/ED14C. Full threat lightning direct effects testing of equipment is entirely new to DO160, the only existing lightning testing is transient testing for LRU's (Line Replaceable Units) by pin or cable bundle injection methods, for equipment entirely contained within the airframe and assumed to be unaffected by direct effects. This testing required transients of very low amplitude compared with lightning itself, whereas the tests now to be described involve full threat lightning testing, that is using the previously established severe parameters of lightning appropriate to the Zone, such as 200 kA for Zone 1A as in AC20-136. Direct effects (i.e., damage) testing involves normally the lightning current arc attaching to the object under test (or very near to it) so submitting it to full potential for the electric, mechanical, thermal and shock damage which is caused by high current arcing. Since equipment for any part of the airframe require qualification, tests to demonstrate safety of equipment in fuel vapor regions of the airframe are also included.
Effects of low-modulus coatings on pin-bone contact stresses in external fixation.
Manley, M T; Hurst, L; Hindes, R; Dee, R; Chiang, F P
1984-01-01
The intent of this study was to investigate the stress distribution in cortical bone around fracture fixation pins and around pins coated with various polymeric and elastomeric materials. Since these interface stresses cannot be measured directly, a photoelastic technique was employed and stresses were measured in two-dimensional bone models fabricated from sheets of epoxy resin. Our results showed that when a fixation pin was loaded in compression, the compressive stress measured in the model was greatest at the pin-model interface. The magnitude of the compressive stress was found to diminish steeply away from the hole in a log decrement distribution which was asymptotic to the value of the average stress in the model. When polymeric and elastomeric materials were applied as pin coatings and the performance of the coated pins was compared to that of uncoated pins of the same overall diameter, a reduction of the maximum stress in the bone model was demonstrated. Among the coatings tested, we found that of the polymeric materials ultrahigh molecular weight polyethylene (UHMWPE) was most effective at reducing the peak cortical stress magnitude. The most effective coating material overall was found to be silicon elastomer. Computation of stress values in models loaded through stainless-steel pins and through pins coated with 1-mm silicon elastomer showed that the presence of the elastomer layer caused a reduction of about 50% in the maximum compressive stress in the model.
Outcomes of Pin and Plaster Versus Locking Plate in Distal Radius Intraarticular Fractures
Bahari-Kashani, Mahmoud; Taraz-Jamshidy, Mohammad Hosein; Rahimi, Hassan; Ashraf, Hami; Mirkazemy, Masoud; Fatehi, Amirreza; Asadian, Mariam; Rezazade, Jafar
2013-01-01
Background Distal radius fractures are among the most prevalent fractures predictive of probable occurrence of other osteoporotic fractures. They are treated via a variety of methods, but the best treatment has not been defined yet. Objectives This study was performed to compare the results of open reduction and internal fixation with locking plates versus the pin and plaster method. Materials and Methods In this prospective study, 114 patients aged 40 to 60 years with Fernandez type III fracture referring to Imam-Reza and Mehr hospitals of Mashhad from 2009 to 2011, were selected randomly; after obtaining informed consent, they were treated with pin and plaster fixation (n = 57) or internal fixation with the volar locking plate (n = 57). They were compared at the one year follow up. Demographic features and standard radiographic indices were recorded and MAYO, DASH and SF - 36 tests were performed. Data was analyzed by SPSS software version 13, with descriptive indices, Mann-Whitney and Chi-square tests. Results SF-36 test demonstrated a better general health (P < 0.001), mental health (P = 0.006), physical functioning (P < 0.001), social functioning (P < 0.001) and energy/fatigue (P < 0.001) in LCP group. However, pain (P = 0.647) was not significantly different between the groups. Physical limitation (P < 0.001) and emotional limitation (P < 0.001) were greater in the pin and plaster group. Also, in the LCP group mean MAYO score (P < 0.001) was more than pin and plaster group. Mean DASH score was not different between the groups (P = 0.218). The rate of acceptable results of radiographic indices (P < 0.001), grip strength (P < 0.001) and range of motion in supination-pronation (P < 0.001) in LCP method were better than the pin and plaster method. Conclusions In treatment of intra-articular distal radius fractures in middle-aged patients internal fixation with locking plates may be prefered to pin and plaster as the treatment of choice. PMID:24350132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, J.G.
Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J.F.
The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less
NASA Technical Reports Server (NTRS)
Lord, Kenneth; Woodyard, James R.
2002-01-01
The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; Post, D.W.; Lovell, R.T.
1981-04-01
Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less
Quantum interference of electrically generated single photons from a quantum dot.
Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2010-07-09
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.
Development of a solar-powered infrared injection laser microminiature transmitting system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falter, D.D.; Alley, G.T.; Falter, K.G.
1989-01-01
A solar-powered infrared microminiature transmitting system is being developed to provide scientists with a tool to continuously track and study Africanized bees. Present tracking methods have limited ranges and lack the capability of continuously tracking individual insects. Preliminary field tests of a stationary prototypic transmitter have demonstrated a range of 1.1 km. The basic design consists of an array of nine 1-mm{sup 2} solar cells, which collect energy for storage in a 1.0-{mu}F tantalum chip capacitor. When the capacitor has been charged to a sufficient level, the circuitry that monitors the capacitor voltage level wakes up'' and fires a 5-{mu}smore » pulse through an 840-nm GaAlAs injection laser diode. The process is then repeated, making the signal frequency (which ranges from 50 to 300 Hz) dependent on solar luminance. The solar cells, capacitor, and laser diode are mounted in hybrid microcircuit fashion directly on the silicon substrate containing the CMOS control and driver circuitry. The transmitter measures {approximately}4 {times} 6 mm and weighs {approximately}65 mg. The receiving system is based on an 8-in. telescope and a Si PIN diode detector. 8 refs., 10 figs.« less
NASA Technical Reports Server (NTRS)
Damerow, W. P.; Murtaugh, J. P.; Burggraf, F.
1972-01-01
The flow characteristics of turbine airfoil cooling system components were experimentally investigated. Flow models representative of leading edge impingement, impingement with crossflow (midchord cooling), pin fins, feeder supply tube, and a composite model of a complete airfoil flow system were tested. Test conditions were set by varying pressure level to cover the Mach number and Reynolds number range of interest in advanced turbine applications. Selected geometrical variations were studied on each component model to determine these effects. Results of these tests were correlated and compared with data available in the literature. Orifice flow was correlated in terms of discharge coefficients. For the leading edge model this was found to be a weak function of hole Mach number and orifice-to-impinged wall spacing. In the impingement with crossflow tests, the discharge coefficient was found to be constant and thus independent of orifice Mach number, Reynolds number, crossflow rate, and impingement geometry. Crossflow channel pressure drop showed reasonable agreement with a simple one-dimensional momentum balance. Feeder tube orifice discharge coefficients correlated as a function of orifice Mach number and the ratio of the orifice-to-approach velocity heads. Pin fin data was correlated in terms of equivalent friction factor, which was found to be a function of Reynolds number and pin spacing but independent of pin height in the range tested.
Internally damped, self-arresting vertical drop-weight apparatus
NASA Technical Reports Server (NTRS)
Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)
1994-01-01
A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.
A new electrode design for ambipolar injection in organic semiconductors.
Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi
2017-10-17
Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2 V -1 s -1 ) and electrons (5.0 cm 2 V -1 s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.
Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators
NASA Astrophysics Data System (ADS)
Nagarjun, K. P.; Jeyaselvan, Vadivukarassi; Selvaraja, Shankar Kumar; Supradeepa, V. R.
2018-04-01
We experimentally demonstrate tunable, highly-stable frequency combs with high repetition-rates using a single, charge injection based silicon PN modulator. In this work, we demonstrate combs in the C-band with over 8 lines in a 20-dB bandwidth. We demonstrate continuous tuning of the center frequency in the C-band and tuning of the repetition-rate from 7.5GHz to 12.5GHz. We also demonstrate through simulations the potential for bandwidth scaling using an optimized silicon PIN modulator. We find that, the time varying free carrier absorption due to carrier injection, an undesirable effect in data modulators, assists here in enhancing flatness in the generated combs.
New types of high field pinning centers and pinning centers for the peak effect
NASA Astrophysics Data System (ADS)
Gajda, Daniel; Zaleski, Andrzej; Morawski, Andrzej; Hossain, Md Shahriar A.
2017-08-01
In this article, we report the results of a study that shows the existence of pinning centers inside grains and between grains in NbTi wires. We accurately show the ranges of magnetic fields in which the individual pinning centers operate. The pinning centers inside grains are activated in high magnetic fields above 6 T. We show the range of magnetic fields in which individual defects, dislocations, precipitates inside grains and substitutions in the crystal lattice can operate. We show the existence of a new kind of high field pinning center, which operates in high magnetic fields from 8 to ˜9.5 T. We indicate that dislocations create pinning centers in the range of magnetic fields from 6 to 8 T. In addition, our measurements suggest that the peak effect (increased critical current density (J c) near the upper critical field (B c2)) could be attributed to martensitic (needle-shaped) α‧-Ti inclusions inside grains. These centers are very important because they work very effectively in magnetic fields above 9.5-10 T. We also show that the α-Ti precipitates (between grains) with a thickness similar to the coherence length create pinning centers which work very effectively in magnetic fields from 3 to 6 T. In magnetic fields below 3 T, they act very efficiently in grain boundaries. The measurements indicate that the pinning centers created by dislocations only can be tested by transport measurements. This indicates that dislocations do not increase the magnetic critical current density (J cm). Cold drawing improves pinning centers at grain boundaries and increases the dislocation density, and cold-drawing pinning centers are responsible for the peak effect.
40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking
NASA Astrophysics Data System (ADS)
Chen, Chin-Hui; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Sato, Tomonari; Kawaguchi, Yoshihiro; Notomi, Masaya; Matsuo, Shinji
2011-08-01
CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.
Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.
2008-01-01
Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.
NASA Astrophysics Data System (ADS)
Wolverton, Chris
As nonmotile organisms, plants rely on differential growth responses to maximize exposure to the resources necessary for growth and reproduction. One of the primary environmental cues causing differential growth in roots is gravity, which is thought to be sensed predominately in the root cap. This gravity perception event is thought to be transduced into information in the form of an auxin gradient across the cap and propagating basipetally toward the elongation zone. The discovery of several families of auxin efflux and influx carriers has provided significant insight into the mechanisms of directional auxin transport, and the identification of mutants in the genes encoding these carriers provides the opportunity to test the roles of these transporters in plant gravitropism. In this study, we report the results of a systematic, high-resolution study of the kinetics of root gravitropism of mutants in the PIN family of auxin efflux carriers. Based on reported expression and localization patterns, we predicted mutations in PIN2, PIN3, PIN4, and PIN7 to cause the greatest reduction in root gravitropism. While pin2 mutants showed severe gravitropic deficiencies in roots as reported previously, several alleles of pin3, pin4 and pin7 remained strongly gravitropic. PIN3 has been localized to the central columella cells, the purported gravisensing cells in the root, and shown to rapidly relocate to the lower flank of the columella cells upon gravistimulation, suggesting an early role in auxin gradient formation. Mutant alleles of PIN3 showed an early delay in response, with just 7 deg of curvature in the first hour compared to approximately 15 deg h-1 in wild-type, but their rate of curvature recovered to near wild-type levels over the ensuing 3 h. Pin3 mutants also showed a slower overall growth rate (124 µm h-1 ), elongating at approximately half the rate of wild-type roots (240 µm h-1 ). PIN4 has been localized to the quiescent center in the root, where it presumably plays a role in efflux to the columella. Pin4 mutants showed no deficiencies in gravitropism, in fact responding at a greater rate than wild-type roots over the first hour (22 deg h-1 ). PIN7 has been localized to the vascular tissue of the elongation zone and to the central columella. Like pin4 mutants, pin7 mutants did not show a significantly reduced gravitropic response relative to wild-type roots. Interestingly, roots of pin3pin7 double mutants showed curvature and growth rates similar to pin7 single mutants and wild-type roots, suggesting a genetic interaction between PIN3 and PIN7 in this pathway. These results suggest a significant degree of redundancy in the regulation of directional auxin transport and perhaps in the gravity signaling pathway in roots in general.
An Accelerated Method for Soldering Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Qingyou; Xu, Hanbing; Ried, Paul
2007-01-01
An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations have been applied to simulate the die casting conditions such as high pressure and high molten metal velocity on the pin. The soldering tendency of steels and coated pins has been examined. The results suggest that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to between 30-60 times. Coatings significantly reduce the soldering tendency. For purposes of this study, several commercialmore » coatings from Balzers demonstrated the potential for increasing the service life of core pins between 15 and 180 times.« less
Synthesis and Pin1 inhibitory activity of thiazole derivatives.
Zhao, Hailong; Cui, Guonan; Jin, Jing; Chen, Xiaoguang; Xu, Bailing
2016-11-15
Pin1 (Protein interacting with NIMA1) is a peptidyl prolyl cis-trans isomerase (PPIase) which specifically catalyze the conformational conversion of the amide bond of pSer/Thr-Pro motifs in its substrate proteins and is a novel promising anticancer target. A series of new thiazole derivatives were designed and synthesized, and their inhibitory activities were measured against human Pin1 using a protease-coupled enzyme assay. Of all the tested compounds, a number of thiazole derivatives bearing an oxalic acid group at 4-position were found to be potent Pin1 inhibitors with IC 50 values at low micromolar level. The detailed structure-activity relationships were analyzed and the binding features of compound 10b (IC 50 5.38μM) was predicted using CDOCKER program. The results of this research would provide informative guidance for further optimizing thiazole derivatives as potent Pin1 inhibitors. Copyright © 2016. Published by Elsevier Ltd.
Cuspal reinforcement in endodontically treated molars.
Uyehara, M Y; Davis, R D; Overton, J D
1999-01-01
This in vitro study compared the ability of horizontal pins and a dental adhesive to reinforce the facial cusps of endodontically treated mandibular molars. Seventy-two mandibular molars were divided into six groups and mounted in acrylic blocks (n = 12). In Groups 1-5 standardized endodontic access and instrumentation in the coronal one-third of each root canal were completed. In Groups 1-4 the lingual cusps were reduced, leaving the buccal cusps intact. The facial cusps of the teeth in each group received one of the following modes of reinforcement: Group 1--no reinforcement; Group 2--dentin adhesive (Amalgambond Plus); Group 3--two horizontal TMS Minim pins; Group 4--two horizontal TMS Minim pins and Amalgambond Plus. Teeth in Group 5 were prepared for and restored with a complete cuspal coverage amalgam restoration using four vertical TMS Minim pins. Group 6 consisted of intact natural teeth. Using an Instron Universal Testing Machine, the lingual slope of the facial cusp of each specimen was loaded to failure using a compressive force applied at an angle 60 degrees to the long axis of the tooth. The mean fracture strengths for all groups were analyzed using a one-way ANOVA and Student-Newman-Keuls multiple range test (alpha = 0.05). Fracture patterns and modes of failure were also evaluated. The intact teeth (Group 6) were significantly more fracture resistant than all other groups, with the exception of Group 4 (combination of pins and adhesive). Group 1 (non-reinforced teeth) was significantly weaker than all other groups. Groups 2-4 (specimens with reinforced cusps) were not significantly different from each other. The use of horizontal pins or a combination of horizontal pins plus dentin adhesive for cuspal reinforcement resulted in significantly more teeth demonstrating favorable fracture patterns than did the use of adhesives alone. The buccal cusps of endodontically treated mandibular molars reinforced with a combination of horizontal pins and dentin adhesive were not significantly weaker than intact teeth. Of the restored teeth, those which had buccal cusps reinforced with horizontal pins and those treated with complete cuspal coverage amalgam restorations exhibited the most favorable restorative prognosis following cusp fracture.
Pin bearing evaluation of LTM25 composite materials
NASA Technical Reports Server (NTRS)
Shah, C. H.; Postyn, A. S.
1996-01-01
This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.
1973-01-01
Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.
Direct Power Injection of Microcontrollers in PCB Environments (Postprint)
2012-09-01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory 8. PERFORMING ORGANIZATION REPORT...and model development. The Atmel AT89LP2052, 8-bit microcontroller has been programmed to complete a binary count from 20 to 28. A 20 pin SOIC has...onto the custom board ( SOIC ). LabVIEW has been used to control the power level and timing of the RF source (MXG), and data acquisition using the
An open circuit voltage decay system for performing injection dependent lifetime spectroscopy
NASA Astrophysics Data System (ADS)
Lacouture, Shelby; Schrock, James; Hirsch, Emily; Bayne, Stephen; O'Brien, Heather; Ogunniyi, Aderinto A.
2017-09-01
Of all of the material parameters associated with a semiconductor, the carrier lifetime is by far the most complex and dynamic, being a function of the dominant recombination mechanism, the equilibrium number of carriers, the perturbations in carriers (e.g., carrier injection), and the temperature, to name the most prominent variables. The carrier lifetime is one of the most important parameters in bipolar devices, greatly affecting conductivity modulation, on-state voltage, and reverse recovery. Carrier lifetime is also a useful metric for device fabrication process control and material quality. As it is such a dynamic quantity, carrier lifetime cannot be quoted in a general range such as mobility; it must be measured. The following describes a stand-alone, wide-injection range open circuit voltage decay system with unique lifetime extraction algorithms. The system is initially used along with various lifetime spectroscopy techniques to extract fundamental recombination parameters from a commercial high-voltage PIN diode.
Saikko, Vesa
2015-01-21
The temporal change of the direction of sliding relative to the ultrahigh molecular weight polyethylene (UHMWPE) component of prosthetic joints is known to be of crucial importance with respect to wear. One complete revolution of the resultant friction vector is commonly called a wear cycle. It was hypothesized that in order to accelerate the wear test, the cycle frequency may be substantially increased if the circumference of the slide track is reduced in proportion, and still the wear mechanisms remain realistic and no overheating takes place. This requires an additional slow motion mechanism with which the lubrication of the contact is maintained and wear particles are conveyed away from the contact. A three-station, dual motion high frequency circular translation pin-on-disk (HF-CTPOD) device with a relative cycle frequency of 25.3 Hz and an average sliding velocity of 27.4 mm/s was designed. The pins circularly translated at high frequency (1.0 mm per cycle, 24.8 Hz, clockwise), and the disks at low frequency (31.4mm per cycle, 0.5 Hz, counter-clockwise). In a 22 million cycle (10 day) test, the wear rate of conventional gamma-sterilized UHMWPE pins against polished CoCr disks in diluted serum was 1.8 mg per 24 h, which was six times higher than that in the established 1 Hz CTPOD device. The wear mechanisms were similar. Burnishing of the pin was the predominant feature. No overheating took place. With the dual motion HF-CTPOD method, the wear testing of UHMWPE as a bearing material in total hip arthroplasty can be substantially accelerated without concerns of the validity of the wear simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genes Outside the S Supergene Suppress S Functions in Buckwheat (Fagopyrum esculentum)
MATSUI, K.; NISHIO, T.; TETSUKA, T.
2004-01-01
• Background and Aims Common buckwheat (Fagopyrum esculentum) is a dimorphic self-incompatible plant with either pin or thrum flowers. The S supergene is thought to govern self-incompatibility, flower morphology and pollen size in buckwheat. Two major types of self-fertile lines have been reported. One is a type with long-homostyle flowers, Kyukei SC2 (KSC2), and the other is a type with short-homostyle flowers, Pennline 10. To clarify whether the locus controlling flower morphology and self-fertility of Pennline 10 is the same as that of KSC2, pollen tube tests and genetic analysis have been performed. • Methods Pollen tube growth was assessed in the styles and flower morphology of KSC2, Pennline 10, F1 and F2 plants that were produced by the crosses between plants with pin or thrum and Pennline 10. • Key Results Pollen tubes of Pennline 10 reached ovules of all flower types. The flower morphology of F1 plants produced by the cross between thrum and Pennline 10 were thrum or pin, and when pin plants were used as maternal plants, all the F1 plants were pin. Both plants with pin or short-pin flowers, whose ratio of style length to anther height was smaller than that of pin, appeared in F2 populations of thrum × Pennline 10 as well as in those of pin × Pennline 10. • Conclusion The results suggest that Pennline 10 possesses the s allele as pin does, not an allele produced by the recombination in the S supergene, and that the short style length of Pennline 10 is controlled by multiple genes outside the S supergene. PMID:15465964
Limitation of Shrinkage Porosity in Aluminum Rotor Die Casting
NASA Astrophysics Data System (ADS)
Kim, Young-Chan; Choi, Se-Weon; Kim, Cheol-Woo; Cho, Jae-Ik; Lee, Sung-Ho; Kang, Chang-Seog
Aluminum rotor prone to have many casting defects especially large amount of air and shrinkage porosity, which caused eccentricity, loss and noise during motor operation. Many attempts have been made to develop methods of shrinkage porosity control, but still there are some problems to solve. In this research, the process of vacuum squeeze die casting is proposed for limitation of defects. The 6 pin point gated dies which were in capable of local squeeze at the end ring were used. Influences of filling patterns on HPDC were evaluated and the important process control parameters were high injection speed, squeeze length, venting and process conditions. By using local squeeze and vacuum during filling and solidification, air and shrinkage porosity were significantly reduced and the feeding efficiency at the upper end ring was improved 10%. As a result of controlling the defects, the dynamometer test showed improved motor efficiency by more than 4%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, R. E.
This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while themore » GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)« less
NASA Technical Reports Server (NTRS)
Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning
2009-01-01
During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.
Essays on Market Microstructure, Behavioral Finance, and Asset Management
ERIC Educational Resources Information Center
Jochec, Marek
2009-01-01
This is a study on various aspects of market microstructure, behavioral finance and asset management. In the first chapter we put the PIN variable (Probability of Information-based trading) to test. The PIN variable has been used extensively in the microstructure literature despite the fact that its construction is based on rather strong…
Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model.
Lowry, K J; Hamson, K R; Bear, L; Peng, Y B; Calaluce, R; Evans, M L; Anglen, J O; Allen, W C
1997-09-15
Research in improved materials and methods for internal fixation has centered on internal fixators made of bioabsorbable materials such as polylactic acid, polyglycolic acid, and polyparadioxanone. These materials have two problems: the first is a postoperative complication related to a delayed inflammatory response; and the second is low strength characteristics. An alternative material developed to alleviate these problems is a composite of phosphate glass fibers embedded in the polymer polycaprolactone, referred to as PCL. In this study, intramedullary pins made of PCL were compared to stainless steel pins in a rabbit humerus osteotomy model. Specimens were harvested at 0, 6, and 12 weeks postoperatively, radiographs and mechanical testing to failure were performed at each time interval, and tissue was examined microscopically at 6 and 12 weeks. Histologic results showed PCL pins to be well tolerated with minimal inflammation around the pin. Mechanical testing revealed the PCL fixation to be weaker initially than the stainless steel fixation. There was significant stress shielding of stainless-steel-healed rabbit humeri when compared to the PCL/bone humeri. All osteotomies immobilized with PCL healed with abundant periosteal callus production.
Electrical Contacts in Monolayer Arsenene Devices.
Wang, Yangyang; Ye, Meng; Weng, Mouyi; Li, Jingzhen; Zhang, Xiuying; Zhang, Han; Guo, Ying; Pan, Yuanyuan; Xiao, Lin; Liu, Junku; Pan, Feng; Lu, Jing
2017-08-30
Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.
Development and simulation study of a new inverse-pinch high Coulomb transfer switch
NASA Technical Reports Server (NTRS)
Choi, Sang H.
1989-01-01
The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.
2016-05-16
in ethylene–air and aviation gasoline (avgas)–air mixtures. Testing of NRP discharges in the glow and corona regimes in PDE engines has been...in further detail in Refs. [17,21–23]. NRP discharges in the pin-to-pin configuration have been shown to operate in three regimes: corona , glow, and...assisted combustion Plasma assisted ignition Aircraft propulsionA nanosecond repetitively pulsed (NRP) discharge in the spark regime has been investigated
T/R switch design for short-range measurements, part 6.1A
NASA Technical Reports Server (NTRS)
Yu, B.
1984-01-01
The positive intrinsic negative (PIN) diode switch which is designed to protect the receiver from burnout or damage on transmission and channel the echo signal to the receiver on reception is outlined. The receiver must be protected firmly. A schematic diagram of a transformer rectifier (TR-ATR) switch for the Urbana Radar is shown. The T/R switch consists of a half wavelength coaxial cavity with tuning condenser and PIN diodes. Two UM4300 PIN diodes were mounted between the inner and outer conductor. The dc biasing voltage required for the PIN diodes is supplied by a control circuit. On transmission, the PIN diodes are forward biased to about 0.5 amperes. On reception, about 10 volts reverse voltage is applied to the diodes, which produces an initial reverse current to speed the recovery time. The T/R switch characteristics are estimated and the result of testing at different peak transmitter powers from 410 kW to 1500 kW is shown.
NASA Astrophysics Data System (ADS)
Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang
2018-02-01
AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.
Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding
NASA Astrophysics Data System (ADS)
Othman, N. H.; Ishak, M.; Shah, L. H.
2017-09-01
This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.
Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.
Khrustalev, K; Popov, V Yu; Popov, Yu S
2017-08-01
We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbide fuel pin and capsule design for irradiations at thermionic temperatures
NASA Technical Reports Server (NTRS)
Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.
1973-01-01
The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.
Final report of fuel dynamics Test E7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Murphy, W.F.; Stanford, G.S.
1977-04-01
Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release (there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow); (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4)more » less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets.« less
Fixation of the Achilles tendon insertion using suture button technology.
Fanter, Nathan J; Davis, Edward W; Baker, Champ L
2012-09-01
In the operative treatment of Achilles insertional tendinopathy, no guidelines exist concerning which form of fixation of the Achilles tendon insertion is superior. Transcalcaneal drill pin passage does not place any major plantar structures at risk, and the addition of a Krackow stitch and suture button to the fixation technique provides a significant increase in ultimate load to failure in Achilles tendon insertional repairs. Controlled laboratory study. The Achilles tendon insertions in 6 fresh-frozen cadaveric ankles were detached, and transcalcaneal drill pins were passed. Plantar dissection took place to evaluate the drill pin relationship to the plantar fascia, lateral plantar nerve and artery, flexor digitorum longus tendon, and master knot of Henry. The Achilles tendons were then repaired with a double-row suture anchor construct alone or with a suture button and Krackow stitch added to the double-row suture anchor construct. The repairs were then tested to maximum load to failure at 20 mm/min. The mode of failure was recorded, and the mean maximum load to failure was assessed using the Student t test for distributions with equal variance. Transcalcaneal drill pin passage did not place any selected anatomic structures at risk. The mean maximum load to failure for the suture bridge group was 239.2 N; it was 391.4 N for the group with the suture button (P = .014). The lateral plantar artery was the structure placed at greatest risk from drill pin placement, with a mean distance of 22.7 mm (range, 16.5-29.2 mm) between the pin and artery. In this laboratory study, transcalcaneal drill pin passage appeared to be anatomically safe, and the use of suture button technology with a Krackow stitch for Achilles tendon insertional repair significantly increased repair strength. Achilles tendon insertional repair with suture button fixation and a Krackow stitch may facilitate the earlier institution of postoperative rehabilitation and improve clinical outcomes.
Butler, Bennet A; Lawton, Cort D; Burgess, Jamie; Balderama, Earvin S; Barsness, Katherine A; Sarwark, John F
2017-12-06
Simulation-based education has been integrated into many orthopaedic residency programs to augment traditional teaching models. Here we describe the development and implementation of a combined didactic and simulation-based course for teaching medical students and interns how to properly perform a closed reduction and percutaneous pinning of a pediatric supracondylar humeral fracture. Subjects included in the study were either orthopaedic surgery interns or subinterns at our institution. Subjects all completed a combined didactic and simulation-based course on pediatric supracondylar humeral fractures. The first part of this course was an electronic (e)-learning module that the subjects could complete at home in approximately 40 minutes. The second part of the course was a 20-minute simulation-based skills learning session completed in the simulation center. Subject knowledge of closed reduction and percutaneous pinning of supracondylar humeral fractures was tested using a 30-question, multiple-choice, written test. Surgical skills were tested in the operating room or in a simulated operating room. Subject pre-intervention and post-intervention scores were compared to determine if and how much they had improved. A total of 21 subjects were tested. These subjects significantly improved their scores on both the written, multiple-choice test and skills test after completing the combined didactic and simulation module. Prior to the module, intern and subintern multiple-choice test scores were significantly worse than postgraduate year (PGY)-2 to PGY-5 resident scores (p < 0.01); after completion of the module, there was no significant difference in the multiple-choice test scores. After completing the module, there was no significant difference in skills test scores between interns and PGY-2 to PGY-5 residents. Both tests were validated using the scores obtained from PGY-2 to PGY-5 residents. Our combined didactic and simulation course significantly improved intern and subintern understanding of supracondylar humeral fractures and their ability to perform a closed reduction and percutaneous pinning of these fractures.
Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.
NASA Astrophysics Data System (ADS)
Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar
2018-04-01
Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.
Description of and preliminary tests results for the Joint Damping Experiment (JDX)
NASA Technical Reports Server (NTRS)
Bingham, Jeffrey G.; Folkman, Steven L.
1995-01-01
An effort is currently underway to develop an experiment titled joint Damping E_periment (JDX) to fly on the Space Shuttle as Get Away Special Payload G-726. This project is funded by NASA's IN-Space Technology Experiments Program and is scheduled to fly in July 1995 on STS-69. JDX will measure the influence of gravity on the structural damping of a three bay truss having clearance fit pinned joints. Structural damping is an important parameter in the dynamics of space structures. Future space structures will require more precise knowledge of structural damping than is currently available. The mission objectives are to develop a small-scale shuttle flight experiment that allows researchers to: (1) characterize the influence of gravity and joint gaps on structural damping and dynamic behavior of a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. Completing the above objectives will allow a better understanding and/or prediction of structural damping occurring in a pin jointed truss. Predicting damping in joints is quite difficult. One of the important variables influencing joint damping is gravity. Previous work has shown that gravity loads can influence damping in a pin jointed truss structure. Flying this experiment as a GAS payload will allow testing in a microgravity environment. The on-orbit data (in micro-gravity) will be compared with ground test results. These data will be used to help develop improved models to predict damping due to pinned joints. Ground and low-g aircraft testing of this experiment has been completed. This paper describes the experiment and presents results of both ground and low-g aircraft tests which demonstrate that damping of the truss is dramatically influenced by gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haiyan
1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less
A novel hybrid joining methodology for composite to steel joints
NASA Astrophysics Data System (ADS)
Sarh, Bastian
This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.
Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks
NASA Astrophysics Data System (ADS)
Marron, Craig; Persoons, Tim
2014-07-01
Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.
Shen, Hong-Bin
2011-01-01
Modern science of networks has brought significant advances to our understanding of complex systems biology. As a representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/. PMID:22140454
A new test machine for measuring friction and wear in controlled atmospheres to 1200 C
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Dellacorte, Christopher
1991-01-01
This paper describes a new high-temperature friction and wear test apparatus (tribometer). The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up to 4.6 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert or reducing gases.
Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)
NASA Technical Reports Server (NTRS)
Garber, Anne; Godfroy, Thomas
2007-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).
Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing
NASA Astrophysics Data System (ADS)
Bressan, José Divo; Schopf, Roberto Alexandre
2011-05-01
Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.
Long-term stability of microcrystalline silicon p-i-n solar cells exposed to sun light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanguino, P.; Koynov, S.; Schwarz, R.
1999-07-01
The performance of an entirely microcrystalline p-i-n solar cell was monitored during a long-term outdoor test in Lisbon starting in September 1998. A small decrease of the short circuit current was observed after 5 months of operation. The open-circuit voltage remained stable around 400 mV. From the analysis of the I-V characteristic in dark and under illumination they could identify the weak points of the test structure, like large series resistance, high recombination rate, and intensity-dependent collection efficiency.
In-pile measurement of the thermal conductivity of irradiated metallic fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, T.H.; Holland, J.W.
Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less
NASA Astrophysics Data System (ADS)
Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus
2012-09-01
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.
Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide
NASA Astrophysics Data System (ADS)
Okano, M.; Iwamoto, T.; Furuse, M.; Fuchino, S.; Ishii, I.
2006-06-01
A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track.
A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination.
Agosteo, S; D'Angelo, G; Fazzi, A; Foglio Para, A; Pola, A; Ventura, L; Zotto, P
2004-01-01
A recoil-proton spectrometer was created by coupling a p-i-n diode with a polyethylene converter. The maximum detectable energy, imposed by the thickness of the totally depleted layer, is approximately 6 MeV. The minimum detectable energy is limited by the contribution of secondary electrons generated by photons in the detector assembly. This limit is approximately 1.5 MeV at full-depletion voltage and was decreased using pulse-shape discrimination. The diode was set up in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The pulse-shape discrimination was based on the zero-crossing time of bipolar signals from a (CR)2-(RC)2 filter. The detector was characterised using monoenergetic neutrons generated in the Van De Graaff CN accelerator at the INFN-Laboratori Nazionali di Legnaro. The energy limit for discrimination proved to be approximately 900 keV.
NASA Astrophysics Data System (ADS)
DijuSamuel, G.; Raja Dhas, J. Edwin
2017-10-01
This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazififard, Mohammad, E-mail: nazifi@kashanu.ac.ir; Mahmoudieh, Afshin; Suh, Kune Y.
Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty.more » Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.« less
Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2017-11-01
Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.
Low-dark current 1024×1280 InGaAs PIN arrays
NASA Astrophysics Data System (ADS)
Yuan, Ping; Chang, James; Boisvert, Joseph C.; Karam, Nasser
2014-06-01
Photon counting imaging applications requires low noise from both detector and readout integrated circuit (ROIC) arrays. In order to retain the photon-counting-level sensitivity, a long integration time has to be employed and the dark current has to be minimized. It is well known that the PIN dark current is sensitive to temperature and a dark current density of 0.5 nA/cm2 was demonstrated at 7 °C previously. In order to restrain the size, weight, and power consumption (SWaP) of cameras for persistent large-area surveillance on small platforms, it is critical to develop large format PIN arrays with small pitch and low dark current density at higher operation temperatures. Recently Spectrolab has grown, fabricated and tested 1024x1280 InGaAs PIN arrays with 12.5 μm pitch and achieved 0.7 nA/cm2 dark current density at 15 °C. Based on our previous low-dark-current PIN designs, the improvements were focused on 1) the epitaxial material design and growth control; and 2) PIN device structure to minimize the perimeter leakage current and junction diffusion current. We will present characterization data and analyses that illustrate the contribution of various dark current mechanisms.
Ti, Xiaonan; Tani, Naoki; Isobe, Minoru; Kai, Hidenori
2006-05-01
The TIME (Time Interval Measuring Enzyme) ATPase measures time intervals in accordance with diapause development, which indispensably requires cold for resumption of embryonic development in the silkworm (Bombyx mori). The PIN (Peptidyl Inhibitory Needle) peptide regulates the time measurement function of TIME. In the present study we investigated the interaction between TIME and PIN in order to address the mechanism of diapause development. When TIME was isolated from eggs later than 12 days after oviposition, transient bursts of ATPase activity occurred 18h after isolation of TIME, and the younger the eggs and pupal ovaries from which TIME was isolated, the earlier the bursts of ATPase activity appeared. However, no interval-timer activation of ATPase occurred in ovaries earlier than 6 days after pupation. Similar patterns of ATPase activity occurred in test tubes after mixing TIME with PIN. The shorter the time PIN was mixed with TIME, the earlier the ATPase activity appeared. The timer may be built into the protein conformation of TIME, and PIN (which is present in ovaries beginning 6 days after pupation) appears able to alter this timer conformation through pupal stages to laid eggs. We discuss the possible mechanism of diapause development in relation to the timer mechanism of TIME.
Apparatus and method for measuring the expansion properties of a cement composition
Spangle, Lloyd B.
1983-01-01
An apparatus is disclosed which is useful for measuring the expansion properties of semi-solid materials which expand to a solid phase, upon curing, such as cement compositions. The apparatus includes a sleeve, preferably cylindrical, which has a vertical slit on one side, to allow the sleeve to expand. Mounted on the outside of the sleeve are several sets of pins, consisting of two pins each. The two pins in each set are located on opposite sides of the slit. In the test procedure, the sleeve is filled with wet cement, which is then cured to a solid. As the cement cures it causes the sleeve to expand. The actual expansion of the sleeve represents an expansion factor for the cement. This factor is calculated by measuring the distance across the pins of each set, when the sleeve is empty, and again after the cured cement expands the sleeve.
How You Can Get the Best Results with Home Use Tests
... Use Tests How You Can Get the Best Results With Home Use Tests Share Tweet Linkedin Pin ... follow all test instructions to get an accurate result. Most home tests require specific timing, materials, and ...
Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go
2017-01-01
This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO2 interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e−rms, low dark current density of 56 pA/cm2 at −35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV. PMID:29295523
Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo
2017-12-23
This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO₂ interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e - rms , low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.
Electric field control of ferromagnetism at room temperature in GaCrN (p-i-n) device structures
NASA Astrophysics Data System (ADS)
El-Masry, N. A.; Zavada, J. M.; Reynolds, J. G.; Reynolds, C. L.; Liu, Z.; Bedair, S. M.
2017-08-01
We have demonstrated a room temperature dilute magnetic semiconductor based on GaCrN epitaxial layers grown by metalorganic chemical vapor deposition. Saturation magnetization Ms increased when the GaCrN film is incorporated into a (p-GaN/i-GaCrN/n-GaN) device structure, due to the proximity of mediated holes present in the p-GaN layer. Zero field cooling and field cooling were measured to ascertain the absence of superparamagnetic behavior in the films. A (p-GaN/i-GaCrN/n-GaN) device structure with room temperature ferromagnetic (FM) properties that can be controlled by an external applied voltage has been fabricated. In this work, we show that the applied voltage controls the ferromagnetic properties, by biasing the (p-i-n) structure. With forward bias, ferromagnetism in the GaCrN layer was increased nearly 4 fold of the original value. Such an enhancement is due to carrier injection of holes into the Cr deep level present in the i-GaCrN layer. A "memory effect" for the FM behavior of the (p-i-n) GaCrN device structure persisted for 42 h after the voltage bias was turned off. These measurements also support that the observed ferromagnetism in the GaCrN film is not due to superparamagnetic clusters but instead is a hole-mediated phenomenon.
A new dynamic tactile display for reconfigurable braille: implementation and tests.
Motto Ros, Paolo; Dante, Vittorio; Mesin, Luca; Petetti, Erminio; Del Giudice, Paolo; Pasero, Eros
2014-01-01
Different tactile interfaces have been proposed to represent either text (braille) or, in a few cases, tactile large-area screens as replacements for visual displays. None of the implementations so far can be customized to match users' preferences, perceptual differences and skills. Optimal choices in these respects are still debated; we approach a solution by designing a flexible device allowing the user to choose key parameters of tactile transduction. We present here a new dynamic tactile display, a 8 × 8 matrix of plastic pins based on well-established and reliable piezoelectric technology to offer high resolution (pin gap 0.7mm) as well as tunable strength of the pins displacement, and refresh rate up to 50s(-1). It can reproduce arbitrary patterns, allowing it to serve the dual purpose of providing, depending on contingent user needs, tactile rendering of non-character information, and reconfigurable braille rendering. Given the relevance of the latter functionality for the expected average user, we considered testing braille encoding by volunteers a benchmark of primary importance. Tests were performed to assess the acceptance and usability with minimal training, and to check whether the offered flexibility was indeed perceived by the subject as an added value compared to conventional braille devices. Different mappings between braille dots and actual tactile pins were implemented to match user needs. Performances of eight experienced braille readers were defined as the fraction of correct identifications of rendered content. Different information contents were tested (median performance on random strings, words, sentences identification was about 75%, 85%, 98%, respectively, with a significant increase, p < 0.01), obtaining statistically significant improvements in performance during the tests (p < 0.05). Experimental results, together with qualitative ratings provided by the subjects, show a good acceptance and the effectiveness of the proposed solution.
A new dynamic tactile display for reconfigurable braille: implementation and tests
Motto Ros, Paolo; Dante, Vittorio; Mesin, Luca; Petetti, Erminio; Del Giudice, Paolo; Pasero, Eros
2014-01-01
Different tactile interfaces have been proposed to represent either text (braille) or, in a few cases, tactile large-area screens as replacements for visual displays. None of the implementations so far can be customized to match users' preferences, perceptual differences and skills. Optimal choices in these respects are still debated; we approach a solution by designing a flexible device allowing the user to choose key parameters of tactile transduction. We present here a new dynamic tactile display, a 8 × 8 matrix of plastic pins based on well-established and reliable piezoelectric technology to offer high resolution (pin gap 0.7mm) as well as tunable strength of the pins displacement, and refresh rate up to 50s−1. It can reproduce arbitrary patterns, allowing it to serve the dual purpose of providing, depending on contingent user needs, tactile rendering of non-character information, and reconfigurable braille rendering. Given the relevance of the latter functionality for the expected average user, we considered testing braille encoding by volunteers a benchmark of primary importance. Tests were performed to assess the acceptance and usability with minimal training, and to check whether the offered flexibility was indeed perceived by the subject as an added value compared to conventional braille devices. Different mappings between braille dots and actual tactile pins were implemented to match user needs. Performances of eight experienced braille readers were defined as the fraction of correct identifications of rendered content. Different information contents were tested (median performance on random strings, words, sentences identification was about 75%, 85%, 98%, respectively, with a significant increase, p < 0.01), obtaining statistically significant improvements in performance during the tests (p < 0.05). Experimental results, together with qualitative ratings provided by the subjects, show a good acceptance and the effectiveness of the proposed solution. PMID:24782756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara
2005-02-06
Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less
The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*
Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.
1967-01-01
The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476
... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...
Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl
NASA Technical Reports Server (NTRS)
Godfroy, Thomas J. (Compiler); Martin, James J.
2010-01-01
The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations
Documentation of Stainless Steel Lithium Circuit Test Section Design
NASA Technical Reports Server (NTRS)
Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.
2010-01-01
The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.
Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.
2007-01-01
Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.
A new test machine for measuring friction and wear in controlled atmospheres to 1200 C
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Dellacorte, Christopher
1989-01-01
This paper describes a new high temperature friction and wear test apparatus (tribometer) at NASA Lewis Research Center, Cleveland, Ohio. The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up 4.5 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert, or reducing gases.
Tribological characteristics of sputtered Au/Cr films on alumina substrates at elevated temperatures
NASA Technical Reports Server (NTRS)
Benoy, P. A.; Dellacorte, C.
1993-01-01
Research to evaluate the tribological properties of alumina pins sliding against thin sputtered gold films deposited on alumina disk substrates is described. A 250 A thick chromium interlayer was first deposited onto the alumina test disks to enhance adhesion and high temperature wetting of the gold films. The Au/Cr films were tribotested in pure sliding in a pin-on-disk tribometer under a 4.9 N load at 1m/s. The test atmosphere was room air at temperatures of 25, 500, and 800 C and the test duration varied from 60 to 540 min. The use of the Au/Cr films reduced friction by about a factor of two compared to the unlubricated alumina sliding couple. The coatings prevented wear of the alumina substrate disks and reduced pin wear by one to two orders of magnitude. In addition, wear lives in excess of 200,000 sliding passes (9 hr) were observed during sliding at 800 C. The results suggest that these films show promise for the practical lubrication of many high temperature sliding components.
Characterization of holding brake friction pad surface after pin-on-plate wear test
NASA Astrophysics Data System (ADS)
Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.
2018-03-01
This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.
Generation of plate tectonics via grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, D.; Ricard, Y. R.
2012-12-01
Weakening and shear localization in the lithosphere are essential ingredients for understanding how and whether plate tectonics is generated from mantle convection on terrestrial planets. The grain-damage and pinning mechanism of Bercovici & Ricard (2012) for lithospheric shear--localization proposes that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces that constrain mineral grains to ever smaller sizes regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreoever, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. This mechanism is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion from convective type flow and to influence plate evolution. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields are found to never recover or lose memory of the original configuration, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction and highly localized, weak and long lived acute plate-boundary junctions such as at the Aleution-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets. References: Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Int. 202-203, 27--55.
... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Medical Devices Home Medical Devices Products and Medical Procedures In Vitro Diagnostics Home Use Tests Home Use Tests Share Tweet Linkedin Pin it ...
Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C
2014-04-07
A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2013-03-01
The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.
2016-06-01
Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.
Thermal Effects on the Bearing Behavior of Composite Joints
NASA Technical Reports Server (NTRS)
Walker, Sandra Polesky
2001-01-01
Thermal effects on the pin-bearing behavior of an IM7/PET15 composite laminate are studied comprehensively. A hypothesis presents factors influencing a change in pin-bearing strength with a change in temperature for a given joint design. The factors include the change in the state of residual cure stress, the material properties, and the fastener fit with a change in temperature. Experiments are conducted to determine necessary lamina and laminate material property data for the IM7/PET15 being utilized in this study. Lamina material properties are determined between the assumed stress free temperature of 460 F down to -200 F. Laminate strength properties are determined for several lay-ups at the operating temperatures of 350 F, 70 F, and -200 F. A three-dimensional finite element analysis model of a composite laminate subject to compressive loading is developed. Both the resin rich layer located between lamina and the thermal residual stresses present in the laminate due to curing are determined to influence the state of stress significantly. Pin-bearing tests of several lay-ups were conducted to develop an understanding on the effect of temperature changes on the pin-bearing behavior of the material. A computational study investigating the factors influencing pin-bearing strength was performed. A finite element model was developed and used to determine the residual thermal cure stresses in the laminate containing a hole. Very high interlaminar stress concentrations were observed two elements away from the hole boundary at all three operating temperatures. The pin-bearing problem was modeled assuming a rigid frictionless pin and restraining only radial displacements at the hole boundary. A uniform negative pressure load was then applied to the straight end of the model. A solution, where thermal residual stresses were combined with the state of stress due to pin-bearing loads was evaluated. The presence of thermal residual stresses intensified the interlaminar stresses predicted at the hole boundary in the pin-bearing problem. This dissertation shows that changes in material properties drives pin-bearing strength degradation with increasing temperature.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Paris, Isabelle L.
2004-01-01
Small sub-component specimens consisting of solid laminates at the ends that transition to X-cor(R) truss sandwich in the center, were tested in a combination of three point bending, uni-axial tension, and combined tension and bending. The failure process in the transition region was documented for each loading using digital video and high-resolution cameras. For the 3-point bending tests, most of the deformation occurred in the solid laminate regions on either end of the specimen. Some pin debonding from the skin of the X-cor(R) truss sandwich was observed in the transition region and was accompanied by audible "pings" throughout the loading. Tension loaded specimens failed in the sandwich skin in the middle of the gage length, accompanied by separation of the sandwich core from the back skin and by delamination between the top skin and bottom skin at the transition region. The pinging associated with pin debonding occurred as the load was increased. However, the frequency of the pinging exceeded any visual observations of pin debonding in the video of the transition region. For specimens tested in combined tension and bending, the greatest amount of pinging occurred during initial application of the axial load. High-resolution images in the transition region indicated that the pinging corresponded to pins debonding and buckling due to the through-thickness Poisson contraction of the specimen. This buckling continued to a much smaller extent as the transverse load was applied.
Image Processing Of Images From Peripheral-Artery Digital Subtraction Angiography (DSA) Studies
NASA Astrophysics Data System (ADS)
Wilson, David L.; Tarbox, Lawrence R.; Cist, David B.; Faul, David D.
1988-06-01
A system is being developed to test the possibility of doing peripheral, digital subtraction angiography (DSA) with a single contrast injection using a moving gantry system. Given repositioning errors that occur between the mask and contrast-containing images, factors affecting the success of subtractions following image registration have been investigated theoretically and experimentally. For a 1 mm gantry displacement, parallax and geometric image distortion (pin-cushion) both give subtraction errors following registration that are approximately 25% of the error resulting from no registration. Image processing techniques improve the subtractions. The geometric distortion effect is reduced using a piece-wise, 8 parameter unwarping method. Plots of image similarity measures versus pixel shift are well behaved and well fit by a parabola, leading to the development of an iterative, automatic registration algorithm that uses parabolic prediction of the new minimum. The registration algorithm converges quickly (less than 1 second on a MicroVAX) and is relatively immune to the region of interest (ROI) selected.
Melli, Virginia; Juszczyk, Mateusz; Sandrini, Enrico; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; Manfredini, Tiziano; De Nardo, Luigi
2015-01-01
The increasing number of total joint replacements, in particular for the knee joint, has a growing impact on the healthcare system costs. New cost-saving manufacturing technologies are being explored nowadays. Metal injection molding (MIM) has already demonstrated its suitability for the production of CoCrMo alloy tibial trays, with a significant reduction in production costs, by holding both corrosion resistance and biocompatibility. In this work, mechanical and tribological properties were evaluated on tibial trays obtained via MIM and conventional investment casting. Surface hardness and wear properties were evaluated through Vickers hardness, scratch and pin on disk tests. The MIM and cast finished tibial trays were then subjected to a fatigue test campaign in order to obtain their fatigue load limit at 5 millions cycles following ISO 14879-1 directions. CoCrMo cast alloy exhibited 514 HV hardness compared to 335 HV of MIM alloy, furthermore it developed narrower scratches with a higher tendency towards microploughing than microcutting, in comparison to MIM CoCrMo. The observed fatigue limits were (1,766 ± 52) N for cast tibial trays and (1,625 ± 44) N for MIM ones. Fracture morphologies pointed out to a more brittle behavior of MIM microstructure. These aspects were attributed to the absence of a fine toughening and surface hardening carbide dispersion in MIM grains. Nevertheless, MIM tibial trays exhibited a fatigue limit far beyond the 900 N of maximum load prescribed by ISO and ASTM standards for the clinical application of these devices.
Pressure Roller For Tape-Lift Tests
NASA Technical Reports Server (NTRS)
Abrams, Eve
1991-01-01
Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.
Development of low friction snake-inspired deterministic textured surfaces
NASA Astrophysics Data System (ADS)
Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.
2016-06-01
The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.
Wear Measurement of Highly Cross-Linked UHMWPE Using a 7Be Tracer Implantation Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimmer, Markus; Laurent, Michael P.; Dwivedi, Yash
2013-01-29
The very low wear rates achieved with the current highly cross-linked ultra-high molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to effect a proof-of-concept on the use of the radioactive tracer beryllium-7 (7Be) for the determination of wear in a highly cross-linked orthopedic UHMWPE. Three crosslinked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 109 to 1010 7Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei upmore » to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg/Mc. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. It was estimated that implantation reduced the average wear rate by approximately 20%, and the oxidative degradation damage from implantation was negligible. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.« less
Elevated temperature tribology of cobalt and tantalum-based alloys
Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; ...
2014-12-31
This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less
Bi, Hong-zheng; Yang, Mao-qing; Tan, Yuan-chao; Fu, Song
2008-07-01
To study the curative effect and safety of rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation in treating clavicular fracture. All 201 cases of clavicular fractures were randomly divided into treatment group (101 cases) and control group (100 cases). The treatment group was treated by rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation. The control group was treated by open reduction and internal fixation with Kirschner pin. All cases were followed up for 4 to 21 months (mean 10.6 months). SPSS was used to analyze clinic healing time of fracture and shoulder-joint function in both two groups. After operation, 101 cases of treatment group achieved union of fracture and the clinical healing time was 28 to 49 days (mean 34.5+/-2.7 days). In control group,there were 4 cases with nonunion of fracture,the other 96 cases were union,the clinical healing time was 36 to 92 days (mean 55.3+/-4.8 days). The excellent and good rate of shoulder-joint function was 100% in treatment group and 83% in control group. By t-test and chi2-test, there was significant difference between the two groups in curative effect (P<0.05). Rotatory manual reduction with forceps holder and retrograde pinning transfixation can be used in various kinds of clavicular shaft fracture, with many virtues such as easy operation, reliable fixation, short union time of fracture, good functional recovery of shoulder-joint and no incision scar affecting appearance.
Elevated temperature tribology of cobalt and tantalum-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scharf, T. W.; Prasad, S. V.; Kotula, P. G.
This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less
NASA Astrophysics Data System (ADS)
Kamal Babu, K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C. V.
The purpose of this paper is to present the corrosion behavior of the Cryorolled (CR) material and its Friction Stir Welded joints. Due to the thermal cycles of Friction Stir Welding (FSW) process, the corrosion behavior of the material gets affected. Here, the cryorolling process was carried out on AA2219 alloy and CR material was joined by FSW process using four different pin tool profiles such as cylindrical, threaded cylindrical, square and hexagonal pin. The FSW joints were analyzed by corrosion resistance with the help of potentiodynamic polarization test with 3.5% NaCl solution. From the analysis, it is found that CR AA2219 material exhibits good corrosion resistance compared to the base AA2219 material, and also a hexagonal pin profile FSW joint exhibits high corrosion resistance. Among the weld joints created by four different tools, the lowest corrosion resistance was found in the cylindrical pin tool FSW welds. Further, the corroded samples were investigated through metallurgical investigations like OM, Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). It was found that the amount of dissolution of Al2Cu precipitate was present in the weld nugget. The amount of dissolution of Al2Cu precipitate is higher in the weld nugget produced by hexagonal pin tool. This is due to the enhancement of the corrosion resistance.
Intracellular Protein Delivery for Treating Breast Cancer
2014-08-01
Problems...….……………………………………………..……18 7. Products …………………………………….……….….………….……….18 8. Participants & Other Collaborating Organizations ...Radioactivity in each organ was measured using a gamma counter, and radioactivity uptake was expressed as percent injected dose per gram (%ID/g). Mean uptake...Cancer PRINCIPAL INVESTIGATOR: Pin Wang CONTRACTING ORGANIZATION : University of Southern California REPORT DATE: TYPE
Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application
Villatte, Guillaume; Massard, Christophe; Descamps, Stéphane; Sibaud, Yves; Forestier, Christiane; Awitor, Komla-Oscar
2015-01-01
External fixation is a method of osteosynthesis currently used in traumatology and orthopedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after bacterial colonization of the pin due to its contact with skin and the local environment. One way to prevent such local contamination is to create a specific coating that could be applied in the medical field. In this work, we developed a surface coating for external fixator pins based on the photocatalytic properties of titanium dioxide, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. The morphology and structure of the sol-gel coating layers were characterized using, respectively, scanning electron microscopy and X-ray diffraction. The resistance properties of the coating were investigated by mechanical testing. Photodegradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of the titanium dioxide layers under ultraviolet irradiation. The bactericidal effect induced by the process was evaluated against two strains, ie, Staphylococcus aureus and multiresistant Staphylococcus epidermidis. The coated pins showed good mechanical strength and an efficient antibacterial effect after 1 hour of ultraviolet irradiation. PMID:26005347
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
An optical-fiber sensor for detecting the arrival of strong pressure pulses was developed. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pin by analogy tomore » standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
Operation and tests of a DDC101 A/D
NASA Astrophysics Data System (ADS)
Nguyen, H.
1994-11-01
For the KTeV PMT laser monitoring system, one needs a high resolution device with a large dynamic range to be used for digitizing PIN photodiodes. The dynamic range should be wider than or comparable to the KTeV digitizer (17-bits). The Burr-Brown DDC101 is a precision, wide dynamic range, charge digitizing A/D converter with 20-bit resolution, packaged in a 28-pin plastic, double-wide DP. Low level current output devices such as photosensors can be directly connected to its input. The digital output can be clocked-out serially from the pins. For typical operations, a relatively wide gate of 1 msec should be used. The full scale charge is 500 pC for unipolar mode. The bipolar mode scale is +/- 250 pC. The advertised integral nonlinearity is 0.003% of FSR. This document describes only the basic DDC101 operations since full detail can be found in the DDC101 manual. Tests results are given in section 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Nelson, W R; Rose, S D
Computational thermal-hydraulic models of a 19-pin, electrically heated, wire-wrap liquid-metal fast breeder reactor test bundle were developed using two well-known subchannel analysis codes, COBRA III-C and SABRE-1 (wire-wrap version). These two codes use similar subchannel control volumes for the finite difference conservation equations but vary markedly in solution strategy and modeling capability. In particular, the empirical wire-wrap-forced diversion crossflow models are different. Surprisingly, however, crossflow velocity predictions of the two codes are very similar. Both codes show generally good agreement with experimental temperature data from a test in which a large radial temperature gradient was imposed. Differences between data andmore » code results are probably caused by experimental pin bowing, which is presently the limiting factor in validating coded empirical models.« less
Assembly and Thermal Hydraulic Test of a Stainless Steel Sodium-Potassium Circuit
NASA Technical Reports Server (NTRS)
Garber, A.; Godfroy, T.; Webster, K.
2007-01-01
Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system was originally built for use with lithium, but due to a shift in focus, it was redesigned for use with a eutectic mixture of sodium potassium (NaK). Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the first fill and checkout testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, K.K.; Eubank, B.F.; Brady, W.J.
1984-10-01
This report is a personnel-oriented history of DOD participation in underground nuclear weapons testing during Operations FLINTLOCK and LATCHKEY, test events RED HOT, PIN STRIPE, DISCUS THROWER, PILE DRIVER, DOUBLE PLAY, NEW POINT, and MIDI MIST, from 5 March 1966 to 26 June 1967. It is the second in a series of historical reports which will include all DOD underground nuclear weapons tests and all DOE underground nuclear weapons tests with significant DOD participation from 1962 forward. In addition to these historical volumes, a later restricted distribution volume will identify all DOD participants (military, civilian, and civilian contractors) and willmore » list their radiation dosimetry data.« less
Rafique, Atif; Ghani, Shahab; Sadiq, Moiz; Siddiqui, Intisar Ahmed
2006-08-01
To compare pin tract infection rate between percutaneous and buried placement of Kirschner (K-) wiring for hand fractures. Quasi--experimental study. Plastic, Reconstructive, Hand and Burn Surgery Unit, Liaquat National Hospital, Karachi, from September 2005--February 2006. Patients with fractures of metacarpals and phalanges of hand were selected by non-probability purposive method. Assessment of pin tract infection by clinical examination and pin tract scoring was done by modification of Oppenheim classification. Statistical analysis was done using Chi-square test. Ten out of 55 percutaneous and 2 out of 45 buried wires were infected. The difference in infection rates of two groups was statistically significant at p<0.05. Three percutaneous, but not buried Kirschner wires, had to be removed before 4 weeks because of failure to respond to local wound care and oral antibiotics. Percutaneous K- wires had significantly greater infection rate than wires which were buried deep to the skin.
Corrosion of Ti6Al4V pins produced by direct metal laser sintering
NASA Astrophysics Data System (ADS)
de Damborenea, J. J.; Arenas, M. A.; Larosa, Maria Aparecida; Jardini, André Luiz; de Carvalho Zavaglia, Cecília Amélia; Conde, A.
2017-01-01
Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects-that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.
Mattei, Lorenza; Longo, Antonia; Di Puccio, Francesca; Ciulli, Enrico; Marchetti, Stefano
2017-04-01
A bone healing assessment is crucial for the successful treatment of fractures, particularly in terms of the timing of support devices. However, in clinical practice, this assessment is only made qualitatively through bone manipulation and X-rays, and hence cannot be repeated as often as might be required. The present study reconsiders the quantitative method of frequency response analysis for healing assessments, and specifically for fractures treated with an external fixator. The novelty consists in the fact that bone excitation and response are achieved through fixator pins, thus overcoming the problem of transmission through soft-tissues and their damping effect. The main objective was to develop and validate a test procedure in order to characterize the treated bone. More than 80 tests were performed on a tibia phantom alone, a phantom with pins, and a phantom with a complete fixator. Different excitation techniques and input-output combinations were compared. The results demonstrated the effectiveness of a procedure based on impact tests using a micro-hammer. Pins and fixator were demonstrated to influence the frequency response of the phantom by increasing the number of resonant frequencies. This procedure will be applied in future studies to monitor healing both in in vitro and in vivo conditions.
Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.
2008-01-01
This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285
Imaging modalities for the non-invasive diagnosis of endometriosis.
Nisenblat, Vicki; Bossuyt, Patrick M M; Farquhar, Cindy; Johnson, Neil; Hull, M Louise
2016-02-26
About 10% of women of reproductive age suffer from endometriosis. Endometriosis is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy, the gold standard diagnostic test for endometriosis, is expensive and carries surgical risks. Currently, no non-invasive tests that can be used to accurately diagnose endometriosis are available in clinical practice. This is the first review of diagnostic test accuracy of imaging tests for endometriosis that uses Cochrane methods to provide an update on the rapidly expanding literature in this field. • To provide estimates of the diagnostic accuracy of imaging modalities for the diagnosis of pelvic endometriosis, ovarian endometriosis and deeply infiltrating endometriosis (DIE) versus surgical diagnosis as a reference standard.• To describe performance of imaging tests for mapping of deep endometriotic lesions in the pelvis at specific anatomical sites.Imaging tests were evaluated as replacement tests for diagnostic surgery and as triage tests that would assist decision making regarding diagnostic surgery for endometriosis. We searched the following databases to 20 April 2015: MEDLINE, CENTRAL, EMBASE, CINAHL, PsycINFO, Web of Science, LILACS, OAIster, TRIP, ClinicalTrials.gov, MEDION, DARE, and PubMed. Searches were not restricted to a particular study design or language nor to specific publication dates. The search strategy incorporated words in the title, abstracts, text words across the record and medical subject headings (MeSH). We considered published peer-reviewed cross-sectional studies and randomised controlled trials of any size that included prospectively recruited women of reproductive age suspected of having one or more of the following target conditions: endometrioma, pelvic endometriosis, DIE or endometriotic lesions at specific intrapelvic anatomical locations. We included studies that compared the diagnostic test accuracy of one or more imaging modalities versus findings of surgical visualisation of endometriotic lesions. Two review authors independently collected and performed a quality assessment of data from each study. For each imaging test, data were classified as positive or negative for surgical detection of endometriosis, and sensitivity and specificity estimates were calculated. If two or more tests were evaluated in the same cohort, each was considered as a separate data set. We used the bivariate model to obtain pooled estimates of sensitivity and specificity when sufficient data sets were available. Predetermined criteria for a clinically useful imaging test to replace diagnostic surgery included sensitivity ≥ 94% and specificity ≥ 79%. Criteria for triage tests were set at sensitivity ≥ 95% and specificity ≥ 50%, ruling out the diagnosis with a negative result (SnNout test - if sensitivity is high, a negative test rules out pathology) or at sensitivity ≥ 50% with specificity ≥ 95%, ruling in the diagnosis with a positive result (SpPin test - if specificity is high, a positive test rules in pathology). We included 49 studies involving 4807 women: 13 studies evaluated pelvic endometriosis, 10 endometriomas and 15 DIE, and 33 studies addressed endometriosis at specific anatomical sites. Most studies were of poor methodological quality. The most studied modalities were transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI), with outcome measures commonly demonstrating diversity in diagnostic estimates; however, sources of heterogeneity could not be reliably determined. No imaging test met the criteria for a replacement or triage test for detecting pelvic endometriosis, albeit TVUS approached the criteria for a SpPin triage test. For endometrioma, TVUS (eight studies, 765 participants; sensitivity 0.93 (95% confidence interval (CI) 0.87, 0.99), specificity 0.96 (95% CI 0.92, 0.99)) qualified as a SpPin triage test and approached the criteria for a replacement and SnNout triage test, whereas MRI (three studies, 179 participants; sensitivity 0.95 (95% CI 0.90, 1.00), specificity 0.91 (95% CI 0.86, 0.97)) met the criteria for a replacement and SnNout triage test and approached the criteria for a SpPin test. For DIE, TVUS (nine studies, 12 data sets, 934 participants; sensitivity 0.79 (95% CI 0.69, 0.89) and specificity 0.94 (95% CI 0.88, 1.00)) approached the criteria for a SpPin triage test, and MRI (six studies, seven data sets, 266 participants; sensitivity 0.94 (95% CI 0.90, 0.97), specificity 0.77 (95% CI 0.44, 1.00)) approached the criteria for a replacement and SnNout triage test. Other imaging tests assessed in small individual studies could not be statistically evaluated.TVUS met the criteria for a SpPin triage test in mapping DIE to uterosacral ligaments, rectovaginal septum, vaginal wall, pouch of Douglas (POD) and rectosigmoid. MRI met the criteria for a SpPin triage test for POD and vaginal and rectosigmoid endometriosis. Transrectal ultrasonography (TRUS) might qualify as a SpPin triage test for rectosigmoid involvement but could not be adequately assessed for other anatomical sites because heterogeneous data were scant. Multi-detector computerised tomography enema (MDCT-e) displayed the highest diagnostic performance for rectosigmoid and other bowel endometriosis and met the criteria for both SpPin and SnNout triage tests, but studies were too few to provide meaningful results.Diagnostic accuracies were higher for TVUS with bowel preparation (TVUS-BP) and rectal water contrast (RWC-TVS) and for 3.0TMRI than for conventional methods, although the paucity of studies precluded statistical evaluation. None of the evaluated imaging modalities were able to detect overall pelvic endometriosis with enough accuracy that they would be suggested to replace surgery. Specifically for endometrioma, TVUS qualified as a SpPin triage test. MRI displayed sufficient accuracy to suggest utility as a replacement test, but the data were too scant to permit meaningful conclusions. TVUS could be used clinically to identify additional anatomical sites of DIE compared with MRI, thus facilitating preoperative planning. Rectosigmoid endometriosis was the only site that could be accurately mapped by using TVUS, TRUS, MRI or MDCT-e. Studies evaluating recent advances in imaging modalities such as TVUS-BP, RWC-TVS, 3.0TMRI and MDCT-e were observed to have high diagnostic accuracies but were too few to allow prudent evaluation of their diagnostic role. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Future well-designed diagnostic studies undertaken to compare imaging tests for diagnostic test accuracy and costs are recommended.
Comparison of metal versus absorbable implants in tension-band wiring: a preliminary study.
Morgan, W J; Slowman, L A; Wotton, H M; Nairus, J
2001-04-01
The strength of tension-band wiring using bioabsorbable materials versus metal implants was assessed with a rabbit knee fusion model. Ten rabbit knees were osteotomized and rigidly fixed using a tension-band technique: five with metal implants (2 pins and 24-gauge wire) and five with absorbable implants (2-mm pins [Bionx, Blue Bell, Pa] and 1 Maxon [Davis and Geck, Danbury, Conn]). Biomechanical testing of the fixation strength was completed using a servohydraulic mechanical testing machine and a specifically designed four-point bending jig. The parameters assessed were maximal load, relative stiffness, displacement, and bending moment of the constructs. Results of the biomechanical testing showed no statistical difference between the constructs on any of the parameters assessed.
Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites
NASA Astrophysics Data System (ADS)
Zelenak, Steve; Radford, Donald W.; Dean, Michael W.
1993-04-01
The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.
Patterning of leaf vein networks by convergent auxin transport pathways.
Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico
2013-01-01
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
Lamb wave propagation in Z-pin reinforced co-cured composite pi-joints
NASA Astrophysics Data System (ADS)
Swenson, Eric D.; Soni, Som R.; Kapoor, Hitesh
2010-04-01
This paper presents an initial study on Lamb wave propagation characteristics in z-pin reinforced, co-cured composite pi-joints for the purposes of structural health monitoring (SHM). Pi-joint test articles were designed and created to replicate a co-cured, all composite skin-spar joint found within a typical aircraft wing structure. Because pi-joints exhibit various complex damage modes, formal studies are required if SHM systems are to be developed to monitor these types of joints for potential damage. Experiments were conducted on a undamaged (healthy) and damaged test articles where Lamb waves were excited using one lead zirconate titanate (PZT) transducer. A three-dimensional (3D) scanning laser Doppler vibrometer (LDV) was used to collect high-density scans of both the in-plane and out-of-plane velocity measurements. In the damaged test article, where delamination, matrix cracking, and fiber breakage can clearly be seen, changes in both the fundamental antisymmetric A0 and symmetric S0 Lamb wave modes are apparent. In both test articles, the effects of narrow geometry, discontinuity due to the attachment of the web, and thickness has detectable effects on Lamb wave propagation. From the comparisons between Lamb waves propagating through the undamaged and damaged test articles, it is clear that damage can be detected using Lamb waves in z-pin reinforced, co-cured composite pi-joints for this case of extensive damage.
Pin on flat wear volume prediction of UHMWPE against cp Ti for orthopedic applications
NASA Astrophysics Data System (ADS)
Handoko, Suyitno, Dharmastiti, Rini; Magetsari, Rahadyan
2018-04-01
Tribological assessment of orthopedic biomaterials requires a lot of testing time. Researchers must test the biomaterials in millions of cycles at low frequency (1 Hz) to mimic the in vivo conditions. It is a problem because product designs and developments could not wait longer for wear data to predict the lifetime of their products. The problem can be solved with the use of computation techniques to model the wear phenomena and provide predicted data. The aim of this research is to predict the wear volume of the commonly used ultra high molecular weight polyethylene (UHMWPE) sliding against commercially pure titanium (cp Ti) in the unidirectional pin on flat tests. The 9 mm diameter UHMWPE pin and cp Ti plate contact mechanics were modeled using Abaqus. Contact pressure was set at 3 MPa. Outputs of the computations (contact pressure and contact area) were used to calculate the wear volume with Archard law. A custom Python script was made to automate the process. The results were then compared with experimental data for validations. The predicted data were in a good trend with numerical errors from 0.3% up to 26%.
Heat Loads Due to Small Penetrations in Multilayer Insulation Blankets
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Heckle, K. W.; Fesmire, J. E.
2017-01-01
The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to each the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fouriers Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at 76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.
Heat Loads Due To Small Penetrations In Multilayer Insulation Blankets
NASA Astrophysics Data System (ADS)
Johnson, W. L.; Heckle, K. W.; E Fesmire, J.
2017-12-01
The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to ease the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fourier’s Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at ∼76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.
Hicks, Daniel G; Pitts, Marvin J; Bagley, Rodney S; Vasavada, Anita; Chen, Annie V; Wininger, Fred A; Simon, Julianna C
2009-06-01
To determine the change in stiffness as evaluated by the dorsal bending moment of cervical vertebral specimens obtained from canine cadavers after internally stabilizing the vertebral motion unit (VMU) of C4 and C5 with a traditional pin-polymethylmethacrylate (PMMA) fixation implant or a novel screw-bar-PMMA fixation implant. 12 vertebral column specimens (C3 through C6) obtained from canine cadavers. A dorsal bending moment was applied to the vertebral specimens before and after fixation of the VMU of C4 and C5 by use of a traditional pin-PMMA implant or a novel screw-bar-PMMA implant. Biomechanical data were collected and compared within a specimen (unaltered vs treated) and between treatment groups. Additionally, implant placement was evaluated after biomechanical testing to screen for penetration of the transverse foramen or vertebral canal by the pins or screws. Treated vertebral specimens were significantly stiffer than unaltered specimens. There was no significant difference in stiffness between vertebral specimen groups after treatment. None of the screws in the novel screw-bar-PMMA implant group penetrated the transverse foramen or vertebral canal, whereas there was mild to severe penetration for 22 of 24 (92%) pins in the traditional pin-PMMA implant group. Both fixation treatments altered the biomechanical properties of the cervical vertebral specimens as evaluated by the dorsal bending moment. There was reduced incidence of penetration of the transverse foramen or vertebral canal with the novel screw-bar-PMMA implant, compared with the incidence for the traditional pin-PMMA implant.
Bumči, Igor; Vlahović, Tomislav; Jurić, Filip; Žganjer, Mirko; Miličić, Gordana; Wolf, Hinko; Antabak, Anko
2015-11-01
Paediatric ankle fractures comprise approximately 4% of all paediatric fractures and 30% of all epiphyseal fractures. Integrity of the ankle "mortise", which consists of tibial and fibular malleoli, is significant for stability and function of the ankle joint. Tibial malleolar fractures are classified as SH III or SH IV intra-articular fractures and, in cases where the fragments are displaced, anatomic reposition and fixation is mandatory. Type SH III-IV fractures of the tibial malleolus are usually treated with open reduction and fixation with cannulated screws that are parallel to the physis. Two K-wires are used for temporary stabilisation of fragments during reduction. A third "guide wire" for the screw is then placed parallel with the physis. Considering the rules of mechanics, it is assumed that the two temporary pins with the additional third pin placed parallel to the physis create a strong triangle and thus provide strong fracture fixation. To prove this hypothesis, an experiment was conducted on the artificial models of the lower end of the tibia from the company "Sawbones". Each model had been sawn in a way that imitates the fracture of medial malleoli and then reattached with 1.8mm pins in various combinations. Prepared models were then tested for tensile and pressure forces. The least stable model was that in which the fractured pieces were attached with only two parallel pins. The most stable model comprised three pins, where two crossed pins were inserted in the opposite compact bone and the third pin was inserted through the epiphysis parallel with and below the growth plate. A potential method of choice for fixation of tibial malleolar fractures comprises three K-wires, where two crossed pins are placed in the opposite compact bone and one is parallel with the growth plate. The benefits associated with this method include shorter operating times and avoidance of a second operation for screw removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
A numerical study on liquid charging inside electrostatic atomizers
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer Implantation Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimmer, Markus A.; Laurent, Michael P.; Dwivedi, Yasha
2013-01-01
The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are there- fore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 (7Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression- molded GUR 1050, were activated with 109 to 1010 7Be nuclei using a new implantation setup that produced a homogenousmore » distribution of implanted nuclei up to 8.5 lm below the surface. The pins were tested for wear in a six-station pin-on-flat appara- tus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and esti- mated to be 17 6 3 lg per million cycles. The conventional-to- cross-linked ratio of the wear rates was 13.1 6 0.8, in the expected range for these materials. Oxidative degradation dam- age from implantation was negligible; however, a weak depend- ence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.« less
Cross-species functional diversity within the PIN auxin efflux protein family
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connor, Devin Lee; Elton, Samuel; Ticchiarelli, Fabrizio
In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. Here, we previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 andmore » PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.« less
Cross-species functional diversity within the PIN auxin efflux protein family
O'Connor, Devin Lee; Elton, Samuel; Ticchiarelli, Fabrizio; ...
2017-10-24
In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. Here, we previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 andmore » PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.« less
NASA Astrophysics Data System (ADS)
Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun
2017-12-01
The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.
Evaluation of korzincalloy prepared by Hohman Plating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korinko, P. S.; Hollingshad, A. N.
2017-07-17
A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.
Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2016-11-01
The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.
Pin1At regulates PIN1 polar localization and root gravitropism.
Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng
2016-01-21
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.
Pin1At regulates PIN1 polar localization and root gravitropism
Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng
2016-01-01
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759
Development of robots and application to industrial processes
NASA Technical Reports Server (NTRS)
Palm, W. J.; Liscano, R.
1984-01-01
An algorithm is presented for using a robot system with a single camera to position in three-dimensional space a slender object for insertion into a hole; for example, an electrical pin-type termination into a connector hole. The algorithm relies on a control-configured end effector to achieve the required horizontal translations and rotational motion, and it does not require camera calibration. A force sensor in each fingertip is integrated with the vision system to allow the robot to teach itself new reference points when different connectors and pins are used. Variability in the grasped orientation and position of the pin can be accomodated with the sensor system. Performance tests show that the system is feasible. More work is needed to determine more precisely the effects of lighting levels and lighting direction.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Wang, Chunpeng; Xia, Zhiqiu
This paper concerns the outer synchronization problem between two complex delayed networks via the method of aperiodically intermittent pinning control. Apart from previous works, internal delay and coupling delay are both involved in this model, and the designed intermittent controllers can be aperiodic. The main work in this paper can be summarized as follows: First, two cases of aperiodically intermittent control with constant gain and adaptive gain are implemented, respectively. The intermittent control and pinning control are combined to reduce consumptions further. Then, based on the Lyapunov stability theory, synchronization protocols are given by strict derivation. Especially, the designed controllers are indeed simple and valid in application of theory to practice. Finally, numerical examples put the proposed control methods to the test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejong, E. Schuyler; Deberardino, T. M.; Brooks, D. E.
Background: Pin tract infection is a common complication of external fixation. An antiinfective external fixator pin might help to reduce the incidence of pin tract infection and improve pin fixation. Methods: Stainless steel and titanium external fixator pins, with and without a lipid stabilized hydroxyapatite/chlorhexidine coating, were evaluated in a goat model. Two pins contaminated with an identifiable Staphylococcus aureus strain were inserted into each tibia of 12 goats. The pin sites were examined daily. On day 14, the animals were killed, and the pin tips cultured. Insertion and extraction torques were measured. Results: Infection developed in 100% of uncoatedmore » pins, whereas coated pins demonstrated 4.2% infected, 12.5% colonized, and the remainder, 83.3%, had no growth (p < 0.01). Pin coating decreased the percent loss of fixation torque over uncoated pins (p = 0.04). Conclusion: These results demonstrate that the lipid stabilized hydroxyapatite/chlorhexidine coating was successful in decreasing infection and improving fixation of external fixator pins.« less
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Arvind, E-mail: anita@barc.gov.in; Topkar, Anita
In order to improve the gamma discrimination capability for thermal neutron measurements using silicon PIN detectors, a novel approach of use of thin epitaxial silicon PIN detectors was investigated. Thin epitaxial silicon detectors with thickness of 15 µm were developed and their performance was tested with thermal neutrons using {sup 10}B converter. The performance of this detector was compared with the performance of a 300 µm silicon detector. The results of experiments presented in this paper indicate that thin epitaxial silicon detectors can significantly improve γ discrimination for thermal neutron measurements.
The Correlation Fractal Dimension of Complex Networks
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Liu, Zhenzhen; Wang, Mogei
2013-05-01
The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.
Solid surface wetting and the deployment of drops in microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Depew, J.
1994-01-01
The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.
Solid Surface Wetting and the Deployment of Drops in Microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Depew, J.
1994-01-01
The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.
Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Laskowski, J. A.
1996-01-01
The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.
NASA Astrophysics Data System (ADS)
Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.
2017-12-01
This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.
NASA Technical Reports Server (NTRS)
Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight
2006-01-01
In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.
Deformation During Friction Stir Welding
NASA Technical Reports Server (NTRS)
White, Henry J.
2002-01-01
Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.
Mattei, Lorenza; Di Puccio, Francesca; Marchetti, Stefano
2018-05-01
Non-invasive methods for assessing fracture healing are crucial for biomedical engineers. An approach based on mechanical vibrations was tried out in the 1990s, but was soon abandoned due to insufficiently advanced technologies. The same approach is re-proposed in the present study in order to monitor the healing process of a lengthened femur with an external fixator. The pins screwed into the bone were exploited for the impact testing (IT) to excite the bone and capture its response. Transmission through the soft tissues was thus prevented, and the quality of the signals was improved. Impact tests were performed every three to four weeks for five months. Unfortunately, after seven weeks, some pins were removed due to infection, and thus, the system was modified. Two different configurations were considered: before and after pin removal. An additional configuration was examined in the last two sessions, when the fixator body was removed, while four pins were left in the femur. The evolution of the frequency response function and of the resonant frequencies of the system were analysed for the duration of the monitoring period. The IT results were compared to the indications provided by X-ray images. During the evolution of the callus from the soft phase to the woven bone, the resonant frequencies of the system were found to increase by approximately 2-3% per week. The largest increase (approx. 22%) was observed for the first resonant frequency. After formation of the woven bone, the vibratory response remained almost the same, suggesting that the healing assessment could be related to the relative variation in the resonant frequencies. The results presented support the application of the IT approach for fracture healing assessment. © 2018 The Author(s).
Ilangkumaran, R; Srinivasan, J; Baburajan, K; Balaji, N
2014-12-01
Wear of complete denture teeth results in compromise in denture esthetics and functions. To counteract this problem, artificial teeth with increased wear resistance had been introduced in the market such as nanocomposite teeth. The purpose of this study was to compare the amount of wear between nanocomposite teeth and acrylic teeth. Fifteen specimens were chosen from each group namely the nanocomposite teeth (SR_-PHONARES) and the acrylic teeth (ACRY PLUS). Maxillary premolar was only chosen for testing and the samples were customized according to the specifications of the pin on disc machine. Pin on disc machine is a two body tribometer which quantifies the amount of wear under a specific load and time. Test samples were mounted on to the receptacle of the pin on disc machine and tested under a load of 0.3 kg for 1,000 cycles of rotation against a 600 grit emery paper. The amount of wear is displayed from the digital reading obtained from the pin on disc machine. After statistical analysis, it was found that, the amount of wear is more in four layered acrylic teeth. The p value obtained is 0.002 (<0.005) thus implies that the difference in wear between nanocomposite teeth and acrylic teeth is statistically significant. Though the nanocomposite teeth has less amount of wear than the four layered acrylic teeth, the difference is very less and adds only to a little clinical significance but the cost of the nanocomposite is four times that of the acrylic teeth. Further clinical studies must be performed to confirm our results.
Vaidya, Rahul; Onwudiwe, Ndidi; Roth, Matthew; Sethi, Anil
2013-01-01
Purpose. Comparison of monoaxial and polyaxial screws with the use of subcutaneous anterior pelvic fixation. Methods. Four different groups each having 5 constructs were tested in distraction within the elastic range. Once that was completed, 3 components were tested in torsion within the elastic range, 2 to torsional failure and 3 in distraction until failure. Results. The pedicle screw systems showed higher stiffness (4.008 ± 0.113 Nmm monoaxial, 3.638 ± 0.108 Nmm Click-x; 3.634 ± 0.147 Nmm Pangea) than the exfix system (2.882 ± 0.054 Nmm) in distraction. In failure testing, monoaxial pedicle screw system was stronger (360 N) than exfixes (160 N) and polyaxial devices which failed if distracted greater than 4 cm (157 N Click-x or 138 N Pangea). The exfix had higher peak torque and torsional stiffness than all pedicle systems. In torsion, the yield strengths were the same for all constructs. Conclusion. The infix device constructed with polyaxial or monoaxial pedicle screws is stiffer than the 2 pin external fixator in distraction testing. In extreme cases, the use of reinforcement or monoaxial systems which do not fail even at 360 N is a better option. In torsional testing, the 2 pin external fixator is stiffer than the pedicle screw systems. PMID:24368943
Vaidya, Rahul; Onwudiwe, Ndidi; Roth, Matthew; Sethi, Anil
2013-01-01
Purpose. Comparison of monoaxial and polyaxial screws with the use of subcutaneous anterior pelvic fixation. Methods. Four different groups each having 5 constructs were tested in distraction within the elastic range. Once that was completed, 3 components were tested in torsion within the elastic range, 2 to torsional failure and 3 in distraction until failure. Results. The pedicle screw systems showed higher stiffness (4.008 ± 0.113 Nmm monoaxial, 3.638 ± 0.108 Nmm Click-x; 3.634 ± 0.147 Nmm Pangea) than the exfix system (2.882 ± 0.054 Nmm) in distraction. In failure testing, monoaxial pedicle screw system was stronger (360 N) than exfixes (160 N) and polyaxial devices which failed if distracted greater than 4 cm (157 N Click-x or 138 N Pangea). The exfix had higher peak torque and torsional stiffness than all pedicle systems. In torsion, the yield strengths were the same for all constructs. Conclusion. The infix device constructed with polyaxial or monoaxial pedicle screws is stiffer than the 2 pin external fixator in distraction testing. In extreme cases, the use of reinforcement or monoaxial systems which do not fail even at 360 N is a better option. In torsional testing, the 2 pin external fixator is stiffer than the pedicle screw systems.
Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi
2016-06-03
Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less
Enhancing the far-UV sensitivity of silicon CMOS imaging arrays
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2014-07-01
We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.
Determination of X-ray flux using silicon pin diodes
Owen, Robin L.; Holton, James M.; Schulze-Briese, Clemens; Garman, Elspeth F.
2009-01-01
Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced. PMID:19240326
PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens.
Spahn, Philipp N; Bath, Tyler; Weiss, Ryan J; Kim, Jihoon; Esko, Jeffrey D; Lewis, Nathan E; Harismendy, Olivier
2017-11-20
Large-scale genetic screens using CRISPR/Cas9 technology have emerged as a major tool for functional genomics. With its increased popularity, experimental biologists frequently acquire large sequencing datasets for which they often do not have an easy analysis option. While a few bioinformatic tools have been developed for this purpose, their utility is still hindered either due to limited functionality or the requirement of bioinformatic expertise. To make sequencing data analysis of CRISPR/Cas9 screens more accessible to a wide range of scientists, we developed a Platform-independent Analysis of Pooled Screens using Python (PinAPL-Py), which is operated as an intuitive web-service. PinAPL-Py implements state-of-the-art tools and statistical models, assembled in a comprehensive workflow covering sequence quality control, automated sgRNA sequence extraction, alignment, sgRNA enrichment/depletion analysis and gene ranking. The workflow is set up to use a variety of popular sgRNA libraries as well as custom libraries that can be easily uploaded. Various analysis options are offered, suitable to analyze a large variety of CRISPR/Cas9 screening experiments. Analysis output includes ranked lists of sgRNAs and genes, and publication-ready plots. PinAPL-Py helps to advance genome-wide screening efforts by combining comprehensive functionality with user-friendly implementation. PinAPL-Py is freely accessible at http://pinapl-py.ucsd.edu with instructions and test datasets.
NASA Astrophysics Data System (ADS)
Muday, Gloria; Sukumar, Poornima; Edwards, Karin; Delong, Alison; Rahman, Abidur
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We tested the hypothesis that PINOID (PID)-mediated phosphorylation and RCN1- regulated dephosphorylation might antagonistically regulate auxin transport and gravity response in seedling roots. Here we show that basipetal IAA transport and gravitropism are reduced in pid mutant seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor, staurosporine, phenocopied the reduced auxin transport and gravity response of pid-9 and reduced formation of asymmetric DR5-revGFP expression at the root tip after reorientation relative to gravity. Gravitropism and auxin transport in pid are resistant to further inhibition by staurosporine. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine or the phosphatase inhibitor, cantharidin, respectively, and in the pid-9 rcn1 double mutant. Furthermore, the effect of staurosporine is lost in pin2, and a PIN2::GFP fusion protein accumulates in endomembrane compartments after staurosporine treatment. In the pid-9 mutant, immunological techniques find a similar PIN2 localization. These data suggest that staurosporine inhibits gravitropism and basipetal IAA transport by blocking PID action and altering PIN2 localization and support the model that PID and RCN1 reciprocally regulate root gravitropic curvature.
Process-Hardened, Multi-Analyte Sensor for Characterizing Rocket Plume Constituents
NASA Technical Reports Server (NTRS)
Goswami, Kisholoy
2011-01-01
A multi-analyte sensor was developed that enables simultaneous detection of rocket engine combustion-product molecules in a launch-vehicle ground test stand. The sensor was developed using a pin-printing method by incorporating multiple sensor elements on a single chip. It demonstrated accurate and sensitive detection of analytes such as carbon dioxide, carbon monoxide, kerosene, isopropanol, and ethylene from a single measurement. The use of pin-printing technology enables high-volume fabrication of the sensor chip, which will ultimately eliminate the need for individual sensor calibration since many identical sensors are made in one batch. Tests were performed using a single-sensor chip attached to a fiber-optic bundle. The use of a fiber bundle allows placement of the opto-electronic readout device at a place remote from the test stand. The sensors are rugged for operation in harsh environments.
Lee, Young Ho; Lee, Sang Ki; Kim, Byung Sung; Chung, Moon Sang; Baek, Goo Hyun; Gong, Hyun Sik; Lee, Joon Kyu
2008-06-01
To evaluate the efficacy of lateral or parallel pin fixation using 3 smooth Kirschner wires (K-wires) or smooth Steinmann pins for the operative management of displaced supracondylar humeral fracture in a consecutive series of children. Sixty-one consecutive displaced or angled supracondylar humeral fractures (Gartland type II or III) in children (mean age, 5 years 6 months) treated by 2 orthopaedic surgeons between 2001 and 2004 according to the following protocol: close reduction under general anesthesia with fluoroscopic guidance and only lateral percutaneous pinning using 3 divergent or parallel Kirschner wires or Steinmann pins. Minimum 2 years' follow-up was done in all 61 patients (range, 2.0-3.3 years). Clinical assessment was obtained at final follow-up using Flynn criteria, and radiologic assessment was obtained using the Baumann and lateral humerocapitellar angles of both arms. Statistical analysis was performed by means of the Student t test (P < 0.05). The study group consisted of 61 patients, of whom 24 (39%) presented with Gartland type II fractures, and the remaining 37 (61%) presented with a type III fracture. A comparison of perioperative and final radiographs shows no loss of reduction of any fracture. There was also no clinically evident cubitus varus, hyperextension, or loss of motion. Eight patients had preoperative nerve palsy. Five of these nerve injuries resolved immediately after surgery, and the other 3 resolved completely within 12 weeks of surgery. After an average of 28 months postoperation, 56 (91.8%) patients had achieved an excellent clinical result, and 5 (8.2%) achieved a good result. There were no iatrogenic nerve palsies, and no patient required additional surgery. One patient had a minor pin-track infection. Our series demonstrates that only 3 lateral divergent or parallel pin fixations are effective and safe for avoiding iatrogenic ulnar nerve injury and are appropriate treatment options for displaced or angled supracondylar humeral fractures in children. Therapeutic study, level III.
Self-locking double retention redundant pull pin release
NASA Technical Reports Server (NTRS)
Killgrove, Thomas O. (Inventor)
1987-01-01
A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.
Pin-Retraction Mechanism On Quick-Release Cover
NASA Technical Reports Server (NTRS)
Macmartin, Malcolm
1994-01-01
Quick-release cover includes pin-retraction mechanism releasing cover quickly from lower of two sets of pin connections holding cover. Cover released at top by pulling lever as described in "Lever-Arm Pin Puller" (NPO-18788). Removal of cover begins when technician or robot pulls upper-pin-release lever. Cover swings downward until tabs on lower pins are pulled through slots in their receptacles. Lower pins are then free.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, P. V., E-mail: gorpavel@vver.kiae.ru; Kotsarev, A. V.; Lizorkin, M. P.
2014-12-15
The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.
Electrical Connector Mechanical Seating Sensor
NASA Technical Reports Server (NTRS)
Arens, Ellen; Captain, Janine; Youngquist, Robert
2011-01-01
A sensor provides a measurement of the degree of seating of an electrical connector. This sensor provides a number of discrete distances that a plug is inserted into a socket or receptacle. The number of measurements is equal to the number of pins available in the connector for sensing. On at least two occasions, the Shuttle Program has suffered serious time delays and incurred excessive costs simply because a plug was not seated well within a receptacle. Two methods were designed to address this problem: (1) the resistive pin technique and (2) the discrete length pins technique. In the resistive pin approach, a standard pin in a male connector is replaced with a pin that has a uniform resistivity along its length. This provides a variable resistance on that pin that is dependent on how far the pin is inserted into a socket. This is essentially a linear potentiometer. The discrete approach uses a pin (or a few pins) in the connector as a displacement indicator by truncating the pin length so it sits shorter in the connector than the other pins. A loss of signal on this pin would indicate a discrete amount of displacement of the connector. This approach would only give discrete values of connector displacement, and at least one pin would be needed for each displacement value that would be of interest.
Ganser, Antonia; Thompson, Rosemary E; Tami, Ivan; Neuhoff, Dirk; Steiner, Adrian; Ito, Keita
2007-02-01
To compare the clinical benefits of stainless steel (SS) to titanium (Ti) on reducing pin track irritation/infection and pin loosening during external fracture fixation. A tibial gap osteotomy was created in 17 sheep and stabilized with four Schanz screws of either SS or Ti and an external fixation frame. Over the 12 week observation period, pin loosening was assessed by grading the radiolucency around the pins and measuring the extraction torque on pin removal at sacrifice. Irritation/infection was assessed with weekly clinical pin track grading. A histological analysis of the tissue adjacent to the pin site was made to assess biocompatibility. A statistically non-significant trend for less bone resorption around Ti pins was found during the early observation period. However, at sacrifice, there was no difference between the two materials. Also, there was no difference in the extraction torque, and there was similar remodeling and apposition of the bone around the pins. A statistically non-significant trend for more infection about SS pins at sacrifice was found. Histology showed a slightly higher prevalence of reactionary cells in SS samples, but was otherwise not much different than around Ti pins. There is no clinically relevant substantial advantage in using either SS or Ti pins on reducing pin loosening or pin track irritation/infection.
System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)
2002-01-01
A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.
Apparatus for inspecting fuel elements
Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.
1986-01-01
Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Apparatus for inspecting fuel elements
Kaiser, B.J.; Oakley, D.J.; Groves, O.J.
1984-12-21
This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
The effect of socioeconomic status on the language outcome of preterm infants at toddler age.
Wild, Katherine T; Betancourt, Laura M; Brodsky, Nancy L; Hurt, Hallam
2013-09-01
Independently, both prematurity and low socioeconomic status (SES) compromise language outcome but less is known regarding the effects of low SES on outcome of prior preterm infants at toddler age. To assess SES effects on the language outcome of prior preterm infants at toddler age. Retrospective chart review of infants born at ≤32 weeks, matched for gestational age (GA), birth weight (BW), chronic lung disease (CLD), periventricular leukomalacia (PVL), right and left intraventricular hemorrhage (IVH-R, L), and age at Bayley Scales of Infant Development III (BSID-III) testing. Using insurance status as a proxy for SES, 65 children with private insurance (P-Ins) were matched with 65 children with Medicaid-type insurance (M-Ins). Bayley Scales of Infant Development-III Language Composite. M-Ins vs. P-Ins were similar in GA, BW, and age at BSID-III testing (mean 22.6 months adjusted), as well as other matched characteristics (all p ≥ 0.16). BSID-III Language Composite scores were lower in M-Ins than P-Ins (87.9 ± 11.3 vs. 101.9 ± 13.6) with a clinically significant effect size of 0.93 (p < 0.001). Overall, 45% of M-Ins exhibited mild to moderate language delay compared to 8% of P-Ins. Receptive and Expressive subscale scores also were lower in M-Ins than in P-Ins (both p < 0.001). In this preterm cohort, by toddler age, M-Ins was associated with lower scores on measures of overall language as well as receptive and expressive language skills. Our findings, showing such an early influence of SES on language outcome in a cohort matched for biomedical risk, suggest that very early language interventions may be especially important for low SES preterm toddlers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.
Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T
2017-02-08
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.
NASA Astrophysics Data System (ADS)
Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.
2014-06-01
In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.
Nonpolar InGaN/GaN core–shell single nanowire lasers
Li, Changyi; Wright, Jeremy Benjamin; Liu, Sheng; ...
2017-01-24
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core–shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core–shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core–shell nanowires, despite significantly shorter cavity lengths and reducedmore » active region volume. Mode simulations show that due to the core–shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. Furthermore, the results show the viability of this p-i-n nonpolar core–shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV–visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.« less
Performance of a neutron spectrometer based on a PIN diode.
Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Ventura, L; Zotto, P
2005-01-01
The neutron spectrometer discussed in this work consists of a PIN diode coupled with a polyethylene converter. Neutrons are detected through the energy deposited by recoil-protons in silicon. The maximum detectable energy is -6 MeV and is imposed by the thickness of the fully depleted layer (300 microm for the present device). The minimum detectable energy which can be assessed with pulse-shape discrimination (PSD) is -0.9 MeV. PSD is performed with a crossover method and setting the diode in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The limited interval of detectable energies restricts the application of this spectrometer to low-energy neutron fields, such as the ones which can be produced at facilities hosting low-energy ion accelerators. The capacity to reproduce continuous neutron spectra was investigated by optimising the electronic chain for pulse-shape discrimination. In particular, the spectrometer was irradiated with neutrons that were generated by striking a thick beryllium target with protons of several energies and the measured spectra were compared with data taken from the literature.
Pin routability and pin access analysis on standard cells for layout optimization
NASA Astrophysics Data System (ADS)
Chen, Jian; Wang, Jun; Zhu, ChengYu; Xu, Wei; Li, Shuai; Lin, Eason; Ou, Odie; Lai, Ya-Chieh; Qu, Shengrui
2018-03-01
At advanced process nodes, especially at sub-28nm technology, pin accessibility and routability of standard cells has become one of the most challenging design issues due to the limited router tracks and the increased pin density. If this issue can't be found and resolved during the cell design stage, the pin access problem will be very difficult to be fixed in implementation stage and will make the low efficiency for routing. In this paper, we will introduce a holistic approach for the pin accessibility scoring and routability analysis. For accessibility, the systematic calculator which assigns score for each pin will search the available access points, consider the surrounded router layers, basic design rule and allowed via geometry. Based on the score, the "bad" pins can be found and modified. On pin routability analysis, critical pin points (placing via on this point would lead to failed via insertion) will be searched out for either layout optimization guide or set as OBS for via insertion blocking. By using this pin routability and pin access analysis flow, we are able to improve the library quality and performance.
Flux pinning mechanism in codoped-MgB2 with Al2O3 and SiC
NASA Astrophysics Data System (ADS)
Kiafiroozkoohi, Narjess Sadat; Ghorbani, Shaban Reza; Arabi, Hadi
2018-05-01
MgB2 superconductor samples, co-doped with 0.02 wt of Al2O3 and 0.02 wt SiC, have been examined by M-H loop measurements and calculation of the critical current density based on the Bean model. Normalized volume pinning force, f = F/Fmax, as a function of the reduced magnetic field, h = H/Hmax has been obtained at each temperature. Hughochi flux pinning model, which was included the normal point pinning, the normal surface pinning, and the pinning based on spatial variation in the Ginzburg-Landau parameter, was used to study the flux pinning mechanisms. It was found that the Δκ effect and the normal point pinning mechanisms play the main role in the flux pinning at the magnetic field lower than Hmax and the contribution of the Δκ mechanism increases with the increasing temperature, while the contribution of normal point pinning mechanism decreases. At magnetic field larger than Hmax, the only mechanism that acts as the flux pinning was the normal surface pinning mechanism.
Wear Analysis of Thermal Spray Coatings on 3D Surfaces
NASA Astrophysics Data System (ADS)
Tillmann, W.; Luo, W.; Selvadurai, U.
2014-01-01
Even though the application of thermal spray coatings on complex geometries gained a greater interest in the last decade, the effect of different geometrical features on the wear behavior is still ill-defined. In this study, the wear resistance of FTC-FeCSiMn coated 3D surfaces was investigated. The wear test was carried out by means of two innovative testing procedures. The first test is a Pin-on-Tubes test where the rotating motion is realized by a lathe chuck. The specimens in the second test were fixed on the table and a robot arm operated the pin. This wear test was applied on specimens with concave or convex surfaces. The residual stresses, which were determined by means of an incremental hole-drilling method, show a dependency on the substrate geometry. The obtained stresses were put in relation to the different radii. After the wear test, a 3D-profilometer determined the wear volume and the sections of the coatings were characterized by a scanning electron microscope. The results indicate that the wear resistance is strongly influenced by the geometry of the substrate.
Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures
NASA Technical Reports Server (NTRS)
Benoy, Patricia A.; Dellacorte, Christopher
1995-01-01
A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.
Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.
Liu, Yuan; Wei, Haichao
2017-07-01
Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.
Reduction of halo pin site morbidity with a new pin care regimen.
Kazi, Hussain Anthony; de Matas, Marcus; Pillay, Robin
2013-06-01
A retrospective analysis of halo device associated morbidity over a 4-year period. To assess the impact of a new pin care regimen on halo pin site related morbidity. Halo orthosis treatment still has a role in cervical spine pathology, despite increasing possibilities of open surgical treatment. Published figures for pin site infection range from 12% to 22% with pin loosening from 7% to 50%. We assessed the outcome of a new pin care regimen on morbidity associated with halo spinal orthoses, using a retrospective cohort study from 2001 to 2004. In the last two years, our pin care regimen was changed. This involved pin site care using chlorhexidene & regular torque checking as part of a standard protocol. Previously, povidone iodine was used as skin preparation in theatre, followed by regular sterile saline cleansing when pin sites became encrusted with blood. There were 37 patients in the series, the median age was 49 (range, 22-83) and 20 patients were male. The overall infection rate prior to the new pin care protocol was 30% (n=6) and after the introduction, it dropped to 5.9% (n=1). This difference was statistically significant (p<0.05). Pin loosening occurred in one patient in the group prior to the formal pin care protocol (3%) and none thereafter. Reduced morbidity from halo use can be achieved with a modified pin cleansing and tightening regimen.
Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...
2015-07-01
Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less
Tribological properties of Ag/Ti films on Al2O3 ceramic substrates
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.
1991-01-01
Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.
A complete low cost radon detection system.
Bayrak, A; Barlas, E; Emirhan, E; Kutlu, Ç; Ozben, C S
2013-08-01
Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan
2017-11-01
A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.
Friction and Wear of Unlubricated NiTiHf with Nitriding Surface Treatments
NASA Technical Reports Server (NTRS)
Stanford, Malcolm K.
2018-01-01
The unlubricated friction and wear properties of the superelastic materials NiTi and NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin on disk testing of the studied materials was performed at sliding speeds from 0.01 to 1m/s at normal loads of 1, 5 or 10N. For all of the studied friction pairs (NiTiHf pins vs. NiTi and NiTiHf disks) over the given parameters, the steady-state coefficients of friction varied from 0.22 to 1.6. Pin wear factors ranged from approximately 1E-6 against the NiTiHf and plasma nitrided disks to approximately 1E-4 for the gas nitrided disks. The plasma nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas nitrided treatment generated the most pin wear but had essentially no disk wear except at the most severe of the studied conditions (1N load and 1m/s sliding speed). The results of this study are expected to provide guidance for design of components such as gears and fasteners.
Evaluation of gamma dose effect on PIN photodiode using analytical model
NASA Astrophysics Data System (ADS)
Jafari, H.; Feghhi, S. A. H.; Boorboor, S.
2018-03-01
The PIN silicon photodiodes are widely used in the applications which may be found in radiation environment such as space mission, medical imaging and non-destructive testing. Radiation-induced damage in these devices causes to degrade the photodiode parameters. In this work, we have used new approach to evaluate gamma dose effects on a commercial PIN photodiode (BPX65) based on an analytical model. In this approach, the NIEL parameter has been calculated for gamma rays from a 60Co source by GEANT4. The radiation damage mechanisms have been considered by solving numerically the Poisson and continuity equations with the appropriate boundary conditions, parameters and physical models. Defects caused by radiation in silicon have been formulated in terms of the damage coefficient for the minority carriers' lifetime. The gamma induced degradation parameters of the silicon PIN photodiode have been analyzed in detail and the results were compared with experimental measurements and as well as the results of ATLAS semiconductor simulator to verify and parameterize the analytical model calculations. The results showed reasonable agreement between them for BPX65 silicon photodiode irradiated by 60Co gamma source at total doses up to 5 kGy under different reverse voltages.
Linkage design effect on the reliability of surface-micromachined microengines driving a load
NASA Astrophysics Data System (ADS)
Tanner, Danelle M.; Peterson, Kenneth A.; Irwin, Lloyd W.; Tangyunyong, Paiboon; Miller, William M.; Eaton, William P.; Smith, Norman F.; Rodgers, M. Steven
1998-09-01
The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. We have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, we used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, we analyzed the statistical data yielding a lifetime (t50) for median cycles to failure and (sigma) , the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed.
Thermal characterization of gallium nitride p-i-n diodes
NASA Astrophysics Data System (ADS)
Dallas, J.; Pavlidis, G.; Chatterjee, B.; Lundh, J. S.; Ji, M.; Kim, J.; Kao, T.; Detchprohm, T.; Dupuis, R. D.; Shen, S.; Graham, S.; Choi, S.
2018-02-01
In this study, various thermal characterization techniques and multi-physics modeling were applied to understand the thermal characteristics of GaN vertical and quasi-vertical power diodes. Optical thermography techniques typically used for lateral GaN device temperature assessment including infrared thermography, thermoreflectance thermal imaging, and Raman thermometry were applied to GaN p-i-n diodes to determine if each technique is capable of providing insight into the thermal characteristics of vertical devices. Of these techniques, thermoreflectance thermal imaging and nanoparticle assisted Raman thermometry proved to yield accurate results and are the preferred methods of thermal characterization of vertical GaN diodes. Along with this, steady state and transient thermoreflectance measurements were performed on vertical and quasi-vertical GaN p-i-n diodes employing GaN and Sapphire substrates, respectively. Electro-thermal modeling was performed to validate measurement results and to demonstrate the effect of current crowding on the thermal response of quasi-vertical diodes. In terms of mitigating the self-heating effect, both the steady state and transient measurements demonstrated the superiority of the tested GaN-on-GaN vertical diode compared to the tested GaN-on-Sapphire quasi-vertical structure.
Grid Gap Measurement for an NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
Diaz, Esther M.; Soulas, George C.
2006-01-01
The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.
Continuity tester screens out faulty socket connections
NASA Technical Reports Server (NTRS)
Golding, G.
1964-01-01
A device, used before and after assembly, tests the continuity of an electrical circuit through each pin and socket of multiple connector sockets. Electrically insulated except at the contact area, a test probe is dimensioned to make contact only in properly formed sockets.
The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.
Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro
2017-07-14
The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Lewis, Richard A.
1980-01-01
A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.
The effect of temperature on pinning mechanisms in HTS composites
NASA Astrophysics Data System (ADS)
Sotnikova, A. P.; Rudnev, I. A.
2016-09-01
Pinning mechanism in samples of second generation tapes (2G) of high-temperature superconductors (HTS) was studied The critical current and the pinning force were calculated from the magnetization curves measured in the temperature range of 4.2 - 77 K in magnetic fields up to 14 Tesla using vibration sample magnetometer. To determine the pinning mechanism the dependences of pinning force on magnetic field were constructed according to the Dew-Hughes model and Kramer's rule. The obtained dependences revealed a significant influence of the temperature on effectiveness of different types of pinning. At low temperatures the 2G HTS tapes of different manufacturers demonstrated an equal efficiency of the pinning centers but with temperature increase the differences in pinning mechanisms as well as in properties and effectiveness of the pinning centers become obvious. The influence of the pinning mechanism on the energy losses in HTS tapes was shown.
Pin fin compliant heat sink with enhanced flexibility
Schultz, Mark D.
2018-04-10
Heat sinks and methods of using the same include a top and bottom plate, at least one of which has a plurality of pin contacts flexibly connected to one another, where the plurality of pin contacts have vertical and lateral flexibility with respect to one another; and pin slice layers, each having multiple pin slices, arranged vertically between the top and bottom plates such that the plurality of pin slices form substantially vertical pins connecting the top and bottom plates.
Pernisova, Marketa; Prat, Tomas; Grones, Peter; Harustiakova, Danka; Matonohova, Martina; Spichal, Lukas; Nodzynski, Tomasz; Friml, Jiri; Hejatko, Jan
2016-10-01
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
NASA Astrophysics Data System (ADS)
Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.
2015-05-01
Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.
Characterization of B4C-composite-reinforced aluminum alloy composites
NASA Astrophysics Data System (ADS)
Singh, Ram; Rai, R. N.
2018-04-01
Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
We have developed and used an optical-fiber sensor for detecting the arrival of strong pressure pulses. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pinmore » by analogy to standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per/sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. We have also measured the sensitivity of the optical pins to slowly-moving projectiles and found that a 200 m/sec projectile impacting the microballoon sensor produces a flash having a risetime less than 100 ns and a pulse duration (FWHM) of less than 300 ns. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
NASA Astrophysics Data System (ADS)
Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata
2018-02-01
Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.
Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen
2018-03-28
Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.
Bao, Zhong-Min; Xu, Rui-Peng; Li, Chi; Xie, Zhong-Zhi; Zhao, Xin-Dong; Zhang, Yi-Bo; Li, Yan-Qing; Tang, Jian-Xin
2016-08-31
Charge transport at organic/inorganic hybrid contacts significantly affects the performance of organic optoelectronic devices because the unfavorable energy level offsets at these interfaces can hinder charge injection or extraction due to large barrier heights. Herein, we report a technologically relevant method to functionalize a traditional hole-transport layer of solution-processed nickel oxide (NiOx) with various interlayers. The photoemission spectroscopy measurements reveal the continuous tuning of the NiOx substrate work function ranging from 2.5 to 6.6 eV, enabling the alignment transition of energy levels between the Schottky-Mott limit and Fermi level pinning at the organic/composite NiOx interface. As a result, switching hole and electron transport for the active organic material on the composite NiOx layer is achieved due to the controlled carrier injection/extraction barriers. The experimental findings indicate that tuning the work function of metal oxides with optimum energy level offsets can facilitate the charge transport at organic/electrode contacts.
Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.
2008-01-01
Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.
Friction and Wear Characteristics of a Modified Composite Solid Lubricant Plasma Spray Coating
NASA Technical Reports Server (NTRS)
Stanford, M. K.; DellaCorte, C.
2004-01-01
LCR304 is a solid lubricant coating composed of Ni-10Cr, Cr2O3, BaF2-CaF2 and Ag and developed for dimensional stability in high temperature air. This coating is a modification of PS304, which differs in that the Ni-Cr constituent contains 20wt% Cr. The tribological characteristics of LCR304 were evaluated by pin-on-disk and foil air bearing rig testing from 25 to 650 C and compared to previous test results with PS304. For both tests, the friction coefficient decreased as temperature increased from 25 to 650 C. Wear generally decreased with increasing temperature for all pin-on-disk tests. LCR304 coated components produced the least wear of Inconel X-750 counterface materials at 427 and 650 C. These results indicate that the LCR304 coating has potential as a replacement for PS304 in, for example, low cycle (minimum wear) applications where dimensional stability is imperative.
Haga, Ken; Sakai, Tatsuya
2012-10-01
Auxin efflux carrier PIN-FORMED (PIN) proteins are thought to have central roles in regulating asymmetrical auxin translocation during tropic responses, including gravitropism and phototropism, in plants. Although PIN3 is known to be involved in phototropism in Arabidopsis (Arabidopsis thaliana), no severe defects of phototropism in any of the pin mutants have been reported. We show here that the pulse-induced, first positive phototropism is impaired partially in pin1, pin3, and pin7 single mutants, and severely in triple mutants. In contrast, such impairment was not observed in continuous-light-induced second positive phototropism. Analysis with an auxin-reporter gene demonstrated that PIN3-mediated auxin gradients participate in pulse-induced phototropism but not in continuous-light-induced phototropism. Similar functional separation was also applicable to PINOID, a regulator of PIN localization. Our results strongly suggest the existence of functionally distinct mechanisms i.e. a PIN-dependent mechanism in which transient stimulation is sufficient to induce phototropism, and a PIN-independent mechanism that requires continuous stimulation and does not operate in the former phototropism process. Although a previous study has proposed that blue-light photoreceptors, the phototropins, control PIN localization through the transcriptional down-regulation of PINOID, we could not detect this blue-light-dependent down-regulation event, suggesting that other as yet unknown mechanisms are involved in phototropin-mediated phototropic responses.
Haga, Ken; Sakai, Tatsuya
2012-01-01
Auxin efflux carrier PIN-FORMED (PIN) proteins are thought to have central roles in regulating asymmetrical auxin translocation during tropic responses, including gravitropism and phototropism, in plants. Although PIN3 is known to be involved in phototropism in Arabidopsis (Arabidopsis thaliana), no severe defects of phototropism in any of the pin mutants have been reported. We show here that the pulse-induced, first positive phototropism is impaired partially in pin1, pin3, and pin7 single mutants, and severely in triple mutants. In contrast, such impairment was not observed in continuous-light-induced second positive phototropism. Analysis with an auxin-reporter gene demonstrated that PIN3-mediated auxin gradients participate in pulse-induced phototropism but not in continuous-light-induced phototropism. Similar functional separation was also applicable to PINOID, a regulator of PIN localization. Our results strongly suggest the existence of functionally distinct mechanisms i.e. a PIN-dependent mechanism in which transient stimulation is sufficient to induce phototropism, and a PIN-independent mechanism that requires continuous stimulation and does not operate in the former phototropism process. Although a previous study has proposed that blue-light photoreceptors, the phototropins, control PIN localization through the transcriptional down-regulation of PINOID, we could not detect this blue-light-dependent down-regulation event, suggesting that other as yet unknown mechanisms are involved in phototropin-mediated phototropic responses. PMID:22843667
Spring loaded locator pin assembly
Groll, Todd A.; White, James P.
1998-01-01
This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.
Method and apparatus for enhancing vortex pinning by conformal crystal arrays
Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan
2015-07-14
Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.
Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids.
Carmona, G; Rodriguez, A; Juarez, D; Corzo, G; Villegas, E
2013-08-01
Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a D-diastereomer of Pandinin 2, D-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of L- and D-Pin2 were to some extent similar, an important reduction in D-Pin2 hemolytic activity (30-40 %) was achieved compared to that of L-Pin2 over human erythrocytes. Furthermore, D-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of L-Pin2. Nevertheless, the antimicrobial activity of D-Pin2 was equally effective as that of L-Pin2 in microdilution assays. Yet, when D- and L-Pin2 were incubated with trypsin, elastase and whole human serum, only D-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, L- and D-Pin2 maintained similar peptide stability. Finally, when L- and D-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, D-Pin2 kept its antibiotic activity while L-Pin2 was not effective.
Alignment Pins for Assembling and Disassembling Structures
NASA Technical Reports Server (NTRS)
Campbell, Oliver C.
2008-01-01
Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.
Spring loaded locator pin assembly
Groll, T.A.; White, J.P.
1998-03-03
This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.
Bramblett, Richard L.; Preskitt, Charles A.
1987-03-03
Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.
van der Borden, Arnout J; Maathuis, Patrick G M; Engels, Eefje; Rakhorst, Gerhard; van der Mei, Henny C; Busscher, Henk J; Sharma, Prashant Kumar
2007-04-01
Pin tract infections of external fixators used in orthopaedic reconstructive bone surgery are serious complications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biofilm mode of growth detach under the influence of small electric currents, while remaining bacteria become less viable upon current application. Therefore, we have investigated whether a 100microA electric current can prevent signs of clinical infection around percutaneous pins, implanted in the tibia of goats. Three pins were inserted into the lateral right tibia of nine goats, of which one served for additional frame support. Two pins were infected with a Staphylococcus epidermidis strain of which one pin was subjected to electric current, while the other pin was used as control. Pin sites were examined daily. The wound electrical resistance decreased with worsening of the infection from a dry condition to a purulent stage. After 21 days, animals were sacrificed and the pins taken out. Infection developed in 89% of the control pin sites, whereas only 11% of the pin sites in the current group showed infection. These results show that infection of percutaneous pin sites of external fixators in reconstructive bone surgery can be prevented by the application of a small DC electric current.
Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters
NASA Astrophysics Data System (ADS)
Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit
2018-06-01
Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.
Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor
NASA Astrophysics Data System (ADS)
Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.
2018-07-01
MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.
Expression of proteinase inhibitor II proteins during floral development in Solanum americanum.
Sin, Suk-Fong; Chye, Mee-Len
2004-10-01
The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.
Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger
2010-04-01
In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.
Design, Simulation, and Preliminary Testing of a 20 Ampere Energy Management System
2015-06-01
Vre f 0.5 V 0.58 V Vil 0.8 V 1.1 V Vih 1.9 V 2.25 V An important feature of this power module is the smart shutdown feature [15]. A simpli- fied...protection is removed when the pin voltage reaches the high-logic level Vih [15]. Values for Rshunt , RSD, and CSD had to be selected to implement this over...0.58 V Vil 0.8 V Vih 2.25 V Table 3.3. Truth table for H-bridge IGBTs, from [16]. Logic Input Output Shutdown Pin Lower IGBT Upper IGBT Lower IGBT
Local endwall heat/mass-transfer distributions in pin fin channels
NASA Astrophysics Data System (ADS)
Lau, S. C.; Kim, Y. S.; Han, J. C.
1987-10-01
Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.
Santy, J E; Kamal, J; Abdul-Rashid, A H; Ibrahim, S
2015-07-01
Percutaneous pinning after closed reduction is commonly used to treat supracondylar fractures of the humerus in children. Minor pin tract infections frequently occur. The aim of this study was to prevent pin tract infections using a rubber stopper to reduce irritation of the skin against the Kirschner (K) wire following percutaneous pinning. Between July 2011 and June 2012, seventeen children with closed supracondylar fracture of the humerus of Gartland types 2 and 3 were treated with this technique. All patients were treated with closed reduction and percutaneous pinning and followed up prospectively. Only one patient, who was a hyperactive child, developed pin tract infection due to softening of the plaster slab. We found using the rubber stopper to be a simple and inexpensive method to reduce pin tract infections following percutaneous pinning.
Santy, JE; Abdul-Rashid, AH; Ibrahim, S
2015-01-01
Percutaneous pinning after closed reduction is commonly used to treat supracondylar fractures of the humerus in children. Minor pin tract infections frequently occur. The aim of this study was to prevent pin tract infections using a rubber stopper to reduce irritation of the skin against the Kirschner (K) wire following percutaneous pinning. Between July 2011 and June 2012, seventeen children with closed supracondylar fracture of the humerus of Gartland types 2 and 3 were treated with this technique. All patients were treated with closed reduction and percutaneous pinning and followed up prospectively. Only one patient, who was a hyperactive child, developed pin tract infection due to softening of the plaster slab. We found using the rubber stopper to be a simple and inexpensive method to reduce pin tract infections following percutaneous pinning. PMID:28435603
Nisar, Nazia; Cuttriss, Abby J; Pogson, Barry J; Cazzonelli, Christopher I
2014-01-01
Cellular auxin homeostasis controls many aspects of plant growth, organogenesis and development. The existence of intracellular auxin transport mediated by endoplasmic reticulum (ER)-localized PIN5, PIN6 and PIN8 proteins is a relatively recent discovery shaping a new era in understanding auxin-mediated growth processes. Here we summarize the importance of PIN6 in mediating intracellular auxin transport during root formation, leaf vein patterning and nectary production. While, it was previously shown that PIN6 was strongly expressed in rosette leaf cell types important in vein formation, here we demonstrate by use a PIN6 promoter-reporter fusion, that PIN6 is also preferentially expressed in the vasculature of the primary root, cotyledons, cauline leaves, floral stem, sepals and the main transmitting tract of the reproductive silique. The strong, vein- specific reporter gene expression patterns enabled by the PIN6 promoter emphasizes that transcriptional control is likely to be a major regulator of PIN6 protein levels, during vasculature formation, and supports the need for ER-localized PIN proteins in selecting specialized cells for vascular function in land plants.
Biological significance of PinX1 telomerase inhibitor in esophageal carcinoma treatment
Fan, Xiang-Kui; Yan, Rui-Hua; Geng, Xiang-Qun; Li, Jing-Shan; Chen, Xiang-Ming; Li, Jian-Zhe
2016-01-01
In the present study, to investigate the expression of PinX1 gene and its functional effects in human esophageal carcinoma (Eca)-109 cell line, expression vectors of human PinX1 (pEGFP-C3-PinX1) and its small interfering RNA (PinX1-FAM-siRNA) were constructed and transfected into Eca-109 cells using Lipofectamine 2000. Firstly, the mRNA expression level of PinX1 was examined using reverse transcription-polymerase chain reaction (RT-PCR). Once successful transfection was achieved, the effects on the mRNA level of human telomerase reverse transcriptase (hTERT), telomerase activity, cell proliferation and apoptosis were examined by semi-quantitative RT-PCR, stretch PCR, MTT assay and flow cytometry, respectively. Analysis of restriction and sequencing demonstrated that the recombining plasmids were successfully constructed. The results also indicated that transfection with pEGFP-C3-PinX1 and PinX1-FAM-siRNA into Eca-109 cells significantly increased PinX1 mRNA, decreased hTERT mRNA by 29.9% (P<0.05), and significantly reduced telomerase activity (P<0.05), inhibited cell growth, and increased the cell apoptotic index from 19.27±0.76 to 49.73±2%. The transfected PinX1-FAM-SiRNA exhibited PinX1 mRNA expression levels that were significantly decreased by 70% (P<0.05), whereas the remaining characteristics of Eca-109 cells, including cell growth, mRNA level of hTERT, telomerase activity and cell apoptotic index were not altered. Exogenous PinX1 has been demonstrated to be highly expressed in human Eca. PinX1 can inhibit human telomerase activity and the expression of hTERT mRNA, reduce tumor cell growth and induce apoptosis. Notably, these inhibitory functions were inhibited by silencing PinX1 in Eca with PinX1-FAM-siRNA. PinX1 was successfully increased and decreased in the present study, demonstrating that it may be a potential telomerase activity inhibitor. As PinX1 is an endogenous telomerase inhibitor, it may be used as a novel tumor-targeted gene therapy. PMID:27698711
NASA Astrophysics Data System (ADS)
Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.
STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.
Pu, Wenchen; Li, Jiao; Zheng, Yuanyuan; Shen, Xianyan; Fan, Xin; Zhou, Jian-Kang; He, Juan; Deng, Yulan; Liu, Xuesha; Wang, Chun; Yang, Shengyong; Chen, Qiang; Liu, Lunxu; Zhang, Guolin; Wei, Yu-Quan; Peng, Yong
2018-01-30
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018). © 2018 by the American Association for the Study of Liver Diseases.
Carmack, W. Jon; Chichester, Heather M.; Porter, Douglas L.; ...
2016-02-27
The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This then places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. After comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Chichester, H. M.; Porter, D. L.
2016-05-01
Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less
Li, Na; Yuan, Kai; Yan, Feng; Huo, Yuda; Zhu, Tongge; Liu, Xing; Guo, Zhen; Yao, Xuebiao
2009-06-19
Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.
Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires
NASA Astrophysics Data System (ADS)
Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.
2014-01-01
We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.
Nakatsu, Yusuke; Sakoda, Hideyuki; Kushiyama, Akifumi; Zhang, Jun; Ono, Hiraku; Fujishiro, Midori; Kikuchi, Takako; Fukushima, Toshiaki; Yoneda, Masayasu; Ohno, Haruya; Horike, Nanao; Kanna, Machi; Tsuchiya, Yoshihiro; Kamata, Hideaki; Nishimura, Fusanori; Isobe, Toshiaki; Ogihara, Takehide; Katagiri, Hideki; Oka, Yoshitomo; Takahashi, Shin-ichiro; Kurihara, Hiroki; Uchida, Takafumi; Asano, Tomoichiro
2011-01-01
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is a unique enzyme that associates with the pSer/Thr-Pro motif and catalyzes cis-trans isomerization. We identified Pin1 in the immunoprecipitates of overexpressed IRS-1 with myc and FLAG tags in mouse livers and confirmed the association between IRS-1 and Pin1 by not only overexpression experiments but also endogenously in the mouse liver. The analysis using deletion- and point-mutated Pin1 and IRS-1 constructs revealed the WW domain located in the N terminus of Pin1 and Ser-434 in the SAIN (Shc and IRS-1 NPXY binding) domain of IRS-1 to be involved in their association. Subsequently, we investigated the role of Pin1 in IRS-1 mediation of insulin signaling. The overexpression of Pin1 in HepG2 cells markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events: phosphatidylinositol 3-kinase binding with IRS-1 and Akt phosphorylation. In contrast, the treatment of HepG2 cells with Pin1 siRNA or the Pin1 inhibitor Juglone suppressed these events. In good agreement with these in vitro data, Pin1 knock-out mice exhibited impaired insulin signaling with glucose intolerance, whereas adenoviral gene transfer of Pin1 into the ob/ob mouse liver mostly normalized insulin signaling and restored glucose tolerance. In addition, it was also demonstrated that Pin1 plays a critical role in adipose differentiation, making Pin1 knock-out mice resistant to diet-induced obesity. Importantly, Pin1 expression was shown to be up-regulated in accordance with nutrient conditions such as food intake or a high-fat diet. Taken together, these observations indicate that Pin1 binds to IRS-1 and thereby markedly enhances insulin action, essential for adipogenesis. PMID:21454638
NASA Technical Reports Server (NTRS)
Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)
2013-01-01
A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).
In addition to development and systematic qualitative/quantitative testing of indicator-based valuation for aquatic living resources, the proposed work will improve interdisciplinary mechanisms to model and communicate aquatic ecosystem change within SP valuation—an area...
EMC Enhanced Constant ’Z’ Modulator.
1984-06-01
TUTHILL, Colonel, USAF Chief, Relilability & Compatibility Division FOR THE COMMANDER: JOHN A. RITZ Acting Chief, Plans Office 0 * - If your address...supply bypasses. 3.2.6 System Testing Breadboard system tests resulted in the replacement of the HP5082-3340 shunt mounted PIN diodes due to a carrer life
A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.
Eichner, Cornelius; Wald, Lawrence L; Setsompop, Kawin
2014-10-01
Simultaneous multislice (SMS) acquisition enables increased temporal efficiency of MRI. Nonetheless, MultiBand (MB) radiofrequency (RF) pulses used for SMS can cause large energy deposition. Power independent of number of slices (PINS) pulses reduce RF power at cost of reduced bandwidth and increased off-resonance dependency. This work improves PINS design to further reduce energy deposition, off-resonance dependency and peak power. Modifying the shape of MB RF-pulses allows for mixing with PINS excitation, creating a new pulse type with reduced energy deposition and SMS excitation characteristics. Bloch Simulations were used to evaluate excitation and off-resonance behavior of this "MultiPINS" pulse. In this work, MultiPINS was used for whole-brain MB = 3 acquisition of high angular and spatial resolution diffusion MRI at 7 Tesla in 3 min. By using MultiPINS, energy transmission and peak power for SMS imaging can be significantly reduced compared with PINS and MB pulses. For MB = 3 acquisition in this work, MultiPINS reduces energy transmission by up to ∼50% compared with PINS pulses. The energy reduction was traded off to shorten the MultiPINS pulse, yielding higher signal at off-resonances for spin-echo acquisitions. MB and PINS pulses can be combined to enable low energy and peak power SMS acquisition. Copyright © 2014 Wiley Periodicals, Inc.
COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer.
Kim, Garam; Khanal, Prem; Kim, Jin Young; Yun, Hyo-Jeong; Lim, Sung-Chul; Shim, Jung-Hyun; Choi, Hong Seok
2015-06-01
Pin1, a conserved eukaryotic Peptidyl-prolyl cis/trans isomerase, has profound effects on numerous key-signaling molecules, and its deregulation contributes to disease, particularly cancer. Although Pin1-mediated prolyl isomerization is an essential and novel regulatory mechanism for protein phosphorylation, little is known about the upstream signaling pathway(s) that regulates Pin1 activity. Here, we identify MAP3K-related serine-threonine kinase (the gene encoding COT/Tpl2) as a kinase responsible for phosphorylation of Pin1 Ser16. COT interacts with and phosphorylates Pin1 on Ser16. Consequently, Pin1 Ser16 phosphorylation by COT increases cyclin D1 abundance and enhances tumorigenecity of MCF7 cells. In contrast, depletion of COT in MCF7 cells leads to downregulation of Pin1 Ser16 phosphorylation, which subsequently decrease cyclin D1 levels, inhibiting tumorigenecity of MCF7 cells. In a xenograft model, treatment of TKI, a COT inhibitor, and Juglone, a Pin1 inhibitor, abrogates tumor growth. In human breast cancer patients, immunohistochemical staining shows that Pin1 pSer16 levels are positively correlated with COT levels, providing strong evidence for an essential role of the COT/Pin1 axis in conveying oncogenic signals to promote aggressiveness in human breast cancer. © 2013 Wiley Periodicals, Inc.
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Mingliang; Gao, Dong
2014-02-01
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong
2014-02-14
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less
Gan, Zengyu; Wang, Yi; Wu, Ting; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai
2018-03-01
Lower promoter activity is closely associated with lower MdPIN1b expression in the M9 interstem, which might contribute to the dwarfing effect in apple trees. Apple trees grafted onto dwarfing rootstock Malling 9 (M9) produce dwarfing tree architecture with high yield and widely applying in production. Previously, we have reported that in Malus 'Red Fuji' (RF) trees growing on M9 interstem and Baleng Crab (BC) rootstock, IAA content was relatively higher in bark tissue of M9 interstem than that in scion or rootstock. As IAA polar transportation largely depends on the PIN-FORMED (PIN) auxin efflux carrier. Herein, we identify two putative auxin efflux carrier genes in Malus genus, MdPIN1a and MdPIN1b, which were closely related to the AtPIN1. We found that MdPIN1b was expressed preferentially in BC and M9, and the expression of MdPIN1b was significantly lower in the phloem of M9 interstem than that in the scion and rootstock. The distinct expression of MdPIN1b and IAA content were concentrated in the cambium and adjacent xylem or phloem, and MdPIN1b protein was localized on cell plasma membrane in onion epidermal cells transiently expressing 35S:MdPIN1b-GFP fusion protein. Interestingly, an MdPIN1b mutant allele in the promoter region upstream of M9 exhibited decreased MdPIN1b expression compared to BC. MdPIN1b over-expressing interstem in tobacco exhibited increased polar auxin transport. It is proposed that natural allelic differences decreased promoter activity is closely associated with lower MdPIN1b expression in the M9 interstem, which might limit the basipetal transport of auxin, and in turn might contribute to the dwarfing effect. Taken together, these results reveal allelic variation underlying an important apple rootstock trait, and specifically a novel molecular genetic mechanism underlying dwarfing mechanism.
The TP53 gene polymorphisms and survival of sporadic breast cancer patients.
Bišof, V; Salihović, M Peričić; Narančić, N Smolej; Skarić-Jurić, T; Jakić-Razumović, J; Janićijević, B; Rudan, P
2012-06-01
The TP53 gene polymorphisms, Arg72Pro and PIN3 (+16 bp), can have prognostic and predictive value in different cancers including breast cancer. The aim of the present study is to investigate a potential association between different genotypes of these polymorphisms and clinicopathological variables with survival of breast cancer patients in Croatian population. Ninety-four women with sporadic breast cancer were retrospectively analyzed. Median follow-up period was 67.9 months. The effects of basic clinical and histopathological characteristics of tumor on survival were tested by Cox's proportional hazards regression analysis. The TNM stage was associated with overall survival by Kaplan-Meier analysis, univariate, and multivariate Cox's proportional hazards regression analysis, while grade was associated with survival by Kaplan-Meier analysis and univariate Cox's proportional hazards regression analysis. Different genotypes of the Arg72Pro and PIN3 (+16 bp) polymorphisms had no significant impact on survival in breast cancer patients. However, in subgroup of patients treated with chemotherapy without anthracycline, the A2A2 genotype of the PIN3 (+16 bp) polymorphism was associated with poorer overall survival than other genotypes by Kaplan-Meier analysis (P = 0.048). The TP53 polymorphisms, Arg72Pro and PIN3 (+16 bp), had no impact on survival in unselected sporadic breast cancer patients in Croatian population. However, the results support the role of the A2A2 genotype of the PIN3 (+16 bp) polymorphism as a marker for identification of patients that may benefit from anthracycline-containing chemotherapy.
A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action
NASA Astrophysics Data System (ADS)
Campaner, Elena; Rustighi, Alessandra; Zannini, Alessandro; Cristiani, Alberto; Piazza, Silvano; Ciani, Yari; Kalid, Ori; Golan, Gali; Baloglu, Erkan; Shacham, Sharon; Valsasina, Barbara; Cucchi, Ulisse; Pippione, Agnese Chiara; Lolli, Marco Lucio; Giabbai, Barbara; Storici, Paola; Carloni, Paolo; Rossetti, Giulia; Benvenuti, Federica; Bello, Ezia; D'Incalci, Maurizio; Cappuzzello, Elisa; Rosato, Antonio; Del Sal, Giannino
2017-06-01
The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urusova, Darya V.; Shim, Jung-Hyun; Kim, Dong Joon
The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). The human peptidyl prolyl cis/trans isomerase (Pin1) plays a critical role in oncogenic signaling. Herein, we report the X-ray crystal structure of the Pin1/EGCG complex resolved at 1.9 Å resolution. Notably, the structure revealed the presence of EGCG in both the WW and PPIase domains of Pin1. The direct binding of EGCG with Pin1 was confirmed and the interaction inhibited Pin1 PPIase activity. In addition, proliferation of cells expressing Pin1 was inhibited and tumor growth in a xenograft mouse model was suppressed. The binding of EGCG with Arg17 inmore » the WW domain prevented the binding of c-Jun, a well-known Pin1 substrate. EGCG treatment corresponded with a decreased abundance of cyclin D1 and diminution of 12-O-tetradecanoylphorbol-l3-acetate–induced AP-1 or NF-κB promoter activity in cells expressing Pin1. Overall, these results showed that EGCG directly suppresses the tumor-promoting effect of Pin1.« less
Anaesthesia Gas Supply: Gas Cylinders
Srivastava, Uma
2013-01-01
Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883
Anaesthesia gas supply: gas cylinders.
Srivastava, Uma
2013-09-01
Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment.
Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.
Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A
2010-03-15
A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.
Hettlich, Bianca F; Allen, Matthew J; Pascetta, Daniel; Fosgate, Geoffrey T; Litsky, Alan S
2013-08-01
To compare biomechanical stiffness of cadaveric canine cervical spine constructs stabilized with bicortical stainless steel pins and polymethylmethacrylate (PMMA), monocortical stainless steel screws with PMMA, or monocortical titanium screws with PMMA. Biomechanical cadaver study. Eighteen canine cervical vertebral columns (C2-C7) were collected from skeletally mature dogs (weighing 22-32 kg). Specimens were radiographed and examined by dual energy X-ray absorptiometry. Stiffness of the unaltered C4-C5 intervertebral motion unit was measured in extension, flexion and lateral bending using non-destructive 4-point bend testing. Specimens were then stabilized by (1) bicortical stainless steel pins/PMMA, (2) monocortical stainless steel screws/PMMA, or (3) monocortical titanium screws/PMMA. Mechanical testing was repeated and stiffness data from unaltered specimens and the 3 treatment groups were compared. All 3 surgical methods significantly increased stiffness of the C4-C5 motion unit compared with the unaltered specimen (P < .001 for all treatments), but stiffness was not significantly different among the 3 fixation groups (P = .578). In this model, monocortical screw fixation (with stainless steel or titanium screws) was biomechanically equivalent to bicortical fixation. © Copyright 2013 by The American College of Veterinary Surgeons.
Graph theoretic analysis of protein interaction networks of eukaryotes
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Kahng, B.; Kim, D.
2005-11-01
Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.
Lian, Xiaolan; Lin, Yu-Min; Kozono, Shingo; Herbert, Megan K; Li, Xin; Yuan, Xiaohong; Guo, Jiangrui; Guo, Yafei; Tang, Min; Lin, Jia; Huang, Yiping; Wang, Bixin; Qiu, Chenxi; Tsai, Cheng-Yu; Xie, Jane; Cao, Ziang Jeff; Wu, Yong; Liu, Hekun; Zhou, Xiaozhen; Lu, Kunping; Chen, Yuanzhong
2018-05-30
The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed: this is followed by engineering design, fabrication, and testing to validate the overall design process. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
Analysis of geometric moments as features for firearm identification.
Md Ghani, Nor Azura; Liong, Choong-Yeun; Jemain, Abdul Aziz
2010-05-20
The task of identifying firearms from forensic ballistics specimens is exacting in crime investigation since the last two decades. Every firearm, regardless of its size, make and model, has its own unique 'fingerprint'. These fingerprints transfer when a firearm is fired to the fired bullet and cartridge case. The components that are involved in producing these unique characteristics are the firing chamber, breech face, firing pin, ejector, extractor and the rifling of the barrel. These unique characteristics are the critical features in identifying firearms. It allows investigators to decide on which particular firearm that has fired the bullet. Traditionally the comparison of ballistic evidence has been a tedious and time-consuming process requiring highly skilled examiners. Therefore, the main objective of this study is the extraction and identification of suitable features from firing pin impression of cartridge case images for firearm recognition. Some previous studies have shown that firing pin impression of cartridge case is one of the most important characteristics used for identifying an individual firearm. In this study, data are gathered using 747 cartridge case images captured from five different pistols of type 9mm Parabellum Vektor SP1, made in South Africa. All the images of the cartridge cases are then segmented into three regions, forming three different set of images, i.e. firing pin impression image, centre of firing pin impression image and ring of firing pin impression image. Then geometric moments up to the sixth order were generated from each part of the images to form a set of numerical features. These 48 features were found to be significantly different using the MANOVA test. This high dimension of features is then reduced into only 11 significant features using correlation analysis. Classification results using cross-validation under discriminant analysis show that 96.7% of the images were classified correctly. These results demonstrate the value of geometric moments technique for producing a set of numerical features, based on which the identification of firearms are made.
Sukumar, Poornima; Edwards, Karin S; Rahman, Abidur; Delong, Alison; Muday, Gloria K
2009-06-01
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1) protein might antagonistically regulate root auxin transport and gravity response. Basipetal indole-3-acetic acid transport and gravitropism are reduced in pid-9 seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor staurosporine phenocopies the reduced auxin transport and gravity response of pid-9, while pid-9 is resistant to inhibition by staurosporine. Staurosporine and the phosphatase inhibitor, cantharidin, delay the asymmetric expression of DR5revGFP (green fluorescent protein) at the root tip after gravistimulation. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine and cantharidin, respectively. The pid-9 rcn1 double mutant has a more rapid gravitropic response than rcn1. These data are consistent with a reciprocal regulation of gravitropism by RCN1 and PID. Furthermore, the effect of staurosporine is lost in pinformed2 (pin2). Our data suggest that reduced PID kinase function inhibits gravitropism and basipetal indole-3-acetic acid transport. However, in contrast to PID overexpression studies, we observed wild-type asymmetric membrane distribution of the PIN2 protein in both pid-9 and wild-type root tips, although PIN2 accumulates in endomembrane structures in pid-9 roots. Similarly, staurosporine-treated plants expressing a PIN2GFP fusion exhibit endomembrane accumulation of PIN2GFP, but no changes in membrane asymmetries were detected. Our data suggest that PID plays a limited role in root development; loss of PID activity alters auxin transport and gravitropism without causing an obvious change in cellular polarity.
Desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes.
Hagert, Elisabet; Persson, Jonas K E
2010-07-01
The presence of wrist proprioceptive reflexes after stimulation of the dorsal scapholunate interosseous ligament has previously been described. Because this ligament is primarily innervated by the posterior interosseous nerve (PIN) we hypothesized altered ligamento-muscular reflex patterns following desensitization of the PIN. Eight volunteers (3 women, 5 men; mean age, 26 y; range 21-28 y) participated in the study. In the first study on wrist proprioceptive reflexes (study 1), the scapholunate interosseous ligament was stimulated through a fine-wire electrode with 4 1-ms bipolar pulses at 200 Hz, 30 times consecutively, while EMG activity was recorded from the extensor carpi radialis brevis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris, with the wrist in extension, flexion, radial deviation, and ulnar deviation. After completion of study 1, the PIN was anesthetized in the radial aspect of the fourth extensor compartment using 2-mL lidocaine (10 mg/mL) infiltration anesthesia. Ten minutes after desensitization, the experiment was repeated as in study 1. The average EMG results from the 30 consecutive stimulations were rectified and analyzed using Student's t-test. Statistically significant changes in EMG amplitude were plotted along time lines so that the results of study 1 and 2 could be compared. Dramatic alterations in reflex patterns were observed in wrist flexion, radial deviation, and ulnar deviation following desensitization of the PIN, with an average of 72% reduction in excitatory reactions. In ulnar deviation, the inhibitory reactions of the extensor carpi ulnaris were entirely eliminated. In wrist extension, no differences in the reflex patterns were observed. Wrist proprioception through the scapholunate ligament in flexion, radial deviation, and ulnar deviation depends on an intact PIN function. The unchanged reflex patterns in wrist extension suggest an alternate proprioceptive pathway for this position. Routine excision of the PIN during wrist surgical procedures should be avoided, as it alters the proprioceptive function of the wrist. Therapeutic IV. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Treatment of a Simple Bone Cyst Using a Cannulated Hydroxyapatite Pin
Shirai, Toshiharu; Tsuchiya, Hiroyuki; Terauchi, Ryu; Tsuchida, Shinji; Mizoshiri, Naoki; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Miwa, Shinji; Kimura, Hiroaki; Takeuchi, Akihiko; Hayashi, Katsuhiro; Yamamoto, Norio; Kubo, Toshikazu
2015-01-01
Abstract Simple bone cysts (SBCs) are benign bone tumors. However, the treatment of SBCs remains controversial because of their healing rate and the invasiveness of surgery. The purpose of the present study was to evaluate the treatment of SBCs using a cannulated hydroxyapatite (HA) pin. A total of 43 patients (35 males, 8 females; mean age 12.1 years; age range, 5–22 years) with SBCs were treated with continuous decompression by inserting ceramic HA pins between 1989 and 2014. The SBCs were located in the calcaneus in 23, the humerus in 15, the femur in 3, and the pelvis in 2 cases. In all patients, minimal fenestration of the cyst wall and curettage and multiple drilling in the cyst wall were performed, followed by insertion of the HA pin. The mean follow-up period was 26.6 months. Operating time, healing period, risk factors for recurrence, and the cure rate were evaluated. Healing was achieved without intervention in 38 patients after a mean of 6.4 months. Two patients had persistent small residual cysts, which had no changes after 1 year at the latest follow-up. There were 5 patients with recurrences (humerus 4, femur 1), who were cured by curettage and artificial bone grafting. The final healing rate by cannulation only using an HA pin was 88.2%. On Fisher exact test, age, site of SBCs, and distance from the physis were found to be significantly associated with SBC recurrence (P < 0.05). In the present study, cannulation using an HA pin for SBCs was found to be a useful technique, particularly for calcaneal cysts, because it is a minimally invasive procedure with a high cure rate. In patients <10 years, involvement of the humerus and contact with the growth plate were significant risk factors for SBC recurrence. PMID:26107670
beam diameter? Which ion beams are available and how long does it take to change from one to another connector is inverted. Adapters are available to invert the pins again resulting in a one-to-one pin pattern one-to-one pin pattern. Maximim current rating is 1 amp per pin. Five 37-pin D subminiature connectors
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Klang, E. C.; Cooper, D. E.
1987-01-01
The effects of pin elasticity, clearance, and friction on the stresses in a pin loaded orthotropic plate are studied. The effects are studied by posing the problem as a planar contact elasticity problem, the pin and the plate being two elastic bodies which interact through contact. Coulomb friction is assumed, the pin loads the plate in one of its principal material directions, and the plate is infinite in extent. A collocation scheme and interaction, in conjunction with a complex variable series solution, are used to obtain numerical results. The contact region between the plate and pin is unknown and must be solved for as part of the solution. The same is true of the region of friction induced no slip. Two pin stiffnesses, two clearance levels, two friction levels and two laminates, a (0/+ or - 45/90)s and a (02/+ or - 45)s, are studied. The effects of pin elasticity, clearance, and friction on the load capacity of the plate are assessed by comparing the load capacity of the plate with the capacity when the pin is rigid, perfectly fitting, and frictionless.
Wei, Shuo; Kozono, Shingo; Kats, Lev; Nechama, Morris; Li, Wenzong; Guarnerio, Jlenia; Luo, Manli; You, Mi-Hyeon; Yao, Yandan; Kondo, Asami; Hu, Hai; Bozkurt, Gunes; Moerke, Nathan J; Cao, Shugeng; Reschke, Markus; Chen, Chun-Hau; Rego, Eduardo M; Lo-Coco, Francesco; Cantley, Lewis C; Lee, Tae Ho; Wu, Hao; Zhang, Yan; Pandolfi, Pier Paolo; Zhou, Xiao Zhen; Lu, Kun Ping
2015-05-01
A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency for inhibiting Pin1 function in vivo. By using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but whose drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the protein encoded by the fusion oncogene PML-RARA and treats APL in APL cell and animal models as well as in human patients. ATRA-induced Pin1 ablation also potently inhibits triple-negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors.
NASA Technical Reports Server (NTRS)
Bowles, K. J.; Gluyas, R. E.
1975-01-01
The effects of some materials variables on the irradiation performance of fuel pins for a lithium-cooled space power reactor design concept were examined. The variables studied were UN fuel density, fuel composition, and cladding alloy. All pins were irradiated at about 990 C in a thermal neutron environment to the design fuel burnup. An 85-percent dense UN fuel gave the best overall results in meeting the operational goals. The T-111 cladding on all specimens was embrittled, possibly by hydrogen in the case of the UN fuel and by uranium and oxygen in the case of the UO2 fuel. Tests with Cb-1Zr cladding indicate potential use of this cladding material. The UO2 fueled specimens met the operational goals of less than 1 percent cladding strain, but other factors make UO2 less attractive than low-density UN for the contemplated space power reactor use.
Formation of polarity convergences underlying shoot outgrowths
Abley, Katie; Sauret-Güeto, Susanna; Marée, Athanasius FM; Coen, Enrico
2016-01-01
The development of outgrowths from plant shoots depends on formation of epidermal sites of cell polarity convergence with high intracellular auxin at their centre. A parsimonious model for generation of convergence sites is that cell polarity for the auxin transporter PIN1 orients up auxin gradients, as this spontaneously generates convergent alignments. Here we test predictions of this and other models for the patterns of auxin biosynthesis and import. Live imaging of outgrowths from kanadi1 kanadi2 Arabidopsis mutant leaves shows that they arise by formation of PIN1 convergence sites within a proximodistal polarity field. PIN1 polarities are oriented away from regions of high auxin biosynthesis enzyme expression, and towards regions of high auxin importer expression. Both expression patterns are required for normal outgrowth emergence, and may form part of a common module underlying shoot outgrowths. These findings are more consistent with models that spontaneously generate tandem rather than convergent alignments. DOI: http://dx.doi.org/10.7554/eLife.18165.001 PMID:27478985
Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabha, H.; Marleau, G.
2012-07-01
For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presentedmore » with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)« less
NASA Astrophysics Data System (ADS)
Beigi, P.; Mohammadi, P.
2017-11-01
In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.
Corrosion Control Test Method for Avionic Components
1981-09-25
pin conn’ecLor adsemblies *Electronic test articles exposed in an avionic box The following test parameters were used: Environment A - Modified Sulfur Dic...carrier correlation criteria in Table IV. The modified sulfur dioxide/salt fog test showed the best correlation with the carrier exposed test arti...capacitor. The HCl/H 2 SO3 environment and the S2C12 environment, as expected, produced more electrical failures than the modified sulfur dioxide test
Giroux, Michael J.; Morris, Craig F.
1998-01-01
“Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953
Wang, Jing-Zhang; Liu, Ji; Lin, Tao; Han, Yong-Guang; Luo, Yue; Xi, Lei; Du, Lin-Fang
2013-09-01
The enzyme peptidyl-prolyl cis-trans isomerase (Pin1) may play an important role in preventing the development of Alzheimer's disease (AD). The structural and functional stability of Pin1 is extremely important. Previously, we have determined the stability of Pin1 under stressed conditions, such as thermal treatment and acidic-pH. Considering that aluminum (Al(III)) is well known for its potential neurotoxicity in the pathogenesis of AD, we examined whether Al(III) affects the structure and function of Pin1, by means of a PPIase activity assay, intrinsic fluorescence, circular dichroism (CD) spectroscopy, FTIR, and differential scanning calorimetry (DSC). The intrinsic tryptophan fluorescence measurements mainly show that Al(III) may bind to the clusters nearby W11 and W34 in the WW domain of Pin1, quenching the intrinsic fluorescence of the two tryptophan residues, which possibly results in the decreased binding affinity of Pin1 to substrates. The secondary structural analysis as revealed by FTIR and CD measurements indicate that Al(III) induces the increase in β-sheet and the decrease in α-helix in Pin1. Furthermore, the changes of the thermodynamic parameters for Pin1 as monitored by DSC confirm that the thermal stability of Pin1 significantly increases in the presence of Al(III). The Al(III)-induced structural changes of Pin1 result in a sharp decrease of the PPIase activity of Pin1. To some extent, our research is suggestive that Al(III) may inhibit the isomerization activity of Pin1 in vivo, which may contribute to the pathogenesis of AD. Copyright © 2013. Published by Elsevier Inc.
Chanana, Mitin; Kumar, Adarsh; Tyagi, Som Prakash; Singla, Amit Kumar; Sharma, Arvind; Farooq, Uiase Bin
2018-02-01
The current study was undertaken to evaluate the clinical efficacy of end-threaded intramedullary pinning for management of various long bone fractures in canines. This study was conducted in two phases, managing 25 client-owned dogs presented with different fractures. The technique of application of end-threaded intramedullary pinning in long bone fractures was initially standardized in 6 clinical patients presented with long bone fractures. In this phase, end-threaded pins of different profiles, i.e., positive and negative, were used as the internal fixation technique. On the basis of results obtained from standardization phase, 19 client-owned dogs clinically presented with different fractures were implanted with end-threaded intramedullary positive profile screw ended self-tapping pin in the clinical application phase. The patients, allocated randomly in two groups, when evaluated postoperatively revealed slight pin migration in Group-I (negative profile), which resulted in disruption of callus site causing delayed union in one case and large callus formation in other two cases whereas no pin migration was observed in Group-II (positive profile). Other observations in Group-I was reduced muscle girth and delayed healing time as compared to Group-II. In clinical application, phase 21 st and 42 nd day post-operative radiographic follow-up revealed no pin migration in any of the cases, and there was no bone shortening or fragment collapse in end-threaded intramedullary positive profile screw ended self-tapping pin. The end-threaded intramedullary positive profile screw ended self-tapping pin used for fixation of long bone fractures in canines can resist pin migration, pin breakage, and all loads acting on the bone, i.e., compression, tension, bending, rotation, and shearing to an extent with no post-operative complications.
Foolproof quick-release locking pin
NASA Technical Reports Server (NTRS)
Nelson, E. P.; Othman, T. E.; Zmuda, L. J.
1970-01-01
Locking pin can be withdrawn only when stress on the joint is negligible. Pin consists of a forward-pointing sleeve, a spring-loaded sliding handle, and a sliding plunger. Plunger movement controls installation and withdrawal of pin.
Bertelsen, Freja; Folloni, Davide; Møller, Arne; Landau, Anne M; Scheel-Krüger, Jørgen; Winterdahl, Michael
2017-09-01
To better understand the role of the neuropeptide oxytocin in autism spectrum disorder (ASD), we investigated potential deficits in social play behaviour and oxytocin receptor (OXTR) density alterations in the amygdala in a rodent model of ASD. Pregnant rats were injected daily with 20 or 100 mg/kg valproic acid (VPA) or saline from day 12 until the end of pregnancy. The number of pinning and pouncing events was assessed at postnatal days 29-34. Brains from male offspring (n=7/group) were removed at postnatal day 50. We performed quantitative autoradiography with an OXTR radioligand, the [I]-ornithine vasotocin analogue, in brain slices from the amygdala and other limbic brain regions involved in rat social behaviour. The results demonstrated a significant reduction in pinning behaviour and decreased OXTR density in the central nucleus of the amygdala in the 20 mg/kg VPA group. However, the 100 mg/kg VPA group had no significant changes in the number of play behaviour-related events or OXTR binding in the central nucleus of the amygdala. The reduction in OXTR density in the amygdala may be a critical disrupting mechanism affecting social behaviour in pervasive disorders such as ASD.
Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma.
Kim, Da-Jin; Park, Jang-Soon; Kim, Cheol Ho; Hur, Jae; Kim, Choong-Ki; Cho, Young-Kyun; Ko, Jun-Bong; Park, Bonghyuk; Kim, Dongho; Choi, Yang-Kyu
2017-12-08
This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 10 4 and 10 5 S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.
An experimental study of fault propagation in a jet-engine controller. M.S. Thesis
NASA Technical Reports Server (NTRS)
Choi, Gwan Seung
1990-01-01
An experimental analysis of the impact of transient faults on a microprocessor-based jet engine controller, used in the Boeing 747 and 757 aircrafts is described. A hierarchical simulation environment which allows the injection of transients during run-time and the tracing of their impact is described. Verification of the accuracy of this approach is also provided. A determination of the probability that a transient results in latch, pin or functional errors is made. Given a transient fault, there is approximately an 80 percent chance that there is no impact on the chip. An empirical model to depict the process of error exploration and degeneration in the target system is derived. The model shows that, if no latch errors occur within eight clock cycles, no significant damage is likely to happen. Thus, the overall impact of a transient is well contained. A state transition model is also derived from the measured data, to describe the error propagation characteristics within the chip, and to quantify the impact of transients on the external environment. The model is used to identify and isolate the critical fault propagation paths, the module most sensitive to fault propagation and the module with the highest potential of causing external pin errors.
Micro-miniature gas chromatograph column disposed in silicon wafers
Yu, Conrad M.
2000-01-01
A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.
Displaced humeral lateral condyle fractures in children: should we bury the pins?
Das De, Soumen; Bae, Donald S; Waters, Peter M
2012-09-01
The purpose of this investigation was to determine if leaving Kirschner wires exposed is more cost-effective than burying them subcutaneously after open reduction and internal fixation (ORIF) of humeral lateral condyle fractures. A retrospective cohort study of all lateral condyle fractures treated over a 10-year period at a single institution was performed. Data on surgical technique, fracture healing, and complications were analyzed, as well as treatment costs. A decision analysis model was then constructed to compare the strategies of leaving the pins exposed versus buried. Finally, sensitivity analyses were performed, assessing cost-effectiveness when infection rates and costs of treating deep infections were varied. A total of 235 children with displaced fractures were treated with ORIF using Kirschner wires. Pins were left exposed in 41 cases (17.4%) and buried in 194 cases (82.6%); the age, sex, injury mechanisms, and fracture patterns were similar in both the groups. The median time to removal of implants was shorter with exposed versus buried pins (4 vs. 6 wk, P<0.001), although there was no difference in fracture union or loss of reduction rates. The rate of superficial infection was higher with exposed pins (9.8% vs. 3.1%), but this was not statistically significant (P=0.076). There were no deep infections with exposed pins, whereas the rate of deep infection was 0.5% with buried pins (P=1.00). Buried pins were associated with additional complications, including symptomatic implants (7.2%); pins protruding through the skin (16%); internal pin migration necessitating additional surgery (1%); and skin necrosis (1%). The decision analysis revealed that leaving pins exposed resulted in an average cost savings of $3442 per patient. This strategy remained cost-effective even when infection rates with exposed pins approached 40%. Leaving the pins exposed after ORIF of lateral condyle fractures is safe and more cost-effective than burying the pins subcutaneously. Retrospective cohort study (level III).
Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo
2014-01-01
The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects. PMID:25019413
Lim, Tae-Gyu; Lee, Sung-Young; Duan, Zhaoheng; Lee, Mee-Hyun; Chen, Hanyong; Liu, Fangfang; Liu, Kangdong; Jung, Sung Keun; Kim, Dong Joon; Bode, Ann M; Lee, Ki Won; Dong, Zigang
2017-05-01
Intake of soy isoflavones is inversely associated with the risk of esophageal cancer. Numerous experimental results have supported the anticancer activity of soy isoflavones. This study aimed to determine the anti-esophageal cancer activity of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF), a major metabolite of daidzein, which is readily metabolized in the human body. Notably, 6,7,4'-THIF inhibited proliferation and increased apoptosis of esophageal cancer cells. On the basis of a virtual screening analysis, Pin1 was identified as a target protein of 6,7,4'-THIF. Pull-down assay results using 6,7,4'-THIF Sepharose 4B beads showed a direct interaction between 6,7,4'-THIF and the Pin1 protein. Pin1 is a critical therapeutic and preventive target in esophageal cancer because of its positive regulation of β-catenin and cyclin D1. The 6,7,4'-THIF compound simultaneously reduced Pin1 isomerase activity and the downstream activation targets of Pin1. The specific inhibitory activity of 6,7,4'-THIF was analyzed using Neu/Pin1 wild-type (WT) and Neu/Pin1 knockout (KO) MEFs. 6,7,4'-THIF effected Neu/Pin1 WT MEFs, but not Neu/Pin1 KO MEFs. Furthermore, the results of a xenograft assay using Neu/Pin1 WT and KO MEFs were similar to those obtained from the in vitro assay. Overall, we found that 6,7,4'-THIF specifically reduced Pin1 activity in esophageal cancer models. Importantly, 6,7,4'-THIF directly bound to Pin1 but not FKBP or cyclophilin A, the same family of proteins. Because Pin1 acts like an oncogene by modulating various carcinogenesis-related proteins, this study might at least partially explain the underlying mechanism(s) of the anti-esophageal cancer effects of soy isoflavones. Cancer Prev Res; 10(5); 308-18. ©2017 AACR . ©2017 American Association for Cancer Research.
Van Wettere, Arnaud J; Redig, Patrick T; Wallace, Larry J; Bourgeault, Craig A; Bechtold, Joan E
2009-12-01
Use of external skeletal fixator-intramedullary pin (ESF-IM) tie-in fixators is an adjustable and effective method of fracture fixation in birds. The objective of this study was to determine the contribution of each of the following parameters to the compressive and torsional rigidity of an ESF-IM pin tie-in applied to avian bones with an osteotomy gap: (1) varying the fixation pin position in the proximal bone segment and (2) increasing the number of fixation pins in one or both bone segments. ESF-IM pin tie-in constructs were applied to humeri harvested from red-tailed hawks (Buteo jamaicensis) (n=24) that had been euthanatized for clinical reasons. Constructs with a variation in the placement of the proximal fixation pin and with 2, 3, or 4 fixation pins applied to avian bone with an osteotomy gap were loaded to a defined displacement in torque and axial compression. Response variables were determined from resulting load-displacement curves (construct stiffness, load at 1-mm displacement). Increasing the number of fixation pins from 1 to 2 per bone segment significantly increased the stiffness in torque (110%) and compression (60%), and the safe load in torque (107%) and compression (50%). Adding a fixation pin to the distal bone segment to form a 3-pin fixator significantly increased the stiffness (27%) and safe load (20%) in torque but not in axial compression. In the configuration with 2 fixation pins, placing the proximal pin distally in the proximal bone segment significantly increased the stiffness in torque (28%), and the safe load in torque (23%) and in axial compression (32%). Results quantified the relative importance of specific parameters affecting the rigidity of ESF-IM pin tie-in constructs as applied to unstable bone fracture models in birds.
Progress to a Gallium-Arsenide Deep-Center Laser
Pan, Janet L.
2009-01-01
Although photoluminescence from gallium-arsenide (GaAs) deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, photoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm) by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers), which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium. PMID:23104115
Kim, Ji-Hyun; Jung, Ji Hoon; Kim, Sung-Hoon; Jeong, Soo-Jin
2014-02-01
The peptidyl-prolyl cis/trans isomerase Pin1 is overexpressed in a wide variety of cancer cells and thus considered as an important target molecule for cancer therapy. This study demonstrates that decursin, a bioactive compound from Angelica gigas, exert the anti-cancer effect against breast cancer cells via regulation of Pin1 and its related signaling molecules. We observed that decursin induced G1 arrest with decrease in cyclin D1 level in Pin1-expressing breast cancer cells MDA-MB-231, but not Pin1-non-expressing breast cancer cells MDA-MB-157. In addition, decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Further, we found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, our current study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1 protein. Copyright © 2013 John Wiley & Sons, Ltd.
Prolyl Isomerase Pin1 Regulates Neuronal Differentiation via β-Catenin
Nakamura, Kazuhiro; Kosugi, Isao; Lee, Daniel Y.; Hafner, Angela; Sinclair, David A.
2012-01-01
The Wnt/β-catenin pathway promotes proliferation of neural progenitor cells (NPCs) at early stages and induces neuronal differentiation from NPCs at late stages, but the molecular mechanisms that control this stage-specific response are unclear. Pin1 is a prolyl isomerase that regulates cell signaling uniquely by controlling protein conformation after phosphorylation, but its role in neuronal differentiation is not known. Here we found that whereas Pin1 depletion suppresses neuronal differentiation, Pin1 overexpression enhances it, without any effects on gliogenesis from NPCs in vitro. Consequently, Pin1-null mice have significantly fewer upper layer neurons in the motor cortex and severely impaired motor activity during the neonatal stage. A proteomic approach identified β-catenin as a major substrate for Pin1 in NPCs, in which Pin1 stabilizes β-catenin. As a result, Pin1 knockout leads to reduced β-catenin during differentiation but not proliferation of NPCs in developing brains. Importantly, defective neuronal differentiation in Pin1 knockout NPCs is fully rescued in vitro by overexpression of β-catenin but not a β-catenin mutant that fails to act as a Pin1 substrate. These results show that Pin1 is a novel regulator of NPC differentiation by acting on β-catenin and provides a new postphosphorylation signaling mechanism to regulate developmental stage-specific functioning of β-catenin signaling in neuronal differentiation. PMID:22645310
Pneumocranium secondary to halo vest pin penetration through an enlarged frontal sinus.
Cheong, Min Lee; Chan, Chris Yin Wei; Saw, Lim Beng; Kwan, Mun Keong
2009-07-01
We present a case report of a patient with pneumocranium secondary to halo vest pin penetration and a review of literature. The objectives of this study are to report a rare complication of halo vest pin insertion and to discuss methods of prevention of this complication. Halo vest orthosis is a commonly used and well-tolerated upper cervical spinal stabilizing device. Reports of complications related to pin penetration is rare and from our review, there has been no reports of pneumocranium occurring from insertion of pins following standard anatomical landmarks. A 57-year-old male sustained a type 1 traumatic spondylolisthesis of C2/C3 following a motor vehicle accident. During application of the halo vest, penetration of the left anterior pin through the abnormally enlarged frontal sinus occurred. The patient developed headache, vomiting and CSF rhinorrhoea over his left nostril. He was treated with intravenous Ceftriaxone for 1 week. This resulted in resolution of his symptoms as well as the pneumocranium. In conclusion, complications of halo vest pin penetration are rare and need immediate recognition. Despite the use of anatomical landmarks, pin penetration is still possible due to aberrant anatomy. All patients should have a skull X-ray with a radio-opaque marker done prior to placement of the halo vest pins and halo vest pins have to be inserted by experienced personnel to enable early detection of pin penetration.
Simon, Sibu; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre I; Orellana, Ariel; Zažímalová, Eva; Friml, Jiří
2016-07-01
Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)
NASA Technical Reports Server (NTRS)
Garber, Anne E.
2007-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).
Anvil for Flaring PCB Guide Pins
NASA Technical Reports Server (NTRS)
Winn, E.; Turner, R.
1985-01-01
Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.
Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis
Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang
2014-01-01
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665
Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.
Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang
2014-01-01
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.
NASA Technical Reports Server (NTRS)
Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)
2011-01-01
A stemless ball valve comprising two flanges and a ball with a channel, two axis pins and two travel pins. One end of each axis and travel pin is fixedly attached to the ball, and the other end of each axis pin is lodged into a notch in the first or second flange such that the axis pin is allowed to rotate in the notch. The guide sleeve comprises two channels, and one end of each travel pin is situated within one of the two channels in the guide sleeve. An outer magnetic cartridge causes the inner magnetic cartridge and guide sleeve to rotate, and when the guide sleeve rotates, the travel pins move up and down within the channels in the guide sleeve. The movement of the travel pins within the channels in the guide sleeve causes the ball to rotate, thereby opening and closing the ball valve.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1992-01-01
A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Garner, P.; Hanan, N.
Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW outputmore » power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an inner pin just before the enrichment change. The 600 mm case demonstrated a peak clad surface temperature of 370.4 K, while the 800 mm case had a temperature of 391.6 K. These temperatures are well below the necessary temperatures for boiling to occur at the rated pressure. Fuel temperatures are also well below the melting point. Future bundle work will include simulations of the proposed low-enriched uranium (LEU) design. Two transient scenarios were also investigated for the single-pin geometries. Both were “model” problems that were focused on pure thermal-hydraulic behavior, and as such were simple power changes that did not incorporate neutron kinetics modeling. The first scenario was a high-power, ramp increase, while the second scenario was a low-power, step increase. A cylindrical RELAP model was also constructed to investigate its accuracy as compared to the higher-fidelity CFD. Comparisons between the two codes showed good agreement for peak temperatures in the fuel and at the cladding surface for both cases. In the step transient, temperatures at four axial levels were also computed. These showed greater but reasonable discrepancy, with RELAP outputting higher temperatures. These results provide some evidence that RELAP can be used with confidence in modeling transients for IVG.« less
Stainless Steel NaK Circuit Integration and Fill Submission
NASA Technical Reports Server (NTRS)
Garber, Anne E.
2006-01-01
The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed to hold a eutectic mixture of sodium potassium (NaK), was redesigned to hold lithium; but due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature loop include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This document summarizes the integration and fill of the pumped liquid metal NaK flow circuit.
The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance
2009-01-01
ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.
Impingement thermal performance of perforated circular pin-fin heat sinks
NASA Astrophysics Data System (ADS)
Wen, Mao-Yu; Yeh, Cheng-Hsiung
2018-04-01
The study presents the experimental information on heat transfer performance of jet impingement cooling on circular pin- fin heat sinks with/without a hollow perforated base plate. Smoke flow visualization is also used to investigate the behavior of the complicated flow phenomena of the present heat sinks for this impingement cooling. The effects of flow Reynolds numbers (3458≤Re≤11,526), fin height, the geometry of the heat sinks (with/without a hollow perforated base plate), and jet-to-test heat sink placement (1 ≤ H/ d≤16) are examined. In addition, empirical correlation to estimate the heat transfer coefficient was also developed.
Tips Under the Skin: A Simple Modification of Extension Block Pinning for Mallet Fractures.
Shin, Seung-Han; Lee, Yong-Suk; Kang, Jin-Woo; Kang, Wonwoo; Chung, Yang-Guk
2018-03-01
Pins exposed out of the skin after surgery for mallet fractures keep patients from washing their hands. The authors buried the tips of all pins under the skin while performing extension block pinning for 14 patients with mallet fractures. The patients were allowed to wash their hands 4 to 5 days postoperatively, without any dressing or splinting. The pins were removed at a mean of 8 weeks postoperatively. Solid union was achieved in all 14 fractures. No pull-out or subsidence of the pin was observed. No patient developed infection or other pin-related complications. Mean extension lag at final follow-up was 4°. [Orthopedics. 2018; 41(2):e299-e302.]. Copyright 2018, SLACK Incorporated.
Detail of "pin" or large bolt used to assemble the ...
Detail of "pin" or large bolt used to assemble the truss pieces. This "pin" is on pony truss; similar pins were used on movable span. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA
Flux pinning in yttrium barium copper oxide coated conductors
NASA Astrophysics Data System (ADS)
Chen, Zhijun
High quality high-temperature-superconducting YBa2Cu 3O7-x (YBCO) films for industrial applications demand very high critical current densities Jc, which can only be achieved by strong three-dimensional (3D) pinning with deliberately introduced nano-precipitates. The purpose of this thesis is to provide an in-depth understanding of the 3D pinning in such YBCO films. In pulsed laser deposition (PLD) prepared YBCO films, a high density of anti-phase boundaries and stacking faults were found to be effective pinning defects for improving Jc in small fields. However, their failure to improve Jc at high fields shows that such naturally generated defects are not strong 3D pinning centers. A demonstration of strong 3D pinning was found in a metal organic chemical vapor deposition (MOCVD) grown YBCO coated conductor (CC) with a high density of (Y,Sm)2O3 nano-precipitates. We observed a significantly enhanced irreversibility field Hirr which, like other superconducting properties was independent of thickness, due to strong vortex-pin interactions. The advantage of 3D pinning was further illustrated by a bi-layer metalorganic deposition (MOD) grown YBCO CC with different 3D pinning structures in each layer. The Jc anisotropy of the bilayer was found to be the thickness-weighted sum of the anisotropy of the two individual layers, demonstrating an applicable way to tune the Jcanisotropy. Moreover, extensive low temperature and high magnetic field evaluations performed on an MOCVD CC with dense 3D (Y,Sm) 2O3 nano-precipitate pinning centers showed that its strong vortex pinning at 77 K correlated well to strong performance at 4.2 K too. YBCO films with quantitatively controlled artificial Y2O 3 nano-precipitates were also grown by PLD, and characterized over wide temperature and field ranges. Their Jc was found to be determined by the vortex pinning mediated by thermal fluctuation effects. In weak thermal-fluctuation situations Jc increased with decreasing effective precipitate spacing Lc. In other situations, Jc depends on both Lc and the size and elementary pinning strength of the nano-precipitates. In summary, this thesis presents detailed pinning studies on several differently grown YBCO films. Our results identify the optimum pinning structures in YBCO films and provide a systematic guidance for optimizing vortex pinning.
Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation
Zhang, Yingjie; Rai, Madhulika; Wang, Cheng; Gonzalez, Cayetano; Wang, Hongyan
2016-01-01
Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite that Pins depletion alone results in smaller brains with partially disrupted neuroblast polarity. We show that Prefoldin acts synergistically with Pins to regulate asymmetric division of both neuroblasts and Intermediate Neural Progenitors (INPs). Surprisingly, co-depletion of Prefoldin and Pins also induces dedifferentiation of INPs back into neuroblasts, while depletion either Prefoldin or Pins alone is insufficient to do so. Furthermore, knocking down either α-tubulin or β-tubulin in pins- mutant background results in INP dedifferentiation back into neuroblasts, leading to the formation of ectopic neuroblasts. Overexpression of α-tubulin suppresses neuroblast overgrowth observed in prefoldin pins double mutant brains. Our data elucidate an unexpected function of Prefoldin and Pins in synergistically suppressing dedifferentiation of INPs back into neural stem cells. PMID:27025979
Sanders, Michael R; Clifton, Luke A; Neylon, Cameron; Frazier, Richard A; Green, Rebecca J
2013-07-17
Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. This study examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b, and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers using a combination of surface pressure measurements, external reflection FTIR spectroscopy, and neutron reflectometry. Results highlighted differences in the protein binding mechanisms and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.
Evaluating Approaches to Rendering Braille Text on a High-Density Pin Display.
Morash, Valerie S; Russomanno, Alexander; Gillespie, R Brent; OModhrain, Sile
2017-10-13
Refreshable displays for tactile graphics are typically composed of pins that have smaller diameters and spacing than standard braille dots. We investigated configurations of high-density pins to form braille text on such displays using non-refreshable stimuli produced with a 3D printer. Normal dot braille (diameter 1.5 mm) was compared to high-density dot braille (diameter 0.75 mm) wherein each normal dot was rendered by high-density simulated pins alone or in a cluster of pins configured in a diamond, X, or square; and to "blobs" that could result from covering normal braille and high-density multi-pin configurations with a thin membrane. Twelve blind participants read MNREAD sentences displayed in these conditions. For high-density simulated pins, single pins were as quickly and easily read as normal braille, but diamond, X, and square multi-pin configurations were slower and/or harder to read than normal braille. We therefore conclude that as long as center-to-center dot spacing and dot placement is maintained, the dot diameter may be open to variability for rendering braille on a high density tactile display.
Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding
NASA Technical Reports Server (NTRS)
McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)
2002-01-01
It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.
Crashworthy Troop Seat Testing Program
1977-11-01
19 ’rest 4 . . . . . . . . . .. . 29 | Detail Design’Finalization. .... 29 Vertical Wire - Bending Energy Attenuator 32 Toggle Latch...Strut Wire - Bending Attenuator Force Deflection. . . . ................... 28 15 Notched Wire and Pin Anchorage Test Specimen . 30 16 Quick-Disconnect...and Hold-Down Cable ......... 31 17 Failed Hold-Down Cable ...... . . . . 31 18 Wire - Bending Tension/Compression Energy Attenuator
Observations of long delays to detonation in propellant for tests with marginal card gaps
NASA Technical Reports Server (NTRS)
Olinger, B.
1980-01-01
Using the large-scale card gap tests with pin and high-speed framing camera techniques, VRP propellant, and presumably others, were found to transit to detonation at marginal gaps after a long delay. In addition, manganin-constantan gauge measurements were made in the card gap stack.
Shear-Panel Test Fixture Eliminates Corner Stresses
NASA Technical Reports Server (NTRS)
Kiss, J. J.; Farley, G. L.; Baker, D. J.
1984-01-01
New design eliminates corner stresses while maintaining uniform stress across panel. Shear panel test fixture includes eight frames and eight corner pins. Fixture assembled in two halves with shear panel sandwiched in between. Results generated from this fixture will result in good data base for design of efficient aircraft structures and other applications.
Method and apparatus for setting precise nozzle/belt and nozzle/edge dam block gaps
Carmichael, Robert J.; Dykes, Charles D.; Woodrow, Ronald
1989-05-16
A pair of guide pins are mounted on sideplate extensions of the caster and mating roller pairs are mounted on the nozzle assembly. The nozzle is advanced toward the caster so that the roller pairs engage the guide pins. Both guide pins are remotely adjustable in the vertical direction by hydraulic cylinders acting through eccentrics. This moves the nozzle vertically. The guide pin on the inboard side of the caster is similarly horizontally adjustable. The nozzle roller pair which engage the inboard guide pin are flanged so that the nozzle moves horizontally with the inboard guide pin.
Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana
Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O’Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June
2015-01-01
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as ‘Sister of PIN1’ (denoted AtqSoPIN1). Quantitative real-time reverse transcription–PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. PMID:25911746
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2018-05-01
The pinning/leader control problems provide the design of the leader or pinning controller in order to guide a complex network to a desired trajectory or target (synchronisation or consensus). Let a time-invariant complex network, pinning/leader control problems include the design of the leader or pinning controller gain and number of nodes to pin in order to guide a network to a desired trajectory (synchronization or consensus). Usually, lower is the number of pinned nodes larger is the pinning gain required to assess network synchronisation. On the other side, realistic application scenario of complex networks is characterised by switching topologies, time-varying node coupling strength and link weight that make hard to solve the pinning/leader control problem. Additionally, the system dynamics at nodes can be heterogeneous. In this paper, we derive robust stabilisation conditions of time-varying heterogeneous complex networks with jointly connected topologies when coupling strength and link weight interactions are affected by time-varying uncertainties. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, we formulate low computationally demanding stabilisability conditions to design a pinning/leader control gain for robust network synchronisation. The effectiveness of the proposed approach is shown by several design examples applied to a paradigmatic well-known complex network composed of heterogeneous Chua's circuits.
Vortex pinning landscape in MOD-TFA YBCO nanostroctured films
NASA Astrophysics Data System (ADS)
Gutierrez, J.; Puig, T.; Pomar, A.; Obradors, X.
2008-03-01
A methodology of general validity to study vortex pinning in YBCO based on Jc transport measurements is described. It permits to identify, separate and quantify three basic vortex pinning contributions associated to anisotropic-strong, isotropic-strong and isotropic-weak pinning centers. Thereof, the corresponding vortex pinning phase diagrams are built up. This methodology is applied to the new solution-derived YBCO nanostructured films, including controlled interfacial pinning by the growth of nanostructured templates by means of self-assembled processes [1] and YBCO-BaZrO3 nanocomposites prepared by modified solution precursors. The application of the methodology and comparison with a standard solution-derived YBCO film [2], enables us to identify the nature and the effect of the additional pinning centers induced. The nanostructured templates films show c-axis pinning strongly increased, controlling most of the pinning phase diagram. On the other hand, the nanocomposites have achieved so far, the highest pinning properties in HTc-superconductors [3], being the isotropic-strong defects contribution the origin of their unique properties. [1] M. Gibert et al, Adv. Mat. vol 19, p. 3937 (2007) [2] Puig.T et al, SuST EUCAS 2007 (to be published) [3] J. Gutierrez et al, Nat. Mat. vol. 6, p. 367 (2007) * Work supported by HIPERCHEM, NANOARTIS and MAT2005-02047
The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins.
Boutté, Yohann; Crosnier, Marie-Thérèse; Carraro, Nicola; Traas, Jan; Satiat-Jeunemaitre, Béatrice
2006-04-01
The PIN-FORMED (PIN) proteins are plasma-membrane-associated facilitators of auxin transport. They are often targeted to one side of the cell only through subcellular mechanisms that remain largely unknown. Here, we have studied the potential roles of the cytoskeleton and endomembrane system in the localisation of PIN proteins. Immunocytochemistry and image analysis on root cells from Arabidopsis thaliana and maize showed that 10-30% of the intracellular PIN proteins mapped to the Golgi network, but never to prevacuolar compartments. The remaining 70-90% were associated with yet to be identified structures. The maintenance of PIN proteins at the plasma membrane depends on a BFA-sensitive machinery, but not on microtubules and actin filaments. The polar localisation of PIN proteins at the plasmamembrane was not reflected by any asymmetric distribution of cytoplasmic organelles. In addition, PIN proteins were inserted in a symmetrical manner at both sides of the cell plate during cytokinesis. Together, the data indicate that the localisation of PIN proteins is a postmitotic event, which depends on local characteristics of the plasma membrane and its direct environment. In this context, we present evidence that microtubule arrays might define essential positional information for PIN localisation. This information seems to require the presence of an intact cell wall.
Testing of the KRI-developed Silicon PIN Radioxenon Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxe, Michael P.; McIntyre, Justin I.
Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, whichmore » did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm 3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m 3 (0.12 mBq/m 3); 133Xe – 0.18 mBq/m 3 (0.21 mBq/m 3); 133mXe – 0.07 mBq/m 3 (0.15 mBq/m 3); 135Xe – 0.45 mBq/m 3 (0.67 mBq/m 3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is reduced by a factor of 10 in the Si PIN detector compared to the current plastic scintillator cells. There is potential for further reduction with the removal of plastics within the cell, which will need to be explored in future work. A third important parameter in choosing the best detection technique for radioxenon is the resolution of the electron detection. While the resolution is important in determining the minimum detectable concentration, it plays a larger role in source identification when there is a visible signal. The Silicon PIN diodes generated improved resolution over a similar plastic scintillator cell. With the improved resolution, it becomes easier to distinguish the radioxenon isomers ( 133mXe and 131mXe) from the 133Xe beta continuum background. With the beta background from 133Xe ever present with the detection of the isomers, the improved resolution proves vital in calculating the ratios of the three isotopes. With an accurate measurement of the isotopic ratios, the anthropogenic sources of radioxenon (medical isotope production and nuclear reactors) can be more accurately distinguished. Based on the results shown within this report, a Si PIN beta cell shows the potential to aid in the operation and discriminating power of the IMS for the CTBTO. However, there are a number of issues that need attention before a detector of this design would be reliable enough for field operations in the IMS. Issues that need develop include, but are not limited to: studying the robustness of the design in field conditions, eliminating or minimizing the noise and variability of individual Si detector elements, understanding the long-term gain stability of the Si detectors, and reducing the non-Si materials within the cell (i.e. the plastic housing).« less
Nakatsu, Yusuke; Iwashita, Misaki; Sakoda, Hideyuki; Ono, Hiraku; Nagata, Kengo; Matsunaga, Yasuka; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Kamata, Hideaki; Takahashi, Shin-Ichiro; Katagiri, Hideki; Honda, Hiroaki; Kiyonari, Hiroshi; Uchida, Takafumi; Asano, Tomoichiro
2015-01-01
AMP-activated protein kinase (AMPK) plays a critical role in metabolic regulation. In this study, first, it was revealed that Pin1 associates with any isoform of γ, but not with either the α or the β subunit, of AMPK. The association between Pin1 and the AMPK γ1 subunit is mediated by the WW domain of Pin1 and the Thr211-Pro-containing motif located in the CBS domain of the γ1 subunit. Importantly, overexpression of Pin1 suppressed AMPK phosphorylation in response to either 2-deoxyglucose or biguanide stimulation, whereas Pin1 knockdown by siRNAs or treatment with Pin1 inhibitors enhanced it. The experiments using recombinant Pin1, AMPK, LKB1, and PP2C proteins revealed that the protective effect of AMP against PP2C-induced AMPKα subunit dephosphorylation was markedly suppressed by the addition of Pin1. In good agreement with the in vitro data, the level of AMPK phosphorylation as well as the expressions of mitochondria-related genes, such as PGC-1α, which are known to be positively regulated by AMPK, were markedly higher with reduced triglyceride accumulation in the muscles of Pin1 KO mice as compared with controls. These findings suggest that Pin1 plays an important role in the pathogenic mechanisms underlying impaired glucose and lipid metabolism, functioning as a negative regulator of AMPK. PMID:26276391
Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing
2012-02-01
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.
Potential of pin-by-pin SPN calculations as an industrial reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliscounakis, M.; Girardi, E.; Courau, T.
2012-07-01
This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. Themore » validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)« less
NASA Astrophysics Data System (ADS)
Safavieh, R.; Pla Roca, M.; Qasaimeh, M. A.; Mirzaei, M.; Juncker, D.
2010-05-01
SU-8 can be patterned with high resolution, is flexible and tough. These characteristics qualify SU-8 as a material for making spotting pins for printing DNA and protein microarrays, and it can potentially replace the commonly used silicon and steel pins that are expensive, brittle in the case of silicon and can damage the substrate during the printing process. SU-8, however, accumulates large internal stress during fabrication and, as a consequence, thin and long SU-8 structures bend and coil up, which precludes using it for long, freestanding structures such as pins. Here we introduce (i) a novel fabrication process that allows the making of 30 mm long, straight spotting pins that feature (ii) a new design and surface chemistry treatments for better capillary flow control and more homogeneous spotting. A key innovation for the fabrication is a post-processing annealing step with slow temperature ramping and mechanical clamping between two identical substrates to minimize stress buildup and render it symmetric, respectively, which together yield a straight SU-8 structure. SU-8 pins fabricated using this process are compliant and resilient and can buckle without damage during printing. The pins comprise a novel flow stop valve for accurate metering of fluids, and their surface was chemically patterned to render the outside of the pin hydrophobic while the inside of the slit is hydrophilic, and the slit thus spontaneously fills when dipped into a solution while preventing droplet attachment on the outside. A single SU-8 pin was used to print 1392 protein spots in one run. SU-8 pins are inexpensive, straightforward to fabricate, robust and may be used as disposable pins for microarray fabrication. These pins serve as an illustration of the potential application of ultralow stress SU-8 for making freestanding microfabricated polymer microstructures.
He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui
2017-07-03
Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.
Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.
2016-04-01
In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.
2015-01-01
Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691
[New biodegradable polylactide implants (Polypin-C) in therapy for radial head fractures].
Prokop, A; Jubel, A; Helling, H J; Udomkaewkanjana, C; Brochhagen, H G; Rehm, K E
2002-10-01
Dislocated radial head fractures of the type Mason II are usually treated with screws and buttress plates. The implants are generally removed at a later date. Biodegradable implants can be applied successfully for the reduction of small radial head fractures subject to shearing forces and slight loads. The implants are completely absorbed once the fracture has healed, making a second operation for the removal of the implant unnecessary. The Polypin C-Pin is made of poly(L, DL-lactide) mixed with 10% beta-tricalcium phosphate to ensure controlled, slow degradation with no significant side effects. This new Polypin C fixation pin was clinically tested on 35 patients with radial head fractures (CCF 21B2.1 and 21B2.2) from 31.10.1996 until 1.4.2002. A total of 34 of the patients (97.1%) underwent a clinical and conventional radiological follow-up examination after an average of 38.2 months. In 29 cases a CT was also carried out. Between 18 and 24 months, two cases of grade 1 osteolysis were observed around the pin head. No trace of osteolysis was observed at the final examination in either case. According to the Broberg score, an average of 96 out of a possible 100 points were attained at the final examination (31 excellent, 2 good, 1 unsatisfactory). After a period of 24 months, the pins were no longer visible on a conventional x-ray. A CT evaluation showed a density similar to that of spongioid bone in the original pin cavities after 3 years. These excellent clinical results prove that the Polypin C is a good method to treat dislocated radial head fractures.
Johnson, A L; Kneller, S K; Weigel, R M
1989-01-01
Twenty-eight consecutive fractures of the canine radius and tibia were treated with external skeletal fixation as the primary method of stabilization. The time of fixation removal (T1) and the time to unsupported weight-bearing (T2) were correlated with: (1) bone involved; (2) communication of the fracture with the external environment; (3) severity of the fracture; (4) proximity of the fracture to the nutrient artery; (5) method of reduction; (6) diaphyseal displacement after reduction; and (7) gap between cortical fragments after reduction. The Kruskal-Wallis one-way analysis of variance was used to test the correlation with p less than .05 set as the criterion for significance. The median T1 was 10 weeks and the median T2 was 11 weeks. None of the variables correlated significantly with either of the healing times; however, there was a strong trend toward longer healing times associated with open fractures and shorter healing times associated with closed reduction. Periosteal and endosteal callus uniting the fragments were observed radiographically in comminuted fractures, with primary bone union observed in six fractures in which anatomic reduction was achieved. Complications observed in the treatment of these fractures included: bone lysis around pins (27 fractures), pin track drainage (27 fractures), pin track hemorrhage (1 fracture), periosteal reaction around pins (27 fractures), radiographic signs consistent with osteomyelitis (12 fractures), degenerative joint disease (2 dogs), and nonunion (1 fracture). Valgus or rotational malalignment resulted in 16 malunions of fractures. One external fixation device was replaced and four loose pins were removed before the fractures healed. One dog was treated with antibiotics during the postoperative period because clinical signs of osteomyelitis appeared.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursin, M.; Perret, G.
The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handlingmore » and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)« less
Pin-Ching Maness Photo of Pin-Ching Maness Pin-Ching Maness Group Research Manager III-Molecular University, 1974 Professional Experience Principal Group Manager, Photobiology Group, National Renewable in Rubrivivax gelatinosus," PLOS ONE (2014) Illustration of a model of carbon monoxide and
Detail of "pin" or large bolt used to assemble the ...
Detail of "pin" or large bolt used to assemble the truss pieces. This "pin" is on pony truss; similar pins were used on movable span. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA
Lai, Jiun-Tze; Hou, Ting-Wei
2008-04-01
An application that adopts smart cards often requires users to enter a PIN (Personal Identification Number) code. In Taiwan's healthcare system, a PIN is used to protect a card holder's private data. However, should one forget one's PIN, the procedure to set up a new PIN is inconvenient. There is a higher probability that senior citizens may forget their PINs. We propose a device which stores the PIN of the cardholder's Healthcare IC card. When the healthcare IC card reader requires the cardholder to enter his/her PIN, the cardholder pushes a button of the device to remotely sends the cardholder's encrypted PIN, for example by Infra Red. The device is designed to be low cost and easy to carry, and, hence, affordable to be a gift to senior citizens. Moreover, if the cardholder should forget to take the device with him/her, the card still works as normal. The device would be helpful in ensuring the public's privacy and convenience in Taiwan's healthcare system.
A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)
NASA Astrophysics Data System (ADS)
Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos
2018-05-01
Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.
Bending of an Aspirated Pin During Rigid Bronchoscopy: Safeguards and Pitfalls.
Elsayed, Abdelrahman A A; Mansour, Albaraa A; Amin, Ahmed A A; Ahmed, Mohsen S M
2018-04-13
Pin aspiration is a common problem in Muslim countries, where many women wear veils (hijab). This condition is usually treated using either a rigid or a flexible bronchoscope, and yet occasionally requires surgical approach. Pin bending may be necessary to extract impacted pins during the therapeutic rigid bronchoscopy. Medical records of patients who had pins extracted with a bending technique during the period from January 2012 to December 2016 in 1 institution were analyzed. Information on intraoperative and postoperative complications was collected. Between 2012 and 2016, 315 rigid bronchoscopies were performed for pin extraction; in 38 cases, bending of the pin was required for the extraction because they were in a position that did not allow simple extraction. The procedure was successful in cases and there were no major complications. The extraction of visible, distally located or impacted pins can be safely performed by experienced bronchoscopists using the bending technique. Some safeguards and pitfalls must be noted to ensure maximum safety.
PINS Spectrum Identification Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.J. Caffrey
2012-03-01
The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectralmore » analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.« less
... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers Consumer Information by Audience For Women Women and HIV: Get the Facts on HIV Testing, Prevention, and Treatment Share Tweet Linkedin Pin it ...
Observations of a pressurized hydraulic hose under lateral liquid impacts
NASA Astrophysics Data System (ADS)
Stewart, C. D.; Gorman, D. G.
The effects of 'pin-hole' failure of one pressurized hydraulic hose on its neighbour are investigated. A pressurized test hose was inserted into a custom testing apparatus and subjected to a series of ten short duration liquid impacts simulating the pin-hole failure of an initial hose. Subsequent displacements of the hose were filmed and plotted with respect to time. Three distinct pattern groups emerged which were used to explain the resultant damage to the hose. It was observed that the middle pattern, corresponding to impacts 6 and 7, appears to be the point where the very damaging hydraulic penetration mechanism became dominant and the outer layer of the hose failed. On completion of the ten impact series it was observed that a small hole on the outer surface of the hose gave way to a relatively large damaged area in the strength bearing inner braid material.
Eckerdt, Frank; Yuan, Juping; Saxena, Krishna; Martin, Bernd; Kappel, Sven; Lindenau, Christine; Kramer, Andrea; Naumann, Steffen; Daum, Sebastian; Fischer, Gunter; Dikic, Ivan; Kaufmann, Manfred; Strebhardt, Klaus
2005-11-04
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.
Analysis of lubricating oils in shear friction tests using infrared thermography
NASA Astrophysics Data System (ADS)
Da Silva, José Jorge; Maribondo, Juscelino de Farias
2018-03-01
The aim of this work is to analyze the ability of Thermography to monitor the behavior of SAE 20 W50 API SJ and ISO VG 10 lubricating oils from the thermal point of view until the moment of the lubricant film rupture, characterized by the sudden increase in friction, noise, vibration and Temperature in a shear friction test. The methodology used is based on the analysis of thermograms that indicate temperature profiles during the friction tests and at the moment of mechanical failure, comparing these results with those obtained by a thermocouple. The specimens, consisting of SAE 1045 steel cylindrical pins, are rubbed against a wear ring consisting of a weld-locked bearing under the condition of a boundary lubrication regime. Tests were performed by increasing load conditions up to 180 N at 10, 15 and 20 Hz rotations (600, 900 and 1200 rpm). The results show the qualitative and quantitative capacity of the Thermography in the detection of scuffing considering the emissivity of the lubricating oil film equal to 0,82. It is concluded that the Thermography can be used for the detection of the breaking of the lubricating film in pin-on-ring friction tests.
Influence of Joule heating on current-induced domain wall depinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo
2016-06-07
The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. Inmore » agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.« less
Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru
2018-02-19
We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.
Relation between resistivity and temperature in the presence of two magnetic flux pinning mechanisms
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Mohammad; Ghorbani, Shaban Reza; Arabi, Hadi
2018-05-01
Moving of vortices in type II superconductors leads to energy dissipation, and therefore pinning of them is a significant problem. Determination of pinning potential and pinning mechanism from experimental data of resistivity is an attractive issue in the phenomenological study of superconductors. A new formalism is suggested to determination of two the δTc and δℓ pinning mechanisms from the resistivity as a function of temperature in type II superconductors.
NASA Astrophysics Data System (ADS)
Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.
2018-07-01
In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.
Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana.
Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O'Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June
2015-07-01
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components.
Nodzyński, Tomasz; Vanneste, Steffen; Zwiewka, Marta; Pernisová, Markéta; Hejátko, Jan; Friml, Jiří
2016-11-07
Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α
Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon
2016-01-01
Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107
In vitro tests of substitute lubricants for wear testing orthopaedic biomaterials.
Scholes, Susan C; Joyce, Thomas J
2013-06-01
Bovine serum is the lubricant recommended by several international standards for the wear testing of orthopaedic biomaterials; however, there are issues over its use due to batch variation, degradation, cost and safety. For these reasons, alternative lubricants were investigated. A 50-station Super-CTPOD (circularly translating pin-on-disc) wear test rig was used, which applied multidirectional motion to ultra-high-molecular-weight polyethylene test pins rubbing against cobalt chromium discs. Thirteen possible alternative lubricants were tested. The use of soy protein as a lubricant gave statistically higher wear, while soya oil, olive oil, Channel Island milk, whole milk, whey, wheatgerm oil, 11 mg/mL egg white, albumin/globulin mix and albumin/globulin/chondroitin sulphate mix all gave statistically lower wear than bovine serum. The lubricants giving the closest wear results to bovine serum were 20 and 40 mg/mL egg white solutions. A light absorbance assay found that these egg white solutions suffered from a high degradation rate that increased with increasing protein content. While egg white solutions offer the best alternative lubricant to bovine serum due to the wear volumes produced, cost-effectiveness and safety of handling, protein degradation will still occur, leading to the need for regular lubricant replacement. Of the lubricants tested in this study, none were found to be superior to bovine serum.
Pinning transition in shrinking nanobubbles
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
Surface nanobubbles are unusually long-lived gaseous domains that form on immersed substrates. Although liquid droplets are known to grow or shrink in either an unpinned (constant contact angle) or a pinned (constant footprint radius) mode, surface nanobubbles have only ever been observed in the pinned state. Theory suggests that, provided the nanobubbles are sustained by supersaturated liquid, they are indefinitely stable in the pinned mode, but rapidly dissolve into bulk liquid if not. Yet many basic aspects of the line pinning are not yet clarified, such as its magnitude or the conditions in which it becomes dominant. In this talk we present experiments with total internal fluorescence microscopy in which nanobubbles nucleated with a temperature difference method initially shrink in an unpinned mode, before transitioning to a pinned state. Using a simple energy balance we recover an estimate for the pinning force on each nanobubble.
Contact stresses in pin-loaded orthotropic plates
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Klang, E. C.
1984-01-01
The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.
Integrated electrical connector
Benett, William J.; Ackler, Harold D.
2005-05-24
An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.
Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing
2012-01-01
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399
Nanoscale pinning effect evaluated from deformed nanobubbles.
Teshima, Hideaki; Nishiyama, Takashi; Takahashi, Koji
2017-01-07
Classical thermodynamics theory predicts that nanosized bubbles should disappear in a few hundred microseconds. The surprisingly long lifetime and stability of nanobubbles are therefore interesting research subjects. It has been proposed that the stability of nanobubbles arises through pinning of the three-phase contact line, which results from intrinsic nanoscale geometrical and chemical heterogeneities of the substrate. However, a definitive explanation of nanobubble stability is still lacking. In this work, we examined the stability mechanism by introducing a "pinning force." We investigated nanobubbles at a highly ordered pyrolytic graphite/pure water interface by peak force quantitative nano-mechanical mapping and estimated the pinning force and determined its maximum value. We then observed the shape of shrinking nanobubbles. Because the diameter of the shrinking nanobubbles was pinned, the height decreased and the contact angle increased. This phenomenon implies that the stability results from the pinning force, which flattens the bubble through the pinned three-phase contact line and prevents the Laplace pressure from increasing. The pinning force can also explain the metastability of coalesced nanobubbles, which have two semispherical parts that are joined to form a dumbbell-like shape. The pinning force of the semispherical parts was stronger than that of the joint region. This result demonstrates that the contact line of the semispherical parts is pinned strongly to keep the dumbbell-like shape. Furthermore, we proposed a nanobubble generation mechanism for the solvent-exchange method and explained why the pinning force of large nanobubbles was not initially at its maximum value, as it was for small nanobubbles.
Nanoscale pinning effect evaluated from deformed nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Nishiyama, Takashi; Takahashi, Koji
2017-01-01
Classical thermodynamics theory predicts that nanosized bubbles should disappear in a few hundred microseconds. The surprisingly long lifetime and stability of nanobubbles are therefore interesting research subjects. It has been proposed that the stability of nanobubbles arises through pinning of the three-phase contact line, which results from intrinsic nanoscale geometrical and chemical heterogeneities of the substrate. However, a definitive explanation of nanobubble stability is still lacking. In this work, we examined the stability mechanism by introducing a "pinning force." We investigated nanobubbles at a highly ordered pyrolytic graphite/pure water interface by peak force quantitative nano-mechanical mapping and estimated the pinning force and determined its maximum value. We then observed the shape of shrinking nanobubbles. Because the diameter of the shrinking nanobubbles was pinned, the height decreased and the contact angle increased. This phenomenon implies that the stability results from the pinning force, which flattens the bubble through the pinned three-phase contact line and prevents the Laplace pressure from increasing. The pinning force can also explain the metastability of coalesced nanobubbles, which have two semispherical parts that are joined to form a dumbbell-like shape. The pinning force of the semispherical parts was stronger than that of the joint region. This result demonstrates that the contact line of the semispherical parts is pinned strongly to keep the dumbbell-like shape. Furthermore, we proposed a nanobubble generation mechanism for the solvent-exchange method and explained why the pinning force of large nanobubbles was not initially at its maximum value, as it was for small nanobubbles.
Rigó, Gábor; Ayaydin, Ferhan; Tietz, Olaf; Zsigmond, Laura; Kovács, Hajnalka; Páy, Anikó; Salchert, Klaus; Darula, Zsuzsanna; Medzihradszky, Katalin F.; Szabados, László; Palme, Klaus; Koncz, Csaba; Cséplő, Ágnes
2013-01-01
CRK5 is a member of the Arabidopsis thaliana Ca2+/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5–green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane–associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling. PMID:23673979
Thomson, Callum M; Esparon, Tom; Rea, Paul M; Jamal, Bilal
2016-10-01
The use of external fixation for intra-articular calcaneal fractures is increasing in popularity. Studies have shown fine wire and monoaxial external fixation to be a viable surgical alternative to more invasive methods of open reduction and internal fixation of the calcaneus. However, there is an absence of literature that quantifies the risk of pin insertion for monoaxial fixation. This study aimed to determine the safety of inserting monoaxial pins within the calcaneus to house the Orthofix Calcaneal Mini-Fixator. Five formalin embalmed cadaveric ankle and lower leg specimens were inserted with six monoaxial pins. Careful dissection then revealed the presence of the tendons of peroneus longus and brevis, the sural nerve and the small saphenous vein in relation to these pins. Measurements from each pin to each of these structures were made as the structures transected lines drawn from each pin to two palpable bony landmarks: the inferior tip of the lateral malleolus and the posterosuperior calcaneus. In doing this, the risk posed by each pin could be evaluated. We found that two particular pins, those used to hold the articular surface of the subtalar joint in a reduced position, posed a larger risk of injury to surrounding structures than the remaining pins. These findings therefore suggest that monoaxial fixation of the calcaneus using a six pin approach is a relatively safe method of rectifying calcaneal fractures and thus may serve as a welcome alternative to other methods of calcaneal fixation. Copyright © 2016 Elsevier Ltd. All rights reserved.
76 FR 82210 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... fuse pins that can fail earlier than the previously determined safe life limit of the pins. A fractured... retract actuator fuse pins that can fail earlier than previously determined safe life limit of the pins. A... Friday, except Federal holidays. For service information identified in this proposed AD, contact Boeing...
A pin-assisted retention technique for resin-bonded restorations.
Miara, P; Touati, B
1992-09-01
The value of pins for auxiliary retention has been demonstrated many times. The use of pins with resin-bonded restorations allows for improved aesthetics and less tooth reduction while increasing resistance to dislodging forces. Clinical and technical procedures for resin-bonded bridges with pin-assisted retention are presented.
Biomechanical analysis of fixation of middle third fractures of the clavicle.
Drosdowech, Darren S; Manwell, Stuart E E; Ferreira, Louis M; Goel, Danny P; Faber, Kenneth J; Johnson, James A
2011-01-01
This biomechanical study compares four different techniques of fixation of middle third clavicular fractures. Twenty fresh-frozen clavicles were randomized into four groups. Each group used a different fixation device (3.5 Synthes reconstruction plate, 3.5 Synthes limited contact dynamic compression plate, 3.5 Synthes locking compression plate, and 4.5 DePuy Rockwood clavicular pin). All constructs were mechanically tested in bending and torque modes both with and without a simulated inferior cortical defect. Bending load to failure was also conducted. The four groups were compared using an analysis of variance test. The plate constructs were stiffer than the pin during both pure bending and torque loads with or without an inferior cortical defect. Bending load to failure with an inferior cortical defect revealed that the reconstruction plate was weaker compared with the other three groups. The limited contact and locking plates were stiffer than the reconstruction plate but demonstrated statistical significance only with the cortical defect. As hypothesized, the 3.5 limited contact dynamic compression plate and 3.5 locking compression plate demonstrated the greatest resistance to bending and torque loads, especially in the presence of simulated comminution of a middle third clavicular fracture. The reconstruction plate demonstrated lower stiffness and strength values compared with the other plates, especially with a cortical defect, whereas the pin showed poor resistance to bending and torque loads in all modes of testing. This information may help surgeons to choose the most appropriate method of fixation when treating fractures of the middle third of the clavicle.
Analysis of strategies to increase external fixator stiffness: is double stacking worth the cost?
Strebe, Sara; Kim, Hyunchul; Russell, Joseph P; Hsieh, Adam H; Nascone, Jason; O'Toole, Robert V
2014-07-01
We compared the mechanical benefits and costs of 3 strategies that are commonly used to increase knee-spanning external fixator stiffness (resistance to deformation): double stacking, cross-linking, and use of an oblique pin. At our academic trauma centre and biomechanical testing laboratory, we used ultra-high-molecular-weight polyethylene bone models and commercially available external fixator components to simulate knee-spanning external fixation. The models were tested in anterior-posterior bending, medial-lateral bending, axial compression, and torsion. We recorded the construct stiffness for each strategy in all loading modes and assessed a secondary outcome of cost per 10% increase in stiffness. Double stacking significantly increased construct stiffness under anterior-posterior bending (109%), medial-lateral bending (22%), axial compression (150%), and torsion (41%) (p<0.05). Use of an oblique pin significantly increased stiffness under torsion (25%) (p<0.006). Cross-linking significantly increased stiffness only under torsion (29%) (p<0.002). Double stacking increased costs by 84%, cross-linking by 28%, and use of an oblique pin by 15% relative to a standard fixator. All 3 strategies increased stiffness under torsion to varying degrees, but only double stacking increased stiffness in all 4 testing modalities (p<0.05). Double stacking is most effective in increasing resistance to bending, particularly under anterior-posterior bending and axial compression, but requires a relatively high cost increase. Clinicians can use these data to help guide the most cost-effective strategy to increase construct stiffness based on the plane in which stiffness is needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawarn, Tapan K.; Banerjee, Suparna; Sheelvantra, Smita S.; Singh, J. L.; Bhasin, Vivek
2017-11-01
This paper presents the results of the investigation on the deformation and rupture characteristics of Indian pressurized heavy water reactor (IPHWR) fuel pins under simulated loss of coolant accident (LOCA) condition in steam environment. Transient heating experiments were carried out on single fuel pin internally pressurized with argon gas in the range 3-70 bar. Effect of internal pressure on burst temperature, influence of burst temperature on the circumferential strain and rupture opening area were also studied. Two circumferential strain maxima at the burst temperatures of 740 & ∼979 °C and a minimum at the burst temperature of ∼868 °C were observed. It was found that oxidation had considerable effect on the burst behavior. Test data were used to derive a direct empirical correlation for burst stress exclusively as a function of temperature. The ballooning and rupture behaviours in steam and argon environments have been compared. Experimental data were examined against various correlations using Erbacher equation and author's previous correlation in argon. A second burst correlation has also been developed combining the equation in argon from the previous work of the authors and an exponential factor with oxygen content as a parameter assuming the burst stress to be a function of both temperature and oxygen concentration. The burst temperatures predicted by this empirical correlation are in good agreement with the test data.
Microcircuit Device Reliability Digital Detailed Data
1976-01-01
TYPE s No. FUNCTION A LASS PINS TEMP. TYPE CLASS LEVEL I eFAILED 8 NO. CHIP TEST APPL. TEST PAR1 t T AGATES PROTECT. DATE E:V. D TYPE HOURST :708 FLIP...LEVEL # EFAILED s a NO. t CHIP i TEST 3 APPL. a TEST I PAR! 3 a GATES s PROTECT. a DATE 3 ENV. t TYPE I 3 -OUHb s 354H0( 3 GATE C-I CDIP 14 150C :11.A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.G.; Catanach, R.A.
1998-07-01
Five 1-inch diameter cylinder tests were fired in support of the W-76 high explosive surveillance program. Three of the tests used baseline material, and two used stockpile return material. The diagnostics were electrical pins to measure detonation velocity and a streak camera to measure wall motion. The data was analyzed for cylinder energy, Gurney energy, and detonation velocity. The results of all three measures were consistent for all five tests, to within the experimental accuracy.
Total Ionizing Dose Test Report BFR92A NPN 5 GHz Wide Band Transistor from NXP
NASA Technical Reports Server (NTRS)
Phan, Anthony M.; Oldham, Timothy R.
2011-01-01
The purpose of this test was to characterize the Philips/NXP BFR92A NPN 5 gigahertz wide band silicon transistor for total dose response. This test shall serves as the radiation lot acceptance test (RLAT) for the lot date code (LDC) 1027. The BFR92A is packaged in a 3-pin plastic SOT23 package. Low dose rate (LDR/ELDRS) irradiations was performed.
2016-09-28
pin diameters, lunette diameter, clevis end details, cross section, and overall tube length and straightness. b. Weld failures, voids, cracks...etc., should be considered failures if they are identified visually or using a nondestructive weld inspection test method, per the applicable American... Welding Society standard for the specific material being inspected. c. Broken or cracked components, or catastrophic damage should be considered
Evaluation of Electrical Test Conditions in MIL-M-38510 Slash Sheets.
1980-08-01
truth table testing can give information about dynamic VIH and VIL and also can assure that the devices change state according to the truth table. The...the cons sency of the measurements and provide VIL and VIH data that cannot be obtained from other measure- ments in the specification. 95 P: -i 7. Pin
View southeast of weldment assembly floor in structures shop, building ...
View southeast of weldment assembly floor in structures shop, building 57; the floor is fabricated of cast iron and features a grillwork of 1 1/2 square holes which are used as sockets for gripping positioning or lock down pins; a lock down pin is shown left and below the center of the photograph; the vertical section of the pin is placed into a hole in the cast steel floor while the angles section of the pin rests on the piece under construction; the pin is hammered into the hole and spring tension in the pin holds the work piece in position. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
Serrano, Ismael García; Sesé, Javier; Guillamón, Isabel; Suderow, Hermann; Vieira, Sebastián; Ibarra, Manuel Ricardo; De Teresa, José María
2016-01-01
We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).
Alopecia due to an allergic reaction to metal head-pins used in a neurosurgical operation.
Ono, Hajime; Takasuna, Hiroshi; Tanaka, Yuichiro
2016-01-01
Allergic reactions to the metal head-pins of a head fixation holder are rare. A 45-year-old woman was referred to our hospital for the treatment of unruptured cerebral aneurysms. She underwent successful surgical treatment using four head-pins of the Sugita frame. At her first outpatient visit 3 weeks after discharge, redness, sores, and focal hair loss were noted at all four areas where the pinning had been performed. The pin fixation was considered to be responsible for the alopecia because the condition of the scalp lesions was even in all four parts. Six months later, the scalp regained hair. The head-pins were made of stainless steel, containing iron, nickel, chromium, and other components. A previous history of contact dermatitis to metal jewellery was later proven. The history of metal allergy should have been carefully elicited because head fixation with head-pins is essential for neurosurgical procedures.
Pip pin reliability and design
NASA Technical Reports Server (NTRS)
Skyles, Lane P.
1994-01-01
Pip pins are used in many engineering applications. Of particular interest to the aerospace industry is their use in various mechanism designs. Many payloads that fly aboard our nation's Space Shuttle have at least one actuated mechanism. Often these mechanisms incorporate pip pins in their design in order to fasten interfacing parts or joints. Pip pins are most often used when an astronaut will have a direct interface with the mechanism. This interfacing can be done during Space Shuttle mission EVA's (ExtraVehicular Activity). The main reason for incorporating pip pins is convenience and their ability to provide a quick release for interfacing parts. However, there are some issues that must be taken into account when using them in a design. These issues include documented failures and quality control problems when using substandard pip pins. A history of pip pins as they relate to the aerospace industry as well as general design features is discussed.
Microhardness of carbon-doped (111) p-type Czochralski silicon
NASA Technical Reports Server (NTRS)
Danyluk, S.; Lim, D. S.; Kalejs, J.
1985-01-01
The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.
Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.
Strain tunable light emitting diodes with germanium P-I-N heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagally, Max G; Sanchez Perez, Jose Roberto
Tunable p-i-n diodes comprising Ge heterojunction structures are provided. Also provided are methods for making and using the tunable p-i-n diodes. Tunability is provided by adjusting the tensile strain in the p-i-n heterojunction structure, which enables the diodes to emit radiation over a range of wavelengths.
77 FR 18137 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
...), latch pin migration, and broken latch pin fittings. This proposed AD would require various repetitive... cargo door latch mechanism and/or the lower sill structure. The migration of two or more latch pins and... determine if the bolt is broken; and checking the latch pin for migration and, if necessary, a detailed...
78 FR 4047 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... migration of the latch pins of the main deck side cargo door (MDSCD). This AD requires various repetitive... broken retention bolts and the subsequent migration of the latch pins rather than by the broken latch pin... prompted by reports of broken and damaged latch pin retention bolts and subsequent migration of the latch...
Generation of spiral waves pinned to obstacles in a simulated excitable system
NASA Astrophysics Data System (ADS)
Phantu, Metinee; Kumchaiseemak, Nakorn; Porjai, Porramain; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn
2017-09-01
Pinning phenomena emerge in many dynamical systems. They are found to stabilize extreme conditions such as superconductivity and super fluidity. The dynamics of pinned spiral waves, whose tips trace the boundary of obstacles, also play an important role in the human health. In heart, such pinned waves cause longer tachycardia. In this article, we present two methods for generating pinned spiral waves in a simulated excitable system. In method A, an obstacle is set in the system prior to an ignition of a spiral wave. This method may be suitable only for the case of large obstacles since it often fails when used for small obstacles. In method B, a spiral wave is generated before an obstacle is placed at the spiral tip. With this method, a pinned spiral wave is always obtained, regardless the obstacle size. We demonstrate that after a transient interval the dynamics of the pinned spiral waves generated by the methods A and B are identical. The initiation of pinned spiral waves in both two- and three-dimensional systems is illustrated.
Wang, Zhen-Yu; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhaoyu; Wang, Fanghai; Li, Ning; Xu, Zeng-Fu
2007-01-01
SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.
Sternick, Marcelo Back; Dallacosta, Darlan; Bento, Daniela Águida; do Reis, Marcelo Lemos
2015-01-01
Objective: To analyze the rigidity of a platform-type external fixator assembly, according to different numbers of pins on each clamp. Methods: Computer simulation on a large-sized Cromus dynamic external fixator (Baumer SA) was performed using a finite element method, in accordance with the standard ASTM F1541. The models were generated with approximately 450,000 quadratic tetrahedral elements. Assemblies with two, three and four Schanz pins of 5.5 mm in diameter in each clamp were compared. Every model was subjected to a maximum force of 200 N, divided into 10 sub-steps. For the components, the behavior of the material was assumed to be linear, elastic, isotropic and homogeneous. For each model, the rigidity of the assembly and the Von Mises stress distribution were evaluated. Results: The rigidity of the system was 307.6 N/mm for two pins, 369.0 N/mm for three and 437.9 N/mm for four. Conclusion: The results showed that four Schanz pins in each clamp promoted rigidity that was 19% greater than in the configuration with three pins and 42% greater than with two pins. Higher tension occurred in configurations with fewer pins. In the models analyzed, the maximum tension occurred on the surface of the pin, close to the fixation area. PMID:27047879
Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I
2010-06-01
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.
Willige, Björn C.; Ahlers, Siv; Zourelidou, Melina; Barbosa, Inês C.R.; Demarsy, Emilie; Trevisan, Martine; Davis, Philip A.; Roelfsema, M. Rob G.; Hangarter, Roger; Fankhauser, Christian; Schwechheimer, Claus
2013-01-01
Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending. PMID:23709629
Pin1 promotes transforming growth factor-beta-induced migration and invasion.
Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang
2010-01-15
Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.
Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils#
Oh, Jiyoung; Malter, James S.
2013-01-01
Abnormally long-lived eosinophils (Eos) are the major inflammatory component of allergic responses in the lungs of active asthmatics. Eos recruited to the airways after allergen exposure produce and respond to IL-5 and GM-CSF, enhancing their survival. Pro-survival signaling activates Pin1, a cis-trans peptidyl isomerase (PPIase) that binds to Bax and prevents it activation. How long-lived Eos, despite the continued presence of GM-CSF or IL-5, eventually undergo apoptosis to end allergic inflammation remains unclear. Here we show that Pin1 location, activity and protein interactions are jointly influenced by Fas and pro-survival cytokine IL-5. Fas signaling strongly induced the phosphorylation of FADD at Ser194 and Pin1 at Ser16 as well as their nuclear accumulation. Phospho-mimic Ser194Glu FADD mutants accelerated Eos apoptosis compared to WT or Ser194Ala mutants. Downstream of FADD phosphorylation, Caspase 8, 9 and 3 cleavage as well as Eos apoptosis induced by Fas were reduced by constitutively active Pin1 and enhanced by Pin1 inhibition. Pin1 was activated by IL-5 while simultaneous IL-5 and anti-Fas treatment modestly reduced PPIase activity but induced Pin1 to associate with FADD after its phosphorylation at Ser194. Mechanistically, Pin1 mediated isomerization facilitated the subsequent dephosphorylation of Ser194 FADD and maintenance of cytoplasmic location. In vivo activated bronchoalvelolar (BAL) Eos obtained after allergen challenge showed elevated survival and Pin1 activity that could be reversed by anti-Fas. Therefore, our data suggest that Pin1 is a critical link between FADD mediated cell death and IL-5 mediated pro-survival signaling. PMID:23606538
Samanta, Suman K; Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V
2018-07-01
We have reported previously that withaferin A (WA) prevents breast cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice, but the mechanism is not fully understood. Unbiased proteomics of the mammary tumors from control- and WA-treated MMTV-neu mice revealed downregulation of peptidyl-prolyl cis/trans isomerase (Pin1) protein by WA administration. The present study extends these findings to elucidate the role of Pin1 in cancer chemopreventive mechanisms of WA. The mammary tumor level of Pin1 protein was lower by about 55% in WA-treated rats exposed to N-methyl-N-nitrosourea, compared to control. Exposure of MCF-7 and SK-BR-3 human breast cancer cells to WA resulted in downregulation of Pin1 protein. Ectopic expression of Pin1 attenuated G 2 and/or mitotic arrest resulting from WA treatment in both MCF-7 and SK-BR-3 cells. WA-induced apoptosis was increased by Pin1 overexpression in MCF-7 cells but not in the SK-BR-3 cell line. In addition, molecular docking followed by mass spectrometry indicated covalent interaction of WA with cysteine 113 of Pin1. Overexpression of Pin1 C113A mutant failed to attenuate WA-induced mitotic arrest or apoptosis in the MCF-7 cells. Furthermore, antibody array revealed upregulation of proapoptotic insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, IGFBP-4, IGFBP-5, and IGFBP-6, in Pin1 overexpressing MCF-7 cells following WA treatment when compared to empty vector transfected control cells. These data support a crucial role of the Pin1 for mitotic arrest and apoptosis signaling by WA at least in the MCF-7 cells. © 2018 Wiley Periodicals, Inc.
Retractable Pin Tools for the Friction Stir Welding Process
NASA Technical Reports Server (NTRS)
1998-01-01
Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.
The acidic pH-induced structural changes in Pin1 as revealed by spectral methodologies
NASA Astrophysics Data System (ADS)
Wang, Jing-Zhang; Xi, Lei; Zhu, Guo-Fei; Han, Yong-Guang; Luo, Yue; Wang, Mei; Du, Lin-Fang
2012-12-01
Pin1 is closely associated with the pathogenesis of cancers and Alzheimer's disease (AD). Previously, we have shown the characteristics of the thermal denaturation of Pin1. Herein, the acid-induced denaturation of Pin1 was determined by means of fluorescence emission, synchronous fluorescence, far-UV CD, ANS fluorescence and RLS spectroscopies. The fluorescence emission spectra and the synchronous fluorescence spectra suggested the partially reversible unfolding (approximately from pH 7.0 to 4.0) and refolding (approximately from pH 4.0 to 1.0) of the structures around the chromophores in Pin1, apparently with an intermediate state at about pH 4.0-4.5. The far-UV CD spectra indicated that acidic pH (below pH 4.0) induced the structural transition from α-helix and random coils to β-sheet in Pin1. The ANS fluorescence and the RLS spectra further suggested the exposure of the hydrophobic side-chains of Pin1 and the aggregation of it especially below pH 2.3, and the aggregation possibly resulted in the formation of extra intermolecular β-sheet. The present work primarily shows that acidic pH can induce kinds of irreversible structural changes in Pin1, such as the exposure of the hydrophobic side-chains, the transition from α-helix to β-sheet and the aggregation of Pin1, and also explains why Pin1 loses most of its activity below pH 5.0. The results emphasize the important role of decreased pH in the pathogenesis of some Pin1-related diseases, and support the therapeutic approach for them by targeting acidosis and modifying the intracellular pH gradients.
Galal, Sherif; Safwat, Wael
2017-01-01
The 5th metacarpal fractures accounts for 38% of all hand fractures given that the neck is the weakest point in metacarpals, so neck fracture is the most common metacarpal fracture. Surgical fixation is also advocated for such fractures to prevent mal-rotation of the little finger which will lead to fingers overlap in a clenched fist. Various methods are available for fixation of such fractures, like intramedullary & transverse pinning. There are very few reports in the literature comparing both techniques. Authors wanted to compare outcomes and complications of transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures. A single-center, parallel group, prospective, randomized study was conducted at an academic Level 1 Trauma Center from October 2014 to December 2016. A total of 80 patients with 5th metacarpal's neck fractures were randomized to pinning using either transverse pinning (group A) or intramedullary pinning (group B). Patients were assessed clinically on range of motion, patient-reported outcome using the Quick-DASH (Disabilities of the Arm, Shoulder, and Hand) questionnaire & radiographically. Two blinded observers assessed outcomes. At final follow up for each patient (12 months) the statistically significant differences were observed in operative time, the transverse pinning group showed shorter operative time, as well as complication rate as complications were observed only in intramedullary pinning group. No differences were found in range of motion or the Quick -DASH score. Both techniques are equally safe and effective treatment option for 5th metacarpal's neck fractures. The only difference was shorter operative time & less incidence of complications in transverse pinning group. Level II, Therapeutic study.
Pan, Yongwei; Hung, Leung-kim
2016-01-01
Purpose The terminal branches of the posterior interosseous nerve (PIN) are the main articular branch on the dorsal aspect of the wrist. Its relationship to dorsal wrist arthroscopic portals has not yet been elucidated. The purpose of this study was to quantitatively describe the anatomical relationships between the dorsal wrist arthroscopic portals and the PIN. Methods Dorsal wrist arthroscopic portals were established in 28 cadaver extremities, after which the limbs were dissected. Measurements were taken from the portals to the PIN. Results The PIN passed ulnar to the 3/4 portal with a mean distance of 4.8 mm (range: 1.2–12.0, standard deviation [SD] = 2.6). The PIN passed radial to the 4/5 portal with a mean interval of 9.0 mm (range: 3.8–12.7, SD = 2.3). The main trunk of PIN or its closest terminal branch was a mean of 7.2 mm (range: 0.0–13.2 mm, SD = 3.1) radial to the midcarpal radial (MCR) portal. In 2 of the 28 specimens, one terminal branch of PIN lay directly over this portal. The distance between the midcarpal ulnar (MCU) portal and the PIN or its closest terminal branch was only a mean of 1.6 mm (range: 0–6.4 mm, SD = 2.0). In 15 of the 28 specimens, the PIN lay directly over the MCU portal, or the portal was located between the terminal branches of PIN. Conclusion The MCU portal was the most precarious, due to the close proximity of PIN and its terminal branches. The 3/4 and MCR portals were also at risk, while the 4/5 portal was relatively safe for the PIN. PMID:27777824
Pin1 Modulates the Synaptic Content of NMDA Receptors via Prolyl-Isomerization of PSD-95.
Antonelli, Roberta; De Filippo, Roberto; Middei, Silvia; Stancheva, Stefka; Pastore, Beatrice; Ammassari-Teule, Martine; Barberis, Andrea; Cherubini, Enrico; Zacchi, Paola
2016-05-18
Phosphorylation of serine/threonine residues preceding a proline regulates the fate of its targets through postphosphorylation conformational changes catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. By flipping the substrate between two different functional conformations, this enzyme exerts a fine-tuning of phosphorylation signals. Pin1 has been detected in dendritic spines and shafts where it regulates protein synthesis required to sustain the late phase of long-term potentiation (LTP). Here, we demonstrate that Pin1 residing in postsynaptic structures can interact with postsynaptic density protein-95 (PSD-95), a key scaffold protein that anchors NMDA receptors (NMDARs) in PSD via GluN2-type receptor subunits. Pin1 recruitment by PSD-95 occurs at specific serine-threonine/proline consensus motifs localized in the linker region connecting PDZ2 to PDZ3 domains. Upon binding, Pin1 triggers structural changes in PSD-95, thus negatively affecting its ability to interact with NMDARs. In electrophysiological experiments, larger NMDA-mediated synaptic currents, evoked in CA1 principal cells by Schaffer collateral stimulation, were detected in hippocampal slices obtained from Pin1(-/-) mice compared with controls. Similar results were obtained in cultured hippocampal cells expressing a PSD-95 mutant unable to undergo prolyl-isomerization, thus indicating that the action of Pin1 on PSD-95 is critical for this effect. In addition, an enhancement in spine density and size was detected in CA1 principal cells of Pin1(-/-) or in Thy-1GFP mice treated with the pharmacological inhibitor of Pin1 catalytic activity PiB.Our data indicate that Pin1 controls synaptic content of NMDARs via PSD-95 prolyl-isomerization and the expression of dendritic spines, both required for LTP maintenance. PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein at excitatory postsynaptic densities and a potent regulator of synaptic strength and plasticity. The activity of PSD-95 is tightly controlled by several post-translational mechanisms including proline-directed phosphorylation. This signaling cascade regulates the fate of its targets through postphosphorylation conformational modifications catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. Here, we uncover a new role of Pin1 in glutamatergic signaling. By interacting with PSD-95, Pin1 dampens PSD-95 ability to complex with NMDARs, thus negatively affecting NMDAR signaling and spine morphology. Our findings further emphasize the emerging role of Pin1 as a key modulator of synaptic transmission. Copyright © 2016 the authors 0270-6474/16/365437-11$15.00/0.
NASA Technical Reports Server (NTRS)
Edwards, Paul; Terseck, Alex; Trout, Dawn
2016-01-01
Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.
Design and characterization of GaN p-i-n diodes for betavoltaic devices
NASA Astrophysics Data System (ADS)
Khan, Muhammad R.; Smith, Joshua R.; Tompkins, Randy P.; Kelley, Stephen; Litz, Marc; Russo, John; Leathersich, Jeff; Shahedipour-Sandvik, Fatemeh (Shadi); Jones, Kenneth A.; Iliadis, Agis
2017-10-01
The performance of gallium nitride (GaN) p-i-n diodes were investigated for use as a betavoltaic device. Dark IV measurements showed a turn on-voltage of approximately 3.2 V, specific-on-resistance of 15.1 mΩ cm2 and a reverse leakage current of -0.14 mA/cm2 at -10 V. A clear photo-response was observed when IV curves were measured under a light source at a wavelength of 310 nm (4.0 eV). In addition, GaN p-i-n diodes were tested under an electron-beam in order to simulate common beta radiation sources ranging from that of 3H (5.6 keV average) to 63Ni (17 keV average). From this data, we estimated output powers of 53 nW and 750 nW with overall efficiencies of 0.96% and 4.4% for our device at incident electron energies of 5.6 keV and 17 keV corresponding to 3H and 63Ni beta sources respectively.
Investigation of advanced fault insertion and simulator methods
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.
1986-01-01
The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.
Mesoscopic modeling for nucleic acid chain dynamics
Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.
2007-01-01
To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566
Glovebox Advanced Casting System Casting Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney
2016-03-01
Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses.more » Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.« less
Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators
NASA Astrophysics Data System (ADS)
Mahl, Adam; Yemam, Henok A.; Stuntz, John; Remedes, Tyler; Sellinger, Alan; Greife, Uwe
2016-04-01
A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B2Pin2) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% 10B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1-20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1-15 wt% B2Pin2 were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B2Pin2 concentration, strong 10B neutron capture signals around 90 keVee were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the 10B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.
Lloyd, C H; Yearn, J A; Cowper, G A; Blavier, J; Vanderdonckt, M
2004-07-01
The setting expansion is an important property for a phosphate-bonded investment material. This research was undertaken to investigate a test that might be suitable for its measurement when used in a Standard. In the 'Casting-Ring Test', the investment sample is contained in a steel ring and expands to displace a precisely positioned pin. Variables with the potential to alter routine reproduction of the value were investigated. The vacuum-mixer model is a production laboratory variable that must not be ignored and for this reason, experiments were repeated using a different vacuum-mixer located at a second test site. Restraint by the rigid ring material increased expansion, while force on the pin reduced it. Expansion was specific to the lining selected. Increased environmental temperature decreased the final value. Expansion was still taking place at a time at which its value might be measured. However, when these factors are set, the reproducibility of values for setting expansion was good at both test sites (coefficient of variation 14%, at most). The results revealed that with the control that is available reliable routine measurement is possible in a Standard test. The inter-laboratory variable, vacuum-mixer model, produced significant differences and it should be the subject of further investigation.
Whang, C Z Y; Bister, D; Sherriff, M
2011-12-01
This study compared peak insertion torque values of six commercially available self-drilling mini-implants [Mini Spider® screw (1.5 × 8 mm), Infinitas® (1.5 × 9 mm), Vector TAS® (1.4 × 8 mm), Dual Top® (1.6 × 8 mm), Tomas Pin® (1.6 × 8 mm), and Ortho-Easy® (1.7 × 6, 8, and 10 mm)]. Twenty implants each were drilled into acrylic rods at a speed of 8 rpm using a motorized torque measurement stand, and the values were recorded in Newton centimetres (Ncm). A further 20 Ortho-Easy® implants with a length of 6 and 10 mm were tested at 8 rpm; 20 implants of 6 mm length were also tested at 4 rpm. Kaplan-Meier estimates of the peak torque values were compared using the log-rank test with multiple comparisons evaluated by Sidak's test. There were significant differences in the maximum torque values for different mini-implants with the same length. The Mini Spider® screw and Infinitas® showed the lowest average torque values (6.5 and 12.4 Ncm) compared with Vector TAS®, Dual ToP®, Tomas Pin®, and Ortho-Easy® (30.9, 29.4, 25.4, and 24.8 Ncm, respectively). There was no correlation between the diameter of the implants and torque values. The Tomas Pin® showed the largest standard deviation (7.7 Ncm) and the Dual Top® implant the smallest (0.6 Ncm). Different insertion speeds did not result in significant differences in peak torque values but the 6 mm mini-implants showed significantly higher torque values than the 8 and 10 mm implants. Using a 'torque limiting' screwdriver or pre-drilling cortical bone to reduce insertion, torque appears justified for some of the tested implants.
Effective vortex pinning in MgB2 thin films
NASA Astrophysics Data System (ADS)
Bugoslavsky, Y.; Cowey, L.; Tate, T. J.; Perkins, G. K.; Moore, J.; Lockman, Z.; Berenov, A.; MacManus-Driscoll, J. L.; Caplin, A. D.; Cohen, L. F.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.
2002-10-01
We discuss the pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with a small grain size providing enhanced pinning at grain boundaries without any degradation of Tc. The PLD process produces films with structural disorder on a scale less than the coherence length that further improves pinning, but also depresses Tc.
Heat Exchanger With Internal Pin Elements
Gerstmann, Joseph; Hannon, Charles L.
2004-01-13
A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.
A model of high-rate indentation of a cylindrical striking pin into a deformable body
NASA Astrophysics Data System (ADS)
Zalazinskaya, E. A.; Zalazinsky, A. G.
2017-12-01
Mathematical modeling of an impact and high-rate indentation to a significant depth of a flat-faced hard cylindrical striking pin into a massive deformable target body is carried out. With the application of the kinematic extreme theorem of the plasticity theory and the kinetic energy variation theorem, the phase trajectories of the striking pin are calculated, the initial velocity of the striking pin in the body, the limit values of the inlet duct length, and the depth of striking pin penetration into the target are determined.