Tümen, İbrahim; Akkol, Esra Küpeli; Taştan, Hakkı; Süntar, Ipek; Kurtca, Mehmet
2018-01-30
Ethnobotanical investigations have shown that the Pinus species have been used against rheumatic pain and for wound healing in Turkish folk medicine. In this study, phytochemical composition, antioxidant, anti-inflammatory, and wound healing activities of Maritime Pine (Pinus pinaster Ait.) that is collected in Turkey are investigated. Essential oil composition and the amount of extracts (lipophilic and hydrophilic) of maritime pine wood and fresh cone samples had been tested. The essential oil from cones of P. pinaster revealed the highest activities, whereas other parts of the plant did not display any appreciable wound healing, anti-inflammatory, or antioxidant effects. α-Pinene was the main constituent of the essential oil obtained from the cones of P. pinaster. Experimental studies shown that P. pinaster's remarkable anti-inflammatory and wound healing activities support the traditional use of the plant, and suggest it could have a place in modern medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Phytochemical analysis of Pinus eldarica bark
Iravani, S.; Zolfaghari, B.
2014-01-01
Bark extract of Pinus pinaster contains numerous phenolic compounds such as catechins, taxifolin, and phenolic acids. These compounds have received considerable attentions because of their anti-inflammatory, antimutagenic, anticarcinogenic, antimetastatic and high antioxidant activities. Although P. pinaster bark has been intensely investigated in the past; there is comparably less information available in the literature in regard to P. eldarica bark. Therefore, the aim of this study was to determine the chemical composition of P. eldarica commonly found in Iran. A reversed-phase high pressure liquid chromatography (RP-HPLC) method for the determination of catechin, caffeic acid, ferulic acid, and taxifolin in P. pinaster and P. eldarica was developed. A mixture of 0.1% formic acid in deionized water and 0.1% formic acid in acetonitrile was used as the mobile phase, and chromatographic separation was achieved on a Nova pack C18 at 280 nm. The two studied Pinus species contained high amounts of polyphenolic compounds. Among four marker compounds, the main substances identified in P. pinaster and P. eldarica were taxifolin and catechin, respectively. Furthermore, the composition of the bark oil of P. eldarica obtained by hydrodistillation was analyzed by gas chromatography/mass spectroscopy (GC/MS). Thirty-three compounds accounting for 95.1 % of the oil were identified. The oils consisted mainly of mono- and sesquiterpenoid fractions, especially α-pinene (24.6%), caryophyllene oxide (14.0%), δ-3-carene (10.7%), (E)-β-caryophyllene (7.9%), and myrtenal (3.1%). PMID:25657795
Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila
2011-07-01
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk (M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration-Corsican Agricultural and Rural Development Agency (ODARC)-for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.
NASA Astrophysics Data System (ADS)
Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila
2011-07-01
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk ( M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration— Corsican Agricultural and Rural Development Agency (ODARC)—for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.
Ramos, Miguel A; Sousa, Nadine R; Franco, Albina R; Costa, Vítor; Oliveira, Rui S; Castro, Paula M L
2013-01-01
Diflubenzuron (DFB) is an insecticide commonly used to control forest pests. The objectives of this study were to assess the effect of diflubenzuron on the development of Pinus pinaster seedlings and Pisolithus tinctorius under laboratory conditions and to study the possible protective role of this ectomycorrhizal fungus against the effects of diflubenzuron. In vitro experiments revealed that diflubenzuron inhibited fungal growth at all tested concentrations (0.01, 0.1, 1, 10 and 100 mg L(-1)). Root growth was inhibited at the two highest diflubenzuron concentrations. The activity of the antioxidant defence system of non-inoculated P. pinaster increased at 1 and 10 mg DFB kg(-1) substrate, and inoculation increased the threshold to the highest concentration. The protective role of the ectomycorrhizal fungus was seen in the increase of CAT activity. This study revealed that despite causing no mortality, diflubenzuron has the ability to cause sub-lethal damage to P. pinaster. The disproportionate use of this insecticide may lead to higher amounts of its residues in soil and the biosphere, endangering trees, fungi and their symbiosis.
Faria, Jorge M S; Sena, Inês; Vieira da Silva, Inês; Ribeiro, Bruno; Barbosa, Pedro; Ascensão, Lia; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina
2015-06-01
Co-cultures of Pinus pinaster with Bursaphelenchus xylophilus were established as a biotechnological tool to evaluate the effect of nematotoxics addition in a host/parasite culture system. The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), was detected for the first time in Europe in 1999 spreading throughout the pine forests in Portugal and recently in Spain. Plant in vitro cultures may be a useful experimental system to investigate the plant/nematode relationships in loco, thus avoiding the difficulties of field assays. In this study, Pinus pinaster in vitro cultures were established and compared to in vivo 1 year-old plantlets by analyzing shoot structure and volatiles production. In vitro co-cultures were established with the PWN and the effect of the phytoparasite on in vitro shoot structure, water content and volatiles production was evaluated. In vitro shoots showed similar structure and volatiles production to in vivo maritime pine plantlets. The first macroscopic symptoms of PWD were observed about 4 weeks after in vitro co-culture establishment. Nematode population in the culture medium increased and PWNs were detected in gaps of the callus tissue and in cavities developed from the degradation of cambial cells. In terms of volatiles main components, plantlets, P. pinaster cultures, and P. pinaster with B. xylophilus co-cultures were all β- and α-pinene rich. Co-cultures may be an easy-to-handle biotechnological approach to study this pathology, envisioning the understanding of and finding ways to restrain this highly devastating nematode.
Sousa, Nadine R; Franco, Albina R; Oliveira, Rui S; Castro, Paula M L
2012-03-01
Addition of fertilisers is a common practice in nursery production of conifer seedlings. The aim of this study was to evaluate whether ectomycorrhizal (ECM) fungi can be an alternative to the use of chemical fertilisers in the nursery production of Pinus pinaster. A greenhouse nursery experiment was conducted by inoculating seedlings obtained from seeds of P. pinaster plus trees with a range of compatible ECM fungi: (1) Thelephora terrestris, (2) Rhizopogon vulgaris, (3) a mixture of Pisolithus tinctorius and Scleroderma citrinum, and (4) a mixture of Suillus bovinus, Laccaria laccata and Lactarius deterrimus, using forest soil as substrate. Plant development was assessed at two levels of N-P-K fertiliser (0 or 600 mg/seedling). Inoculation with a mixture of mycelium from S. bovinus, L. laccata and L. deterrimus and with a mixture of spores of P. tinctorius and S. citrinum improved plant growth and nutrition, without the need of fertiliser. Results indicate that selected ECM fungi can be a beneficial biotechnological tool in nursery production of P. pinaster. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ratola, Nuno; Amigo, José Manuel; Alves, Arminda
2010-04-01
Pine needle samples from two pine species (Pinus pinaster Ait. and Pinus pinea L.) were collected at 29 sites scattered throughout Portugal, in order to biomonitor the levels and trends of 16 polycyclic aromatic hydrocarbons (PAHs). The values obtained for the sum of all PAHs ranged from 76 to 1944 ng/g [dry weight (dw)]. Despite the apparent matrix similarities between both pine species, P. pinaster needles revealed higher mean entrapment levels than P. pinea (748 and 399 ng/g (dw) per site, respectively). The urban and industrial sites have the highest average of PAH incidence [for P. pinea, 465 and 433 ng/g (dw) per site, respectively, and for P. pinaster, 1147 and 915 ng/g (dw)], followed by the rural sites [233 ng/g and 711 ng/g (dw) per site, for P. pinea and P. pinaster, respectively]. The remote sites, both from P. pinaster needles, show the least contamination, with 77 ng/g (dw) per site. A predominance of 3-ring and 4-ring PAHs was observed in most samples, with phenanthrene having 30.1% of the total. Naphthalene prevailed in remote sites. Rainfall had no influence on the PAHs levels, but there was a relationship between higher wind speeds and lower concentrations. PAH molecular ratios revealed the influence of both petrogenic and pyrogenic sources.
Biochemical modifications in Pinus pinaster Ait. as a result of environmental pollution.
Acquaviva, Rosaria; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Iauk, Liliana; Russo, Alessandra; Savoca, Francesca; Barbagallo, Ignazio; Di Giacomo, Claudia
2012-11-01
Exposure to chemical pollution can cause significant damage to plants by imposing conditions of oxidative stress. Plants combat oxidative stress by inducing antioxidant metabolites, enzymatic scavengers of activated oxygen and heat shock proteins. The accumulation of these proteins, in particular heat shock protein 70 and heme oxygenase, is correlated with the acquisition of thermal and chemical adaptations and protection against oxidative stress. In this study, we used Pinus pinaster Ait. collected in the areas of Priolo and Aci Castello representing sites with elevated pollution and reference conditions, respectively. The presence of heavy metals and the levels of markers of oxidative stress (lipid hydroperoxide levels, thiol groups, superoxide dismutase activity and expression of heat shock protein 70, heme oxygenase and superoxide dismutase) were evaluated, and we measured in field-collected needles the response to environmental pollution. P. pinaster Ait. collected from a site characterized by industrial pollution including heavy metals had elevated stress response as indicated by significantly elevated lipid hydroperoxide levels and decreased thiol groups. In particular, we observed that following a chronic chemical exposure, P. pinaster Ait. showed significantly increased expression of heat shock protein 70, heme oxygenase and superoxide dismutase. This increased expression may have protective effects against oxidative stress and represents an adaptative cellular defence mechanism. These results suggest that evaluation of heme oxygenase, heat shock protein 70 and superoxide dismutase expression in P. pinaster Ait. could represent a useful tool for monitoring environmental contamination of a region and to better understand mechanisms involved in plant defence and stress tolerance.
Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa
2017-01-01
Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen's (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host's risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations.
Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa
2017-01-01
Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen’s (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host’s risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations. PMID:28192454
Needle Terpenes as Chemotaxonomic Markers in Pinus: Subsections Pinus and Pinaster.
Mitić, Zorica S; Jovanović, Snežana Č; Zlatković, Bojan K; Nikolić, Biljana M; Stojanović, Gordana S; Marin, Petar D
2017-05-01
Chemical compositions of needle essential oils of 27 taxa from the section Pinus, including 20 and 7 taxa of the subsections Pinus and Pinaster, respectively, were compared in order to determine chemotaxonomic significance of terpenes at infrageneric level. According to analysis of variance, six out of 31 studied terpene characters were characterized by a high level of significance, indicating statistically significant difference between the examined subsections. Agglomerative hierarchical cluster analysis has shown separation of eight groups, where representatives of subsect. Pinaster were distributed within the first seven groups on the dendrogram together with P. nigra subsp. laricio and P. merkusii from the subsect. Pinus. On the other hand, the eighth group included the majority of the members of subsect. Pinus. Our findings, based on terpene characters, complement those obtained from morphological, biochemical, and molecular parameters studied over the past two decades. In addition, results presented in this article confirmed that terpenes are good markers at infrageneric level. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Numerical simulations of fire spread in a Pinus pinaster needles fuel bed
NASA Astrophysics Data System (ADS)
Menage, D.; Chetehouna, K.; Mell, W.
2012-11-01
The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.
Nunes da Silva, Marta; Solla, Alejandro; Sampedro, Luis; Zas, Rafael; Vasconcelos, Marta W
2015-09-01
The pine wilt disease (PWD), caused by the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, is one of the most serious threats to pine forests worldwide. Here we studied several components of susceptibility to PWN infection in a model group of pine species widely distributed in Europe (Pinus pinaster Ait., P. pinea L., P. sylvestris L. and P. radiata D. Don), specifically concerning anatomical and chemical traits putatively related to nematode resistance, whole-plant nematode population after experimental inoculation, and several biochemical and physiological traits indicative of plant performance, damage and defensive responses 60 days post inoculation (dpi) in 3-year-old plants. Pinus pinaster was the most susceptible species to PWN colonization, with a 13-fold increase in nematode population size following inoculation, showing up to 35-fold more nematodes than the other species. Pinus pinea was the most resistant species, with an extremely reduced nematode population 60 dpi. Axial resin canals were significantly wider in P. pinaster than in the other species, which may have facilitated nematode dispersal through the stem and contributed to its high susceptibility; nevertheless, this trait does not seem to fully determinate the susceptible character of a species, as P. sylvestris showed similar nematode migration rates to P. pinaster but narrower axial resin canals. Nematode inoculation significantly affected stem water content and polyphenolic concentration, and leaf chlorophyll and lipid peroxidation in all species. In general, P. pinaster and P. sylvestris showed similar chemical responses after infection, whereas P. radiata, which co-exists with the PWN in its native range, showed some degree of tolerance to the nematode. This work provides evidence that the complex interactions between B. xylophilus and its hosts are species-specific, with P. pinaster showing a strong susceptibility to the pathogen, P. pinea being the most tolerant species, and P. sylvestris and P. radiata having a moderate susceptibility, apparently through distinct coping mechanisms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rodrigues, Ana M; Mendes, Marta D; Lima, Ana S; Barbosa, Pedro M; Ascensão, Lia; Barroso, José G; Pedro, Luis G; Mota, Manuel M; Figueiredo, A Cristina
2017-01-01
Pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease, a serious threat to global forest populations of conifers, especially Pinus spp. A time-course study of the essential oils (EOs) of 2-year-old Pinus halepensis, Pinus pinaster, Pinus pinea and Pinus sylvestris following inoculation with the PWN was performed. The constitutive and nematode inoculation induced EOs components were analyzed at both the wounding or inoculation areas and at the whole plant level. The enantiomeric ratio of optically active main EOs components was also evaluated. External symptoms of infection were observed only in P. pinaster and P. sylvestris 21 and 15 days after inoculation, respectively. The EO composition analysis of uninoculated and unwounded plants revealed the occurrence of chemotypes for P. pinaster, P. halepensis and P. sylvestris, whereas P. pinea showed a homogenous EO composition. When whole plants were evaluated for EO and monoterpene hydrocarbon enantiomeric chemical composition, no relevant qualitative and quantitative differences were found. Instead, EO analysis of inoculated and uninoculated wounded areas revealed an increase of sesquiterpenes and diterpenic compounds, especially in P. pinea and P. halepensis, comparatively to healthy whole plants EOs. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract
Iravani, S.; Zolfaghari, B.
2011-01-01
In everyday life, our body generates free radicals and other reactive oxygen species which are derived either from the endogenous metabolic processes (within the body) or from external sources. Many clinical and pharmacological studies suggest that natural antioxidants can prevent oxidative damage. Among the natural antioxidant products, Pycnogenol® (French Pinus pinaster bark extract) has been received considerable attention because of its strong free radical-scavenging activity against reactive oxygen and nitrogen species. P. pinaster bark extract (PBE) contains polyphenolic compounds (these compounds consist of catechin, taxifolin, procyanidins of various chain lengths formed by catechin and epicatechin units, and phenolic acids) capable of producing diverse potentially protective effects against chronic and degenerative diseases. This herbal medication has been reported to have cardiovascular benefits, such as vasorelaxant activity, angiotensin-converting enzyme inhibiting activity, and the ability to enhance the microcirculation by increasing capillary permeability. Moreover, effects on the immune system and modulation of nitrogen monoxide metabolism have been reported. This article provides a brief overview of clinical studies describing the beneficial and health-promoting effects of PBE. PMID:22049273
Root architecture and wind-firmness of mature Pinus pinaster.
Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier
2005-11-01
This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.
Fernandez, Irene; González-Prieto, Serafin J; Cabaneiro, Ana
2005-01-01
Pine forest plantations of Pinus pinaster Ait. and P. sylvestris L. located in Galicia, NW Spain, were selected to study the 13C/12C-isotopic fingerprint in wood core samples in order to find possible relationships between the delta(13)C at natural abundance levels and the quality of the standing tree mass. For each pine species, 24 forests growing on acidic soils were studied: half developed over granite and half over schists. Two dominant trees from each plot, corresponding to all possible combinations of forest stands with high or low site index and with adults or young trees, were drilled at the basal part of trunks using a Pressler drill to obtain tree ring samples. The C-isotopic compositions of the litter and the soil organic matter from different soil depths were also determined and statistically significant correlations between these values and the 13C content of the wood were observed. Despite internal variations due to the influence of site index, tree age and parent material, the isotopic fingerprint of P. pinaster wood (mean value delta13C=-26.2+/-0.8 per thousand) significantly differed (P<0.001) from that of P. sylvestris (mean value delta13C=-24.6+/-0.7 per thousand). Relationships between the quality of the stand and the C-isotopic composition of the wood were observed, high quality stands having trees more 13C-depleted than low quality ones. A high correlation between wood delta13C and site index values for P. pinaster stands (r=-0.667, P<0.001) was found, this correlation being even clearer when only P. pinaster growing over schists (r=-0.833, P<0.001) are considered. Again, the correlation between the site index and the wood delta13C of young P. pinaster trees is higher when plots over granite or schists are separately considered. A similar fact occurs for adult P. sylvestris trees from schists stands, high quality specimens being 13C-depleted compared with low quality ones. On the other hand, 13C natural abundance of wood from P. sylvestris trees seems to be also strongly influenced by the underlying parent material, young trees from granite stands having a statistically higher 13C-isotopic composition (P<0.05) than young trees from schists stands. Copyright (c) 2005 John Wiley & Sons, Ltd.
Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening.
Santos, Carla S; Pinheiro, Miguel; Silva, Ana I; Egas, Conceição; Vasconcelos, Marta W
2012-11-07
Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
The extractives of Pinus pinaster wood
Richard W. Hemingway; W. E. Hillis; L. S. Lau
1973-01-01
The extractives in Pinus pinaster wood grown in South Australia were examined as part of an assessment of the suitability of this wood for manufacture of absorbent tissues from bisulphite pulps. The average petroleum solubility of the wood was 2.0% but the amount and composition of the petroleum extract varied widely depending upon the age of the...
Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J
2012-12-15
The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.
Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
2012-01-01
Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD. PMID:23134679
Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V
2010-12-09
The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria) belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.
Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.
2010-01-01
The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one Gram-positive strain (Actinobacteria) belonged to the Gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD. PMID:21151611
H. Viana; J. Aranha; D. Lopes; Warren B. Cohen
2012-01-01
Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...
de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M
2013-05-01
Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.
de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-06-12
Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.
García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G
2014-10-01
The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected. Copyright © 2014 John Wiley & Sons, Ltd.
Pestaña Nieto, Montserrat; Santolamazza Carbone, Serena
2009-02-01
Using ectomycorrhizal root tip morphotyping (anatomical and morphological identification), molecular analysis (internal transcribed spacer region amplification and sequencing), and fruitbody sampling, we assessed diversity and composition of the ectomycorrhizal fungal community colonizing juvenile Pinus pinaster Ait. under natural conditions in NW Spain. Overall, we found 15 Basidiomycetes and two Ascomycetes. Members of the family Thelephoraceae represented up to 59.4% of the samples. The most frequent species was Tomentella sublilacina followed by Thelephora terrestris, Russula drimeia, Suillus bovinus, and Paxillus involutus, while the less frequent were Pseudotomentella tristis, Lactarius subdulcis, Russula ochroleuca, and Entoloma conferendum. From October 2007 to June 2008, we sampled 208 sporocarps belonging to seven genera and nine species: Thelephora terrestris, Paxillus involutus, Suillus bovinus, Xerocomus badius, Scleroderma verrucosum, Amanita gemmata, A. rubescens, Amanita sp., and Russula sp. The species belonging to the genus Amanita, X. badius and S. verrucosum were not found on root samples. By comparing our results with a bibliographic review of papers published from 1922 to 2006, we found five genera and six species which have not been previously reported in symbiosis with P. pinaster. This is the first time that the diversity of the ectomycorrhizal fungal community associated with P. pinaster was investigated using molecular techniques. Considering that only 38% of the genera found by sequencing were found as fruitbodies, we conclude that integrating morphotyping and sporocarps surveys with molecular analysis of ectomycorrhizas is important to documenting the ectomycorrhizal fungus community.
Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.
Baptista, C; Robert, D; Duarte, A P
2008-05-01
This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.
Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles
NASA Astrophysics Data System (ADS)
Amigo, José Manuel; Ratola, Nuno; Alves, Arminda
2011-10-01
In this work, pine needles were used as polycyclic aromatic hydrocarbons (PAHs) markers to study the PAHs distribution over several geographical locations in Portugal and over time. Four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites, covering the major urban centres, some industrial points, smaller cities, rural areas and remote locations. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from 2005 and 2006 shoots, corresponding to one up to three years of exposure. Spatial trends of the incidence of PAHs indicate an increase from the remote to the urban and industrial sites. The mean values for the sum of 16 PAHs ranged from 96 ± 30 ng g -1 (dry weight) for remote sites to 866 ± 304 ng g -1 (dw) for industrial sites for P. pinaster needles and from 188 ± 117 ng g -1 (dw) for rural sites to 337 ± 153 ng g -1 (dw) for urban sites for P. pinea. Geographic information system tools and principal component analysis revealed that the contamination patterns of PAHs are somehow related to several socio-geographic parameters of the sampling sites. The geographical trend for the PAHs is similar between seasons in terms of PAH levels, but some diverse behaviour is found on the separation of lighter and heavier PAHs. Differences between P. pinaster and P. pinea needles are stronger in terms of PAH uptake loads than in the site type fingerprints.
Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia
2009-04-01
Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.
Meijón, Mónica; Feito, Isabel; Oravec, Michal; Delatorre, Carolina; Weckwerth, Wolfram; Majada, Juan; Valledor, Luis
2016-02-01
Natural variation of the metabolome of Pinus pinaster was studied to improve understanding of its role in the adaptation process and phenotypic diversity. The metabolomes of needles and the apical and basal section of buds were analysed in ten provenances of P. pinaster, selected from France, Spain and Morocco, grown in a common garden for 5 years. The employment of complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) together with bioinformatics tools allowed the reliable quantification of 2403 molecular masses. The analysis of the metabolome showed that differences were maintained across provenances and that the metabolites characteristic of each organ are mainly related to amino acid metabolism, while provenances were distinguishable essentially through secondary metabolism when organs were analysed independently. Integrative analyses of metabolome, environmental and growth data provided a comprehensive picture of adaptation plasticity in conifers. These analyses defined two major groups of plants, distinguished by secondary metabolism: that is, either Atlantic or Mediterranean provenance. Needles were the most sensitive organ, where strong correlations were found between flavonoids and the water regime of the geographic origin of the provenance. The data obtained point to genome specialization aimed at maximizing the drought stress resistance of trees depending on their origin. © 2016 John Wiley & Sons Ltd.
Sousa, Nadine R; Ramos, Miguel A; Marques, Ana P G C; Castro, Paula M L
2012-01-01
Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg(-1). Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg(-1). Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco
2017-04-01
The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.
Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J
2018-02-01
WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kadri, Nabil; Khettal, Bachra; Aid, Yasmine; Kherfellah, Souraya; Sobhi, Widad; Barragan-Montero, Veronique
2015-12-01
Physicochemical characteristics of seeds of some pinus species (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) grown in North Algeria were determined. The results showed that the seeds consist of 19.8-36.7% oil, 14.25-26.62% protein, 7.8-8.6% moisture. Phosphorus, potassium and magnesium were the predominant elements present in seeds. Pinus seed's oil physicochemical properties show acid values (4.9-68.9), iodine values (93.3-160.4) and saponification values (65.9-117.9). Oil analysis showed that the major unsaturated fatty acids for the four species were linoleic acid (30-59%) and oleic acid (17.4-34.6%), while the main saturated fatty acid was palmitic acid (5-29%). Gas Chromatography and Mass Spectrometry analysis of P. halepensis Mill., P. pinaster and P. canariensis volatile oils indicated that the major volatile compound was the limonene with relative percentage of 3.1, 7.5 and 10.8, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa
2012-10-04
Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.
2012-01-01
Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest. PMID:23036012
Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C
2009-12-01
Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.
Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.
Charra-Vaskou, Katline; Badel, Eric; Burlett, Régis; Cochard, Hervé; Delzon, Sylvain; Mayr, Stefan
2012-09-01
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s) = 2.0 × 10(-4) m(2) MPa(-1) s(-1)) and safety (P(50) = - 1.5 MPa) than stem xylem (k(s) = 7.7 × 10(-4) m(2) MPa(-1) s(-1); P(50) = - 3.6 to - 3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was - 0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to - 3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.
Franco, Albina R; Sousa, Nadine R; Ramos, Miguel A; Oliveira, Rui S; Castro, Paula M L
2014-11-01
Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas.
Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H
2008-02-01
The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed in relation to the different genes' putative involvement in drought tolerance responses, from published results in transcriptomics and association mapping in P. pinaster and other related species. These genes clearly constitute relevant candidates for future association studies in P. pinaster.
Ramírez-Valiente, José Alberto; Robledo-Arnuncio, Juan José
2014-12-01
Human-induced gene movement via afforestation and restoration programs is a widespread phenomenon throughout the world. However, its effects on the genetic composition of native populations have received relatively little attention, particularly in forest trees. Here, we examine to what extent gene flow from allochthonous plantations of Pinus pinaster Aiton impacts offspring performance in a neighboring relict natural population and discuss the potential consequences for the long-term genetic composition of the latter. Specifically, we conducted a greenhouse experiment involving two contrasting watering treatments to test for differences in a set of functional traits and mortality rates between P. pinaster progenies from three different parental origins: (i) local native parents, (ii) exotic parents and (iii) intercrosses between local mothers and exotic fathers (intraspecific hybrids). Our results showed differences among crosses in cumulative mortality over time: seedlings of exotic parents exhibited the lowest mortality rates and seedlings of local origin the highest, while intraspecific hybrids exhibited an intermediate response. Linear regressions showed that seedlings with higher water-use efficiency (WUE, δ(13)C) were more likely to survive under drought stress, consistent with previous findings suggesting that WUE has an important role under dry conditions in this species. However, differences in mortality among crosses were only partially explained by WUE. Other non-measured traits and factors such as inbreeding depression in the relict population are more likely to explain the lower performance of native progenies. Overall, our results indicated that intraspecific hybrids and exotic individuals are more likely to survive under stressful conditions than local native individuals, at least during the first year of development. Since summer drought is the most important demographic and selective filter affecting tree establishment in Mediterranean ecosystems, a potential early selective advantage of exotic and hybrid genotypes would enhance initial steps of introgression of non-native genes into the study relict population of P. pinaster. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Azevedo, Herlânder; Lino-Neto, Teresa; Tavares, Rui Manuel
2008-03-01
Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.
Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.
Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia
2009-09-25
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.
Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe
2015-01-01
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate. PMID:26305893
Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe
2015-01-01
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.
Pinus pinaster Knot: A Source of Polyphenols against Plasmopara viticola.
Gabaston, Julien; Richard, Tristan; Cluzet, Stéphanie; Palos Pinto, Antonio; Dufour, Marie-Cécile; Corio-Costet, Marie-France; Mérillon, Jean-Michel
2017-10-11
Pine knot extract from Pinus pinaster byproducts was characterized by UHPLC-DAD-MS and NMR. Fourteen polyphenols divided into four classes were identified as follows: lignans (nortrachelogenin, pinoresinol, matairesinol, isolariciresinol, secoisolariciresinol), flavonoids (pinocembrin, pinobanksin, dihydrokaempferol, taxifolin), stilbenes (pinosylvin, pinosylvin monomethyl ether, pterostilbene), and phenolic acids (caffeic acid, ferulic acid). The antifungal potential of pine knot extract, as well as the main compounds, was tested in vitro against Plasmopara viticola. The ethanolic extract showed a strong antimildew activity. In addition, pinosylvins and pinocembrin demonstrated significant inhibition of zoospore mobility and mildew development. These findings strongly suggest that pine knot is a potential biomass that could be used as a natural antifungal product.
Miguel, Célia; Simões, Marta; Oliveira, Maria Margarida; Rocheta, Margarida
2008-11-01
Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.
de Miguel, Marina; Sánchez-Gómez, David; Cervera, María Teresa; Aranda, Ismael
2012-01-01
Drought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition. We detected significant differences in WUE(i) between clones of the same family and moderate heritability estimates that indicate some degree of genetic control over this trait. Stomatal conductance to water vapor was the trait most affected by drought imposition and it showed the strongest influence in WUE(i). Stomatal conductance to water vapor and specific leaf area (SLA) were the traits with highest heritabilities and they showed a significant genetic correlation with WUE(i), suggesting that selection of needles with low SLA values will improve WUE(i) in this species by reducing water losses through stomatal control.
Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo
2011-01-01
As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters. Therefore, LT₅₀, as estimated by F(v)/F(m), is a reliable indicator of frost tolerance among P. pinaster populations.
Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.
Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo
2011-01-01
As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT50, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site. P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (Fv/Fm), quantum yield of non-cyclic electron transport (ΦPSII) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT50 was closely related to the minimum winter temperatures of the population's range. The dark-adapted Fv/Fm ratio discriminated clearly between interior and coastal populations. In conclusion, variations in Fv/Fm, ΦPSII, qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT50) than coastal populations that typically experience mild winters. Therefore, LT50, as estimated by Fv/Fm, is a reliable indicator of frost tolerance among P. pinaster populations. PMID:22220195
EuroPineDB: a high-coverage web database for maritime pine transcriptome
2011-01-01
Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488
Cañas, Rafael A; Feito, Isabel; Fuente-Maqueda, José Francisco; Ávila, Concepción; Majada, Juan; Cánovas, Francisco M
2015-11-06
Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions. An oligonucleotide microarray (PINARRAY3) and RNA-Seq were used for whole-transcriptome analyses, and we found that 90.95% of the data were concordant between the two platforms. Furthermore, the two methods identified very similar percentages of differentially expressed genes with values of 5.5% for PINARRAY3 and 5.7% for RNA-Seq. In total, 6,023 transcripts were shared and 88 differentially expressed genes overlapped in the two platforms. Among the differentially expressed genes, all transport related genes except aquaporins were expressed at higher levels in Tamrabta than in Leiria. In contrast, genes involved in secondary metabolism were expressed at higher levels in Tamrabta, and photosynthesis-related genes were expressed more highly in Leiria. The genes involved in light sensing in plants were well represented in the differentially expressed groups of genes. In addition, increased levels of hormones such as abscisic acid, gibberellins, jasmonic and salicylic acid were observed in Leiria. Both transcriptome platforms have proven to be useful resources, showing complementary and reliable results. The results presented here highlight the different abilities of the two maritime pine populations to sense environmental conditions and reveal one type of regulation that can be ascribed to different genetic and epigenetic backgrounds.
Probst, Yasmine C; Guan, Vivienne X; Kent, Katherine
2017-02-15
Dietary phytochemicals are found in plant-based foods such as fruits, vegetables and grains and may be categorised in a nested hierarchical manner with many hundred individual phytochemicals identified to date. To associate phytochemical intakes with positive health outcomes, a fundamental step is to accurately estimate the dietary phytochemical intake from foods reported. The purpose of this systematic review protocol is to describe the process to be undertaken to summarise the evidence for food-based dietary phytochemical intakes and health outcomes for adults. The review will be undertaken following the PRISMA guidelines and the Cochrane Handbook for Systematic Reviews of Interventions using the Review Manager software. Phytochemical subclasses (phenolic acids, flavanols, etc) will be used to search for relevant studies using the Web of Science and Scopus scientific databases. The retrieved studies will be screened based on inclusion of natural whole food items and health outcomes. Phytochemical studies related to cardiovascular disease, cancer, overweight, glucose tolerance, digestive, reproductive, macular and bone health and mental disorders, fatigue and immunity will be examined based on prior scoping. The evidence will be aggregated by the food types and health outcomes. Comparison of differences in the outcomes for randomised controlled trials and observational studies will be undertaken. The strength of the review lies in its focus on whole food items and health conditions rather than one type of phytochemical related to one single health condition. Subgroup and sensitivity analyses will be conducted where an adequate number of publications are found per phytochemical subclass. By comparing the outcomes from experimental and observational studies, the review will determine whether the overall conclusions related to the phytochemical subclasses are the same between study types for the identified health conditions. This is useful to public health policymakers and health professionals alike. #CRD42014015610. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Guan, Vivienne X; Kent, Katherine
2017-01-01
Introduction Dietary phytochemicals are found in plant-based foods such as fruits, vegetables and grains and may be categorised in a nested hierarchical manner with many hundred individual phytochemicals identified to date. To associate phytochemical intakes with positive health outcomes, a fundamental step is to accurately estimate the dietary phytochemical intake from foods reported. The purpose of this systematic review protocol is to describe the process to be undertaken to summarise the evidence for food-based dietary phytochemical intakes and health outcomes for adults. Methods and analysis The review will be undertaken following the PRISMA guidelines and the Cochrane Handbook for Systematic Reviews of Interventions using the Review Manager software. Phytochemical subclasses (phenolic acids, flavanols, etc) will be used to search for relevant studies using the Web of Science and Scopus scientific databases. The retrieved studies will be screened based on inclusion of natural whole food items and health outcomes. Phytochemical studies related to cardiovascular disease, cancer, overweight, glucose tolerance, digestive, reproductive, macular and bone health and mental disorders, fatigue and immunity will be examined based on prior scoping. The evidence will be aggregated by the food types and health outcomes. Comparison of differences in the outcomes for randomised controlled trials and observational studies will be undertaken. The strength of the review lies in its focus on whole food items and health conditions rather than one type of phytochemical related to one single health condition. Subgroup and sensitivity analyses will be conducted where an adequate number of publications are found per phytochemical subclass. Dissemination By comparing the outcomes from experimental and observational studies, the review will determine whether the overall conclusions related to the phytochemical subclasses are the same between study types for the identified health conditions. This is useful to public health policymakers and health professionals alike. Trial registration number #CRD42014015610. PMID:28202499
Introduction to the Toxins Special Issue on Dietary and Non-Dietary Phytochemicals and Cancer.
Fimognari, Carmela
2016-12-28
The role of many phytochemicals in the modulation of the carcinogenesis process has been well documented by combining in vitro and animal studies, as well as epidemiological evidence. When acting in synergy, phytochemicals exert potential anti-cancer properties, and much progress has been made in defining their many biological activities at the molecular level. However, an interesting feature in the field of phytochemicals and cancer is the role of some phytochemicals in promoting cancer development. This Special Issue of Toxins aims to provide a comprehensive look at the contribution of dietary and non-dietary phytochemicals to cancer development and at the molecular mechanisms by which phytochemicals inhibit or promote cancer.[...].
PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster.
Rocheta, Margarida; Cordeiro, Jorge; Oliveira, M; Miguel, Célia
2007-02-01
We have isolated and characterized a complete retrotransposon sequence, named PpRT1, from the genome of Pinus pinaster. PpRT1 is 5,966 bp long and is closely related to IFG7 gypsy retrotransposon from Pinus radiata. The long terminal repeats (LTRs) have 333 bp each and show a 5.4% sequence divergence between them. In addition to the characteristic polypurine tract (PPT) and the primer binding site (PBS), PpRT1 carries internal regions with homology to retroviral genes gag and pol. The pol region contains sequence motifs related to the enzymes protease, reverse transcriptase, RNAseH and integrase in the same typical order known for Ty3/gypsy-like retrotransposons. PpRT1 was extended from an EST database sequence indicating that its transcription is occurring in pine tissues. Southern blot analyses indicate however, that PpRT1 is present in a unique or a low number of copies in the P. pinaster genome. The differences in nucleotide sequence found between PpRT1 and IFG7 may explain the strikingly different copy number in the two pine species genome. Based on the homologies observed when comparing LTR region among different gypsy elements we propose that the highly conserved LTR regions may be useful to amplify other retrotransposon sequences of the same or close retrotransposon family.
Apple phytochemicals and their health benefits
Boyer, Jeanelle; Liu, Rui Hai
2004-01-01
Evidence suggests that a diet high in fruits and vegetables may decrease the risk of chronic diseases, such as cardiovascular disease and cancer, and phytochemicals including phenolics, flavonoids and carotenoids from fruits and vegetables may play a key role in reducing chronic disease risk. Apples are a widely consumed, rich source of phytochemicals, and epidemiological studies have linked the consumption of apples with reduced risk of some cancers, cardiovascular disease, asthma, and diabetes. In the laboratory, apples have been found to have very strong antioxidant activity, inhibit cancer cell proliferation, decrease lipid oxidation, and lower cholesterol. Apples contain a variety of phytochemicals, including quercetin, catechin, phloridzin and chlorogenic acid, all of which are strong antioxidants. The phytochemical composition of apples varies greatly between different varieties of apples, and there are also small changes in phytochemicals during the maturation and ripening of the fruit. Storage has little to no effect on apple phytochemicals, but processing can greatly affect apple phytochemicals. While extensive research exists, a literature review of the health benefits of apples and their phytochemicals has not been compiled to summarize this work. The purpose of this paper is to review the most recent literature regarding the health benefits of apples and their phytochemicals, phytochemical bioavailability and antioxidant behavior, and the effects of variety, ripening, storage and processing on apple phytochemicals. PMID:15140261
Liu, Yitong
2018-05-18
An increased use of herbal dietary supplements has been associated with adverse liver effects such as elevated serum enzymes and liver failure. The safety assessment for herbal dietary supplements is challenging since they often contain complex mixtures of phytochemicals, most of which have unknown pharmacokinetic and toxicological properties. Rapid tools are needed to evaluate large numbers of phytochemicals for potential liver toxicity. The current study demonstrates a tiered approach combining identification of phytochemicals in liver toxic botanicals, followed by in silico quantitative structure-activity relationship (QSAR) evaluation of these phytochemicals for absorption (e.g. permeability), metabolism (cytochromes P450) and liver toxicity (e.g. elevated transaminases). First, 255 phytochemicals from 20 botanicals associated with clinical liver injury were identified, and the phytochemical structures were subsequently used for QSAR evaluation. Among these identified phytochemicals, 193 were predicted to be absorbed and then used to generate metabolites, which were both used to predict liver toxicity. Forty-eight phytochemicals were predicted as liver toxic, either due to parent phytochemicals or metabolites. Among them, nineteen phytochemicals have previous evidence of liver toxicity (e.g. pyrrolizidine alkaloids), while the majority were newly discovered (e.g. sesquiterpenoids). These findings help reveal new toxic phytochemicals in herbal dietary supplements and prioritize future toxicological testing. Published by Elsevier Ltd.
Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions
NASA Astrophysics Data System (ADS)
Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.
2008-04-01
This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.
Sarah Wilkinson; Jerome Ogee; Jean-Christophe Domec; Mark Rayment; Lisa Wingate
2015-01-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus...
De Nicola, F; Concha Graña, E; Aboal, J R; Carballeira, A; Fernández, J Á; López Mahía, P; Prada Rodríguez, D; Muniategui Lorenzo, S
2016-06-01
Due to the complexity and heterogeneity of plant matrices, new procedure should be standardized for each single biomonitor. Thus, here is described a matrix solid-phase dispersion extraction method, previously used for moss samples, improved and modified for the analyses of PAHs in Quercus robur leaves and Pinus pinaster needles, species widely used in biomonitoring studies across Europe. The improvements compared to the previous procedure are the use of Florisil added with further clean-up sorbents, 10% deactivated silica for pine needles and PSA for oak leaves, being these matrices rich in interfering compounds, as shown by the gas chromatography-mass spectrometry analyses acquired in full scan mode. Good trueness, with values in the range 90-120% for the most of compounds, high precision (intermediate precision between 2% and 12%) and good sensitivity using only 250mg of samples (limits of quantification lower than 3 and 1.5ngg(-1), respectively for pine and oak) were achieved by the selected procedures. These methods proved to be reliable for PAH analyses and, having advantage of fastness, can be used in biomonitoring studies of PAH air contamination. Copyright © 2016 Elsevier B.V. All rights reserved.
Lucas-Borja, M E; Ahrazem, O; Candel-Pérez, D; Moya, D; Fonseca, T; Hernández Tecles, E; De Las Heras, J; Gómez-Gómez, L
2016-12-01
The management of maritime pine in fire-prone habitats is a challenging task and fine-scale population genetic analyses are necessary to check if different fire recurrences affect genetic variability. The objective of this study was to assess the effect of fire recurrence on maritime pine genetic diversity using inter-simple sequence repeat markers (ISSR). Three maritime pine (Pinus pinaster Ait.) populations from Northern Portugal were chosen to characterize the genetic variability among populations. In relation to fire recurrence, Seirós population was affected by fire both in 1990 and 2005 whereas Vila Seca-2 population was affected by fire just in 2005. The Vila Seca-1 population has been never affected by fire. Our results showed the highest Nei's genetic diversity (He=0.320), Shannon information index (I=0.474) and polymorphic loci (PPL=87.79%) among samples from twice burned populations (Seirós site). Thus, fire regime plays an important role affecting genetic diversity in the short-term, although not generating maritime pine genetic erosion. Copyright © 2016 Elsevier B.V. All rights reserved.
Sanchez-Zabala, Joseba; Majada, Juan; Martín-Rodrigues, Noemí; Gonzalez-Murua, Carmen; Ortega, Unai; Alonso-Graña, Manuel; Arana, Orats; Duñabeitia, Miren K
2013-11-01
Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.
Álvarez, José M; Cortizo, Millán; Ordás, Ricardo J
2012-01-01
Pinus pinaster is one of the most economically important conifers in the world. Somatic embryogenesis is a powerful tool in breeding programmes because it allows the generation of a great number of different clonal lines from seeds of superior genotypes. Unfortunately, embryogenic competence decreases with the age of cultures. Therefore, it is necessary to have a cryopreservation protocol that ensures a continuous supply of juvenile mass while allowing good maturation and conversion rates into vigorously growing plants. In this work we studied the influence of several cryopreservation parameters, such as cryoprotectant solution and pre-cooling temperature, on embryogenic culture regrowth and embryo maturation. Recovery of rewarmed samples after cryopreservation in a -150 degree C freezer depended on the cooling temperature reached prior to plunging the tubes into liquid nitrogen. As a result, we present an optimised cryopreservation protocol that ensures high recovery and embryo maturation rates. The protocol presented is a simple and fast alternative and enabled successful cryopreservation and recovery of 100 percent of the lines tested. Cryopreserved lines presented the same maturation rates as non-cryopreserved controls.
Environmental Maternal Effects Mediate the Resistance of Maritime Pine to Biotic Stress
Vivas, María; Zas, Rafael; Sampedro, Luis; Solla, Alejandro
2013-01-01
The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother) trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress. PMID:23922944
Afforestation alters community structure of soil fungi.
Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V
2010-07-01
Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Francos, Marcos; Úbeda, Xavier; Tort, Joan; Panareda, Josep María; Cerdà, Artemio
2016-10-01
Wildfires are a widespread phenomenon in Mediterranean environments. Wildfires result in different fire severities, and then in contrasting plant cover and floristic composition. This paper analyses the recovery of the vegetation eighteen years after a wildfire in Catalonia. The Pinus pinaster ssp. forest was affected by three different severities in July 1994, and studied the spring of 1995 and again in 2008. After eighteen years (2012), our research found that burnt sites constitute a dense forest with a broad variety of species, including many young pines, shrubs and herbaceous plants, but that the risk of fire remains very high, due to the large quantity of fuel and the flammability of the species. The management of the post-fire is critical when high severity fires take places, and it is recommended that high-severity fires must be avoided for a sustainable forest management. We recommend that once the timber (Pinus plantations) production is not profitable, Quercus suber L. and Pinus pinaster ssp. forest should be promoted, and pine plantations avoided.
Yin, Teng-Fei; Wang, Min; Qing, Ying; Lin, Ying-Min; Wu, Dong
2016-08-21
Colorectal cancer (CRC) is a type of cancer with high morbidity and mortality rates worldwide and has become a global health problem. The conventional radiotherapy and chemotherapy regimen for CRC not only has a low cure rate but also causes side effects. Many studies have shown that adequate intake of fruits and vegetables in the diet may have a protective effect on CRC occurrence, possibly due to the special biological protective effect of the phytochemicals in these foods. Numerous in vitro and in vivo studies have demonstrated that phytochemicals play strong antioxidant, anti-inflammatory and anti-cancer roles by regulating specific signaling pathways and molecular markers to inhibit the occurrence and development of CRC. This review summarizes the progress on CRC prevention using the phytochemicals sulforaphane, curcumin and resveratrol, and elaborates on the specific underlying mechanisms. Thus, we believe that phytochemicals might provide a novel therapeutic approach for CRC prevention, but future clinical studies are needed to confirm the specific preventive effect of phytochemicals on cancer.
Tatry, Marie-Violaine; El Kassis, Elie; Lambilliotte, Raphaël; Corratgé, Claire; van Aarle, Ingrid; Amenc, Laurie K; Alary, Rémi; Zimmermann, Sabine; Sentenac, Hervé; Plassard, Claude
2009-03-01
Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.
Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya
2017-11-20
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase
Ahmad, Zulfiqar; Hassan, Sherif S.; Azim, Sofiya
2017-01-01
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. PMID:28831918
Phytochemicals in whole grain wheat and their health-promoting effects.
Zhu, Yingdong; Sang, Shengmin
2017-07-01
Accumulated evidence in epidemiological studies has consistently shown that consumption of whole grains (WGs) is inversely associated with risk of major chronic diseases such as certain types of cancer, type 2 diabetes, and cardiovascular diseases. Dietary fiber (DF) has been reported to be responsible for the health effects of WG consumption. Evidence from in vitro and in vivo studies is emerging that, in addition to DF and minerals, the unique phytochemicals in WGs may in part contribute to these health-promoting effects. WGs are rich sources of various phytochemicals. However, phytochemical contents and profiles in WG wheat are not systematically summarized yet, and the rapid rate of discovery of wheat phytochemicals necessitates an update on the current state of this field. Furthermore, the biological roles of phytochemicals in protective effects of WGs are also relatively underestimated compared to DFs. This manuscript summarized current research literature regarding phytochemicals that have been identified and characterized from wheat grains and wheat bran, and their corresponding contributions to the major health benefits of WG wheat consumption. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Takahashi, Azusa; Shimizu, Hisae; Okazaki, Yukako; Sakaguchi, Hirohide; Taira, Toshio; Suzuki, Takashi; Chiji, Hideyuki
2015-01-01
Aronia fruits (chokeberry: Aronia melanocarpa E.) containing phenolic phytochemicals, such as cyanidin 3-glycosides and chlorogenic acid, have attracted considerable attention because of their potential human health benefits in humans including antioxidant activities and ability to improved vision. In the present study, the effects of anthocyanin-rich phytochemicals from aronia fruits (aronia phytochemicals) on visceral fat accumulation and fasting hyperglycemia were examined in rats fed a high-fat diet (Experiment 1). Total visceral fat mass was significantly lower in rats fed aronia phytochemicals than that in both the control group and bilberry phytochemicals-supplemented rats (p < 0.05). Moreover, perirenal and epididymal adipose tissue mass in rats fed aronia phytochemicals was significantly lower than that in both the control and bilberry phytochemicals group. Additionally, the mesenteric adipose tissue mass in aronia phytochemicals-fed rats was significantly low (p < 0.05). Furthermore, the fasting blood glucose levels significantly decreased in rats fed aronia phytochemicals for 4 weeks compared to that in the control rats (p < 0.05). Therefore, we investigated the effects of phytochemicals on postprandial hyperlipidemia after corn oil loading in rats, pancreatic lipase activity in vitro, and the plasma glycemic response after sucrose loading in order to elucidate the preventive factor of aronia phytochemical on visceral fat accumulation. In the oral corn oil tolerance tests (Experiment 2), aronia phytochemicals significantly inhibited the increases in plasma triglyceride levels, with a half-maximal inhibitory concentration (IC(50)) of 1.50 mg/mL. However, the inhibitory activity was similar to that of bilberry and tea catechins. In the sucrose tolerance tests (Experiment 3), aronia phytochemicals also significantly inhibited the increases in blood glucose levels that were observed in the control animals (p < 0.05). These results suggest that anthocyanin-rich phytochemicals in aronia fruits suppress visceral fat accumulation and hyperglycemia by inhibiting pancreatic lipase activity and/or intestinal lipid absorption.
Bumble bee parasite strains vary in resistance to phytochemicals.
Palmer-Young, Evan C; Sadd, Ben M; Stevenson, Philip C; Irwin, Rebecca E; Adler, Lynn S
2016-11-24
Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals-either within bees or during parasite transmission via flowers-could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline.
Effects of Extraction Methods on Phytochemicals of Rice Bran Oils Produced from Colored Rice.
Mingyai, Sukanya; Srikaeo, Khongsak; Kettawan, Aikkarach; Singanusong, Riantong; Nakagawa, Kiyotaka; Kimura, Fumiko; Ito, Junya
2018-02-01
Rice bran oil (RBO) especially from colored rice is rich in phytochemicals and has become popular in food, cosmetic, nutraceutical and pharmaceutical applications owing to its offering health benefits. This study determined the contents of phytochemicals including oryzanols, phytosterols, tocopherols (Toc) and tocotrienols (T3) in RBOs extracted using different methods namely cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Two colored rice, Red Jasmine rice (RJM, red rice) and Hom-nin rice (HN, black rice), were studied in comparison with the popular Thai fragrant rice Khao Dawk Mali 105 (KDML 105, white rice). RBOs were found to be the rich source of oryzanols, phytosterols, Toc and T3. Rice varieties had a greater effect on the phytochemicals concentrations than extraction methods. HN rice showed the significantly highest concentration of all phytochemicals, followed by RJM and KDML 105 rice, indicating that colored rice contained high concentration of phytochemicals in the oil than non-colored rice. The RBO samples extracted by the CPE method had a greater concentration of the phytochemicals than those extracted by the SC-CO 2 and SE methods, respectively. In terms of phytochemical contents, HN rice extracted using CPE method was found to be the best.
Bandeira Junior, G; Sutili, F J; Gressler, L T; Ely, V L; Silveira, B P; Tasca, C; Reghelin, M; Matter, L B; Vargas, A P C; Baldisserotto, B
2018-05-09
This study investigated the antibacterial activity of five phytochemicals (carvacrol, citral, eugenol, linalool, and thymol) alone or in combination with florfenicol or oxytetracycline against bacteria isolated from silver catfish (Rhamdia quelen). We also analyzed the potential of these compounds to inhibit biofilm formation and hemolysis caused by the bacteria. Bacteria were tested with antimicrobials to calculate the multiple antibiotic resistance (MAR). The checkerboard assay was used to evaluate a putative synergy between five phytochemicals and antimicrobials against the strains isolated. The biofilm formation inhibition assay was performed with phytochemicals and antimicrobials, and the hemolysis inhibition assay was performed with the phytochemicals. Carvacrol, eugenol and thymol were the most effective phytochemicals. Three combinations (linalool with florfenicol or oxytetracycline against Aeromonas hydrophila and citral with oxytetracycline against Citrobacter freundii) demonstrated synergy in the checkerboard assay. All phytochemicals inhibited biofilm formation and hemolysis activity. The tested phytochemicals showed satisfactory activity against fish pathogenic bacteria. The phytochemicals did not present antagonistic interactions with the antimicrobials, allowing their combined use, which may contribute to a decrease in the use of conventional drugs and their residues in aquatic environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Takahashi, Azusa; Okazaki, Yukako; Nakamoto, Aika; Watanabe, Sanae; Sakaguchi, Hirohide; Tagashira, Yukari; Kagii, Atsuko; Nakagawara, Shunji; Higuchi, Ohki; Suzuki, Takashi; Chiji, Hideyuki
2014-01-01
Haskap (Lonicera caerulea L.) fruit contains some bioactive phenolic phytochemicals, mainly cyanidin-3-glucoside (cy3-glc) and chlorogenic acid. The purpose of this study was to investigate the effects of anthocyanin-rich phenolic phytochemical (containing 13.2% anthocyanin) purified from a Haskap fruit (named Haskap phytochemical) on postprandial serum triglyceride and blood glucose levels. The Haskap phytochemical (containing cy 3-glc at 300 mg/kg of body weight) was administered orally to rats fasted for 24 h and 30 min later, a corn oil emulsion was administered to these rats. After the administration, serum triglyceride concentration was measured. An increase in serum triglyceride concentration and the AUC significantly lowered in the Haskap phytochemical-administered group than in the saline-administered group. To evaluate the effect of serum glucose levels, the Haskap phytochemical was orally administered to rats fasted for 24 h and sucrose solution (2 g/kg of body weight) was administered to these rats after 30 min. After the administration, blood glucose level was measured. The Haskap phytochemical significantly reduced the increase in blood glucose levels and AUC in the Haskap phytochemical-administered group than in the saline-administered group. Furthermore, to investigate the long-term effects of Haskap phytochemical intake, high-fat diet (HF diet) with 1.5% or 3.0% Haskap phytochemical was administered to rats for four weeks. The investigation of chronological changes in the serum components of the rats fed HF diets in addition to the administration of Haskap phytochemical showed that the increase in serum triglyceride concentrations, total cholesterol concentrations and blood glucose were significantly suppressed compared to the HF diet-fed control (HF-control). These results suggest that the decrease in postprandial blood lipids and blood glucose by short or long-term Haskap phytochemical ingestion is due to anthocyanin and other polyphenols contained in the Haskap phytochemical.
Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.
Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia
2014-01-01
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.
Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease
Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia
2014-01-01
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749
Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R
2012-11-01
The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.
Santos-del-Blanco, L.; Climent, J.; González-Martínez, S. C.; Pannell, J. R.
2012-01-01
Background and Aims The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Methods Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Key Results Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. Conclusions The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers. PMID:23002272
Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves
NASA Astrophysics Data System (ADS)
Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2018-04-01
Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.
Phytochemical diversity drives plant–insect community diversity
Richards, Lora A.; Dyer, Lee A.; Forister, Matthew L.; Smilanich, Angela M.; Dodson, Craig D.; Leonard, Michael D.; Jeffrey, Christopher S.
2015-01-01
What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores. PMID:26283384
De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology.
Canales, Javier; Bautista, Rocio; Label, Philippe; Gómez-Maldonado, Josefa; Lesur, Isabelle; Fernández-Pozo, Noe; Rueda-López, Marina; Guerrero-Fernández, Dario; Castro-Rodríguez, Vanessa; Benzekri, Hicham; Cañas, Rafael A; Guevara, María-Angeles; Rodrigues, Andreia; Seoane, Pedro; Teyssier, Caroline; Morel, Alexandre; Ehrenmann, François; Le Provost, Grégoire; Lalanne, Céline; Noirot, Céline; Klopp, Christophe; Reymond, Isabelle; García-Gutiérrez, Angel; Trontin, Jean-François; Lelu-Walter, Marie-Anne; Miguel, Celia; Cervera, María Teresa; Cantón, Francisco R; Plomion, Christophe; Harvengt, Luc; Avila, Concepción; Gonzalo Claros, M; Cánovas, Francisco M
2014-04-01
Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso
2012-09-01
The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, Victor; Aragones, David; Navarro-Cerrillo, Rafael M.; Caparros-Santiago, Jose A.
2017-04-01
Land surface phenology (LSP) can improve the monitoring of forest areas and their change processes. The aim of this work is to characterize the temporal dynamics in Mediterranean Pinus forests. The different experiments were based on 679 mono-specific plots for the 5 native species in the Iberian Peninsula: P. sylvestris, P. pinea, P. halepensis, P. nigra and P. pinaster, which were obtained from the Third National Forest Inventory of Spain. The whole MODIS NDVI time series (2000-2016) were used to characterize the seasonal behavior of the pine forest. The following phenological parameters were extracted for each cycle from the smoothed time series: the day of beginning, end, middle and the length in days of season also base value, maximum value, amplitude and integrated value. Multi-temporal metrics were calculated to synthesize the inter-annual variability of the phenological parameters. An atypical behavior was detected for the years 2004 and 2011 and 2000, 2009 and 2015 for all Pinus species, matching wet and dry cycles, respectively. The inter and intra-species analysis of NDVI and LSP showed two different patterns: an important decreasing during the summer for those species such as P. halepensis, P. pinea y P. pinaster; and a lower NDVI variation among the year for P. sylvestris and P. nigra in certain areas. P. sylvestris had a phenological behavior different to P. pinea, P. halepensis and P. pinaster. P. nigra showed and heterogeneous intra-specific behaviour that might be associated to the existence of subspecies with different phenology.
Bumble bee parasite strains vary in resistance to phytochemicals
Palmer-Young, Evan C.; Sadd, Ben M.; Stevenson, Philip C.; Irwin, Rebecca E.; Adler, Lynn S.
2016-01-01
Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53–22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline. PMID:27883009
Selby-Pham, Sophie N B; Miller, Rosalind B; Howell, Kate; Dunshea, Frank; Bennett, Louise E
2017-05-16
A diet high in phytochemical-rich plant foods is associated with reducing the risk of chronic diseases such as cardiovascular and neurodegenerative diseases, obesity, diabetes and cancer. Oxidative stress and inflammation (OSI) is the common component underlying these chronic diseases. Whilst the positive health effects of phytochemicals and their metabolites have been demonstrated to regulate OSI, the timing and absorption for best effect is not well understood. We developed a model to predict the time to achieve maximal plasma concentration (T max ) of phytochemicals in fruits and vegetables. We used a training dataset containing 67 dietary phytochemicals from 31 clinical studies to develop the model and validated the model using three independent datasets comprising a total of 108 dietary phytochemicals and 98 pharmaceutical compounds. The developed model based on dietary intake forms and the physicochemical properties lipophilicity and molecular mass accurately predicts T max of dietary phytochemicals and pharmaceutical compounds over a broad range of chemical classes. This is the first direct model to predict T max of dietary phytochemicals in the human body. The model informs the clinical dosing frequency for optimising uptake and sustained presence of dietary phytochemicals in circulation, to maximise their bio-efficacy for positively affect human health and managing OSI in chronic diseases.
New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges.
Corrêa, Rúbia C G; Peralta, Rosane M; Haminiuk, Charles W I; Maciel, Giselle Maria; Bracht, Adelar; Ferreira, Isabel C F R
2018-04-13
Aging is an inevitable process influenced by genetic, lifestyle, and environmental factors. Indirect evidence shows that several phytochemicals can have anti-aging capabilities, although direct evidence in this field is still limited. This report aims to provide a critical review on aspects related to the use of novel phytochemicals as anti-aging agents, to discuss the obstacles found when performing most anti-aging study protocols in humans, and to analyze future perspectives. In addition to the extensively studied resveratrol, epicatechin, quercetin, and curcumin, new phytochemicals have been reported to act as anti-aging agents, such as the amino acid L-theanine isolated from green tea, and the lignans arctigenin and matairesinol isolated from Arctium lappa seeds. Furthermore, this review discusses the application of several new extracts rich in phytochemicals with potential use in anti-aging therapies. Finally, this review also discusses the most important biomarkers to test anti-aging interventions, the necessity of conducting epidemiological studies and the need of clinical trials with adequate study protocols for humans.
Analyzing the carbon dynamics in north western Portugal: calibration and application of Forest-BGC
NASA Astrophysics Data System (ADS)
Rodrigues, M. A.; Lopes, D. M.; Leite, S. M.; Tabuada, V. M.
2010-04-01
Net primary production (NPP) is an important variable that allows monitoring forestry ecosystems fixation of atmospheric Carbon. The importance of monitoring the sequestred carbon is related to the binding commitments established by the Kyoto Protocol. There are ecophysiologic models, as Forest-BGC that allow for estimating NPP. In a first stage, this study aims to analyze the climate evolution at the Vila Real administrative district during the last decades. The historical information will be observed in order to detect the past tendencies of evolution. Past will help us to predict future. In a next stage these tendencies will be used to infer the impact of these change scenarios on the net primary production of the forest ecosystems from this study area. For a parameterization and validation of the FOREST-BGC, this study was carried on based on 500 m2 sampling plots from the National Forest Inventory 2006 and are located in several County Halls of the district of Vila Real (Montalegre, Chaves, Valpaços, Boticas, Vila Pouca de Aguiar, Murça, Mondim de Basto, Alijó, Sabrosa and Vila Real). In order to quantify Biomass dinamics, we have selected 45 sampling plots: 19 from Pinus pinaster stands, 17 from Quercus pyrenaica and 10 from mixed of Quercus pyrenaica with Pinus pinaster. Adaptation strategies for climate change impacts can be proposed based on these research results.
Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment.
Chikara, Shireen; Nagaprashantha, Lokesh Dalasanur; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay; Singhal, Sharad S
2018-01-28
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Gupta, Avneet; Raj, Hem; Sharma, Bhartendu; Upmanyu, Neeraj
2014-04-01
Bacopa monnieri, Evolvulus alsinoides and Tinospora cordifolia are established ayurvedic herbs having neuropharmacological effect. In present study is aimed to Phytochemical Comparison between Pet ether and Ethanolic extracts of Bacopa monnieri (BME), Evolvulus alsinoides (EAE) and Tinospora cordifolia (TCE). To identify the presence (+) or absence (-) of different phytoconstituents in Pet ether and Ethanolic extracts of BME, EAE and TCE by using various phytochemical testing methods. Phytochemical investigation showed the presence of various phytochemical constituents in Pet ether and Ethanolic extracts of BME, EAE and TCE. When comparison between Pet ether and Ethanolic extracts of BME, EAE and TCE; Ethanolic extracts of these plants showed more phytoconstituents as compared to Pet ether extracts of these plants. From present investigation, it can be concluded that phytochemical comparison is subsequently momentous and useful in finding chemical constituents in the plant substances that may lead to their quantitative evaluation and also pharmacologically active chemical compounds.
Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.
Barbieri, Ramona; Coppo, Erika; Marchese, Anna; Daglia, Maria; Sobarzo-Sánchez, Eduardo; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad
2017-03-01
In recent years, many studies have shown that phytochemicals exert their antibacterial activity through different mechanisms of action, such as damage to the bacterial membrane and suppression of virulence factors, including inhibition of the activity of enzymes and toxins, and bacterial biofilm formation. In this review, we summarise data from the available literature regarding the antibacterial effects of the main phytochemicals belonging to different chemical classes, alkaloids, sulfur-containing phytochemicals, terpenoids, and polyphenols. Some phytochemicals, besides having direct antimicrobial activity, showed an in vitro synergistic effect when tested in combination with conventional antibiotics, modifying antibiotic resistance. Review of the literature showed that phytochemicals represent a possible source of effective, cheap and safe antimicrobial agents, though much work must still be carried out, especially in in vivo conditions to ensure the selection of effective antimicrobial substances with low side and adverse effects. Copyright © 2016 Elsevier GmbH. All rights reserved.
Protease activated receptor-2 (PAR2): possible target of phytochemicals.
Kakarala, Kavita Kumari; Jamil, Kaiser
2015-09-01
The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.
Dey, Priyankar; Dutta, Somit; Chowdhury, Anurag; Das, Abhaya Prasad; Chaudhuri, Tapas Kumar
2017-01-01
In the present study, we have phytochemically characterized 5 different abundant Aloe species, including Aloe vera (L.) Burm.f., using silylation followed by Gas Chromatography-Mass Spectrometry technique and compared the data using multivariate statistical analysis. The results demonstrated clear distinction of the overall phytochemical profile of A vera, highlighted by its divergent spatial arrangement in the component plot. Lowest correlation of the phytochemical profiles were found between A vera and A aristata Haw. (−0.626), whereas highest correlation resided between A aristata and A aspera Haw. (0.899). Among the individual phytochemicals, palmitic acid was identified in highest abundance cumulatively, and carboxylic acids were the most predominant phytochemical species in all the Aloe species. Compared to A vera, linear correlation analysis revealed highest and lowest correlation with A aspera (R 2 = 0.9162) and A aristata (R 2 = 0.6745), respectively. Therefore, A vera demonstrated distinct spatial allocation, reflecting its greater phytochemical variability. PMID:29228808
Pavone, C; Abbadessa, D; Tarantino, M L; Oxenius, I; Laganà, A; Lupo, A; Rinella, M
2010-01-01
Serenoa repens (saw palmetto) has been employed for the treatment of lower urinary tract symptoms (LUTS) for several years. Its mechanism of action is believed to be due to antiandrogenic, antiproliferative and antinflammatory properties. An association of Serenoa with the nettle "Urtica dioica" showing antiproliferative activity and the pine "Pinus pinaster" derivative, showing antinflammatory action, has been proposed in recent years. Such an action is hoped to act not only by reducing LUTS but also by preventing the development of prostate cancer. During the years 2007 and 2008, 320 patients suffering from LUTS were treated with an association of Serenoa repens 320 mg, Urtica dioica 120 mg and Pinus pinaster 5 mg, named IPBTRE. This treatment was administered to all patients for a minimal duration of 30 days to a maximum of a year, either alone or in association with antibiotics or alpha-blockers, if needed. Outcome analysis was based on evaluation of symptoms, prostate volume and maximum flow rate (Qmax). From a careful analysis of the data collected in our database, the following observations can be made: ages varied between 19 and 78 years. The patients were affected by BPH in 46% of cases, chronic prostatitis syndrome in 43%, chronic genital-pelvic pain in 7% and other conditions in 4%, the absolute numbers being 147, 138, 22 and 7 patients, respectively. No untoward side effect was reported in any case. Variations in symptom score could be fully evaluated only in 80 of 320 patients (25%), of whom 68 (85%) reported a significant benefit, with special reference to an improvement of pain, urgency, strangury and nocturia. Data on variations in prostate volume, as measured by digital rectal examination, were available in 84 (26.5%) patients. No significant change was observed. Qmax after treatment was measured in 83 (26%) patients. It did not show significant changes from the initial values. The association tested in our study appeared to be safe and well tolerated. No changes in flow rate and prostate volume were observed, but a marked reduction of LUTS was observed in 85% of evaluable cases, especially with regard to pain and irritative symptoms. Whether or not such an association may display a prevention of prostate cancer, may be investigated in additional studies.
Sierra-de-Grado, Rosario; Pando, Valentín; Martínez-Zurimendi, Pablo; Peñalvo, Alejandro; Báscones, Esther; Moulia, Bruno
2008-06-01
Stem straightness is an important selection trait in Pinus pinaster Ait. breeding programs. Despite the stability of stem straightness rankings in provenance trials, the efficiency of breeding programs based on a quantitative index of stem straightness remains low. An alternative approach is to analyze biomechanical processes that underlie stem form. The rationale for this selection method is that genetic differences in the biomechanical processes that maintain stem straightness in young plants will continue to control stem form throughout the life of the tree. We analyzed the components contributing most to genetic differences among provenances in stem straightening processes by kinetic analysis and with a biomechanical model defining the interactions between the variables involved (Fournier's model). This framework was tested on three P. pinaster provenances differing in adult stem straightness and growth. One-year-old plants were tilted at 45 degrees, and individual stem positions and sizes were recorded weekly for 5 months. We measured the radial extension of reaction wood and the anatomical features of wood cells in serial stem cross sections. The integral effect of reaction wood on stem leaning was computed with Fournier's model. Responses driven by both primary and secondary growth were involved in the stem straightening process, but secondary-growth-driven responses accounted for most differences among provenances. Plants from the straight-stemmed provenance showed a greater capacity for stem straightening than plants from the sinuous provenances mainly because of (1) more efficient reaction wood (higher maturation strains) and (2) more pronounced secondary-growth-driven autotropic decurving. These two process-based traits are thus good candidates for early selection of stem straightness, but additional tests on a greater number of genotypes over a longer period are required.
Davinelli, Sergio; Maes, Michael; Corbi, Graziamaria; Zarrelli, Armando; Willcox, Donald Craig; Scapagnini, Giovanni
2016-01-01
An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.
Andráš, Peter; Matos, João Xavier; Turisová, Ingrid; Batista, Maria João; Kanianska, Radoslava; Kharbish, Sherif
2018-05-11
São Domingos belongs among the most important historic Iberian Pyrite Belt Cu mines. The anthrosoil is contaminated by a very high content of heavy metals and metalloids. The study was focused on evaluating the interaction of some chemical elements (Ca, Mg, Fe, Mn, Cu, Pb, Zn, Ag, Cd, Ni, Co, As, Sb) in the system soil vs. five autochthonous dominant plant species: Pinus pinaster Aiton, Quercus rotundifolia Lam., Agrostis sp., Juncus conglomeratus L. and Juncus effusus L. The plants are heavily contaminated by Cu, Pb, As and Zn. The bioconcentration factor proved that they exhibit features of metal tolerant excluders. The trees are accumulators of Ag, whereas the graminoids are hyper-accumulators of Ag and Juncus effusus of Co. The translocation factor confirmed that the selected elements are immobilised in the roots except for Mn and Zn in Pinus pinaster and Mn in Quercus rotundifolia and Juncus conglomeratus. The bioaccumulation of Mn, Zn and Cu at low pH increases. The increased content of Ca and Mg in the soil inhibits, in the case of some metals and metalloids, their intake to plants. Although the studied plants, despite their fitness and vitality at the contaminated sites, are not suitable for phytoextraction (except Co and Ag), they can be used for phytostabilisation at the mining habitats.
Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive review.
Chang, Sui Kiat; Alasalvar, Cesarettin; Shahidi, Fereidoon
2018-01-23
The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
Phytochemicals in Ischemic Stroke.
Kim, Joonki; Fann, David Yang-Wei; Seet, Raymond Chee Seong; Jo, Dong-Gyu; Mattson, Mark P; Arumugam, Thiruma V
2016-09-01
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Select Dietary Phytochemicals Function as Inhibitors of COX-1 but Not COX-2
Li, Haitao; Zhu, Feng; Sun, Yanwen; Li, Bing; Oi, Naomi; Chen, Hanyong; Lubet, Ronald A.; Bode, Ann M.; Dong, Zigang
2013-01-01
Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses. PMID:24098505
Oral oncoprevention by phytochemicals - a systematic review disclosing the therapeutic dilemma.
Bhavana, Sujana Mulk; Lakshmi, Chintamaneni Raja
2014-10-01
The aim of this article is to emphasize and focus on the preclinical and clinical update on phytochemicals and their role in prevention of oral carcinogenesis. Accordingly, the literature search was made following database: Embase, Medline, Science Citation index, NIH public access, pubmed and Cochrane Database of systematic reviews. Several internet websites were also searched to access publications from major phytochemical research sites and relevant information was obtained with regards to each plant chemical. The authors also spotted different list servers through wignet.com, Stanford cancer research etc: The data base search was made from the inception to 1988 and updated till 2013. A systematic method was obtained for literature search and data collection was critiqued. 60 articles were searched, among which there were only 6 systematic reviews on phytochemicals regarding oral carcinogenesis. Additional articles were obtained on phytochemicals and their mechanism of action in other cancers, which were regarded as background material. The studies done by various authors on each phytochemical has been briefly emphasized.
Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season.
Paiva, J A P; Garnier-Géré, P H; Rodrigues, J C; Alves, A; Santos, S; Graça, J; Le Provost, G; Chaumeil, G; Da Silva-Perez, D; Bosc, A; Fevereiro, P; Plomion, C
2008-01-01
The seasonal effect is the most significant external source of variation affecting vascular cambial activity and the development of newly divided cells, and hence wood properties. Here, the effect of edapho-climatic conditions on the phenotypic and molecular plasticity of differentiating secondary xylem during a growing season was investigated. Wood-forming tissues of maritime pine (Pinus pinaster) were collected from the beginning to the end of the growing season in 2003. Data from examination of fibre morphology, Fourier-transform infrared spectroscopy (FTIR), analytical pyrolysis, and gas chromatography/mass spectrometry (GC/MS) were combined to characterize the samples. Strong variation was observed in response to changes in edapho-climatic conditions. A genomic approach was used to identify genes differentially expressed during this growing season. Out of 3512 studied genes, 19% showed a significant seasonal effect. These genes were clustered into five distinct groups, the largest two representing genes over-expressed in the early- or late-wood-forming tissues, respectively. The other three clusters were characterized by responses to specific edapho-climatic conditions. This work provides new insights into the plasticity of the molecular machinery involved in wood formation, and reveals candidate genes potentially responsible for the phenotypic differences found between early- and late-wood.
Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M
2013-06-01
Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.
Perdiguero, Pedro; Collada, Carmen; Barbero, María Del Carmen; García Casado, Gloria; Cervera, María Teresa; Soto, Alvaro
2012-01-01
Climate change is a major challenge particularly for forest tree species, which will have to face the severe alterations of environmental conditions with their current genetic pool. Thus, an understanding of their adaptive responses is of the utmost interest. In this work we have selected Pinus pinaster as a model species. This pine is one of the most important conifers (for which molecular tools and knowledge are far more scarce than for angiosperms) in the Mediterranean Basin, which is characterised in all foreseen scenarios as one of the regions most drastically affected by climate change, mainly because of increasing temperature and, particularly, by increasing drought. We have induced a controlled, increasing water stress by adding PEG to a hydroponic culture. We have generated a subtractive library, with the aim of identifying the genes induced by this stress and have searched for the most reliable expressional candidate genes, based on their overexpression during water stress, as revealed by microarray analysis and confirmed by RT-PCR. We have selected a set of 67 candidate genes belonging to different functional groups that will be useful molecular tools for further studies on drought stress responses, adaptation, and population genomics in conifers, as well as in breeding programs. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Pierson, Jean T; Monteith, Gregory R; Roberts-Thomson, Sarah J; Dietzgen, Ralf G; Gidley, Michael J; Shaw, Paul N
2014-04-15
In this study we determined the qualitative composition and distribution of phytochemicals in peel and flesh of fruits from four different varieties of mango using mass spectrometry profiling following fractionation of methanol extracts by preparative HPLC. Gallic acid substituted compounds, of diverse core structure, were characteristic of the phytochemicals extracted using this approach. Other principal compounds identified were from the quercetin family, the hydrolysable tannins and fatty acids and their derivatives. This work provides additional information regarding mango fruit phytochemical composition and its potential contribution to human health and nutrition. Compounds present in mango peel and flesh are likely subject to genetic control and this will be the subject of future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phytochemicals as Adjunctive with Conventional Anticancer Therapies.
Farzaei, Mohammad Hosein; Bahramsoltani, Roodabeh; Rahimi, Roja
2016-01-01
Cancer is defined as the abnormal proliferations of cells which could occur in any tissue and can cause life-threatening malignancies with high financial costs for both patients and health care system. Plant-derived secondary metabolites are shown to have positive role in various diseases and conditions. The aim of the present study is to summarize clinical evidences on the benefits of phytochemicals as adjuvant therapy along with conventional anticancer therapies. Electronic databases including Pubmed, Scopus and Cochrane library were searched with the keywords "chemotherapeutic", "anticancer", "antineoplastic" or "radiotherapy" with "plant", "extract", "herb", or "phytochemical", until July 2015. Only clinical studies were included in this review. The findings showed that positive effects of phytochemicals are due to their direct anticarcinogenic activity, induction of relief in cancer complications, as well as their protective role against side effects of conventional chemotherapeutic agents. Results obtained from current review demonstrated that numerous phytochemical agents from different chemical categories including alkaloid, benzopyran, coumarin, carotenoid, diarylheptanoid, flavonoid, indole, polysaccharide, protein, stilbene, terpene, and xanthonoid possess therapeutic effect in patients with different types of cancer. Polyphenols are the most studied components. Curcumin, ginsenosides, lycopene, homoharringtonine, aviscumine, and resveratrol are amongst the major components with remarkable volumes of clinical evidence indicating their direct anticancer activities in different types of cancer including hepatocarcinoma, prostate cancer, leukemia and lymphoma, breast and ovarian cancer, and gastrointestinal cancers. Cannabinoids, cumarin, curcumin, ginsenosides, epigallocatechin gallate, vitexin, and salidroside are phytochemicals with significant alleviative effect on synthetic chemotherapy- induced toxicities. There is lack of evidence from clinical trials in case of a large number of phytochemicals and further human studies are recommended to confirm the role of plant metabolites in the management of cancer.
Systematic Review of the Use of Phytochemicals for Management of Pain in Cancer Therapy.
Harrison, Andrew M; Heritier, Fabrice; Childs, Bennett G; Bostwick, J Michael; Dziadzko, Mikhail A
2015-01-01
Pain in cancer therapy is a common condition and there is a need for new options in therapeutic management. While phytochemicals have been proposed as one pain management solution, knowledge of their utility is limited. The objective of this study was to perform a systematic review of the biomedical literature for the use of phytochemicals for management of cancer therapy pain in human subjects. Of an initial database search of 1,603 abstracts, 32 full-text articles were eligible for further assessment. Only 7 of these articles met all inclusion criteria for this systematic review. The average relative risk of phytochemical versus control was 1.03 [95% CI 0.59 to 2.06]. In other words (although not statistically significant), patients treated with phytochemicals were slightly more likely than patients treated with control to obtain successful management of pain in cancer therapy. We identified a lack of quality research literature on this subject and thus were unable to demonstrate a clear therapeutic benefit for either general or specific use of phytochemicals in the management of cancer pain. This lack of data is especially apparent for psychotropic phytochemicals, such as the Cannabis plant (marijuana). Additional implications of our findings are also explored.
Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression
2017-01-01
Background. Depression is a recurrent, common, and potentially life-threatening psychiatric disease related to multiple assignable causes. Although conventional antidepressant therapy can help relieve symptoms of depression and prevent relapse of the illness, complementary therapies are required due to disadvantage of the current therapy such as adverse effects. Moreover, a number of studies have researched adjunctive therapeutic approaches to improve outcomes for depression patients. Purpose. One potential complementary method with conventional antidepressants involves the use of medicinal herbs and phytochemicals that provide therapeutic benefits. Studies have revealed beneficial effects of medical herbs and phytochemicals on depression and their central nervous system mechanism. Here, we summarize the current knowledge of the therapeutic benefits of phytochemicals and medicinal herbs against depression and describe their detailed mechanisms. Sections. There are two sections, phytochemicals against depression and medical herbs against depression, in this review. Conclusion. Use of phytomedicine may be an alternative option for the treatment of depression in case conventional drugs are not applicable due to their side effects, low effectiveness, or inaccessibility. However, the efficacy and safety of these phytomedicine treatments for depression have to be supported by clinical studies. PMID:28503571
Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression.
Lee, Gihyun; Bae, Hyunsu
2017-01-01
Background . Depression is a recurrent, common, and potentially life-threatening psychiatric disease related to multiple assignable causes. Although conventional antidepressant therapy can help relieve symptoms of depression and prevent relapse of the illness, complementary therapies are required due to disadvantage of the current therapy such as adverse effects. Moreover, a number of studies have researched adjunctive therapeutic approaches to improve outcomes for depression patients. Purpose . One potential complementary method with conventional antidepressants involves the use of medicinal herbs and phytochemicals that provide therapeutic benefits. Studies have revealed beneficial effects of medical herbs and phytochemicals on depression and their central nervous system mechanism. Here, we summarize the current knowledge of the therapeutic benefits of phytochemicals and medicinal herbs against depression and describe their detailed mechanisms. Sections . There are two sections, phytochemicals against depression and medical herbs against depression, in this review. Conclusion . Use of phytomedicine may be an alternative option for the treatment of depression in case conventional drugs are not applicable due to their side effects, low effectiveness, or inaccessibility. However, the efficacy and safety of these phytomedicine treatments for depression have to be supported by clinical studies.
Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J
2015-05-15
The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years. Copyright © 2015 Elsevier B.V. All rights reserved.
Tíscar, P A; Candel-Pérez, D; Estrany, J; Balandier, P; Gómez, R; Lucas-Borja, M E
2017-04-15
The study tested the hypothesis that future changes in the composition of tree communities, as predicted by species distribution models, could already be apparent in the current regeneration patterns of three pine species (Pinus pinaster, P. nigra and P. sylvestris)inhabiting the central-eastern mountains of Spain. We carried out both an observational study and a seed-sowing experiment to analyze, along an altitudinal and latitudinal gradient, whether recent recruitment patterns indicate an expansion of P. pinaster forests to the detriment of P. nigra ones in the low-altitude southern sites of these mountains; or whether P. sylvestris is being replaced by P. nigra in the high-altitude sites from the same area. The observational study gathered data from 561 plots of the Spanish National Forest Inventory. The seed-sowing experiment tested the effects of irrigation and stand basal area on seedling emergence and survival. Data were analyzed by means of Generalized Linear Models and Generalized Linear Mixed Models. Regeneration of the three pine species responded similarly to the explicative factors studied, but the density of tree seedlings and saplings exhibited a wide spatial heterogeneity. This result suggested that a mosaic of site- and species-specific responses to climate change might mislead model projections on the future forest occupancy of tree species. Yet, we found no indications of neither an expansion nor a contraction of the near future forest occupancy of the tree species studied. Copyright © 2017 Elsevier B.V. All rights reserved.
Chromatographic fingerprint analysis of Pycnogenol® dietary supplements
USDA-ARS?s Scientific Manuscript database
French maritime bark (Pinus maritima) has been widely used as an herbal remedy for various degenerative diseases. A standardized bark extract is available that complies with its USP monograph and is derived from Pinus pinaster, Ait. (Pycnogenol®, Horphag Research Ltd., UK). The method specified in...
Non-specific protein modifications by a phytochemical induce heat shock response for self-defense.
Ohnishi, Kohta; Ohkura, Shinya; Nakahata, Erina; Ishisaka, Akari; Kawai, Yoshichika; Terao, Junji; Mori, Taiki; Ishii, Takeshi; Nakayama, Tsutomu; Kioka, Noriyuki; Matsumoto, Shinya; Ikeda, Yasutaka; Akiyama, Minoru; Irie, Kazuhiro; Murakami, Akira
2013-01-01
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.
Non-Specific Protein Modifications by a Phytochemical Induce Heat Shock Response for Self-Defense
Ohnishi, Kohta; Ohkura, Shinya; Nakahata, Erina; Ishisaka, Akari; Kawai, Yoshichika; Terao, Junji; Mori, Taiki; Ishii, Takeshi; Nakayama, Tsutomu; Kioka, Noriyuki; Matsumoto, Shinya; Ikeda, Yasutaka; Akiyama, Minoru; Irie, Kazuhiro; Murakami, Akira
2013-01-01
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities. PMID:23536805
2013-01-01
Background The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. Results This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. Conclusions The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers. PMID:23815794
Le Provost, Grégoire; Domergue, Frédéric; Lalanne, Céline; Ramos Campos, Patricio; Grosbois, Antoine; Bert, Didier; Meredieu, Céline; Danjon, Frédéric; Plomion, Christophe; Gion, Jean-Marc
2013-07-01
The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.
Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto
2017-01-01
Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.
Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence.
Baena Ruiz, Raúl; Salinas Hernández, Pedro
2016-12-01
In recent years, natural compounds called "phytochemicals", which are present in fruits, vegetables, and plants, have received special attention due to their potential to interfere with tumour formation and development. Many of these phytochemicals are being used in chemoprevention strategies. However, the scientific evidence regarding the modification of cancer risk continues to be debated. The aim of this paper is to review the current scientific evidence and the most relevant epidemiological studies regarding the consumption or use of phytochemicals and their effects on the incidence of cancer. A search for relevant articles was conducted in EMBASE and PubMed-NCBI through to May 2016 to identify potential interactions between the consumption or use of phytochemicals and cancer risk. The use or consumption of carotenoids, such as lycopene, alpha-carotene, and betacarotene, leads to a reduction in the risk of cancer, such as breast and prostate tumours. For breast cancer, beta-carotene even reduces the risk of recurrence. The use or consumption of soybean isoflavones has led to a reduction in the risk of lung, prostate, colon (in women only), and breast cancers, although this has depended on menopausal and oestrogen receptor status. The use or consumption of isothiocyanates and indole-3-carbinol also seems to reduce the risk of cancer, such as breast, stomach, colorectal, or prostate tumours. The adoption of a diet rich in phytochemicals is associated with a modification of cancer risk. However, the scientific data supporting its use come mainly from in vitro and in vivo studies (especially in animal models). The epidemiological evidence is inconclusive for many of these phytochemicals, so further studies are needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Systematic Review of the Use of Phytochemicals for Management of Pain in Cancer Therapy
Harrison, Andrew M.; Heritier, Fabrice; Childs, Bennett G.; Bostwick, J. Michael; Dziadzko, Mikhail A.
2015-01-01
Pain in cancer therapy is a common condition and there is a need for new options in therapeutic management. While phytochemicals have been proposed as one pain management solution, knowledge of their utility is limited. The objective of this study was to perform a systematic review of the biomedical literature for the use of phytochemicals for management of cancer therapy pain in human subjects. Of an initial database search of 1,603 abstracts, 32 full-text articles were eligible for further assessment. Only 7 of these articles met all inclusion criteria for this systematic review. The average relative risk of phytochemical versus control was 1.03 [95% CI 0.59 to 2.06]. In other words (although not statistically significant), patients treated with phytochemicals were slightly more likely than patients treated with control to obtain successful management of pain in cancer therapy. We identified a lack of quality research literature on this subject and thus were unable to demonstrate a clear therapeutic benefit for either general or specific use of phytochemicals in the management of cancer pain. This lack of data is especially apparent for psychotropic phytochemicals, such as the Cannabis plant (marijuana). Additional implications of our findings are also explored. PMID:26576425
Björkman, Maria; Klingen, Ingeborg; Birch, Andrew N E; Bones, Atle M; Bruce, Toby J A; Johansen, Tor J; Meadow, Richard; Mølmann, Jørgen; Seljåsen, Randi; Smart, Lesley E; Stewart, Derek
2011-05-01
In this review, we provide an overview of the role of glucosinolates and other phytochemical compounds present in the Brassicaceae in relation to plant protection and human health. Current knowledge of the factors that influence phytochemical content and profile in the Brassicaceae is also summarized and multi-factorial approaches are briefly discussed. Variation in agronomic conditions (plant species, cultivar, developmental stage, plant organ, plant competition, fertilization, pH), season, climatic factors, water availability, light (intensity, quality, duration) and CO(2) are known to significantly affect content and profile of phytochemicals. Phytochemicals such as the glucosinolates and leaf surface waxes play an important role in interactions with pests and pathogens. Factors that affect production of phytochemicals are important when designing plant protection strategies that exploit these compounds to minimize crop damage caused by plant pests and pathogens. Brassicaceous plants are consumed increasingly for possible health benefits, for example, glucosinolate-derived effects on degenerative diseases such as cancer, cardiovascular and neurodegenerative diseases. Thus, factors influencing phytochemical content and profile in the production of brassicaceous plants are worth considering both for plant and human health. Even though it is known that factors that influence phytochemical content and profile may interact, studies of plant compounds were, until recently, restricted by methods allowing only a reductionistic approach. It is now possible to design multi-factorial experiments that simulate their combined effects. This will provide important information to ecologists, plant breeders and agronomists. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lu, Baiyi; Li, Maiquan; Yin, Ran
2016-07-29
Edible flowers contain numerous phytochemicals which contribute to their health benefits, and consumption of edible flowers has increased significantly in recent years. While many researchers have been conducted, no literature review of the health benefits of common edible flowers and their phytochemicals has been compiled. This review aimed to present the findings of research conducted from 2000 to 2015 on the species, traditional application, phytochemicals, health benefits, and the toxicology of common edible flowers. It was found in 15 species of common edible flowers that four flavonols, three flavones, four flavanols, three anthocyanins, three phenolic acids and their derivatives were common phytochemicals and they contributed to the health benefits such as anti-oxidant, anti-inflammatory, anti-cancer, anti-obesity, and neuroprotective effect. Toxicology studies have been conducted to evaluate the safety of common edible flowers and provide information on their dosages and usages.
Phytochemicals in Human Milk and Their Potential Antioxidative Protection
2018-01-01
Diets contain secondary plant metabolites commonly referred to as phytochemicals. Many of them are believed to impact human health through various mechanisms, including protection against oxidative stress and inflammation, and decreased risks of developing chronic diseases. For mothers and other people, phytochemical intake occurs through the consumption of foods such as fruits, vegetables, and grains. Research has shown that some these phytochemicals are present in the mother’s milk and can contribute to its oxidative stability. For infants, human milk (HM) represents the primary and preferred source of nutrition because it is a complete food. Studies have reported that the benefit provided by HM goes beyond basic nutrition. It can, for example, reduce oxidative stress in infants, thereby reducing the risk of lung and intestinal diseases in infants. This paper summarizes the phytochemicals present in HM and their potential contribution to infant health. PMID:29470421
Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges
Shankar, Eswar; Kanwal, Rajnee; Candamo, Mario; Gupta, Sanjay
2016-01-01
The influence of diet and environment on human health has been known since ages. Plant-derived natural bioactive compounds (phytochemicals) have acquired an important role in human diet as potent antioxidants and cancer chemopreventive agents. In past few decades, the role of epigenetic alterations such as DNA methylation, histone modifications and non-coding RNAs in the regulation of mammalian genome have been comprehensively addressed. Although the effects of dietary phytochemicals on gene expression and signaling pathways have been widely studied in cancer, the impact of these dietary compounds on mammalian epigenome is rapidly emerging. The present review outlines the role of different epigenetic mechanisms in the regulation and maintenance of mammalian genome and focuses on the role of dietary phytochemicals as epigenetic modifiers in cancer. Above all, the review focuses on summarizing the progress made thus far in cancer chemoprevention with dietary phytochemicals, the heightened interest and challenges in the future. PMID:27117759
Bioactive phytochemicals in barley.
Idehen, Emmanuel; Tang, Yao; Sang, Shengmin
2017-01-01
Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity. Copyright © 2016. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
In the present studies, we utilized prostate cancer cell culture models to elucidate the mechanisms of action of broccoli-derived phytochemicals 3, 3’-diindolylmethane (DIM) and indole-3-carbinol (I3C). We found DIM and I3C at 1-5 uM inhibited androgen and estrogen-mediated pathways and induced a x...
Hossain, Mohammad Amzad; AL-Raqmi, Khulood Ahmed Salim; AL-Mijizy, Zawan Hamood; Weli, Afaf Mohammed; Al-Riyami, Qasim
2013-09-01
To prepare various crude extracts using different polarities of solvent and to quantitatively evaluate their total phenol, flavonoids contents and phytochemical screening of Thymus vulgaris collected from Al Jabal Al Akhdar, Nizwa, Sultanate of Oman. The leave sample was extracted with methanol and evaporated. Then it was defatted with water and extracted with different polarities organic solvents with increasing polarities. The prepare hexane, chloroform, ethyl acetate, butanol and methanol crude extracts were used for their evaluation of total phenol, flavonoids contents and phytochemical screening study. The established conventional methods were used for quantitative determination of total phenol, flavonoids contents and phytochemical screening. Phytochemical screening for various crude extracts were tested and shown positive result for flavonoids, saponins and steroids compounds. The result for total phenol content was the highest in butanol and the lowest in methanol crude extract whereas the total flavonoids contents was the highest in methanol and the lowest hexane crude extract. The crude extracts from locally grown Thymus vulgaris showed high concentration of flavonoids and it could be used as antibiotics for different curable and uncurable diseases.
Singh, Madhulika; Suman, Shankar; Shukla, Yogeshwer
2014-01-01
Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.
Phytochemicals potently inhibit migration of metastatic breast cancer cells†
Ham, Stephanie Lemmo; Nasrollahi, Samila; Shah, Kush N.; Soltisz, Andrew; Paruchuri, Sailaja; Yun, Yang H.; Luker, Gary D.; Bishayee, Anupam; Tavana, Hossein
2017-01-01
Cell migration is a major process that drives metastatic progression of cancers, the major cause of cancer death. Existing chemotherapeutic drugs have limited efficacy to prevent and/or treat metastasis, emphasizing the need for new treatments. We focus on triple negative breast cancer (TNBC), the subtype of breast cancer with worst prognosis and no standard chemotherapy protocols. Here we demonstrate that a group of natural compounds, known as phytochemicals, effectively block migration of metastatic TNBC cells. Using a novel cell micropatterning technology, we generate consistent migration niches in standard 96-well plates where each well contains a cell-excluded gap within a uniform monolayer of cells. Over time, cells migrate into and occupy the gap. Treating TNBC cells with non-toxic concentrations of phytochemicals significantly blocks motility of cells. Using a molecular analysis approach, we show that anti-migratory property of phytochemicals is partly due to their inhibitory effects on phosphorylation of ERK1/2. This study provides a framework for future studies to understand molecular targets of phytochemicals and evaluate their effectiveness in inhibiting metastasis in animal models of cancer. PMID:26120051
Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A.; Alía, Ricardo; González-Martínez, Santiago C.
2014-01-01
Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes. PMID:25286410
Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A; Alía, Ricardo; González-Martínez, Santiago C
2014-01-01
Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.
Choudhary, Neha; Singh, Vikram
2018-01-01
Piper longum (P. longum, also called as long pepper) is one of the common culinary herbs that has been extensively used as a crucial constituent in various indigenous medicines, specifically in traditional Indian medicinal system known as Ayurveda. For exploring the comprehensive effect of its constituents in humans at proteomic and metabolic levels, we have reviewed all of its known phytochemicals and enquired about their regulatory potential against various protein targets by developing high-confidence tripartite networks consisting of phytochemical-protein target-disease association. We have also (i) studied immunomodulatory potency of this herb; (ii) developed subnetwork of human PPI regulated by its phytochemicals and could successfully associate its specific modules playing important role in diseases, and (iii) reported several novel drug targets. P10636 (microtubule-associated protein tau, that is involved in diseases like dementia etc.) was found to be the commonly screened target by about seventy percent of these phytochemicals. We report 20 drug-like phytochemicals in this herb, out of which 7 are found to be the potential regulators of 5 FDA approved drug targets. Multi-targeting capacity of 3 phytochemicals involved in neuroactive ligand receptor interaction pathway was further explored via molecular docking experiments. To investigate the molecular mechanism of P. longum's action against neurological disorders, we have developed a computational framework that can be easily extended to explore its healing potential against other diseases and can also be applied to scrutinize other indigenous herbs for drug-design studies.
Beneficial Properties of Phytochemicals on NLRP3 Inflammasome-Mediated Gout and Complication.
Jhang, Jhih-Jia; Lin, Jia-Hong; Yen, Gow-Chin
2018-01-31
Gouty arthritis is characterized by the precipitation of monosodium urate (MSU) crystals in the joint. Pro-inflammatory cytokine IL-1β is a critical manifestation in response to MSU crystals attack. IL-1β secretion is dependent on the nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Abnormal activation of the NLRP inflammasome is related to cellular oxidative stress. However, recent studies have illustrated that phytochemicals with potent antioxidant activity exert inhibitory effects on NLRP3 inflammasome-mediated diseases. This review focuses on the current findings of studies on the NLRP3 inflammasome and the proposed mechanisms that MSU crystals trigger inflammation via activation of the NLRP3 inflammasome. We also summarized the potential use of phytochemicals on NLRP3 inflammasome-mediated diseases, suggesting that phytochemicals can further prevent acute gout attack.
TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants
Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng
2014-01-01
The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145
Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude
2017-02-01
Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots. © 2016 John Wiley & Sons Ltd.
Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.
Zhu, Fengmei; Du, Bin; Xu, Baojun
2018-05-24
Inflammation is the first biological response of the immune system to infection, injury or irritation. Evidence suggests that the anti-inflammatory effect is mediated through the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ as well as noncytokine mediator, prostaglandin E 2 . Fruits, vegetables, and food legumes contain high levels of phytochemicals that show anti-inflammatory effect, but their mechanisms of actions have not been completely identified. The aim of this paper was to summarize the recent investigations and findings regarding in vitro and animal model studies on the anti-inflammatory effects of fruits, vegetables, and food legumes. Specific cytokines released for specific type of physiological event might shed some light on the specific use of each source of phytochemicals that can benefit to counter the inflammatory response. As natural modulators of proinflammatory gene expressions, phytochemical from fruits, vegetables, and food legumes could be incorporated into novel bioactive anti-inflammatory formulations of various nutraceuticals and pharmaceuticals. Finally, these phytochemicals are discussed as the natural promotion strategy for the improvement of human health status. The phenolics and triterpenoids in fruits and vegetables showed higher anti-inflammatory activity than other compounds. In food legumes, lectins and peptides had anti-inflammatory activity in most cases. However, there are lack of human study data on the anti-inflammatory activity of phytochemicals from fruits, vegetables, and food legumes.
Phytochemicals and Cardiovascular Disease
... Healthy Workplace Food and Beverage Toolkit Phytochemicals and Cardiovascular Disease Updated:Mar 18,2014 What are phytochemicals? ... that may have promise in reducing risk of cardiovascular disease. AHA Recommendation More research on phytochemicals is ...
Nucleotide variation in genes invloved in wood formation in two pine species
David Pot; Lisa McMillan; Craig Echt; Gregoire Le Provost; Pauline Garnier-Gere; Sheree Cato; Christophe Plomion
2005-01-01
Nucleotide diversity in eight genes related to wood formation was investigated in two pine species, Pinus pinaster and P. radiata. The nucleotide diversity patterns observed and their properties were compared between the two species according to the specific characteristics of the samples analysed. A lower diversity was observed in P. radiata...
Bonifácio, Luís F; Sousa, Edmundo; Naves, Pedro; Inácio, Maria L; Henriques, Joana; Mota, Manuel; Barbosa, Pedro; Drinkall, Mike J; Buckley, Stanislas
2014-01-01
The pinewood nematode (PWN) Bursaphelenchus xylophilus is an important conifer disease worldwide. It is the direct cause of the death of millions of pines in south-east Asia (mainly Japan, China and Korea) and has been established in Portugal since 1999. The phasing out of methyl bromide has created an urgent need for alternative treatment of wood packaging materials. The effect of sulfuryl fluoride (SF), a broad-spectrum fumigant used to control insects, was tested in Pinus pinaster boards naturally infested by PWN. Boards were fumigated for 24 h at three different temperatures (15, 20 and 30 °C) with dosage ranges of 3169-4407, 1901-4051 and 1385-2141 gh m(-3) respectively. Treated wood was sampled for nematode identification and counting, before treatment and after 24 h, 72 h and 21 days. No survival was found in the 15 °C and 30 °C treatments, while at 20 °C the mortality ranged from 94.06 to 100%. Some reasons for the survival at 20 °C are presented. Results confirm SF to be an effective quarantine treatment for PWN at 15 and 30 °C. Further studies are needed to obtain the most effective dosage at 20 °C, and to determine the toxicity of SF fumigation on B. xylophilus at other temperatures, especially at 25 °C. © 2013 Society of Chemical Industry.
Perdiguero, Pedro; Barbero, María Del Carmen; Cervera, María Teresa; Collada, Carmen; Soto, Alvaro
2013-06-01
Adaptation to water stress has determined the evolution and diversification of vascular plants. Water stress is forecasted to increase drastically in the next decades in certain regions, such as in the Mediterranean basin. Consequently, a proper knowledge of the response and adaptations to drought stress is essential for the correct management of plant genetic resources. However, most of the advances in the understanding of the molecular response to water stress have been attained in angiosperms, and are not always applicable to gymnosperms. In this work we analyse the transcriptional response of two emblematic Mediterranean pines, Pinus pinaster and Pinus pinea, which show noticeable differences in their performance under water stress. Using microarray analysis, up to 113 genes have been detected as significantly induced by drought in both species. Reliability of expression patterns has been confirmed by RT-PCR. While induced genes with similar profiles in both species can be considered as general candidate genes for the study of drought response in conifers, genes with diverging expression patterns can underpin the differences displayed by these species under water stress. Most promising candidate genes for drought stress response include genes related to carbohydrate metabolism, such as glycosyltransferases or galactosidases, sugar transporters, dehydrins and transcription factors. Additionally, differences in the molecular response to drought and polyethylene-glycol-induced water stress are also discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan
2013-01-01
Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.
Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan
2013-01-01
Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns. PMID:24223885
Jayaraman, Premkumar; Sakharkar, Meena K; Lim, Chu Sing; Tang, Thean Hock; Sakharkar, Kishore R.
2010-01-01
In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals). PMID:20941374
Tsuchiya, Hironori
2015-10-16
In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction's applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.
Lee, Jong Hun; Khor, Tin Oo; Shu, Limin; Su, Zheng-Yuan; Fuentes, Francisco; Kong, Ah-Ng Tony
2013-02-01
Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2-Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including NSAIDs. Copyright © 2012 Elsevier Inc. All rights reserved.
TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants.
Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng
2014-01-01
The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure-activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein-ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. © The Author(s) 2014. Published by Oxford University Press.
Jaradat, Nidal; AlMasri, Motasem; Zaid, Abdel Naser; Othman, Dua'a Ghazi
2017-09-01
Various epidemiological studies showed that herbal remedies containing polyphenols may protect against various diseases such as cancers, vascular diseases and inflammatory pathologies. Currently, such groups of bioactive compounds have become a subject of many antimicrobials and antioxidant investigations. Accordingly, the current study aimed to conduct biological and phytochemical screening for two Palestinian traditional medicinal plants, Erodium laciniatum and Lactuca orientalis. Current plants phytoconstituents and their antioxidant activities were evaluated by using standard phytochemical methods; meanwhile, antimicrobial activities were estimated by using several types of American Type Culture Collection and multidrug resistant clinical isolates by using agar diffusion well-variant, agar diffusion disc-variant and broth microdilution methods. Phytochemical screenings showed that L. orientalis and E. laciniatum contain mixtures of secondary and primary metabolites Moreover, total flavonoid, tannins and phenols content in E. laciniatum extract were higher than the L. orientalis extracts with almost the same antioxidant potentials. Additionally, both plants organic and aqueous extracts showed various potentials of antimicrobial activity Conclusions: Overall, the studied species have a mixture of phytochemicals, flavonoids, phenols and tannins also have antioxidant and antimicrobial activities which approved their folk uses in treatments of infectious and Alzheimer diseases and simultaneously can be used as therapeutic agents in the pharmaceutical industries.
NASA Astrophysics Data System (ADS)
Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.
2009-04-01
A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.
Brewer, D; Hershberger, S; Gaetke, L
2016-01-01
This study evaluated whether providing the Fruits and Vegetables (F/V) required by the Healthy Hunger-Free Kids Act (HHFKA) increased phytochemical/antioxidant content of school lunches. Additionally, the ability of adolescents to apply their nutritional knowledge following participation in a nutrition-focused science-based curriculum was assessed. Changes in antioxidant/phytochemical content from F/V offered in school lunch menus were analyzed Pre-and Post-HHFKA. Food logs completed by 717 youth aged 10-18 were analyzed for correctly identifying "fighting foods". Significant increases in antioxidant/phytochemical content resulted following implementation of HHFKA (P<0.05 ) . Seventy-five percent [0, 100] of the time students accurately identified "fighting foods" in their one-day in-school food log (n=468). Creatively incorporating nutrition education into core curriculum, when paired with a supportive built environment that increases F/V access (HHFKA), generates a multilevel intervention promoting F/V consumption among school-aged youth.
Tung, Yen-Chen; Hsieh, Pei-Hsuan; Pan, Min-Hsiung; Ho, Chi-Tang
2017-01-01
Dietary phytochemicals from food and herbs have been studied for their health benefits for a long time. The incidence of obesity has seen an incredible increase worldwide. Although dieting, along with increased physical activity, seems an easy method in theory to manage obesity, it is hard to apply in real life. Obesity treatment drugs and surgery are not successful or targeted for everyone and can have significant side effects. This low rate of success is the major reason that the overweight as well as the pharmaceutical industry seek alternative methods, including phytochemicals. Therefore, more and more research has focused on the role of phytochemicals to alleviate lipid accumulation or enhance energy expenditure in adipocytes. This review discusses selected phytochemicals from food and herbs and their effects on adipogenesis, lipogenesis, lipolysis, oxidation of fatty acids, and browning in 3T3-L1 preadipocytes. Copyright © 2016. Published by Elsevier B.V.
Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges.
Shankar, Eswar; Kanwal, Rajnee; Candamo, Mario; Gupta, Sanjay
2016-10-01
The influence of diet and environment on human health has been known since ages. Plant-derived natural bioactive compounds (phytochemicals) have acquired an important role in human diet as potent antioxidants and cancer chemopreventive agents. In past few decades, the role of epigenetic alterations such as DNA methylation, histone modifications and non-coding RNAs in the regulation of mammalian genome have been comprehensively addressed. Although the effects of dietary phytochemicals on gene expression and signaling pathways have been widely studied in cancer, the impact of these dietary compounds on mammalian epigenome is rapidly emerging. The present review outlines the role of different epigenetic mechanisms in the regulation and maintenance of mammalian genome and focuses on the role of dietary phytochemicals as epigenetic modifiers in cancer. Above all, the review focuses on summarizing the progress made thus far in cancer chemoprevention with dietary phytochemicals, the heightened interest and challenges in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Abreu, Ana Cristina; Saavedra, Maria José; Simões, Lúcia C; Simões, Manuel
2016-10-01
Combinations of selected phytochemicals (reserpine, pyrrolidine, quinine, morin and quercetin) with antibiotics (ciprofloxacin, tetracycline and erythromycin) were tested on the prevention and control of Staphylococcus aureus biofilms. The phytochemicals were also studied for their ability to avoid antibiotic adaptation and to inhibit antibiotic efflux pumps. Morin, pyrrolidine and quercetin at subinhibitory concentrations had significant effects in biofilm prevention and/or control when applied alone and combined with antibiotics. Synergism between antibiotics and phytochemicals was found especially against biofilms of NorA overexpressing strain S. aureus SA1199B. This strain when growing with subinhibitory concentrations of ciprofloxacin developed increased tolerance to this antibiotic. However, this was successfully reversed by quinine and morin. In addition, reserpine and quercetin showed significant efflux pump inhibition. The overall results demonstrate the role of phytochemicals in co-therapies to promote more efficient treatments and decrease antimicrobial resistance to antibiotics, with substantial effects against S. aureus in both planktonic and biofilm states.
Role of phytochemicals in colorectal cancer prevention.
Li, Yu-Hua; Niu, Yin-Bo; Sun, Yang; Zhang, Feng; Liu, Chang-Xu; Fan, Lei; Mei, Qi-Bing
2015-08-21
Although the incidence of colorectal cancer (CRC) has been declining in recent decades, it remains a major public health issue as a leading cause of cancer mortality and morbidity worldwide. Prevention is one milestone for this disease. Extensive study has demonstrated that a diet containing fruits, vegetables, and spices has the potential to prevent CRC. The specific constituents in the dietary foods which are responsible for preventing CRC and the possible mechanisms have also been investigated extensively. Various phytochemicals have been identified in fruits, vegetables, and spices which exhibit chemopreventive potential. In this review article, chemopreventive effects of phytochemicals including curcumin, polysaccharides (apple polysaccharides and mushroom glucans), saponins (Paris saponins, ginsenosides and soy saponins), resveratrol, and quercetin on CRC and the mechanisms are discussed. This review proposes the need for more clinical evidence for the effects of phytochemicals against CRC in large trials. The conclusion of the review is that these phytochemicals might be therapeutic candidates in the campaign against CRC.
Singh, Madhulika; Suman, Shankar; Shukla, Yogeshwer
2014-01-01
Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer. PMID:24757666
The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes
2013-01-01
Diets high in wholegrains are associated with a 20-30% reduction in risk of developing type-2 diabetes (T2D), which is attributed to a variety of wholegrain components, notably dietary fibre, vitamins, minerals and phytochemicals. Most phytochemicals function as antioxidants in vitro and have the potential to mitigate oxidative stress and inflammation which are implicated in the pathogenesis of T2D. In this review we compare the content and bioavailability of phytochemicals in wheat, barley, rice, rye and oat varieties and critically evaluate the evidence for wholegrain cereals and cereal fractions increasing plasma phytochemical concentrations and reducing oxidative stress and inflammation in humans. Phytochemical content varies considerably within and among the major cereal varieties. Differences in genetics and agro-climatic conditions explain much of the variation. For a number of the major phytochemicals, such as phenolics and flavanoids, their content in grains may be high but because these compounds are tightly bound to the cell wall matrix, their bioavailability is often limited. Clinical trials show that postprandial plasma phenolic concentrations are increased after consumption of wholegrain wheat or wheat bran however the magnitude of the response is usually modest and transient. Whether this is sufficient to bolster antioxidant defences and translates into improved health outcomes is still uncertain. Increased phytochemical bioavailability may be achieved through bio-processing of grains but the improvements so far are small and have not yet led to changes in clinical or physiological markers associated with reduced risk of T2D. Furthermore, the effect of wholegrain cereals and cereal fractions on biomarkers of oxidative stress or strengthening antioxidant defence in healthy individuals is generally small or nonexistent, whereas biomarkers of systemic inflammation tend to be reduced in people consuming high intakes of wholegrains. Future dietary intervention studies seeking to establish a direct role of phytochemicals in mediating the metabolic health benefits of wholegrains, and their potential for mitigating disease progression, should consider using varieties that deliver the highest possible levels of bioavailable phytochemicals in the context of whole foods and diets. Both postprandial and prolonged responses in systemic phytochemical concentrations and markers of inflammation and oxidative stress should be assessed along with changes related to health outcomes in healthy individuals as well as those with metabolic disease. PMID:23679924
Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective.
Murugaiyah, Vikneswaran; Mattson, Mark P
2015-10-01
The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders. Published by Elsevier Ltd.
Rajan, S; Thirunalasundari, T; Jeeva, S
2011-04-01
To evaluate the phytochemical and anti-bacterial efficacy of the seed kernel extract of Mangifera indica (M. indica) against the enteropathogen, Shigella dysenteriae (S. dysenteriae), isolated from the diarrhoeal stool specimens. The preliminary phytochemical screening was performed by the standard methods as described by Harborne. Cold extraction method was employed to extract the bioactive compounds from mango seed kernel. Disc diffusion method was adopted to screen antibacterial activity. Minimum inhibitory concentration (MIC) was evaluated by agar dilution method. The crude extracts were partially purified by thin layer chromatography (TLC) and the fractions were analyzed by high performance thin layer chromatography (HPTLC) to identify the bioactive compounds. Phytochemical scrutiny of M. indica indicated the presence of phytochemical constituents such as alkaloids, gums, flavanoids, phenols, saponins, steroids, tannins and xanthoproteins. Antibacterial activity was observed in two crude extracts and various fractions viz. hexane, benzene, chloroform, methanol and water. MIC of methanol fraction was found to be (95±11.8) μg/mL. MIC of other fractions ranged from 130-380 μg/mL. The present study confirmed that each crude extracts and fractions of M. indica have significant antimicrobial activity against the isolated pathogen S. dysenteriae. The antibacterial activity may be due to the phytochemical constituents of the mango seed kernel. The phytochemical tannin could be the reason for its antibacterial activity. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Miscibility Studies on Polymer Blends Modified with Phytochemicals
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2009-03-01
The miscibility studies related to an amorphous poly(amide)/poly(vinyl pyrrolidone) [PA/PVP] blend with a crystalline phytochemical called ``Mangiferin'' is presented. Phytochemicals are plant derived chemicals which intrinsically possess multiple salubrious properties that are associated with prevention of diseases such as cancer, diabetes, cardiovascular disease, and hypertension. Incorporation of phytochemicals into polymers has shown to have very promising applications in wound healing, drug delivery, etc. The morphology of these materials is crucial to applications like hemodialysis, which is governed by thermodynamics and kinetics of the phase separation process. Hence, miscibility studies of PA/PVP blends with and without mangiferin have been carried out using dimethyl sulfoxide as a common solvent. Differential scanning calorimetry studies revealed that the binary PA/PVP blends were completely miscible at all compositions. However, the addition of mangiferin has led to liquid-liquid phase separation and liquid-solid phase transition in a composition dependent manner. Fourier transformed infrared spectroscopy was undertaken to determine specific interaction between the polymer constituents and the role of possible hydrogen bonding among three constituents will be discussed.
Cross-species transferability and mapping of genomic and cDNA SSRs in pines
D. Chagne; P. Chaumeil; A. Ramboer; C. Collada; A. Guevara; M. T. Cervera; G. G. Vendramin; V. Garcia; J-M. Frigerio; Craig Echt; T. Richardson; Christophe Plomion
2004-01-01
Two unigene datasets of Pinus taeda and Pinus pinaster were screened to detect di-, tri and tetranucleotide repeated motifs using the SSRIT script. A total of 419 simple sequence repeats (SSRs) were identified, from which only 12.8% overlapped between the two sets. The position of the SSRs within the coding sequence were predicted...
Time-of-Flight Adjustment Procedure for Acoustic Measurements in Structural Timber
Danbiel F. Llana; Guillermo Iñiguez-Gonzalez; Francisco Arriaga; Xiping Wang
2016-01-01
The effect of timber length on time-of-flight acoustic longitudinal measurements was investigated on the structural timber of four Spanish species: radiata pine (Pinus radiata D. Don), Scots pine (Pinus sylvestris L.), laricio pine (Pinus nigra Arn.), and maritime pine (Pinus pinaster Ait.). Time-of-flight longitudinal measurements were conducted on 120 specimens of...
Multiple resistances against diseases and insects in a breeding population of pinus pinaster
Alejandr Solla; Maria Vivas; Elena Cubera; Luis Sampedro; Xoaquin Moreira; Esther Merlo; Raul de la Mata; Rafael Zas
2012-01-01
The different plant defenses existing within a given taxon have been commonly assumed to trade-off among each other because of both evolutionary and physiological reasons. The higher the efficiency of a single defensive trait, the lower selective pressure for other redundant defenses expected. On the other hand, production of multiple defenses might be...
The potential of breeding for enhanced inducibility in Pinus pinaster and Pinus radiata
Rafael Zas; Alejandro Solla; Xoaquin Moreira; Luis Sampedro
2012-01-01
Most resistance mechanisms against pests and pathogens in pine trees involve the production of chemical defenses. These defenses are not cost free and the production of secondary metabolisms is generally inversely related with other plant fitness correlates, such as growth. The existence of these negative genetic correlations imposes an important obstacle for breeding...
Pharmacognostical and Phytochemical Studies of Helleborus niger L Root.
Kumar, V Kishor; Lalitha, K G
2017-01-01
Helleborus niger L (Ranunculaceae) is used Ayurvedic and Unani systems and other herbal medicine systems. The roots of H. niger have a good medicinal value. To conduct a pharmacognostical and phytochemical study of H. niger . The pharmacognostical studies on roots including parameters such as taxonomical, macroscopic, microscopic characters, physico-chemical, ultra-violet analysis and phytochemical studies are established. Macroscopically, the roots are brownish-black in colour, cylindrical in shape, feeble odour, slightly acrid taste with irregularly branched. Microscopically the root showed the presence of epidermis, air-chambers, fissure periderm, periderm, inner cortex, pith, phloem, xylem, vessels and xylem vessels. Microscopic examination of the powder showed the presence of parenchyma cells, parenchyma mass, periderm, cell inclusion, laticifer, lateral wall pith, perforation, xylem bundle and xylem elements. Ultra-violet and ordinary light analyses with different reagents were conducted to identify the drug in powder form. Physico-chemical evaluation established, Ash values - Total, acid insoluble, water soluble and sulphated ash values were 7.3%, 4.1%, 3.7% and 5.2%, respectively. Extractive values - Alcohol soluble, water soluble and ether soluble extractive values were 22.8%, 7.4% and 5.6%, respectively. Loss on drying was 3.3%. Preliminary phytochemical screening showed the presence of carbohydrate, glycoside, saponins, flavonoid, phytosterols, tannins and phenolic compounds. The results of the study can serve as a valuable resource of pharmacognostic and phytochemical information. This will serve as appropriate, standards for discovery of this plant material in future investigations and applications and also contribute towards establishing pharmacopoeial standards.
NASA Astrophysics Data System (ADS)
Dewi, C. S. U.; Kasitowati, R. D.; Siagian, J. A.
2018-04-01
The existence of Enhalus acoroides certainly gives important influence to the ecosystem, both as a producer in the food web and as a living habitat. In the last decade, Enhalus acoroides was widely used as an object of marine bioprospection research. That research showed potential results as antibacterial, antifungal, even as antifouling. This is a good reason to know the content of phytochemical compounds in Enhalus acoroides from two different locations. The purpose of research purpose to determine (1) the crude extract produced by Enhalus acoroides from two different locations; and (2) the phytochemical compounds contained in the crude extract of Enhalus acoroides from two different locations. This study this research was to used samples collected from Wanci Island (Wakatobi), and Talango Island (Madura), Indonesia. The extraction process and phytochemical test were conducted at the Marine Science Laboratory, FPIK, University of Brawijaya, and lasted for two months, from June 2017 to September 2017. The extraction was done by three solvent, are methanol, ethyl acetate and chloroform. Furthermore, phytochemical test was performed qualitatively. The results provided that the yield produced by Enhalus acoroides from Wanci Island, Wakatobi is relatively lower than Talango Island, Madura. Enhalus acoroides is also renowned to contain phytochemical compounds of tannins and saponins.
The effect of cooking on the phytochemical content of vegetables.
Palermo, Mariantonella; Pellegrini, Nicoletta; Fogliano, Vincenzo
2014-04-01
Cooking induces many chemical and physical modifications in foods; among these the phytochemical content can change. Many authors have studied variations in vegetable nutrients after cooking, and great variability in the data has been reported. In this review more than 100 articles from indexed scientific journals were considered in order to assess the effect of cooking on different phytochemical classes. Changes in phytochemicals upon cooking may result from two opposite phenomena: (1) thermal degradation, which reduces their concentration, and (2) a matrix softening effect, which increases the extractability of phytochemicals, resulting in a higher concentration with respect to the raw material. The final effect of cooking on phytochemical concentration depends on the processing parameters, the structure of food matrix, and the chemical nature of the specific compound. Looking at the different cooking procedures it can be concluded that steaming will ensure better preservation/extraction yield of phenols and glucosinolates than do other cooking methods: steamed tissues are not in direct contact with the cooking material (water or oil) so leaching of soluble compounds into water is minimised and, at the same time, thermal degradation is limited. Carotenoids showed a different behaviour; a positive effect on extraction and the solubilisation of carotenes were reported after severe processing. © 2013 Society of Chemical Industry.
Emerging Phytochemicals for the Prevention and Treatment of Head and Neck Cancer.
Katiyar, Santosh K
2016-11-24
Despite the development of more advanced medical therapies, cancer management remains a problem. Head and neck squamous cell carcinoma (HNSCC) is a particularly challenging malignancy and requires more effective treatment strategies and a reduction in the debilitating morbidities associated with the therapies. Phytochemicals have long been used in ancient systems of medicine, and non-toxic phytochemicals are being considered as new options for the effective management of cancer. Here, we discuss the growth inhibitory and anti-cell migratory actions of proanthocyanidins from grape seeds (GSPs), polyphenols in green tea and honokiol, derived from the Magnolia species. Studies of these phytochemicals using human HNSCC cell lines from different sub-sites have demonstrated significant protective effects against HNSCC in both in vitro and in vivo models. Treatment of human HNSCC cell lines with GSPs, (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic component of green tea or honokiol reduced cell viability and induced apoptosis. These effects have been associated with inhibitory effects of the phytochemicals on the epidermal growth factor receptor (EGFR), and cell cycle regulatory proteins, as well as other major tumor-associated pathways. Similarly, the cell migration capacity of HNSCC cell lines was inhibited. Thus, GSPs, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.
2010-09-01
found that the most potent phytochemical suppressors of cell proliferation of P20E cells were curcumin (10 µM approximately 80 to 90% suppression...effectiveness of a number of phytochemicals from edible plants known to block AhR in attenuating the expression of high rates of cell proliferation...selected number of those phytochemicals , by xenografting those AhR overexpressing human breast cancer cells into athymic nude mice, and by treating
Kakarala, Kavita Kumari; Jamil, Kaiser
2015-02-01
Drug resistance and drug-associated toxicity are the primary causes for withdrawal of many drugs, although patient recovery is satisfactory in many instances. Interestingly, the use of phytochemicals in the treatment of cancer as an alternative to synthetic drugs comes with a host of advantages; minimum side effects, good human absorption and low toxicity to normal cells. Protease activated receptor 1 (PAR1) has been established as a promising target in many diseases including various cancers. Strong evidences suggest its role in metastasis also. There are no natural compounds known to inhibit its activity, so we aimed to identify phytochemicals with antagonist activity against PAR1. We screened phytochemicals from Naturally Occurring Plant-based Anticancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/ ) against PAR1 using virtual screening workflow of Schrödinger software. It analyzes pharmaceutically relevant properties using Qikprop and calculates binding energy using Glide at three accuracy levels (high-throughput virtual screening, standard precision and extra precision). Our study led to the identification of phytochemicals, which showed interaction with at least one experimentally determined active site residue of PAR1, showed no violations to Lipinski's rule of five along with predicted high human absorption. Furthermore, structural interaction fingerprint analysis indicated that the residues H255, D256, E260, S344, V257, L258, L262, Y337 and S344 may play an important role in the hydrogen bond interactions of the phytochemicals screened. Of these residues, H255 and L258 residues were experimentally proved to be important for antagonist binding. The residues Y183, L237, L258, L262, F271, L332, L333, Y337, L340, A349, Y350, A352, and Y353 showed maximum hydrophobic interactions with the phytochemicals screened. The results of this work suggest that phytochemicals Reissantins D, 24,25-dihydro-27-desoxywithaferin A, Isoguaiacin, 20-hydroxy-12-deoxyphorbol angelate, etc. could be potential antagonist of PAR1. However, further experimental studies are necessary to validate their antagonistic activity against PAR1.
Ratola, Nuno; Lacorte, Sílvia; Barceló, Damià; Alves, Arminda
2009-01-15
Two different extraction strategies (microwave-assisted extraction (MAE) and ultrasonic extraction (USE)) were tested in the extraction of the 16 US Environmental Protection Agency (EPA) polycyclic aromatic hydrocarbons (PAHs) from pine trees. Extraction of needles and bark from two pine species common in the Iberian Peninsula (Pinus pinaster Ait. and Pinus pinea L.) was optimized using two amounts of sample (1g and 5 g) and two PAHs spiking levels (20 ng/g and 100 ng/g). In all cases, the clean-up procedure following extraction consisted in solid-phase extraction (SPE) with alumina cartridges. Quantification was done by gas chromatography (GC) with mass spectrometry (MS), using five deuterated PAH surrogate standards as internal standards. Limits of detection were globally below 0.2 ng/g. The method was robust for the matrices studied regardless of the extraction procedures. Recovery values between 70 and 130% were reached in most cases, except for high molecular weight PAHs (indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene). A field study with naturally contaminated samples from eight sites (four in Portugal and four in Catalonia, Spain) showed that needles are more suitable biomonitors for PAHs, yielding concentrations from 2 to 17 times higher than those found in bark. The levels varied according to the sampling site, with the sum of the individual PAH concentrations between 213 and 1773 ng/g (dry weight). Phenanthrene was the most abundant PAH, followed by fluoranthene, naphthalene and pyrene.
Kumar, Vikas; Kushwaha, Rinku; Goyal, Ankit; Tanwar, Beenu; Kaur, Jaspreet
2018-04-15
Now-a-days, there is an increased interest in fruits and vegetables processing by-products due to potential source of phytochemicals and pigments. Beetroot (Beta vulgaris) pomace extract is a rich source of betalain, phenolics and other bioactive components, which possess significant antioxidant activities. In the present study, process optimization was performed for developing ginger (Zingiber officinale) candy enriched with beetroot pomace extract using response surface methodology (RSM). The effect of two process variables: blanching time (0-10 min) and beetroot pomace extract (0-10%) was evaluated on physicochemical characteristics and phytochemicals content of the developed product. Maximum phytochemicals' activities were obtained under optimum conditions of 7.81 min blanching time and 9.24% beetroot pomace extract. FTIR analysis also confirmed the significant effect of beetroot pomace extract and it's blanching on the phytochemical potential of ginger candy. The study would be useful for developing similar novel and antioxidants rich food products supplemented with beetroot pomace extract. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass.
Durairaj, Varalakshmi; Hoda, Muddasarul; Shakya, Garima; Babu, Sankar Pajaniradje Preedia; Rajagopalan, Rukkumani
2014-09-01
To screen the phytochemical constituents and study antioxidant properties of the aqueous extract of the wheatgrass. The current study was focused on broad parameters namely, phytochemical analysis, gas chromatography-mass spectrometry analysis and antioxidant properties in order to characterize the aqueous extract of wheatgrass as a potential free radical quencher. The phytochemical screening of the aqueous extract of wheatgrass showed the presence of various secondary metabolites but the absence of sterols and quinone in general. Wheatgrass was proved to be an effective radical scavenger in all antioxidant assays. The gas chromatography-mass spectrometry analysis confirmed the presence of diverse category of bioactive compounds such as squalene, caryophyllene and amyrins in varying percentage. From the results obtained, we conclude that wheatgrass aqueous extract contains various effective compounds. It is a potential source of natural antioxidants. Further analysis of this herb will help in finding new effective compounds which can be of potent use in pharmacological field. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P
2014-07-16
Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup.
2015-01-01
Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup. PMID:24983789
Kumar, Gaurav; Patnaik, Ranjana
2016-07-01
N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
Objective: This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). Materials and Methods: J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. Results: The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. Conclusion: The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy. PMID:27516977
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy.
Potential phytocompounds for developing breast cancer therapeutics: Nature's healing touch.
Iqbal, Javed; Abbasi, Banzeer Ahsan; Batool, Riffat; Mahmood, Tariq; Ali, Barkat; Khalil, Ali Talha; Kanwal, Sobia; Shah, Sayed Afzal; Ahmad, Riaz
2018-05-15
Breast cancer (BC) is a devastating disease in female around the world causing significant health care burden in both developed and developing countries. In many cases BC has shown resistance to chemotherapy, radiation and hormonal therapy. Development of new, cost effective, affordable treatment method is the need of hour. Chemical compounds isolated from plants are often biologically active and is attracting the attention of scientific community. Different in vitro and in vivo studies have shown a potential role in reducing the risk of cancer metastasis. Large number of phytochemicals are considered to regulate several molecular and metabolic processes like cell cycle regulation, apoptosis activation, angiogenesis and metastatic suppression that can hinders cancer progression. An extensive review of literature has been conducted to underline the key phytochemicals and their mechanism of action. This review article has discussed in detail the regulatory roles of phytochemicals, their analogs and nanoformulations and the probability of using phytochemicals in therapeutic management of BC. Finally, current limitations, challenges and future perspectives of these phytochemicals are also critically discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals.
Brasili, Elisa; Filho, Valdir Cechinel
2017-05-03
Cancer is a multi-factorial disease and is a major cause of morbidity and mortality worldwide. Dietary phytochemicals have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Several studies have been performed to elucidate the effects of dietary phytochemicals on cancer metabolism, and many molecular targets of phytochemicals have been discovered. In spite of remarkable progress, their effects on cancer metabolism have not yet been fully clarified. Recent developments in metabolomics allowed to probe much further the metabolism of cancer, highlighting altered metabolic pathways and offering a new powerful tool to investigate cancer disease. In this review, we discuss the main metabolic alterations of cancer cells and the potentiality of phytochemicals as promising modulators of cancer metabolism. We will focus on the application of nuclear magnetic resonance-based metabolomics on breast and hepatocellular cancer cell lines to evaluate the impact of curcumin and resveratrol on cancer metabolome with the aim to demonstrate the premise of this approach to provide useful information for a better understanding of impact of diet components on cancer disease.
Paul, Rajkumar; Kulkarni, Paresh; Ganesh, Narayan
2011-01-01
Diets rich in fruits and vegetables have been associated with reduced risks for many types of cancers. Avocado (Persea americana Mill.) is a widely consumed fruit containing many cancer preventing nutrients, vitamins and phytochemicals. Studies have shown that phytochemicals extracted from the avocado fruit selectively induce cell cycle arrest, inhibit growth, and induce apoptosis in precancerous and cancer cell lines. Our recent studies indicate that phytochemicals extracted with 50% Methanol from avocado fruits help in proliferation of human lymphocyte cells and decrease chromosomal aberrations induced by cyclophosphamide. Among three concentrations (100 mg, 150 mg and 200 mg per Kg Body Weight), the most effective conc. of extract was 200 mg/Kg Body Wt. It decreased significant level of numerical and structural aberrations (breaks, premature centromeric division etc. up to 88%, p < 0.0001)), and accrocentric associtation within D & G group (up to 78%, p = 0.0008). These studies suggest that phytochemicals from the avocado fruit can be utilized for making active chemoprotective ingredient for lowering the side effect of chemotherapy like cyclophosphamide in cancer therapy.
Vijayaram, Seerangaraj; Kannan, Suruli; Saravanan, Konda Mani; Vasantharaj, Seerangaraj; Sathiyavimal, Selvam; P, Palanisamy Senthilkumar
2016-05-01
The presence study was aimed to catalyze the primary metabolites and their confirmation by using GC-MS analysis and antibacterial potential of leaf extract of two important medicinal plant viz., Eucalyptus and Azadirachta indica. The antibacterial potential of the methanol leaf extract of the studied species was tested against Escherichia coli, Pseudomonas aeruginosa, Klebsiellap neumoniae, Streptococcus pyogens, Staphylococcus aureus using by agar well diffusion method. The higher zone of inhibition (16mm) was observed against the bacterium Pseudomonas aeruginosa at 100μl concentration of methanol leaf extract. Preliminary phytochemical analysis of studied species shows that presence of phytochemical compounds like steroids, phenolic compounds and flavonoids. GC-MS analysis confirms the occurrence of 20 different compounds in the methanol leaf extract of the both studied species.
Choudhary, Neha
2018-01-01
Piper longum (P. longum, also called as long pepper) is one of the common culinary herbs that has been extensively used as a crucial constituent in various indigenous medicines, specifically in traditional Indian medicinal system known as Ayurveda. For exploring the comprehensive effect of its constituents in humans at proteomic and metabolic levels, we have reviewed all of its known phytochemicals and enquired about their regulatory potential against various protein targets by developing high-confidence tripartite networks consisting of phytochemical—protein target—disease association. We have also (i) studied immunomodulatory potency of this herb; (ii) developed subnetwork of human PPI regulated by its phytochemicals and could successfully associate its specific modules playing important role in diseases, and (iii) reported several novel drug targets. P10636 (microtubule-associated protein tau, that is involved in diseases like dementia etc.) was found to be the commonly screened target by about seventy percent of these phytochemicals. We report 20 drug-like phytochemicals in this herb, out of which 7 are found to be the potential regulators of 5 FDA approved drug targets. Multi-targeting capacity of 3 phytochemicals involved in neuroactive ligand receptor interaction pathway was further explored via molecular docking experiments. To investigate the molecular mechanism of P. longum’s action against neurological disorders, we have developed a computational framework that can be easily extended to explore its healing potential against other diseases and can also be applied to scrutinize other indigenous herbs for drug-design studies. PMID:29320554
Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves.
Nadaf, Naiem H; Parulekar, Rishikesh S; Patil, Rahul S; Gade, Trupti K; Momin, Anjum A; Waghmare, Shailesh R; Dhanavade, Maruti J; Arvindekar, Akalpita U; Sonawane, Kailas D
2018-04-24
Hymenocallis littoralis (Jacq.) Salisb. has been referred as beach spider lily and commonly known for its rich phytochemical diversity. Phytochemicals such as alkaloids, volatile constituents, phenols, flavonoids, flavonols extracted from different parts of these plants like bulbs, flowers, leaf, stem and root had been used in folk medicines from ancient times because of their excellent antimicrobial and antioxidant properties. The leaf and bulb extract of H. littoralis plant was traditionally used for wound healing. Alkaloids extracted from bulb of this plant possess anti-viral, anti-neoplastic and cytotoxic properties. However, these phytochemicals have also shown antibiofilm activity, which is considered as one of the important factor accountable for the drug resistance in microorganisms. Thus, the investigation of medicinal properties of H. littoralis could be useful to control biofilm producing pathogens. Explore antimicrobial, antibiofilm and antioxidant potentials of H. littoralis against pathogenic microorganisms using experimental and computational biology approach. Phytochemical extraction from dried powder of H. littoralis leaves was done by solvent extraction using methanol. Antimicrobial and antibiofilm activities of leaves extract were carried out using agar well diffusion method, growth curve, minimum inhibitory concentration (MIC) and Scanning Electron Microscopy (SEM). Liquid Chromatography and Mass Spectroscopy (LCMS) technique was used for the identification of phytochemicals. Molecular docking studies of antibiofilm agents with adhesin proteins were performed using Autodock 4.2. Antioxidant activity of extract was carried out by FRAP assay. The noxious effect of extract was investigated by histological studies on rat skin. The preliminary phytochemical analysis of methanolic leaves extract revealed the presence of alkaloids, flavonoids, terpenoid, glycosides, terpene, terpenoids and phenolics. The various phytochemicals such as Apigenin 7-(4'', 6'' diacetylalloside)-4'- alloside, Catechin 7-O- apiofuranoside, Emodic acid, Epicatechin 3-O- β-D-glucopyranoside, 4 - Methylesculetin, Methylisoeugenol, Quercetin 5,7,3',4'-tetramethyl ether 3-rutinoside, 4 - Methylumbelliferyl β-D- glucuronide were extracted, characterized and recognized from the leaves extract of H. littoralis. The identification of these phytochemicals was performed using LC-MS. The antimicrobial property of H. littoralis leaf extract was investigated against different pathogenic microorganisms. Out of these tested microorganisms, promising antibiofilm and antimicrobial activities were confirmed against S. aureus NCIM 2654 and C. albicans NCIM 3466 by using growth curve and SEM analysis. MIC of this leaf extract was identified as 45 µg/ml and 70 µg/ml for S. aureus NCIM 2654 and C. albicans NCIM 3466 respectively. The leaves extract also showed good antioxidant activity due to presence of phenols and flavonoids. Molecular docking of these identified antibiofilm components interacts with the active site residues of adhesin proteins, Sortase A and Als3 from S. aureus and C. albicans respectively. Histological studies of extracted phytochemicals revealed non-noxious effects on rat skin. Thus, the present study revealed that the leaves extract of H. littoralis contains various phytochemicals having good extent of antimicrobial, antibiofilm and antioxidant properties. The in-vitro and in-silico results would be useful to design new lead compounds against biofilm producing pathogenic microorganisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Edible Nanoencapsulation Vehicles for Oral Delivery of Phytochemicals: A Perspective Paper.
Xiao, Jie; Cao, Yong; Huang, Qingrong
2017-08-16
Edible nanoencapsulation vehicles (ENVs) designed for the delivery of phytochemicals have gained increasing research interest. The major driving force for this trend is the potential bioavailability enhancement effect for phytochemicals when delivered via ENVs. ENVs affect the bioefficacy of phytochemicals by influencing their dispersion and gastrointestinal stability, rate and site of release, transportation efficiency across the endothelial layer, systemic circulation and biodistribution, and regulation of gut microflora. Enhanced bioefficacy can be achieved by rational design of the size, surface property, matrix materials, and compartment structure of ENVs according to properties of phytochemicals. Future investigations may lay particular emphasis on examining the relevance between results gained by in vitro digestion simulations and those obtained via in vivo digestion simulations, structural evolutions of ENVs during digestion and absorption, impacts of ENVs on the metabolism of phytochemicals, and using ENVs for deciphering the reciprocal interactions between phytochemicals and gut microbiota.
Synthetic biology strategies toward heterologous phytochemical production.
Kotopka, Benjamin J; Li, Yanran; Smolke, Christina D
2018-06-13
Covering: 2006 to 2018Phytochemicals are important sources for the discovery and development of agricultural and pharmaceutical compounds, such as pesticides and medicines. However, these compounds are typically present in low abundance in nature, and the biosynthetic pathways for most phytochemicals are not fully elucidated. Heterologous production of phytochemicals in plant, bacterial, and yeast hosts has been pursued as a potential approach to address sourcing issues associated with many valuable phytochemicals, and more recently has been utilized as a tool to aid in the elucidation of plant biosynthetic pathways. Due to the structural complexity of certain phytochemicals and the associated biosynthetic pathways, reconstitution of plant pathways in heterologous hosts can encounter numerous challenges. Synthetic biology approaches have been developed to address these challenges in areas such as precise control over heterologous gene expression, improving functional expression of heterologous enzymes, and modifying central metabolism to increase the supply of precursor compounds into the pathway. These strategies have been applied to advance plant pathway reconstitution and phytochemical production in a wide variety of heterologous hosts. Here, we review synthetic biology strategies that have been recently applied to advance complex phytochemical production in heterologous hosts.
Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems
NASA Astrophysics Data System (ADS)
Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.
2011-02-01
In spite of the relative importance of groundwater in coastal dune systems, the number of studies concerning the responsiveness of vegetation to ground water (GW) variability, in particularly in Mediterranean regions, is scarce. In this study, we established 5 study sites within a meso-mediterranean sand dune Pinus pinaster forest on the Atlantic coast of Portugal, taking advantage of natural topographic variability and artificial GW exploitation, which resulted in substantial variability in depth to GW between microsites. Here we identify the degree of usage and dependence on GW of different plant functional groups (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous microsites. Our results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). The species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to microsite differences in GW use in deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring rather than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understorey drought adapted shrub, across seasons and microsites seemed to be independent of water availability. Thus, the susceptibility to changing GW availability in sand dune plant species is variable, being particularly relevant for deep rooted species and phreatophytes, which have typically been less exposed to GW fluctuations.
Corcuera, Leyre; Gil-Pelegrín, Eustaquio; Notivol, Eduardo
2012-12-01
We studied the intraspecific variability of maritime pine in a set of morphological and physiological traits: soil-to-leaf hydraulic conductance, intrinsic water-use efficiency (WUE, estimated by carbon isotope composition, δ(13)C), root morphology, xylem anatomy, growth and carbon allocation patterns. The data were collected from Pinus pinaster Aiton seedlings (25 half-sib families from five populations) grown in a greenhouse and subjected to water and water-stress treatments. The aims were to relate this variability to differences in water availability at the geographic location of the populations, and to study the potential trade-offs among traits. The drought-stressed seedlings demonstrated a decrease in hydraulic conductance and root surface area and increased WUE and root tip number. The relationships among the growth, morphological, anatomical and physiological traits changed with the scale of study: within the species, among/within populations. The populations showed a highly significant relationship between the percentage reduction in whole-plant hydraulic conductance and WUE. The differences among the populations in root morphology, whole-plant conductance, carbon allocation, plant growth and WUE were significant and consistent with dryness of the site of seed origin. The xeric populations exhibited lower growth and a conservative water use, as opposed to the fast-growing, less water-use-efficient populations from mesic habitats. The xeric and mesic populations, Tamrabta and San Cipriano, respectively, showed the most contrasting traits and were clustered in opposite directions along the main axis in the canonical discriminant analysis under both the control and drought treatments. The results suggest the possibility of selecting the Arenas population, which presents a combination of traits that confer increased growth and drought resistance.
Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine
2014-02-01
Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Blanch, J-S; Sampedro, L; Llusià, J; Moreira, X; Zas, R; Peñuelas, J
2012-03-01
We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns relevant to plant-insect signalling. The total concentration and emission rate ranged between 5732 and 13,995 μg·g(-1) DW and between 2 and 22 μg·g(-1) DW·h(-1), respectively. Storage and emission were dominated by the isomers α- and β-pinene (77.2% and 84.2% of the total terpene amount amassed and released, respectively). In both resistant and susceptible families, P stress caused an increase of 31% in foliar terpene concentration with an associated 5-fold decrease in terpene emission rates. A higher terpene content in the leaves implies that the 'excess carbon', available under limiting growth conditions (P scarcity), is allocated to terpene production. Sensitive families showed a greater increase in terpene emission rates with increasing P concentrations, which could explain their susceptibility to H. abietis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography1
Choat, Brendan; Cochard, Herve; Jansen, Steven
2016-01-01
Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. PMID:26527655
Characterization of Three L-Asparaginases from Maritime Pine (Pinus pinaster Ait.).
Van Kerckhoven, Sonia H; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cantón, Francisco R; Cánovas, Francisco M
2017-01-01
Asparaginases (ASPG, EC 3.5.1.1) catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine ( Pinus pinaster Ait.) that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms.
Characterization of Three L-Asparaginases from Maritime Pine (Pinus pinaster Ait.)
Van Kerckhoven, Sonia H.; de la Torre, Fernando N.; Cañas, Rafael A.; Avila, Concepción; Cantón, Francisco R.; Cánovas, Francisco M.
2017-01-01
Asparaginases (ASPG, EC 3.5.1.1) catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine (Pinus pinaster Ait.) that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms. PMID:28690619
Sanchez, M.; Pena, M. J.; Revilla, G.; Zarra, I.
1996-01-01
Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4-4[prime]-dihydroxy-3-3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed. PMID:12226339
Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography.
Choat, Brendan; Badel, Eric; Burlett, Regis; Delzon, Sylvain; Cochard, Herve; Jansen, Steven
2016-01-01
Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. © 2016 American Society of Plant Biologists. All Rights Reserved.
Lim, Yeni; Ahn, Yoon Hee; Yoo, Jae Keun; Park, Kyoung Sik; Kwon, Oran
2017-09-01
Sales of multivitamins have been growing rapidly and the concept of natural multivitamin, plant-based multivitamin, or both has been introduced in the market, leading consumers to anticipate additional health benefits from phytochemicals that accompany the vitamins. However, the lack of labeling requirements might lead to fraudulent claims. Therefore, the objective of this study was to develop a strategy to verify identity of plant-based multivitamins. Phytochemical fingerprinting was used to discriminate identities. In addition, multiple bioassays were performed to determine total antioxidant capacity. A statistical computation model was then used to measure contributions of phytochemicals and vitamins to antioxidant activities. Fifteen multivitamins were purchased from the local markets in Seoul, Korea and classified into three groups according to the number of plant ingredients. Pearson correlation analysis among antioxidant capacities, amount phenols, and number of plant ingredients revealed that ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryhydrazyl (DPPH) assay results had the highest correlation with total phenol content. This suggests that FRAP and DPPH assays are useful for characterizing plant-derived multivitamins. Furthermore, net effect linear regression analysis confirmed that the contribution of phytochemicals to total antioxidant capacities was always relatively higher than that of vitamins. Taken together, the results suggest that phytochemical fingerprinting in combination with multiple bioassays could be used as a strategy to determine whether plant-derived multivitamins could provide additional health benefits beyond their nutritional value.
Cytotoxicity and phytochemical analyses of Orthosiphon stamineus leaves and flower extracts
NASA Astrophysics Data System (ADS)
Alwahid, Alaa Abd; Yusoff, Wan Mohtar Wan; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2015-09-01
Orthosiphon stamineus Benth (Lamiaceae) is a plant with many ethnobotanical uses including antifungal and antibacterial activities. This study is aimed to determine the cytotoxicity and phytochemical content of O. stamineus leaves and flower using ethanol and water as solvents. The cytotoxicity of the extracts towards Vero cell was determined by MTT assay. The CC50 values were between 3.4-7.4 mg/ml and can be considered as nontoxic. Phytochemical screening revealed terpenes, alkaloid and phenolic were present in the leaves and flower of O. stamineus that might pose as the bioactive compound.
Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction
NASA Astrophysics Data System (ADS)
Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.
2017-06-01
Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N], [HeMIM] [CF3SO3] and [HMIM] [CF3SO3]) were identified and selected.
Roriz, Mariana; Santos, Carla; Vasconcelos, Marta W
2011-08-01
For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera. The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA. The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia, Klebsiella, Paenibacillus, Pantoea and Terribacillus genera were identified. General bacterial diversity increased with the progression of the disease. Bacillus spp. were predominant at the earlier stage of disease progression and Klebsiella oxytoca at the later stages. Furthermore, bacterial species isolated from the surface of nematodes were similar to those isolated from the xylem of pines. In the present work new bacterial species were identified which have never been reported before in this type of study and may be associated with their geographical origin (Portugal). P. pinaster, the pine species used in this study, was different from those commonly grown in Japan and China. Furthermore, it was the first time that bacteria were isolated and identified from an avirulent pine wood nematode isolate. Copyright © 2011 Elsevier Inc. All rights reserved.
Immunomodulatory effects of phytogenics in chickens and pigs — A review
2018-01-01
Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions. PMID:29268586
Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Oridupa, O. A.
2013-01-01
Mistletoe is collected wildly on various plants and Phragmanthera incana is noted to grow on different plant hosts. This study was designed to carry out the ethnobotanical survey, phytochemical and mineral analyses of Phragmanthera incana, a species of mistletoe growing on three plant hosts namely Cocoa (Theobroma cacao), Kolanut (Cola nitida) and Bush mango (Irvingia gabonensis). Mistletoe samples were identified at the Forestry Research Institute of Nigeria Herbarium. Phragmanthera incana was screened for its phytochemical constituents and mineral cations along its hosts following standard methods and to confirm if the mistletoe species is host specific. The powdered samples of the mistletoe species (Phragmanthera incana) was used for both the phytochemical screening and the cation mineral analysis. The uses and the harvesting methods of mistletoe were also reviewed extensively in this paper. PMID:23675287
Ogunmefun, O T; Fasola, T R; Saba, A B; Oridupa, O A
2013-03-01
Mistletoe is collected wildly on various plants and Phragmanthera incana is noted to grow on different plant hosts. This study was designed to carry out the ethnobotanical survey, phytochemical and mineral analyses of Phragmanthera incana, a species of mistletoe growing on three plant hosts namely Cocoa (Theobroma cacao), Kolanut (Cola nitida) and Bush mango (Irvingia gabonensis). Mistletoe samples were identified at the Forestry Research Institute of Nigeria Herbarium. Phragmanthera incana was screened for its phytochemical constituents and mineral cations along its hosts following standard methods and to confirm if the mistletoe species is host specific. The powdered samples of the mistletoe species (Phragmanthera incana) was used for both the phytochemical screening and the cation mineral analysis. The uses and the harvesting methods of mistletoe were also reviewed extensively in this paper.
Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu
2017-03-01
In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.
Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Chira, Sergiu; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana
2017-01-01
Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer. PMID:28587155
Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Sergiu, Chira; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana
2017-06-01
Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.
Neurohormetic Phytochemicals: An Evolutionary - Bioenergetic Perspective
Murugaiyah, Vikneswaran; Mattson, Mark P.
2015-01-01
The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by ‘neurohormetic phytochemicals’ (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders. PMID:25861940
Suluvoy, Jagadish Kumar; Berlin Grace, V M
2017-05-01
Averrhoa bilimbi L. belongs to family Oxalidaceae. Traditionally, people use this plant (root, bark, leaves and fruits) for treating several illnesses include itches, boils, syphilis, whooping cough, hypertension, fever and inflammation. The aim of the study was to evaluate the nitric oxide (NO) scavenging activity and GC-MS analysis of A. bilimbi L. fruit extract. Averrhoa bilimbi L. fruits were collected for the preliminary phytochemical analysis, antioxidant scavenging activity and biologically important compounds were identified by GC-MS analysis. The preliminary phytochemicals, GC-MS, total phenolic content and NO scavenging activity of the plant were analysed. In the present investigation, the A. bilimbi L. fruit extract has major phytochemicals. Among the 151 compounds identified in GC-MS, 15 compounds are found to have diverse biological activity. We also observed that the A. bilimbi L. fruit extract has high level of total phenolic compounds at a concentration of 209.25 GAE mg/g. Presence of phenolic compound apparently explains the antioxidant activity of the plant. Antioxidant activity of A. bilimbi L. fruit extract is proven from its high level of NO scavenging activity of potent IC50 value of 108.10. From the above study, it is apparent that the A. bilimbi L. fruit extract is a rich source of phytochemicals (natural products) with biological activity. The GC-MS report on this fruit proves that natural products have pharmacologically and biologically active compounds. A high phenolic content is observed in our study. A. bilimbi L. fruit extract is also found to have NO scavenging activity in our study.
Mezrag, Abderrahmane; Malafronte, Nicola; Bouheroum, Mohamed; Travaglino, Carmen; Russo, Daniela; Milella, Luigi; Severino, Lorella; De Tommasi, Nunziatina; Braca, Alessandra; Dal Piaz, Fabrizio
2017-03-01
Ononis angustissima aerial parts extract and exudate were subjected to phytochemical and biological studies. Two new natural flavonoids, (3S)-7-hydroxy-4'-methoxy-isoflavanone 3'-β-d-glucopyranoside (1) and kaempferol 3-O-β-d-glucopyranoside-7-O-(2'''-acetyl)-β-d-galactopyranoside (4), and sixteen known compounds were isolated through a bio-oriented approach. Their structural characterisation was achieved using spectroscopic analyses including 2D NMR. The phytochemical profile of the extracts was also performed, and the antioxidant activity of all compounds was tested by three different assays. To get a trend in the results and to compare the antioxidant capacity among the different methods used, the obtained data were transformed to a relative antioxidant capacity index.
Plant extracts of spices and coffee synergistically dampen nuclear factor-κB in U937 cells.
Kolberg, Marit; Paur, Ingvild; Balstad, Trude R; Pedersen, Sigrid; Jacobs, David R; Blomhoff, Rune
2013-10-01
A large array of bioactive plant compounds (phytochemicals) has been identified and synergy among these compounds might contribute to the beneficial effects of plant foods. The transcription factor nuclear factor-κB (NF-κB) has been suggested as a target for many phytochemicals. Due to the complexity of mechanisms involved in NF-κB regulation, including numerous feedback loops, and the large number of phytochemicals which regulate NF-κB activity, we hypothesize that synergistic or antagonistic effects are involved. The objectives of our study were to develop a statistical methodology to evaluate the concept of synergy and antagonism and to use this methodology in a monocytic cell line (U937 expressing an NF-κB-luciferase reporter) treated with lipopolysaccharide and phytochemical-rich plant extracts. Both synergistic and antagonistic effects were clearly observed. Observed synergy was most pronounced for the combinations of oregano and coffee, and thyme and oregano. For oregano and coffee the synergistic effect was highest at 5 mg/mL with 13.9% (P < .001), and for thyme and oregano the highest synergistic effects was at 3 mg/mL with 13.7% (P < .001). Dose dependent synergistic and antagonistic effects were observed for all combinations tested. In conclusion, this work presents a methodological tool to define synergy in experimental studies. Our results support the hypothesis that phytochemical-rich plants may exert synergistic and antagonistic effects on NF-κB regulation. Such complex mechanistic interactions between phytochemicals are likely to underlie the protective effects of a plant-based diet on life-style related diseases. © 2013 Elsevier Inc. All rights reserved.
Jeetah, Roubeena; Bhaw-Luximon, Archana; Jhurry, Dhanjay
2014-09-01
This review is an attempt to assess the different classes of phytochemicals and some of their members which have been encapsulated into nanocarrier systems for their chemotherapeutic or chemopreventive properties. Given the broad spectrum of nanomedicines currently in clinical trial and clinical use from polymer-protein conjugates, through nanocrystals, nanogels, dendrimers to ethosomes, the focus of this review will be on block copolymer nanomicelles, nanoparticles, polymer-drug conjugates, liposomes and solid lipid nanocarriers (SLNs). The twenty phytochemicals investigated for encapsulation and targeted delivery were selected from a variety of classes intended to encompass the largest possible chemical compositions, namely flavonoids, aromatic acids, xanthones, terpenes, quinones, lignans and alkaloids. To the best of our knowledge, reviews on the nanoencapsulation of these phytochemicals and their delivery are not available. In this review, the issues associated with the limited use of each phytochemical in cancer therapy in humans are reviewed and the advantages of entrapment into nanocarriers are assessed in terms of drug loading efficiency, size of nanocarriers, drug release profiles and in vitro and/or in vivo testing specific to cancer research, e.g., cytotoxicity assay, cell inhibition/viability, scavenging of reactive oxygen species and biodistribution studies (elimination half-life and mean residence time).
Li, Ruiqi; Kim, Min-Hyun; Sandhu, Amandeep K; Gao, Chi; Gu, Liwei
2017-02-01
The objective of this study was to determine the anti-inflammatory effects of phytochemical extracts from muscadine grapes or wine on dextran sulfate sodium (DSS)-induced colitis in mice and to investigate cellular mechanisms. Two groups of C57BL/6J mice were gavaged with muscadine grape phytochemicals (MGP) or muscadine wine phytochemicals (MWP), respectively, for 14 days. Acute colitis was induced by 3% DSS in drinking water for 7 days. An additional two groups of mice served as healthy and disease controls. Results indicated that MGP or MWP significantly prevented weight loss, reduced disease activity index, and preserved colonic length compared to the colitis group (p ≤ 0.05). MGP or MWP significantly decreased myeloperoxidase activity as well as the levels of IL-1β, IL-6, and TNF-α in colon (p ≤ 0.05). MGP or MWP caused down-regulation of the NF-κB pathway by inhibiting the phosphorylation and degradation of IκB in a dose-dependent manner. These findings suggest that phytochemicals from muscadine grape or wine mitigate ulcerative colitis via attenuation of pro-inflammatory cytokine production and modulation of the NF-κB pathway.
Phytochemicals and the breakthrough of traditional herbs in the management of sexual dysfunctions.
Adimoelja, A
2000-01-01
Traditional herbs have been a revolutionary breakthrough in the management of erectile dysfunction and have become known world-wide as an 'instant' treatment. The modern view of the management of erectile dysfunction subscribes to a single etiology, i.e. the mechanism of erection. A large number of pharmacological agents are orally consumed and vasoactive agents inserted intraurethrally or injected intrapenially to regain good erection. Modern phytochemicals have developed from traditional herbs. Phytochemicals focus their mechanism of healing action to the root cause, i.e. the inability to control the proper function of the whole body system. Hence phytochemicals manage erectile dysfunction in the frame of sexual dysfunction as a whole entity. Protodioscin is a phytochemical agent derived from Tribulus terrestris L plant, which has been clinically proven to improve sexual desire and enhance erection via the conversion of protodioscine to DHEA (De-Hydro-Epi-Androsterone). Preliminary observations suggest that Tribulus terrestris L grown on different soils does not consistently produce the active component Protodioscin. Further photochemical studies of many other herbal plants are needed to explain the inconsistent results found with other herbal plants, such as in diversities of Ginseng, Eurycoma longifolia, Pimpinella pruacen, Muara puama, Ginkgo biloba, Yohimbe etc.
Phytochemicals for the Management of Melanoma
Pal, Harish Chandra; Hunt, Katherine Marchiony; Diamond, Ariana; Elmets, Craig A.; Afaq, Farrukh
2016-01-01
Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal metastasis is bleak, with median survival of six months even with the latest available treatments. The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating evidence suggests that multiple signaling pathways are constitutively activated and play an important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and animals studies have elucidated several cellular and molecular mechanisms by which phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and structure activity relationship of these selected phytochemicals for the management of melanoma. PMID:26864554
Borges, Anabela; Saavedra, Maria J; Simões, Manuel
2015-01-01
Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.
GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC
Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.
2014-01-01
Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744
Emerging Importance of Phytochemicals in Regulation of Stem Cells Fate via Signaling Pathways.
Dadashpour, Mehdi; Pilehvar-Soltanahmadi, Younes; Zarghami, Nosratollah; Firouzi-Amandi, Akram; Pourhassan-Moghaddam, Mohammad; Nouri, Mohammad
2017-11-01
To reach ideal therapeutic potential of stem cells for regenerative medicine purposes, it is essential to retain their self-renewal and differentiation capacities. Currently, biological factors are extensively used for stemness maintaining and differentiation induction of stem cells. However, low stability, high cost, complicated production process, and risks associated with viral/endotoxin infection hamper the widespread use of biological factors in the stem cell biology. Moreover, regarding the modulation of several signaling cascades, which lead to a distinct fate, phytochemicals are preferable in the stem cells biology because of their efficiency. Considering the issues related to the application of biological factors and potential advantages of phytochemicals in stem cell engineering, there is a considerable increasing trend in studies associated with the application of novel alternative molecules in the stem cell biology. In support of this statement, we aimed to highlight the various effects of phytochemicals on signaling cascades involved in commitment of stem cells. Hence, in this review, the current trends in the phytochemicals-based modulation of stem cell fate have been addressed. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Protection against neo-formed contaminants (NFCs)-induced toxicity by phytochemicals.
Zhao, Mengyao; Wang, Pengpu; Li, Daotong; Shang, Jin; Hu, Xiaosong; Chen, Fang
2017-10-01
Neo-formed compounds (NFCs) are commonly found in all kinds of foods due to the complex reaction between components during processing. Acrylamide, benzo(a)pyrene and heterocyclic aromatic amines are the main types of NFCs in foods enriched with carbohydrate, fats and proteins, respectively. They have exhibited diverse toxicity, such as neurotoxicity, genotoxicity, potentially carcinogenic and reproductive toxicity. In recent years, various phytochemicals have been found to be effective in alleviation of their related toxicities both in vitro and in vivo. This review provides evidences on the protection roles of phytochemicals against the diverse toxicity induced by three NFCs. Moreover, the prevention mechanisms of phytochemicals are summarized. Three potential aspects involving excellent antioxidant activity, DNA protection and enzyme induction contribute to the successful protection mechanism. Meanwhile, the limitations from existing knowledge have been illustrated and the possible perspectives for the further study have also been considered. The information from this review would be useful to provide an easier and better way to improve human health when considering the possibility of using foods enriched with phytochemicals for prevention of the toxicity of exogenous pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of Polyphenols and Other Phytochemicals on Molecular Signaling
Upadhyay, Swapna; Dixit, Madhulika
2015-01-01
Optimized nutrition through supplementation of diet with plant derived phytochemicals has attracted significant attention to prevent the onset of many chronic diseases including cardiovascular impairments, cancer, and metabolic disorder. These phytonutrients alone or in combination with others are believed to impart beneficial effects and play pivotal role in metabolic abnormalities such as dyslipidemia, insulin resistance, hypertension, glucose intolerance, systemic inflammation, and oxidative stress. Epidemiological and preclinical studies demonstrated that fruits, vegetables, and beverages rich in carotenoids, isoflavones, phytoestrogens, and phytosterols delay the onset of atherosclerosis or act as a chemoprotective agent by interacting with the underlying pathomechanisms. Phytochemicals exert their beneficial effects either by reducing the circulating levels of cholesterol or by inhibiting lipid oxidation, while others exhibit anti-inflammatory and antiplatelet activities. Additionally, they reduce neointimal thickening by inhibiting proliferation of smooth muscle cells and also improve endothelium dependent vasorelaxation by modulating bioavailability of nitric-oxide and voltage-gated ion channels. However, detailed and profound knowledge on specific molecular targets of each phytochemical is very important to ensure safe use of these active compounds as a therapeutic agent. Thus, this paper reviews the active antioxidative, antiproliferative, anti-inflammatory, or antiangiogenesis role of various phytochemicals for prevention of chronic diseases. PMID:26180591
Phytochemicals for the Management of Melanoma.
Pal, Harish Chandra; Hunt, Katherine Marchiony; Diamond, Ariana; Elmets, Craig A; Afaq, Farrukh
2016-01-01
Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal metastasis is bleak, with median survival of six months even with the latest available treatments. The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating evidence suggests that multiple signaling pathways are constitutively activated and play an important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and animals studies have elucidated several cellular and molecular mechanisms by which phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and structure activity relationship of these selected phytochemicals for the management of melanoma.
Pellegrini, Nicoletta; Chiavaro, Emma; Gardana, Claudio; Mazzeo, Teresa; Contino, Daniele; Gallo, Monica; Riso, Patrizia; Fogliano, Vincenzo; Porrini, Marisa
2010-04-14
This study evaluated the effect of common cooking practices (i.e., boiling, microwaving, and basket and oven steaming) on the phytochemical content (carotenoids, chlorophylls, glucosinolates, polyphenols, and ascorbic acid), total antioxidant capacity (TAC), and color changes of three generally consumed Brassica vegetables analyzed fresh and frozen. Among cooking procedures, boiling determined an increase of fresh broccoli carotenoids and fresh Brussels sprout polyphenols, whereas a decrease of almost all other phytochemicals in fresh and frozen samples was observed. Steaming procedures determined a release of polyphenols in both fresh and frozen samples. Microwaving was the best cooking method for maintaining the color of both fresh and frozen vegetables and obtaining a good retention of glucosinolates. During all cooking procedures, ascorbic acid was lost in great amount from all vegetables. Chlorophylls were more stable in frozen samples than in fresh ones, even though steaming methods were able to better preserve these compounds in fresh samples than others cooking methods applied. The overall results of this study demonstrate that fresh Brassica vegetables retain phytochemicals and TAC better than frozen samples.
The phytochemical composition and antioxidant actions of tree nuts
Bolling, Bradley W; McKay, Diane L; Blumberg, Jeffrey B
2016-01-01
In addition to being a rich source of several essential vitamins and minerals, mono- and polyunsaturated fatty acids, and fiber, most tree nuts provide an array of phytochemicals that may contribute to the health benefits attributed to this whole food. Although many of these constituents remain to be fully identified and characterized, broad classes include the carotenoids, hydrolyzable tannins, lignans, naphthoquinones, phenolic acids, phytosterols, polyphenols, and tocopherols. These phytochemicals have been shown to possess a range of bioactivity, including antioxidant, antiproliferative, anti-inflammatory, antiviral, and hypocholesterolemic properties. This review summarizes the current knowledge of the carotenoid, phenolic, and tocopherol content of tree nuts and associated studies of their antioxidant actions in vitro and in human studies. Tree nuts are a rich source of tocopherols and total phenols and contain a wide variety of flavonoids and proanthocyanidins. In contrast, most tree nuts are not good dietary sources of carotenoids and stilbenes. Phenolic acids are present in tree nuts but a systematic survey of the content and profile of these compounds is lacking. A limited number of human studies indicate these nut phytochemicals are bioaccessible and bioavailable and have antioxidant actions in vivo. PMID:20199996
Proença, Diogo Neves; Espírito Santo, Christophe; Grass, Gregor; Morais, Paula V
2012-09-01
The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp. strain M47T1, genes that make this a plant growth-promoting bacterium, as well as genes potentially involved in nematotoxicity, were identified.
Marcos Barrio Anta; Fernando Castedo Dorado; Ulises Dieguez-Aranda; Juan G. Alvarez Gonzalez; Bernard R. Parresol; Roque Rodriguez Soalleiro
2006-01-01
A basal area growth system for single-species, even-aged maritime pine (Pinus pinaster Ait.) stands in Galicia (northwestern Spain) was developed from data of 212 plots measured between one and four times. Six dynamic equations were considered for analysis, and both numerical and graphical methods were used to compare alternative models. The double...
In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants
Setzer, William N.; Ogungbe, Ifedayo V.
2012-01-01
Background Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. Methods A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). Results This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. Conclusions This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations. PMID:22848767
Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos.
Yin, Hsin-Bai; Chen, Chi-Hung; Darre, Michael J; Donoghue, Ann M; Donoghue, Dan J; Venkitanarayanan, Kumar
2017-10-01
Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production. Moreover, AF residues in fertilized eggs result in huge economic losses by decreasing embryo viability and hatchability. This study investigated the efficacy of 2 generally recognized as safe phytochemicals, namely carvacrol (CR) and trans-cinnamaldehyde (TC), in protecting chicken embryos from AF-induced toxicity. Day-old embryonated eggs were injected with 50 ng or 75 ng AF with or without 0.1% CR or TC, followed by incubation in an incubator for 18 d. Relative embryo weight, yolk sac weight, tibia weight, tibia length, and mortality were recorded on d 18 of incubation. The effect of phytochemicals and methanol (diluent) on embryo viability was also determined. Each experiment had ten treatments with 15 eggs/treatment (n = 150 eggs/experiment) and each experiment was replicated 3 times. Both phytochemicals significantly decreased AF-induced toxicity in chicken embryos. At 75 ng of AF/egg, CR and TC increased the survival of chicken embryo by ∼55%. Moreover, CR and TC increased relative embryo weight by ∼3.3% and 17% when compared to eggs injected with 50 ng or 75 ng AF, respectively. The growth of embryos (tibia length and weight) was improved in phytochemical-treated embryos compared to those injected with AF alone (P < 0.05). Phytochemical and methanol treatments did not adversely affect embryo survival, and other measured parameters as compared to the negative control (P > 0.05). Results from this study demonstrate that CR and TC could reduce AF-induced toxicity in chicken embryos; however, additional studies are warranted to delineate the mechanistic basis behind this effect. © 2017 Poultry Science Association Inc.
Phytochemicals - A Novel and Prominent Source of Anti-cancer Drugs Against Colorectal Cancer.
Mahadevappa, Ravikiran; Kwok, Hang Fai
2017-01-01
Colorectal cancer (CRC) is a malignant disease whose incidence and mortality rates are greatly influenced by environmental factors. Under-treatment of CRC such as a poor diagnostic evaluation, less aggressive surgery, less intensive chemotherapy results in metastasizing of the primary tumor cells and recurrence of cancer. Prolonged chemotherapy treatment against cancer is hazardous to the patients, which also limits its use in cancer therapy. Current research in developing a novel anti-cancer agent, direct towards finding a better antimetastatic and an anti-invasive drug with reduced side effects. In this direction, plant derived chemical compounds or phytochemical act as a prominent source of new compounds for drug development. Phytochemicals have a multi-action and a multi-target capacity, and has gained attention among the research communities from last two decades. Epidemiological study shows a direct relationship between a diet and CRC development. A diet rich in plant based products such as vegetables, fruits and cereals is known to prevent CRC development. This review is an effort to explore more about the potential phytochemicals in CRC prevention and also in CRC treatment. Here, we have discussed few phytochemicals actively used in CRC research and are in clinical trials against CRC. We have explored more on some of these phytochemicals which can act as a source for new drug or can act as a lead compound for further modifications during the drug development against cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch.
Zubair, Haseeb; Azim, Shafquat; Ahmad, Aamir; Khan, Mohammad Aslam; Patel, Girijesh Kumar; Singh, Seema; Singh, Ajay Pratap
2017-03-03
Phytochemicals are an important part of traditional medicine and have been investigated in detail for possible inclusion in modern medicine as well. These compounds often serve as the backbone for the synthesis of novel therapeutic agents. For many years, phytochemicals have demonstrated encouraging activity against various human cancer models in pre-clinical assays. Here, we discuss select phytochemicals-curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, plumbagin and honokiol-in the context of their reported effects on the processes of inflammation and oxidative stress, which play a key role in tumorigenesis. We also discuss the emerging evidence on modulation of tumor microenvironment by these phytochemicals which can possibly define their cancer-specific action. Finally, we provide recent updates on how low bioavailability, a major concern with phytochemicals, is being circumvented and the general efficacy being improved, by synthesis of novel chemical analogs and nanoformulations.
Ordaz-Trinidad, Nancy; Dorantes-Alvarez, Lidia; Salas-Benito, Juan
2015-01-01
Patents on phytochemicals are being registered worldwide. Such phytochemicals provide benefits to human health, and include terpenoids, phenolic compounds, alkaloids, lignin, and fiber. This review has the purpose to provide a comprehensive overview of patents published in the last five years about extraction of phytochemicals and their application in the food and pharmaceutical industry. Forty eight pa- tents were analyzed and classified in four topics of interest; 1) Extraction, 2) Functional foods, 3) Biological activity, and 4) Prevention of diseases. Extraction yield of phytochemicals is the critical step. The techniques to extract phytochemicals include enzymat- ic hydrolysis, nano-particulate precipitation, salts formation and combination of solvents; however, the use of ultrasound and microwave is increasing. Patents concerning functional foods include pediatric formulations, sport drink, and compo- sitions that produce beneficial effects. Biological activity of plant extracts tested in animals or cell cultures, as antioxidant, anti-inflammatory, anticancer activity, reduction of obesity and diabetes are presented in this review. Application of phy- tochemicals in the prevention and treatment of health disorders, such as diabetes, gastritis, enteritis, topical inflammation, macular degeneration, gingivitis, prostatic hyperplasia, urinary impairments. Patents revised include 30% methodologies for extraction of phytochemicals, 16% application of phytochem- icals in food matrixes to obtain functional foods, 18% biological activity of extracts or compounds and 36% application in the prevention and treatment of illness, which reveals a great interest to protect intellectual property concerning applica- tion of phytochemicals formulations for human health.
QSAR of phytochemicals for the design of better drugs.
Kar, Supratik; Roy, Kunal
2012-10-01
Phytochemicals have been the single most prolific source of leads for the development of new drug entities from the dawn of the drug discovery. They cover a wide range of therapeutic indications with a great diversity of chemical structures. The research fraternity still believes in exploring the phytochemicals for new drug discovery. Application of molecular biological techniques has increased the availability of novel compounds that can be conveniently isolated from natural sources. Combinatorial chemistry approaches are being applied based on phytochemical scaffolds to create screening libraries that closely resemble drug-like compounds. In silico techniques like quantitative structure-activity relationships (QSAR), pharmacophore and virtual screening are playing crucial and rate accelerating steps for the better drug design in modern era. QSAR models of different classes of phytochemicals covering different therapeutic areas are thoroughly discussed in the review. Further, the authors have enlisted all the available phytochemical databases for the convenience of researchers working in the area. This review justifies the need to develop more QSAR models for the design of better drugs from phytochemicals. Technical drawbacks associated with phytochemical research have been lessened, and there are better opportunities to explore the biological activity of previously inaccessible sources of phytochemicals although there is still the need to reduce the time and cost involvement in such exercise. The future possibilities for the integration of ethnopharmacology with QSAR, place us at an exciting stage that will allow us to explore plant sources worldwide and design better drugs.
Öztürk, Melih; Bolat, İlyas
2014-04-01
This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.
Cabezas, José Antonio; González-Martínez, Santiago C; Collada, Carmen; Guevara, María Angeles; Boury, Christophe; de María, Nuria; Eveno, Emmanuelle; Aranda, Ismael; Garnier-Géré, Pauline H; Brach, Jean; Alía, Ricardo; Plomion, Christophe; Cervera, María Teresa
2015-09-01
We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Phytochemicals perturb membranes and promiscuously alter protein function.
Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S
2014-08-15
A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.
Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function
2015-01-01
A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212
Photooxidation of phytochemicals in food and control: a review.
Lu, Baiyi; Zhao, Yajing
2017-06-01
Phytochemicals are widely present in food and have been confirmed to be bioactive, thereby contributing to human health. However, some phytochemicals are sensitive to light owing to their structures and may suffer from photodegradation, especially when sensitizers exist, resulting in sensory quality change, nutrient loss in food, and even the formation of toxic compounds. The photooxidation of phytochemicals occurs through three different mechanisms: (1) by directly absorbing luminous energy, (2) with triplet-excited state sensitizers through electron transfer or proton transfer (type I photooxidation), and (3) with singlet oxygen produced by O 2 (type II photooxidation). On the basis of these mechanisms, adequate antioxidants can be added to quench the triple-excited state sensitizers or singlet oxygen to protect against the photooxidation of phytochemicals in food. Here, we summarize and discuss the possible pathways and products of the photooxidation of phytochemicals that have been reported and the relationships between structures and photooxidation. We also propose some control measures, with special attention paid to the potential abilities of phytochemicals in the prevention of food photooxidation. © 2017 New York Academy of Sciences.
Jagadeb, Manaswini; Konkimalla, V Badireenath; Das, Rohit Pritam
2014-01-01
Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel. PMID:25705171
Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence
Kotecha, Ritesh; Takami, Akiyoshi; Espinoza, J. Luis
2016-01-01
Cancer chemoprevention involves the use of different natural or biologic agents to inhibit or reverse tumor growth. Epidemiological and pre-clinical data suggest that various natural phytochemicals and dietary compounds possess chemopreventive properties, and in-vitro and animal studies support that these compounds may modulate signaling pathways involved in cell proliferation and apoptosis in transformed cells, enhance the host immune system and sensitize malignant cells to cytotoxic agents. Despite promising results from experimental studies, only a limited number of these compounds have been tested in clinical trials and have shown variable results. In this review, we summarize the data regarding select phytochemicals including curcumin, resveratrol, lycopene, folates and tea polyphenols with emphasis on the clinical evidence supporting the efficacy of these compounds in high-risk populations. PMID:27232756
Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence.
Kotecha, Ritesh; Takami, Akiyoshi; Espinoza, J Luis
2016-08-09
Cancer chemoprevention involves the use of different natural or biologic agents to inhibit or reverse tumor growth. Epidemiological and pre-clinical data suggest that various natural phytochemicals and dietary compounds possess chemopreventive properties, and in-vitro and animal studies support that these compounds may modulate signaling pathways involved in cell proliferation and apoptosis in transformed cells, enhance the host immune system and sensitize malignant cells to cytotoxic agents. Despite promising results from experimental studies, only a limited number of these compounds have been tested in clinical trials and have shown variable results. In this review, we summarize the data regarding select phytochemicals including curcumin, resveratrol, lycopene, folates and tea polyphenols with emphasis on the clinical evidence supporting the efficacy of these compounds in high-risk populations.
Preliminary Phytochemical Studies.
2016-01-01
Plants are the natural producers of medicinal agents like alkaloids, flavonoids, tannins, and phenolics. These phytocompounds alone or in combination act as a therapeutic agent in various disease complications. Various chemical reagents are used to determine the major phytochemicals present in plant parts. Protocols involved in screening of alkaloids, carbohydrates, glycosides, saponins, phytosterols, fixed oils, and fats are shown in this chapter.
de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M
2013-08-30
It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms.
2013-01-01
Background It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Results Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. Conclusions This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms. PMID:23987738
Longevity extension by phytochemicals.
Leonov, Anna; Arlia-Ciommo, Anthony; Piano, Amanda; Svistkova, Veronika; Lutchman, Vicky; Medkour, Younes; Titorenko, Vladimir I
2015-04-13
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.
Seoane-Zonjic, Pedro; Cañas, Rafael A; Bautista, Rocío; Gómez-Maldonado, Josefa; Arrillaga, Isabel; Fernández-Pozo, Noé; Claros, M Gonzalo; Cánovas, Francisco M; Ávila, Concepción
2016-02-27
In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.
Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae).
Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G; González-Martínez, Santiago C
2015-03-01
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. Copyright © 2015 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
González-Muñoz, Noelia; Castro-Díez, Pilar; Fierro-Brunnenmeister, Natalia
2011-10-01
The exotic trees Ailanthus altissima, Robinia pseudoacacia, Acer negundo and Elaeagnus angustifolia coexist with the native trees Fraxinus angustifolia and Ulmus minor in river banks of central Spain. Similarly, the exotic trees Acacia dealbata and Eucalyptus globulus co-occur with the natives Quercus pyrenaica and Pinus pinaster in Northwest Spain. We aimed to identify the environmental conditions that favour or hamper the establishment success of these species. In spring 2008, seeds of the studied species were sown under an experimental gradient of light (100, 65, 35, 7% of full sunlight) combined with three levels of soil moisture (mean soil water potential = -0.97, -1.52 and -1.77 MPa.). During the first growing season we monitored seed emergence and seedling survival. We found that the effect of light on the establishment success was stronger than the effect of soil moisture. Both exotic and native species of central Spain showed a good performance under high light, A. negundo being the most shade tolerant . Water shortage diminished E. angustifolia and A. altissima success. Among NW Spain species, A. dealbata and P. pinaster were found to be potential competitors for colonizing high-irradiance scenarios, while Q. pyrenaica and E. globulus were more successful under moderate shade. High soil moisture favoured E. globulus but not A. dealbata establishment. These results contribute to understand some of the factors controlling for spatial segregation between coexisting native and exotic tree species, and can help to take decisions orientated to the control and management of these exotic species.
González-Muñoz, Noelia; Castro-Díez, Pilar; Fierro-Brunnenmeister, Natalia
2011-10-01
The exotic trees Ailanthus altissima, Robinia pseudoacacia, Acer negundo and Elaeagnus angustifolia coexist with the native trees Fraxinus angustifolia and Ulmus minor in river banks of central Spain. Similarly, the exotic trees Acacia dealbata and Eucalyptus globulus co-occur with the natives Quercus pyrenaica and Pinus pinaster in Northwest Spain. We aimed to identify the environmental conditions that favour or hamper the establishment success of these species. In spring 2008, seeds of the studied species were sown under an experimental gradient of light (100, 65, 35, 7% of full sunlight) combined with three levels of soil moisture (mean soil water potential = -0.97, -1.52 and -1.77 MPa.). During the first growing season we monitored seed emergence and seedling survival. We found that the effect of light on the establishment success was stronger than the effect of soil moisture. Both exotic and native species of central Spain showed a good performance under high light, A. negundo being the most shade tolerant. Water shortage diminished E. angustifolia and A. altissima success. Among NW Spain species, A. dealbata and P. pinaster were found to be potential competitors for colonizing high-irradiance scenarios, while Q. pyrenaica and E. globulus were more successful under moderate shade. High soil moisture favoured E. globulus but not A. dealbata establishment. These results contribute to understand some of the factors controlling for spatial segregation between coexisting native and exotic tree species, and can help to take decisions orientated to the control and management of these exotic species.
Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)
Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H.; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G.; González-Martínez, Santiago C.
2015-01-01
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP–climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. PMID:25549630
Organ-specific metabolic responses to drought in Pinus pinaster Ait.
de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa
2016-05-01
Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Phytochemical profiling as a solution to palliate disinfectant limitations.
Malheiro, J; Gomes, I; Borges, A; Bastos, M M S M; Maillard, J-Y; Borges, F; Simões, M
2016-10-01
The indiscriminate use of biocides for general disinfection has contributed to the increased incidence of antimicrobial tolerant microorganisms. This study aims to assess the potential of seven phytochemicals (tyrosol, caffeic acid, ferulic acid, cinnamaldehyde, coumaric acid, cinnamic acid and eugenol) in the control of planktonic and sessile cells of Staphylococcus aureus and Escherichia coli. Cinnamaldehyde and eugenol showed antimicrobial properties, minimum inhibitory concentrations of 3-5 and 5-12 mM and minimum bactericidal concentrations of 10-12 and 10-14 mM against S. aureus and E. coli, respectively. Cinnamic acid was able to completely control adhered bacteria with effects comparable to peracetic acid and sodium hypochlorite and it was more effective than hydrogen peroxide (all at 10 mM). This phytochemical caused significant changes in bacterial membrane hydrophilicity. The observed effectiveness of phytochemicals makes them interesting alternatives and/or complementary products to commonly used biocidal products. Cinnamic acid is of particular interest for the control of sessile cells.
Mahanom, H; Azizah, A; Dzulkifly, M
1999-12-01
The effect of oven drying at 50ᵒC ± 1ᵒC for 9 hour, 70ᵒC ± 1ᵒC for 5 hour and freeze drying on retention of chlorophyll, riboflavin, niacin, ascorbic acid and carotenoids in herbal preparation consisting of 8 medicinal plants was evaluated. The medicinal plants selected were leaves of Apium graveolens (saderi), Averrhoa bilimbi (belimbing buluh), Centella asiatica (pegaga), Mentha arvensis (pudina), Psidium guajava (jambu batu), Sauropus androgynous (cekor manis), Solanum nigrum (terung meranti) and Polygonum minus (kesum ). Results revealed that both type and conditions of the drying treatments affected retention of all phytochemicals analysed. Herbal preparation developed using oven drying was found to have inferior phytochemicals content compared to that obtained by freeze dryer. Nevertheless, the herbal preparation developed using all treatments still retain appreciable amount of phytochemicals studied, especially carotenoids, ascorbic acid, niacin and riboflavin and thus have potential for commercial purposes.
Ahmed, Hiwa M
2018-03-01
Allelopathic effects of corn (Zea mays) extracts was studied, against seed germination and seedling growth of Phalaris minor, Helianthus annuus, Triticumaestivum, Sorghum halepense, Z. mays. Bioassay results showed that aqueous extracts of corn root and shoot, markedly affected seed germination, and other parameters compared with related controls. Preliminary phytochemical screening revealed the presence of various phytochemicals such as tannins, phlobatannins, flavonoids, terpenoids and alkaloids in both roots and shoot aqueous extracts. However, saponins were only present in the shoot aqueous extract, while in shoot ethanol extracts, only terpenoids and alkaloids were detected. Additionally, total polyphenolic (TPC) content in aqueous extracts of corn root and shoot, plus ethanol extracts of corn shoot were determined using an Ultraviolet-visible spectroscopy. Results revealed TPC content of the corn shoot aqueous extract showed the highest yield, compared to other extracts. These findings suggest that phytochemicals present in Z. mays extracts may contribute to allelopathy effect.
Mass spectrometry-based analysis of whole-grain phytochemicals.
Koistinen, Ville Mikael; Hanhineva, Kati
2017-05-24
Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.
Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans?
Corbi, Graziamaria; Conti, Valeria; Davinelli, Sergio; Scapagnini, Giovanni; Filippelli, Amelia; Ferrara, Nicola
2016-01-01
Although several efforts have been made in the search for genetic and epigenetic patterns linked to diseases, a comprehensive explanation of the mechanisms underlying pathological phenotypic plasticity is still far from being clarified. Oxidative stress and inflammation are two of the major triggers of the epigenetic alterations occurring in chronic pathologies, such as neurodegenerative diseases. In fact, over the last decade, remarkable progress has been made to realize that chronic, low-grade inflammation is one of the major risk factor underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant immunomodulatory and/or anti-inflammatory activities in the context of brain aging. Starting by the evidence that a common denominator of aging and chronic degenerative diseases is represented by inflammation, and that several dietary phytochemicals are able to potentially interfere with and regulate the normal function of cells, in particular neuronal components, aim of this review is to summarize recent studies on neuroinflammaging processes and proofs indicating that specific phytochemicals may act as positive modulators of neuroinflammatory events. In addition, critical pathways involved in mediating phytochemicals effects on neuroinflammaging were discussed, exploring the real impact of these compounds in preserving brain health before the onset of symptoms leading to inflammatory neurodegeneration and cognitive decline.
Musthafa, Khadar Syed; Sianglum, Wipawadee; Saising, Jongkon; Lethongkam, Sakkarin; Voravuthikunchai, Supayang Piyawan
2017-05-01
Virulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti-virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa. In the preliminary screening of the tested medicinal plant extracts, Syzygium jambos and Syzygium antisepticum demonstrated a maximum inhibition in QS-dependent violacein pigment production by Chromobacterium violaceum DMST 21761. These extracts demonstrated an inhibitory activity over a virulence factor, pyoverdin, production by P. aeruginosa ATCC 27853. Gas chromatography-mass spectrometric (GC-MS) analysis revealed the presence of 23 and 12 phytochemicals from the extracts of S. jambos and S. antisepticum respectively. Three top-ranking phytochemicals, including phytol, ethyl linoleate and methyl linolenate, selected on the basis of docking score in molecular docking studies lowered virulence factors such as pyoverdin production, protease and haemolytic activities of P. aeruginosa to a significant level. In addition, the phytochemicals reduced rhamnolipid production by the organism. The work demonstrated an importance of plant-derived compounds as anti-virulence drugs to conquer P. aeruginosa virulence towards the host. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Synergistic Phytochemicals Fail to Protect Against Ovariectomy Induced Bone Loss in Rats.
Ambati, Suresh; Miller, Colette N; Bass, Erica F; Hohos, Natalie M; Hartzell, Diane L; Kelso, Emily W; Trunnell, Emily R; Yang, Jeong-Yeh; Della-Fera, Mary Anne; Baile, Clifton A; Rayalam, Srujana
2018-05-24
Menopause induces a loss of bone as a result of estrogen deficiency. Despite pharmaceutical options for the treatment of osteopenia and osteoporosis, many aging women use dietary supplements with estrogenic activity to prevent bone loss and other menopausal-related symptoms. Such supplements are yet to be tested for efficacy against a Food and Drug Administration (FDA) approved medication for menopausal bone loss such as zoledronic acid (ZA). The postmenopausal rat model was used to investigate the efficacy of various synergistic phytochemical blends mixed into the diet for 16 weeks. Retired-breeder, Fischer 344 rats were randomly assigned to sham or ovariectomy surgery and 4 treatment groups: ZA; genistein supplementation; and a low dose and high dose blend of genistein, resveratrol, and quercetin. Ovariectomy resulted in a loss of both trabecular and cortical bone which was prevented with ZA. The phytochemical blends tested were unable to reverse these losses. Despite the lack of effectiveness in preventing bone loss, a significant dose-response trend was observed in the phytochemical-rich diets in bone adipocyte number compared to ovariectomized control rats. Data from this study indicate that estrogenic phytochemicals are not as efficacious as ZA in preventing menopausal-related bone loss but may have beneficial effects on bone marrow adiposity in rats.
Kumar, Sandeep; Yadav, Amita; Yadav, Manila; Yadav, Jaya Parkash
2017-01-25
The aim of the present study was to analyse the effect of climate change on phytochemicals, total phenolic content (TPC) and antioxidant potential of methanolic extracts of Aloe vera collected from different climatic zones of the India. Crude methanolic extracts of A. vera from the different states of India were screened for presence of various phytochemicals, total phenolic content and in vitro antioxidant activity. Total phenolic content was tested by Folin-Ciocalteau reagent based assay whilst DPPH free radical scavenging assay, metal chelating assay, hydrogen peroxide scavenging assay, reducing power assay and β carotene-linoleic assay were used to assess the antioxidant potential of A. vera methanolic leaf extracts. Alkaloids, phenols, flavonoids, saponins, and terpenes were the main phytochemicals presents in all accessions. A significant positive correlation was found between TPC and antioxidant activity of different accessions. Extracts of highland and semi-arid zones possessed maximum antioxidant potential. Accessions from tropical zones showed the least antioxidant activity in all assays. It could be concluded that different agro-climatic conditions have effects on the phytochemicals, total phenolic content (TPC) and antioxidant potential of the A. vera plant. The results reveal that A. vera can be a potential source of novel natural antioxidant compounds.
Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees
Thursfield, Lucy
2017-01-01
Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose) increased maximum cell density, while a common floral phytochemical (caffeic acid) with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides. PMID:28503378
Shin, Oon Ha; Kim, Dae Yeon; Seo, Yong Weon
2017-07-01
The importance of the effect of phytochemical accumulation in wheat grain on grain physiology has been recognised. In this study, we tracked phytochemical concentration in the seed coat of purple wheat during the water-imbibition phase and also hypothesised that the speed of germination was only relevant to its initial phytochemical concentration. The results indicate that the speed of germination was significantly reduced in the darker grain groups within the purple wheat. Total phenol content was slightly increased in all groups compared to their initial state, but the levels of other phytochemicals varied among groups. It is revealed that anthocyanin was significantly degraded during the water imbibition stage. Also, the activities of peroxidase, ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase in each grain colour group did not correlated with germination speed. Overall antioxidant activity was reduced as imbibition progressed in each group. Generally, darker grain groups showed higher total antioxidant activities than did lighter grain groups. These findings suggested that the reduced activity of reactive oxygen species, as controlled by internal antioxidant enzymes and phytochemicals, related with germination speed during the water imbibition stage in grains with greater depth of purple colouring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans?
Corbi, Graziamaria; Conti, Valeria; Davinelli, Sergio; Scapagnini, Giovanni; Filippelli, Amelia; Ferrara, Nicola
2016-01-01
Although several efforts have been made in the search for genetic and epigenetic patterns linked to diseases, a comprehensive explanation of the mechanisms underlying pathological phenotypic plasticity is still far from being clarified. Oxidative stress and inflammation are two of the major triggers of the epigenetic alterations occurring in chronic pathologies, such as neurodegenerative diseases. In fact, over the last decade, remarkable progress has been made to realize that chronic, low-grade inflammation is one of the major risk factor underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant immunomodulatory and/or anti-inflammatory activities in the context of brain aging. Starting by the evidence that a common denominator of aging and chronic degenerative diseases is represented by inflammation, and that several dietary phytochemicals are able to potentially interfere with and regulate the normal function of cells, in particular neuronal components, aim of this review is to summarize recent studies on neuroinflammaging processes and proofs indicating that specific phytochemicals may act as positive modulators of neuroinflammatory events. In addition, critical pathways involved in mediating phytochemicals effects on neuroinflammaging were discussed, exploring the real impact of these compounds in preserving brain health before the onset of symptoms leading to inflammatory neurodegeneration and cognitive decline. PMID:27790141
Characterization of Bacteria Associated with Pinewood Nematode Bursaphelenchus xylophilus
Vicente, Claudia S. L.; Nascimento, Francisco; Espada, Margarida; Barbosa, Pedro; Mota, Manuel; Glick, Bernard R.; Oliveira, Solange
2012-01-01
Pine wilt disease (PWD) is a complex disease integrating three major agents: the pathogenic agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80's, the notion that another pathogenic agent, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work supports the possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer the pathogenicity of these bacteria in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least, some of these bacteria, appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria isolates in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD. PMID:23091599
Ethnopharmacological Investigations of Phytochemical Constituents Isolated from the Genus Cuscuta.
Ibrahim, Muhammad; Rehman, Kanwal; Hussain, Iqbal; Farooq, Tahir; Ali, Bisharat; Majeed, Irum; Akash, Muhammad Sajid Hamid
2017-01-01
The genus Cuscuta, of the family Cuscutaceae, is present in plants and has been traditionally used medicinally against many diseases and conditions, notably depression, mental illness, headache, spleen disease, jaundice, diabetes mellitus, and hypertension. Large numbers of phytochemical constituents such as alkaloids, flavonoids, lignins, oxygen heterocyclic compounds, steroids, fatty acids, phenolic acids, resin glycosides, and polysaccharides have been isolated from different species of Cuscuta. Ethnopharmacological studies conducted on such constituents have also been shown Cuscuta to possess anticancer, antiviral, antispasmodic, antihypertensive, anticonvulsant, antibacterial, antioxidant, diuretic, and hair-growth activity. Many tribes and traditional communities have long used the different forms of Cuscuta for treatment and prevention of many diseases. In this article, we comprehensively summarize relevant data regarding the phytochemical, ethnopharmacological, and traditional therapeutic uses of Cuscuta. In addition, we review the parts of the plants that are used as traditional therapeutic agents, their regions of existence, and their possible modes of action. To conclude, we provide evidence and new insights for further discovery and development of natural drugs from Cuscuta. We show that further studies are needed to investigate the mechanism of action and safety profile of phytochemical constituents isolated from Cuscuta.
The effect of garlic supplements and phytochemicals on the ADMET properties of drugs.
Berginc, Katja; Kristl, Albin
2012-03-01
Garlic supplements have received wide public attention because of their health-beneficial effects. Although these products are considered as innocuous, several case reports and studies have shown the capacity of individual garlic phytochemicals/supplements to interfere with drug pharmacokinetics. This review covers recently published literature on garlic chemistry and composition, and provides a thorough review of published studies evaluating drug-garlic interactions. The authors illustrate the mechanisms underlying pharmacokinetic interactions, which could serve as important highlights in further research to explain results for drugs with narrow therapeutic indices or for drugs, utilizing multiple absorption, distribution and metabolism pathways. To increase the relevance of further research on safety and efficacy of garlic supplements and phytochemicals, their composition should be addressed before conducting in vitro or in vivo research. It is also strongly recommended to characterize in vitro formulation performance to assess the rate and extent of garlic phytochemical release in order to anticipate the in vivo impact on the pharmacokinetics of concomitantly consumed drugs. The main conclusion of this review is that the impact of garlic on different stages of pharmacokinetics, especially on drug absorption and metabolism, is drug specific and dependent on the type/quality of utilized supplement.
Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz
2015-09-01
The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.
Behavioural effects of compounds co-consumed in dietary forms of caffeinated plants.
Haskell, C F; Dodd, F L; Wightman, E L; Kennedy, D O
2013-06-01
Research into the cognitive and mood effects of caffeine in human subjects has highlighted some fairly robust and well-accepted effects. However, the majority of these studies have focused on caffeine in isolation; whilst caffeine is normally consumed in the form of plant-derived products and extracts that invariably contain other potentially bioactive phytochemicals. The aim of the present review is to consider the possible mechanisms of action of co-occurring phytochemicals, and any epidemiological evidence suggesting that they contribute to potential health benefits ascribed to caffeine. Intervention studies to date that have been conducted to explore the effects on brain function of the non-caffeine components in caffeine-bearing plants (coffee, tea, cocoa, guaraná), either alone or in combination with caffeine, will also be summarised. Research is beginning to accumulate showing independent effects for several of the phytochemicals that co-occur with caffeine, and/or a modulation of the effects of caffeine when it is co-consumed with these naturally concomitant phytochemicals. The present review highlights that more research aimed at understanding the effects of these compounds is needed and, more importantly, the synergistic relationship that they may have with caffeine.
Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention?
Fernando, Warnakulasuriya M A D B; Somaratne, Geeshani; Goozee, Kathryn G; Williams, Shehan; Singh, Harjinder; Martins, Ralph N
2017-01-01
Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.
Jensen, Kasper; Panagiotou, Gianni; Kouskoumvekaki, Irene
2014-01-01
Awareness that disease susceptibility is not only dependent on genetic make up, but can be affected by lifestyle decisions, has brought more attention to the role of diet. However, food is often treated as a black box, or the focus is limited to few, well-studied compounds, such as polyphenols, lipids and nutrients. In this work, we applied text mining and Naïve Bayes classification to assemble the knowledge space of food-phytochemical and food-disease associations, where we distinguish between disease prevention/amelioration and disease progression. We subsequently searched for frequently occurring phytochemical-disease pairs and we identified 20,654 phytochemicals from 16,102 plants associated to 1,592 human disease phenotypes. We selected colon cancer as a case study and analyzed our results in three directions; i) one stop legacy knowledge-shop for the effect of food on disease, ii) discovery of novel bioactive compounds with drug-like properties, and iii) discovery of novel health benefits from foods. This works represents a systematized approach to the association of food with health effect, and provides the phytochemical layer of information for nutritional systems biology research. PMID:24453957
Singh, Amit Kumar; Sharma, Neelesh; Ghosh, Mrinmoy; Park, Yang Ho; Jeong, Dong Kee
2017-11-02
Recent years have seen an unpretending increase in research using dietary phytochemicals for targeting cancer and cancer stem cells (CSCs) due to the limited efficacy of conventional chemotherapy and radiotherapy and numerous associated side effects. A large number of dietary phytochemicals using traditional recommendation and experimental approaches have been demonstrated to have anti-proliferative, anti-metastatic, reactive oxygen species (ROS) inducing, anti-angiogenic, pro-apoptotic effects and efficacy in targeting cellular molecules and pathways implicated in malignancy. Researchers have shown the knack of phytochemicals in interfering with the CSCs self-renewal process. Thus, dietary phytochemicals can play a significant role in the cancer therapy owing to the plethora of targets without toxicity. In this review, we have discussed about the basic knowledge of CSCs, their identification, characterization, mechanism of self-renewal pathways (Wnt/β-catenin, Hedgehog, and Notch), features that help in the survival of CSCs and use of phytochemicals to replace chemotherapy. Applications of phytochemicals including curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, and sulforaphane for their effect on targeting cancer and in particular CSCs along with their molecular mechanisms responsible for pharmacological action are also discussed.
Renaud, Erica N C; Lammerts van Bueren, Edith T; Myers, James R; Paulo, Maria João; van Eeuwijk, Fred A; Zhu, Ning; Juvik, John A
2014-01-01
Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of phytochemicals associated with health promotion grown under organic and conventional management in spring and fall plantings in two broccoli growing regions in the US (Oregon and Maine). The phytochemicals quantified included: glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols (δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For glucoraphanin (17.5%) and lutein (13%), genotype was the major source of total variation; for glucobrassicin, region (36%) and the interaction of location and season (27.5%); and for neoglucobrassicin, both genotype (36.8%) and its interactions (34.4%) with season were important. For δ- and γ-tocopherols, season played the largest role in the total variation followed by location and genotype; for total carotenoids, genotype (8.41-13.03%) was the largest source of variation and its interactions with location and season. Overall, phytochemicals were not significantly influenced by management system. We observed that the cultivars with the highest concentrations of glucoraphanin had the lowest for glucobrassicin and neoglucobrassicin. The genotypes with high concentrations of glucobrassicin and neoglucobrassicin were the same cultivars and were early maturing F1 hybrids. Cultivars highest in tocopherols and carotenoids were open pollinated or early maturing F1 hybrids. We identified distinct locations and seasons where phytochemical performance was higher for each compound. Correlations among horticulture traits and phytochemicals demonstrated that glucoraphanin was negatively correlated with the carotenoids and the carotenoids were correlated with one another. Little or no association between phytochemical concentration and date of cultivar release was observed, suggesting that modern breeding has not negatively influenced the level of tested compounds. We found no significant differences among cultivars from different seed companies.
Renaud, Erica N. C.; Lammerts van Bueren, Edith T.; Myers, James R.; Paulo, Maria João; van Eeuwijk, Fred A.; Zhu, Ning; Juvik, John A.
2014-01-01
Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of phytochemicals associated with health promotion grown under organic and conventional management in spring and fall plantings in two broccoli growing regions in the US (Oregon and Maine). The phytochemicals quantified included: glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols (δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For glucoraphanin (17.5%) and lutein (13%), genotype was the major source of total variation; for glucobrassicin, region (36%) and the interaction of location and season (27.5%); and for neoglucobrassicin, both genotype (36.8%) and its interactions (34.4%) with season were important. For δ- and γ- tocopherols, season played the largest role in the total variation followed by location and genotype; for total carotenoids, genotype (8.41–13.03%) was the largest source of variation and its interactions with location and season. Overall, phytochemicals were not significantly influenced by management system. We observed that the cultivars with the highest concentrations of glucoraphanin had the lowest for glucobrassicin and neoglucobrassicin. The genotypes with high concentrations of glucobrassicin and neoglucobrassicin were the same cultivars and were early maturing F1 hybrids. Cultivars highest in tocopherols and carotenoids were open pollinated or early maturing F1 hybrids. We identified distinct locations and seasons where phytochemical performance was higher for each compound. Correlations among horticulture traits and phytochemicals demonstrated that glucoraphanin was negatively correlated with the carotenoids and the carotenoids were correlated with one another. Little or no association between phytochemical concentration and date of cultivar release was observed, suggesting that modern breeding has not negatively influenced the level of tested compounds. We found no significant differences among cultivars from different seed companies. PMID:25028959
Pascual, Ma Belén; Cánovas, Francisco M; Ávila, Concepción
2015-10-24
NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.
Espinosa, J; Madrigal, J; De La Cruz, A C; Guijarro, M; Jimenez, E; Hernando, C
2018-03-15
Fire severity, defined as the magnitude of fire effects in an ecosystem, is a key factor to consider in planning management strategies for protecting forests against fire. Although prescribed burning has been used as a fuel reduction tool in forest ecosystems, it is quite limited in the Mediterranean region. Furthermore, little is known about how tree crowns are affected by prescribed underburning aimed at reducing fire severity in conifer stands. As part of an ongoing study to assess the effects of prescribed burning on the tree canopy, litterfall is currently being monitored in a network of experimental plots located in mixed (Pinus nigra and Pinus pinaster) and pure (P. nigra) conifer stands in the Cuenca Mountains (Castilla La Mancha, Spain). A total of 12 study plots (30m×30m) were established in a completely randomized experimental design to determine the effect of burning, with 2 treatments: no burning (control) and burning (i.e. with three replicate plots for each treatment and site). Burning was conducted in May 2016. In each plot, 8 litterfall collectors were installed at regular intervals, according to international protocols (ICP Forests), and all biomass falling into the collectors is being monitored monthly. The specific objective of this study is to assess how prescribed burning affects the rate of generation of foliar and non-foliar litterfall biomass due to the fire. In addition, the Leaf Area Index was estimated before burning and one year later to verify possible changes in the structure of the stands. This information could be used to help minimize the negative impacts of prescribed underburning on litterfall. To our knowledge, this study represents the first attempt to evaluate the effect of prescribed burning on litterfall biomass in Europe. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
For some polyphagous insects adaptation to phytochemically novel plants confers enhanced resistance to insecticides, but whether insecticide resistance enhances tolerance to novel phytochemicals has not been assessed. We used Amyelois transitella Walker (navel orangeworm), an economically important ...
Cichon, Morgan J; Riedl, Ken M; Schwartz, Steven J
2017-08-01
Juices from the traditional red tomato and a unique tangerine tomato variety are being investigated as health promoting foods in human clinical trials. However, it is unknown how the tangerine and red tomato juices differ in biologically relevant phytochemicals beyond carotenoids. Here liquid-chromatography high-resolution mass spectrometry metabolomics was used to evaluate broadly the similarities and differences in carotenoids and other phytochemicals between red and tangerine tomato juices intended for clinical interventions. This untargeted approach was successful in the rapid detection and extensive characterization of phytochemicals belonging to various compound classes. The tomato juices were found to differ significantly in a number of phytochemicals, including carotenoids, chlorophylls, neutral lipids, and cinnamic acid derivatives. The largest differences were in carotenoids, including lycopene, phytoene, phytofluene, neurosporene, and ζ-carotene. Smaller, but significant, differences were observed in polar phytochemicals, such as chlorogenic acid, hydroxyferulic acid, phloretin-di-C-glycoside, and isopropylmalic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Selby-Pham, Sophie N B; Howell, Kate S; Dunshea, Frank R; Ludbey, Joel; Lutz, Adrian; Bennett, Louise
2018-04-15
A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (T max ) should be synchronised with the time of increased OSI. A statistical model has been reported to predict T max of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tung, Yu-Tang; Lin, Lei-Chen; Liu, Ya-Ling; Ho, Shang-Tse; Lin, Chi-Yang; Chuang, Hsiao-Li; Chiu, Chien-Chao; Huang, Chi-Chang; Wu, Jyh-Horng
2015-12-01
Some of the genus Rhododendron was used in traditional medicine for arthritis, acute and chronic bronchitis, asthma, pain, inflammation, rheumatism, hypertension and metabolic diseases and many species of the genus Rhododendron contain a large number of phenolic compounds and antioxidant properties that could be developed into pharmaceutical products. In this study, the antioxidative phytochemicals of Rhododendron oldhamii Maxim. leaves were detected by an online HPLC-DPPH method. In addition, the anti-hyperuricemic effect of the active phytochemicals from R. oldhamii leaf extracts was investigated using potassium oxonate (PO)-induced acute hyperuricemia. Six phytochemicals, including (2R, 3R)-epicatechin (1), (2R, 3R)-taxifolin (2), (2R, 3R)-astilbin (3), hyposide (4), guaijaverin (5), and quercitrin (6), were isolated using the developed screening method. Of these, compounds 3, 4, 5, and 6 were found to be major bioactive phytochemicals, and their contents were determined to be 130.8 ± 10.9, 105.5 ± 8.5, 104.1 ± 4.7, and 108.6 ± 4.0 mg per gram of EtOAc fraction, respectively. In addition, the four major bioactive phytochemicals at the same dosage (100 mmol/kg) were administered to the abdominal cavity of potassium oxonate (PO)-induced hyperuricemic mice, and the serum uric acid level was measured after 3 h of administration. H&E staining showed that PO-induced kidney injury caused renal tubular epithelium nuclear condensation in the cortex areas or the appearance of numerous hyaline casts in the medulla areas; treatment with 100 mmol/kg of EtOAc fraction, (2R, 3R)-astilbin, hyposide, guaijaverin, and quercitrin significantly reduced kidney injury. In addition, the serum uric acid level was significantly suppressed by 54.1, 35.1, 56.3, 56.3, and 53.2 %, respectively, by the administrations of 100 mmol/kg EtOAc fraction and the derived major phytochemicals, (2R, 3R)-astilbin, hyposide, guaijaverin, and quercitrin, compared to the PO group. The administration of 10 mg/kg benzbromarone, a well-known uricosuric agent, significantly reduced the serum uric acid level by 45.5 % compared to the PO group. The in vivo decrease in uric acid was consistent with free radical scavenging activity, indicating that the major phytochemicals of R. oldhamii leave extracts and the derived phytochemicals possess potent hypouricemic effects, and they could be potential candidates for new hypouricemic agents.
Kyaw, Bhone Myint; arora, Shuchi; Lim, Chu Sing
2012-01-01
Methicillin resistant Staphylococcus aureus (MRSA) infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore). Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections. PMID:24031910
Effects of Environmental Estrogens on Apoptosis in Normal and Cancerous Breast Epithelial Cells
2001-03-01
breast cancer in population which consume diets rich in these flavonoid phytoestrogens has prompted us to further examine the effects of these...chemicals on apoptosis. Initial studies revealed certain flavonoid phytochemicals possessed potent antiestrogenic effects (Appendix documents #4,5...of specific aim 1 to include examination of the flavonoid phytochemical environmental estrogens. Examination of Bcl-2 expression and effects on
NASA Astrophysics Data System (ADS)
Khattak, Khanzadi Fatima; Rahman, Taj Ur
2016-10-01
Plant based food products and medicines are given more consideration for their efficacy, safety and synergistic effects. Radiation processing has been valuably used for microbial decontamination and value addition of the plant materials. The current study is about the effect of gamma irradiation on the quality attributes of Ziziphus mauritiana Lam. leaves. The leaves of the plant were irradiated at the dose levels of 2.5, 5.0, 7.5, 10.0 and 12.5 kGy. The irradiated and control samples were evaluated for vitamin, phytochemicals, antibacterial and DPPH scavenging activities. The results showed that gamma irradiation doses up to 12.5 kGy enhanced the levels of certain phytochemicals and augmented the biological activities.
IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics.
Mohanraj, Karthikeyan; Karthikeyan, Bagavathy Shanmugam; Vivek-Ananth, R P; Chand, R P Bharath; Aparna, S R; Mangalapandi, Pattulingam; Samal, Areejit
2018-03-12
Phytochemicals of medicinal plants encompass a diverse chemical space for drug discovery. India is rich with a flora of indigenous medicinal plants that have been used for centuries in traditional Indian medicine to treat human maladies. A comprehensive online database on the phytochemistry of Indian medicinal plants will enable computational approaches towards natural product based drug discovery. In this direction, we present, IMPPAT, a manually curated database of 1742 Indian Medicinal Plants, 9596 Phytochemicals, And 1124 Therapeutic uses spanning 27074 plant-phytochemical associations and 11514 plant-therapeutic associations. Notably, the curation effort led to a non-redundant in silico library of 9596 phytochemicals with standard chemical identifiers and structure information. Using cheminformatic approaches, we have computed the physicochemical, ADMET (absorption, distribution, metabolism, excretion, toxicity) and drug-likeliness properties of the IMPPAT phytochemicals. We show that the stereochemical complexity and shape complexity of IMPPAT phytochemicals differ from libraries of commercial compounds or diversity-oriented synthesis compounds while being similar to other libraries of natural products. Within IMPPAT, we have filtered a subset of 960 potential druggable phytochemicals, of which majority have no significant similarity to existing FDA approved drugs, and thus, rendering them as good candidates for prospective drugs. IMPPAT database is openly accessible at: https://cb.imsc.res.in/imppat .
Agu, Kingsley C; Okolie, Paulinus N
2017-09-01
Numerous bioactive compounds and phytochemicals have been reported to be present Annona muricata (Soursop). Some of these chemical compounds have been linked to the ethnomedicinal properties of the plant and its antioxidant properties. The aim of this study was to assess the proximate composition, phytochemical constituents and in vitro antioxidant properties of A. muricata using standard biochemical procedures. The defatted Annona muricata crude methanolic extracts of the different parts of the plant were used for the estimation of proximate composition and phytochemical screening. The crude methanolic extracts of the different parts of the plant were also fractionated using solvent-solvent partitioning. Petroleum ether, chloroform, ethyl acetate, methanol, and methanol-water (90:10) were the solvents used for the fractionation. The different fractions obtained were then used to perform in vitro antioxidant analyses including, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, ferric reducing properties, and hydroxyl radical scavenging ability. The leaf methanolic extract had a higher lipid content, whereas its chloroform fraction demonstrated a better ability to quench DPPH free radical. The root-bark methanol-water, leaf methanol, fruit pulp chloroform, and leaf petroleum ether fractions demonstrated potent ferric reducing properties. The leaf and stem-bark petroleum ether fractions demonstrated better hydroxyl-free radical scavenging abilities. The leaf and fruit pulp of Annona muricata have a very potent antioxidant ability compared to the other parts of the plant. This can be associated with the rich phytochemicals and other phytoconstituents like phenols, flavonoids, alkaloids, and essential lipids, etc. Significant correlations were observed between the antioxidant status and phytochemicals present. These results thus suggest that some of the reported ethnomedicinal properties of this plant could be due to its antioxidant potentials.
The Health Potential of Fruits and Vegetables Phytochemicals: Notable Examples.
Rodriguez-Casado, Arantxa
2016-05-18
Fruit and vegetables are essential components of a healthy diet. The World Health Organization (WHO) recommends an intake of five to eight portions (400-600 g) daily of fruits and vegetables to reduce risk of cardiovascular disease, cancer, poor cognitive performance, and other diet-related diseases, as well as for the prevention of micronutrient deficiencies. Much of their potential for disease prevention is thought to be provided by phytochemicals, among which the preventive activity of antioxidants is most well documented. Since numerous meta-studies published indicate variable and often contradictory results about the impact of isolated phytochemicals on health, their consumption as supplements must be carried out with care, because doses may exceed the recommended nutritional intake. Nonetheless, there is a general consensus that whole fruit and vegetable intake is more important in providing health benefits than that of only one of their constituent, because of additive and synergistic effects. This review describes the most recent literature regarding the health benefits of some selected fruits and vegetables. Importantly, since some phytochemicals regulate the same genes and pathways targeted by drugs, diets rich in fruits and vegetables in combination with medical therapies are being considered as novel approaches to treatment. Therefore, phytochemicals in fruits and vegetable might be a promising tool for the prevention and/or amelioration of a wide range of diseases.
Cancer Prevention with Promising Natural Products: Mechanisms of Action and Molecular Targets
Pratheeshkumar, Poyil; Sreekala, Chakkenchath; Zhang, Zhuo; Budhraja, Amit; Ding, Songze; Son, Young-Ok; Wang, Xin; Hitron, Andrew; Hyun-Jung, Kim; Wang, Lei; Lee, Jeong-Chae; Shi, Xianglin
2016-01-01
Cancer is the second leading cause of death worldwide. There is greater need for more effective and less toxic therapeutic and preventive strategies. Natural products are becoming an important research area for novel and bioactive molecules for drug discovery. Phytochemicals and dietary compounds have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Many active phytochemicals are in human clinical trials. Studies have indicated that daily consumption of dietary phytochemicals have cancer protective effects against carcinogens. They can inhibit, delay, or reverse carcinogenesis by inducing detoxifying and antioxidant enzymes systems, regulating inflammatory and proliferative signaling pathways, and inducing cell cycle arrest and apoptosis. Epidemiological studies have also revealed that high dietary intakes of fruits and vegetables reduce the risk of cancer. This review discusses potential natural cancer preventive compounds, their molecular targets, and their mechanisms of actions. PMID:22583402
Ahmed, Bilal; Ali Ashfaq, Usman; Usman Mirza, Muhammad
2018-05-01
Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S.
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3–10 in a molecular weight range of 11–170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6–8. PMID:27239343
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence.
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3-10 in a molecular weight range of 11-170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6-8.
Dietary antiaging phytochemicals and mechanisms associated with prolonged survival
Si, Hongwei; Liu, Dongmin
2014-01-01
Aging is well-known an inevitable process that is influenced by genetic, lifestyle and environmental factors. However, the exact mechanisms underlying the aging process are not well understood. Increasing evidence shows that aging is highly associated with chronic increase in reactive oxygen species (ROS), accumulation of a low-grade proinflammatory phenotype and reduction in age-related autophagy, suggesting that these factors may play important roles in promoting aging. Indeed, reduction of ROS and low-grade inflammation and promotion of autophagy by calorie restriction or other dietary manipulation can extend lifespan in a wide spectrum of model organisms. Interestingly, recent studies show that some food-derived small molecules, also called phytochemicals, can extend lifespan in various animal species. In this paper, we review several recently identified potential antiaging phytochemicals that have been studied in cells, animals and humans and further highlight the cellular and molecular mechanisms underlying the antiaging actions by these molecules. PMID:24742470
Gerber, S; Rodolphe, F
1994-06-01
The first step in the construction of a linkage map involves the estimation and test for linkage between all possible pairs of markers. The lod score method is used in many linkage studies for the latter purpose. In contrast with classical statistical tests, this method does not rely on the choice of a first-type error level. We thus provide a comparison between the lod score and a χ (2) test on linkage data from a gymnosperm, the maritime pine. The lod score appears to be a very conservative test with the usual thresholds. Its severity depends on the type of data used.
NASA Astrophysics Data System (ADS)
Mallikarjuna, K.; Balasubramanyam, K.; Narasimha, G.; Kim, Haekyoung
2018-01-01
Green nanobiotechnology using plants, micro-organisms, and their extracts has improved the utilization of natural resources. More efficient and eco-friendly routes are being developed for the creation of benign, biodegradable materials that have medical applicability. We developed silver nanoparticles encapsulated with Sesbania grandiflora (Avisa) leaf extract, which served as a reducing and capping material. The structure and functionalization of the synthesized nanoparticles were investigated using UV-vis, XRD, FE-TEM, SAED, and FTIR analyses. The nanoparticles were found to be isotropic and spherical, with a core of Ag wrapped in phytochemicals. The presence of phytochemicals stabilized the nanoparticles during production by preventing agglomeration. Antibacterial properties against both gram-positive and gram-negative bacteria were also tested. The phytochemical-wrapped silver nanoparticles were more effective antibiotics than were bare silver nanoparticles. The phytochemicals were likely responsible for both direct and indirect improvements in the bactericidal properties of the Ag particles. Additionally, the developed nanoparticles showed higher antibacterial activity towards gram-negative bacteria than towards gram-positive bacteria, with the cell wall playing an important role in adsorption and absorption of Ag+.
Cytoprotective, antihyperglycemic and phytochemical properties of Cocos nucifera (L.) inflorescence.
Renjith, R S; Chikku, A M; Rajamohan, T
2013-10-01
To analyze the cytoprotective and antidiabetic activities as well as phytochemical composition of the immature inflorescence of Cocos nucifera belonging to the Arecaceae Family. The phytochemical screening of inflorescence was done to determine the major constituents present in Cocos nucifera inflorescence. The free radical scavenging potential of inflorescence extracts were evaluated using in vitro radical scavenging assay models. The phytochemical analyses on inflorescence showed the presence of phenolic compounds, flavonoids, resins and alkaloids. The macronutrient analyses, on the other hand, showed the presence of carbohydrate, proteins and fibers. Administration of the methanol extract of coconut inflorescence to the diabetic rats showed dose dependent reduction in hyperglycemia. The cytoprotective property of coconut inflorescence was evidenced from the acute toxicological evaluation. The levels of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were significantly decreased in the diabetic rats treated with inflorescence when compared with the diabetic control rats. The results obtained from the present study apparently proved the non-toxic nature and the cytoprotective and antihyperglycemic properties of coconut inflorescence. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Sagra, J; Ferrandis, P; Plaza-Álvarez, P A; Lucas-Borja, M E; González-Romero, J; Alfaro-Sánchez, R; De Las Heras, J; Moya, D
2018-05-17
Prescribed fires are used as a fuel reduction tool, but heat alter microsite conditions affecting the natural regeneration of Mediterranean pine forests. Our study tested the hypothesis that implementing prescription before or after pine seed release may influence the composition of tree communities by changing the regeneration patterns of Pinus pinaster Aiton across a climatic gradient in the eastern Iberian Peninsula. We ran a seed-sowing experiment to analyse the recruitment patterns of this pine species in prescribed-burned stands, in two different biogeographical seed provenances from wetter and drier areas than the local seeding site. Survival of seedlings was through one year, until the end of the first drought and winter period, respectively. >5400 seeds were sown during the study distributed in sixty plots (30 burned, 30 unburned) per site and treatment, with 10 seeding units per plot. General linear models (GLMs) and ANOVA analyses indicated higher performance for the Drier seed provenance in burned areas, whereas a similar performance was recorded in the control area. Control areas showed higher germination and success rates for plant establishment throughout the study period. Total germination and survival after one year were slightly higher, respectively, at northern sites due to massive mortality during summer in the southern stands. At the burned sites, the mean germination time was significantly longer in those seeds sown before fire passage than those sown after fire. Total germination and successful establishment were significantly higher in the individuals sown before the passage of the fire than in those sown after fire. Most of the mortality occurred in summer for the southern stand, while winter was the most constraining period at the northern sites. The understanding of the dynamics in this species' establishment can help managers to perform a better management planning according to the species' ecology. Copyright © 2018 Elsevier B.V. All rights reserved.
An in-silico investigation of anti-Chagas phytochemicals.
McCulley, Stephanie F; Setzer, William N
2014-01-01
Over 18 million people in tropical and subtropical America are afflicted by American trypanosomiasis or Chagas disease. In humans, symptoms of the disease include fever, swelling, and heart and brain damage, usually leading to death. There is currently no effective treatment for this disease. Plant products continue to be rich sources of clinically useful drugs, and the biodiversity of the Neotropics suggests great phytomedicinal potential. Screening programs have revealed numerous plant species and phytochemical agents that have shown in-vitro or in-vivo antitrypanosomal activity, but the biochemical targets of these phytochemicals are not known. In this work, we present a molecular docking analysis of Neotropical phytochemicals, which have already demonstrated antiparasitic activity against Trypanosoma cruzi, with potential druggable protein targets of the parasite. Several protein targets showed in-silico selectivity for trypanocidal phytochemicals, including trypanothione reductase, pteridine reductase 2, lipoamide dehydrogenase, glucokinase, dihydroorotate dehydrogenase, cruzain, dihydrofolate-reductase/thymidylate-synthase, and farnesyl diphosphate synthase. Some of the phytochemical ligands showed notable docking preference for trypanothione reductase, including flavonoids, fatty-acid-derived oxygenated hydrocarbons, geranylgeraniol and the lignans ganschisandrine and eupomatenoid-6.
Lo Scalzo, Roberto; Picchi, Valentina; Migliori, Carmela Anna; Campanelli, Gabriele; Leteo, Fabrizio; Ferrari, Valentino; Di Cesare, Luigi Francesco
2013-10-30
A three-year field study (2009-2011) was performed to evaluate phytochemicals and antioxidant capacities of two genotypes (HF1 Emeraude and the local variety, Velox) of green cauliflower grown under organic and conventional management. The conventional system increased yield, but had little effect on the dry matter, whereas the organic system increased the soluble solids. Phytochemicals and antioxidant capacity showed significant year-to-year variability. During the third year, the scarce rainfall determined a significant increase of total glucosinolates and a general decrease of antioxidants in all samples. Interestingly, in the same year organic plants were less affected by the unfavorable climatic conditions, as they increased ascorbic acid, polyphenols, and carotenoids with respect to conventional ones. The overall results for the three years showed that the two genotypes responded differently. Compared to the conventional system, Velox showed 24, 21, 13, 48, and 44% higher content of ascorbic acid, polyphenols, carotenoids, volatiles, and antioxidant capacity, respectively. In contrast, no significant increase in the phytochemicals or the antioxidant potential was found in organic Emeraude, with the exception of total volatiles (+41%). These findings suggest that organic cultivation may be highly effective for particular cauliflower genotypes.
Yu, Zhan; Chen, Lee Chuin; Suzuki, Hiroaki; Ariyada, Osamu; Erra-Balsells, Rosa; Nonami, Hiroshi; Hiraoka, Kenzo
2009-12-01
Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.
NASA Astrophysics Data System (ADS)
Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian
2017-11-01
C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).
Phytochemical and biological evaluation of some Sargassum species from Persian Gulf
Mehdinezhad, Negin; Ghannadi, Alireza; Yegdaneh, Afsaneh
2016-01-01
Sea algae are widely consumed in the world. There are several seaweeds including brown algae which are authorized for human consumption. These plants contain important phytochemical constituents and have various potential biological activities. The present study investigated the presence of phytochemical constituents and total phenolic quantity of the seaweeds Sargassum angustifolium, Sargassum oligocystum and Sargassum boveanum. Cytotoxicity of seaweeds was tested against HT-29, HeLa and MCF-7 cell lines. Antioxidant potential of these 3 Sargassum species was also analyzed. Cytotoxicity was characterized by IC50 of human cancer cell lines using sulforhodamine assay. Antioxidant activities were evaluated using 2,2-diphenyl-1- picrylhydrazil. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant compounds in these Sargassum species while cyanogenic and cardiac glycosides were the least ones. Sargassum angustifolium had the highest content of total phenolics (0.061 mg/g) and showed the highest antioxidant activity (IC50 = 0.231). Cytotoxic results showed that all species could inhibit cell growth effectively, especially MCF-7 cell line (IC50 = 67.3, 56.9, 60.4 for S. oligocystum, S. angustifolium and S. boveanum respectively). Considerable phytochemicals and moderate cytotoxic activity of S. angustifolium, S. oligocystum and S. boveanum make them appropriate candidate for further studies and identification of their bioactive principles. PMID:27499794
Phytochemical and biological evaluation of some Sargassum species from Persian Gulf.
Mehdinezhad, Negin; Ghannadi, Alireza; Yegdaneh, Afsaneh
2016-01-01
Sea algae are widely consumed in the world. There are several seaweeds including brown algae which are authorized for human consumption. These plants contain important phytochemical constituents and have various potential biological activities. The present study investigated the presence of phytochemical constituents and total phenolic quantity of the seaweeds Sargassum angustifolium, Sargassum oligocystum and Sargassum boveanum. Cytotoxicity of seaweeds was tested against HT-29, HeLa and MCF-7 cell lines. Antioxidant potential of these 3 Sargassum species was also analyzed. Cytotoxicity was characterized by IC50 of human cancer cell lines using sulforhodamine assay. Antioxidant activities were evaluated using 2,2-diphenyl-1- picrylhydrazil. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant compounds in these Sargassum species while cyanogenic and cardiac glycosides were the least ones. Sargassum angustifolium had the highest content of total phenolics (0.061 mg/g) and showed the highest antioxidant activity (IC50 = 0.231). Cytotoxic results showed that all species could inhibit cell growth effectively, especially MCF-7 cell line (IC50 = 67.3, 56.9, 60.4 for S. oligocystum, S. angustifolium and S. boveanum respectively). Considerable phytochemicals and moderate cytotoxic activity of S. angustifolium, S. oligocystum and S. boveanum make them appropriate candidate for further studies and identification of their bioactive principles.
Bian, Zhong Hua; Yang, Qi Chang; Liu, Wen Ke
2015-03-30
Phytochemicals in vegetables are important for human health, and their biosynthesis, metabolism and accumulation are affected by environmental factors. Light condition (light quality, light intensity and photoperiod) is one of the most important environmental variables in regulating vegetable growth, development and phytochemical accumulation, particularly for vegetables produced in controlled environments. With the development of light-emitting diode (LED) technology, the regulation of light environments has become increasingly feasible for the provision of ideal light quality, intensity and photoperiod for protected facilities. In this review, the effects of light quality regulation on phytochemical accumulation in vegetables produced in controlled environments are identified, highlighting the research progress and advantages of LED technology as a light environment regulation tool for modifying phytochemical accumulation in vegetables. © 2014 Society of Chemical Industry.
Hormonally active phytochemicals and vertebrate evolution.
Lambert, Max R; Edwards, Thea M
2017-06-01
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Nauman, Mohd; Kale, R K; Singh, Rana P
2018-03-07
Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and antioxidants and therefore, might be mainly responsible for the antioxidant properties of S. aegyptiaca, while acetylsalicylic acid provided its maximum anti-inflammatory activity.
Roy, Purabi; Amdekar, Sarika; Kumar, Avnish; Singh, Vinod
2011-08-23
Free radical stress leads to tissue injury and can eventually to arthritis, atherosclerosis, diabetes mellitus, neurodegenerative diseases and carcinogenesis. Several studies are ongoing worldwide to find natural antioxidants of plant origin. We assessed the in-vitro antioxidant activities and screened the phytochemical constituents of methanolic extracts of Pyrostegia venusta (Ker Gawl) Miers. We evaluated the antioxidant potential and phytochemical constituents of P. venusta using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) assays. Gas chromatography-mass spectroscopy (GC-MS) studies were also undertaken to assess the phytochemical composition of the flower extracts. Phytochemical analyses revealed the presence of terpenoids, alkaloids, tannins, steroids, and saponins. The reducing ability of both extracts was in the range (in μm Fe(II)/g) of 112.49-3046.98 compared with butylated hydroxytoluene (BHT; 63.56 ± 2.62), catechin (972.02 ± 0.72 μm) and quercetin 3208.27 ± 31.29. A significant inhibitory effect of extracts of flowers (IC50 = 0.018 ± 0.69 mg/ml) and roots (IC50 = 0.026 ± 0.94 mg/ml) on ABTS free radicals was detected. The antioxidant activity of the extracts of flowers (95%) and roots (94%) on DPPH radicals was comparable with that of ascorbic acid (98.9%) and BHT (97.6%). GC-MS study revealed the presence of myoinositol, hexadecanoic acid, linoleic acid, palmitic acid and oleic acid in the flower extracts. These data suggest that P. venusta is a natural source of antioxidants. The extracts of flowers and roots of P. venusta contain significant amounts of phytochemicals with antioxidative properties and could serve as inhibitors or scavengers of free radicals. P. venusta could be exploited as a potential source for plant-based pharmaceutical products. These results could form a sound basis for further investigation in the potential discovery of new natural bioactive compounds.
The Role of Phytochemicals in the Inflammatory Phase of Wound Healing.
Shah, Ahmed; Amini-Nik, Saeid
2017-05-16
Historically, plant-based products have been the basis of medicine since before the advent of modern Western medicine. Wound dressings made of honey, curcumin and other phytochemical-rich compounds have been traditionally used. Recently, the mechanisms behind many of these traditional therapies have come to light. In this review, we show that in the context of wound healing, there is a global theme of anti-inflammatory and antioxidant phytochemicals in traditional medicine. Although promising, we discuss the limitations of using some of these phytochemicals in order to warrant more research, ideally in randomized clinical trial settings.
The Role of Phytochemicals in the Inflammatory Phase of Wound Healing
Shah, Ahmed; Amini-Nik, Saeid
2017-01-01
Historically, plant-based products have been the basis of medicine since before the advent of modern Western medicine. Wound dressings made of honey, curcumin and other phytochemical-rich compounds have been traditionally used. Recently, the mechanisms behind many of these traditional therapies have come to light. In this review, we show that in the context of wound healing, there is a global theme of anti-inflammatory and antioxidant phytochemicals in traditional medicine. Although promising, we discuss the limitations of using some of these phytochemicals in order to warrant more research, ideally in randomized clinical trial settings. PMID:28509885
Phytochemicals in the Fight Against Cancer.
Davidson, Kristoffer T; Zhu, Ziwen; Fang, Yujiang
2016-10-01
Phytochemicals are chemical compounds from fruits, vegetables, or grains and they have been used to treat various diseases for thousands of years. More than one million people in the United States get cancer each year. Although recent advances in medicine have improved the outcomes for cancer patients, there is still a need for novel approaches in the fight against cancer. One such approach that has shown promise in recent years is the use of phytochemicals alone or as synergistic agents. In this review, we will discuss the use of phytochemicals as therapeutic agents against cancer with an emphasis on apple extract.
Sever, Hakan; Makineci, Ender
2009-08-01
Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.
NASA Astrophysics Data System (ADS)
Hawtree, D.; Nunes, J. P.; Keizer, J. J.; Jacinto, R.; Santos, J.; Rial-Rivas, M. E.; Boulet, A.-K.; Tavares-Wahren, F.; Feger, K.-H.
2014-11-01
The north-central region of Portugal has undergone significant afforestation of the species Pinus pinaster and Eucalyptus globulus since the early 1900s; however, the long-term hydrologic impacts of this land cover change are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 7 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936 to 2010. Meteorological and hydrological records were analysed using a combined Thiel-Sen/Mann-Kendall trend testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there had been no significant reduction in streamflow yield over either the entire test period, or during sub-record periods, despite the large-scale afforestation which had taken place. This lack of change is attributed to both the characteristics of the watershed and the nature of the land cover change. By contrast, a number of significant trends were found for baseflow index, which showed positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by a reversal to negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These changes are attributed to vegetation impacts on streamflow generating processes, both due to the species differences and to alterations in soil properties (i.e. promoting water repellency of the topsoil). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.
Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna
2016-01-01
Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052
Correia, Isabel; Almeida, Maria Helena; Aguiar, Alexandre; Alía, Ricardo; David, Teresa Soares; Pereira, João Santos
2008-10-01
To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (delta(13)C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupim, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, delta(13)C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest delta(13)C. Overall, the variation in delta(13)C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between delta(13)C and growth or survival revealed a distinct pattern for the Mediterranean population, with low delta(13)C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between delta(13)C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and delta(13)C in contrasting environments will enhance our ability to select populations for forestry or conservation.
NASA Astrophysics Data System (ADS)
Hawtree, D.; Nunes, J. P.; Keizer, J. J.; Jacinto, R.; Santos, J.; Rial-Rivas, M. E.; Boulet, A.-K.; Tavares-Wahren, F.; Feger, K.-H.
2015-07-01
The north-central region of Portugal has undergone significant land cover change since the early 1900s, with large-scale replacement of natural vegetation types with plantation forests. This transition consisted of an initial conversion primarily to Pinus pinaster, followed by a secondary transition to Eucalyptus globulus. This land cover change is likely to have altered the hydrologic functioning of this region; however, these potential impacts are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 75 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936-2010. A number of hydrometeorological variables were analyzed using a combined Thiel-Sen/Mann-Kendall trend-testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there have been no significant reductions in streamflow over either the entire test period, or during sub-record periods, despite the large-scale afforestation which has occurred. This lack of change in streamflow is attributed to the specific characteristics of the watershed and land cover change. By contrast, a number of significant trends were found for baseflow index, with positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These trends are attributed to land use and vegetation impacts on streamflow generating processes, both due to species differences and to alterations in soil properties (i.e., infiltration capacity, soil water repellency). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.
Martin, Maria Teresa; Pedranzani, Hilda; García-Molinero, Patricia; Pando, Valentin; Sierra-de-Grado, Rosario
2009-12-01
Two independent parameters, epicotyl height (cm) and number of induced buds were studied on Pinus pinaster explants to analyse the effects of three phytohormones (6-benzylaminopurine, jasmonic acid, ethylene) which were combined or not in 11 different treatments. Epicotyle length diminished significantly in relation to the control medium (medium without exogen phytohormones) in presence of jasmonic acid, 6-benzylaminopurine or Ethephon (which is converted to ethylene in plants) in any of treatments. Concentrations of 100 microM of jasmonic acid and Ethephon had a greater inhibitory effect than the treatments with 10 microM. In addition to that, jasmonic acid was a stronger inhibitor than Ethephon in any of the tried combinations. There were no significant differences between the control treatment and the treatments with only 10 microM of jasmonic acid or Ethephon. However, 10 microM 6-benzylaminopurine induced bud formation. The different combinations of 6-benzylaminopurine with jasmonic acid and Ethephon showed that concentrations of 10 to 100 microM did not affect the number of induced buds. Jasmonic acid had an inhibitory effect which Ethephon only showed when combined with 100 microM of jasmonic acid and 10 microM of 6-benzylaminopurine. Three response groups were defined by cluster analysis: group 1 produced the greatest mean number of buds (4 to 5) and a mean epicotyl growth of 1 to 1.5 cm; group 2 produced 2 to 4 buds and a mean growth of 0.5 to 1.2 cm; group 3 produced only one bud and a mean epicotyl length of 1.2 to 2 cm.
Shin, Na-Rae; Ryu, Hyung-Won; Ko, Je-Won; Park, Ji-Won; Kwon, Ok-Kyoung; Oh, Sei-Ryang; Kim, Jong-Choon; Shin, In-Sik; Ahn, Kyung-Seop
2016-12-24
A standardized bark extract of Pinus pinaster Aiton (Pycnogenol ® ; PYC) used as an herbal medicine to treat various diseases in Europe and North America. This study evaluates the ability of PYC to inhibit chronic obstructive pulmonary disease (COPD) in the cigarette smoke extract (CSE)-stimulated human airway epithelial cell line NCI-H292 and in a cigarette smoke (CS) and lipopolysaccharide (LPS)-induced mouse model. To induce COPD, the mice intranasally received LPS on day 4 and were exposed to CS for 1h per day (total eight cigarettes per day) from days 1-7. The mice were administered PYC at a dose of 15mg/kg and 30mg/kg 1h before CS exposure. In the CSE-stimulated NCI-H292 cells, PYC significantly inhibited Erk phosphorylation, sp1 expression, MUC5AC, and pro-inflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Co-treatment with PYC and Erk inhibitors markedly reduced the levels inflammatory mediators compared to only PYC-treatment. In the COPD mice model, PYC decreased the inflammatory cell count and the levels of pro-inflammatory cytokines in the broncho-alveolar lavage fluid compared with COPD mice. PYC attenuated the recruitment of inflammatory cells in the airways and decreased the expression levels of Erk phosphorylation and sp1. PYC also inhibited the expression of myeloperoxidase and matrix metalloproteinases-9 in lung tissue. Our results indicate that PYC inhibited the reduction in the inflammatory response in CSE-stimulated NCI-H292 cells and the COPD mouse model via the Erk-sp1 pathway. Therefore, we suggest that PYC has the potential to treat COPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida
2007-05-01
We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.
Tree stability under wind: simulating uprooting with root breakage using a finite element method.
Yang, Ming; Défossez, Pauline; Danjon, Frédéric; Fourcaud, Thierry
2014-09-01
Windstorms are the major natural hazard affecting European forests, causing tree damage and timber losses. Modelling tree anchorage mechanisms has progressed with advances in plant architectural modelling, but it is still limited in terms of estimation of anchorage strength. This paper aims to provide a new model for root anchorage, including the successive breakage of roots during uprooting. The model was based on the finite element method. The breakage of individual roots was taken into account using a failure law derived from previous work carried out on fibre metal laminates. Soil mechanical plasticity was considered using the Mohr-Coulomb failure criterion. The mechanical model for roots was implemented in the numerical code ABAQUS using beam elements embedded in a soil block meshed with 3-D solid elements. The model was tested by simulating tree-pulling experiments previously carried out on a tree of Pinus pinaster (maritime pine). Soil mechanical parameters were obtained from laboratory tests. Root system architecture was digitized and imported into ABAQUS while root material properties were estimated from the literature. Numerical simulations of tree-pulling tests exhibited realistic successive root breakages during uprooting, which could be seen in the resulting response curves. Broken roots could be visually located within the root system at any stage of the simulations. The model allowed estimation of anchorage strength in terms of the critical turning moment and accumulated energy, which were in good agreement with in situ measurements. This study provides the first model of tree anchorage strength for P. pinaster derived from the mechanical strength of individual roots. The generic nature of the model permits its further application to other tree species and soil conditions.
Tree stability under wind: simulating uprooting with root breakage using a finite element method
Yang, Ming; Défossez, Pauline; Danjon, Frédéric; Fourcaud, Thierry
2014-01-01
Background and Aims Windstorms are the major natural hazard affecting European forests, causing tree damage and timber losses. Modelling tree anchorage mechanisms has progressed with advances in plant architectural modelling, but it is still limited in terms of estimation of anchorage strength. This paper aims to provide a new model for root anchorage, including the successive breakage of roots during uprooting. Methods The model was based on the finite element method. The breakage of individual roots was taken into account using a failure law derived from previous work carried out on fibre metal laminates. Soil mechanical plasticity was considered using the Mohr–Coulomb failure criterion. The mechanical model for roots was implemented in the numerical code ABAQUS using beam elements embedded in a soil block meshed with 3-D solid elements. The model was tested by simulating tree-pulling experiments previously carried out on a tree of Pinus pinaster (maritime pine). Soil mechanical parameters were obtained from laboratory tests. Root system architecture was digitized and imported into ABAQUS while root material properties were estimated from the literature. Key Results Numerical simulations of tree-pulling tests exhibited realistic successive root breakages during uprooting, which could be seen in the resulting response curves. Broken roots could be visually located within the root system at any stage of the simulations. The model allowed estimation of anchorage strength in terms of the critical turning moment and accumulated energy, which were in good agreement with in situ measurements. Conclusions This study provides the first model of tree anchorage strength for P. pinaster derived from the mechanical strength of individual roots. The generic nature of the model permits its further application to other tree species and soil conditions. PMID:25006178
Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa
2015-03-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ahmad, Feroz; Tabassum, Nahida
2013-01-01
To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L. Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies. Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal. The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential.
Sulforaphane as a potential protective phytochemical against neurodegenerative diseases.
Tarozzi, Andrea; Angeloni, Cristina; Malaguti, Marco; Morroni, Fabiana; Hrelia, Silvana; Hrelia, Patrizia
2013-01-01
A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer's disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration.
Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases
Tarozzi, Andrea; Angeloni, Cristina; Malaguti, Marco; Morroni, Fabiana; Hrelia, Silvana; Hrelia, Patrizia
2013-01-01
A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer's disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration. PMID:23983898
Fanning, Kent J; Topp, Bruce; Russell, Dougal; Stanley, Roger; Netzel, Michael
2014-08-01
Previous reviews of plum phytochemical content and health benefits have concentrated on the European plum, Prunus domestica L. However, the potential bioactivity of red- and dark red-fleshed Japanese plums, Prunus salicina Lindl., so-called blood plums, appears to warrant a significant increase in exposure, as indicated in a recent review of the whole Prunus genus. Furthermore, Japanese plums are the predominant plum produced on an international basis. In this review the nutrient and phytochemical content, breeding, horticultural practice, postharvest treatment and processing as well as bioactivity (emphasising in vivo studies) of Japanese plum are considered, with a focus on the anthocyanin content that distinguishes the blood plums. © 2014 State of Queensland Journal of the Science of Food and Agriculture © 2014 Society of Chemical Industry.
Upadhyay, Abhinav; Arsi, Komala; Wagle, Basanta R.; Upadhyaya, Indu; Shrestha, Sandip; Donoghue, Ann M.; Donoghue, Dan J.
2017-01-01
Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT) production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth) of three GRAS (generally recognized as safe) status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%), carvacrol (CR; 0.001, 0.002%), and eugenol (EG; 0.005, 0.01%) in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2). Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81–176) of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P < 0.05. The majority of phytochemical treatments reduced C. jejuni adhesion, invasion, and translocation of Caco-2 cells (P < 0.05). In addition, the phytochemicals reduced pathogen motility and production of CDT in S-8 and NCTC 11168 (P < 0.05). Real-time quantitative PCR revealed that phytochemicals reduced the transcription of select C. jejuni genes critical for infection in humans (P < 0.05). Results suggest that TC, CR, and EG could potentially be used to control C. jejuni infection in humans. PMID:28487683
Rampogu, Shailima; Baek, Ayoung; Gajula, Rajesh Goud; Zeb, Amir; Bavi, Rohit S; Kumar, Raj; Kim, Yongseong; Kwon, Yong Jung; Lee, Keun Woo
2018-04-02
Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.
In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals.
Burt, S A; Tersteeg-Zijderveld, M H G; Jongerius-Gortemaker, B G M; Vervelde, L; Vernooij, J C M
2013-01-31
Resistance to coccidiostats and possible future restrictions on their use raise the need for alternative methods of reducing coccidiosis in poultry. The aim of this study was to evaluate the effect of selected phytochemicals on Eimeria tenella sporozoite invasion in vitro. Four phytochemicals were selected on the basis that they reduce the virulence of Eimeria spp. and/or provide immune modulatory benefits to host cells: betaine, carvacrol, curcumin and Echinacea purpurea extract (EP). Madin-Darby bovine kidney (MDBK) cells were covered by medium containing phytochemicals at the highest concentration which was non-toxic to the cells. Salinomycin 50 μg/ml was positive control; negative control was medium only. E. tenella (Houghton strain) sporozoites were added to wells and after incubation for 2, 4 or 20 h at 37°C, cells were fixed and stained with hematoxylin-eosin. Ten evenly spaced fields per well were photographed and the percentage of cells invaded by sporozoites was calculated and normalized to the control. At 2h, carvacrol, curcumin and EP showed a significantly lower percentage of sporozoite invasion than the untreated control; in contrast, betaine treatment represented a significantly higher invasion percentage. Combining carvacrol with EP inhibited E. tenella invasion more effectively than applying the compounds individually, but the further addition of curcumin did not reduce invasion further. In conclusion, this study shows that invasion of MDBK epithelial cells by E. tenella sporozoites is inhibited in the presence of carvacrol, curcumin, or EP and enhanced by betaine. There may be potential for developing these phytochemicals as anti-coccidial feed or water additives for poultry. Copyright © 2012 Elsevier B.V. All rights reserved.
Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao
2014-01-01
Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236
NASA Astrophysics Data System (ADS)
Surový, P.; Dorotovič, I.; Karlovský, V.; Rodrigues, J. C.; Rybanský, M.; Fleischer, P.
2010-12-01
In this work we have focused on the analysis of the data on the annual growth of cembra pine (Pinus cembra) grown in the Kôprová dolina Valley in the High Tatra Mountains. The database covers the period of 1406 - 1970, however, the sunspot data (minima and maxima) at the NGDC web site are only available since 1610. Moreover, reliable sunspot data are only available since 1749. The results of this analysis agree with the observation made in our previous work, i.e. there is a negative impact of high SA on the pine tree growth. However, it should be noted that statistical significance of the results is low. We also applied wavelet analysis to the data on the tree growth evolution, with the results indicating growth variations' period of about 20 years (duration of approximately two solar cycles or one magnetic cycle, respectively). A negative impact of the SA was also observed in growth of a 90 year-old maritime pine tree (Pinus pinaster) grown in northern Portugal. The width of the annual rings was smaller in the years of maximum SA; furthermore, it was found that it is the latewood growth that it is affected while the earlywood growth is not, and consequently the latewood additions also show a significative negative correlation with SA.
Bouche, Pauline S; Delzon, Sylvain; Choat, Brendan; Badel, Eric; Brodribb, Timothy J; Burlett, Regis; Cochard, Hervé; Charra-Vaskou, Katline; Lavigne, Bruno; Li, Shan; Mayr, Stefan; Morris, Hugh; Torres-Ruiz, José M; Zufferey, Vivian; Jansen, Steven
2016-04-01
Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought-induced embolism in needles and stems of Pinus pinaster using high-resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra-xylary pathways to declining hydraulic conductance. High-resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem = -3.62 MPa, P50 stem xylem = -3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle = -1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra-xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves. © 2015 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Flavonoid phytochemicals act as both agonists and antagonists of the human estrogen receptors (ERs). While a number of these compounds act by directly binding to the ER, certain phytochemicals, such as the flavonoid compounds chalcone and flavone, elicit antagonistic effects on estrogen signaling in...
Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells
Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon
2016-01-01
Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325
Carrera-Quintanar, Lucrecia; López Roa, Rocío I; Quintero-Fabián, Saray; Sánchez-Sánchez, Marina A; Vizmanos, Barbara; Ortuño-Sahagún, Daniel
2018-01-01
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you "feed your microbiota and are fed by it." GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.
Sánchez-Sánchez, Marina A.; Vizmanos, Barbara
2018-01-01
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases. PMID:29785173
Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young
2014-01-01
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636
Aiyegoro, Olayinka A; Okoh, Anthony I
2010-05-14
Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines.
Gu, Junnan; Ahn-Jarvis, Jennifer H; Vodovotz, Yael
2015-03-01
Three forms of confections containing black raspberries (BRB) powder were developed to provide controlled release of phytochemicals for oral disease prevention. Our objective was to investigate the impact of varying confection matrices on the release rate of BRB phytochemicals. Confections were developed and prepared. Textural properties of confections were analyzed, compared and correlated with the release rate of phytochemicals from BRB confections with in vitro dissolution test. In the results, BRB content reached 22% in hard candy and pectin-based confections and 40% in starch-based confections, respectively. Pectin- and starch-based confections retained >93% of its original anthocyanins after processing while hard candy had 59%. Starch confections showed higher G' in rheological analysis and higher hardness but lower cohesiveness and springiness in textural profile analysis than pectin confections (P < 0.05). The confection types showed different microstructure with scanning electronic microscopy (SEM). Corresponding to their physicochemical properties, confections showed fast (hard candy), intermediate (pectin confections), and slow (starch confections) release rates with a final releasing time of 90, 150, and 540 min in dissolution studies. Three confections were rated between neither like nor dislike to like slightly (n = 60). Pectin confections had the highest overall acceptance (like slightly) and 62% of subjects rated this type of confection as the most liked ones. These results indicate that delivery matrix could modulate the phytochemical release rate from BRB confection and also influence sensory preference. © 2015 Institute of Food Technologists®
On the use of phloem sap δ13C to estimate canopy carbon discrimination
NASA Astrophysics Data System (ADS)
Rascher, Katherine; Máguas, Cristina; Werner, Christiane
2010-05-01
Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion along the canopy to trunk continuum. We further hypothesize that pronounced depletion along the basipetal transport pathway in A. longifolia (more than 6 per mil from leaf water soluble organic matter to trunk phloem sap) may be due to high stem photosynthesis rates in this green-barked legume. Regardless of these fractionation effects, phloem sap d13C correlated well with environmental parameters driving photosynthesis (photosynthetic photon flux density, soil moisture, vapor pressure deficit) for both species indicating that phloem sap d13C is a good integrative tracer of changes in canopy-level carbon discrimination once species-specific differences in post-photosynthetic fractionation are accounted for. Furthermore, we illustrate that combining sap flow estimated canopy stomatal conductance (gs) with measurements of phloem sap d13C (adjusted for post-photosynthetic fractionation) has significant potential as a relatively non-intensive method for estimating canopy-level carbon assimilation rates in field studies.
Are all phytochemicals useful in the preventing of DNA damage?
Bacanlı, Merve; Aydın, Sevtap; Başaran, A Ahmet; Başaran, Nurşen
2017-11-01
Phytochemicals derived from natural plants have been used commonly for the prevention and/or treatment of different diseases due to the belief of their safety. Many plant species synthesize toxic chemicals. New natural chemicals are being discovered but their toxic effects are unknown. Phytochemicals have been regarded as possible antioxidants. But on the other hand it is suggested that various phenolic antioxidants can display pro-oxidant properties at high doses. In this review, the role of some phytochemicals (epigallocathecin gallate, carvacrol, galangin, limonene, lycopene, naringin, puerarin, terpinene, thymol and ursolic acid) on the prevention of DNA damage will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gu, Shaobin; Wu, Ying; Yang, Jianbo
2016-01-01
As a well known anti-neoplastic drug, the cytogenotoxicity of methotrexate (MTX) has received more attention in recent years. To develop a new cytoprotector to reduce the risk of second cancers caused by methotrexate, an umu test combined with a micronucleus assay was employed to estimate the cytoprotective effects of ten kinds of bioactive phytochemicals and their combinations. The results showed that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones had higher antimutagenic activities than other phytochemicals. At the highest dose tested, the MTX genetoxicity was suppressed by 34.03%∼67.12%. Of all the bioactive phytochemical combinations, the combination of grape seed proanthocyanidins and eleutherosides from Siberian ginseng as well as green tea polyphenols and eleutherosides exhibited stronger antimutagenic effects; the inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5% and 71.8 ± 4.7%. Pretreatment of Kunming mice with phytochemical combinations revealed an obvious reduction in micronucleus and sperm abnormality rates following exposure to MTX (p < 0.01). Moreover, significant increases in thymus and spleen indices were observed in cytoprotector candidates in treated groups. The results indicated that bioactive phytochemicals combinations had the potential to be used as new cytoprotectors.
Wu, Sheng; Tian, Li
2017-09-25
Having served as a symbolic fruit since ancient times, pomegranate ( Punica granatum ) has also gained considerable recognition as a functional food in the modern era. A large body of literature has linked pomegranate polyphenols, particularly anthocyanins (ATs) and hydrolyzable tannins (HTs), to the health-promoting activities of pomegranate juice and fruit extracts. However, it remains unclear as to how, and to what extent, the numerous phytochemicals in pomegranate may interact and exert cooperative activities in humans. In this review, we examine the structural and analytical information of the diverse phytochemicals that have been identified in different pomegranate tissues, to establish a knowledge base for characterization of metabolite profiles, discovery of novel phytochemicals, and investigation of phytochemical interactions in pomegranate. We also assess recent findings on the function and molecular mechanism of ATs as well as urolithins, the intestinal microbial derivatives of pomegranate HTs, on human nutrition and health. A better understanding of the structural diversity of pomegranate phytochemicals as well as their bioconversions and bioactivities in humans will facilitate the interrogation of their synergistic/antagonistic interactions and accelerate their applications in dietary-based cancer chemoprevention and treatment in the future.
Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention.
Shukla, Samriddhi; Meeran, Syed M; Katiyar, Santosh K
2014-12-01
The growing interest in cancer epigenetics is largely due to the reversible nature of epigenetic changes which tend to alter during the course of carcinogenesis. Major epigenetic changes including DNA methylation, chromatin modifications and miRNA regulation play important roles in tumorigenic process. There are several epigenetically active synthetic molecules such as DNA methyltransferase (DNMTs) and histone deacetylases (HDACs) inhibitors, which are either approved or, are under clinical trials for the treatment of various cancers. However, most of the synthetic inhibitors have shown adverse side effects, narrow in their specificity and also expensive. Hence, bioactive phytochemicals, which are widely available with lesser toxic effects, have been tested for their role in epigenetic modulatory activities in gene regulation for cancer prevention and therapy. Encouragingly, many bioactive phytochemicals potentially altered the expression of key tumor suppressor genes, tumor promoter genes and oncogenes through modulation of DNA methylation and chromatin modification in cancer. These bioactive phytochemicals either alone or in combination with other phytochemicals showed promising results against various cancers. Here, we summarize and discuss the role of some commonly investigated phytochemicals and their epigenetic targets that are of particular interest in cancer prevention and cancer therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention
Shukla, Samriddhi; Meeran, Syed M.; Katiyar, Santosh K.
2014-01-01
The growing interest in cancer epigenetics is largely due to the reversible nature of epigenetic changes which tend to alter during the course of carcinogenesis. Major epigenetic changes including DNA methylation, chromatin modifications and miRNA regulation play important roles in tumorigenic process. There are several epigenetically active synthetic molecules such as DNA methyltransferase (DNMTs) and histone deacetylases (HDACs) inhibitors, which are either approved or, are under clinical trials for the treatment of various cancers. However, most of the synthetic inhibitors have shown adverse side effects, narrow in their specificity and also expensive. Hence, bioactive phytochemicals, which are widely available with lesser toxic effects, have been tested for their role in epigenetic modulatory activities in gene regulation for cancer prevention and therapy. Encouragingly, many bioactive phytochemicals potentially altered the expression of key tumor suppressor genes, tumor promoter genes and oncogenes through modulation of DNA methylation and chromatin modification in cancer. These bioactive phytochemicals either alone or in combination with other phytochemicals showed promising results against various cancers. Here, we summarize and discuss the role of some commonly investigated phytochemicals and their epigenetic targets that are of particular interest in cancer prevention and cancer therapy. PMID:25236912
In Nutrition, Can We “See” What Is Good for Us?123
Barnes, Stephen; Prasain, Jeevan; Kim, Helen
2013-01-01
The selection of foods to eat is a complex interplay of vision, taste, smell, and texture. In addition to micro- and macronutrients, plant-based foods also contain several classes of phytochemicals. In many cases, the phytochemicals account for the various colors of foods. Although aesthetically pleasing, the color of foods may mislead consumers as to their phytochemical content, which is particularly true with regard to polyphenols. Polyphenols are a broad class of compounds with antioxidant and other health benefits. Human vision is limited to a small window (390–765 nm) of the electromagnetic spectrum. Many important phytochemicals (e.g., vitamin C) have no absorbance in this range. Therefore, the human eye cannot directly judge the vitamin C content of foods. Being able to see in the ultraviolet range allows bees to locate the pollen-rich region of flowers, whereas pit vipers locate their prey by being able to “see” them in the infrared range. Assessing the impact of phytochemicals on human health depends on several factors. Colorless phytochemicals in unprocessed foods may be lost during the cooking process because no visual guide exists to ensure their retention. The molecular structures of phytochemicals influence the extent to which they are altered by cooking processes and the methods by which they are absorbed from the gastrointestinal tract. Extensive metabolism by phase I/II enzymes and by the gut microbiome may also create compounds that the eye is never allowed to appreciate. PMID:23674801
Brewer, Dawn; Dickens, Emily; Humphrey, Alyson; Stephenson, Tammy
2016-01-01
The purpose of this study was to determine if the amount and variety of fruits and vegetables consumed increased among community-dwelling older adults participating in Kentucky's congregate meal site program following a series of five nutrition education lessons. A convenience sample of older adults attending senior centers (n=35), two intervention (n=19) and two control (n=16) centers, participated in this quasi-experimental pilot study. Following the intervention there was a significant increase in actual fruit and vegetable intake in the intervention group (p<0.05) as assessed by plate waste measurements of the congregate lunch meal. In addition, from pre- to post-intervention, a trend towards increased self-reported intake in the variety of fruit and vegetables was observed among the intervention group. As well, a significant increase in the number of days intervention participants self-reported consuming at least 4.5 cups of fruits and vegetables in the last seven days (2.44±2.09 days to 4.28±1.99 days (p=0.004)) was observed; and knowledge pertaining to phytochemicals increased (p<0.05). The phytochemical index (PI) score of the lunch meal, taking into account that the older adults consumption of meal components, including phytochemical-rich foods, was 26.9. Overall, study results indicated that a short theory-based nutrition education program offered to community-dwelling older adults was linked to an increase in fruit and vegetable consumption and phytochemical knowledge. PMID:28642630
Oszmiański, Jan; Kolniak-Ostek, Joanna; Lachowicz, Sabina; Gorzelany, Józef; Matłok, Natalia
2017-11-01
Cranberries can be a component of a healthy diet, because they are a great source of health-promoting compounds and nutrients. The aims of this study were to evaluated phytochemicals and antioxidant activity in 6 cultivars of cranberry fruit grown in Poland. The content of polyphenols, carotenoids, chlorophylls, and triterpenoids were determined with the use of UPLC-PDA-MS/MS, although antioxidant activity was examined with DPPH, ABTS, and FRAP assays. The cvs. "Franklin," "Howes," and "Stevens" were characterized by the highest concentration of total polyphenols (4219, 3995, and 3584 mg/100 g dm), triterpenoids (3582, 3671, and 3451 mg/kg dm), carotenoids (9.75, 8.52, and 7.94 mg/kg dm), and antioxidant activity (ABTS: 226, 264, 246; FRAP: 102, 139, 124; DPPH: 235, 320, 284 μmolTE/g dm), making these 3 cultivars especially recommendable for consumption. Furthermore, a positive correlation between content of phytochemicals and antioxidant activity was found. The manuscript "Phytochemical compounds and antioxidant activity in different cultivars of cranberry (Vaccinium macrocarpon L)" represents cultivars commonly grown in Poland that maybe beneficial offer the food industry, to develop attractive foods with a high content of biologically active substances. © 2017 Institute of Food Technologists®.
Chemical evidence for the liverwort complex, Chiloscyphus concavus and C. horizontalis.
Cuvertino-Santoni, Jorge; Asakawa, Yoshinori; Peralta, Denilson F; Montenegro, Gloria
2014-07-01
During the phytochemical study of Chilean liverworts from Tierra del Fuego, two species were collected, Chiloscyphus concavus (Steph.) Hässel and C. horizontalis (Hook.) Nees. Their crude extracts, when analyzed by TLC and GC-MS, showed identical phytochemical profiles. In view of the macro- and micro-morphological differences used for the separation of both species, and the chemical evidence here presented, we conclude that variety is the more appropriate status for C. concavus.
Alvarenga, Felipe Queiroz; Mota, Bárbara C F; Leite, Marcel N; Fonseca, Jaciara M S; Oliveira, Dario A; Royo, Vanessa de Andrade; e Silva, Márcio L A; Esperandim, Viviane; Borges, Alexandre; Laurentiz, Rosangela S
2013-10-28
Psidium cattleianum Sabine is extensively used in Brazilian traditional medicine to treat several diseases including painful disorders. Aim of the study to investigate the toxicity and the possible analgesic activities of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine (ELPCS), to support its use in folk medicine. To screen the major phytochemical constituents of this extract and evaluate their antioxidant activity. ELPCS was assessed for its antioxidant activity using the DPPH model. Its analgesic activity was examined using mouse models of acetic acid-induced writhing and hot plate paw licking models. The major phytochemical constituents of the extract were screened; their toxicity on LLC-MK2 mammalian cells was evaluated. ELPCS exhibited significant peripheral analgesic activity at doses of 60, 80, 100, 200 and 400mg/kg in mice, but it did not display central analgesic activity and not was toxic to LLC-MK2 cell (LD50>400 µg/mL). The extract exhibited free radical scavenging activity as evidenced by IC50 values (15.9 µg/mL) obtained by the DPPH method. Phytochemical screening detected flavonoids, saponins, cardiac glycosides, anthraquinones, and tannins. The results of the experimental studies proved the analgesic activity of ELPCS and supported the traditional use of this plant. © 2013 Elsevier Ireland Ltd. All rights reserved.
Goc, A; Niedzwiecki, A; Rath, M
2015-12-01
Little is known about the effects of phytochemicals against Borrelia sp. causing Lyme disease. Current therapeutic approach to this disease is limited to antibiotics. This study examined the anti-borreliae efficacy of several plant-derived compounds and micronutrients. We tested the efficacy of 15 phytochemicals and micronutrients against three morphological forms of Borrelia burgdoferi and Borrelia garinii: spirochetes, latent rounded forms and biofilm. The results showed that the most potent substances against the spirochete and rounded forms of B. burgdorferi and B. garinii were cis-2-decenoic acid, baicalein, monolaurin and kelp (iodine); whereas, only baicalein and monolaurin revealed significant activity against the biofilm. Moreover, cis-2-decenoic acid, baicalein and monolaurin did not cause statistically significant cytotoxicity to human HepG2 cells up to 125 μg ml(-1) and kelp up to 20 μg ml(-1) . The most effective antimicrobial compounds against all morphological forms of the two tested Borrelia sp. were baicalein and monolaurin. This might indicate that the presence of fatty acid and phenyl groups is important for comprehensive antibacterial activity. This study reveals the potential of phytochemicals as an important tool in the fight against the species of Borrelia causing Lyme disease. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems
NASA Astrophysics Data System (ADS)
Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.
2011-12-01
In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep rooted species and phreatophytes, which seem to depend heavily on access to GW.
Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings.
Toca, Andrei; Oliet, Juan A; Villar-Salvador, Pedro; Maroto, Judit; Jacobs, Douglass F
2018-01-01
Frost determines the evolution and distribution of plants in temperate and cold regions. Several environmental factors can influence frost acclimation of woody plants but the magnitude and direction of the effect of nitrogen (N) availability is controversial. We studied the effect of N availability on root and shoot frost tolerance in mid-fall and in winter in seedlings of four pines of contrasting ecology: Pinus nigra J.F. Arnold, P. pinaster Ait., P. pinea L. and P. halepensis Mill.. Organ N and soluble sugar concentration, and timing of cessation of shoot elongation were measured to assess the physiological mechanisms underlying frost acclimation. Nitrogen was supplied at high and low rates only during the pre-hardening period and at a moderate N rate during hardening in the fall. Shoot frost tolerance increased over winter while root frost tolerance did not change in any species. Pre-hardening N availability affected the frost tolerance of both roots and shoots, although the effect was species-specific: high N reduced the overall root and shoot frost tolerance in P. pinea and P. halepensis, and increased the frost tolerance in P. nigra, but had no effect in P. pinaster. Nitrogen supply in the fall consistently increased frost tolerance in all species. Differences in frost tolerance among species and N treatments were not explained by variations in organ N or soluble carbohydrate concentration, nor by timing of cessation of shoot elongation; however, the most frost tolerant species ceased elongation earlier than the least frost tolerant species. Despite the close phylogenetic relatedness of the studied species, the effect of N availability on seedling frost tolerance differed among species, indicating that species ecology (especially frost acclimation physiology) and timing of N supply drives the effect of N availability on frost tolerance of pine species. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Brazaitytė, A.; Viršilė, A.; Jankauskienė, J.; Sakalauskienė, S.; Samuolienė, G.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Miliauskienė, J.; Vaštakaitė, V.; Bagdonavičienė, A.; Duchovskis, P.
2015-01-01
In this study, we sought to find and employ positive effects of UV-A irradiation on cultivation and quality of microgreens. Therefore, the goal of our study was to investigate the influence of 366, 390, and 402 nm UV-A LED wavelengths, supplemental for the basal solid-state lighting system at two UV-A irradiation levels on the growth and phytochemical contents of different microgreen plants. Depending on the species, supplemental UV-A irradiation can improve antioxidant properties of microgreens. In many cases, a significant increase in the investigated phytochemicals was found under 366 and 390 nm UV-A wavelengths at the photon flux density (12.4 μmol m-2 s-1). The most pronounced effect of supplemental UV-A irradiation was detected in pak choi microgreens. Almost all supplemental UV-A irradiation treatments resulted in increased leaf area and fresh weight, in higher 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging activity, total phenols, anthocyanins, ascorbic acid, and α-tocopherol.
Pilatti, D M; Fortes, A M T; Jorge, T C M; Boiago, N P
2018-06-14
The expression of chemical compounds by individual plants of the same species in different locations may be affected by abiotic factors resulting in differences in the production of allelopathic compounds. The objective of this study was to compare the phytochemical profiles of plant species from two different forest formations in the state of Paraná, Brazil. The forest formations were Seasonal Semideciduous Forest (SSF) and Lowland Ombrophilous Dense Forest (LODF), and the five study species were Jacaranda micrantha, Cecropia pachystachya, Mimosa bimucronata, Schinus terebinthifolius and Cedrela fissilis. Secondary metabolites were extracted by exhaustive extraction with methanol, and the crude extract was fractionated using column chromatography. The fractions were used to calculate the retention factor of the main compounds using thin layer chromatography and phytochemical tests. The classes of compounds identified were practically the same among the analyzed species, however, at different levels of concentration. The type of tannins found in S. terebinthifolius differed between the two forest formations.
Boselli, Mauro; Pellizzari, Giuseppina
2016-02-19
The Asiatic Kuwana pine mealybug, Crisicoccus pini (Kuwana, 1902) (Hemiptera, Pseudococcidae), is reported in Italy for the first time. It was detected in September 2015 on maritime pine, Pinus pinaster, and stone pine, Pinus pinea, trees growing in the town of Cervia (Ravenna Province), Northern Italy. The mealybug has caused yellowing and decline of the pine trees. Pinus pinea is recorded here as a new host for C. pini.
Ahmad, Feroz; Tabassum, Nahida
2013-01-01
Objective To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L. Methods Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies. Result Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal. Conclusions The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential. PMID:23570019
Durak, Agata; Gawlik-Dziki, Urszula
2014-01-01
Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study. PMID:25013777
Awad, Nagwa E; Seida, Ahmed A; Hamed, Manal A; Mahmoud, Ahlam H; Elbatanony, Marwa M
2012-01-01
Phytochemical screening of air-dried leaves and fruit juice of certain Ficus and Morus spp. have been studied. In an in vitro study, the ethanol and hexane extracts of the investigated plants were evaluated against hyperlipidaemia by estimating the rate limiting enzyme of cholesterol biothenysis; β-hydroxy-β-methylglutaryl coenzyme A reductase (HMG-CoA reductase). The antioxidant activity was evaluated by reduction of DPPH(-) free radical. Extra phytochemical screening of Ficus extracts was undertaken, which recorded potent hypolipidaemic and antioxidant activities. The more pronounced extract, Ficus mysorensis (hexane extract), was evaluated in vivo by estimation of the lipid profile and certain antioxidant parameters in hypercholesterolemic rats. The hexane fraction was chromatographed and six isolated compounds were identified. Furthermore, its saponifiable fraction was identified by a MS/MS technique. In conclusion, F. mysorensis recorded hypolipidaemic and antioxidant effects. Detailed studies of the isolated compounds must be undertaken for an evaluation against hypercholesterolemia and free radical elevation.
Ajibade, Temitayo Olabisi; Arowolo, Ruben; Olayemi, Funsho Olakitike
2013-05-07
The seeds of Moringa oleifera were collected, air-dried, pulverized, and subjected to cold extraction with methanol. The methanol extract was screened phytochemically for its chemical components and used for acute and sub-acute toxicity studies in rats. The phytochemical screening revealed the presence of saponins, tannins, terpenes, alkaloids, flavonoids, carbohydrates, and cardiac glycosides but the absence of anthraquinones. Although signs of acute toxicity were observed at a dose of 4,000 mg kg-1 in the acute toxicity test, and mortality was recorded at 5,000 mg kg-1, no adverse effect was observed at concentrations lower than 3,000 mg kg-1. The median lethal dose of the extract in rat was 3,873 mg kg-1. Sub-acute administration of the seed extract caused significant (p<0.05) increase in the levels of alanine and aspartate transferases (ALT and AST), and significant (p<0.05) decrease in weight of experimental rats, at 1,600 mg kg-1. The study concludes that the extract of seeds of M. oleifera is safe both for medicinal and nutritional uses.
Devi, Nisha S; Ramanan, Meera; Paragi-Vedanthi, Padmapriya; Doble, Mukesh
2017-03-11
The arachidonic acid pathway consists of several enzymes and targeting them is favored for developing anti-inflammatory drugs. However, till date the current drugs are generally active against a single target, leading to undesirable side-effects. Phytochemicals are known to inhibit multiple targets simultaneously and hence, an attempt is made here to investigate their suitability. A pharmacophore based study is performed with three sets of reported phytochemicals namely, dual 5-LOX/mPGES1, alkaloids and FLAP inhibitors. The analysis indicated that phenylpropanoids (including ferulic acid) and benzoic acids derivatives, and berberine mapped onto these pharmacophores with three hydrophobic centroids and an acceptor feature. 2,4,5-trimethoxy (7) and 3,4-dimethoxy cinnamic acids (8) mapped onto all the three pharmacophores. Experimental studies indicated that berberine inhibited 5-LOX (100 μM) and PGE 2 (50 μM) production by 72.2 and 72.0% and ferulic acid by 74.3 and 54.4% respectively. This approach offers a promising theoretical combined with experimental strategy for designing novel molecules against inflammatory enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.
Lead Phytochemicals for Anticancer Drug Development
Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S.; Kumar, Ashok
2016-01-01
Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed. PMID:27877185
Potential benefits of phytochemicals against Alzheimer's disease.
Wightman, Emma L
2017-05-01
Our current therapeutic drugs for Alzheimer's disease are predominantly derived from the alkaloid class of plant phytochemicals. These drugs, such as galantamine and rivastigmine, attenuate the decline in the cholinergic system but, as the alkaloids occupy the most dangerous end of the phytochemical spectrum (indeed they function as feeding deterrents and poisons to other organisms within the plant itself), they are often associated with unpleasant side effects. In addition, these cholinesterase inhibiting alkaloids target only one system in a disorder, which is typified by multifactorial deficits. The present paper will look at the more benign terpene (such as Ginkgo biloba, Ginseng, Melissa officinalis (lemon balm) and Salvia lavandulaefolia (sage)) and phenolic (such as resveratrol) phytochemicals; arguing that they offer a safer alternative and that, as well as demonstrating efficacy in cholinesterase inhibition, these phytochemicals are able to target other salient systems such as cerebral blood flow, free radical scavenging, anti-inflammation, inhibition of amyloid-β neurotoxicity, glucoregulation and interaction with other neurotransmitters (such as γ-aminobutyric acid) and signalling pathways (e.g. via kinase enzymes).
Chen, Hongyu; Liu, Rui Hai
2018-04-04
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Plants provide many beneficial nutrients (phytochemicals) which may protect against cancer. Isothiocyanates (found in broccoli, cauliflower and brussel sprouts) may suppress tumor growth and hormone production. Flavonoids ( ...
Wong, Vincent Kam-Wai; Law, Betty Yuen-Kwan; Yao, Xiao-Jun; Chen, Xi; Xu, Su Wei; Liu, Liang; Leung, Elaine Lai-Han
2016-09-01
Traditional biotechnology has been utilized by human civilization for long in wide aspects of our daily life, such as wine and vinegar production, which can generate new phytochemicals from natural products using micro-organism. Today, with advanced biotechnology, diverse applications and advantages have been exhibited not only in bringing benefits to increase the diversity and composition of herbal phytochemicals, but also helping to elucidate the treatment mechanism and accelerate new drug discovery from Chinese herbal medicine (CHM). Applications on phytochemical biotechnologies and microbial biotechnologies have been promoted to enhance phytochemical diversity. Cell labeling and imaging technology and -omics technology have been utilized to elucidate CHM treatment mechanism. Application of computational methods, such as chemoinformatics and bioinformatics provide new insights on direct target of CHM. Overall, these technologies provide efficient ways to overcome the bottleneck of CHM, such as helping to increase the phytochemical diversity, match their molecular targets and elucidate the treatment mechanism. Potentially, new oriented herbal phytochemicals and their corresponding drug targets can be identified. In perspective, tighter integration of multi-disciplinary biotechnology and computational technology will be the cornerstone to accelerate new arena formation, advancement and revolution in the fields of CHM and world pharmaceutical industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells.
Scarpa, Emanuele-Salvatore; Ninfali, Paolino
2015-07-10
The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs' self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs.
Islam, Md Soriful; Akhtar, Most Mauluda; Ciavattini, Andrea; Giannubilo, Stefano Raffaele; Protic, Olga; Janjusevic, Milijana; Procopio, Antonio Domenico; Segars, James H.; Castellucci, Mario; Ciarmela, Pasquapina
2014-01-01
Uterine leiomyomas (fibroids, myomas) are the most common benign tumors of female reproductive tract. They are highly prevalent, with 70–80% of women burdened by the end of their reproductive years. Fibroids are a leading cause of pelvic pain, abnormal vaginal bleeding, pressure on the bladder, miscarriage, and infertility. They are the leading indication for hysterectomy, and costs exceed 6 billion dollars annually in the United States. Unfortunately, no long-term medical treatments are available. Dysregulation of inflammatory processes are thought to be involved in the initiation of leiomyoma and extracellular matrix deposition, cell proliferation, and angiogenesis are the key cellular events implicated in leiomyoma growth. In modern pharmaceutical industries, dietary phytochemicals are used as source of new potential drugs for many kinds of tumors. Dietary phytochemicals may exert therapeutic effects by interfering with key cellular events of the tumorigenesis process. At present, a negligible number of phytochemicals have been tested as therapeutic agents against fibroids. In this context, our aim was to introduce some of the potential dietary phytochemicals that have shown anti-inflammatory, antiproliferative, antifibrotic, and antiangiogenic activities in different biological systems. This review could be useful to stimulate the evaluation of these phytochemicals as possible therapies for uterine fibroids. PMID:24976593
Biological Activity and Phytochemical Study of Scutellaria platystegia.
Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh
2015-01-01
This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.
Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq
2017-10-01
In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.
2010-01-01
Background Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. Methods We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Results Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Conclusions Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines. PMID:20470421
Kim, Tae Hwan; Shin, Soyoung; Yoo, Sun Dong; Shin, Beom Soo
2018-02-07
Pungent spice constituents such as piperine, capsaicin and [6]-gingerol consumed via daily diet or traditional Chinese medicine, have been reported to possess various pharmacological activities. These dietary phytochemicals have also been reported to inhibit P-glycoprotein (P-gp) in vitro and act as an alternative to synthetic P-gp modulators. However, the in vivo effects on P-gp inhibition are currently unknown. This study aimed to test the hypothesis that phytochemical P-gp inhibitors, i.e., piperine, capsaicin and [6]-gingerol, modulate the in vivo tissue distribution of doxorubicin, a representative P-gp substrate. Mice were divided into four groups and each group was pretreated with intraperitoneal injections of control vehicle, piperine, capsaicin, or [6]-gingerol and doxorubicin (1 mg/kg) was administered via the penile vein. The concentrations of the phytochemicals and doxorubicin in the plasma and tissues were determined by LC-MS/MS. The overall plasma concentration-time profiles of doxorubicin were not significantly affected by piperine, capsaicin, or [6]-gingerol. In contrast, doxorubicin accumulation was observed in tissues pretreated with piperine or capsaicin. The tissue to plasma partition coefficients, K p , for the liver and kidney were higher in the piperine-pretreated group, while the K p for kidney, brain and liver were higher in the capsaicin-pretreated group. [6]-Gingerol did not affect doxorubicin tissue distribution. The data demonstrated that the phytochemicals modulated doxorubicin tissue distribution, which suggested their potential to induce food-drug interactions and act as a strategy for the delivery of P-gp substrate drugs to target tissues and tumors.
Hushmendy, Shazaan; Jayakumar, Lalithapriya; Hahn, Amy B.; Bhoiwala, Devang; Bhoiwala, Dipti L.; Crawford, Dana R.
2009-01-01
We have considered a novel “rational” gene targeting approach for treating pathologies whose genetic bases are defined using select phytochemicals. We reason that one such potential application of this approach would be conditions requiring immunosuppression such as autoimmune disease and transplantation, where the genetic target is clearly defined; i.e., interleukin-2 and associated T-cell activation. Therefore, we hypothesized that select phytochemicals can suppress T-lymphocyte proliferation both in vitro and in vivo. The immunosuppressive effects of berry extract, curcumin, quercetin, sulforaphane, epigallocatechin gallate (EGCG), resveratrol, α-tocopherol, vitamin C and sucrose were tested on anti-CD3 plus anti-CD28-activated primary human T-lymphocytes in culture. Curcumin, sulforaphane, quercetin, berry extract and EGCG all significantly inhibited T-cell proliferation, and this effect was not due to toxicity. IL-2 production was also reduced by these agents, implicating this important T-cell cytokine in proliferation suppression. Except for berry extract, these same agents also inhibited mouse splenic T-cell proliferation and IL-2 production. Subsequent in vivo studies revealed that quercetin (but not sulforaphane) modestly suppressed mouse splenocyte proliferation following supplementation of BALB/c mice diets. This effect was especially prominent if corrected for the loss of supplement “recall” as observed in cultured T-cells. These results suggest the potential use of these select phytochemicals for treating autoimmune and transplant patients, and support our strategy of using select phytochemicals to treat genetically-defined pathologies, an approach that we believe is simple, healthy, and cost-effective. PMID:19761891
Uckoo, Ram M; Jayaprakasha, Guddadarangavvanahally K; Balasubramaniam, V M; Patil, Bhimanagouda S
2012-09-01
Grapefruits (Citrus paradisi Macfad) contain several phytochemicals known to have health maintaining properties. Due to the consumer's interest in obtaining high levels of these phytochemicals, it is important to understand the changes in their levels by common household processing techniques. Therefore, mature Texas "Rio Red" grapefruits were processed by some of the common household processing practices such as blending, juicing, and hand squeezing techniques and analyzed for their phytochemical content by high performance liquid chromatography (HPLC). Results suggest that grapefruit juice processed by blending had significantly (P < 0.05) higher levels of flavonoids (narirutin, naringin, hesperidin, neohesperidin, didymin, and poncirin) and limonin compared to juicing and hand squeezing. No significant variation in their content was noticed in the juice processed by juicing and hand squeezing. Ascorbic acid and citric acid were significantly (P < 0.05) higher in juice processed by juicing and blending, respectively. Furthermore, hand squeezed fruit juice had significantly higher contents of dihydroxybergamottin (DHB) than juice processed by juicing and blending. Bergamottin and 5-methoxy-7 gernoxycoumarin (5-M-7-GC) were significantly higher in blended juice compared to juicing and hand squeezing. Therefore, consuming grapefruit juice processed by blending may provide higher levels of health beneficial phytochemicals such as naringin, narirutin, and poncirin. In contrast, juice processed by hand squeezing and juicing provides lower levels of limonin, bergamottin, and 5-M-7-GC. These results suggest that, processing techniques significantly influence the levels of phytochemicals and blending is a better technique for obtaining higher levels of health beneficial phytochemicals from grapefruits. Practical Application: Blending, squeezing, and juicing are common household processing techniques used for obtaining fresh grapefruit juice. Understanding the levels of health beneficial phytochemicals present in the juice processed by these techniques would enable the consumers to make a better choice to obtain high level of these compounds. © 2012 Institute of Food Technologists®
Medicinal plants used by the Tamang community in the Makawanpur district of central Nepal
2014-01-01
Background We can conserve cultural heritage and gain extensive knowledge of plant species with pharmacological potential to cure simple to life-threatening diseases by studying the use of plants in indigenous communities. Therefore, it is important to conduct ethnobotanical studies in indigenous communities and to validate the reported uses of plants by comparing ethnobotanical studies with phytochemical and pharmacological studies. Materials and methods This study was conducted in a Tamang community dwelling in the Makawanpur district of central Nepal. We used semi-structured and structured questionnaires during interviews to collect information. We compared use reports with available phytochemical and pharmacological studies for validation. Results A total of 161 plant species belonging to 86 families and 144 genera to cure 89 human ailments were documented. Although 68 plant species were cited as medicinal in previous studies, 55 different uses described by the Tamang people were not found in any of the compared studies. Traditional uses for 60 plant species were consistent with pharmacological and phytochemical studies. Conclusions The Tamang people in Makawanpur are rich in ethnopharmacological understanding. The present study highlights important medicinal plant species by validating their traditional uses. Different plant species can improve local economies through proper harvesting, adequate management and development of modern techniques to maximize their use. PMID:24410808
Phytochemical, cytotoxic and chemotaxonomic study on Ajuga forrestii Diels (Labiatae).
Chen, Tong; Diao, Qing-Yan; Yu, Hai-Zhou; Jiao, Chun-Li; Ruan, Jian
2018-04-01
A phytochemical investigation of Ajuga forrestii Diels led to the isolation of 14 compounds, including eight neo-clerodane diterpenes (1-8), two phytoecdysteroids (9, 11), one stigmastane sterol (10) and three iridoid glycosides (12-14). The structures of these compounds were identified by spectroscopic methods and a comparison of their data with those reported in the literature. This is the first report of compounds 1-14 from A. forrestii. The cytotoxic activities of the aqueous extract of A. forrestii and several compounds have been studied and the chemotaxonomic significance of isolated compounds has also been summarised.
Phytochemical properties and cytotoxicity evaluation of the aqueous extracts from Rafflesia cantleyi
NASA Astrophysics Data System (ADS)
Bakoush, Sumaia Mohamed Mohamed; Yaacob, Wan Ahmad; Adam, Jumaat; Ibrahim, Nazlina
2015-09-01
In the present study, phytochemical properties and cytotoxic evaluation of aqueous extract of Rafflesia cantleyi bud parts were done. Three bud parts including disk, bract and perigone tube were extracted in water to produce crude aqueous extract. Cytotoxic activity of R. cantleyi bud parts was assessed by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against normal cells Vero, 3T3 cell lines and mice peripheral blood mononuclear cells PBMC. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and alkaloids. The CC50 value against Vero, 3T3 and PBMC cells were equal or more than 125 µg/ml indicating the non-cytotoxic effect of the bud parts extracts. The finding revealed that crude extracts of all the tested bud parts contained potential bioactive compounds which can be used for various biological activities and have no cytotoxicity to selected normal cells.
NASA Astrophysics Data System (ADS)
Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina
2015-09-01
Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.
Phytochemical overview and medicinal importance of Coffea species from the past until now.
Patay, Éva Brigitta; Bencsik, Tímea; Papp, Nóra
2016-12-01
Coffea (coffee) species are grown in almost all countries along the Equator. Many members of the genus have a large production history and an important role both in the global market and researches. Seeds (Coffeae semen) are successfully used in food, cosmetic, and pharmaceutical industries due to its caffeine and high polyphenol content. Nowadays, the three best-known coffee species are Arabic (Coffea arabica L.), Robusta (Coffea robusta L. Linden), and Liberian coffees (Coffea liberica Hiern.). Even though, many records are available on coffee in scientific literature, wild coffee species like Bengal coffee (Coffea benghalensis Roxb. Ex Schult.) could offer many new opportunities and challenges for phytochemical and medical studies. In this comprehensive summary, we focused on the ethnomedicinal, phytochemical, and medical significance of coffee species up to the present. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)
NASA Astrophysics Data System (ADS)
Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina
2015-09-01
Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.
Benamar, Houari; Rarivoson, Elonge; Tomassini, Lamberto; Frezza, Claudio; Marouf, Abderrazak; Bennaceur, Malika; Nicoletti, Marcello
2018-01-05
In this work, the extracts obtained with different solvents from the leaves of Rhamnus lycioides subsp. oleoides (L.) Jahand. & Maire were studied for their phytochemical profile and then for their antioxidant and acetylcholinesterase inhibitory activities. The phytochemical profiles of the extracts in n-hexane, dichloromethane, ethyl acetate, methanol, anthraquinone rich and water, showed the presence of different compounds belonging to several classes of natural products such as flavonoids, anthraquinones, saccharides and fatty acids. For what concerns the biological tests, the ethyl acetate, methanol and anthraquinone rich extracts showed the highest activities in both assays due to the high amount of compounds possessing those properties such as flavonoids and anthraquinones. By consequence, these specific extracts of the species may be considered to be potential sources of natural antioxidant and anti-acetylcholinesterasic compounds.
Guo, Ruixue; Guo, Xinbo; Li, Tong; Fu, Xiong; Liu, Rui Hai
2017-04-15
Phytochemical profiles, antioxidant and antiproliferative activities of berry extracts were evaluated and compared in four subspecies of Sea buckthorn (Hippophaë rhamnoides L.). Among the subspecies, Hippophaë rhamnoides L. subsp. sinensis exhibited highest total phenolics content (38.7±1.3mgGA equiv./g DW) and corresponding total antioxidant activity. Whereas maximum cellular antioxidant and antiproliferative activities were determined in Hippophaë rhamnoides L. subsp. yunnanensis. Total antioxidant activity was significantly associated to total phenolics, isorhamnetin-3-rutinoside and isorhamnetin-3-glucoside. The cellular antioxidant activity and antiproliferative activity of phytochemicals were fairly correlated to phenolic acids and flavonoid aglycones. Lower median effective dose (EC 50 ) of individual compounds against human liver cancer HepG2 cells proliferation studies confirmed the better correlation between antiproliferative activity of Sea buckthorn extracts and flavonoid aglycones, including isorhamnetin, quercetin and kaempferol. Copyright © 2016 Elsevier Ltd. All rights reserved.
Apples prevent mammary tumors in rats.
Liu, Rui Hai; Liu, Jiaren; Chen, Bingqing
2005-03-23
Regular consumption of fruits and vegetables has been consistently shown to be associated with reduced risk of developing chronic diseases such as cancer and cardiovascular disease. Apples are commonly consumed and are the major contributors of phytochemicals in human diets. It was previously reported that apple extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. Phytochemicals, including phenolics and flavonoids, are suggested to be the bioactive compounds contributing to the health benefits of apples. Here it is shown that whole apple extracts prevent mammary cancer in a rat model in a dose-dependent manner at doses comparable to human consumption of one, three, and six apples a day. This study demonstrated that whole apple extracts effectively inhibited mammary cancer growth in the rat model; thus, consumption of apples may be an effective strategy for cancer protection.
Lin, Tzu Che; Sung, Jih Min; Yeh, Mau Shing
2014-12-01
Dried roots of Sophora flavescens Aiton contain many phytochemicals that exhibit beneficial effects on human health. This study examined and compared the karyological, morphological and phytochemical characteristics of three S. flavescens populations collected from the Danda, Hualien and Yuli of Taiwan and a population collected from Gansu, China. Karyotypes of the four populations were similar, with a diploid number of 2n = 18. The Hualien population produced more roots but with less matrine and oxymatrine contents in its root tissue than others. However, only the root of Danda population had a measurable level of naringenin. The dried root of Yuli population had greater ferric reducing antioxidant power and trolox equivalent antioxidant capacity than that of the other populations. Thus, the collected S. flavescens populations, particularly the population collected from Danda, have the potential to be used in breeding programs.
Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers
Cojocneanu Petric, Roxana; Braicu, Cornelia; Raduly, Lajos; Zanoaga, Oana; Dragos, Nicolae; Monroig, Paloma; Dumitrascu, Dan; Berindan-Neagoe, Ioana
2015-01-01
Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy. PMID:26273208
Pharmaceutical applications and phytochemical profile of Cinnamomum burmannii
Al-Dhubiab, Bandar E.
2012-01-01
Extensive studies have been carried out in the last decade to assess the pharmaceutical potential and screen the phytochemical constituents of Cinnamomum burmannii. Databases such as PubMed (MEDLINE), Science Direct (Embase, Biobase, biosis), Scopus, Scifinder, Google Scholar, Google Patent, Cochrane database, and web of science were searched using a defined search strategy. This plant is a member of the genus Cinnamomum and is traditionally used as a spice. Cinnamomum burmannii have been demonstrated to exhibit analgesic, antibacterial, anti-diabetic, anti-fungal, antioxidant, antirheumatic, anti-thrombotic, and anti-tumor activities. The chemical constituents are mostly cinnamyl alcohol, coumarin, cinnamic acid, cinnamaldehyde, anthocynin, and essential oils together with constituents of sugar, protein, crude fats, pectin, and others. This review presents an overview of the current status and knowledge on the traditional usage, the pharmaceutical, biological activities, and phytochemical constituents reported for C. burmannii. PMID:23055638
Srivastava, Sanjeev K.; Arora, Sumit; Averett, Courey; Singh, Ajay P.
2015-01-01
MicroRNAs (miRNAs) are small, endogenous noncoding RNAs that regulate a variety of biological processes such as differentiation, development, and survival. Recent studies suggest that miRNAs are dysregulated in cancer and play critical roles in cancer initiation, progression, and chemoresistance. Therefore, exploitation of miRNAs as targets for cancer prevention and therapy could be a promising approach. Extensive evidence suggests that many naturally occurring phytochemicals regulate the expression of numerous miRNAs involved in the pathobiology of cancer. Therefore, an understanding of the regulation of miRNAs by phytochemicals in cancer, their underlying molecular mechanisms, and functional consequences on tumor pathophysiology may be useful in formulating novel strategies to combat this devastating disease. These aspects are discussed in this review paper with an objective of highlighting the significance of these observations from the translational standpoint. PMID:25853141
Phytochemicals as potent modulators of autophagy for cancer therapy.
Moosavi, Mohammad Amin; Haghi, Atousa; Rahmati, Marveh; Taniguchi, Hiroaki; Mocan, Andrei; Echeverría, Javier; Gupta, Vijai K; Tzvetkov, Nikolay T; Atanasov, Atanas G
2018-06-28
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Phytochemicals in Food and Nutrition.
Xiao, Jianbo
2016-07-29
The International Symposium on Phytochemicals in Medicine and Food (ISPMF2015) was held from June 26 to 29, 2015, in Shanghai, China. It is for the first time that a Phytochemical Society of Europe conference took place in China, which provided an opportunity for 270 scientists from 48 countries to communicate their up-to-date knowledge on phytochemicals. ISPMF2015 comprised exciting and various programs with 16 sessions, including 12 plenary lectures, 20 invited talks, 55 short oral presentations, and more than 130 posters. With the help of Prof. Fergus M. Clydesdale, a special issue of Critical Reviews in Food Science and Nutrition containing 11 reviews from scientists was presented in this conference. In this special issue, bioactive flavonoids and polysaccharides for human health received significant attention.
PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine.
Pascual, María Belén; Llebrés, María-Teresa; Craven-Bartle, Blanca; Cañas, Rafael A; Cánovas, Francisco M; Ávila, Concepción
2018-05-01
The transcriptional regulation of phenylalanine metabolism is particularly important in conifers, long-lived species that use large amounts of carbon in wood. Here, we show that the Pinus pinaster transcription factor, PpNAC1, is a main regulator of phenylalanine biosynthesis and utilization. A phylogenetic analysis classified PpNAC1 in the NST proteins group and was selected for functional characterization. PpNAC1 is predominantly expressed in the secondary xylem and compression wood of adult trees. Silencing of PpNAC1 in P. pinaster results in the alteration of stem vascular radial patterning and the down-regulation of several genes associated with cell wall biogenesis and secondary metabolism. Furthermore, transactivation and EMSA analyses showed that PpNAC1 is able to activate its own expression and PpMyb4 promoter, while PpMyb4 is able to activate PpMyb8, a transcriptional regulator of phenylalanine and lignin biosynthesis in maritime pine. Together, these results suggest that PpNAC1 is a functional ortholog of the ArabidopsisSND1 and NST1 genes and support the idea that key regulators governing secondary cell wall formation could be conserved between gymnosperms and angiosperms. Understanding the molecular switches controlling wood formation is of paramount importance for fundamental tree biology and paves the way for applications in conifer biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Llebrés, María-Teresa; Pascual, María-Belén; Debille, Sandrine; Trontin, Jean-François; Harvengt, Luc; Avila, Concepción; Cánovas, Francisco M
2018-03-01
Vegetative propagation through somatic embryogenesis is critical in conifer biotechnology towards multivarietal forestry that uses elite varieties to cope with environmental and socio-economic issues. An important and still sub-optimal process during in vitro maturation of somatic embryos (SE) is the biosynthesis and deposition of storage proteins, which are rich in amino acids with high nitrogen (N) content, such as arginine. Mobilization of these N-rich proteins is essential for the germination and production of vigorous somatic seedlings. Somatic embryos accumulate lower levels of N reserves than zygotic embryos (ZE) at a similar stage of development. To understand the molecular basis for this difference, the arginine metabolic pathway has been characterized in maritime pine (Pinus pinaster Ait.). The genes involved in arginine metabolism have been identified and GFP-fusion constructs were used to locate the enzymes in different cellular compartments and clarify their metabolic roles during embryogenesis and germination. Analysis of gene expression during somatic embryo maturation revealed high levels of transcripts for genes involved in the biosynthesis and metabolic utilization of arginine. By contrast, enhanced expression levels were only observed during the last stages of maturation and germination of ZE, consistent with the adequate accumulation and mobilization of protein reserves. These results suggest that arginine metabolism is unbalanced in SE (simultaneous biosynthesis and degradation of arginine) and could explain the lower accumulation of storage proteins observed during the late stages of somatic embryogenesis.
Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.
De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M
2009-11-01
Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.
Molina, Juan Ramón; Rodríguez y Silva, Francisco; Mérida, Enrique; Herrera, Miguel Ángel
2014-11-01
One of the main limiting aspects in the application of crown fire models at landscape scale has been the uncertainty derived to describe canopy fuel stratum. Available crown fuel and canopy bulk density are essential in order to simulate crown fire behaviour and are of potential use in the evaluation of silvicultural treatments. Currently, the more accurate approach to estimate these parameters is to develop allometric models from common stand inventory data. In this sense, maritime pine (Pinus pinaster Aiton) trees were destructively sampled in the South of the Iberian Peninsula, covering natural and artificial stands. Crown fine fuel was separated into size classes and allometric equations that estimate crown fuel load by biomass fractions were developed. Available crown fuel was determined according to the fuel load differences between un-burned and burned trees with similar characteristics. Taking our destructive post-fire inventory into account, available crown fuel was estimated as the sum of needles biomass, 87.63% of the twigs biomass and 62.79% of the fine branches biomass. In spite of the differences between natural and artificial stands, generic models explained 82% (needles biomass), 89% (crown fuel), 92% (available crown fuel) and 94% (canopy bulk density) of the observed variation. Inclusion of the fitted models in fire management decision-making can provide a decision support system for assessing the potential crown fire of different silvicultural alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Secondary metabolites from Ganoderma.
Baby, Sabulal; Johnson, Anil John; Govindan, Balaji
2015-06-01
Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Menon, Deepthy; Basanth, Amritha; Retnakumari, Archana; Manzoor, K; Nair, Shantikumar V
2012-12-01
Synthesis of biocompatible gold nanoparticles having tunable optical absorbance finds immense use in biomedical applications such as cancer diagnosis and photothermal therapy. Hence, it is imperative to develop environment and bio-friendly green chemical processes that aid in preparing gold nanoparticles with tunable optical properties. In the present work, phytochemicals present in the medicinal herb, viz., garlic, were used to provide the dual effects of reduction of gold salts to gold nanoparticles as well as stabilization, in a single step process. The optical tunability of nanogold with respect to concentration of precursor and volume of garlic extract, processing conditions of garlic, its differing molecular weight fractions, reaction time and temperature has been demonstrated. The presence of a range of anisotropic nanogold including nanotriangles, nanorods and nanospheres as evident from TEM endows the colloid with a tunable optical absorption, specifically into the near infrared region. In vitro stability studies of the colloidal suspension in various media including saline, BSA, histidine and PBS showed that gold nanoparticles did not aggregate with time or differing pH conditions. The role of the garlic phytochemicals in providing stability against agglomeration was also substantiated by FTIR studies. Cytotoxicity studies performed using spherical and anisotropic gold nanoparticles on MCF-7 and L929 cell lines proved the biocompatibility of the material up to high doses of 500 microg/ml. The present work highlights the role of garlic phytochemicals in preparing biocompatible metallic gold nanoparticles with tunable optical properties and good in vitro stability, suggesting its potential use for molecular imaging or therapeutic nanomedicines.
Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties.
Ramos-Bueno, Rebeca P; Romero-González, Roberto; González-Fernández, María J; Guil-Guerrero, José L
2017-01-01
Previous studies indicated that tomato is a rich source of phytochemicals that act on different tumours. In this research, the phytochemical composition of selected tomato varieties was assessed by GLC and UHPLC/HPLC-MS, as well as their anti-tumour activities on HT-29 colorectal cancer cells. Significant differences were found among tomato varieties; lycopene was high in Racimo, phenolics in Pera, sterols in Cherry, and linoleic acid predominated in all varieties. The MTT and LDH assays showed significant time- and concentration-dependent inhibitory/cytotoxic effects of all tomato varieties on HT-29 cells. Furthermore, the joint addition of tomato carotenoids and olive oil to HT-29 cell cultures induced inhibitory effects significantly higher than those obtained from each of them acting separately, while no actions were exercised in CCD-18 normal cells. Tomato fruits constitute a healthy source of phytochemicals, although differences exist among varieties. In vitro, all of them inhibit colorectal cancer cell proliferation with Racimo variety at the top, and exercising a selective action on cancer cells by considering the lack of effects on CCD-18 cells. Furthermore, synergy was observed between olive oil and tomato carotenoids in inhibiting HT-29 cancer cell proliferation; conversely, phenolics showed no significant effects and hindered carotenoids actions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng
2013-01-01
Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.
MacLean, Malcolm A; Scott, Bradley E; Deziel, Bob A; Nunnelley, Melissa C; Liberty, Anne M; Gottschall-Pass, Katherine T; Neto, Catherine C; Hurta, Robert A R
2011-01-01
Diets rich in fruits and vegetables have been shown to improve patient prognosis in a variety of cancers, a benefit partly derived from phytochemicals, many of which target cell death pathways in tumor cells. Cranberries (Vaccinium macrocarpon) are a phytochemical-rich fruit containing a variety of polyphenolic compounds. As flavonoids have been shown to induce apoptosis in human tumor cells, this study investigated the hypothesis that cranberry-mediated cytotoxicity in DU145 human prostate adenocarcinoma cells involves apoptosis. The results showed that induction of apoptosis in these cells occurred in response to treatment with whole cranberry extract and occurred through caspase-8 mediated cleavage of Bid protein to truncated Bid resulting in cytochrome-C release from the mitochondria. Subsequent activation of caspase-9 ultimately resulted in cell death as characterized by DNA fragmentation. Increased Par-4 protein expression was observed, and this is suggested to be at least partly responsible for caspase-8 activation. Proanthocyanidin-enriched and flavonol-enriched fractions of cranberry also increased caspase-8 and caspase-9 activity, suggesting that these compounds play a possible role in apoptosis induction. These findings indicate that cranberry phytochemicals can induce apoptosis in prostate cancer cells in vitro, and these findings further establish the potential value of cranberry phytochemicals as possible agents against prostate cancer.
Rosa, Fernanda R; Arruda, Andréa F; Siqueira, Egle M A; Arruda, Sandra F
2016-02-23
This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit.
Regalado, Erik L; Menendez, Roberto; Valdés, Olga; Morales, Ruth A; Laguna, Abilio; Thomas, Olivier P; Hernandez, Yasnay; Nogueiras, Clara; Kijjoa, Anake
2012-01-01
The aqueous ethanol extract of Thalassia testudinum leaves (BM-21) is now being developed in Cuba as an herbal medicine due to its promising pharmacological properties. Although some interesting biological activities of BM-21 have already been reported, its chemical composition remains mostly unknown. Thus, we now describe the qualitative and quantitative analyzes of BM-21 using standard phytochemical screening techniques, including colorimetric quantification, TLC and HPLC analyses. Phytochemical investigation of BM-21 resulted in the isolation and identification of a new phenolic sulfate ester (1), along with ten previously described phenolic derivatives (2-11), seven of which have never been previously reported from the genus Thalassia. The structures of these compounds were established by analysis of their spectroscopic (1D and 2D NMR) and spectrometric (HRMS) data, as well as by comparison of these with those reported in the literature. Furthermore, BM-21 was found to exhibit strong antioxidant activity in four different free radical scavenging assays (HO*, RO2*, O2-* and DPPH*). Consequently, this is the first study which highlights the phytochemical composition of BM-21 and demonstrates that this product is a rich source of natural antioxidants with potential applications in pharmaceutical, cosmetic and food industries.
Rosa, Fernanda R.; Arruda, Andréa F.; Siqueira, Egle M. A.; Arruda, Sandra F.
2016-01-01
This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit. PMID:26907338
Islam, Md Soriful; Akhtar, Most Mauluda; Segars, James H; Castellucci, Mario; Ciarmela, Pasquapina
2017-11-22
Uterine fibroids (myomas or leiomyomas) are common benign tumors of reproductive aged women. Fibroids are clinically apparent in 20-50% of women, and cause abnormal uterine bleeding, abdominal pain and discomfort, pregnancy complications and infertility. Unfortunately, limited numbers of medical treatment are available but no effective preventive strategies exist. Moreover, the benefits of medical treatments are tempered by lack of efficacy or serious adverse side effects. Fibrosis has recently been recognized as a key pathological event in leiomyoma development and growth. It is defined by the excessive deposition of extracellular matrix (ECM). ECM plays important role in making bulk structure of leiomyoma, and ECM-rich rigid structure is believed to be a cause of abnormal bleeding and pelvic pain/pressure. Dietary phytochemicals are known to regulate fibrotic process in different biological systems, and being considered as potential tool to manage human health. At present, very few dietary phytochemicals have been studied in uterine leiomyoma, and they are mostly known for their antiproliferative effects. Therefore, in this review, our aim was to introduce some dietary phytochemicals that could target fibrotic processes in leiomyoma. Thus, this review could serve as useful resource to develop antifibrotic drugs for possible prevention and treatment of uterine fibroids.
Ojha, Shreesh; Kurdi, Amani; Sadek, Bassem; Kaleem, M; Cai, Lu; Kamal, M A; Rajesh, Mohanraj
2016-01-01
Globally diabetes mellitus (DM) is swiftly reaching epidemic proportions and impose major health care and socio-economic challenges that are associated with its complications. DM is considered as the major risk factor for the development of debilitating micro & macro vascular complications. Clinical studies have revealed that development of diabetic cardiomyopathy (DCM) in subjects with diabetes can occur both- dependent and independent of pre-existing increased risk factors such as poor glycemic control, hyperlipidemia, and or hypertension. Therefore, DCM represents as a major challenge for the clinical community for the prompt diagnosis and devising the treatment paradigm to combat the diabetes induced cardiac dysfunction. In Chinese traditional medical practice, heart ailments have been coped with herbal extracts. Phytochemicals bioavailability and pharmacokinetic properties are to yet be established completely in human subjects. However, tremendous progress has been made to isolate, purify the phytochemicals and characterize their effects on mitigating the development of DCM in pre-clinical models. Currently there are no approved drugs available for the treatment of DCM. In this review, we have discussed the progress made in understanding the mechanisms for the phytochemicals cardio-protective actions in the diabetic milieu and their caveats and provide future perspectives for proposing these agents to serve as prototypes in the development of drugs for the management of DCM.
Phytochemical Analysis and Biological Activities of Cola nitida Bark
Dah-Nouvlessounon, Durand; Adoukonou-Sagbadja, Hubert; Diarrassouba, Nafan; Sina, Haziz; Adjanohoun, Adolphe; Inoussa, Mariam; Akakpo, Donald; Gbenou, Joachim D.; Kotchoni, Simeon O.; Dicko, Mamoudou H.; Baba-Moussa, Lamine
2015-01-01
Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida's bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5 ± 0.7 mm (C. albicans) to 9.5 ± 0.7 mm (P. vulgaris). The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida's bark can be used to hold meat products and also like phytomedicine. PMID:25767723
Manivannan, S.; Sunny, Anila M.; Murugesan, R.
2017-01-01
In the present study, we investigated the fumigant potential of five edible essential oils (EOs) against Sitophilus oryzae and their phytochemical residues in treated grains. Among the tested EOs, peppermint oil proved significantly effective (P ≤ 0.05) on S.oryzae at 400 μl/L air concentration, inducing 83 and 100% mortalities in with-food and without-food conditions respectively over 72 h exposure. In addition, it was also observed that the binary mixtures of peppermint + lemon oil (1:1 ratio) produced an equivalent effect to that of peppermint oil alone treatments. The phytochemical residue analysis by GC-MS revealed the presence of six compounds upon 72 h exposure to EOs. Further, the analysis of physico-chemical properties of the compounds indicated a positive correlation between polar surface area (PSA) and its residual nature. The residue levels of eugenol were significantly elevated corresponding to its high PSA value (29) in clove and cinnamon oils. On the other hand, the compounds with zero PSA value imparted very less or no (D-Limonene, caryophyllene, pinene and terpinolene) residues in treated grains. With respect to the most active peppermint oil, L-menthone, menthyl acetate and eucalyptol residues were at 67, 41 and 23% levels respectively. The outcome of the present study indicate the peppermint oil as a potent fumigant against S. oryzae, and although the residues of phytochemicals in treated grains is higher; they belong to the generally recognised as safe (GRAS) status leaving no harmful effect. PMID:29023481
Goc, Anna; Niedzwiecki, Alexandra; Rath, Matthias
2016-01-01
Phytochemicals and micronutrients represent a growing theme in antimicrobial defense; however, little is known about their anti-borreliae effects of reciprocal cooperation with antibiotics. A better understanding of this aspect could advance our knowledge and help improve the efficacy of current approaches towards Borrelia sp. In this study, phytochemicals and micronutrients such as baicalein, luteolin, 10-HAD, iodine, rosmarinic acid, and monolaurin, as well as, vitamins D3 and C were tested in a combinations with doxycycline for their in vitro effectiveness against vegetative (spirochetes) and latent (rounded bodies, biofilm) forms of Borrelia burgdorferi and Borrelia garinii. Anti-borreliae effects were evaluated according to checkerboard assays and supported by statistical analysis. The results showed that combination of doxycycline with flavones such as baicalein and luteolin exhibited additive effects against all morphological forms of studied Borrelia sp. Doxycycline combined with iodine demonstrated additive effects against spirochetes and biofilm, whereas with fatty acids such as monolaurin and 10-HAD it produced FICIs of indifference. Additive anti-spirochetal effects were also observed when doxycycline was used with rosmarinic acid and both vitamins D3 and C. Antagonism was not observed in any of the cases. This data revealed the intrinsic anti-borreliae activity of doxycycline with tested phytochemicals and micronutrients indicating that their addition may enhance efficacy of this antibiotic in combating Borrelia sp. Especially the addition of flavones balcalein and luteolin to a doxycycline regimen could be explored further in defining more effective treatments against these bacteria.
Bagchi, Vikram A; Siegel, Joel P; Demkovich, Mark R; Zehr, Luke N; Berenbaum, May R
2016-01-01
For some polyphagous insects, adaptation to phytochemically novel plants can enhance resistance to certain pesticides, but whether pesticide resistance expands tolerance to phytochemicals has not been examined. Amyelois transitella Walker (navel orangeworm) is an important polyphagous pest of nut and fruit tree crops in California. Bifenthrin resistance, partially attributable to enhanced cytochrome P450 (P450)-mediated detoxification, has been reported in an almond-infesting population exposed to intense pesticide selection. We compared the toxicity of bifenthrin and three phytochemicals-chlorogenic acid, and the furanocoumarins xanthotoxin and bergapten-to three strains of A. transitella: pyrethroid-resistant R347 (maintained in the laboratory for ∼10 generations), fig-derived FIG (in the laboratory for ∼25 generations), and CPQ-a laboratory strain derived from almonds ∼40 years ago). Whereas both Ficus carica (fig) and Prunus dulcis (almond) contain chlorogenic acid, furanocoumarins occur only in figs. Both R347 and FIG exhibited 2-fold greater resistance to the three phytochemicals compared with CPQ; surprisingly, bifenthrin resistance was highest in FIG. Piperonyl butoxide, a P450 synergist, increased toxicity of all three phytochemicals only in CPQ, implicating alternate tolerance mechanisms in R347 and FIG. To test the ability of the strains to utilize novel hostplants directly, we compared survival on diets containing seeds of Wisteria sinensis and Prosopis pallida, two non-host Fabaceae species; survival of FIG was highest and survival of R347 was lowest. Our results suggest that, while P450-mediated pesticide resistance enhances tolerance of certain phytochemicals in this species, it is only one of multiple biochemical adaptations associated with acquiring novel hostplants. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.
Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H
2015-11-01
The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements.
Powers, Chelsea N; Setzer, William N
2015-01-01
The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics or anti-estrogens in phytochemicals found in popular dietary herbal supplements. In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United States were built and docked with two isoforms of the estrogen receptor, ERα and ERβ (a total of 27 different protein crystal structures). The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably, of the most popular herbal supplements for women, there were numerous compounds that docked strongly with the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama (Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds from men's herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight, and Tribulus terrestris had six compounds. This molecular docking study has revealed that almost all popular herbal supplements contain phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.
George, T W; Paterson, E; Waroonphan, S; Gordon, M H; Lovegrove, J A
2012-10-01
Fruit and vegetable-rich diets are associated with a reduced cardiovascular disease (CVD) risk. This protective effect may be a result of the phytochemicals present within fruits and vegetables (F&V). However, there can be considerable variation in the content of phytochemical composition of whole F&V depending on growing location, cultivar, season and agricultural practices, etc. Therefore, the present study investigated the effects of consuming fruits and vegetables as puree-based drinks (FVPD) daily on vasodilation, phytochemical bioavailability, antioxidant status and other CVD risk factors. FVPD was chosen to provide a standardised source of F&V material that could be delivered from the same batch to all subjects during each treatment arm of the study. Thirty-nine subjects completed the randomised, controlled, cross-over dietary intervention. Subjects were randomised to consume 200 mL of FVPD (or fruit-flavoured control), daily for 6 weeks with an 8-week washout period between treatments. Dietary intake was measured using two 5-day diet records during each cross-over arm of the study. Blood and urine samples were collected before and after each intervention and vasodilation assessed in 19 subjects using laser Doppler imaging with iontophoresis. FVPD significantly increased dietary vitamin C and carotenoids (P < 0.001), and concomitantly increased plasma α- and β-carotene (P < 0.001) with a near-significant increase in endothelium-dependent vasodilation (P = 0.060). Overall, the findings obtained in the present study showed that FVPD were a useful vehicle to increase fruit and vegetable intake, significantly increasing dietary and plasma phytochemical concentrations with a trend towards increased endothelium-dependent vasodilation. © 2012 The Authors Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.
A case study of air quality - Pesticides and odorous phytochemicals on Kauai, Hawaii, USA.
Wang, Jun; Boesch, Robert; Li, Qing X
2017-12-01
This study was conducted after a series of incidences occurred at Waimea Canyon Middle School on Kauai, Hawaii. Some students and staff members exhibited symptoms such as throat irritation, tearing, and dizziness. These symptoms could be associated with natural causes or human activities, which include exposures to pesticides and odorous phytochemicals. At the time of the occurrences, Cleome gynandra (known locally as stinkweed) was growing in the fields near the school and might be a potential cause of the reported symptoms. This work was designed to study pesticides and phytochemicals in ambient air around Waimea Canyon Middle School in comparison with other locations on Kauai. Among many chemicals, top 29 were selected for the analysis of stinkweed-emitted chemicals in a chamber study. One out of the 29 chemicals was methyl isothiocyanate (MITC) that is a highly foul-smelling, noxious chemical at high concentrations. Approximately half of the 29 chemicals produced by stinkweed and trace amounts of five pesticides were detected in indoor and outdoor air samples collected from the passive and high volume air samplers. The average concentrations of MITC in Waimea outdoor air during daytime and nighttime were 13.1 and 5.6 ng m -3 , respectively. The average concentrations of the five pesticides DDTs, HCHs, chlorpyrifos, bifenthrin, and metolachlor in Waimea outdoor air were respectively 2.5, 2.3, 35, 43, and 23 ng m -3 during daytime and 2.4, 1.7, 33, 29, and 19 ng m -3 during nighttime. The concentrations of the pesticide and phytochemicals found in air on Kauai were below health concern levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peek, H W; Halkes, S B A; Tomassen, M M M; Mes, J J; Landman, W J M
2013-01-01
Five phytochemicals/extracts (an extract from Echinacea purpurea, a β-glucan-rich extract from Shiitake, betaine [Betain™], curcumin from Curcuma longa [turmeric] powder, carvacrol and also a recombinant fungal immunomodulatory protein [FIP] from Ganoderma lucidum) cloned and expressed in Escherichia coli were investigated for their anticolibacillosis potential in three chicken experiments, which were conducted in floor pens. Birds that were inoculated with E. coli intratracheally were treated with the phytochemicals/extracts or the FIP and compared with doxycycline-medicated and non-medicated infected broilers. Non-medicated and non-infected birds were used as negative controls. Mortality, colibacillosis lesions and body weight gains were used as parameters. Considering the sum of dead birds and chickens with generalized colibacillosis per group, there was no significant difference between the positive control groups and birds treated with phytochemicals/extracts or the FIP. In contrast, doxycycline-treated birds showed significantly lower mortality and generalized colibacillosis. Moreover, none of the phytochemicals/extracts and the FIP improved recovery from colibacillosis lesions, while all doxycycline-treated broilers recovered completely. The negative control birds and doxycycline-treated groups consistently showed the highest weight gains. Pulsed-field gel electrophoresis of reisolates showed that they were genetically indistinguishable from the inoculation strain. In conclusion, none of the tested phytochemicals/extracts and the FIP significantly reduced the E. coli-induced mortality and generalized colibacillosis, and nor did they improve recovery from colibacillosis lesions.
Islam, Md Soriful; Akhtar, Most Mauluda; Ciavattini, Andrea; Giannubilo, Stefano Raffaele; Protic, Olga; Janjusevic, Milijana; Procopio, Antonio Domenico; Segars, James H; Castellucci, Mario; Ciarmela, Pasquapina
2014-08-01
Uterine leiomyomas (fibroids, myomas) are the most common benign tumors of female reproductive tract. They are highly prevalent, with 70-80% of women burdened by the end of their reproductive years. Fibroids are a leading cause of pelvic pain, abnormal vaginal bleeding, pressure on the bladder, miscarriage, and infertility. They are the leading indication for hysterectomy, and costs exceed 6 billion dollars annually in the United States. Unfortunately, no long-term medical treatments are available. Dysregulation of inflammatory processes are thought to be involved in the initiation of leiomyoma and extracellular matrix deposition, cell proliferation, and angiogenesis are the key cellular events implicated in leiomyoma growth. In modern pharmaceutical industries, dietary phytochemicals are used as source of new potential drugs for many kinds of tumors. Dietary phytochemicals may exert therapeutic effects by interfering with key cellular events of the tumorigenesis process. At present, a negligible number of phytochemicals have been tested as therapeutic agents against fibroids. In this context, our aim was to introduce some of the potential dietary phytochemicals that have shown anti-inflammatory, antiproliferative, antifibrotic, and antiangiogenic activities in different biological systems. This review could be useful to stimulate the evaluation of these phytochemicals as possible therapies for uterine fibroids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells
Scarpa, Emanuele-Salvatore; Ninfali, Paolino
2015-01-01
The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs’ self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs. PMID:26184171
Phytochemicals as Inhibitors of Candida Biofilm.
Raut, Jayant Shankar; Karuppayil, Sankunny Mohan
2016-01-01
Candida biofilm and associated infections is a serious threat to the large population of immunocompromised patients. Biofilm growth on prosthetic devices or host tissue shows reduced sensitivity to antifungal agents and persists as a reservoir of infective cells. Options for successful treatment of biofilm associated Candida infections are restricted because most of the available antifungal drugs fail to eradicate biofilms. Various plant actives are known to possess interesting antifungal properties. To explore and review the potential of phytochemicals as a novel strategy against Candida biofilms is the intent of present article. Thorough literature search is performed to identify Candida biofilm inhibitors of plant origin. An account of efficacy of selected phytochemicals is presented taking into consideration their biofilm inhibitory concentrations. This review discusses biofilm formation by Candida species, their involvement in human infections, and associated drug resistance. It gives insight into the biofilm inhibitory potential of various phytochemicals. Based on the available reports including the work done in our laboratory, several plant extracts, essential oils and phytomolecules have been identified as excellent inhibitors of biofilms of C. albicans and non-albicans Candida species (NACS). Selected phytochemicals which exhibit activities at low concentrations without displaying toxicity to host are potential therapeutic agents against biofilm associated Candida infections. In vivo testing in animal models and clinical trials in humans are required to be taken up seriously to propose few of the phytochemicals as candidate drug molecules.
Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons
Ketron, Adam C.
2013-01-01
Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described. PMID:24678287
Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity.
Abushouk, Abdelrahman Ibrahim; Ismail, Ammar; Salem, Amr Muhammad Abdo; Afifi, Ahmed M; Abdel-Daim, Mohamed M
2017-06-01
Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Alarcón-Flores, M Isabel; Hernández-Sánchez, Francisco; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, J Luis; Garrido Frenich, Antonia
2014-11-01
Phytochemicals content, including several families such as phenolic acids, isoflavones, flavones, flavonols, isothiocyanates, and glucosinolates, was determined in pre-cooked convenience vegetables by ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). It was observed that there is not a common behavior of the individual concentration of phytochemicals during the lifetime and cooking of the matrix, and compounds change their concentration without a specific trend. It was observed that neither lifetime nor cooking process have significant effects on the total content of phytochemicals except in broccoli, although some changes in the individual content of the target compounds were observed, suggesting that interconversion processes could be performed during the lifetime and/or cooking process of the product.
Min, Byungrok R; Marsh, Lurline E; Brathwaite, Keegan; Daramola, Adebola O
2017-04-01
Tissue culture and mycorrhiza applications can provide disease-free seedlings and enhanced nutrient absorption, respectively, for organic farming. Ginger (Zingiber officinale Roscoe) is rich in phytochemicals and has various health-protective potentials. This study was aimed at determining effects of tissue culture and mycorrhiza applications alone or in combinations in organic farming on phytochemical contents (total phenolics and flavonoids [TP and TF, respectively], gingerol and shogaol homologues, phenolic acids, and carotenoids) and antioxidant capacities (DPPH [2,2-diphenyl-1-picrylhydrazyl] radical scavenging, oxygen radical absorbance (ORAC), and iron-chelating capacities [ICC]) in solvent-extractable (Free) and cell-wall-matrix-bound (Bound) fractions of ginger rhizome and Free fraction of the leaves in comparison with non-organics. Concentrations of the phytochemicals and antioxidant capacities, except for carotenoids and ICC, were significantly higher in organic ginger rhizomes and leaves than in non-organics regardless of the fractions and treatments (P < 0.05). Mycorrhiza application in organic farming significantly increased levels of TP, TF, gingerols, and ORAC in the Free fraction of the rhizome (P < 0.05). Furthermore, the combined application of tissue culture and mycorrhiza significantly increased concentrations of TF and gingerols and ORAC in the Free fraction of the rhizome (P < 0.05), suggesting their synergistic effects. Considerable amounts of phenolics were found in the Bound fractions of the rhizomes. Six-gingerol, ferulic acid, and lutein were predominant ones among gingerols, phenolic acids, and carotenoids, respectively, in ginger rhizomes. The results suggest that organic farming with mycorrhiza and tissue culture applications can increase concentrations of phytochemicals and antioxidant capacities in ginger rhizomes and leaves and therefore improve their health-protective potentials. © 2017 Institute of Food Technologists®.
Shukla, Abha; Vats, Swati; Shukla, R K
2015-01-01
In the present study, the antioxidant activity of successive leaf extracts of Dracaena reflexa was investigated using the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl and reducing power by ferric reducing antioxidant power assay. Methanol extract was found potent in both the assays. IC50 values of 1,1-diphenyl-2-picrylhydrazyl assay for methanol extract was 0.97 mg/ml and ferric reducing antioxidant power value for the same is 1.19. Phytochemical screening, proximate analysis and total phenolic content were also determined. Qualitative screening for phytochemical showed the presence of alkaloids, flavonoids, terpenoids, glycosides and saponins. Highest phenolic content was shown by methanol extract (49.69 mg gallic acid equivalent/g dry weight). Proximate analysis showed moisture content (3.31%), ash content (8.02%), crude fibre (1.31%), crude fat (0.97%), total protein (3.70%), total carbohydrate (86.01) and nutritive value (367.56 kcal/100 g), which would make it a potential nutraceutical. This study suggested that Dracaena reflexa, a potential natural free radical scavenger, which could find use as an antioxidative.
Chukwumah, Yvonne; Walker, Lloyd; Vogler, Bernhard; Verghese, Martha
2012-05-01
Peanuts are classified into four market-types (Runners, Spanish, Virginia and Valencia). Studies on their phytochemical composition have focused mainly on market-types other than Valencia. The objectives of this study are to evaluate the phytochemical composition of cultivars of Valencia and Runner market-types. Extracts of 25 peanut cultivars of Runner and Valencia market-types were analysed using HPLC-DAD-MS analysis. Results showed major differences in UV profile of the market-types. A major peak with m/z 317 identified as isorhamnetin was present only in Valencia cultivars while its glycoside (isorhamnetin-3-O-rutinoside) having m/z 625 was identified in both market-types. Genistein, daidzein, rutin, quercetin and trans-resveratrol were also identified and quantified. Genistein and daidzein concentrations (0.03mg/100g) were similar in both market-types. trans-Resveratrol and rutin were significantly (p<0.05) higher in Runner cultivars while quercetin was 10-fold higher (0.60±0.04mg/100g) in Valencia cultivars making them a better source of this phytochemical. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mena, Pedro; Tassotti, Michele; Andreu, Lucía; Nuncio-Jáuregui, Nallely; Legua, Pilar; Del Rio, Daniele; Hernández, Francisca
2018-06-01
Prickly pear is an important source of bioactive compounds. However, a comprehensive characterization of the phytochemical profile of its aerial botanical parts, considering genotypic differences, has not been conducted. This study evaluated the phytochemical composition of four botanical parts (fruit pulp and skin, and young and adult cladodes) of six cultivars. Analysis was carried out by using two non-targeted UHPLC-ESI-MS n experimental conditions and assisted with multivariate analysis to facilitate data interpretation. Up to 41 compounds, mainly (poly)phenolic molecules, were identified and quantified, 23 compounds being reported for the first time in Opuntia ficus-indica. Phenolic composition varied significantly depending on the part of the plant. Betalains were detected only in the fruit of a red cultivar. This study provided novel insights in terms of identification of bioactives and thorough characterization of botanical parts of prickly pears. This information may be used for the development of prickly pear-derived products with high levels of bioactive compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals
2017-01-01
Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol), as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation. PMID:29234485
Phytochemical Screening, Proximate Analysis and Antioxidant Activity of Dracaena reflexa Lam. Leaves
Shukla, Abha; Vats, Swati; Shukla, R. K.
2015-01-01
In the present study, the antioxidant activity of successive leaf extracts of Dracaena reflexa was investigated using the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl and reducing power by ferric reducing antioxidant power assay. Methanol extract was found potent in both the assays. IC50 values of 1,1-diphenyl-2-picrylhydrazyl assay for methanol extract was 0.97 mg/ml and ferric reducing antioxidant power value for the same is 1.19. Phytochemical screening, proximate analysis and total phenolic content were also determined. Qualitative screening for phytochemical showed the presence of alkaloids, flavonoids, terpenoids, glycosides and saponins. Highest phenolic content was shown by methanol extract (49.69 mg gallic acid equivalent/g dry weight). Proximate analysis showed moisture content (3.31%), ash content (8.02%), crude fibre (1.31%), crude fat (0.97%), total protein (3.70%), total carbohydrate (86.01) and nutritive value (367.56 kcal/100 g), which would make it a potential nutraceutical. This study suggested that Dracaena reflexa, a potential natural free radical scavenger, which could find use as an antioxidative. PMID:26798184
Wagner, Anika Eva; Terschluesen, Anna Maria; Rimbach, Gerald
2013-01-01
A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways. PMID:24454992
NASA Astrophysics Data System (ADS)
Yotriana, S.; Suselo, YH; Muthmainah; Indarto, D.
2018-03-01
Anemia is one of the greatest nutrition problem in the world that is commonly found in children, pregnant women and reproductive women. This disorder is predominantly caused by iron deficiency. Hepcidin, a hepatic hormone, regulates iron metabolism and high serum levels of this hormone are detected in patients with iron deficiency anemia (IDA). Anticalin is a sintetic compound which is able to interacts with hepcidin leading to inhibition of ferroportin-hepcidin binding complexes but its therapeutic effects are still under investigation. Indonesia has various herbal plants which are potentially developed to treat some human diseases. Therefore, the purpose of this study was to identify phytochemicals derived from Indonesian plants that is able to inhibit hepcidin-ferroportin interaction. A bioinformatics study with molecular docking method was used in this study. Three-dimensional structures of human hepcidin and anticalin were obtained from the Protein Data Bank (ID: 1M4F and 4QAE respectively). Because their molecular size was big, each molecule was cut into 2 parts of its binding sites. All phytochemicals structures were obtained from HerbalDB and PubChem NCBI database. Truncated anticalin/phytochemicals were molecularly docked with truncated hepcidin by using AutoDock Vina 1.1.2. and their interactions were visualized using PyMol 1.3. Truncated Anticalin had -4.6 and -4.2 kcal/mol binding affinity to truncated human hepcidin. Truncated anticalin 1 was bound to Cys13, Cys14, Arg16 and Ser17 residues in truncated hepcidin 1 while truncated anticalin 2 was at Cy23 and Lys24 residues in truncated hepcidin 2. Miraxanthine-V, Liriodenin and Chitranone had lower binding affinity (-4.8±0.77, -4.7±0.33 and -5.01±0.30 kcal/mol respectively) than that of anticalin and occupied binding sites as same as anticalin did. There are three phytochemicals that potentially become hepcidin antagonists in silico. In vitro assays are required for verification of the antagonist effect of these phytochemicals on iron metabolism.
Herbal Dietary Supplements for Erectile Dysfunction: A Systematic Review and Meta-Analysis.
Borrelli, Francesca; Colalto, Cristiano; Delfino, Domenico V; Iriti, Marcello; Izzo, Angelo A
2018-04-01
Erectile dysfunction (ED) is a common condition that significantly affects quality of life and interpersonal relationships. Our objective was to perform a systematic review and meta-analysis to evaluate the efficacy of herbal dietary supplements in the treatment of ED. We searched five databases to identify randomized controlled trials (RCTs) that evaluated the clinical efficacy of herbal medicines in ED. Quality was assessed and risk of bias was estimated using the Jadad score and the Cochrane risk-of-bias tool. In total, 24 RCTs, including 2080 patients with ED, were identified. Among these, 12 evaluated monopreparations (five ginseng [n = 399], three saffron [n = 397], two Tribulus terrestris [n = 202], and one each Pinus pinaster [n = 21] and Lepidium meyenii [n = 50]), seven evaluated formulations (n = 544), and five investigated dietary supplements in combination with pure compounds (n = 410). Ginseng significantly improved erectile function (International Index of Erectile Function [IIEF]-5 score: 140 ginseng, 96 placebo; standardized mean difference [SMD] 0.43; 95% confidence interval [CI] 0.15-0.70; P < 0.01; I 2 = 0), P. pinaster and L. meyenii showed very preliminary positive results, and saffron and T. terrestris treatment produced mixed results. Several herbal formulations were associated with a decrease of IIEF-5 or IIEF-15, although the results were preliminary. The quality of the included studies varied, with only seven having a prevalent low risk of bias. The median methodological quality Jadad score was three out of a maximum of five. Adverse events were recorded in 19 of 24 trials, with no significant differences between placebo and verum in placebo-controlled studies. Encouraging evidence suggests that ginseng may be an effective herbal treatment for ED. However, further, larger, and high-quality studies are required before firm conclusions can be drawn. Promising (although very preliminary) results have also been generated for some herbal formulations. Overall, more research in the field, adhering to the CONSORT statement extension for reporting trials, is justified before the use of herbal products in ED can be recommended.
NASA Astrophysics Data System (ADS)
Zannah, Fathul; Amin, Mohammad; Suwono, Hadi; Lukiati, Betty
2017-05-01
Diplazium esculentum is one of the ferns used by the Dayak's people in Central Kalimantan as a traditional medicine to treat tumors, asthma, and acne. This study aims to determine the content of bioactive compounds in Diplazium esculentum in Central Kalimantan. This research is a descriptive study with a qualitative approach. Qualitative phytochemical screening detected the presence of flavonoids, polyphenols, alkaloids, terpenoids and saponins in aqueous extracts with the boiled and brewed method, while in ethanol extract this detected polyphenols, alkaloids, terpenoids, and saponins. The results show that the use of water as a solvent can be an alternative in plant extracts.
Phytochemical composition and antioxidant capacity of Cordia dichotoma seeds.
Tian, Shuge; Liu, Feng; Zhang, Xuejia; Upur, Halmuart
2014-09-01
This study aims to determine the phytochemical composition and antioxidant activity of air-dried Cordia dichotoma seeds. Total polyphenolic content was analyzed via the Folin-Ciocalteu method. Total triterpenoid content and amino acids was analyzed colorimetrically. The rosmarinic acid content was examined using high-performance liquid chromatography tandem mass spectrometry. The ethanolic extracts contained polyphenolic compounds (1.0%), triterpenoids (0.075%), amino acids (1.39%), and rosmarinic acid (0.0028%). The results from this study indicate that C. dichotoma seeds are a rich source of polyphenolic compounds and amino acids, which can be used for quality assessment. The ethanolic extract of C. dichotoma seeds has good antioxidant capacity.
Patel, Saumya K; Khedkar, Vijay M; Jha, Prakash C; Jasrai, Yogesh T; Pandya, Himanshu A; George, Linz-Buoy; Highland, Hyacinth N; Skelton, Adam A
2016-01-01
Phytochemicals of Catharanthus roseus Linn. and Tylophora indica have been known for their inhibition of malarial parasite, Plasmodium falciparum in cell culture. Resistance to chloroquine (CQ), a widely used antimalarial drug, is due to the CQ resistance transporter (CRT) system. The present study deals with computational modeling of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein and development of charged environment to mimic a condition of resistance. The model of PfCRT was developed using Protein homology/analogy engine (PHYRE ver 0.2) and was validated based on the results obtained using PSI-PRED. Subsequently, molecular interactions of selected phytochemicals extracted from C. roseus Linn. and T. indica were studied using multiple-iterated genetic algorithm-based docking protocol in order to investigate the translocation of these legends across the PfCRT protein. Further, molecular dynamics studies exhibiting interaction energy estimates of these compounds within the active site of the protein showed that compounds are more selective toward PfCRT. Clusters of conformations with the free energy of binding were estimated which clearly demonstrated the potential channel and by this means the translocation across the PfCRT is anticipated.
Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies
Giacometti, Jasminka
2017-01-01
The natural phytochemicals present in foods, including anthocyanins, might play a role in attenuating obesity by producing a decrease in weight and adipose tissue. This review focused on current knowledge about anthocyanins' role in obesity and its related comorbidities reported in animal models and humans. We summarized their target identification and mechanism of action through several pathways and their final effects on health and well-being. Into consideration of ongoing researches, we highlighted the following key points: a healthy relationship between anthocyanin supplementation and antiobesity effects suffers of the same pros and cons evidenced when the beneficial responses to other phytochemical treatments towards different degenerative diseases have been considered; the different dosage applied in animal versus clinical studies; the complex metabolism and biotransformation to which anthocyanins and phytochemicals are subjected in the intestine and tissues; the possibility that different components present in the supplemented mixtures can interact generating antagonistic, synergistic, or additive effects difficult to predict, and the difference between prevention and therapy. The evolution of the field must seriously consider the need to establish new and adequate cellular and animal models which may, in turn, allow the design of more efficient and prevention-targeted clinical studies. PMID:28785373
Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies.
Azzini, Elena; Giacometti, Jasminka; Russo, Gian Luigi
2017-01-01
The natural phytochemicals present in foods, including anthocyanins, might play a role in attenuating obesity by producing a decrease in weight and adipose tissue. This review focused on current knowledge about anthocyanins' role in obesity and its related comorbidities reported in animal models and humans. We summarized their target identification and mechanism of action through several pathways and their final effects on health and well-being. Into consideration of ongoing researches, we highlighted the following key points: a healthy relationship between anthocyanin supplementation and antiobesity effects suffers of the same pros and cons evidenced when the beneficial responses to other phytochemical treatments towards different degenerative diseases have been considered; the different dosage applied in animal versus clinical studies; the complex metabolism and biotransformation to which anthocyanins and phytochemicals are subjected in the intestine and tissues; the possibility that different components present in the supplemented mixtures can interact generating antagonistic, synergistic, or additive effects difficult to predict, and the difference between prevention and therapy. The evolution of the field must seriously consider the need to establish new and adequate cellular and animal models which may, in turn, allow the design of more efficient and prevention-targeted clinical studies.
Hepatoprotective studies on Sida acuta Burm. f.
Sreedevi, C D; Latha, P G; Ancy, P; Suja, S R; Shyamal, S; Shine, V J; Sini, S; Anuja, G I; Rajasekharan, S
2009-07-15
Sida acuta Burm. f. (Malvaceae) is used in Indian traditional medicine to treat liver disorders and is useful in treating nervous and urinary diseases and also disorders of the blood and bile. Evaluation of the hepatoprotective properties of the methanolic extract of the root of Sida acuta (SA) and the phytochemical analysis of SA. The model of paracetamol-induced hepatotoxicity in Wistar rats, liver histopathological observations, hexobarbitone-induced narcosis and in vitro anti-lipid peroxidation studies were employed to assess the hepatoprotective efficacy of SA. Phytochemical assay of SA was conducted following standard protocols. Significant hepatoprotective effects were obtained against liver damage induced by paracetamol overdose as evident from decreased serum levels of glutamate pyruvate transaminase, glutamate oxaloacetate transaminase, alkaline phosphatase and bilirubin in the SA treated groups (50, 100, 200mg/kg) compared to the intoxicated controls. The hepatoprotective effect was further verified by histopathology of the liver. Pretreatment with Sida acuta extract significantly shortened the duration of hexobarbitone-induced narcosis in mice indicating its hepatoprotective potential. Phytochemical studies confirmed the presence of the phenolic compound, ferulic acid in the root of Sida acuta, which accounts for the significant hepatoprotective effects observed in the present study. The present study thus provides a scientific rationale for the traditional use of this plant in the management of liver disorders.
Phytochemical genomics--a new trend.
Saito, Kazuki
2013-06-01
Phytochemical genomics is a recently emerging field, which investigates the genomic basis of the synthesis and function of phytochemicals (plant metabolites), particularly based on advanced metabolomics. The chemical diversity of the model plant Arabidopsis thaliana is larger than previously expected, and the gene-to-metabolite correlations have been elucidated mostly by an integrated analysis of transcriptomes and metabolomes. For example, most genes involved in the biosynthesis of flavonoids in Arabidopsis have been characterized by this method. A similar approach has been applied to the functional genomics for production of phytochemicals in crops and medicinal plants. Great promise is seen in metabolic quantitative loci analysis in major crops such as rice and tomato, and identification of novel genes involved in the biosynthesis of bioactive specialized metabolites in medicinal plants. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.
Peek, H W; Halkes, S B A; Mes, J J; Landman, W J M
2013-01-01
Besides the anticoccidial drug resistance problem, increasing consumer concerns about food safety and residues have propelled the quest for alternative prevention and control strategies amongst which phytotherapy has gained appeal due to a renewed interest in natural medicine. The objective was in vivo screening of four phytochemicals/extracts and a fungal immunomodulatory protein (FIP) against an Eimeria acervulina infection in broilers. Four phytochemicals/extracts (extract from Echinacea purpurea, betaine (Betain™), curcumin, carvacrol (two different doses)), and a recombinant FIP from Ganoderma lucidum cloned and expressed in Escherichia coli were investigated for their anticoccidial potential. The experiment was conducted in a battery cage trial with 54 cages of eight birds each. Broilers infected with E. acervulina (a low and high infection dose of 10(4) and 10(5) sporulated oocysts, respectively) and treated with the phytochemicals/extracts or the FIP were compared with broilers treated with the anticoccidial salinomycin sodium (Sacox®) and with an untreated uninfected and an untreated infected control group. Coccidiosis lesion scores, body weight gains and oocyst shedding were used as parameters. The results showed a coccidiosis infection dose effect on the mean coccidiosis lesion scores. The phytochemicals/extracts and the FIP failed to reduce coccidiosis lesion scores and oocyst shedding, while salinomycin efficiently controlled the E. acervulina infection and enabled significantly higher body weight gains. In conclusion, the selected phytochemicals/extracts and the FIP did not reduce the lesions of an experimentally induced E. acervulina infection.
Domitrović, Robert; Potočnjak, Iva
2016-01-01
Hepatoprotective effects of natural compounds have been frequently attributed to their antioxidant properties and the ability to mobilize endogenous antioxidant defense system. Because of involvement of oxidative stress in virtually all mechanisms of liver injury, it is a reasonable presumption that antioxidant properties of these compounds may play a key role in the mechanism of their hepatoprotective activity. Nevertheless, growing evidence suggests that other pharmacological activities of natural compounds distinct from antioxidant are responsible for their therapeutic effects. In this review, we discussed currently known molecular mechanisms of the hepatoprotective activity of 27 most intensively studied phytochemicals. These compounds have been shown to possess anti-inflammatory, antisteatotic, antiapoptotic, cell survival and antiviral activity through interference with multiple molecular targets and signaling pathways. Additionally, antifibrotic properties of phytochemicals have been closely associated with apoptosis of hepatic stellate cells and stimulation of extracellular matrix degradation. However, although these compounds exhibit a pronounced hepatoprotective effects in animal and cell culture models, the lack of clinical studies remains a bottleneck for their official acceptance by medical experts and physicians. Therefore, controlled clinical trials have an imperative in confirmation of the therapeutic activity of potentially hepatoprotective compounds. Understanding the principles of the hepatoprotective activity of phytochemicals could guide future drug development and help prevention of clinical trial failure. Also, the use of new delivery systems that enhances bioavailability of poorly water soluble compounds may improve the results already obtained. Most importantly, available data suggest that phytochemicals possess a various degree of modulation of specific signaling pathways, pointing out a need for usage of combinations of several hepatoprotective compounds in both experimental studies and clinical trials.
Chaudhary, Amit; Yadav, Birendra Singh; Singh, Swati; Maurya, Pramod Kumar; Mishra, Alok; Srivastva, Shweta; Varadwaj, Pritish Kumar; Singh, Nand Kumar; Mani, Ashutosh
2017-10-01
Ficus religiosa L. is generally known as Peepal and belongs to family Moraceae . The tree is a source of many compounds having high medicinal value. In gastrointestinal tract, histamine H2 receptors have key role in histamine-stimulated gastric acid secretion. Their over stimulation causes its excessive production which is responsible for gastric ulcer. This study aims to screen the range of phytochemicals present in F. religiosa for binding with human histamine H2 and identify therapeutics for a gastric ulcer from the plant. In this work, a 3D-structure of human histamine H2 receptor was modeled by using homology modeling and the predicted model was validated using PROCHECK. Docking studies were also performed to assess binding affinities between modeled receptor and 34 compounds. Molecular dynamics simulations were done to identify most stable receptor-ligand complexes. Absorption, distribution, metabolism, excretion, and screening was done to evaluate pharmacokinetic properties of compounds. The results suggest that seven ligands, namely, germacrene, bergaptol, lanosterol, Ergost-5-en-3beta-ol, α-amyrin acetate, bergapten, and γ-cadinene showed better binding affinities. Among seven phytochemicals, lanosterol and α-amyrin acetate were found to have greater stability during simulation studies. These two compounds may be a suitable therapeutic agent against histamine H2 receptor. This study was performed to screen antiulcer compounds from F. religiosa . Molecular modeling, molecular docking and MD simulation studies were performed with selected phytochemicals from F. religiosa . The analysis suggests that Lanosterol and α-amyrin may be a suitable therapeutic agent against histamine H2 receptor. This study facilitates initiation of the herbal drug discovery process for the antiulcer activity. Abbreviations used: ADMET: Absorption, distribution, metabolism, excretion and toxicity, DOPE: Discrete Optimized Potential Energy, OPLS: Optimized potential for liquid simulations, RMSD: Root-mean-square deviation, HOA: Human oral absorption, MW: Molecular weight, SP: Standard-precision, XP: Extra-precision, GPCRs: G protein-coupled receptors, SASA: Solvent accessible surface area, Rg: Radius of gyration, NHB: Number of hydrogen bond.
Nune, Satish K; Chanda, Nripen; Shukla, Ravi; Katti, Kavita; Kulkarni, Rajesh R; Thilakavathi, Subramanian; Mekapothula, Swapna; Kannan, Raghuraman; Katti, Kattesh V
2009-06-01
Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve the dual roles as effective reducing agents to reduce gold and also as stabilizers to provide robust coating on the gold nanoparticles in a single step. The Tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and have been found to be non toxic as assessed through MTT assays. No 'man made' chemicals, other than gold salts, are used in this true biogenic green nanotechnological process thus paving excellent opportunities for their applications in molecular imaging and therapy.
Wong, Fai-Chu; Chai, Tsun-Thai; Xiao, Jianbo
2018-05-22
In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
Anesthetic Agents of Plant Origin: A Review of Phytochemicals with Anesthetic Activity.
Tsuchiya, Hironori
2017-08-18
The majority of currently used anesthetic agents are derived from or associated with natural products, especially plants, as evidenced by cocaine that was isolated from coca ( Erythroxylum coca , Erythroxylaceae) and became a prototype of modern local anesthetics and by thymol and eugenol contained in thyme ( Thymus vulgaris , Lamiaceae) and clove ( Syzygium aromaticum , Myrtaceae), respectively, both of which are structurally and mechanistically similar to intravenous phenolic anesthetics. This paper reviews different classes of phytochemicals with the anesthetic activity and their characteristic molecular structures that could be lead compounds for anesthetics and anesthesia-related drugs. Phytochemicals in research papers published between 1996 and 2016 were retrieved from the point of view of well-known modes of anesthetic action, that is, the mechanistic interactions with Na⁺ channels, γ-aminobutyric acid type A receptors, N -methyl-d-aspartate receptors and lipid membranes. The searched phytochemicals include terpenoids, alkaloids and flavonoids because they have been frequently reported to possess local anesthetic, general anesthetic, antinociceptive, analgesic or sedative property. Clinical applicability of phytochemicals to local and general anesthesia is discussed by referring to animal in vivo experiments and human pre-clinical trials. This review will give structural suggestions for novel anesthetic agents of plant origin.
Rodríguez-Fragoso, Lourdes; Martínez-Arismendi, José Luis; Orozco-Bustos, Danae; Reyes-Esparza, Jorge; Torres, Eliseo; Burchiel, Scott W
2011-05-01
It has been well established that complex mixtures of phytochemicals in fruits and vegetables can be beneficial for human health. Moreover, it is becoming increasingly apparent that phytochemicals can influence the pharmacological activity of drugs by modifying their absorption characteristics through interactions with drug transporters as well as drug-metabolizing enzyme systems. Such effects are more likely to occur in the intestine and liver, where high concentrations of phytochemicals may occur. Alterations in cytochrome P450 and other enzyme activities may influence the fate of drugs subject to extensive first-pass metabolism. Although numerous studies of nutrient-drug interactions have been published and systematic reviews and meta-analyses of these studies are available, no generalizations on the effect of nutrient-drug interactions on drug bioavailability are currently available. Several publications have highlighted the unintended consequences of the combined use of nutrients and drugs. Many phytochemicals have been shown to have pharmacokinetic interactions with drugs. The present review is limited to commonly consumed fruits and vegetables with significant beneficial effects as nutrients and components in folk medicine. Here, we discuss the phytochemistry and pharmacokinetic interactions of the following fruit and vegetables: grapefruit, orange, tangerine, grapes, cranberry, pomegranate, mango, guava, black raspberry, black mulberry, apple, broccoli, cauliflower, watercress, spinach, tomato, carrot, and avocado. We conclude that our knowledge of the potential risk of nutrient-drug interactions is still limited. Therefore, efforts to elucidate potential risks resulting from food-drug interactions should be intensified in order to prevent undesired and harmful clinical consequences. © 2011 Institute of Food Technologists®
Antibacterial activities and antioxidant capacity of Aloe vera
2013-01-01
Background The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods. Results Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts. Conclusion Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes. PMID:23870710
Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa
2014-01-01
There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.
Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa
2014-01-01
There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822
Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties
USDA-ARS?s Scientific Manuscript database
Whole wheat provides a rich source of bioactive phytochemicals namely, phenolic acids, carotenoids, tocopherols, alkylresorcinols, arabinoxylans, benzoxazinoids, phytosterols, and lignans. This review provides information on the distribution, extractability, analysis, and nutraceutical properties of...
Ismail, Amin
2016-01-01
Hundreds of fruit-bearing trees are native to Southeast Asia, but many of them are considered as indigenous or underutilized. These species can be categorized as indigenous tropical fruits with potential for commercial development and those possible for commercial development. Many of these fruits are considered as underutilized unless the commercialization is being realized despite the fact that they have the developmental potential. This review discusses seven indigenous tropical fruits from 15 species that have been identified, in which their fruits are having potential for commercial development. As they are not as popular as the commercially available fruits, limited information is found. This paper is the first initiative to provide information on the phytochemicals and potential medicinal uses of these fruits. Phytochemicals detected in these fruits are mainly the phenolic compounds, carotenoids, and other terpenoids. Most of these phytochemicals are potent antioxidants and have corresponded to the free radical scavenging activities and other biological activities of the fruits. The scientific research that covered a broad range of in vitro to in vivo studies on the medicinal potentials of these fruits is also discussed in detail. The current review is an update for researchers to have a better understanding of the species, which simultaneously can provide awareness to enhance their commercial value and promote their utilization for better biodiversity conservation. PMID:27340420
Phytochemical screening and quantification of flavonoids from leaf extract of Jatropha curcas Linn.
Ebuehi, O A T; Okorie, N A
2009-01-01
The Jatropha curcas L. (Euphorbiaceae) herb is found in SouthWest, Nigeria and other parts of West Africa, and is claimed to possess anti-hypertensive property. The phytochemical screening and flavonoid quantification of the leaf extract of Jatropha curcas Linn were studied. The phytochemical screening of the methanolic leaf extract of J. curcas L. was carried using acceptable and standard methods. The flavonoid contents of the leaf extract of Jatropha curcas L. were determined using thin layer chromatography (TLC), infrared spectroscopy (IRS) and a reversed phase high performance liquid chromatography (HPLC). The phytochemical screening of the methanolic extract of the leaves of the plant shows the presence of alkaloids, cardiac glycosides, cyanogenic glycosides, phlobatannins, tannins, flavonoids and saponins. To quantify the flavonoid contents of leaf extract of Jatropha curcas L, extracts from the plant samples where examined in a C-18 column with UV detection and isocratic elution with acetonitrile; water (45:55). Levels of flavonoids (flavones) in leaves ranged from 6:90 to 8:85 mg/g dry weight. Results indicate that the methanolic extract of the leaves of Jatropha curcas L. contains useful active ingredients which may serve as potential drug for the treatment of diseases. In addition, a combination of TLC, IRS and HPLC can be used to analyse and quantify the flavonoids present in the leaves of Jatropha curcas L.
Ramirez, Christina N; Li, Wenji; Zhang, Chengyue; Wu, Renyi; Su, Shan; Wang, Chao; Gao, Linbo; Yin, Ran; Kong, Ah-Ng
2017-12-20
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress
Valdiani, Alireza; Maziah, Mahmood; Saad, Mohd Said
2013-01-01
Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm−1) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm−1 led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions. PMID:24371819
Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng
2013-01-01
Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer. PMID:24716158
Scur, M C; Pinto, F G S; Pandini, J A; Costa, W F; Leite, C W; Temponi, L G
2016-02-01
The goals of the study were to determinethe antimicrobial and antioxidant activities of essential oil and plant extracts aqueous and ethanolic of Psidium cattleianum Sabine; the chemical composition of the essential oil of P. cattleianum; and the phytochemical screening of aqueous and ethanolic extracts of the same plant. Regarding the antimicrobial activity, the ethanolic extract exhibited moderate antimicrobial activity with respect to bacteria K. pneumoniae and S. epidermidis, whereas, regarding other microorganisms, it showed activity considered weak. The aqueous extract and the essential oil showed activity considered weak, although they inhibited the growth of microorganisms. About the antioxidant potential, the ethanolic and aqueous extracts exhibited a scavenging index exceeding 90%, while the essential oil didn´t show significant antioxidant activity. Regarding the phytochemical composition, the largest class of volatile compounds identified in the essential oil of P. cattleianum included the following terpenic hydrocarbons: α-copaene (22%); eucalyptol (15%), δ-cadinene (9.63%) and α-selinene (6.5%). The phytochemical screening of extracts showed the presence of tannins, flavonoids, and triterpenoids for aqueous and ethanolic extracts. The extracts and essential oils inhibit the growth of microrganisms and plant extracts showed significant antioxidant activity. Also, the phytochemical characterization of the essential oil showed the presence of compounds interest commercial, as well as extracts showed the presence of important classes and compounds with biological activities.
Dietary phytochemicals in the protection against oxysterol-induced damage.
Cilla, Antonio; Alegría, Amparo; Attanzio, Alessandro; Garcia-Llatas, Guadalupe; Tesoriere, Luisa; Livrea, Maria A
2017-10-01
The intake of fruits and vegetables is associated with reduced incidence of many chronic diseases. These foods contain phytochemicals that often possess antioxidant and free radical scavenging capacity and show anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative disorders. Many factors can be included in the etiopathogenesis of all of these multifactorial diseases that involve oxidative stress, inflammation and/or cell death processes, oxysterols, i.e. cholesterol oxidation products (COPs) as well as phytosterol oxidation products (POPs), among others. These oxidized lipids result from either spontaneous and/or enzymatic oxidation of cholesterol/phytosterols on the steroid nucleus or on the side chain and their critical roles in the pathophysiology of the abovementioned diseases has become increasingly evident. In this context, many studies investigated the potential of dietary phytochemicals (polyphenols, carotenoids and vitamins C and E, among others) to protect against oxysterol toxicity in various cell models mimicking pathophysiological conditions. This review, summarizing the mechanisms involved in the chemopreventive effect of phytochemicals against the injury by oxysterols may constitute a step forward to consider the importance of preventive strategies on a nutritional point of view to decrease the burden of many age-related chronic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Spínola, Vítor; Llorent-Martínez, Eulogio J; Castilho, Paula C
2018-09-01
In this work, we report the phytochemical profile and antioxidant activity of different morphological parts of Rumex maderensis Lowe (Polygonaceae), a wild leafy-vegetable growing in Madeira Island (Portugal). Methanol extracts from leaves, flowers, and stems were submitted to high-performance liquid chromatography with mass spectrometry detection to obtain the phytochemical profile, which allowed the identification of 86 polyphenols (about 70% C- and O-flavonoids) and 9 non-phenolic compounds. In vitro antioxidant activities were measured against ABTS, DPPH, nitric oxide and superoxide free radicals. Then, the samples were subjected to an in vitro digestion, observing a decrease of about 50% in both the content of phenolics and the antioxidant activity. However, relevant antioxidant capacity was still observed after the simulated digestion. Therefore, this study supports the consumption of R. maderensis as an interesting foodstuff and a dietary source of antioxidant phytochemicals that survive the gastrointestinal digestion process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne Lakkenborg
2014-11-26
The objectives were to investigate if genetic diversity among field-grown traditional and F1 hybrid kale cultivars was reflected in different agronomic characteristics and consequently glucosinolate (GLS) and flavonoid glycoside concentration. This study evaluated how nitrogen and sulfur supply and biomass allocation modified phytochemicals in two experiments with combinations of three cultivars and four N and two S application levels. Results showed less growth, and higher N concentration in the traditional cultivar 'Tiara' was associated with increased indole and total GLSs compared to traditional 'Høj Amager Toftø' and F1 hybrid 'Reflex' cultivars, which exhibited higher yield, lower N concentration, and different biomass allocation. S application increased total GLS concentration, whereas aliphatic GLS percentage decreased when N application increased. Decrease of six 'Reflex' GLSs besides quercetin glycosides and total flavonoid glycosides with increased N indicated higher N responsiveness for 'Reflex'. In conclusion, differences in agronomic characteristics were reflected in diverse phytochemical composition.
Wang, Huailing; Guo, Xinbo; Hu, Xiaodan; Li, Tong; Fu, Xiong; Liu, Rui Hai
2017-02-15
Numerous reports have demonstrated that the consumption of fruits and vegetables is beneficial for the human health. Blueberries, in particular, are rich in phytochemicals including free and bound forming. Phytochemical profiles of 14 varieties of blueberry were compared in this study. 12 compounds were analyzed and had significant changes in blueberry fruits. Total antioxidant activities in different blueberry varieties varied about 2.6times by oxygen radical absorbance capacity (ORAC) assay, and 2times by peroxyl radical scavenging capacity (PSC) assay. The cellular antioxidant activities (CAA) in different varieties varied about 3.9times without phosphate buffer saline (PBS) wash, and 4.7times with PBS wash by CAA assay. Blueberry extracts had potent antiproliferative activities against HepG2 human liver cancer cells, indicating the potential protective benefits associated with their use as functional foods. The anti-proliferative activity was observed to be dose-dependent in blueberry extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kiazolu, J Boima; Intisar, Azeem; Zhang, Lingyi; Wang, Yun; Zhang, Runsheng; Wu, Zhongping; Zhang, Weibing
2016-10-01
Morinda morindoides is an important Liberian traditional medicine for the treatment of malaria, fever, worms etc. The plant was subjected to integrated approaches including phytochemical screening and gas chromatography mass spectrometry (GC-MS) analyses. Phytochemical investigation of the powdered plant revealed the presence of phenolics, tannins, flavonoids, saponins, terpenes, steroidal compounds and volatile oil. Steam distillation followed by GC-MS resulted in the identification of 47 volatiles in its aerial parts: 28 were in common including various bioactive volatiles. Major constituents of leaves were phytol (43.63%), palmitic acid (8.55%) and geranyl linalool (6.95%) and stem were palmitic acid (14.95%), eicosane (9.67%) and phytol (9.31%), and hence, a significant difference in the percentage composition of aerial parts was observed. To study seasonal changes, similarity analysis was carried out by calculating correlation coefficient (r) and vector angle cosine (z) that were more than 0.91 for stem-to-stem and leaf-to-leaf batches indicating considerable consistency.
Ethanol versus Phytochemicals in Wine: Oral Cancer Risk in a Light Drinking Perspective
Varoni, Elena M.; Lodi, Giovanni; Iriti, Marcello
2015-01-01
This narrative review aims to summarize the current controversy on the balance between ethanol and phytochemicals in wine, focusing on light drinking and oral cancer. Extensive literature search included PUBMED and EMBASE databases to identify in human studies and systematic reviews (up to March 2015), which contributed to elucidate this issue. Independently from the type of beverage, meta-analyses considering light drinking (≤1 drinks/day or ≤12.5 g/day of ethanol) reported relative risks (RR) for oral, oro-pharyngeal, or upper aero-digestive tract cancers, ranging from 1.0 to 1.3. One meta-analysis measured the overall wine-specific RR, which corresponded to 2.1. Although little evidence exists on light wine intake, phytochemicals seem not to affect oral cancer risk, being probably present below the effective dosages and/or due to their low bioavailability. As expected, the risk of oral cancer, even in light drinking conditions, increases when associated with smoking habit and high-risk genotypes of alcohol and aldehyde dehydrogenases. PMID:26225960
Koldaş, Serkan; Demirtas, Ibrahim; Ozen, Tevfik; Demirci, Mehmet Ali; Behçet, Lütfi
2015-03-15
A detailed phytochemical analysis of Origanum vulgare L. ssp. viride (Boiss.) Hayek was carried out and the antioxidant activities of five different crude extracts were determined. The antiproliferative activities of the extracts were determined using the xCELLigence system (Real Time Cell Analyzer). Differences between the essential oil and volatile organic compound profiles of the plant were shown. The main component of the essential oil was caryophyllene oxide, while the main volatile organic compounds were sabinene and eucalyptol as determined by HS-GC/MS. Phenolic contents of the extracts were determined qualitatively and quantitatively by HPLC/TOF-MS. Ten phenolic compounds were found in the extracts from O. vulgare and Origanum acutidens: rosmarinic acid (in highest abundance), chicoric acid, caffeic acid, p-coumaric acid, gallic acid, quercetin, apigenin-7-glucoside, kaempferol, naringenin and 4-hydroxybenzaldehyde. This study provides first results on the antiproliferative and antioxidant properties and detailed phytochemical screening of O. vulgare ssp. viride (Boiss.) Hayek. © 2014 Society of Chemical Industry.
Chear, Nelson Jeng-Yeou; Khaw, Kooi-Yeong; Murugaiyah, Vikneswaran; Lai, Choon-Sheen
2016-04-01
Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences. Copyright © 2016. Published by Elsevier B.V.
Rahman, Md Azizur; Akhtar, Juber
2016-10-01
Phytochemical investigation is very valuable for the ethnomedicinally important plants Bauhinia racemosa Lam (BR) and Cordia dichotoma Linn (CD) used for the cure of variety of ailments. This study was thus designed for phytochemical investigation of BR bark and CD leaves. Phytoconstituents were isolated from the methanolic extracts of the plants by column chromatography using silica gel as stationary phase. The structures had been established on the basis of their physicochemical and spectral data, i.e. IR, (1)H NMR, (13)C NMR and MS. Elution of the columns with different solvents furnished six compounds (1-6) from the methanolic extract of BR bark and three compounds (7-9) from the methanolic extract of CD leaves which were structurally elucidated. The present phytochemical investigation reported several new compounds useful in increasing the existing knowledge of phytoconstituents from BR bark and CD leaves which is very valuable, as these drugs are used in the Indian traditional systems of medicine.
Phytochemical profiles and antioxidant activity of processed brown rice products.
Gong, Er Sheng; Luo, Shunjing; Li, Tong; Liu, Chengmei; Zhang, Guowen; Chen, Jun; Zeng, Zicong; Liu, Rui Hai
2017-10-01
The phytochemical profiles and antioxidant activity of free, soluble-conjugated, and bound fractions of brown rice and its processed products (textured rice, cooked rice and rice noodle) were studied. Nineteen phenolic acids were identified. Trans-ferulic acid was the most abundant monomeric phenolic acid with trans-trans-8-O-4' diferulic acid being most abundant diferulic acid. Processing increased the content of free phenolic acids, but decreased the content of soluble-conjugated phenolic acids. The content of bound phenolic acids was increased by improved extrusion cooking technology and cooking, but not affected by rice noodle extrusion. The total phenolic contents and antioxidant activities of free and soluble-conjugated fractions were decreased after processing, whereas those of bound fraction were increased by improved extrusion cooking technology and cooking, but not affected by rice noodle extrusion. Results indicated that whole foods designed for reducing chronic disease risk need to consider the effects of processing on phytochemical profiles and antioxidant activity of whole grains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ragusa, Lucia; Picchi, Valentina; Tribulato, Alessandro; Cavallaro, Chiara; Lo Scalzo, Roberto; Branca, Ferdinando
2017-06-01
This study investigates the effect of different germination temperatures (10, 20 and 30 °C) on the phytochemical content as well as reducing and antioxidant capacity of broccoli and rocket sprouts. In both seeds and sprouts, the total glucosinolates and ascorbic acid contents did not differ between vegetables, while broccoli exhibited exceptionally higher polyphenols and greater reducing and antioxidant capacity compared to rocket. In both species, an increase in germination temperature positively affected the glucosinolate content. Ascorbic acid increased during germination without a difference among the three tested temperatures. The phenol content in broccoli sprouts increased when they were grown at 30 °C, but the amount decreased at the highest temperatures in rocket. The reducing and antioxidant capacities increased with germination, and higher indexes were detected at 10 °C, particularly in rocket. Different germination temperatures differentiate the health-promoting phytochemical content and antioxidant properties in broccoli and rocket sprouts.
Chirinos, Rosana; Pedreschi, Romina; Domínguez, Gilberto; Campos, David
2015-04-15
A physico-chemical and phytochemical characterisation of the oil of two rich sources of polyunsaturated fatty acids, tocopherols and phytosterols is presented for two close species of Plukenetia, endemic to the Amazon Region of Peru. Plukenetia huayllabambana presented approximately 9% more oil yield than Plukenetia volubilis. Fatty acid profiles were pretty similar for both species but P. huayllabambana presented a significantly higher content of α-linolenic acid than P. volubilis (51.3 and 45.6 g/100 g oil, respectively). Important contents of γ- and δ-tocopherol were evidenced in both oils (127.6 and 84.0 and, 93.3 and 47.5 mg/100 g oil, for P. volubilis and P. huayllabambana, respectively). β-Sitosterol was the most important and representative phytosterol in both oils (∼127 mg/100 g oil). The results of this study indicate P. huayllabambana as an important dietary source of health promoting phytochemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Worametrachanon, Srivilai; Apichartsrangkoon, Arunee
2014-10-01
This study investigated how pressure (500, 600 MPa/20 min) altered the viscoelastic characteristics and phytochemical properties of germinated and non-germinated purple-rice drinks in comparison with pasteurization. Accordingly, color parameters, storage and loss moduli, anthocyanin content, γ-oryzanol, γ-aminobutyric acid (GABA), total phenolic compounds and 2,2-diphenyl-1-picrylthydrazyl (DPPH) capacity of the processed drinks were determined. The finding showed that germinated and pressurized rice drink had lower Browning Index than the non-germinated and pasteurized rice drink. The plots of storage and loss moduli for processed rice drinks indicated that time of pressurization had greater impact on gel structural modification than the level of pressure used. The phytochemicals, including total phenolics, and DPPH capacity in pressurized rice drinks retained higher quantity than those in pasteurized drink, despite less treatment effects on anthocyanin. On the contrary, both γ-oryzanol and GABA were found in high amounts in germinated rice drink with little variation among processing effects.
Giordano, Debora; Beta, Trust; Gagliardi, Federica; Blandino, Massimo
2018-05-02
Among the agronomic practices carried out in corn cultivation, the early sowing time is increasingly used by farmers of temperate regions to improve yield and reduce mycotoxin contamination of corn grains. The present study determined the influence of sowing time on the phytochemical content of grains of 10 colored genotypes of corn. There was a significant improvement of both grain yield (+26%), thousand kernel weight (+3%), and test weight (+2%) in plots sown early. The early sowing also significantly influenced the chemical composition of corn grains, with an increase in the concentration of cell-wall-bound phenolic acids (+5%) and β-cryptoxanthin (+23%) and a decrease in the concentration of lutein (-18%) and total anthocyanins (-21%). Environmental conditions that occurred during grain development significantly influenced the phytochemical content of corn grain, and early spring sowing could impart advantages in terms of both productivity and content of some antioxidants of whole-meal corn flour.
Hibiscus sabdariffa L. - a phytochemical and pharmacological review.
Da-Costa-Rocha, Inês; Bonnlaender, Bernd; Sievers, Hartwig; Pischel, Ivo; Heinrich, Michael
2014-12-15
Hibiscus sabdariffa L. (Hs, roselle; Malvaceae) has been used traditionally as a food, in herbal drinks, in hot and cold beverages, as a flavouring agent in the food industry and as a herbal medicine. In vitro and in vivo studies as well as some clinical trials provide some evidence mostly for phytochemically poorly characterised Hs extracts. Extracts showed antibacterial, anti-oxidant, nephro- and hepato-protective, renal/diuretic effect, effects on lipid metabolism (anti-cholesterol), anti-diabetic and anti-hypertensive effects among others. This might be linked to strong antioxidant activities, inhibition of α-glucosidase and α-amylase, inhibition of angiotensin-converting enzymes (ACE), and direct vaso-relaxant effect or calcium channel modulation. Phenolic acids (esp. protocatechuic acid), organic acid (hydroxycitric acid and hibiscus acid) and anthocyanins (delphinidin-3-sambubioside and cyanidin-3-sambubioside) are likely to contribute to the reported effects. More well designed controlled clinical trials are needed which use phytochemically characterised preparations. Hs has an excellent safety and tolerability record. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Proença, Diogo Neves; Nobre, Maria Fernanda; Morais, Paula V
2014-04-01
Bacterial strain A37T2(T) was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A37T2(T) was Gram-stain-negative, formed rod-shaped cells, and grew optimally at 26-30 °C and at pH 5.5-7.5. The G+C content of the DNA was 46.6 mol%. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were C16 : 1ω5c and iso-C15 : 0, representing 61.7 % of the total fatty acids. The polar lipids consisted of phosphatidylethanolamine, four unidentified aminophospholipids, one unidentified phospholipid, two unidentified aminolipids and three unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A37T2(T) belonged to the family Chitinophagaceae, forming a distinct branch with Chitinophaga niabensis JS13-10(T) within the genus Chitinophaga. Strain A37T2(T) shared between 92.7 and 95.1 % 16S rRNA gene sequence similarity with the type strains of species of the genus Chitinophaga. The phylogenetic, phenotypic and chemotaxonomic data presented indicate that strain A37T2(T) represents a novel species of the genus Chitinophaga, for which the name Chitinophaga costaii sp. nov. is proposed. The type strain is A37T2(T) ( = CIP 110584(T) = LMG 27458(T)). An emended description of Chitinophaga niabensis JS13-10(T) is also proposed.
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, Victor; Aragones, David; Caparros-Santiago, Jose A.; Navarro-Cerrillo, Rafael M.
2017-10-01
Land surface phenology (LSP) can improve the characterisation of forest areas and their change processes. The aim of this work was: i) to characterise the temporal dynamics in Mediterranean Pinus forests, and ii) to evaluate the potential of LSP for species discrimination. The different experiments were based on 679 mono-specific plots for the 5 native species on the Iberian Peninsula: P. sylvestris, P. pinea, P. halepensis, P. nigra and P. pinaster. The entire MODIS NDVI time series (2000-2016) of the MOD13Q1 product was used to characterise phenology. The following phenological parameters were extracted: the start, end and median days of the season, and the length of the season in days, as well as the base value, maximum value, amplitude and integrated value. Multi-temporal metrics were calculated to synthesise the inter-annual variability of the phenological parameters. The species were discriminated by the application of Random Forest (RF) classifiers from different subsets of variables: model 1) NDVI-smoothed time series, model 2) multi-temporal metrics of the phenological parameters, and model 3) multi-temporal metrics and the auxiliary physical variables (altitude, slope, aspect and distance to the coastline). Model 3 was the best, with an overall accuracy of 82%, a kappa coefficient of 0.77 and whose most important variables were: elevation, coast distance, and the end and start days of the growing season. The species that presented the largest errors was P. nigra, (kappa= 0.45), having locations with a similar behaviour to P. sylvestris or P. pinaster.
Moreira, X; Abdala-Roberts, L; Zas, R; Merlo, E; Lombardero, M J; Sampedro, L; Mooney, K A
2016-11-01
Context-dependency in species interactions is widespread and can produce concomitant patterns of context-dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context-dependency in plant-animal interactions. However, the evolutionary consequences of such dynamics are not well understood. Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six-year data (spanning one mast year and five non-mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes. Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non-masting years. These findings provide evidence that masting can alter the evolutionary outcome of plant-seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant-consumer evolutionary dynamics. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas-Ubach, Albert; Hódar, José A.; Sardans, Jordi
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P.more » nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.« less
Koutsaviti, Katerina; Giatropoulos, Athanassios; Pitarokili, Danae; Papachristos, Dimitrios; Michaelakis, Antonios; Tzakou, Olga
2015-02-01
The needle volatiles metabolites of seven Pinus spp.: Pinus nigra (3 samples), Pinus stankewiczii, Pinus brutia, Pinus halepensis, Pinus canariensis, Pinus pinaster and Pinus strobus from Greece were determined by gas chromatography and gas chromatography-mass spectrometry. P. nigra and P. canariensis essential oils were dominated by α-pinene (24.9-28.9 % and 15 %, respectively) and germacrene D (20.3-31.9 % and 55.8 %, respectively), whereas P. brutia and P. strobus by α-pinene (20.6 % and 31.4 %, respectively) and β-pinene (31.7 % and 33.6 %, respectively). P. halepensis and P. pinaster oils were characterized by β-caryophyllene (28.5 % and 22.5 %, respectively). Finally, β-pinene (31.4 %), germacrene D (23.3 %) and α-pinene (17.5 %) were the most abundant compounds in the needle oil of P. stankewiczii. Additionally the larvicidal and repellent properties of their essential oils were evaluated against Aedes albopictus, a mosquito of great ecological and medical importance. The results of bioassays revealed that repellent abilities of the tested essential oils were more potent than their larvicidal activities. The essential oils of P. brutia, P. halepensis and P. stankewiczii presented considerable larvicidal activity (LC50 values 67.04 mgL(-1) and 70.21 mgL(-1), respectively), while the others were weak to inactive against larvae. The essential oils of P. halepensis, P. brutia, and P. stankewiczii presented a high repellent activity, even at the dose of 0.2 μL cm(-2), while in the dose of 0.4 μL cm(-2), almost all the tested EOs displayed protection against the mosquito.
Biotransformation of corn phytochemicals by Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Phytochemicals, microbial metabolites, and agrochemicals can individually or collectively impact the diversity and frequency of fungal species occurring in agricultural field environments. Resistance to such chemicals by plant pathogenic fungi is common and potentially devastating to crop quality, ...
Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals
García-Mier, Lina; Guevara-González, Ramón G.; Mondragón-Olguín, Víctor M.; Verduzco-Cuellar, Beatriz del Rocío; Torres-Pacheco, Irineo
2013-01-01
Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices. PMID:23429238
Ellagitannins in Cancer Chemoprevention and Therapy
Ismail, Tariq; Calcabrini, Cinzia; Diaz, Anna Rita; Fimognari, Carmela; Turrini, Eleonora; Catanzaro, Elena; Akhtar, Saeed; Sestili, Piero
2016-01-01
It is universally accepted that diets rich in fruit and vegetables lead to reduction in the risk of common forms of cancer and are useful in cancer prevention. Indeed edible vegetables and fruits contain a wide variety of phytochemicals with proven antioxidant, anti-carcinogenic, and chemopreventive activity; moreover, some of these phytochemicals also display direct antiproliferative activity towards tumor cells, with the additional advantage of high tolerability and low toxicity. The most important dietary phytochemicals are isothiocyanates, ellagitannins (ET), polyphenols, indoles, flavonoids, retinoids, tocopherols. Among this very wide panel of compounds, ET represent an important class of phytochemicals which are being increasingly investigated for their chemopreventive and anticancer activities. This article reviews the chemistry, the dietary sources, the pharmacokinetics, the evidence on chemopreventive efficacy and the anticancer activity of ET with regard to the most sensitive tumors, as well as the mechanisms underlying their clinically-valuable properties. PMID:27187472
Nanotechnology for the delivery of phytochemicals in cancer therapy.
Xie, Jing; Yang, Zhaogang; Zhou, Chenguang; Zhu, Jing; Lee, Robert J; Teng, Lesheng
2016-01-01
The aim of this review is to summarize advances that have been made in the delivery of phytochemicals for cancer therapy by the use of nanotechnology. Over recent decades, much research effort has been invested in developing phytochemicals as cancer therapeutic agents. However, several impediments to their wide spread use as drugs still have to be overcome. Among these are low solubility, poor penetration into cells, high hepatic disposition, and narrow therapeutic index. Rapid clearance or uptake by normal tissues and wide tissue distribution result in low drug accumulation in the target tumor sites can result in undesired drug exposure in normal tissues. Association with or encapsulation in nanoscale drug carriers is a potential strategy to address these problems. This review discussed lessons learned on the use of nanotechnology for delivery of phytochemicals that been tested in clinical trials or are moving towards the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.
A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer.
Arumuggam, Niroshaathevi; Bhowmick, Neil A; Rupasinghe, H P Vasantha
2015-06-01
Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer. Copyright © 2015 John Wiley & Sons, Ltd.
Traka, Maria H; Mithen, Richard F
2011-07-01
The rise in noncommunicable chronic diseases associated with changing diet and lifestyles throughout the world is a major challenge for society. It is possible that certain dietary components within plants have roles both in reducing the incidence and progression of these diseases. We critically review the types of evidence used to support the health promoting activities of certain phytochemicals and plant-based foods and summarize the major contributions but also the limitations of epidemiological and observational studies and research with the use of cell and animal models. We stress the need for human intervention studies to provide high-quality evidence for health benefits of dietary components derived from plants.
Ain, Quratul; Naveed, Muhammad Na; Mumtaz, Abdul Samad; Farman, Muhammad; Ahmed, Iftikhar; Khalid, Nauman
2015-09-01
Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.
Phytochemicals and bioactivities of Anemone raddeana Regel: a review.
Sun, Yong-Xu; Liu, Ji-Cheng; Liu, Da-You
2011-11-01
Anemone raddeana, usually called as'"Toujian Liang" in China, is an Anemone herb belonging to the Ranunculaceae family. Until now there are in total 67 of chemical components identified including triterpenoids, steroids, lactones, fats and oils, saccharide and alkaloids. A broad spectrum of pharmacological activity of A. raddeana compounds have been reported, such as antitumor, antimicrobial, anti-inflammatory, sedative and analgesic activites, as well as anti-convulsant and anti-histamine effects. In view of this, we initiated this short review to present the phytochemical and pharmacological profile of A. raddeana to support future studies in this discipline.
Phytochemical investigation and proximate analysis on the leaves of Cnidoscolus aconitifolius.
Oyagbemi, Ademola A; Odetola, Adebimpe A; Azeez, Odunayo I
2011-03-01
The study was designed to carry out the phytochemical screening and the proximate analysis of Cnidoscolus aconitifolius leaves. The results obtained showed the presence of tannins, saponin, alkaloids, and flavonoids with the absence of glycosides. The proximate analysis and mineral composition of C. aconitifolius leaves showed high levels of crude protein, ash, and fiber, in that order, and low fat content with concomitant presence of minerals such as sodium, manganese, magnesium, potassium, calcium, iron, phosphate, and zinc. The leaves of C. aconitifolius have high nutrient potentials and could be used as nutraceuticals in complementary foods, especially in sub-Saharan Africa.
The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics.
Zanin, João L Baldim; de Carvalho, Bianca A; Martineli, Paloma Salles; dos Santos, Marcelo Henrique; Lago, João Henrique G; Sartorelli, Patrícia; Viegas, Cláudio; Soares, Marisi G
2012-06-29
The genus Caesalpinia (Caesalpiniaceae) has more than 500 species, many of which have not yet been investigated for potential pharmacological activity. Several classes of chemical compounds, such as flavonoids, diterpenes, and steroids, have been isolated from various species of the genus Caesalpinia. It has been reported in the literature that these species exhibit a wide range of pharmacological properties, including antiulcer, anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antirheumatic activities that have proven to be efficacious in ethnomedicinal practices. In this review we present chemical and pharmacological data from recent phytochemical studies on various plants of the genus Caesalpinia.
Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R
2018-01-01
The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.
Bystrom, Laura M.
2011-01-01
Most natural product research is market-driven and thus many plant species are overlooked for their health value due to lack of financial incentives. This may explain the limited information available about the health effects of the edible fruit species Melicoccus bijugatus, a member of the Sapindaceae family that grows mostly in the Caribbean and in parts of South America. However, recent phytochemical studies of these fruits have shed some light on their biological effects. In this review the health effects of M. bijugatus fruit pulp and seeds are assessed in relation to phytochemical and ethnobotanical studies, as well as chemotaxonomic information and medicinal uses of other Sapindaceae species. The chemistry of M. bijugatus fruits was found to be different than the other Sapindaceae fruits, although some of the medicinal uses were similar. Specific phenolics or sugars in M. bijugatus fruits may contribute to their therapeutic uses, especially for gastrointestinal problems, and to some extent toxicological effects. This review focuses our understanding about the specific biological effects of M. bijugatus fruits, which may be useful for predicting other medicinal uses, potential drug or food interactions and may benefit people where the fruits are prevalent and healthcare resources are scarce. PMID:22155593
Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D
2009-02-01
Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter = 2 mm) and fine root morphology were assessed. Biomass and length of hyphae were studied by a mesh ingrowth bag technique. Total fine root biomass in the litter and in the 0-120 cm soil profile ranged between 111 and 296 g m(-2). Results derived from the measurements of biomass and root length, or root area, showed that both fertilizer treatments reduced the size of the fine root system, especially in the top soil layers, but did not affect small roots. Compared with control treatments, fine root morphology was affected by both fertilizer treatments with the fine roots having increased specific root length/area, and irrigation tended to reinforce this finer morphology. The amount of hyphae in the mesh ingrowth bags was higher in the fertilization and irrigation treatments than in the controls, suggesting further extension of the root system (ectomycorrhizal infection) and thus of the uptake system. Irrigation had no significant effect on the size of the fine root system, but resulted in a shallower rooting system. Total root to shoot ratios were unaffected by the treatments, but fine root mass:needle mass and fine root area index:leaf area index ratios decreased with increasing nutrient supply. Overall, compared with the control fine roots, increased nutrient supply resulted in a lower fine root biomass but the dynamic fraction of the finest roots was greater. Irrigation had only limited effects on fine root size, distribution and morphology.
Dagilytė, Audronė; Lemežienė, Nijolė
2018-01-01
Only a few species of the large Astragalus genus, widely used for medicinal purposes, have been thoroughly studied for phytochemical composition. The aim of our research was to investigate the rarely studied species A. glycyphyllos L. and A. cicer L. for the distribution of mineral elements and phytochemicals in whole plants at two growth stages and in morphological fractions. We also investigated the capacity of the plant extracts to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and to chelate ferrous ions. Chemical composition and antioxidant properties depended on species, maturity, and plant part. Herbal material of A. glycyphyllos was richer in Fe, total phenolics, and flavonoids, whereas extracts of A. cicer showed a higher antioxidant activity. Young plants had more isoflavones, showed greater quenching of DPPH radicals, and exhibited better mineral profiles than flowering plants. Among plant parts, leaves were the most valuable plant material according to most characteristics investigated. Isoflavone concentration in flowers was lower than in leaves and stems. None of the Astragalus samples contained detectable amounts of the alkaloid swainsonine. The study demonstrates the potential of plant material from two Astragalus species as a valuable source of iron, phenolic substances including isoflavones, free-radical scavengers, and Fe2+ chelators for pharmaceutical use. PMID:29581980
2017-01-01
Lippia javanica occurs naturally in central, eastern, and southern Africa and has also been recorded in the tropical Indian subcontinent. The potential of L. javanica as herbal or recreational tea and herbal medicine and its associated phytochemistry and biological properties are reviewed. The extensive literature survey revealed that L. javanica is used as herbal tea and has ethnomedicinal applications such as in colds, cough, fever, malaria, wounds, diarrhoea, chest pains, bronchitis, and asthma. Multiple classes of phytochemicals including volatile and nonvolatile secondary metabolites such as alkaloids, amino acids, flavonoids, iridoids, and triterpenes as well as several minerals have been identified from L. javanica. Scientific studies on L. javanica indicate that it has a wide range of pharmacological activities which include anticancer, antiamoebic, antidiabetic, antimalarial, antimicrobial, antioxidant, antiplasmodial, and pesticidal effects. Although many of the traditional uses of L. javanica have been validated by phytochemical and pharmacological studies, there are still some gaps where current knowledge could be improved. Lippia javanica is popular as both herbal and recreational tea, but there is need for more precise studies to evaluate the safety and clinical value of its main active crude and pure compounds and to clarify their mechanisms of action. PMID:28115974
Application of mathematical models and computation in plant metabolomics
USDA-ARS?s Scientific Manuscript database
The investigation and reporting of plants’ chemical constituents has greatly evolved over the centuries of natural products and phytochemical research. Starting from the extraction and identification of plant-based bioactive components, such as historical salicin or more recent paclitaxel, phytochem...
Xenobiotic metabolism and berry flavonoid transport across the blood brain barrier
USDA-ARS?s Scientific Manuscript database
A compelling body of literature suggests berry phytochemicals play beneficial roles in reversing age-related cognitive impairment and protect against neurodegenerative disorders. Anthocyanins are bioactive phytochemicals in berries suspected to be responsible for some of these neuroprotective effect...
Aiyegoro, Olayinka A; Okoh, Anthony I
2009-11-13
We evaluated the in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extract of Helichrysum pedunculatum. The scavenging activity on superoxide anions, DPPH, H₂O₂, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extract. The extract exhibited scavenging activity towards all radicals tested due to the presence of relatively high total phenol and flavonoids contents. Our findings suggest that H. pedunculatum is endowed with antioxidant phytochemicals and could serve as a base for future drugs.
Aiyegoro, Olayinka A.; Okoh, Anthony I.
2009-01-01
We evaluated the in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extract of Helichrysum pedunculatum. The scavenging activity on superoxide anions, DPPH, H2O2, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extract. The extract exhibited scavenging activity towards all radicals tested due to the presence of relatively high total phenol and flavonoids contents. Our findings suggest that H. pedunculatum is endowed with antioxidant phytochemicals and could serve as a base for future drugs. PMID:20087473
Singh, Ajeet Kumar; Kumar, Sanjay; Vinayak, Manjula
2018-05-16
Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals.
Qin, Si; Hou, De-Xing
2016-08-01
Keap1/Nrf2 system plays a critical role on cellular protection by regulating many antioxidant and detoxification enzyme genes through the antioxidant response element (ARE). Thus, it must work constantly to prevent the accumulation of reactive oxygen species (ROS) because excess ROS are associated with many diseases such as cancer, cardiovascular complications, inflammation, and neurodegeneration. Dietary phytochemicals widely distributing in fruits and vegetables have been considered to possess cancer chemopreventive potential through the induction of Keap1/Nrf2 system-mediated antioxidant and detoxification enzymes in a variety of manners. The data are extensive and are not well classified on the molecular mechanisms. In this review, we first briefly introduce the current knowledge on Keap1/Nrf2 system regulation including Keap1-dependent and Keap1-independent cascades, and epigenetic pathway. Then, we summarize the molecular targets of Keap1/Nrf2 system by dietary phytochemicals, and finally review the crosstalk between Keap1/Nrf2 system and other cellular signaling pathways to regulate diverse chronic diseases by dietary phytochemicals. These comprehensive data will help us to understand the potential effects of dietary phytochemicals on the prevention of chronic diseases and maintenance of human health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sayeed, Md Abu; Bracci, Massimo; Lucarini, Guendalina; Lazzarini, Raffaella; Di Primio, Roberto; Santarelli, Lory
2017-10-01
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kamala, Arunagiri; Middha, Sushil Kumar; Gopinath, Chitra; Sindhura, H S; Karigar, Chandrakant S
2018-01-01
Cyperus rotundus L. (family Cyperaceae), native to India, is a multivalent medicinal plant widely used in conventional medicine. The research reports on bioactive components from C. rotundus L. are scanty. The objective of the study was to optimize the best solvent system and bioprospect the possible phytochemicals in C. rotundus L. rhizome (CRR). The phytochemicals were extracted from the rhizomes of C. rotundus L. by successive Soxhlet technique with solvents of increasing polarity. The resultant extracts were analyzed for their total flavonoid content (TFC), total phenolic content (TPC), total proanthocyanidin content (TPAC), in vitro antioxidant potential, and inhibition of lipid peroxidation. The 70% acetone extract of CRR was analyzed using gas chromatography-mass spectrometry (GC-MS) for probable phytochemicals. The TPC, TFC, and TPAC estimates ranged from 0.036 ± 0.002 to 118.924 ± 5.946 μg/mg extract, 7.196 ± 0.359 to 200.654 ± 10.032 μg/mg extract, and 13.115 ± 0.656 to 45.901 ± 2.295 μg/mg extract, respectively. The quantities of TPC, TFC, and TPAC were found to be the highest in 70% acetone extract. The 70% acetone and 70% methanol extracts revealed best radical scavenging effect. GC-MS analysis of CRR extract revealed the presence of a novel compound 1 (2)-acetyl-3 (5)-styryl-5 (3)-methylthiopyrazole. The study indicated that 70% acetone and 70% methanol extracts of CRRs can be a potential source of antioxidants. The studies suggest 70% methanol and acetone as the suitable solvents for the extraction of phytochemicalsNovel compound 1(2)-Acetyl-3(5)-styryl-5(3)-methylthiopyrazole was detected in 70% acetone extract. Abbreviations used: ACRE: Acetone C. rotundus L. rhizome extract; AlCl 3 : Aluminum chloride; AQRE: Aqueous C. rotundus L. rhizome extract; CE: Catechin Equivalent; CHRE: Chloroform C. rotundus L. rhizome extract; CRR: C. rotundus L. rhizome; DPPH: 2,2 diphenyl-1-picrylhydrazyl; ETRE: Ethanolic C. rotundus L. rhizome extract; EARE: Ethyl acetate C. rotundus L. rhizome extract; FRP: Ferric reducing power; GAE: Gallic acid equivalent; GC-MS: Gas chromatography-mass spectrometry; HERE: Hexane C. rotundus L. rhizome extract; MERE: Methanolic C. rotundus L. rhizome extract; PERE: Petroleum ether C. rotundus L. rhizome extract; QE: Quercetin equivalent; RNS: Reactive nitrogen species; ROS: Reactive oxygen species; TFC: Total flavonoid content; TPC: Total phenolic content; TPAC: Total proanthocyanidin content.
Phytochemicals from Mangifera pajang Kosterm and their biological activities.
Ahmad, Sadikah; Sukari, Mohd Aspollah; Ismail, Nurussaadah; Ismail, Intan Safinar; Abdul, Ahmad Bustamam; Abu Bakar, Mohd Fadzelly; Kifli, Nurolaini; Ee, Gwendoline C L
2015-03-26
Mangifera pajang Kosterm is a plant species from the mango family (Anacardiaceae). The fruits are edible and have been reported to have high antioxidant content. However, the detailed phytochemical studies of the plant have not been reported previously. This study investigates the phytochemicals and biological activities of different parts of Mangifera pajang. The plant samples were extracted with solvents of different polarity to obtain the crude extracts. The isolated compounds were characterized using spectroscopic methods. The extracts and isolated compounds were subjected to cytotoxicity tests using human breast cancer (MCF-7), human cervical cancer (HeLa) and human colon cancer (HT-29) cells. The free radical scavenging activity test was conducted using the DPPH assay. Antimicrobial activity tests were carried out by using the disc diffusion method. Phytochemical investigation on the kernel, stem bark and leaves of Mangifera pajang led to the isolation of methyl gallate (1), mixture of benzaldehyde (2) and benzyl alcohol (3), mangiferonic acid (4), 3β-hydroxy-cycloart-24-ene-26-oic acid (5), 3β,23-dihydroxy-cycloart-24-ene-26-oic acid (6), lupeol(7) lupenone(8), β-sitosterol(9), stigmasterol(10), trans-sobrerol(11) and quercitrin (12). Crude ethyl acetate and methanol extracts from the kernel indicated strong cytotoxic activity towards MCF-7 and HeLa cells with IC50 values of less than 10 μg/mL, while petroleum ether, chloroform and ethyl acetate extracts of the stem bark showed strong to moderate activity against MCF-7, HeLa and HT-29 cancer cell lines with IC50 values ranging from 5 to 30 μg/mL. As for the antimicrobial assays, only the ethyl acetate and methanol extracts from the kernel displayed some inhibition against the microbes in the antibacterial assays. The kernel extracts showed highest free radical scavenging activity with IC50 values of less than 10 μg/mL, while the ethyl acetate and methanol extracts of leaves displayed only weak activity in the DPPH assays. Phytochemical investigations on various parts of Mangifera pajang have identified terpenoids and a flavonol derivative as major constituents. Bioassay studies have indicated that the crude extracts and isolated compounds have potential as naturally-derived anticancer and antimicrobial agents, besides possess high free radical scavenging activity.
Knobloch, Thomas J; Uhrig, Lana K; Pearl, Dennis K; Casto, Bruce C; Warner, Blake M; Clinton, Steven K; Sardo-Molmenti, Christine L; Ferguson, Jeanette M; Daly, Brett T; Riedl, Kenneth; Schwartz, Steven J; Vodovotz, Yael; Buchta, Anthony J; Schuller, David E; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M
2016-02-01
Black raspberries (BRB) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce proinflammatory and antiapoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCC) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and noninvolved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of prosurvival genes (AURKA, BIRC5, EGFR) and proinflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated grade 3-4 toxicities or adverse events, and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark antiapoptotic and proinflammatory molecular biomarkers were overexpressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. As these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. ©2015 American Association for Cancer Research.
Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.
2016-01-01
Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664
Jayadeepa, R M; Niveditha, M S
2012-01-01
It is estimated that by 2050 over 100 million people will be affected by the Parkinson's disease (PD). We propose various computational approaches to screen suitable candidate ligand with anti-Parkinson's activity from phytochemicals. Five different types of dopamine receptors have been identified in the brain, D1-D5. Dopamine receptor D3 was selected as the target receptor. The D3 receptor exists in areas of the brain outside the basal ganglia, such as the limbic system, and thus may play a role in the cognitive and emotional changes noted in Parkinson's disease. A ligand library of 100 molecules with anti-Parkinson's activity was collected from literature survey. Nature is the best combinatorial chemist and possibly has answers to all diseases of mankind. Failure of some synthetic drugs and its side effects have prompted many researches to go back to ancient healing methods which use herbal medicines to give relief. Hence, the candidate ligands with anti-Parkinson's were selected from herbal sources through literature survey. Lipinski rules were applied to screen the suitable molecules for the study, the resulting 88 molecules were energy minimized, and subjected to docking using Autodock Vina. The top eleven molecules were screened according to the docking score generated by Autodock Vina Commercial drug Ropinirole was computed similarly and was compared with the 11 phytochemicals score, the screened molecules were subjected to toxicity analysis and to verify toxic property of phytochemicals. R Programming was applied to remove the bias from the top eleven molecules. Using cluster analysis and Confusion Matrix two phytochemicals were computationally selected namely Rosmarinic acid and Gingkolide A for further studies on the disease Parkinson's.
Scheff, Stephen W; Ansari, Mubeen A
2017-04-15
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Anthony, Ogbonnaya Enyinnaya; Mbuh, Awah Francis; Emmanuel, Mounmbegna Philippe
2012-04-01
Phytochemical screening of stem bark and leaves of Gmelina arborea; and effect of aqueous and ethanolic extracts of Gmelina arborea stembark on hepatic and renal insufficiency in rats was assessed in this study. Phytochemical screening was carried out on the air-dried leaf, oven-dried leaf, air-dried stembark and oven-dried stembark samples. Sixty five (65) wister albino rats, (50.7-117.5 g) were divided into thirteen groups of five animals each. Three groups serve as Controls and were administered Cisplatin (5mg/kg b.w; i.p), Paracetamol (200mg/kg b.w; i.p) and Normal saline (0.002 ml/kg b.w; oral). Other groups were administered, either, cisplatin and extracts (1g/kg b.w; oral); Paracetamol and extracts (1g/kg b.w; oral); extracts alone; or drugs and combination of extracts. Animals were starved, 24 hours prior to sacrifice and sacrificed on the 9th day after commencement of treatment. Phytochemical screening results show the presence of alkaloid, flavonoid, tannin, saponin, cyanogenic glycoside, phytate, and carbohydrate. Saponin and carbohydrate were shown to be much higher in concentration than other phytochemicals. The percentage composition of cyanogenic glycoside and phytate were highest in air-dried stembark and oven-dried leaf samples, respectively. All the Gmelina arborea extracts and extract mixture administered to both paracetamol and cisplatin treated animals, significantly, lowers both the activities of the SGOT and SGPT, and the levels of serum creatinine and urea. When administered alone, the aqueous and ethanolic extracts show little or no sign of toxicity. Thus Gmelina arborea extracts may have ameliorating effect on hepatic and renal insufficiency caused by paracetamol and cisplatin respectively, and any inherent toxicity may be reduced or eliminated through adequate heat treatment.
Phytochemistry and pharmacology of anti-depressant medicinal plants: A review.
Martins, Jeanette; S, Brijesh
2018-05-16
Stress renders an individual to experience mental pressure and exhaustion which brings about feelings of anxiety, depression, anger and/or other negative emotions. Depression affects a person's state of mind, behaviour, health and is often associated with suicide. The use of anti-depressant drugs as therapeutic agents is associated with symptoms such as, delayed onset of action, side-effects, drug-drug and dietary interactions, sexual dysfunction, cardiac toxicity, etc. Thus, there is need to target these issues and improve current treatment options. Medicinal plants have long been used in discovering novel treatment strategies and compounds with promising roles in treating various disease conditions. There has been an increase, worldwide, in the use of medicinal plants and herbs for developing nutraceuticals for treatment of depression and other psychiatric disorders. Medicinal plants in their natural forms are valuable as they are rich in various phytochemical compounds. These phytochemical compounds have pharmacological roles in treating various diseases conditions; apart from being widely available in nature and commercially beneficial. The phytochemical compounds in plants are constantly being explored through various experimental studies to determine the molecular basis of how medicinal plants work in relation to drugs and diseases and to develop neutraceuticals for improving conditions. This review summarizes 110 medicinal plants and their phytochemical constituents that have been shown to possess anti-depressant activity. This review also highlights the various mechanisms of anti-depressant action of some of these plants and their plant parts like roots, stem, leaves, flowers, fruit or whole plant; phytochemical compounds showing anti-depressant activity such flavanoids, steroids, saponins, sugars, lectins, alkaloids, etc.; and various anti-depressant screening models used such as tail suspension test, forced swim test, chronic unpredictable stress test, sucrose preference test, monoamine oxidase inhibition assay, learned helplessness test, open field test, hole board test, etc. However, mechanistic evaluation of many of these plants still needs to be investigated and explored. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Enzymes of Glyoxylate in Conifers 12
Firenzuoli, A. M.; Vanni, P.; Mastronuzzi, E.; Zanobini, A.; Baccari, V.
1968-01-01
The high level of lipids in seeds of some species of conifers suggested that the glyoxylate cycle might have a role in conifer seed metabolism. Six species (Pinus pinea, Pinus pinaster, Pinus canariensis, Pinus strobus, Abies alba, and Cupressus sempervirens) were investigated for their lipid content and malate synthase and isocitrate lyase level. The fatty acid composition of the triglyceride fraction was also investigated. The correlation between lipid content of germinating seed with the presence of the cycle was confirmed. The enzymes of the glyoxylate cycle were not detected in Cupressus sempervirens where the lipid content is very low. PMID:16656892
Macchioni, F; Cioni, P L; Flamini, G; Morelli, I; Perrucci, S; Franceschi, A; Macchioni, G; Ceccarini, L
2002-07-31
Some essential oils obtained from the branches of four Pinus species (P. pinea L., P. halepensis Mill., P. pinaster Soil in Ait., and P. nigra Arnold) have been evaluated for their acaricidal activity by aerial diffusion against the stored food mite Tyrophagus putrescentiae (L.). All the essential oils showed a good efficacy, but P. pinea oil and its two constituents 1,8-cineole and limonene were the most effective compounds, showing 100% acaricidal activity at 8 microL; 1,8-cineole showed the same activity at 6 microL.
USDA-ARS?s Scientific Manuscript database
Plant tissues typically contain a diverse complement of secondary metabolites that provide protection against various biotic and abiotic hazards. Chemical similarities are commonly used to interpret phylogenetic relationships among plant taxa. The comparative phytochemical constituents of three Limo...
Overview of the immune response to phytonutrient in poultry
USDA-ARS?s Scientific Manuscript database
Phytochemicals are non-nutritive, plant-derived chemicals, many with disease-preventing properties. A growing body of scientific evidence has demonstrated that many of the health-promoting activities of phytochemicals are mediated through their ability to improve host defense against microbial infe...
HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications.
Bayat, Sahar; Shekari Khaniani, Mahmoud; Choupani, Jalal; Alivand, Mohammad Reza; Mansoori Derakhshan, Sima
2018-01-01
Epigenetics is independent of the sequence events that physically affect the condensing of chromatin and genes expression. The unique epigenetic memories of various cells trigger exclusive gene expression profiling. According to different studies, the aberrant epigenetic signatures and impaired gene expression profiles are master occurrences in cancer cells in which oncogene and tumor suppressor genes are affected. Owing to the facts that epigenetic modifications are performed earlier than expression and are reversible, the epigenetic reprogramming of cancer cells could be applied potentially for their prevention, control, and therapy. The disruption of the acetylation signature, as a master epigenetic change in cancers, is related to the expression and the activity of HDACs. In this context, class I HDACs play a significant role in the regulation of cell proliferation and cancer. More recently, cancer stem cell (CSC) has been introduced as a minority population of tumor that is responsible for invasiveness, drug resistance, and relapse of cancers. It is now believed that controlling CSC via epigenetic reprogramming such as targeting HDACs could be helpful in regulating the acetylation pattern of chromatin. Recently, a number of reports have introduced some phytochemicals as HDAC inhibitors. The use of phytochemicals with the HDAC inhibition property could be potentially efficient in overcoming the mentioned problems of CSCs. This review presents a perspective concerning HDAC-targeted phytochemicals to control CSC in tumors. Hopefully, this new route would have more advantages in therapeutic applications and prevention against cancer. Copyright © 2017. Published by Elsevier Masson SAS.