Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...
Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A
2016-12-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. © 2016 by the Ecological Society of America.
Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles
Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble
2009-01-01
Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine...
Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan
2017-01-01
Recent mountain pine beetle outbreaks in whitebark pine forests have been extensive and severe. Understanding the climate influences on these outbreaks is essential for developing management plans that account for potential future mountain pine beetle outbreaks, among other threats, and informing listing decisions under the Endangered Species Act. Prior research has...
Christopher M. Oswalt; Sonja N. Oswalt; Jason R. Meade
2016-01-01
The southern pine beetle (Dendroctonus frontalis) is a bark beetle that is native to the Southern United States, including Tennessee. The beetle is periodically epidemic and can cause high levels of mortalityduring epidemic years, particularly in dense or aging pine (Pinus spp.) stands. An epidemic outbreak of the Southern pine...
Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)
Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie
2013-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...
Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron
2011-01-01
A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...
Climate change and the outbreak ranges of two North American bark beetles
David W. Williams; Andrew M. Liebhold
2002-01-01
One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...
Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph
1989-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...
Victoria A. Saab; Quresh S. Latif; Mary M. Rowland; Tracey N. Johnson; Anna D. Chalfoun; Steven W. Buskirk; Joslin E. Heyward; Matthew A. Dresser
2014-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to...
Jacob M. Griffin; Monica G. Turner; Martin Simard
2011-01-01
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...
Skirmantas Vaivada
2003-01-01
Numbers of pine shoot beetles Blastophagus piniperda and B. minor trapped in pheromone traps within a pine beauty moth (Panolis flammea) outbreak area were significantly greater in zones with total 100% defoliation (26.8±10.4 and 5.8±2.0 beetle/trap, both species respectively) as compared to...
Health of whitebark pine forests after mountain pine beetle outbreaks
Sandra Kegley; John Schwandt; Ken Gibson; Dana Perkins
2011-01-01
Whitebark pine (Pinus albicaulis), a keystone high-elevation species, is currently at risk due to a combination of white pine blister rust (WPBR) (Cronartium ribicola), forest succession, and outbreaks of mountain pine beetle (MPB) (Dendroctonus ponderosae). While recent mortality is often quantified by aerial detection surveys (ADS) or ground surveys, little...
NASA Astrophysics Data System (ADS)
Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.
2013-12-01
pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.
Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.
Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang
2017-06-01
Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.
Garrett W. Meigs; Robert E. Kennedy; Andrew N. Gray; Matthew J. Gregory
2015-01-01
Across the western US, the two most prevalent native forest insect pests are mountain pine beetle (MPB; Dendroctonus ponderosae; a bark beetle) and western spruce budworm (WSB; Choristoneura freemani; a defoliator). MPB outbreaks have received more forest management attention than WSB outbreaks, but studies to date have not compared their cumulative mortality impacts...
Predicting county-level southern pine beetle outbreaks from neighborhood patterns
USDA-ARS?s Scientific Manuscript database
The southern pine beetle (Dendroctonus frontalis, Coleoptera: Curculionidae) is the most destructive insect in southern forests. States have kept county-level records on the locations of beetle outbreaks for the past forty-eight years. In this study, we seek to determine how accurately patterns of c...
Mechanical Control of Southern Pine Beetle Infestations
Ronald F. Billings
2011-01-01
Periodic outbreaks of the southern pine beetle (SPB) may affect thousands of acres of commercial pine forests in the Southeastern United States, Mexico, and Central America. Accordingly, this species is the target of more aggressive and effective suppression programs than any other bark beetle pest in the world. The strategy for controlling the southern pine beetle...
Southern pine beetle regional outbreaks modeled on landscape, climate and infestation history
Adrian J. Duehl; Frank H. Koch; Fred P. Hain
2011-01-01
The southern pine beetle (Dendroctonus frontalis, SPB) is the major insect pest of pine species in the southeastern United States. It attains outbreak population levels sufficient to mass attack host pines across the landscape at scales ranging from a single forest stand to interstate epidemics. This county level analysis selected and examined the best climatic and...
Is lodgepole pine mortality due to mountain pine beetle linked to the North American Monsoon?
Sara A. Goeking; Greg C. Liknes
2012-01-01
Regional precipitation patterns may have influenced the spatial variability of tree mortality during the recent mountain pine beetle (Dendroctonus ponderosa) (MPB) outbreak in the western United States. Data from the Forest Inventory and Analysis (FIA) Program show that the outbreak was especially severe in the state of Colorado where over 10 million lodgepole pines (...
Jennifer G. Klutsch; Jose F. Negron; Sheryl L. Costello; Charles C. Rhoades; Daniel R. West; John Popp; Rick Caissie
2009-01-01
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a currentmountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during...
K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender
2007-01-01
The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...
Robert C. Thatcher; Patrick J. Barry
1982-01-01
The southern pine beetle (Dendroctonus frontalis Zimmermann) is one of pine's most destructive insect enemies in the Southern United States, Mexico, and Central America. Because populations build rapidly to outbreak proportions and large numbers of trees are killed, this insect generates considerable concern among managers of southern pine forests. The beetle...
Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry
2016-01-01
Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.
Thomas W. Bonnot; Mark A. Rumble; Joshua J. Millspaugh
2008-01-01
Black-backed Woodpeckers (Picoides arcticus) are burned-forest specialists that rely on beetles (Coleoptera) for food. In the Black Hills, South Dakota, standing dead forests resulting from mountain pine beetle (Dendroctonus ponderosae) outbreaks offer food resources for Black-backed Woodpeckers, in addition to providing habitat...
Logan, Jesse A; MacFarlane, William W; Willcox, Louisa
2010-06-01
Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.
Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder
2017-01-01
The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...
Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron
2013-01-01
The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...
Curtis A. Gray; Justin B. Runyon; Michael J. Jenkins; Andrew D. Giunta
2015-01-01
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not...
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2017-01-01
Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but...
Predators of the Southern Pine Beetle
John D. Reeve
2011-01-01
This chapter of the Southern Pine Beetle II reviews the overall influence of predators on southern pine beetle (SPB) population dynamics, as well as recent research on specific predators such as the clerid beetle Thanasimus dubius. Several lines of evidence suggest that predators and other natural enemies generate significant SPB mortality that contributes to outbreak...
Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes
2012-01-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...
Carolyn Sieg; Kurt Allen; Joel McMillin; Chad Hoffman
2014-01-01
Landscape-scale bark beetle outbreaks have occurred throughout the Western United States during recent years in response to dense forest conditions, climatic conditions, and wildfire (Fettig and others 2007, Bentz and others 2010). Previous studies, mostly conducted in moist forest types (such as lodgepole pine [Pinus contorta]) suggest that bark beetle...
Christopher Asaro; John T. Nowak; Anthony Elledge
2017-01-01
The southern pine beetle has shown a dramatic decline in outbreak activity over much of the southeastern States since the turn of the 21st century compared to previous decades. Concurrently, from the 1950s through the present day, a twenty-fold increase in pine plantation area has occurred across the region while trends in genetic tree improvement and pine...
Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard
2012-01-01
Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...
Where Have All the Beetles Gone?
Richard A. Goyer; Kier D. Klepzig
2002-01-01
Without a doubt, bark beetles are the most destructive insect pests of Southern pines. Among these, the Southern pine beetle (SPB), Dendroctonus frontalis, isi the most notable and most noticed. During outbreak years, this small, but very aggresive, beetle can cause catastrophic losses.
Carbon dynamics in central US Rockies lodgepole pine type after mountain pine beetle outbreaks
E. Matthew Hansen; Michael C. Amacher; Helga Van Miegroet; James N. Long; Michael G. Ryan
2015-01-01
Mountain pine beetle-caused tree mortality has substantially changed live tree biomass in lodgepole pine ecosystems in western North America since 2000. We studied how beetle-caused mortality altered ecosystem carbon (C) stocks and productivity using a central US Rockies age sequence of ecosystem recovery after infestation, augmented with growth-and-yield...
Preisler, Haiganoush K; Hicke, Jeffrey A; Ager, Alan A; Hayes, Jane L
2012-11-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales. This study used the observed number of trees killed by mountain pine beetles per square kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess the influence of climate and weather variables on beetle activity over longer time periods and larger scales than previously studied. Influences of temperature and precipitation in addition to process model output variables were assessed at annual and climatological time scales. The statistical analysis showed that new attacks are more likely to occur at locations with climatological mean August temperatures >15 degrees C. After controlling for beetle pressure, the variables with the largest effect on the odds of an outbreak exceeding a certain size were minimum winter temperature (positive relationship) and drought conditions in current and previous years. Precipitation levels in the year prior to the outbreak had a positive effect, possibly an indication of the influence of this driver on brood size. Two-year cumulative precipitation had a negative effect, a possible indication of the influence of drought on tree stress. Among the process model variables, cold tolerance was the strongest indicator of an outbreak increasing to epidemic size. A weather suitability index developed from the regression analysis indicated a 2.5x increase in the odds of outbreak at locations with highly suitable weather vs. locations with low suitability. The models were useful for estimating expected amounts of damage (total area with outbreaks) and for quantifying the contribution of climate to total damage. Overall, the results confirm the importance of climate and weather on the spatial expansion of bark beetle outbreaks over time.
Charles C. Rhoades; Robert M. Hubbard; Kelly Elder
2017-01-01
Forests of western North America are currently experiencing extensive tree mortality from a variety of bark beetle species, and insect outbreaks are projected to increase under warmer, drier climates. Unlike the abrupt biogeochemical changes typical after wildfire and timber harvesting, the outcomes of insect outbreaks are poorly understood. The mountain pine bark...
Melissa J. Fischer; Kristen M. Waring; Richard W. Hofstetter; Thomas E. Kolb
2008-01-01
Dendroctonus adjunctus is an aggressive bark beetle species that attacks several species of pine throughout its range from southern Utah and Colorado south to Guatemala. A current outbreak of D. adjunctus provided a unique opportunity to study the relationship between this beetle and pine resin chemistry in northern Arizona. We...
Andrew P. Lerch; Jesse A. Pfammatter; Barbara J. Bentz; Kenneth F. Raffa
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three...
Jose F. Negron; Jennifer G. Klutsch
2017-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...
Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón
2014-01-01
There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests...
Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation
M. L. Gumpertz; C.-T. Wu; John M. Pye
2000-01-01
Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...
Applied chemical ecology of the mountain pine beetle
Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich
2014-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...
Mietkiewicz, Nathan; Kulakowski, Dominik
2016-12-01
Extensive outbreaks of bark beetles have killed trees across millions of hectares of forests and woodlands in western North America. These outbreaks have led to spirited scientific, public, and policy debates about consequential increases in fire risk, especially in the wildland-urban interface (WUI), where homes and communities are at particular risk from wildfires. At the same time, large wildfires have become more frequent across this region. Widespread expectations that outbreaks increase extent, severity, and/or frequency of wildfires are based partly on visible and dramatic changes in foliar moisture content and other fuel properties following outbreaks, as well as associated modeling projections. A competing explanation is that increasing wildfires are driven primarily by climatic extremes, which are becoming more common with climate change. However, the relative importance of bark beetle outbreaks vs. climate on fire occurrence has not been empirically examined across very large areas and remains poorly understood. The most extensive outbreaks of tree-killing insects across the western United States have been of mountain pine beetle (MPB; Dendroctonus ponderosae), which have killed trees over >650,000 km 2 , mostly in forests dominated by lodgepole pine (Pinus contorta). We show that outbreaks of MPB in lodgepole pine forests of the western United States have been less important than climatic variability for the occurrence of large fires over the past 29 years. In lodgepole pine forests in general, as well as those in the WUI, occurrence of large fires was determined primarily by current and antecedent high temperatures and low precipitation but was unaffected by preceding outbreaks. Trends of increasing co-occurrence of wildfires and outbreaks are due to a common climatic driver rather than interactions between these disturbances. Reducing wildfire risk hinges on addressing the underlying climatic drivers rather than treating beetle-affected forests. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsman, Devin W.; Grosklos, Guenchik; Aukema, Brian H.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountainmore » pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.« less
Goodsman, Devin W; Grosklos, Guenchik; Aukema, Brian H; Whitehouse, Caroline; Bleiker, Katherine P; McDowell, Nate G; Middleton, Richard S; Xu, Chonggang
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Goodsman, Devin W.; Grosklos, Guenchik; Aukema, Brian H.; ...
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountainmore » pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.« less
J.D. Waldron; C.W. Lafon; R.N. Coulson; D.M. Cairns; M.D. Tchakerian; A. Birt; K.D. Klepzig
2007-01-01
Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle?Location: Southern Appalachian Mountains, USA.Methods: We used LANDIS to model vegetation disturbance and succession...
Melissa J. Fischer; Kristen M. Waring; Richard W. Hofstetter; Thomas E. Kolb
2008-01-01
Dendroctonus adjunctus is an aggressive bark beetle species that attacks several species of pine throughout its range from southern Utah and Colorado south to Guatemala. A current outbreak of D. adjunctus provided a unique opportunity to study the relationship between this beetle and pine resin chemistry in northern Arizona. We compared the resin composition of trees...
Forest development and carbon dynamics after mountain pine beetle outbreaks
E. Matthew Hansen
2014-01-01
Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...
Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.
Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J
2016-04-01
Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.
Lerch, Andrew P.; Pfammatter, Jesse A.
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks. PMID:27783632
Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.
Wesley G. Page; Martin E. Alexander; Michael J. Jenkins
2015-01-01
Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...
Aaron D. Stottlemyer; Thomas A. Waldrop; G. Geoff Wang
2015-01-01
Surface fuels were characterized in loblolly pine (Pinus taeda L.) plantations severely impacted by southern pine beetle (Dendroctonus frontalis Ehrh.) (SPB) outbreaks in the upper South Carolina Piedmont. Prescribed burning and mastication were then tested as fuel reduction treatments in these areas. Prescribed burning reduced...
Fuel loadings 5 years after a bark beetle outbreak in south-western USA ponderosa pine forests
Chad M. Hoffman; Carolyn Hull Sieg; Joel D. McMillin; Peter Z. Fule
2012-01-01
Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions.We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5...
Kristen Pelz; C. C. Rhoades; R. M. Hubbard; M. A. Battaglia; F. W. Smith
2015-01-01
Mountain pine beetle outbreaks have killed lodgepole pine on more than one million hectares of Colorado and southern Wyoming forest during the last decade and have prompted harvest operations throughout the region. In northern Colorado, lodgepole pine commonly occurs in mixed stands with subalpine fir, Engelmann spruce, and aspen. Variation in tree species composition...
W. Matt Jolly; Russell Parsons; J. Morgan Varner; Bret W. Butler; Kevin C. Ryan; Corey L. Gucker
2012-01-01
An expansive mountain pine beetle (MPB) epidemic is currently impacting North American forests (Raffa et al. 2008). As beetle-attacked trees die, lose their needles, and eventually fall to the ground, there are substantial changes in stand structure. These fuel changes likely affect both surface and crown fire behavior, but there is not yet a consensus among experts...
Genetic and phenotypic resistance in lodgepole pine to attack by mountain pine beetle
Alvin Yanchuk; Kimberly Wallin
2007-01-01
The recent outbreak of mountain pine beetle (MPB) (Dendroctonus ponderosae) in British Columbia provided an opportunity to examine genetic variation of differential attack and resistance in a 20-year old lodgepole pine open-pollinated (OP) family trial. Approximately 2,500 individuals from 180 OP parent-tree collections (~14 trees per parent), from...
Jose F. Negron; Jill L. Wilson; John A. Anhold
2000-01-01
Stand conditions associated with outbreak populations of the roundheaded pine beetle, Dendroctonus adjunctus Blandford, in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests were studied in the Pinaleno Mountains, AZ, and the Pine Valley Mountains, UT. Classification tree models to estimate the probability of infestation based on stand attributes were built for...
Barbara J. Bentz; Celia Boone; Kenneth F. Raffa
2015-01-01
Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.
E. Matthew Hansen; Morris C. Johnson; Barbara J. Bentz; James C. Vandygriff; A. Steven Munson
2015-01-01
Recent bark beetle outbreaks in western North America have led to concerns regarding changes in fuel profiles and associated changes in fire behavior. Data are lacking for a range of infestation severities and time since outbreak, especially for relatively arid cover types. We surveyed fuel loads and simulated fire behavior for ponderosa pine stands of the...
Benjamin C. Bright; Jeffrey A. Hicke; Andrew T. Hudak
2012-01-01
Mountain pine beetle outbreaks have caused widespread tree mortality in North American forests in recent decades, yet few studies have documented impacts on carbon cycling. In particular, landscape scales intermediate between stands and regions have not been well studied. Remote sensing is an effective tool for quantifying impacts of insect outbreaks on forest...
Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle
Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres
2005-01-01
Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...
Landscape dynamics of mountain pine beetles
John E. Lundquist; Robin M. Reich
2014-01-01
The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...
Interactions among the mountain pine beetle, fires, and fuels
Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz
2014-01-01
Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...
The mountain pine beetle: causes and consequences of an unprecedented outbreak
Allan L. Carroll
2011-01-01
The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.
Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine
Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim
2006-01-01
From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...
Eidson, Erika L; Mock, Karen E; Bentz, Barbara J
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.
Mock, Karen E.; Bentz, Barbara J.
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks. PMID:29715269
Ronald F Billings; William W. Upton
2010-01-01
An operational system to forecast infestation trends (increasing, static, declining) and relative population levels (high, moderate, low) of the southern pine beetle (SPB), Dendroctonus frontalis, has been implemented in the Southern and Eastern United States. Numbers of dispersing SPB and those of a major predator (the clerid beetle, ...
Mites associated with southern pine bark beetles in Allen Parish, Louisiana
John C. Moser; Lawrence M. Roton
1971-01-01
Ninety-six species of mites were associated with the southern pine beetle and allied scolytids in an outbreak area in Allen Parish, La. the complex was evaluated to ascertain which species may be of value as biological control agents.
Mites associated with Southern Pine Bark Beetles in Allen Parish, Louisiana
John C. Moser; Lawrence M. Roton
1971-01-01
Ninety-six species of mites were associated with the southern pine beetle and allied scolytides in an outbreak area in Allen Parish, LA. The complex was evaluated to ascertain which species may be of value as biological control agents.
Andrew J. McMahan; Alan A. Ager; Helen Maffei; Jane L. Hayes; Eric L. Smith
2008-01-01
The Westwide Pine Beetle Model and the Fire and Fuels Extension were used to simulate a mountain pine beetle outbreak under different fuel treatment scenarios on a 173,000 acre landscape on the Deschutes National Forest. The goal was to use these models within ArcFuels to analyze the interacting impacts of bark beetles and management activities on landscape fuel...
Aerial Detection, Ground Evaluation, and Monitoring of the Southern Pine Beetle: State Perspectives
Ronald F. Billings
2011-01-01
The southern pine beetle (SPB), is recognized as the most serious insect pest of southern pine forests. Outbreaks occur almost every year somewhere within its wide range, requiring intensive suppression efforts to minimize resource losses to Federal, State, and private forests. Effective management involves annual monitoring of SPB populations and aerial detection and...
Population Dynamics of Southern Pine Beetle in Forest Landscapes
Andrew Birt
2011-01-01
Southern pine beetle (SPB) is an important pest of Southeastern United States pine forests. Periodic regional outbreaks are characterized by localized areas of tree mortality (infestations) surrounded by areas with little or no damage. Ultimately, this spatiotemporal pattern of tree mortality is driven by the dynamics of SPB populationsâmore specifically, by rates of...
William P Shepherd; Brian T Sullivan
2017-01-01
Local outbreak risk for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae),is forecast with a trapping survey conducted every spring throughout the southeastern United States. Traps baitedwith pine odors and components of the D. frontalis aggregation pheromone are used to obtain abundance estimates
Benjamin Bright; J. A. Hicke; A. T. Hudak
2012-01-01
Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.
Strohm, S; Tyson, R C; Powell, J A
2013-10-01
Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.
Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker
2017-01-01
Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...
Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees
Paul Meznarich; Robert Progar
2015-01-01
In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...
Andrew Birt
2011-01-01
The population dynamics of the southern pine beetle (SPB) exhibit characteristic fluctuations between relatively long endemic and shorter outbreak periods. Populations exhibit complex and hierarchical spatial structure with beetles and larvae aggregating within individual trees, infestations with multiple infested trees, and regional outbreaks that comprise a large...
Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann
2015-01-01
The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...
Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen
2008-01-01
Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166
Keville, Megan P; Reed, Sasha C; Cleveland, Cory C
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Jose F. Negron; Christopher J. Fettig
2014-01-01
It is well documented in the scientific and popular literature that large-scale bark beetle outbreaks are occurring across many coniferous forests in the western United States. One of the major species exhibiting extensive eruptive populations resulting in high levels of tree mortality is the mountain pine beetle, Dendroctonus ponderosae (Hopkins) (Negron et al. 2008...
Chad M. Hoffman; Penelope Morgan; William Mell; Russell Parsons; Eva Strand; Steve Cook
2013-01-01
Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes. We...
Chuck Rhoades; Carl Chambers; Kelly Elder; Derek Pierson; Banning Starr
2012-01-01
Mountain pine beetle outbreaks have caused an unprecedented amount of tree mortality in northern Colorado and southern Wyoming forests over the past decade. The extensive overstory mortality and associated salvage logging activities may threaten the sustained delivery of clean water from beetle-affected forests. In this study, we evaluate nutrient retention by riparian...
Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response
Charles C. Rhoades; James H. McCutchan; Leigh A. Cooper; David Clow; Thomas M. Detmer; Jennifer S. Briggs; John D. Stednick; Thomas T. Veblen; Rachel M. Ertz; Gene E. Likens; William M. Lewis
2013-01-01
A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg�ha�y), disturbance of...
Paula J. Fornwalt; Charles C. Rhoades; Robert M. Hubbard; Rebecca L. Harris; Akasha M. Faist; William D. Bowman
2018-01-01
Recent bark beetle outbreaks in western North American subalpine forests have prompted managers to salvage log some beetle-affected stands. We examined the short-term (i.e., two to three years post-treatment) consequences of such salvage logging on vascular understory plant (i.e., graminoid, forb, and shrub) communities. At 24 lodgepole pine (Pinus contorta) sites in...
Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...
James A. Powell; Barbara J. Bentz
2014-01-01
For species with irruptive population behavior, dispersal is an important component of outbreak dynamics. We developed and parameterized a mechanistic model describing mountain pine beetle (Dendroctonus ponderosae Hopkins) population demographics and dispersal across a landscape. Model components include temperature-dependent phenology, host tree colonization...
Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence
Assal, Timothy J.; Sibold, Jason; Reich, Robin M.
2014-01-01
Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the landscape.
Ponderosa pine mortality resulting from a mountain pine beetle outbreak
William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut
1982-01-01
From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...
Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L
2013-09-01
Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.
Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.
2014-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB outbreaks on red squirrels (Tamiasciurus hudsonicus). However, there is evidence that red squirrels can persist after an outbreak under some conditions, e.g., when nonhost tree species are present. For small mammal species associated with forest understories, responses may be most pronounced during the postepidemic period (>6 years after the peak of beetle-induced tree mortality) when snags fall to produce coarse woody debris. Postoutbreak salvage logging studies (n = 6) reported results that lacked consensus. Postoutbreak salvage logging may have an impact on fewer wildlife species than postfire salvage logging, probably because only host-specific tree species are removed after beetle outbreaks.
Economic Impacts of the Southern Pine Beetle
John M. Pye; Thomas P. Holmes; Jeffrey P. Prestemon; David N. Wear
2011-01-01
This paper provides an overview of the timber economic impacts of the southern pine beetle (SPB). Although we anticipate that SPB outbreaks cause substantial economic losses to households that consume the nonmarket economic services provided by healthy forests, we have narrowly focused our attention here on changes in values to timber growers and wood-products...
The once and future forest: Consequences of mountain pine beetle treatment decisions
Nancy E. Gillette; David L. Wood; Sarah J. Hines; Justin B. Runyon; Jose F. Negron
2014-01-01
Entomologists and silviculturists have long recommended management of stand basal area and/or mean tree diameter to mitigate the risk of mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) outbreaks while simultaneously reducing wildfire risk. In recent decades, however, wildfire suppression and reduced harvests in western North America have created a forest...
Jose F. Negron; Christopher J. Fettig
2014-01-01
In recent years, the mountain pine beetle, Dendroctonus ponderosae, has impacted 8.9 million hectares of forests in the western United States. Historically a common occurrence in western forests, particularly in lodgepole and ponderosa pine, the magnitude and extent of recent outbreaks have exceeded past events since written records are available and have occurred in...
Christopher J. Fettig; Beverly M. Bulaon; Christopher P. Dabney; Christopher J. Hayes; Stepehen R. McKelvey
2012-01-01
In western North America, recent outbreaks of the mountain pine beetle, Dendroctonus ponderosae Hopkins, have been severe, long-lasting and well-documented. We review previous research that led to the identification of Verbenone Plus, a novel four-component semiochemical blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (â)-verbenone]...
B. J. Collins; C. C. Rhoades; M. A. Battaglia; R. M. Hubbard
2012-01-01
Recent mountain pine beetle infestations have resulted in widespread tree mortality and the accumulation of dead woody fuels across the Rocky Mountain region, creating concerns over future forest stand conditions and fire behavior. We quantified how salvage logging influenced tree regeneration and fuel loads relative to nearby, uncut stands for 24 lodgepole pine...
Kristen A. Pelz; Frederick W. Smith
2012-01-01
Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...
Karl Malcolm; Chuck Rhoades; Michael Battaglia; Paula Fornwalt; Rob Hubbard; Kelly Elder; Byron Collins
2012-01-01
Changing climatic conditions and an abundance of dense, mature pine forests have helped to spur an epidemic of mountain pine beetles larger than any in recorded history. Millions of forested acres have been heavily impacted and have experienced extreme rates of tree mortality. This has raised concerns among many people that the death, desiccation, and decomposition of...
Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest
2013-01-01
Background The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. Results We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Conclusions Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects. PMID:23537049
The southern pine beetle prevention initiative: working for healthier forests
John Nowak; Christopher Asaro; Kier Klepzig; Ronald Billings
2008-01-01
The southern pine beetle (SPB) is the most destructive forest pest in the South. After a recent SPB outbreak, the US Forest Service (Forest Health Protection and Southern Research Station [SRS]) received SPB Initiative (SPBI) funding to focus more resources on proactive SPB prevention work. This funding is being used for on-the-ground accomplishments, landowner...
Why do populations of southern pine beetle (Coleoptera: Scolytidae) fluctuate?
P. Turchin; P.L. Lorio; A.D. Taylor; R.F. Billings
1991-01-01
It is widely believed that population outbreaks of the southern pine beetle (Dendroctonus frontalis Zimm.) are caused by vagaries of climate, such as periods of severe drought.According to this view, D. frontalis population dynamics are dominated by density-independent processes.We have statistically analyzed a 30-yr record of D. frontalis activity in east Texas and...
Management of western North American bark beetles with semiochemicals
Steven J. Seybold; Barbara J. Bentz; Christopher J. Fettig; John E. Lundquist; Robert A. Progar; Nancy E. Gillette
2018-01-01
We summarize the status of semiochemical-based management of the major bark beetle species in western North America. The conifer forests of this region have a long history of profound impacts by phloem-feeding bark beetles, and species such as the mountain pine beetle (Dendroctonus ponderosae) and the spruce beetle (D. rufipennis) have recently undergone epic outbreaks...
Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron
2014-01-01
Due to the recent outbreaks of bark beetles in western U.S.A., research has focused on the effects of tree mortality on forest conditions, such as fuel complexes and stand structure. However, most studies have addressed outbreak populations of bark beetles only and there is a lack of information on the effect of multiple endemic, low level populations of biotic...
Mountain pine beetle impacts on vegetation and carbon stocks
Hawbaker, Todd J.; Briggs, Jennifer S.; Caldwell, Megan K.; Stitt, Susan
2013-01-01
In the Southern Rocky Mountains, an epidemic outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality unprecedented in recorded history. The impacts of this mortality on vegetation composition, forest structure, and carbon stocks have only recently received attention, although the impacts of other disturbances such as fires and land-use/land-cover change are much better known. This study, initiated in 2010, aims to increase our understanding of MPB outbreaks and their impacts. We have integrated field-collected data with vegetation simulation models to assess and quantify how long-term patterns of vegetation and carbon stocks have and may change in response to MPB outbreaks and other disturbances.
Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes
David E. Reed; Brent E. Ewers; Elise Pendall; John Frank; Robert Kelly
2016-01-01
Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle (Dendroctonus ponderosae) outbreak and its associated blue stain fungi (Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous...
M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan
2014-01-01
The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...
Charles C. Rhoades; Kristen A. Pelz; Paula J. Fornwalt; Brett H. Wolk; Antony S. Cheng
2018-01-01
The 2010 Churchâs Park Fire burned beetle-killed lodgepole pine stands in Colorado, including recently salvage-logged areas, creating a fortuitous opportunity to compare the effects of salvage logging, wildfire and the combination of logging followed by wildfire. Here, we examine tree regeneration, surface fuels, understory plants, inorganic soil nitrogen and water...
Chiao-Ying Chou; Roy L. Hedden; Bo Song; Thomas M. Williams
2013-01-01
Many models are available for simulating the probability of southern pine beetle (Dendroctonus frontalis Zimmermann) (SPB) infestation and outbreak dynamics. However, only a few models focused on the potential spatial SPB growth. Although the integrated pest management systems are currently adopted, SPB management is still challenging because of...
Integrated pest management and the pear thrips
James C. Space
1991-01-01
Although it is a pleasure to be here, our primary reason for being here is far from pleasant. During the last ten years, we have had serious problems with the gypsy moth, western spruce budworm, southern pine beetle, mountain pine beetle, fusiform rust and root diseases and the worst spruce budworm epidemic ever recorded. Just when these outbreaks have largely subsided...
James A. Powell; Barbara J. Bentz
2009-01-01
It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a...
Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.
2015-01-01
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317
Restoring fire in lodgepole pine forests of the Intermountain west
Colin C. Hardy; Ward W. McCaughey
1997-01-01
We are developing new management treatments for regenerating and sustaining lodgepole pine (Pinus contorta) forests through emulation of natural disturbance processes. Lodgepole pine is the principal forest cover on over 26 million hectares in western North America. While infrequent, stand replacing fires following mountain pine beetle outbreaks are common to the...
Restoring whitebark pine ecosystems in the face of climate change
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...
Signe B. Leirfallom; Robert E. Keane; Diana F. Tomback; Solomon Z. Dobrowski
2015-01-01
Whitebark pine (Pinus albicaulis Engelm.) populations are declining nearly rangewide from a combination of factors, including mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) outbreaks, the exotic pathogen Cronartium ribicola J.C. Fisch. 1872, which causes the disease white pine blister rust, and successional replacement due to historical fire...
Harvey, Brian J; Donato, Daniel C; Romme, William H; Turner, Monica G
The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by lodgepole pine (Pinus contorta var. latifolia) in Greater Yellowstone, Wyoming, USA, to determine if fire severity was linked to prefire beetle outbreak severity and whether these two disturbances produced compound ecological effects on postfire tree regeneration. With field data from 143 postfire plots that burned under different conditions, we assessed canopy and surface fire severity, and postfire tree seedling density against prefire outbreak severity. In the green-attack/red stage, several canopy fire-severity measures increased with prefire outbreak severity under moderate burning conditions. Under extreme conditions, few fire-severity measures were related to prefire outbreak severity, and effect sizes were of marginal biological significance. The percentage of tree stems and basal area killed by fire increased with more green-attack vs. red-stage trees (i.e., the earliest stages of outbreak). In the gray stage, by contrast, most fire-severity measures declined with increasing outbreak severity under moderate conditions, and fire severity was unrelated to outbreak severity under extreme burning conditions. Postfire lodgepole pine seedling regeneration was unrelated to prefire outbreak severity in either post-outbreak stage, but increased with prefire serotiny. Results suggest bark beetle outbreaks can affect fire severity in subalpine forests under moderate burning conditions, but have little effect on fire severity under extreme burning conditions when most large wildfires occur in this system. Thus, beetle outbreak severity was moderately linked to fire severity, but the strength and direction of the linkage depended on both endogenous (outbreak stage) and exogenous (fire weather) factors. Closely timed beetle outbreak and fire did not impart compound effects on tree regeneration, suggesting the presence of a canopy seedbank may enhance resilience to their combined effects.
Chad M. Hoffman; Rodman Linn; Russell Parsons; Carolyn Sieg; Judith Winterkamp
2015-01-01
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and...
Chad Hoffman; Russell Parsons; Penny Morgan; Ruddy Mell
2010-01-01
The purpose of this study is to investigate how varying amounts of MPB-induced tree mortality affects the amount of crown fuels consumed and the fire intensity across a range of lodgepole pine stands of different tree density and spatial arrangements during the early stages of a bark beetle outbreak. Unlike past studies which have relied on semi-empirical or empirical...
Christy M. Cleaver; Kelly S. Burns; Anna W. Schoettle
2017-01-01
Limber pine, designated by Rocky Mountain National Park (RMNP) as a Species of Management Concern, is a keystone species that maintains ecosystem structure, function, and biodiversity. Limber pine is declining in the park due to the interacting effects of recent severe droughts and the climate-exasperated mountain pine beetle (Dendroctonus ponderosae) outbreak, and is...
Paul E. Trusty; Cathy L. Cripps
2011-01-01
Whitebark pine (Pinus albicaulis) is a threatened keystone species in subalpine zones of Western North America that plays a role in watershed dynamics and maintenance of high elevation biodiversity (Schwandt, 2006). Whitebark pine has experienced significant mortality due to white pine blister rust, mountain pine beetle outbreaks and successional replacement possibly...
Lauren E. Barringer; Diana F. Tomback; Michael B. Wunder
2011-01-01
Whitebark pine (Pinus albicaulis) is declining in the central and northern Rocky Mountains from infection by the exotic pathogen Cronartium ribicola, which causes white pine blister rust, and from outbreaks of mountain pine beetle (Dendroctonus ponderosae). White pine blister rust has been present in Glacier and Waterton Lakes National Parks (NP) about two decades...
Plant defenses and climate change: doom or destiny for the lodgepole pine?
USDA-ARS?s Scientific Manuscript database
Lodgepole pine is a species of great importance to the forestry industry of British Columbia. However, recent climate-change associated outbreaks of insect pests (i.e. the mountain pine beetle) and diseases (Dothistroma needle blight) have limited productivity of stands throughout its northern range...
Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.
2015-01-01
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663
Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F
2015-01-01
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.
A range-wide restoration strategy for whitebark pine (Pinus albicaulis)
Robert E. Keane; D. F. Tomback; C. A. Aubry; A. D. Bower; E. M. Campbell; C. L. Cripps; M. B. Jenkins; M. F. Mahalovich; M. Manning; S. T. McKinney; M. P. Murray; D. L. Perkins; D. P. Reinhart; C. Ryan; A. W. Schoettle; C. M. Smith
2012-01-01
Whitebark pine (Pinus albicaulis), an important component of western high-elevation forests, has been declining in both the United States and Canada since the early Twentieth Century from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the spread of the exotic disease white pine blister rust (caused by the...
David W. Williams; Richard A. Birdsey
2003-01-01
This atlas presents maps of historical defoliation by the eastern and western spruce budworms and historical outbreaks of the mountain and southern pine beetles during the past half century. The maps encompass various regions of the conterminous United States and eastern Canada. This publication also serves as documentation for an extended set of digital maps, which...
Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W
2014-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in this new host.
NASA Astrophysics Data System (ADS)
Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.
2017-12-01
In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.
Robert E. Keane; Anna W. Schoettle
2011-01-01
Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Major declines of whitebark pine forests throughout western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (WPBR) have spurred many restoration actions. However, projected future warming and drying may further exacerbate the speciesâ decline and...
Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.
2011-01-01
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.
Kathleen A. Dwire; Robert Hubbard; Roberto Bazan
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...
Chad M. Hoffman; Joel D. McMillin; Carolyn Hull Sieg; Peter Z. Fule
2012-01-01
Bark beetles (Coleoptera: Scolytinae) are important biotic agents of conifer mortality in forests of western North America (Furniss and Carolin 1977) and play an important role in the disturbance ecology of these ecosystems (Fettig and others 2007). Bark beetle outbreaks affect subsequent fire behavior in part by influencing the spatial...
Molly L. Retzlaff; Signe B. Leirfallom; Robert E. Keane
2016-01-01
Whitebark pine plays a prominent role in high elevation ecosystems of the northern Rocky Mountains. It is an important food source for many birds and mammals as well as an essential component of watershed stabilization. Whitebark pine is vanishing from the landscape due to three main factors: white pine blister rust, mountain pine beetle outbreaks, and successional...
Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F
2017-01-01
Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response
Rhoades, Charles C.; McCutchan, James H.; Cooper, Leigh A.; Clow, David; Detmer, Thomas M.; Briggs, Jennifer S.; Stednick, John D.; Veblen, Thomas T.; Ertz, Rachel M.; Likens, Gene E.; Lewis, William M.
2013-01-01
A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species. PMID:23319612
Relating lightning data to fire occurrence data
Frank H. Koch
2009-01-01
Lightning disturbance can affect forest health at various scales. Lightning strikes may kill or weaken individual trees. Lightning-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).
Effect of aerial sprays on the abundance of litter insects
Jurate Lynikiene; Paulius Zolubas
2003-01-01
The research objectives were to determine the species composition and seasonal dynamics of pine litter arthropods and examine the effect of insecticide treatments on non-target organisms associated with pine beauty moth (Panolis flammea Schiff.) outbreaks. Representatives of beetles (Coleoptera) were the dominant arthropods...
Forest disturbance interactions and successional pathways in the Southern Rocky Mountains
Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,
2016-01-01
The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.
Red turpentine beetle: innocuous native becomes invasive tree killer in China.
Sun, Jianghua; Lu, Min; Gillette, Nancy E; Wingfield, Michael J
2013-01-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), is a secondary pest of pines in its native range in North and Central America. Outbreaks and tree mortality attributed to RTB alone are rare in its native range. RTB was introduced into China in the early 1980s and spread rapidly from Shanxi Province to four adjacent provinces; it has infested over 500,000 ha of pine forest and has caused extensive tree mortality since 1999. We provide a historical background on RTB outbreaks, explanations for its invasive success, management options, and economic impacts of RTB in China. Genetic variation in RTB fungal associates, interactions between RTB and its associated fungi, behavioral differences in Chinese RTB, and other factors favoring RTB outbreaks are considered in an effort to explain the invasiveness of RTB in China. The promise of semiochemicals as a management tool is also discussed.
Carbon stocks of trees killed by bark beetles and wildfire in the western United States
Hicke, Jeffrey A.; Meddens, Arjan J.H.; Allen, Craig D.; Kolden, Crystal A.
2013-01-01
Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984-2010, fires killed trees that contained 5-11 Tg C year-1 and during 1997-2010, beetles killed trees that contained 2-24 Tg C year-1, with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5-10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States.
Pinon pine mortality event in the Southwest: An update for 2005
D. Allen-Reid; J. Anhold; D. Cluck; T. Eager; R. Mask; J. McMillin; S. Munson; J. Negron; T. Rogers; D. Ryerson; E. Smith; S. Smith; B. Steed; R. Thier
2008-01-01
(Please note, this is an abstract only) Drought conditions in the Southwest have persisted for a number of years resulting in large areas of pinon pine mortality. In 2002 drought conditions became extreme, facilitating an outbreak of pinon ips beetles (Ips confusus, Coleoptera: Scolytidae) that killed many millions of pinon pines over a six-state region by 2003. In...
Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop; Christina E. Wells; Mac A. Callaham
2013-01-01
Heavy fuel loads were created by southern pine beetle (Dendroctonus frontalis Ehrh.) outbreak throughout the southeastern Piedmont during the early 2000s. Prescribed burning and mechanical mulching (mastication) were used to reduce fuel loading, but many ecological impacts are unknown. Successful forest regeneration depends on ectomycorrhizal (ECM)...
Modeling mountain pine beetle disturbance in Glacier National Park using multiple lines of evidence
Assal, Timothy; Sibold, Jason
2013-01-01
Temperate forest ecosystems are subject to various disturbances which contribute to ecological legacies that can have profound effects on the structure of the ecosystem. Impacts of disturbance can vary widely in extent, duration and severity over space and time. Given that global climate change is expected to increase rates of forest disturbance, an understanding of these events are critical in the interpretation of contemporary forest patterns and those of the near future. We seek to understand the impact of the 1970s mountain pine beetle outbreak on the landscape of Glacier National Park and investigate any connection between this event and subsequent decades of extensive wildfire. The lack of spatially explicit data on the mountain pine beetle disturbance represents a major data gap and inhibits our ability to test for correlations between outbreak severity and fire severity. To overcome this challenge, we utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We used historical aerial and landscape photos, reports, aerial survey data, a six year collection of Landsat imagery and abiotic data in combination with regression analysis. The use of remotely sensed data is critical in large areas where subsequent disturbance (fire) has erased some of the evidence from the landscape. Results indicate that this method is successful in capturing the spatial heterogeneity of the outbreak in a topographically complex landscape. Furthermore, this study provides an example on the use of existing data to reduce levels of uncertainty associated with an historic disturbance.
Red turpentine beetle: Innocuous native becomes invasive tree killer in China
Jianghua Sun; Min Lu; Nancy E. Gillette; Michael J. Wingfield
2012-01-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), is a secondary pest of pines in its native range in North and Central America. Outbreaks and tree mortality attributed to RTB alone are rare in its native range. RTB was introduced into China in the early 1980s and spread rapidly from Shanxi...
Jared W. Westbrook; Marcio F. R. Resende Jr.; Patricio Munoz; Alejandro R. Walker; Jill L. Wegrzyn; C. Dana Nelson; David B. Neale; Matias Kirst; Salvador A. Gezan; Gary F. Peter; John M. Davis
2013-01-01
In the last decade, outbreaks of bark beetles in coniferous forests of North America have caused unprecedented tree mortality and economic losses (Nowak et al., 2008; van Mantgem et al., 2009; Waring et al., 2009), converting forests that were previously atmospheric carbon sinks into carbon sources (Kurz et al., 2008). Native species of bark beetle rapidly kill healthy...
The establishment of shortleaf pine following repeated prescribed burns at Catoosa WMA
John Bowers; Wayne Clatterbuck; Mike McCloy; Ben Royer; Stephen Peairs
2016-01-01
A mature shortleaf pine (Pinus echinata) stand on the Cumberland Plateau in Tennessee at the Catoosa Wildlife Management Area was harvested in 2001 in response to a regional southern pine beetle outbreak and converted into a savannah through periodic prescribed burns in 2005, 2010, and 2013. Following the harvest and series of burns, the stand was occupied by shortleaf...
Weiman Xi; John Waldron; Charles Lafon; David Cairns; Andrew Birt; Maria Tchakerian; Robert Coulson; Kier Klepzig
2009-01-01
Periodic fires are an important factor shaping the species-rich southern Appalachian forest landscape, and fire regimes in this region have changed significantly over time. The role of fire in maintaining Appalachian forests has been debated and increasingly studied (Delcourt and Delcourt 1998). Experimental studies have shown that pine...
Derek W. Rosenberger; Robert C. Venette; Brian H. Aukema; Jörg Müller
2018-01-01
Some subcortical insects have devastating effects on native tree communities in new ranges, despite benign interactions with their historical hosts. Examples of how insects, aggressive in their native habitat might respond in novel host environs are less common. One aggressive tree-killing insect undergoing a dramatic range shift is the mountain pine beetle (...
NASA Astrophysics Data System (ADS)
Peterman, W. L.; Waring, R. H.
2014-12-01
Frequent outbreaks of insects and diseases have been recorded in forests of western North America during the past few decades, but the distribution of these outbreaks has not been uniform. In some cases, recent climatic variations along with the age and density of forests may explain some spatial variation. Forest managers and policy makers would benefit if areas prone to disturbance could be recognized so that mitigating actions could be taken. In this paper, we used two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modelling approach that couples information from remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. There was a slight downward trend in precipitation for both sites over the period between 1998 and 2010, and, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier and more severely on one site than the other. The initial canopy density of the two sites was also similar, with leaf area indices derived via Landsat imagery ranging between 1.6- 2.0 m2 m-2. We wondered if the difference in bark beetle activity might be related to soils that were fine-textured at site I and coarse-textured at site II. We applied a process-based stand growth model (3-PG) to analyze the data and evaluate the hypotheses.
Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.
Teste, François P; Lieffers, Victor J; Landhausser, Simon M
2011-01-01
There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone burial; cone opening; Dendroctonus ponderosae; ground-foraging vertebrates; mountain pine beetle; natural regeneration; Pinus contorta var. latifolia; Rocky Mountain lodgepole pine; seed banks; serotiny (canopy seed storage); Tamiasciurus hudsonicus.
T. Ryan McCarley; Crystal A. Kolden; Nicole M. Vaillant; Andrew T. Hudak; Alistair M. S. Smith; Jason Kreitler
2017-01-01
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light...
Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.
Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T
2013-05-01
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.
Donato, Daniel C.; Raffa, Kenneth F.; Turner, Monica G.
2016-01-01
Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes. PMID:27821739
Seidl, Rupert; Donato, Daniel C; Raffa, Kenneth F; Turner, Monica G
2016-11-15
Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.
Hood, Sharon M; Baker, Stephen; Sala, Anna
2016-10-01
Fire frequency in low-elevation coniferous forests in western North America has greatly declined since the late 1800s. In many areas, this has increased tree density and the proportion of shade-tolerant species, reduced resource availability, and increased forest susceptibility to forest insect pests and high-severity wildfire. In response, treatments are often implemented with the goal of increasing ecosystem resilience by increasing resistance to disturbance. We capitalized on an existing replicated study of fire and stand density treatments in a ponderosa pine (Pinus ponderosa)-Douglas-fir (Pseudotsuga menziesii) forest in western Montana, USA, that experienced a naturally occurring mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak 5 yr after implementation of fuels treatments. We explored whether treatment effects on tree-level defense and stand structure affected resistance to MPB. Mortality from MPB was highest in the denser, untreated control and burn-only treatments, with approximately 50% and 39%, respectively, of ponderosa pine killed during the outbreak, compared to almost no mortality in the thin-only and thin-burn treatments. Thinning treatments, with or without fire, dramatically increased tree growth and resin ducts relative to control and burn-only treatments. Prescribed burning did not increase resin ducts but did cause changes in resin chemistry that may have affected MPB communication and lowered attack success. While ponderosa pine remained dominant in the thin and thin-burn treatments after the outbreak, the high pine mortality in the control and burn-only treatment caused a shift in species dominance to Douglas-fir. The high Douglas-fir component in the control and burn-only treatments due to 20th century fire exclusion, coupled with high pine mortality from MPB, has likely reduced resilience of this forest beyond the ability to return to a ponderosa pine-dominated system in the absence of further fire or mechanical treatment. Our results show treatments designed to increase resistance to high-severity fire in ponderosa pine-dominated forests in the Northern Rockies can also increase resistance to MPB, even during an outbreak. This study suggests that fuel and restoration treatments in fire-dependent ponderosa pine forests that reduce tree density increase ecosystem resilience in the short term, while the reintroduction of fire is important for long-term resilience. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edburg, Steven L.; Hicke, Jeffrey A.; Lawrence, David M.
2011-01-01
Insect outbreaks are major ecosystem disturbances, affecting a similar area as forest fires annually across North America. Tree mortality caused by epidemics of bark beetles alters carbon cycling in the first several years following the disturbance by reducing stand-level primary production and increasing decomposition rates. The few studies of biogeochemical cycling following outbreaks have shown a range of impacts from small responses of net carbon fluxes in the first several years after a severe outbreak to large forest areas that are sources of carbon to the atmosphere for decades. To gain more understanding about causes of this range of responses,more » we used an ecosystem model to assess impacts of different bark beetle outbreak conditions on coupled carbon and nitrogen cycling. We modified the Community Land Model with prognostic carbon and nitrogen to include prescribed bark beetle outbreaks. We then compared control simulations (without a bark beetle outbreak) to simulations with various mortality severity, durations of outbreak, and snagfall dynamics to quantify the range of carbon flux responses and recovery rates of net ecosystem exchange to a range of realistic outbreak conditions. Prescribed mortality by beetles reduced leaf area and thus productivity. Gross primary productivity decreased by as much as 80% for a severe outbreak (95% mortality) and by 10% for less severe outbreaks (25% mortality). Soil mineral nitrogen dynamics (immobilization and plant uptake) were important in governing post-outbreak productivity, and were strongly modulated by carbon inputs to the soil from killed trees. Initial increases in heterotrophic respiration caused by a pulse of labile carbon from roots were followed by a slight reduction (from pre-snagfall reduced inputs), then a secondary increase (from inputs due to snagfall). Secondary increases in heterotrophic respiration were largest for simulated windthrow of snags after a prescribed snagfall delay period. Net ecosystem productivity recovered within 40 years for all simulations, with the largest increases in the first 10 years. Our simulations illustrate that, given the large variability in bark beetle outbreak conditions, a wide range of responses in carbon and nitrogen dynamics can occur. The fraction of trees killed, timing of snagfall, snagfall rate, and management decisions as to whether or not to remove snags for harvesting or for fire prevention will have a major impact on post-outbreak carbon fluxes up to 100 years following an outbreak.« less
Pfammatter, Jesse A; Krause, Adam; Raffa, Kenneth F
2015-08-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is an irruptive tree-killing species native to pine forests of western North America. Two potential pathways of spread to eastern forests have recently been identified. First, warming temperatures have driven range expansion from British Columbia into Albertan jack pine forests that are contiguous with the Great Lakes region. Second, high temperatures and drought have fostered largescale outbreaks within the historical range, creating economic incentives to salvage killed timber by transporting logs to midwestern markets, which risks accidental introduction. We evaluated the extent to which local predators and competitors that exploit bark beetle semiochemicals would respond to D. ponderosae in Wisconsin. We emulated D. ponderosae attack by deploying lures containing synthetic aggregation pheromones with and without host tree compounds and blank control traps in six red pine plantations over 2 yr. Predator populations were high in these stands, as evidenced by catches in positive control traps, baited with pheromones of local bark beetles and were deployed distant from behavioral choice plots. Only one predator, Thanasimus dubius F. (Coleoptera: Cleridae) was attracted to D. ponderosae's aggregation pheromones relative to blank controls, and its attraction was relatively weak. The most common bark beetles attracted to these pheromones were lower stem and root colonizers, which likely would facilitate rather than compete with D. ponderosae. There was some, but weak, attraction of potentially competing Ips species. Other factors that might influence natural enemy impacts on D. ponderosae in midwestern forests, such as phenological synchrony and exploitation of male-produced pheromones, are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Small bugs with big impacts: Ecosystem and watershed-level responses to the MPB epidemic [Chapter 7
Rob Hubbard; Kelly Elder; Chuck Rhoades; Polly Hays; Bruce Sims
2014-01-01
Mountain pine beetle (MPB) outbreaks have the potential for prolonged impacts on the delivery of clean water from infested subalpine watersheds throughout the West. Sixty-five percent of the Westâs water supply originates on forested land (Brown and others 2008), much of which has been affected by an unprecedented MPB epidemic over the past decade. Some lodgepole pine...
Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA
Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T
2013-01-01
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860–2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20–30 years, at which point the visually healthy populations had consistently higher BAI values (22–34%) than the MPB-infected trees. These results suggest that growth rates two–three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955–59 for the visually healthy trees and 1960–64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies. PMID:23762502
NASA Astrophysics Data System (ADS)
Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale
2017-09-01
Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.
Randall S. Rosenberger; Lauren A. Bell; Patricia A. Champ; Eric M. White
2013-01-01
Forest insects have long-standing ecological relationships with their host trees. Many insects have a benign or beneficial relationship with trees, but a few species are characterized by unpredictable population eruptions that have great ecological and economic implications (Logan, Régnière, and Powell 2003). These insect outbreaks are a major agent of natural...
de la Mata, Raul; Hood, Sharon; Sala, Anna
2017-07-11
Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle ( Dendroctonus ponderosae ) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.
David MArtin Cairns; Charles W. Lafon; Andrew G. Birt; John D. Waldron; Maria Tchakerian; Robert N. Coulson; Weimin Xi; Kier. Klepzig
2008-01-01
The forests of southeastern North America are influenced by a variety ofdisturbances including fire and insect outbreaks. In this paper, we discuss the roleof disturbances in structuring forest landscapes with particular emphasis placed on
McFarlane, Bonita L; Watson, David O T; Witson, David O T
2008-02-01
Western Canada is experiencing an unprecedented outbreak of the mountain pine beetle (MPB). The MPB has the potential to impact some of Canada's national parks by affecting park ecosystems and the visitor experience. Controls have been initiated in some parks to lessen the impacts and to prevent the beetle from spreading beyond park boundaries. We examine the perception of ecological risk associated with MPB in two of Canada's national parks, the factors affecting perceptions of risk, and the influence of risk judgments on support for controlling MPB outbreaks in national parks. Data were collected using two studies of park visitors: a mail survey in 2003 and an onsite survey in 2005. The MPB was rated as posing a greater risk to the health and productivity of park ecosystems than anthropogenic hazards and other natural disturbance agents. Visitors who were familiar with MPB rated the ecological and visitor experience impacts as negative, unacceptable, and eliciting negative emotion. Knowledge and residency were the most consistent predictors of risk judgments. Of knowledge, risk, and demographic variables, only sex and risk to ecosystem domains influenced support for controlling the MPB in national parks. Implications for managing MPB in national parks, visitor education, and ecological integrity are discussed.
Sala, Anna
2017-01-01
Long generation times limit species’ rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs. PMID:28652352
NASA Astrophysics Data System (ADS)
Chen, J. M.; Czurylowicz, P.; Mo, G.; Black, T. A.
2013-12-01
The unprecedented mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia starting in 1998 affected about 50% of the lodgepole pine (Pinus contorta var. latifolia) forests occupying about 50% of the land area of the province. The impact of this outbreak on the C cycle is assessed in this study. Annual leaf area index (LAI) maps of the affected area from 1999 to 2008 were produced using SPOT VEGETATION data, and net ecosystem production (NEP) was modeled using inputs of LAI, land cover, soil texture and daily meteorological data with the Boreal Ecosystem Productivity Simulator (BEPS). Both LAI and NEP were validated using field measurements. LAI was found to decrease on average by 20% compared to pre-outbreak conditions, while NEP decreased on average by 90%. Annual NEP values ranged from 2.4 to -8.0 Tg C between 1999 and 2008, with the ecosystem changing from a carbon sink to a carbon source in 2000. The annual average NEP was -2.9 Tg C over the 10 years, resulting in a total loss of carbon of 29 Tg C to the atmosphere. The inter-annual variability of both LAI and NEP was characterized by substantial initial decreases followed by steady increases from 2006 to 2008 with NEP returning to near carbon neutrality in 2008 (-1.8 Pg C/y). The impact of this MPB outbreak appears to be less dramatic than previously anticipated. The apparent fast recovery of LAI and NEP after MPB attacks is examined under the framework of ecosystem resilience which was manifested in the form of secondary overstory and understory growth and increased production of non-attacked host trees.
Southern Pine Beetle Outbreak in Belize
Robert A. Haack; Claus M. Eckelmann; Earl Green
2000-01-01
Belize is a Central American country that borders Mexico, Guatemala, and the Caribbean Sea (see Map). Belize, formerly called British Honduras from 1862 until 1973, is about 23,000 square kilometers in size, which is about the area of Massachusetts. Elevation varies from sea level to 1120 meters. The major vegetation types include mangrove swamp, broadleafjungle,...
Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan
2013-01-01
Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.
NASA Astrophysics Data System (ADS)
Edburg, S. L.; Hicke, J. A.; Lawrence, D. M.; Thornton, P. E.
2009-12-01
Forest disturbances, such as fire, insects, and land-use change, significantly alter carbon budgets by changing carbon pools and fluxes. The mountain pine beetle (MPB) kills millions of hectares of trees in the western US, similar to the area killed by fire. Mountain pine beetles kill host trees by consuming the inner bark tissue, and require host tree death for reproduction. Despite being a significant disturbance to forested ecosystems, insects such as MPB are typically not represented in biogeochemical models, thus little is known about their impact on the carbon cycle. We investigate the role of past MPB outbreaks on carbon cycling in the western US using the NCAR Community Land Model with Carbon and Nitrogen cycles (CLM-CN). CLM-CN serves as the land model to the Community Climate System Model (CCSM), providing exchanges of energy, momentum, water, carbon, and nitrogen between the land and atmosphere. We run CLM-CN over the western US extending to eastern Colorado with a spatial resolution of 0.5° and a half hour time step. The model is first spun-up with repeated NCEP forcing (1948-1972) until carbon stocks and fluxes reach equilibrium (~ 3000 years), and then run from 1850 to 2004 with NCEP forcing and a dynamic plant functional type (PFT) database. Carbon stocks from this simulation are compared with stocks from the Forest Inventory Analysis (FIA) program. We prescribe MPB mortality area, once per year, in CLM-CN using USFS Aerial Detection Surveys (ADS) from the last few decades. We simulate carbon impacts of tree mortality by MPB within a model grid cell by moving carbon from live vegetative pools (leaf, stem, and roots) to dead pools (woody debris, litter, and dead roots). We compare carbon pools and fluxes for two simulations, one without MPB outbreaks and one with MPB outbreaks.
Ecohydrology of an outbreak: Mountain pine beetle impacts trees in drier landscape positions first
Kendra E. Kaiser; Ryan E. Emanuel
2013-01-01
Vegetation pattern and landscape structure intersect to exert strong control over ecohydrological dynamics at the watershed scale. The hydrologic implications of vegetation disturbance (e.g. fire, disease) depend on the spatial pattern and form of environmental change. Here, we investigate this intersection at Tenderfoot Creek Experimental Forest (TCEF), Montana, with...
John C. Moser; Jorge E. Macías-Sámano
2000-01-01
Seven species of mites (Acari: Tarsenomidae) were associated with two local outbreaks of the southern pine beetle, Dendroctonus frontalis Zimmerman, in Chiapas, Mexico; three of these species were new records for Mexico and Central America. The morphology and phoretic behavior of these mites differed little between the western and southern...
Southern Pine Beetle Competitors
Fred M. Stephen
2011-01-01
When southern pine beetles mass attack a living pine tree, if colonization is successful the tree dies and its phloem becomes immediately available to a complex of other bark beetles and long-horned beetles, all of which, in order to reproduce, compete for the new resource. In southern pines the phloem-inhabiting guild is composed of the southern pine beetle...
Southern Pine Beetle Handbook: Southern Pine Beetles Can Kill Your Ornamental Pine
Robert C. Thatcher; Jack E. Coster; Thomas L. Payne
1974-01-01
Southern pine beetles are compulsive eaters. Each year in the South from Texas to Virginia the voracious insects conduct a movable feast across thousands of acres of pine forests. Most trees die soon after the beetles sink their teeth into them.
Teste, François P; Lieffers, Victor J; Landhäusser, Simon M
2011-04-01
Seed banks are important for the natural regeneration of many forest species. Most of the seed bank of serotinous lodgepole pine is found in the canopy, but after an outbreak of mountain pine beetle (MPB), a considerable forest-floor seed bank develops through the falling of canopy cones. After large-scale mortality of pine stands from MPB, however, the viability of seeds in both the canopy and the forest-floor cone bank is uncertain. We sampled cones in five stands 3 yr after MPB (3y-MPB); five stands 6 yr after MPB (6y-MPB); and 10 stands 9 yr after MPB (9y-MPB), in central British Columbia, Canada. Seeds were extracted and viability tested using germination techniques. Forest-floor cones had seed with high germination capacity (GC): 82% for embedded (partly buried) closed cones vs. 45% for buried partly open cones. For canopy cones, GC steeply declined about 15 yr after cone maturation and by 25 yr, GC was 50%, compared with 98% in the first year. In the 3y- and 6y-MPB stands, seeds from cones that were 7 to 9 yr old had similar GC on dead and living trees; however, seeds from the dead trees had lower vigor than seeds from living trees. We demonstrate for the first time that a serotinous pine can form a viable soil seed bank by cone burial, which may facilitate natural regeneration if a secondary disturbance occurs. Seeds contained in 15-yr-old cones showed a steep decline in viability, which could limit regeneration if there is a long delay before a secondary disturbance.
Southern Pine Beetle Information System (SPBIS)
Valli Peacher
2011-01-01
The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....
Forest health conditions in North America
B. Moody; J.V. Castillo; M.E. Fenn
2008-01-01
Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several...
NASA Astrophysics Data System (ADS)
Landry, Jean-Sébastien; Parrott, Lael; Price, David T.; Ramankutty, Navin; Damon Matthews, H.
2016-09-01
The ongoing major outbreak of mountain pine beetle (MPB) in forests of western North America has led to considerable research efforts. However, many questions remain unaddressed regarding its long-term impacts, especially when accounting for the range of possible responses from the non-target vegetation (i.e., deciduous trees and lower-canopy shrubs and grasses). We used the Integrated BIosphere Simulator (IBIS) process-based ecosystem model along with the recently incorporated Marauding Insect Module (MIM) to quantify, over 240 years, the impacts of various MPB outbreak regimes on lodgepole pine merchantable biomass, ecosystem carbon, surface albedo, and the net radiative forcing on global climate caused by the changes in ecosystem carbon and albedo. We performed simulations for three locations in British Columbia, Canada, with different climatic conditions, and four scenarios of various coexisting vegetation types with variable growth release responses. The impacts of MPB outbreaks on merchantable biomass (decrease) and surface albedo (increase) were similar across the 12 combinations of locations and vegetation coexistence scenarios. The impacts on ecosystem carbon and radiative forcing, however, varied substantially in magnitude and sign, depending upon the presence and response of the non-target vegetation, particularly for the two locations not subjected to growing-season soil moisture stress; this variability represents the main finding from our study. Despite major uncertainty in the value of the resulting radiative forcing, a simple analysis also suggested that the MPB outbreak in British Columbia will have a smaller impact on global temperature over the coming decades and centuries than a single month of global anthropogenic CO2 emissions from fossil fuel combustion and cement production. Moreover, we found that (1) outbreak severity (i.e., per-event mortality) had a stronger effect than outbreak return interval on the variables studied, (2) MPB-induced changes in carbon dynamics had a stronger effect than concurrent changes in albedo on net radiative forcing, and (3) the physical presence of MPB-killed dead standing trees was potentially beneficial to tree regrowth. Given that the variability of pre-outbreak vegetation characteristics can lead to very different regeneration pathways, the four vegetation coexistence scenarios we simulated probably only sampled the range of possible responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, B.J.; Powell, J.A.; Logan, J.A.
1996-12-01
Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less
Southern Pine Beetle Behavior and Semiochemistry
Brian T. Sullivan
2011-01-01
The southern pine beetle (SPB) feeds both as adults and larvae within the inner bark of pine trees, which invariably die as a result of colonization. Populations of the SPB erupt periodically and produce catastrophic losses of pines, while at other times the beetles persist almost undetectably in the environment. The southern pine beetle has evolved behaviors that...
Southern Pine Bark Beetle Guild
T. Evan Nebeker
2011-01-01
Dendroctonus frontalis (southern pine beetle), D. terebrans (black turpentine beetle), Ips avulsus (small southern pine engraver or four-spined engraver), I. grandicollis (five-spined engraver), and I. calligraphus (six-spined engraver) comprise the southern pine bark beetle guild. Often they are found sharing the same hosts in the Southeastern United States. They...
Relative abundance of the southern pine beetle associates in East Texas
John C. Moser; R. C. Thatcher; L. S. Pickard
1971-01-01
More than 90 species of insects were identified in bolts taken from east Texas loblolly pines infested by the southern pine beetle, Dendroctonus frontalis Zimmermann and by Ips engraver beetles (Coleoptera: scolytidae). Seasonal abundance of the associates generally paralleled that of the southern pine beetle.
John C. Moser; Bobbe A. Fitzgibbon; Kier D. Klepzig
2005-01-01
The Mexican pine beetle (XPB) Dendroctonus mexicanus, is recorded here for the first time as a new introduction for the United States (US). Individuals of XPB and its sibling species, the southern pine beetle (SPB) Dendroctonus frontalis, were found infesting the same logs of Chihuahua pine, Pinus...
Barbara J. Bentz
2006-01-01
Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...
Modeling mountain pine beetle habitat suitability within Sequoia National Park
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.
Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei
2016-01-01
ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.
Richard H. Smith
1971-01-01
The Jeffrey pine beetle (Dendroctonus jeffreyi Hopk.), one of the bark beetles that kill trees by mining between the bark and the wood, is the principal insect enemy of Jeffrey pine. The beetle is of economic importance chiefly in California, where most of the Jeffrey pine grows, and is most destructive in old-growth stands in the timber-producing areas of northeastern...
R.A. Progar; D.C. Blackford; D.R. Cluck; S. Costello; L.B. Dunning; T. Eager; C.L. Jorgensen; A.S. Munson; B. Steed; M.J. Rinella
2013-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: CurcuIionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of...
Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan
2016-01-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...
Oyler-McCance, Sara J.; Fike, Jennifer A.; Castoe, Todd A.; Tomback, Diana F.; Wunder, Michael B.; Schaming, Taza D.
2013-01-01
Clark’s nutcrackers are important seed dispersers for two widely-distributed western North American conifers, whitebark pine and limber pine, which are declining due to outbreaks of mountain pine beetle and white pine blister rust. Because nutcracker seed dispersal services are key to maintaining viable populations of these imperiled pines, knowledge of movement patterns of Clark’s nutcrackers helps managers understand local extinction risks for these trees. To investigate population structure within Clark’s nutcracker, we developed primers for and characterized 13 polymorphic microsatellite loci. In a screen of 22 individuals from one population, levels of variability ranged from 6 to 15 alleles. No loci were found to be linked, although 4 loci revealed significant departures from Hardy–Weinberg equilibrium and evidence of null alleles. These microsatellite loci will enable population genetic analyses of Clark’s nutcrackers, which could provide insights into the spatial relationships between nutcrackers and the trees they help disperse.
Daniel R. Miller
2007-01-01
I report on the attraction of the white pine cone beetle, Canophthorus coniperda (Schwarz) (Coleoptera: Scolytidae), to traps baited with the host monoterpene limonene in western North Carolina. Both (+)- and (-)-limonene attracted male and female cone beetles to Japenese beetle traps in an eastern white pine, Pinus strobus L. seed...
Andrew Miller; Kelly Barton; Joel McMillin; Tom DeGomez; Karen Clancy; John Anhold
2008-01-01
(Please note, this is an abstract only) Bark beetles killed more than 20 million ponderosa pine trees in Arizona during 2002-2004. Historically, bark beetle populations remained endemic and ponderosa pine mortality was limited to localized areas in Arizona. Consequently, there is a lack of information on bark beetle community structure in ponderosa pine stands of...
Christopher J. Fettig; Christopher P. Dabney; Stepehen R. McKelvey; Dezene P.W. Huber
2008-01-01
Nonhost angiosperm volatiles (NAV) and verbenone were tested for their ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex. Laws., from attack by western pine beetle (WPB), Dendroctonus brevicomis LeConte, and red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae). A combination of (
Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility
David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan
2000-01-01
Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...
Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles
J.C. Nod; F.L. Hastings; A.S. Jones
1990-01-01
An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...
Mountain pine beetle in high-elevation five-needle white pine ecosystems
Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six
2011-01-01
Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...
Guidelines for regenerating southern pine beetle spots
J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer
2012-01-01
Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...
Mountain pine beetle emergence from lodgepole pine at different elevations near Fraser, CO
J Tishmack; S.A. Mata; J.M. Schmid
2005-01-01
Mountain pine beetle emergence was studied at 8760 ft, 9200 ft, and 9900 ft near Fraser, CO. Beetles began emerging at 8760 ft between July 9 and July 14 while no beetles emerged at 9200 ft and only one beetle emerged at 9900 ft during the same period. Beetle emergence continued at relatively low but fluctuating rates for the next two to three weeks. Peak emergence...
Jose F. Negron; Ann M. Lynch; Willis C. Schaupp; Vladimir Bocharnikov
2014-01-01
An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir...
John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie
2015-01-01
Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....
Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen
2012-01-01
In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...
B. J. Bentz; D. Endreson
2004-01-01
Spatial accuracy in the detection and monitoring of mountain pine beetle populations is an important aspect of both forest research and management. Using ground-collected data, classification models to predict mountain pine beetle-caused lodgepole pine mortality were developed for Landsat TM, ETM+, and IKONOS imagery. Our results suggest that low-resolution imagery...
Holocene Vegetation and Fire Dynamics on the Chilcotin Plateau, BC, Canada
NASA Astrophysics Data System (ADS)
Brown, K. J.; Hebda, R.; Hawkes, B.
2014-12-01
The Chilcotin Plateau is a high elevation plateau in the west central interior of British Columbia, Canada. It is characterised by a continental climate and located in a rainshadow setting. Pine-dominated forests dominate. The region is prone to frequent fires and mountain pine beetle outbreaks. Several surface sediment cores and an overlapping Livingstone sediment core were collected from centrally-located Scum Lake and analysed for pollen, charcoal and insect remains. During the early-Holocene warm-dry interval, a non-arboreal vegetation community dominated by grass and sage dominated and surface fire disturbance was frequent. Model predictions suggest that non-arboreal vegetation may expand in this region in the future, suggesting that the fire regime will likewise change as in the early-Holocene. In the mid-Holocene, pine, possibly Pinus ponderosa, increased in abundance, suggesting that a surface fire regime persisted at that time. Pinus contorta pollen increased in the late-Holocene, representing the establishment of the modern forest and mixed/crown fire regime. Fire return intervals typically ranged between 20-100 years, consistent with tree-ring based observation (40-70 years). Analyses of the surface cores revealed that identifiable mountain pine beetle remains were rare, suggesting that alternative approaches may be required to assess to insect disturbance through time.
Sheryl L. Costello; William R. Jacobi; Jose F. Negron
2013-01-01
Wood borers (Coleoptera: Cerambycidae and Buprestidae) and bark beetles (Coleoptera: Curculionidae) infest ponderosa pines, Pinus ponderosa P. Lawson and C. Lawson, killed by mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and fire. No data is available comparing wood borer and bark beetle densities or species guilds associated with MPB-killed or fire-...
Mountain pine beetle infestations in relation to lodgepole pine diameters
Walter E. Cole; Gene D. Amman
1969-01-01
Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...
Low concentration of lindane plus induced attraction traps mountain pine beetle
Richard H. Smith
1976-01-01
Mountain pine beetles were induced to attack lodgepole pine sprayed with 0.2 percent or 0.3 percent lindane emulsion. Large numbers of beetles were killed and fell into traps at the base of the tree. The few successfully attacking beetles caused the sprayed trees to remain attractive to beetles for about two months. The incidence of attacked trees in the immediate area...
Phoretic symbionts of the mountain pine beetle (Dendroctonus ponderosae Hopkins)
Javier E. Mercado; Richard W. Hofstetter; Danielle M. Reboletti; Jose F. Negron
2014-01-01
During its life cycle, the tree-killing mountain pine beetle Dendroctonus ponderosae Hopkins interacts with phoretic organisms such as mites, nematodes, fungi, and bacteria. The types of associations these organisms establish with the mountain pine beetle (MPB) vary from mutualistic to antagonistic. The most studied of these interactions are those between beetle and...
Mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)
Barbara Bentz
2008-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is considered one of the most economically important insect species in coniferous forests of western North America. Adult beetles are capable of successfully reproducing in at least 12 North American species of Pinus (Pineacea) from southern British Columbia to northern Baja Mexico. Mountain pine beetle adults...
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation
Gene D. Amman; Kevin C. Ryan
1994-01-01
The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the...
C.J. Hayes; C.J. Fettig; L.D. Merrill
2009-01-01
The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae: Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Dougl. ex Laws., mortality in much of western North America. This study was designed to quantify relationships between western pine beetle trap catches [including those of its...
Daniel R. Miller; Christopher M. Crowe; Christopher Asaro; Gary L. DeBarr
2003-01-01
The white pine cone beetle, Conophthorus coniperda, exhibited dose and enantiospecific responses to a-pinene in stands of mature eastern white pine, Pinus strobus, in a seed orchard near Murphy, North Carolina, USA. (-)-a-Pinene significantly increased catches of cone beetles to...
Lightning Strike Simula tion for Studying Southern Pine Bark and Engraver Beetle Attacks
Mitchel C. Miller
1983-01-01
Endemic populations of the southern pine beetle (Dendroctonus frontalis Zimm.) and Ips spp. attacked loblolly pines (Pinus taeda L.) on which lightning strikes were simulated with detonating cord in the field. Southern pine beetles were reared in successive generations in these trees from fall 1981 through spring 1982; only
Repellent properties of the host compound 4-allylanisole to the southern pine beetle
Jane Leslie Hayes; Brian L. Strom; Larry M. Roton; Leonard L. Ingram
1994-01-01
The phenylpropanoid 4-allylanisole is a compound produced by loblolly pines (Pinus taeda L.), an abundant species in southern pine forests and a preferred host of southern pine beetle (Dendroctonus frontalis Zimmermann).Repellency of individual beetles was demonstrated in laboratory behavioral assays of D. frontalis and other scolytids.Inhibition was...
Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron
2008-01-01
In the ponderosa pine forests of the northern Front Range of Colorado, downed woody debris amounts, fuel arrangement, and stand characteristics were assessed in areas infested with southwestern dwarf mistletoe (Arceuthobium vaginatum subsp. cryptopodum), mountain pine beetle (Dendroctonus ponderosae) and
Use of Chemicals for Prevention and Control of Southern Pine Beetle Infestations
Ronald F. Billings
2011-01-01
The southern pine beetle (SPB) is a major threat to pine forests in the Southeastern United States, Mexico, and Central America. In concert with one or more species of southern pine engraver beetles, SPB also may attack and kill pines in residential, recreational, or urban settings. Different control strategies and tactics have been used over the years to try to...
Richard Cutler; Leslie Brown; James Powell; Barbara Bentz; Adele Cutler
2003-01-01
Mountain pine beetles (Dendroctonus ponderosae Hopkins) are a pest indigenous to the pine forests of the western United States. Capable of exponential population growth, mountain pine beetles can destroy thousands of acres of trees in a short period of time. The research reported here is part of a larger project to demonstrate the application of, and evaluate,...
Jennifer Klutsch; Nadir Erbilgin
2012-01-01
In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...
Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li
2014-01-01
Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....
Elizabeth A. Matseur
2017-01-01
Natural disturbances, such as wildfire and mountain pine beetle (Dentroctonus ponderosae, hereafter MPB) infestations, are two sources of large-scale disturbance that can significantly alter forest structure in the Black Hills. The Black Hills has recently experienced one of the largest MPB outbreaks in the last 100 years, along with varying levels of wildfires...
Losses of red-cockaded woodpecker cavity trees to southern pine beetles
Richard N. Conner; D. Craig Rudolph
1995-01-01
Over an 1 l-year period (1983-1993), we examined the southern pine beetle (Dendroctonus frontalis) infestation rate of single Red-cockaded Woodpecker (Picoides borealis) cavity trees on the Angelina National Forest in Texas. Southern pine beetles infested and killed 38 cavity trees during this period. Typically, within each cavity tree cluster, beetles infested only...
The Mexican pine beetle (Dendroctonus mexicanus), our "newest" invasive species
Kier D. Klepzig; John C. Moser; B. A. Fitzgibbon
2003-01-01
The Mexican pine beetle, Dendroctonus mexicanus Hopkins (XPB), is recorded here for the first time as a new introduction for the U.S. Individuals of this species are occupying the same logs of Pinus leiophilla and several other pines in the Chiricahua mountains, AZ with the sibling species of XPB, the southern pine beetle,
A Common-Pool Resource Approach to Forest Health: The Case of the Southern Pine Beetle
John Schelhas; Joseph Molnar
2012-01-01
The southern pine beetle, Dendroctonus frontalis, is a major threat to pine forest health in the South, and is expected to play an increasingly important role in the future of the Southâs pine forests (Ward and Mistretta 2002). Once a forest stand is infected with southern pine beetle (SPB), elimination and isolation of the infested and immediately...
NASA Astrophysics Data System (ADS)
Sivanpillai, R.; Ewers, B. E.; Speckman, H. N.; Miller, S. N.
2015-12-01
In the Western United States, more than 3 million hectares of lodgepole pine forests have been impacted by the Mountain pine beetle outbreak, while another 166,000 hectares of spruce-fir forests have been attacked by Spruce beetle. Following the beetle attack, the trees lose their hydraulic conductivity thus altering their carbon and water fluxes. These trees go through various stages of stress until mortality, described by color changes in their needles prior to losing them. Modeling the impact of these vegetation types require thematically precise land cover data that distinguishes lodgepole pine and spruce-fir forests along with the stage of impact since the ecosystem fluxes are different for these two systems. However, the national and regional-scale land cover datasets derived from remotely sensed data do not have this required thematic precision. We evaluated the feasibility of multispectral data collected by Landsat 8 to distinguish lodgepole pine and spruce fir, and subsequently model the different stages of attack using field data collected in Medicine Bow National Forest (Wyoming, USA). Operational Land Imager, onboard Landsat 8 has more spectral bands and higher radiometric resolution (12 bit) in comparison to sensors onboard earlier Landsat missions which could improve the ability to distinguish these vegetation types and their stress conditions. In addition to these characteristics, its repeat coverage, rigorous radiometric calibration, wide swath width, and no-cost data provide unique advantages to Landsat data for mapping large geographic areas. Initial results from this study highlight the importance of SWIR bands for distinguishing different levels of stress, and the need for ancillary data for distinguishing species types. Insights gained from this study could lead to the generation of land cover maps with higher thematic precision, and improve the ability to model various ecosystem processes as a result of these infestations.
Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng
2014-01-01
The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.
Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726
Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.
Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow
2008-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...
Christopher J. Fettig
2005-01-01
The western pine beetle, Dendroctonus brevicomis LeConte, is a major cause of ponderosa pine, Pinus ponderosa Dougl. Ex Laws., mortality in the western USA and particularly in California. Under certain conditions, the beetle can aggressively attack and kill apparently healthy trees of all ages and size classes. The average loss is...
Nancy E. Gillette; E. Matthew Hansen; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; Nadir Erbilgin; David L. Wood
2012-01-01
DISRUPT Micro-Flake Verbenone Bark Beetle Anti-Aggregant flakes (Hercon Environmental, Inc., Emigsville, Pennsylvania) were applied in two large-scale tests to assess their efficacy for protecting whitebark pine Pinus albicaulis Engelm. from attack by mountain pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytinae) (MPB). At two locations, five...
Michael I. Haverty; Patrick J. Shea; John M. Wenz
1996-01-01
The effectiveness of registered application rates of the insecticide metasystox-R applied with Mauget tree injectors (INJECT-A-CIDE) was assessed in two strategies: (1) treatment of trees before western pine beetle attack (preventive treatment), and (2) treatment of trees after attack by western pine beetle (remedial treatment) for protection of individual, high-value...
Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes
NASA Astrophysics Data System (ADS)
Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert
2018-01-01
Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater confidence in measurements for all dynamic disturbances.
Field test of lindane against overwintering broods of the western pine beetle
Robert L. Lyon; Kenneth M. Swain
1968-01-01
The insecticide lindane, applied on bark any time of the year, can effectively destroy broods of the western pine beetle. It may also be effective the year round on the mountain pine beetle, the California five-spined ips, and probably other California species of bark beetles. In tests on the Sierra National Forest, lindane sprays formulated at 1.5 percent...
John C. Moser; B. Kielczewski; J. Wisniewski; S. Balazy
1978-01-01
Populations of Pyemotes dryas (Vitzthum 1923) from Poland were bioassayed for potential use in the biological control of the southern pine beetle in the United States. The mite apparently rides and attacks a wide range of European bark beetles that attack conifers and readily consumes brood of the southern pine beetle. However, it is not phoretic on...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-1 Definitions. Administrator... free of pine shoot beetle and may be moved interstate to any destination. Compliance agreement. A... of the pine shoot beetle or the existence of circumstances that make it reasonable to believe that...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-1 Definitions. Administrator... free of pine shoot beetle and may be moved interstate to any destination. Compliance agreement. A... of the pine shoot beetle or the existence of circumstances that make it reasonable to believe that...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-1 Definitions. Administrator... free of pine shoot beetle and may be moved interstate to any destination. Compliance agreement. A... of the pine shoot beetle or the existence of circumstances that make it reasonable to believe that...
Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir
2016-09-01
Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.
A Simple Rearing Technique for Obtaining Eggs or Young Larvae of the Southern Pine Beetle
Edgar W. Clark
1965-01-01
In two earlier notes we described techniques that utilized pine bolts for rearing the southern pine beetle (Dendroctonus frontalis Zimm. ) and the coarse writing engraver (Ips calligraphus Germ. ) (Clark and Osgood 1964a, 1964b). This note presents ample technique for maintaining a constant, easily accessible source of southern pine beetle eggs or larvae. It is a...
W. Matt Jolly; Russell A. Parsons; Ann M. Hadlow; Greg M. Cohn; Sara S. McAllister; John B. Popp; Robert M. Hubbard; Jose F. Negron
2012-01-01
Very little is known about how foliar moisture and chemistry change after a mountain pine beetle attack and even less is known about how these intrinsic foliar characteristics alter foliage ignitability. Here, we examine the fuel characteristics and ignition potential of Pinus contorta (lodgepole pine) foliage during the early stages of a mountain pine beetle attack....
Jenny C. Staeben; Brian Sullivan; John T. Nowak; Kamal J.K. Gandhi
2015-01-01
Multi-trophic interactions between pine bark beetles, their host trees, and predators are mediated in part by volatile terpenes in host tree oleoresin that can influence aggregation and/or host finding by both prey and predator species. The southern pine beetle, Dendroctonus frontalis Zimmermann, mass-attacks pine trees in response to its aggregation pheromone combined...
Brian Sullivan
2016-01-01
The southern pine beetle, Dendroctonus frontalis Zimmermann is generally considered to be one of the most significant biotic mortality agents of pines within North America, with a range stretching from New England to eastern Texas and from Arizona south to Nicaragua. As with other aggressive pine beetles, it relies on semiochemicals for coordinating the mass attacks...
Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)
Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford
1995-01-01
Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...
Naturally Occurring Compound Can Protect Pines from the Southern Pine Beetle
B.L. Strom; R.A. Goyer; J.L. Hayes
1995-01-01
The southern pine beetle (SPB), Dendroctonus frontalis, is the most destructive insect pest of southern pine forests. This tiny insect, smaller than a grain of rice, is responsible for killing pine timber worth millions of dollars on a periodic basis in Louisiana.
Competitive interactions among symbiotic fungi of the southern pine beetle
Kier D. Klepzig; Richard T. Wilkens
1997-01-01
The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi.Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle.A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (...
Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir
2018-02-01
Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.
Use of acoustics to deter bark beetles from entering tree material.
Aflitto, Nicholas C; Hofstetter, Richard W
2014-12-01
Acoustic technology is a potential tool to protect wood materials and eventually live trees from colonization by bark beetles. Bark beetles such as the southern pine beetle Dendroctonus frontalis, western pine beetle D. brevicomis and pine engraver Ips pini (Coleoptera: Curculionidae) use chemical and acoustic cues to communicate and to locate potential mates and host trees. In this study, the efficacy of sound treatments on D. frontalis, D. brevicomis and I. pini entry into tree materials was tested. Acoustic treatments significantly influenced whether beetles entered pine logs in the laboratory. Playback of artificial sounds reduced D. brevicomis entry into logs, and playback of stress call sounds reduced D. frontalis entry into logs. Sound treatments had no effect on I. pini entry into logs. The reduction in bark beetle entry into logs using particular acoustic treatments indicates that sound could be used as a viable management tool. © 2013 Society of Chemical Industry.
Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae
Jacques Regniere; Barbara Bentz
2007-01-01
Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...
Evaluation of traps used to monitor southern pine beetle aerial populations and sex ratios
James T. Cronin; Jane L. Hayes; Peter Turchin
2000-01-01
Various kinds of traps have been employed to monitor and forecast population trends of the southern pine beetle (Dendroctonus frontalis Zimmermann; Coleoptera: Scolytidae), but their accuracy in assessing pine-beetle abundance and sex ratio in the field has not been evaluated directly.In trus study, we...
The mountain pine beetle and whitebark pine waltz: Has the music changed?
Barbara J. Bentz; Greta Schen-Langenheim
2007-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...
Fire-injured ponderosa pine provide a pulsed resource for bark beetles
Ryan S. Davis; Sharon Hood; Barbara J. Bentz
2012-01-01
Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine...
Natural History of the Southern Pine Beetle
Fred P. Hain; Adrian J. Duehl; Micah J. Gardner; Thomas L. Payne
2011-01-01
The southern pine beetle (SPB) is a tree killer of southern yellow pines. All life stagesâeggs, larvae, pupae, and adultsâinfest the inner bark or phloem tissue of the host tree. Adult beetles overcome the treeâs defenses through a mass-attack phenomenon. They are attracted to the tree by a pheromone system consisting of volatiles produced by the beetles and the host....
Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.
Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A
2008-08-01
Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.
T. A. Eager; C. W. Berisford; M. J. Dalusky; D. G. Nielsen; J. W. Brewer; S. J. Hilty; R. A. Haack
2004-01-01
The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest that has become established in North America. Discovered in Ohio in 1992, it has since been found in at least 13 states and parts of Canada. The beetle can cause signiÃcant growth loss in pines, and it represents a potential threat to trees in areas where it has not yet become...
M. Forbes Boyle; Roy L. Hedden; Thomas A. Waldrop
2004-01-01
The southern pine beetle ( Dendroctonus frontalis Zimm.) is considered one of the most aggressive insect pests in the Southern United States. Resistance to southern pine beetle infestations in southern pines depends largely on oleoresin flow rate and total flow. Treatments, such as prescribed fire and thinning, can be used to reduce stand infestation susceptibil-ity by...
A continuous mass-rearing technique for the southern pine beetle (Coleoptera: Scolytidae)
J. Robert Bridges; John C. Moser
1983-01-01
Studying the southern pine beetle (SPB), Dendroctonus frontalis zimmermann, during endemic periods is difficult because beetle-infested trees are often hard to locate. This is especially true during the winter months. Studies that require a continuous supply of beetles are often jeopardized by a lack of beetles. During our studies of the...
Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir
2015-06-01
The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.
C.J. Fettig; A.S. Munson; C.I. Jorgenson; D.M. and Grosman
2010-01-01
Bark beetles (Coleoptera: C~rculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S. Most species feed on the phloem and cambium, or xylem tissue of woody plants; and a few are recognized as the most destructive of all forest insect pests. The last decade has seen elevated levels of bark beetle caused...
Antiserum Preparation For Immunodiffusion In Southern Pine Beetle Predation Studies
M.C. Miller; W. Adrian Chappell; William C. Gamble; J. Robert Bridges
1978-01-01
An anti-adult southern pine beetle serum was produced by subcutaneous injection of rabbits with southern pine beetle (SPB) adult antigen. Initial tests demonstrated the ability of the anti-adult SPB serum to detect adult SPB antigen in the body of the adult predator, Thanasimus dubius (F.). Cross reactivity was found between the anti-adult serum...
Diesel fuel oil for increasing mountain pine beetle mortality in felled logs
S. A. Mata; J. M. Schmid; D. A. Leatherman
2002-01-01
Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....
Estimating the probability of mountain pine beetle red-attack damage
Michael A Wulder; J. C. White; Barbara J Bentz; M. F. Alvarez; N. C. Coops
2006-01-01
Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these...
Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn
2011-01-01
This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...
Orthotomicus erosus: A new pine-infesting bark beetle in the United States
Robert A. Haack
2004-01-01
Established populations of yet another new exotic beetle (Scolytidae) were discovered in the United States in 2004: Othotomicus erosus. This Eurasian bark beetle, commonly called the Mediterranean pine engraver, is native to the pine (Pinus)growing areas of Europe, northern Africa, and Asia. It has also been introduced to Chile, Fiji, South Africa, and Swaziland....
O. Pechanova; W.D. Stone; W. Monroe; T.E. Nebeker; K.D. Klepzig; C. Yuceer
2008-01-01
The southern pine beetle ( Dendroctonus frontalis Zimmermann) kills all pines within its range and is among the most important forest pest species in the US. Using a specialized mycangium surrounded by gland cells in the pronotum, adult females culture, transport, and inoculate two fungi into beetle galleries during oviposition. These...
Scramble competition in the southern pine beetle, Dendroctonus frontalis
John D. Reeve; Douglas J. Rhodes; Peter Turchin
1998-01-01
1. The nature of intraspecific competition was investigated in the southern pine beetle, Dendroctonus frontalis, a highly destructive pest of pine forests in the southern U.S.A.Date were analyzed from an observation study of naturally-attacked trees, and from field experiments where attack density was manipulated by adding different numbers of beetles to caged trees....
Nadir Erbilgin; Nancy E. Gillette; Donald R. Owen; Sylvia R. Mori; Andrew S. Nelson; Fabian C.C. Uzoh; David L. Wood
2008-01-01
The western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae) is one of the most damaging insect pests of ponderosa pines Pinus ponderosa Douglas ex P. & C. Lawson in Western U.S.A. We compared the effect of verbenone, a well known bark beetle anti-aggregation pheromone, with that...
Robert A. Haack; Daniel Kucera; Steven Passoa
1993-01-01
The common (or larger) pine shoot beetle, Tomicus (=Blastophagus) piniperda (L.), was discovered near Cleveland, Ohio in July 1992. As of this writing, it is now in six states: Illinois, Indiana, Michigan, New York, Ohio, and Pennsylvania. Adults of the common pine shoot beetle are cylindrical and range from 3 to 5 mm in length (about the size of a match head). Their...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amman, G.D.; Ryan, K.C.
The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the basal circumference of lodgepole pines. When the peat moss was ignited, it simulated the smoldering of natural duff, generating temperatures that killed the cambium. The four treatments tested were uninjured tree, heat-injured tree, heat-injured tree treated with verbenone, and heat-injured tree treated with verbenone plus ipsdienol. Treatments were replicated 20 times. Mountain pine beetles weremore » attracted into treatment blocks by placing mountain pine beetle tree baits on metal posts 3 to 5 meters from treated trees. Fisher's Extract Test showed that treatment and beetle infestation were not independent (P < 0.015). Check treatments contained more unattacked and mass-attacked trees, whereas pheromone treatments contained more unsuccessfully attacked trees.« less
Fraser, Jordie D; Bonnett, Tiffany R; Keeling, Christopher I; Huber, Dezene P W
2017-01-01
Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.
J.-P. Berrill; C.M. Dagley
2010-01-01
A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...
Therese M. Poland; J. H. Borden; A. J. Stock; L. J. Chong
1998-01-01
We tested the hypothesis that green leaf volatiles (GLVs) disrupt the response of spruce beetles, Dendroctonus rufipennis Kirby, and western pine beetles, Dendroctonus brevicomis LeConte, to attraetant-baited traps. Two green leaf aldehydes, hexanal and (E)-2-hexenal, reduced the number of spruce beetles captured...
Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, José F.
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire.
Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, Jose F.
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire. PMID:28777802
Kier D. Klepzig
1998-01-01
A colorless isolate of O. piliferum was paired in a series of competitive interactions with three fungal symbionts of Dendroctonus frontalis, the southern pine beetle. Two of these fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are considered to be mutualists of the southern pine beetle.The third fungal symbiont, O. minus, is considered to be an...
A trial of direct control of pine engraver beetles on a small logging unit
W. L. Jackson
1960-01-01
Laboratory tests and small-scale field trials have shown the insecticide lindane to be highly toxic to pine engraver beetles. On the basis of that information, the insecticide was applied to fresh logging slash heavily infested with pine engraver beetles at Challenge Experimental Forest in 1959. Costs were reasonable and no insurmountable problems were encountered....
Derek W. Rosenberger; Robert C. Venette; Mitchell P. Maddox; Brian H. Aukema; Gadi V.P. Reddy
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine...
Cetin Yuceer; Chuan-Yu Hsu; Nadir Erbilgin; Kier D. Klepzig
2011-01-01
The southern pine beetle (SPB) (Dendroctonus frontalis Zimmermann) is the most economically important pest of southern pine forests. Beetles carry fungal cells within specialised cuticular structures, called mycangia. Little is known about the mycangia ultrastructure or function. We used cryo-fracturing and scanning electron microscopy to examine the ultrastructural...
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2010-01-01
Limber Pine (Pinus flexilis) populations in the southern Rock Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pineâs critical role these high elevation ecosystems heightens the importance of mitigating impacts. To develop forest-scale planting methods six seedling planting trial sites were installed...
Identifying ponderosa pines infested with mountain pine beetles
William F. McCambridge
1974-01-01
Trees successfully and unsuccessfully attacked by mountain pine beetles have several symptoms in common, so that proper diagnosis is not always easy. Guidelines presented here enable the observer to correctly distinguish nearly all attacked trees.
Tomicus piniperda (Coleoptera: Scolytidae) Emergence in Relation to Burial Depth of Brood Logs
Robert A. Haack; Toby R. Petrice; Therese M. Poland
2000-01-01
The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest of pines, Pinus spp., that was first found in the United States in 1992. A federal quarantine currently regulates movement of pine Christmas trees and pine nursery stock from infested to uninfested counties. The current national Pine Shoot Beetle Compliance Management...
Marion Page; Michael I. Haverty; Charles E. Richmond
1985-01-01
The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive insect that attacks lodgepole pine (Pinus contorta Dougl.), a species valued for multiple uses throughout North America. The effective residual life of carbaryl, applied as a 2 percent suspension of Sevimol to the bark of lodgepole pine to prevent...
Influence of seed weight on early development of eastern white pine
M. E., Jr. Demeritt; H. W., Jr. Hocker
1975-01-01
In the Northeast, eastern white pine (Pinus strobus L.) cannot be relied upon to consistently regenerate naturally due to the destruction of the cone crops by the white pine cone beetle (Conopthorus coniperda Schwarz). The white pine cone beetle has been reported to have destroyed the white pine cone crops for nine consecutive...
Effects of available water on growth and competition of southern pine beetle associated fungi
Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers
2004-01-01
Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,
Michael I. Haverty; Patrick J. Shea; James T. Hoffman; John M. Wenz; Kenneth E. Gibson
1998-01-01
The effectiveness of registered and experimental application rates of insecticides esfenvalerate (Asana XL), cyfluthrin (Tempo WP and Tempo 2), and carbaryl (Sevimol and Sevin SL) was assessed for protection of individual high-value lodgepole pines from mountain pine beetles in Montana and ponderosa pines from western pine beetles in Idaho and California. This field...
Distribution of bark beetle attacks after whitebark pine restoration treatments: A case study
Kristen M. Waring; Diana L. Six
2005-01-01
Whitebark pine (Pinus albicaulis Engelm.), an important component of high elevation ecosystems in the western United States and Canada, is declining due to fire exclusion, white pine blister rust (Cronartium ribicola J.C. Fisch.), and mountain pine beetle (Dendroctonus ponderosae Hopkins). This study was...
Forcing attacks of western pine beetles to test resistance of pines
Richard H. Smith
1967-01-01
Success--defined as oviposition or tree-killing--was obtained by attracting western pine beetles to groups of pines with natural attractants and by en-massed forced attacks on individual trees combined with either physical or biological stress. Preliminary results show considerable agreement with laboratory tests of vapor toxicity.
Oleoresin characteristics of progeny of loblolly pines that escaped attack by southern pine beetle
B.L. Strom; R.A. Goyer; L.L. Ingram; G.D.L. Boyd; L.H. Lott
2002-01-01
Oleoresin characteristics of first-generation (F1) progeny of loblolly pines (Pinus taeda L.) that escaped mortality from the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), despite heavy mortality of neighbors, were evaluated and compared to trees from a general (i.e., trees...
Derek W. Rosenberger; Brian H. Aukema; Robert C. Venette
2017-01-01
Novel hosts may have unforeseen impacts on herbivore life history traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a tree-killing bark beetle native to western North America but constrained by cold temperatures in the northern limits of its distribution. In recent years, this insect has spread north and east of its historical...
Limited response of ponderosa pine bole defenses to wounding and fungi.
Gaylord, Monica L; Hofstetter, Richard W; Kolb, Thomas E; Wagner, Michael R
2011-04-01
Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.
Ylioja, T.; Slone, D.H.; Ayres, M.P.
2005-01-01
The impacts on forests of tree-killing bark beetles can depend on the species composition of potential host trees. Host susceptibility might be an intrinsic property of tree species, or it might depend on spatial patterning of alternative host species. We compared the susceptibility of loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) to southern pine beetle (Dendroctonus frontalis) at two hierarchical levels of geographic scale: within beetle infestations in heterospecific stands (extent ranging from 0.28 to 0.65 ha), and across a forest landscape (extent 72,500 ha) that was dominated by monospecific stands. In the former, beetles preferentially attacked Virginia pine (tree mortality = 65-100% in Virginia pine versus 0-66% in loblolly pine), but in the latter, loblolly stands were more susceptible than Virginia stands. This hierarchical transition in host susceptibility was predicted from knowledge of (1) a behavioral preference of beetles for attacking loblolly versus Virginia pine, (2) a negative correlation between preference and performance, and (3) a mismatch in the domain of scale between demographics and host selection by individuals. There is value for forest management in understanding the processes that can produce hierarchical transitions in ecological patterns. Copyright ?? 2005 by the Society of American Foresters.
Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
2012-01-01
Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...
Attractants for longhorn beetles in the southeastern U.S. - pine volatiles and engraver pheromones
Daniel R. Miller; Chris Asaro; Christopher M. Crowe; James R. Meeker; Donald A. Duerr
2011-01-01
Our objective was to determine the effect of adding the binary combination of pine engraver pheromones, ipsenol and ipsdienol, to the binary combination of pine volatiles, ethanol and ()-α-pinene, on catches of some common pine longhorn beetles (Cerambycidae) in the southeastern U.S. Six trapping experiments were conducted in stands of mature pine in...
Are high elevation pines equally vulnerable to climate change-induced mountain pine beetle attack?
Barbara J. Bentz; Erika L. Eidson
2016-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB), a native insect to western North America, caused extensive tree mortality in pine ecosystems during a recent warm and dry period. More than 24 million acres were affected, including in the relatively low elevation lodgepole (Pinus contorta) and ponderosa (P. ponderosa) pines, and the high-elevation whitebark (P....
Predictors of southern pine beetle flight activity
John C. Moser; T.R. Dell
1979-01-01
An equation based on weather data explained differences in capture counts of pine bark beetles trapped twice weekly for an entire year at a single infestation and contributed to the udnerstanding of some aspects of beetle dynamics. The proportion of the beetles that reached the traps increased with maximum temperature and decreased with heavy rain. Production of adults...
Dose-dependent pheromone responses of mountain pine beetle in stands of lodgepole pine
Daniel R. Miller; B. Staffan Lindgren; John H. Borden
2005-01-01
We conducted seven behavioral choice tests with Lindgren multiple-funnel traps in stands of mature lodgepole pine in British Columbia, from 1988 to 1994, to determine the dosedependent responses of the mountain pine beetle, Dendroctonus ponderosae Hopkins, to its pheromones. Amultifunctional dose-dependent response was exhibited by D. ...
Insects of whitebark pine with emphasis on mountain pine beetle
Dale L. Bartos; Kenneth E. Gibson
1990-01-01
Few insects that live on whitebark pine (Pinus albicaulis) are considered pests or potential pests. Those that inhabit cones can cause reductions in reproduction of the tree by destroying seed crops. Decreases in food for animals ranging from squirrels to grizzly bears may also result. A single insect species, mountain pine beetle (Dendroctonus...
C.J. Fettig; S.R. McKelvey; R.R. Borys; C.P Dabney; S.M. Hamud; L.J. Nelson; S.J. Seybold
2009-01-01
The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae: Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Dougl. ex Laws., mortality in much of western North America. Currently, techniques for managing D. brevicomis infestations are limited. Verbenone (4,6,6-...
T.W. Coleman; Alton Martin; J.R. Meeker
2010-01-01
We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...
John Nowak; Kier Klepzig; D R Coyle; William Carothers; Kamal J K Gandhi
2015-01-01
EXCERPT FROM: Natural Disturbances and Historic Range Variation 2015. The southern pine beetle (SPB) is a major disturbance in pine forests throughout the range of southern yellow pines, and is a significant influence on forests throughout several Central Hardwood Region (CHR) ecoregions...
Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils
Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu
2014-01-01
The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...
Predictions of southern pine beetle populations using a forest ecosystem model
S.G. McNulty; P.L. Lorio; M.P. Ayres; J.D. Reeve
1998-01-01
Dendroctonus fiontaiis Zimm. (southern pine beetle (SPB)) has caused over $900 million in damage to pines in the southern United States between 1960 and 1990 (Price et al.. 1992). The damage of SPB to loblolly (Pinus tuedu L.), shortleaf (Pinus echinata Mill.), and pitch (Pinus rigida Mill.) pine has long been...
Mark D. McGregor; Dennis M. Cole
1985-01-01
Provides guidelines for integrating practices for managing mountain pine beetle populations with silvicultural practices for enhancing multiple resource values of lodgepole pine forests. Summarizes published and unpublished technical information and recent research on the ecology of pest and host and presents visual and classification criteria for recognizing...
A race against beetles: Conservation of limber pine
Anna Schoettle; Kelly Burns; Sheryl Costello; Jeff Witcosky; Brian Howell; Jeff Connor
2008-01-01
The Rocky Mountain Research Station, Forest Health Management, Rocky Mountain National Park, Arapaho-Roosevelt National Forest, and the Medicine Bow NF are coordinating efforts to conserve limber pine along the Front Range of the southern Rockies. Mountain pine beetle (MPB) populations are increasing dramatically in the area and killing limber pines in their...
Jose F. Negron; Wayne A. Shepperd; Steve A. Mata; John B. Popp; Lance A. Asherin; Anna W. Schoettle; John M. Schmid; David A. Leatherman
2001-01-01
Three experiments were conducted to evaluate the use of solar radiation for reducing survival of mountain pine beetle populations in infested logs. Ponderosa pine logs were used in experiments 1 and 2 and lodgepole pine logs were used in experiment 3. Experiment 1 comprised three treatments: (1) one-layer solar treatment without plastic sheeting and logs rotated one-...
John Bishir; James Roberds; Brian Strom; Xiaohai Wan
2009-01-01
SPLOB is a computer simulation model for the interaction between loblolly pine (Pinus taeda L.), the economically most important forest crop in the United States, and the southern pine beetle (SPB: Dendroctonus frontalis Zimm.), the major insect pest for this species. The model simulates loblolly pine stands from time of planting...
John C. Moser; J. Robert Bridges
1983-01-01
Southern pine beetles can be reared free of phoretic mites from naturally infested bark if the bark is removed from the tree and air dried. Bark removal does not reduce the number of beetles that emerge. On the average fewer than 1% of the beetles emerging from removed bark carried one or fewer mites, and 85% of the beetles emerging from attacked bard carried one or...
Ken Gibson; Sandy Kegley; Barbara Bentz
2009-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.
R.A. Goyer; G.J. Lenhard; Brian L. Strom
2004-01-01
Insects that rely upon aggressive bark beetles (Coleoptera: Scolytidae) for generating appropriate habitats (natural enemies and associated species) must respond to a variety of stimuli used by bark beetles, including semiochemical and visual cues. In the southeastern US, Ips engraver beetles are non-aggressive bark beetles that exploit both standing...
Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine
James H. Roberds; Brian L. Strom; Fred P. Hain; David P. Gwaze; Steven E. McKeand; Larry H. Lott
2003-01-01
In southern pines of the United States, resistance to attack by southern pine beetle, Dendroctonus frontalis Zimmermann, is believed to principally involve flow of oleoresin to beetle attack sites. Both environmental and genetic factors are known to affect the quantity of oleoresin flow in loblolly pine, Pinus taeda L., but little...
Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future
Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo
2012-01-01
We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...
Growth-differentiation balance: a basis for understanding southern pine beetle - tree interactions
Peter L. Lorio
1986-01-01
Interrelationships between the southern pine beetle (SPB), Dendroctonus frontalis Zimm.) and its host pines are explained in terms of the growth-differentiation balance concept.A general hypothesis is proposed based on growth-differentiation balance in southern pines (radial growth of stems versus synthesis and yield of oleoresin) and seasonal activity of the SPB based...
Stan D. Wullschleger; Samuel B. McLaughlin; Matthew P. Ayres
2004-01-01
Manual and automated dendrometers, and thermal dissipation probes were used to measure stem increment and sap flow for loblolly pine (Pinus taeda L.) trees attacked by southern pine beetle (Dendroctonus frontalis Zimm.) in east Tennessee, USA. Seasonal-long measurements with manual dendrometers indicated linear increases in stem...
Historic forests and endemic mountain pine beetle and dwarf mistletoe
Jose Negron
2012-01-01
Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...
Insect-induced crystallization of white pine resins. II. white-pine cone beetle
Frank S., Jr. Santamour
1965-01-01
The white-pine cone beetle (Conophthoras coniperda ( Schwarz ) ) can cause extensive damage to cones of eastern white pine (Pinus strobus L.) and can severely hamper natural reproduction of this species (Graber 1964). This insect also will be a potential pest of seed orchards for the production of genetically superior seed if and...
Hui Ye; Robert A. Haack; Toby R. Petrice
2005-01-01
The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic bark beetle in North America that was first found in the Great Lakes region in 1992. We evaluated T. piniperda reproduction and development in one Eurasian pine (Scots pine, Pinus sylvestris L.) and three North American...
Jose F. Negron; Kurt Allen; McMillin. Joel; Henry Burkwhat
2006-01-01
In 2000 and 2002, Verbenone, a compound with anti-aggregation properties for mountain pine beetle, Dendroctonus ponderosae, was tested for reducing attacks by the insect in Ponderosa pine, Pinus ponderosae forests. The verbenone was released to the environment with the use of permeable membranes; the first year with plastic...
Barbara J. Bentz; James A. Powell
2014-01-01
Mountain pine beetle tree colonization typically occurs in July and August, with completion of a generation one (univoltinism) or two (semivoltinism) years later. In a 2012 publication, Mitton and Ferrenberg suggested that climate change resulted in an unprecedented generation between June and September (a summer generation), with a concomitant shift to two...
Biological Control of Southern Pine Beetle
Fred M. Stephen; C. Wayne Berisford
2011-01-01
Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role...
Erbilgin, Nadir; Cale, Jonathan A; Lusebrink, Inka; Najar, Ahmed; Klutsch, Jennifer G; Sherwood, Patrick; Enrico Bonello, Pierluigi; Evenden, Maya L
2017-03-01
Bark beetles are important agents of tree mortality in conifer forests and their interaction with trees is influenced by host defense chemicals, such as monoterpenes and phenolics. Since mountain pine beetle (Dendroctonus ponderosae Hopkins) has expanded its host range from lodgepole pine (Pinus contorta Doug. ex Loud. (var. latifolia Engelm.))-dominated forests to the novel jack pine (Pinus banksiana Lamb.) forests in western Canada, studies investigating the jack pine suitability as a host for this beetle have exclusively focused on monoterpenes, and whether phenolics affect jack pine suitability to mountain pine beetle and its symbiotic fungus Grosmannia clavigera is unknown. We investigated the phenolic and monoterpene composition in phloem and foliage of jack and lodgepole pines, and their subsequent change in response to water deficit and G. clavigera inoculation treatments. In lodgepole pine phloem, water deficit treatment inhibited the accumulation of both the total and richness of phenolics, but had no effect on total monoterpene production or richness. Fungal infection also inhibited the total phenolic production and had no effect on phenolic or monoterpene richness, but increased total monoterpene synthesis by 71%. In jack pine phloem, water deficit treatment reduced phenolic production, but had no effect on phenolic or monoterpene richness or total monoterpenes. Fungal infection did not affect phenolic or monoterpene production. Lesions of both species contained lower phenolics but higher monoterpenes than non-infected phloem in the same tree. In both species, richness of monoterpenes and phenolics was greater in non-infected phloem than in lesions. We conclude that monoterpenes seem to be a critical component of induced defenses against G. clavigera in both jack and lodgepole pines; however, a lack of increased monoterpene response to fungal infection is an important evolutionary factor defining jack pine suitability to the mountain pine beetle invasion in western Canada. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Clow, David W.; Rhoades, Charles; Briggs, Jenny S.; Caldwell, Megan K.; Lewis, William M.
2011-01-01
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO3-">NO3- or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO3-">NO3- and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.
The Mediterranean pine engraver
Jana C. Lee; Sheri L. Smith; Steven J. Seybold
2005-01-01
In May 2004, a new exotic bark beetle for North America was discovered in baited flight traps in Fresno, California during an annual bark beetle and woodborer survey by the California Department of Food and Agriculture. This bark beetle was identified as Orthotomicus erosus (Wollaston), the Mediterranean pine engraver, a well-documented pest of...
Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA
Jose F. Negron; Joel D. McMillin; John A. Anhold; Dave Coulson
2009-01-01
Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine...
Mapping burn severity, pine beetle infestation, and their interaction at the High Park Fire
NASA Astrophysics Data System (ADS)
Stone, Brandon
North America's western forests are experiencing wildfire and mountain pine beetle (MPB) disturbances that are unprecedented in the historic record, but it remains unclear whether and how MPB infestation influences post-infestation fire behavior. The 2012 High Park Fire burned in an area that's estimated to have begun a MPB outbreak cycle within five years before the wildfire, resulting in a landscape in which disturbance interactions can be studied. A first step in studying these interactions is mapping regions of beetle infestation and post-fire disturbance. We implemented an approach for mapping beetle infestation and burn severity using as source data three 5 m resolution RapidEye satellite images (two pre-fire, one post-fire). A two-tiered methodology was developed to overcome the spatial limitations of many classification approaches through explicit analyses at both pixel and plot level. Major land cover classes were photo-interpreted at the plot-level and their spectral signature used to classify 5 m images. A new image was generated at 25 m resolution by tabulating the fraction of coincident 5 m pixels in each cover class. The original photo interpretation was then used to train a second classification using as its source image the new 25 m image. Maps were validated using k-fold analysis of the original photo interpretation, field data collected immediately post-fire, and publicly available classifications. To investigate the influence of pre-fire beetle infestation on burn severity within the High Park Fire, we fit a log-linear model of conditional independence to our thematic maps after controlling for forest cover class and slope aspect. Our analysis revealed a high co-occurrence of severe burning and beetle infestation within high elevation lodgepole pine stands, but did not find statistically significant evidence that infected stands were more likely to burn severely than similar uninfected stands. Through an inspection of the year-to-year changes in the class fraction signatures of pixels classified as MPB infestation, we were able to observe increases in infection extent and intensity in the year before the fire. The resulting maps will help to increase our understanding of the process that contributed to the High Park Fire, and we believe that the novel classification approach will allow for improved characterization of forest disturbances.
Sandra Kegley; Ken Gibson; Nancy Gillette; Jeff Webster; Lee Pederson; Silvia. Mori
2010-01-01
We have long known that the bark beetle-produced pheromone, verbenone (trimethyl-bicyclo-heptenone), can limit damage to pines by scolytid bark beetles (Clarke et al. 1999, Skillen et al. 1997, Syracuse Environmental Research Associates, Inc. 2000). It has also been shown that in some cases the addition of âgreen leaf volatilesâ (GLVs) can increase the efficacy of...
Dale L. Bartos; Gordon D. Booth
1994-01-01
Temperature measurements were made to better understand the role of microclimate on mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), activity as a result of thinning lodgepole pine stands. Sampling was done over 61 days on the north slope of the Unita Mountain Range in northeastern Utah. Principal components analysis was applied to all...
Mapping pine mortality by aerial photography, Umstead State Park, North Carolina
Clarence J. DeMars; Garey W. Slaughter; Lnla E. Greene; John H. Ghent
1982-01-01
In 1975-1976, pine trees killed by the southern pine beetle Dendroctonus frontalis Zimm.) in a 2l70-hectare (5362-acre) area at the William B. Umstead State Park in central North Carolina, were monitored by sequential color infrared aerial photography. From 1973 through summer 1975, beetles in 350 infestation spots killed more than 20,500 pines on...
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...
Timothy B. Harrington; Mingguang Xu; M. Boyd Edwards
2000-01-01
At Murder Creek Research Natural Area, Georgia, USA, we compared structural characteristics of late-successional pine-hardwood stands two to three years after infestation by southern pine beetle (Dendroctonus frontalis Zimmerman) to those of adjacent noninfested stands. Death of up to eight Pinus taeda L. and P. echinata...
Large-scale thinning, ponderosa pine, and mountain pine beetle in the Black Hills, USA
Jose F. Negron; Kurt K. Allen; Angie Ambourn; Blaine Cook; Kenneth Marchand
2017-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB), can cause extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality in the Black Hills of South Dakota and Wyoming, USA. Lower tree densities have been associated with reduced MPB-caused tree mortality, but few studies have reported on large-scale thinning and most data come from small plots that...
Brian Strom; Sheri Smith; D.A. Wakarchuk
2008-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins 1902, is found in pine forests throughout the western U.S., north to northern British Columbia and Alberta, Canada and south to Mexico. It causes high levels of pine mortality throughout its range. Hosts include many species of Pinus (Pinaceae); in northern California,
Byron J. Collins; Charles C. Rhoades; Jeffrey Underhill; Robert M. Hubbard
2010-01-01
The extent and severity of overstory lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) mortality from mountain pine beetle (Dendroctonus ponderosae Hopkins) has created management concerns associated with forest regeneration, wildfire risk, human safety, and scenic, wildlife, and watershed resources in western North America. Owing to the unprecedented...
An economic assessment of mountain pine beetle timber salvage in the west
Jeffrey P. Prestemon; Karen L. Abt; Kevin M. Potter; Frank H. Koch
2013-01-01
The mountain pine beetle has killed lodgepole pine and other species of pines in the western United States in an ongoing epidemic. The most heavily affected states are in the interior West: Colorado, Idaho, Montana, and Wyoming, with smaller losses elsewhere. Timber salvage is one response to the epidemic, which could generate revenues for affected landowners and...
Richard N. Conner; Daniel Saenz; D. Craig Rudolph; Robert N. Coulson
1998-01-01
Southern pine beetle (Dendroctonus frontalis) infestation is the major cause of mortality for red-cockaded woodpecker (Picoides borealis) cavity trees in loblolly (Pinus taeda) and shortleaf (P. echinata) pines. Recent intensive management for red-cockaded woodpeckers includes the use of artificial cavity inserts. Between 1991 and 1996 the authors examined southern...
Preparation of Fe-cored carbon nanomaterials from mountain pine beetle-killed pine wood
Sung Phil Mun; Zhiyong Cai; Jilei Zhang
2015-01-01
The mountain pine beetle-killed lodgepole pine (Pinus contorta) wood treated with iron (III) nitrate solution was used for the preparation of Fe-cored carbon nanomaterials (Fe-CNs) under various carbonization temperatures. The carbonization yield of Fe-treated sample (5% as Fe) was always 1â3% higher (after ash compensation) than that of the non-...
J. C. Vandygriff; E. Hansen; Barbara Bentz; K. K. Allen; G. D. Amman; L. A. Rasmussen
2015-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility...
Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage
Wesley G. Page; Michael J. Jenkins; Justin B. Runyon
2012-01-01
During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...
Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya
2014-02-01
Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Brian Strom; J. R. Meeker; J. Bishir; James Roberds; X. Wan
2016-01-01
Pine stand density is a key determinant of damage resulting from attacks by the southern pine beetle (SPB, Dendroctonus frontalis Zimm.). High-density stands of maturing loblolly pine (Pinus taeda L.) are at high risk for losses to SPB, and reducing stand density is the primary tool available to forest managers for preventing and mitigating damage. Field studies are...
John D. Waldron; Robert N. Coulson; David M. Cairns; Charles W. Lafon; Maria D. Tchakerian; Weimin Xi; Kier Klepzig; Andrew Birt
2010-01-01
The southern pine beetle, Dendroctonus frontalis (Zimmerman) (Coleoptera: Curculionidae: Scolytinae) (SPB), is an indigenous invasive species that infests and causes mortality to pines (Pinus spp.) throughout the Southern United States. The hemlock woolly adelgid, Adelges tsugae (Annand) (Homoptera:...
Trapping western pine beetles with baited toxic trees
Richard H. Smith
1985-01-01
Baited toxic trap trees—trunks of living trees sprayed with an insecticide and then baited with an attractive substance—were tested in California to kill western pine beetles attacking ponderosa pine. The attractant was the triplet pheromone mixture of brevicomin, frontalin, and myrcene. Insecticides were lindane, Sevin, permethrin, and deltamethrin...
Mutualists and Phoronts of the Southern Pine Beetle
Richard W. Hofstetter
2011-01-01
The large numbers of invertebrates and microbes that exist only within dying and decayed pines killed by the southern pine beetle (SPB) make this system ideal for the study of species interactions, including mutualism and phorecy. The associated organisms comprise an entire functioning community that includes fungivores, herbivores, detritovores, scavengers,...
R. Justin DeRose; James N. Long
2012-01-01
Host conditions are known to influence spruce beetle population levels, but whether they influence the spatial and temporal patterns of beetle-caused mortality during an outbreak is unknown. Using dendrochronological techniques, we quantified the spatiotemporal dynamics of a modern (late 1980s through the early 2000s) spruce beetle outbreak in Engelmann spruce on the...
Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi
Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig
2009-01-01
In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....
G.D. Hertel; H. N. Wallace
1983-01-01
Effects of the cut-and-leave and cut-and-top treatments on within-tree populations of the southern pine beetle were evaluated in seven active infestations in central Louisiana. Beetle populations were significantly reduced only in December by felling freshly attacked trees.
Christopher J. Allender; Karen M. Clancy; Tom E. DeGomez; Joel D. McMillin; Scott A. Woolbright; Paul Keim; David M. Wagner
2008-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) play an important role as disturbance agents in ponderosa pine (Pinus ponderosa Douglas ex Lawson) forests of Arizona. However, from 2001 to 2003, elevated bark beetle activity caused unprecedented levels of ponderosa pine mortality. A better understanding of the population structure of these...
NASA Astrophysics Data System (ADS)
Wehner, Christine E.; Stednick, John D.
2017-09-01
Natural or human-influenced disturbances are important to the health and diversity of forests, which in turn, are important to the water quantity and quality exported from a catchment. However, human-induced disturbances (prescribed fire and harvesting) have been decreasing, and natural disturbances (fires and insects) have been increasing in frequency and severity. One such natural disturbance is the mountain pine beetle (MPB), ( Dendroctonus ponderosae) an endemic species. A recent epidemic resulted in the mortality of millions of hectares of lodgepole pine ( Pinus contorta) forests in Colorado, USA. Beetle-induced tree mortality brings about changes to the hydrologic cycle, including decreased transpiration and interception with the loss of canopy cover. This study examined the effect of the mountain pine beetle kill on source water contributions to streamflow in snowmeltdominated headwater catchments using stable isotopes (2H and 18O) as tracers. Study catchments with varying level of beetle-killed forest area (6% to 97%) were sampled for groundwater, surface water, and precipitation. Streams were sampled to assess whether beetle-killed forests have altered source water contributions to streamflow. Groundwater contributions increased with increasing beetle-killed forest area ( p = 0.008). Both rain and snow contributions were negatively correlated with beetle-killed forest area ( p = 0.035 and p = 0.011, respectively). As the beetle-killed forest area increases, so does fractional groundwater contribution to streamflow.
Tania Schoennagel; Thomas T. Veblen; Jose F. Negron; Jeremy M. Smith
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared...
Dale L. Bartos; Kent B. Downing
1989-01-01
A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...
Bugs that eat bugs: biological control research offers hope for southern pine bark beetle management
John C. Moser; Susan J. Branham
1988-01-01
The black turpentine beetle (BTB) is a native pest of pines in the southeastern United States. It is particularly injurious to trees in areas of Georgia and Florida where gum naval stores operations are an important industry. Here, slash pine and longloeaf pine are routinely attacked and killed during tupentine operations. Additionally, the BTB quickly attacks trees...
Jose Negron
1997-01-01
Classification trees and linear regression analysis were used to build models to predict probabilities of infestation and amount of tree mortality in terms of basal area resulting from roundheaded pine beetle, Dendroctonus adjunctus Blandford, activity in ponderosa pine, Pinus ponderosa Laws., in the Sacramento Mountains, New Mexico. Classification trees were built for...
William J. Otrosina; Nolan J. Hess; Stanley J. Zarnoch; Thelma J. Perry; John P. Jones
1997-01-01
Forty paired plots were established from eastern Texas to Alabama to study root-infecting, blue-stain fungi in southern pine stands undergoing southern pine beetle (SPB) attack. Woody roots were sampled in plots undergoing recent or current attack by the SPB. Comparisons were made between occurrence of Lcptogrqhiumspp. and related fungi and data on various...
Protecting whitebark pines through a mountain pine beetle epidemic with verbenone-is it working?
Dana L. Perkins; Carl L. Jorgensen; Matt Rinella
2011-01-01
We initiated a multi-year project to protect individual cone-bearing whitebark pines (Pinus albicaulis) from mountain pine beetle (MPB), Dendroctonus ponderosae (Hopkins), attack with the anti-aggregating pheromone, verbenone (4,5,5-trimethylbicyclo [3.1.1] hept-3-en-2-one). Our objective was to protect trees through the course of the epidemic that began ca. 2000 in...
Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton
2012-01-01
In the Southern Appalachian Mountains of eastern USA, pine-hardwood ecosystems have been severely impacted by the interactions of past land use, fire exclusion, drought, and southern pine beetle (SPB, Dendroctonus frontalis). We examined the effects of restoration treatments: burn only (BURN); cut + burn on dry sites (DC + B); cut + burn on sub-mesic sites (MC + B);...
Xylem monoterpenes of pines: distribution, variation, genetics, function
Richard Smith
2000-01-01
The monoterpenes of about 16,000 xylem resin samples of pine (Pinus) speciesand hybridsâlargely from the western United Statesâwere analyzed in this long-term study of the resistance of pines to attack by bark beetles (Coleoptera:Scolytidae), with special emphasis on resistance to the western pine beetle(Dendroctonus brevicomis). The samples were analyzed by gas liquid...
Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker
2014-01-01
Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.
76 FR 1339 - Pine Shoot Beetle; Additions to Quarantined Areas
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
..., a pest of pine trees, into noninfested areas of the United States. DATES: Effective on January 10... managed and natural stands of pine and especially affects weak and dying trees. The beetle has been found... distorted growth in host trees. Large infestations of PSB typically kill most of the lateral shoots near the...
Clarence J. Jr. DeMars; Bruce H. Roettgering
1982-01-01
The western pine beetle, Dendroctonus brevicomis LeConte, can aggressively attack and kill ponderosa and Coulter pine trees of all ages and vigor classes that are 6 inches (15 cm) or larger in diameter, including apparently healthy trees. Group killing of trees is common in dense, overstocked stands of pure, even-aged, young sawtimber (fig. 1), but also occurs among...
Daniel R. Miller; B. Staffan Lindgren
2000-01-01
Multiple-funnel traps baited with exo-brevicomin and a mixture of cis- and trans-verbenol were used to test the relative attractiveness of myrcene and (-)-a -pinene to the mountain pine beetle, Dendroctonus ponderosae Hopkins, in a stand...
Semiochemical disruption of the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae)
Therese M. Poland; Peter De Groot; Stephen Burke; David Wakarchuk; Robert A. Haack; Reginald Nott
2004-01-01
The pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae), is an exotic pest of pine in North America. We evaluated blends of semiochemical disruptants, which included nonhost volatiles and verbenone, for their ability to disrupt attraction of T. piniperda to traps baited with the attractant α-pinene and to Scots...
Brian T. Sullivan; William P. Shepherd; Deepa S. Pureswarana; Takuya Tashiro; Kenji Mori
2007-01-01
Previous research indicated that the aggregation pheromone of the southern pine beetle, Dendroctonus frontalis, is produced only by females, the sex that initiates attacks. We provide evidence indicating that secondarily arriving males augment mass aggregation by releasing the attractive synergist (+)-endo-brevicomin. Healthy pines artificially...
Price and Welfare Effects of Catastrophic Forest Damage from Southern Pine Beetle Epidemics
Thomas P. Holmes
1991-01-01
Southern pine beetle (Dendroctonus frontalis) epidemics are periodically responsible for catastrophic levels of mortality to southern yellow pine forests. Traditional forest damage appraisal techniques developed for site specific economic analysis are theoretically weak since they do not consider aggregate impacts across ecosystems and related markets. Because the...
Risk Assessment for the Southern Pine Beetle
Andrew Birt
2011-01-01
The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...
Costs of harvesting beetle-killed lodgepole pine in Eastern Oregon.
Peter J. Ince; John W. Henley; John B. Grantham; Douglas L. Hunt
1984-01-01
The cost of harvesting and recovering round wood logs and whole-tree chips from small diameter lodgepole pine (Pinus contorta) infested by mountain pine beetle (Dendroctonus sp.) was studied in the Blue Mountains of eastern Oregon in 1979. Mechanized harvest operations were conducted on six study sites totaling 134 acres. The...
The use of verbenone to protect whitebark pine from mountain pine beetle
Sandra Kegley; Ken Gibson
2011-01-01
Verbenone is a known anti-aggregation pheromone of mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and has been tested in protecting susceptible host trees from attack since 1988. Inconsistent performance of verbenone during field trials caused formulations and release devices to change through time, resulting in three products currently registered with...
Characteristics of endemic-level mountain pine beetle populations in south-central Wyoming
Dale L. Bartos; Richard F. Schmitz
1998-01-01
This study was conducted to evaluate the dynamics of endemic populations of mountain pine beetle (Dendroctonus ponderosae Hopkins). In addition, we extended the geographical range of an existing data base recorded in Utah with similar data from Wyoming. This work was accomplished in lodgepole pine (Pinus contorta Dougl. Var.
Nature of resistance of pines to bark beetles
Robert Z. Callaham
1966-01-01
Patterns of susceptibility of pines to attack by certain species of Dendroctonus bark beetles suggest that a resistance mechanism exists. This situation was first called to my attention in 1949 by John M. Miller, entomologist at the Berkeley Forest Insect Laboratory. He was studying the resistance of pines to insects, at the Institute of Forest...
Field and Laboratory Evaluations of Insecticides for Southern Pine Beetle Control
Felton L. Hastings; Jack E. Coster; [Editors
1981-01-01
Reports results of laboratory screenings and field studies of insecticides for use against the southern pine beetle. Preventive as webas remedial efficacywere observed, along with phytotoxicity to pine and understory hardwood species, effects of insecticides on soil microbial and mesofaunal populations, and degradation of insecticides by selected soil microbes.
NASA Astrophysics Data System (ADS)
Pugh, E. T.; Small, E. E.
2010-12-01
The high-elevation forests that are a primary source for Colorado’s domestic and agricultural water needs are changing rapidly due to an infestation by the mountain pine beetle (MPB). MPB are native to Colorado’s high elevation forests. However, the frequency of MPB infestation and resulting tree death has increased dramatically over the past 15 years. In Colorado, over 8,000 km2 of Lodgepole (Pinus contorta) and Ponderosa Pine (Pinus ponderosa) forest have been infested by MPB since 1996. It is predicted that the current epidemic will kill most of the pines in these areas; MPB are very destructive to forest canopies, often killing all of the overhead trees within lodgepole pine stands. Current widespread MPB outbreaks are not limited to Colorado; they are also impacting forests in much of the Western US and British Columbia, Canada. This study is focused on quantifying the impacts of widespread tree death on Colorado’s mountain snowpack. The data were collected one to three years after beetle infestation, at various stages of tree mortality. During the winters of 2009 and 2010, snowpack and meteorological properties were measured at eight pairs of dead and living lodgepole pine stands. All stands are located at an elevation of 2720 ± 32m, in a subalpine region along the headwaters of the Colorado River. Trees in living stands were generally smaller in diameter and more densely populated than trees in dead stands. In the red phase of tree death, snowpack accumulated equally beneath living and dead tree stands. Additionally, snow under all tree stands became isothermal on the same date regardless of mortality. However, the snow was depleted as much as one week earlier beneath red phase dead stands. Canopy transmission of solar radiation was not consistently different between living and red phase dead stands. We noted more ground litter in red phase dead stands which would decrease snowpack albedo and lead to the snowmelt differences observed. We also performed an albedo experiment to quantify the impact of surface litter on snow albedo. Results are also reported for more advanced grey phase dead stands. Lastly, we present a conceptual model of how the primary snow processes change with time as tree mortality progresses through various stages and introduce future work.
Jordon L. Burke; James L. Hanula; Scott Horn; Jackson P. Audley; Kamal JK. Gandhi
2012-01-01
Tests were conducted on two insecticides (carbaryl and bifenthrin) for excluding subcortical beetles (Coleoptera: Curculionidae and Cerambycidae) from loblolly pine trees (Pinus taeda L.). Two trap designs (single- and double-pane windows) and two trapping heights (1.5 and 4m) were also evaluated for maximizing beetle catches.
D. Czokajlo; B. Hrasovec; M. Pernek; J. Hilszczanski; A. Kolk; S. Teale; J. Wickham; P. Kirsch
2003-01-01
An optimized, patented lure for the larger pine shoot beetle, Tomicus piniperda has been developed and tested in the United States, Poland, and Croatia. Seven different beetle attractants were tested: α-pinene, α-pinene oxide, ethanol, nonanal, myrtenal, myrtenol, and trans-verbenol. α-pinene was tested...
Deepa S. Pureswaran; Richard W. Hofstetter; Brian T. Sullivan; Amanda M. Grady; Cavell Brownie
2016-01-01
When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis...
Peter De Groot; Gary L. DeBarr
2000-01-01
Field studies were conducted in the United States and Canada to determine the response of the white pine cone beetle, Conophthorus coniperda (Schwarz), and the red pine cone beetle, Conophthorus resinosae Hopkins, to two potential inhibitors, conophthorin and verbenone, of pheromone communication. Trap catches of male C....
Stand hazard rating for central Idaho forests
Robert Steele; Ralph E. Williams; Julie C. Weatherby; Elizabeth D. Reinhardt; James T. Hoffman; R. W. Thier
1996-01-01
Growing concern over sustainability of central ldaho forests has created a need to assess the health of forest stands on a relative basis. A stand hazard rating was developed as a composite of 11 individual ratings to compare the health hazards of different stands. The composite rating includes Douglas-fir beetle, mountain pine beetle, western pine beetle, spruce...
C.R. Breece; T.E. Kolb; B.G. Dickson; J.D. McMillin; K.M. Clancey
2008-01-01
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and...
Brian T. Sullivan; Cavell Brownie; JoAnne P. Barrett
2016-01-01
The southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) is attracted to an aggregation pheromone that includes the multifunctional pheromone component endobrevicomin. The effect of endo-brevicomin on attractive lures varies from strong enhancement to reduction of beetle attraction depending upon release rate, lure component...
Andrea Brunelle; Gerald E. Rehfeldt; Barbara Bentz; A. Steven Munson
2008-01-01
Paleoecological reconstructions from two lakes in the U.S. northern Rocky Mountain region of Idaho and Montana revealed the presence of bark beetle elytra and head capsules (cf. Dendroctonus spp., most likely D. ponderosae, mountain pine beetle). Occurrence of these macrofossils during the period of time associated with the 1920/...
Barbara J. Bentz; Jacob P. Duncan; James A. Powell
2016-01-01
Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...
Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles?
William W. Oliver
1995-01-01
Stand density of even-aged stands of ponderosa pine in California seems to be ruled by Dendroctonus bark beetles, rather than the suppressioninduced mortality common for other tree species. Size-density trajectories were plotted for 155 permanent plots in both plantations and natural stands. Bark beetle kills created a limiting Stand Density Index of...
A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich
2016-01-01
Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...
R.A. Progar
2005-01-01
The antiaggregation pheromone verbenone was operationally tested for 5 yr to deter mass attack by the mountain pine beetle on lodgepole pine in campgrounds and administrative areas surrounding Redfish and Little Redfish Lakes at the Sawtooth National Recreation Area in central Idaho. Each year, five-gram verbenone pouches were evenly distributed (-10 m apart) within...
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that...
Mountain pine beetle-killed trees as snags in Black Hills ponderosa pine stands
J. M. Schmid; S. A. Mata; W. C. Schaupp
2009-01-01
Mountain pine beetle-killed ponderosa pine trees in three stands of different stocking levels near Bear Mountain in the Black Hills National Forest were surveyed over a 5-year period to determine how long they persisted as unbroken snags. Rate of breakage varied during the first 5 years after MPB infestation: only one tree broke during the first 2 years in the three...
Mountain pine beetle in southwestern white pine in the Pinaleno Mountains
Ann M. Lynch; Christopher D. O' Connor
2013-01-01
Mountain pine beetle has rarely been found in the Madrean Sky Island Archipelago and has not been reported from the Pinaleño Mountains until recently. This insect began killing southwestern white pine in 1996 or earlier, with additional mortality each year since. Activity has increased in the last 2 years. The life cycle in the Pinaleños during this time has been...
A dynamical model for bark beetle outbreaks
Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold
2016-01-01
Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...
Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality
NASA Astrophysics Data System (ADS)
Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.
2016-03-01
A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.
Amanda R. Carlson; Jason S. Sibold; Timothy J. Assal; Jose F. Negron
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have...
Embrey, Sally; Remais, Justin V; Hess, Jeremy
2012-05-01
In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation.
Remais, Justin V.; Hess, Jeremy
2012-01-01
In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation. PMID:22420788
Mineral Nutrition, Resin Flow and Phloem Phystochemistry in Loblolly Pine
Jefferey M. Warren; H. Lee Allen; Fitzgerald L. Booker
1999-01-01
Southern pine beetles and associated pathogenic fungi represent the largest biotic threat to pine forests in the southeastern USA. The two primary defensive mechanisms of the tree to the beetle-fungal complex are the primary oleoresin flow and the concentrations of preformed and induced secondary compounds. We compared oleoresin flow and concentrations of phloem...
Therese M. Poland; Peter de Groot; Stephen Burke; David Wakarchuk; Robert A. Haack; Reginald Nott; Taylor Scarr
2003-01-01
1) The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2) Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to...
X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu
2010-01-01
The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....
Ecological Impacts of Southern Pine Beetle
Maria D. Tchakerian; Robert N. Coulson
2011-01-01
The southern pine beetle (SPB) is the most important biotic disturbance in southern pine forests and causes extensive changes to the forest environment. In this chapter we provide an overview of the ecological impacts of the SPB on forest conditions (the state of the forest) and on forest resources (uses and values associated with the forest). We define ecological...
Tom E. DeGomez; Christopher J. Hayes; John A. Anhold; Joel D. McMillin; Karen M. Clancy; Paul P. Bosu
2006-01-01
Insecticides that might protect pine trees from attack by engraver beetles (Ips spp.) have not been rigorously tested in the southwestern United States. We conducted two field experiments to evaluate the efficacy of several currently and potentially labeled preventative insecticides for protecting high-value ponderosa pine, Pinus ponderosa...
Pest Fact Sheet 2007: Southern Pine Beetle prevention initiative: Working for healthier forests
R-8 and Southern Research Station U.S. Department of Agriculture Forest Service Forest Health Protection
2007-01-01
From 1999 to 2003, southern pine beetle (SPB) caused unprecedented damage to pine forests in southern Appalachian mountains. These losses severely impacted the natural resource base that supports the South's tourism and wood-based manufacturing industries and also destroyed the habitat of threatened and endangered species, such as the red-cockaded woodpecker....
Kier D. Klepzig; Charles H. Walkinshaw
2003-01-01
We inoculated loblolly pines with bark beetle-associated fungi and a fungal cell wall component, chitosan, known to induce responses in some pines and many other plants. Trees in Florida were inoculated with Leptographium procerum, L. terebrantis, Ophiostoma minus, or chitosan. Trees in Louisiana were inoculated with O. minus,...
Controlling the Southern Pine Beetle: Small Landowner Perceptions and Practices
Joseph J. Molnar; John Schelhas; Carrie Holeski
2003-01-01
The southern pine beetle, Dendroctonus frontalis (Zimmermann) (Coleoptera: Scolytidae) is one of the most serious threats to pine forest health in the South (4,24,29,30). Once a forest stand is infested, there are few options for immediate elimination and isolation of infested trees. The most effective approach to preventing losses from the southern...
Airborne Detection of Southern Pine Beetle Damage Using Key Spectral Bands
Gregory A. Carter; Michael R. Seal; Tim Haley
1998-01-01
Damage by the southern pine beetle(SPB) (Dendroctonus frontalis Zimm.) occurs frequently in the southeastern United States and can result in tree death over large areas. A new technique for detection of SPB activity was tested for shortleaf pine (Pinus echinata Mill.) in the Caney Creek Wilderness, Ouachita National Forest, Arkansas. Digital images...
J.L. Hayes; L.L. Ingram; B.L. Strom; L.M. Roton; M.W. Boyette; M.T. Walsh
1994-01-01
Gas chromatography/mass spectometry analysis of resin collected before and after injections of loblolly pines (Pinus taeda L.) with a fungicide mixture known to make pines more "attractive" to southern pine beetle, Dendroctonus frontalis Zimm., resulted in the identification of 4-allylanisole as a likely candidate for repellent effects....
Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker
2014-01-01
Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak. PMID:24911056
Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A
2008-08-01
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.
B. J. Bentz; S. Kegley; K. Gibson; R. Their
2005-01-01
The effcacy of verbenone as a stand-level protectant against mountain pine beetle, Dendroctonus ponderosae Hopkins, attacks was tested in lodgepole and whitebark pine stands at five geographically separated sites, including three consecutive years at one site. Forty and 20 high-dose pouches, with a verbenone emission rate up to 50 mg/d per pouch, were spaced in a grid...
Southern Pine Beetle Ecology: Populations within Stands
Matthew P. Ayres; Sharon J. Martinson; Nicholas A. Friedenberg
2011-01-01
Populations of southern pine beetle (SPB) are typically substructured into local aggregations, each with tens of thousands of individual beetles. These aggregations, known as âspotsâ because of their appearance during aerial surveys, are the basic unit for the monitoring and management of SPB populations in forested regions. They typically have a maximum lifespan of 1...
Suppression of Bark Beetles and Protection of Pines in the Urban Environment: A Case Study
Jane Leslie Hayes; James R. Meeker; John L. Foltz; Brian L. Strom
1996-01-01
Southern pine beetles (SPB), and associated bark beetles, have long been recognized as major pests of southern forests. Tactics used for controlling infestations in conventional forest settings have not proven effective at achieving area-wide control, nor are they suitable for the control of infestations in high-value stands such as homesites or wildlife habitat areas...
John C. Moser
1981-01-01
Pyemotes giganticus has the widest phoretic latitude of any known Pyemotes probably riding all scolytids and at least one tenebrionid beetle associate. The female heteromorph is not phoretic. The feeding latitude is narrow; the mite is known to feed only on scolytid eggs, and then reluctantly. Parasitism of a natural host,
Optimal Level of Expenditure to Control the Southern Pine Beetle
Joseph E. de Steiguer; Roy L. Hedden; John M. Pye
1987-01-01
Optimal level of expenditure to control damage to commercial timber stands by the southern pine beetle was determined by models that simulated and analyzed beetle attacks during a typical season for 11 Southern States. At a real discount rate of 4 percent, maximized net benefits for the Southern region are estimated at about $50 million; at 10 percent, more than $30...
John C. Moser
1976-01-01
Sticky traps caught large numbers of mites that adhere tightly or ride in protected places on attacking southern pine beetles and tetreived seom of the mites that are loosely attached. Of the 2539 beetles surveyed, only 39.6% carried mites. Seven species of phoretic mites were found; thw two most common, Tarsonemus krantzi and Trichouropoda...
Peter de Groot; Gary L. DeBarr
1998-01-01
The white pine cone beetle, Conophthorus coniperda, is a serious pest of seed orchards. The sex pheromone (+)-trans-pityol, (2R,5S)-2-(l-hydroxy-1-methylethyl)-S-methyltetrahydrofuran, shows considerable promise to manage the cone beetle populations in seed orchards. Our work confirms that pityol is an effective attractant to...
William Shepherd; Brian Sullivan
2013-01-01
A growing body of evidence suggests that bark beetles detect and avoid release points of volatile compounds associated with nonhost species, and thus such nonhost volatiles may have potential utility in the management of bark beetles. We used a coupled gas chromatograph-electroantennographic detector (GC-EAD) to assay the olfactory sensitivity of the southern pine...
Christopher J. Fettig; A.Steve Munson; Kenneth E. Gibson
2015-01-01
Carbaryl is regarded among the most effective, economically viable, and ecologically-compatible insecticides available for protecting conifers from bark beetle attack in the western United States. Treatments are typically applied in spring prior to initiation of bark beetle flight for that year. We evaluated the efficacy of spring and fall applications for protecting...
Code of Federal Regulations, 2014 CFR
2014-01-01
... DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-4 Conditions governing the interstate movement of... beetle; and (2) The point of origin of the regulated article is indicted on the waybill. (c) With a... permit, which the Administrator has found to be adequate to prevent the spread of the pine shoot beetle...
Code of Federal Regulations, 2013 CFR
2013-01-01
... DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-4 Conditions governing the interstate movement of... beetle; and (2) The point of origin of the regulated article is indicted on the waybill. (c) With a... permit, which the Administrator has found to be adequate to prevent the spread of the pine shoot beetle...
Code of Federal Regulations, 2012 CFR
2012-01-01
... DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-4 Conditions governing the interstate movement of... beetle; and (2) The point of origin of the regulated article is indicted on the waybill. (c) With a... permit, which the Administrator has found to be adequate to prevent the spread of the pine shoot beetle...
Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant
2017-01-01
The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...
Deepa S. Pureswaran; Richard W. Hofstetter; Brian T. Sullivan
2008-01-01
Subtle differences in pheromone components of sympatric species should be attractive only to the producing species and unattractive or repellent to the nonproducing species, and thereby maintain reproductive isolation and reduce competition between species. Bark beetles Dendroctonus brevicomis and D. frontalis (Coleoptera: Curculionidae) are known to...
Preston E. Hunter; John C. Moser
1978-01-01
Adults and nymphal stages of Pseudoparasitus thatcheri n. sp., a mite associated with beetles occurring under bark of southern pine trees in Louisiana are described. Generic placement of the species is discussed
Flight Period of Mountain Pine Beetle (Coleoptera: Curculionidae) in its Recently Expanded Range.
Bleiker, K P; Van Hezewijk, B H
2016-12-01
The ability to predict key phenological events, such as the timing of flight periods, is useful for the monitoring and management of insect pests. We used empirical data to describe the flight period of mountain pine beetle, Dendroctonus ponderosae Hopkins, in its recently expanded range east of the Rocky Mountains in Canada and developed a degree-day model based on the number of trapped beetles. Data were collected over four degrees of latitude and six years. The main flight period, when the middle 70% of the total number of beetles were caught, started during the second or third week of July, lasted 26 d, and peaked within 2 wk of starting. The best model accounted for 89% of the variation in the data. Mountain pine beetle's flight tended to start later and be more contracted at higher latitudes. The synchrony of mountain pine beetle's flight period in the expanded range appears to be comparable to the limited reports from the historic range, although it may start earlier. This suggests that conditions in the new range are suitable for a coordinated dispersal flight, which is critical for the beetle's strategy of overwhelming tree defenses by attacking en masse. Forest managers can use the model to support operational decisions, e.g., when to impose hauling restrictions to reduce the risk of spread through the transport of infested material, or the time frame for control programs. Understanding the flight period may also improve our ability to assess the response of mountain pine beetle to novel and changing climates in the future. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jesse L. Morris; Stuart Cottrell; Chris Fettig; Winslow D. Hansen; Rosemary L. Sherriff; Vachel A. Carter; Jennifer L. Clear; Jessica Clement; R. Justin DeRose; Jeffrey A. Hicke; Philip E. Higuera; Katherine M. Mattor; Alistair W. R. Seddon; Heikki T. Sepp; John D. Stednick; Steven J. Seybold
2016-01-01
1. Recent bark beetle outbreaks in North America and Europe have impacted forested landscapes and the provisioning of critical ecosystem services. The scale and intensity of many recent outbreaks are widely believed to be unprecedented. 2. The effects of bark beetle outbreaks on ecosystems are often measured in terms of area affected, host tree mortality rates, and...
Mite predators of the southern pine beetle
John c. Moser
1975-01-01
Of 51 mites found with brood of the southern pine beetle, Dendroctonus frontalis zimmermann, and tested in the laboratory, four are primary candidates for use as natural control agents in reducing field infestations: Histiogaster arborsignis Woodring, Proctolaelaps dendroctoni Lindquist & Hunter, ...
Interspecific olfactory communication in the southern pine bark beetle guild
T. L. Payne; M. T. Smith; M. C. Birch; A. Ascoli
1991-01-01
The southern pine bark beetle guild consists of many species, the most economically significant of which are the five scolytid species, Dendructonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. avulses (Eichhoff), and I. grandicollis (Eichhoff...
Brian Strom; W.K. Oldland; J.R. Meeker; J. Dunn
2015-01-01
Four general-use insecticides (Astro, Onyx, Dominion Tree & Shrub, and Xytect 2F) were evaluated for their effectiveness at preventing attacks by the southern pine beetle (SPB) (Dendroctonus frontalis) and the small southern pine engraver (Ips avulsus) using a previously developed small-bolt method. Evaluations were conducted between 58 and 126 days post treatment...
Growth of ponderosa pine stands in relation to mountain pine beetle susceptibility
R. A. Obedzinski; J. M. Schmid; S. A. Mata; W. K. Olsen; R. R. Kessler
1999-01-01
Ten-year diameter and basal area growth were determined for partially cut stands at 4 locations. Average diameters in the partially cut plots generally increased by 1 inch or more, while average diameter in the uncut controls increased by 0.9 inches or less. Individual tree growth is discussed in relation to potential susceptibility to mountain pine beetle infestation...
Jennifer Gene Klutsch
2008-01-01
The effect of forest disturbances, such as bark beetles and dwarf mistletoes, on fuel dynamics is important for understanding forest dynamics and heterogeneity. Fuel loads and other fuel parameters were assessed in areas of ponderosa pine (Pinus ponderosa Laws.) infested with southwestern dwarf mistletoe (Arceuthobium vaginatum...
Kristen A. Pelz; Frederick W. Smith
2013-01-01
There has been speculation that quaking aspen (Populus tremuloides) dominance of forests will increase due to mortality caused by mountain pine beetle (Dendroctonus ponderosae) (MPB). High aspen sucker densities have been observed inthe years following MPB-caused pine mortality, but it remains unclear if this disturbance will result in a pulse of aspen...
Peter L. Lorio; Frederick M. Stephen; Timothy D. Paine
1995-01-01
We evaluated the impact of tree resistance on within-tree population dynamics of southern pine beetle, Dendroctonus frontalis Zimm. (Coleoptera: Scolytidae) in loblolly pine, Pinus taeda L., as affected by prevailing water regimes, acute water deficits imposed by applying dry-ice (solid CO2) collars to tree boles, and by the seasonal ontogeny of...
T.M. Poland; P. de Groot; R.A. Haack; D. Czokajlo
2004-01-01
The pine shoot beetle, Tomicus piniperda (L.) (Col., Scolytidae) is an exotic pest of pine, Pinus, spp., in North America. It is attracted strongly to host volatiles (±)-a-pinene, (+)-3-carene, and a-terpinolene. Attraction to insectproduced compounds is less clear. Other potential attractants include trans-verbenol,...
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully...
Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin
2016-01-01
Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriamâs wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...
Paul E. Tilden
1985-01-01
Lindane is registered for remedial control of bark beetles; however, forestry uses are controversial and alternative chemicals are needed. Chlorpyrifos (Dursban 4E), carbaryl (Sevimol 4), and fenitrothion (Sumithion 8E) at 1, 2, and 4 pct active ingredient, and lindane at the registered dosage of 0.6 pct were sprayed on lodgepole pine (Pinus contorta...
New introduction in California: the redhaired pine bark beetle, Hylurgus ligniperda Fabricius
Deguang Liu; Michael J. Bohne; Jana C. Lee; Mary Louise Flint; Richard L. Penrose; Steven J. Seybold
2007-01-01
An overwintering North American population of the redhaired pine bark beetle (RPBB) was first discovered in November 2000 in Rochester, New York. In July 2003 it was also detected at two locations in Los Angeles County, California near heavily urbanized areas where exotic pines of Mediterranean origin are favored landscape trees. California and New York currently have...
B. L. Strom; L. M. Roton
2011-01-01
Insecticide products based on cedar oil are readily available, but evaluations against pine bark beetles (Coleoptera: Curculionidae: Scolytinae) are lacking. In the southeastern U.S., the southern pine beetle, Dendroctonus frontalis Zimm, is the major bark beetle pest for which tree protectants are applied. However, Ips avulsus (Eichhoff) are more consistently...
Christopher J. Fettig; Donald M. Grosman; A. Steven. Munson
2013-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers have examined the effectiveness of...
Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun
2014-01-01
Wood fromtwovarieties of beetle-killed trees was used to fabricate woodâplastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...
S. Kim; T.C. Harrington; J. C. Lee; S. J. Seybold
2011-01-01
The redhaired pine bark beetle Hylurgus ligniperda (F.) is native to Europe but was discovered in Los Angeles, California, in 2003. This root- and stump-feeding beetle is a common vector of Ophiostomatales, which are potential tree pathogens or causes of blue stain of conifer sapwood. In this study Ophiostomatales were isolated on a...
James I. Price; Daniel W. McCollum; Robert P. Berrens
2010-01-01
In recent years mountain pine beetles (MPB), Dendroctonus ponderosae, along with several other bark beetle species, have severely damaged coniferous forests in the western United States (U.S.) and Canada (Morris and Walls, 2009). Colorado provides one example of a region that has been heavily affected. The Colorado State Forest Service estimates that 769,000ha of...
Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle
Michael J. Jenkins
2011-01-01
Bark beetle-caused tree mortality in conifer forests affects the quantity and quality of forest fuels and has long been assumed to increase fire hazard and potential fire behavior. In reality, bark beetles and their effects on fuel accumulation and subsequent fire hazard have only recently been described. We have extensively sampled fuels in three conifer forest types...
Youngblood, A.; Grace, J.B.; Mciver, J.D.
2009-01-01
Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in turn depended on fire intensity, which was greater in units where thinning increased large woody fuels. These results have implications when deciding among management options for restoring ecosystem health in similar ponderosa pine and Douglas-fir forests. ?? 2009 by the Ecological Society of America.
Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.
2016-01-01
Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820
Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.
2014-01-01
Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963
Bonnett, Tiffany R; Robert, Jeanne A; Pitt, Caitlin; Fraser, Jordie D; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2012-12-01
Mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives. We have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples. These first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of mass inoculation on induced oleoresin response in intensively managed loblolly pine
Kier D. Klepzig; Daniel J. Robison; Glenn Fowler; Peter R. Minchin; Fred P. Hain; H. Lee Allen
2005-01-01
Oleoresin flow is an important factor in the resistance of pines to attack by southern pine beetle, Dendroctonus frontalis Zimm., and its associated fungi. Abiotic factors, such as nutrient supply and water relations, have the potential to modify this plantâinsectâfungus interaction; however, little is known of the effects of inoculation with beetle-...
Barbara J. Bentz; Sharon A. Hood; Matt Hansen; Jim Vandygriff; Karen E. Mock
2016-01-01
Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB)...
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from rea...
David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis
2011-01-01
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...
Daniel R. Miller; John H. Borden
2003-01-01
We conducted seven experiments in stands of mature lodgepole pine in southern British Columbia to elucidate the role of host volatiles in the semiochemical ecology of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), with particular reference to the behavioral responses of predators and competing species of bark beetles. Our results demonstrated that the...
Stand level impacts of Ips and Dendroctonus bark beetles in pine forest types of northern Arizona
Joel McMillin; John Anhold; Jose Negron
2008-01-01
(Please note, this is an extended abstract only) Extensive tree mortality occurred in ponderosa pine forests and pinon-juniper woodlands of Arizona from 2001-2004. This mortality has been attributed to a combination of an extensive drought, overstocked stands of pine, and increased bark beetle populations. A complex of Ips and Dendroctonus species worked in concert to...
Carla S. Pimentel; Matthew P. Ayres; Vallery Erich; Chris Young; Douglas Streett
2014-01-01
Bursaphelenchus xylophilus (Steiner & Buhrer) (Nematoda: Aphelenchoididae), the pinewood nematode and the causal agent of the pine wilt disease, is a globally important invasive pathogen of pine forests. It is phoretic in woodborer beetles of the genus Monochamus (Megerle) (Coleoptera, Cerambycidae) and has been able to exploit novel indigenous species of...
Southern Pine Beetle Population Dynamics in Trees
Fred M. Stephen
2011-01-01
Successful mass attack of a pine tree by the southern pine beetle (SPB) results in the treeâs death and provides opportunity for colonization of the new phloem resource and reproduction by a new generation of SPBs plus hundreds of associated species of insects, mites, fungi, and nematodes. The within-tree portions of the SPB life history can be divided into component...
Effects of thinning on development of southern pine beetle infestations in old growth stands
Peter Turchin; James Davidson; Jane Leslie. Hayes
1999-01-01
A study was conducted to quantify the relationship between southern pine beetle infestation growth and the intertree spacing in old growth pine stands. The problem with extrapolating the results of previous studies to old growths tands is that it is unclear whether the same mechanism will operate in stands of older trees characterized by double the diameter (20-25 cm...
Dan Miller; Chris Asaro; Christopher Crowe; Donald Duerr
2011-01-01
In 2006,weexamined the Ãight responses of 43 species of longhorn beetles (Coleoptera: Cerambycidae) to multiple-funnel traps baited with binary lure blends of 1) ipsenol + ipsdienol, 2) ethanol + α-pinene, and a quaternary lure blend of 3) ipsenol + ipsdienol + ethanol + αpinene in the southeastern United States. In addition, we monitored responses of...
Southern Pine Beetle Survival In Trees Felled By the Cut and Top-Cut and Leave Method
J.D. Hodges; R.C. Thatcher
1976-01-01
When the cut & top-cut & leave method was used for control of the southern pine beetle in Central Louisiana, trees were felled into the open or into shade in September, June, July, December, and January. Survival was greatest in September, moderate in July, and relatively low in June, December, and January. The cut and top treatment resulted in lower beetle...
NASA Astrophysics Data System (ADS)
Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.
2016-02-01
Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.
Son, E; Kim, J-J; Lim, Y W; Au-Yeung, T T; Yang, C Y H; Breuil, C
2011-01-01
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Kreitler, Jason R.
2017-01-01
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus ponderosae) and timber harvest disturbances on LiDAR-estimated change in canopy cover. Observed canopy loss from fire was greater (higher severity) in areas experiencing pre-fire MPB (Δ 18.8%CC) than fire-only (Δ 11.1%CC). Additionally, increasing MPB intensity was directly related to greater canopy loss. Canopy loss was lower for all areas of pre-fire timber harvest (Δ 3.9%CC) than for fire-only, but among harvested areas, the greatest change was observed in the oldest treatments and the most intensive treatments [i.e., stand clearcut (Δ 5.0%CC) and combination of shelterwood establishment cuts and shelterwood removal cuts (Δ 7.7%CC)]. These results highlight the importance of accounting for and understanding the impact of pre-fire agents of change such as MPB and timber harvest on subsequent fire effects in land management planning. This work also demonstrates the utility of multi-temporal LiDAR as a tool for quantifying these landscape-scale interactions.
Stephen A. Wyka; Joseph J. Doccola; Brian L. Strom; Sheri L. Smith; Douglas W. McPherson; Srdan G. Acimovic; Kier D. Klepzig
2016-01-01
Bark beetles carry a number of associated organisms that are transferred to the host tree upon attack that are thought to play a role in tree decline. To assess the pathogenicity to western white pine (WWP; Pinus monticola) of fungi carried by the mountain pine beetle (MPB; Dendroctonus ponderosae), and to evaluate the...
Michael T. Thompson
2009-01-01
There are two events occurring in Colorado that are concerning forest managers in Colorado. There is severe and widespread mortality of lodgepole pine due to the mountain pine beetle and aspen forests in some areas of the state have experienced widespread, severe, and rapid crown deterioration leading to mortality. Implementation of the Forest Inventory and Analysis...
D. J. Leduc; J. C. G. Goelz
2010-01-01
The hazard of southern pine beetle (SPB) infestations is affected by characteristics such as stand density, stand age, site quality, and tree size. COMPUTE P-LOB is a model that simulates the growth and development of loblolly pine plantations in the west gulf coastal plain. P-LOB was rewritten as COMPUTE SPB-Lob to update it for current operating systems and to...
D. R. Miller; C. M. Crowe; K. J. Dodds; L. D. Galligan; P. de Groot; E. R. Hoebeke; A. E. Mayfield; T. M. Poland; K. F. Raffa; J. D. Sweeney
2015-01-01
In 2007-2008, we examined the flight responses of wood-boring beetles (Coleoptera: Cerambycidae and Buprestidae) to multiple-funnel traps baited with the pine volatiles, ethanol, and apinene [85% (â)], and the bark beetle pheromones, racemic ipsenol and racemic ipsdienol. Experiments were conducted in mature pine stands in Canada (Ontario and New Brunswick) and the...
Haifeng Zhou; J.Y. Zhu; Xiaolin Luo; Shao-Yuan Leu; Xiaolei Wu; Roland Gleisner; Bruce S. Dien; Ronald E. Hector; Dongjie Yang; Xueqing Qiu; Eric Horn; Jose Negron
2013-01-01
Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up...
Log bioassay of residual effectiveness of insecticides against bark beetles
Richard H. Smith
1982-01-01
Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...
Brian Sullivan; Mark Dulusky; Kenji Mori; Cavell Brownie
2011-01-01
The male-produced bicyclic acetal endo-brevicomin is a component of the pheromone blend that mediates colonization of host pines by the bark beetle Dendroctonus frontalis Zimmermann. Efforts to identify its behavioral function have been complicated by contrasting reports that it either enhances or reduces attraction of flying beetles. Our studies failed to support the...
Reduced Brood Production of Southern Pine Beetles by Diflubenzuron
J.W. van Sambeek
1982-01-01
Treating the female southern pine beetle (Dendroctonus frontalis Zimmerman) with the insect growth regulator diflubenzuron will decrease the hatch of eggs deposited in the first 2 dm of egg gallery. Treatment of males had no effect. Surface applications of 1 to 10 mg of diflubenzuron per female...
R. N. Coulson; Kier Klepzig
2011-01-01
The knowledge base for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae) has increased dramatically since the last comprehensive and interpretative summary (Thatcher and others 1980). This insect continues to be a significant pest affecting the forest environment of the Southern US and adjoining states and it is also the subject of...
Parasitoids of the Southern Pine Beetle
C. Wayne Berisford
2011-01-01
Hymenopterous parasitoids make up a significant portion of the natural enemy complex associated with the southern pine beetle (SPB). Collectively, parasitoids can affect the growth of individual SPB infestations and area populations by reducing the survival rates of developing SPB larval/pupal broods. A substantial body of information on parasitoids has been...
Verbenone flakes may help slow mountain pine beetle's spread
Nancy (featured scientist) Gillette
2009-01-01
According to "Aerially Applied Verbenone-Releasing Laminated Flakes Protect Pinus contorta Stands from Attack by Dendroctonus ponderosae (mountain pine beetle) in California and Idaho," a US Forest Serviceâfunded study appearing in the February issue of Forest Ecology and Management, not only has the "current...
Michael T. Thompson
2017-01-01
The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...
West, Daniel R.; Briggs, Jenny S.; Jacobi, William R.; Negron, Jose F.
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle ( Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.
Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flamm, R.O.; Pulley, P.E.; Coulson, R.N.
1993-02-01
The southern pine bark beetle guild [Dendroctonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. grandicollis (Eichhoff), and I. avulsus (Eichhoff)] uses disturbed hosts as habitat for establishment of within-tree populations. The process of colonization of disturbed hosts was examined. Using a procedure designed to emulate effects of a lightning strike, pines were severely disturbed. Response was characterized by measuring beetle populations that (1) arrived at the trees and (2) successfully attacked the trees. Establishment of within-tree populations was characterized by measuring length of egg gallery excavated by attacking adults. The time delay between arrival and attack for D.more » frontalis and I. calligraphus was also calculated. Attack densities of both species became asymptotic as arrival increased. The percentage of arriving beetles that attacked ranged from 9 to 41 for D. frontalis and from 8 to 59 for I. calligraphus. Numbers of beetles that arrived at the tree but did not attack ranged from 2.7 to 50.2 beetles per dm[sup 2] for D. frontalis and from 0.2 to 10.0 beetles per dm[sup 2] for I. calligraphus. Most D. frontalis and I. calligraphus attacked on the day they arrived. The delay between arrival and attack was longer for I. calligraphus than the D. frontalis. Egg gallery excavated by D. frontalis increased throughout the study. Eventually, the Ips species were excluded from the lower half of the hole. The low attack densities observed in this study illustrate the significance of disturbed trees in providing refuges for enzootic levels of bark beetles. The aggregation behavior of beetle populations colonizing disturbed hosts supported the contention that these trees serve as foci for initiation of infestations. Furthermore, in disturbed pines, small numbers of beetles were capable of overcoming host defense systems.« less
Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir
2015-10-01
Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates.
NASA Astrophysics Data System (ADS)
Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.
2015-12-01
Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.
Sells, Sallie M; Held, David W; Enloe, Stephen F; Loewenstein, Nancy J; Eckhardt, Lori G
2015-03-01
Cogongrass (Imperata cylindrica Beav.) is an aggressive, invasive weed with a global distribution. In North America, it threatens the integrity of southeastern pine agroecosystems, including longleaf pine (Pinus palustris Mill.). While studies have examined the impacts of cogongrass and various vegetation management strategies on longleaf pine understory plant communities, little is known about how they impact associated insect communities. To understand the effect of cogongrass management strategies on arthropod natural enemies and bark beetles, a split-plot design was used to test fire (whole-plot) and four subplot treatments (control, herbicide, seeding and herbicide plus seeding). Arthropods were sampled using pitfall traps and sweep samples. After 2 years of sampling, total natural enemies were not significantly affected by subplot treatment but were affected by burn treatment. Upon subdividing natural enemies into groups, only spiders were significantly affected by subplot treatment, but predatory beetles and ants were significantly affected by burn treatment. The abundance of root-feeding bark beetles (Hylastes spp.) was not significant by subplot or whole-plot treatments. Multiple applications of herbicide remain the most effective way to manage cogongrass in longleaf pine. In this study, we found limited evidence that cogongrass management with herbicides would negatively impact arthropod natural enemies associated with longleaf pine or locally increase root-feeding bark beetles. © 2014 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
1974-01-01
Varied small scale imagery was used for detecting and assessing damage by the southern pine beetle. The usefulness of ERTS scanner imagery for vegetation classification and pine beetle damage detection and assessment is evaluated. Ground truth acquisition for forest identification using multispectral aerial photographs is reviewed.
Key Mites Commonly Associated With the Southern Pine Beetle
D.N. Kinn
1976-01-01
This paper outlines a method of preparing mites for microscopic examination and contains a simple key to the 15 species of mites commonly associated with the southern pine bark beetle. Research workers wanting to identify these mites and others curious about them, but untrained in acarology, should find little difficulty in making identifications.
Tomicus piniperda (Coleoptera: Scolytidae) Initial Flight and Shoot
Therese M. Poland; Robert A. Haack; Toby R. Petrice
2002-01-01
The exotic pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), established in the north central and northeastern United States (U.S.) and adjacent regions in Canada, is regulated by a federal quarantine that restricts movement of pine material during specific times of the year based on the beetle's life history. Although climatic...
Eddy J. Dowle; Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz; Gregory J. Ragland
2017-01-01
Chromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North...
Anthony I. Cognato; Nancy E. Gillette; Rodolfo Campos Bolanos; Felix A.H. Sperling
2005-01-01
Pine cone beetles (Conophthorus spp.) feed and kill immature cones of Pinus species, thereby reducing seed production and seriously impairing reforestation of forest ecosystems. Population variation of Conophthorus reproductive behavior has hampered the development of semiochemical control of these pests. This diYculty is...
Brian Sullivan; Kenji Mori
2009-01-01
Flight responses of the southern pine beetle, Dendroctonus frontalis Zimmermann, to widely-spaced (>130 m) traps baited with pine volatiles (in turpentine) and the female-produced pheromone component frontalin were enhanced when a bait containing the male pheromone component (+)-endo-brevicomin was attached...
Effects of bark beetle pheromones on the attraction of Monochamus alternatus to pine volatiles
Jian-Ting Fan; Daniel Miller; Long-Wa Zhang; Jiang-Hua Sun
2010-01-01
We evaluated the attraction of Monochamus alternatus Hope (Coleoptera: Cerambycidae), Dryocoetes luteus Blandford and Orthotomicus erosusWollaston (Coleoptera: Curculionidae: Scolytinae) to multiple-funnel traps baited with the pine volatiles, ethanol and (+)-α-pinene and the bark beetle pheromones, ipsenol and ipsdienol. M. alternatus were attracted to traps baited...
Cultural practices for prevention and control of mountain pine beetle infestations
Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón
2014-01-01
In recent years, the mountain pine beetle, Dendroctonus ponderosae Hopkins, has impacted >8.9 million hectares of forests in the western United States. During endemic populations, trees weakened by other agents are often colonized by D. ponderosae but may be difficult to detect due to their scarcity. Once populations reach...
Brian T. Sullivan; Mark J. Dalusky; C. Wayne Berisford
2003-01-01
Experiments were performed with host-associated olfactory attractants of the larval parasitoids of the southern pine beetle, Dendroctonus frontalis Zimmermann, to elucidate both their biological origin and their chemical composition. Sticky-screen traps were erected in an active D. frontalis infestation and baited with parts of...
Brian T. Sullivan; Mark J. Dalusky; David Wakarchuk; C. Wayne Berisford
2007-01-01
Semiochemicals that inhibit the response of the southern pine beetle, Dendroctonus frontalis Zimmermann, to its aggregation pheromone have been used with varying degrees of success to protect individual trees from attack and to stop infestation growth. However, semiochemical disruptants have not experienced wide use in management of D. ...
Southern Pine Beetle Field Survey
Saul D. Petty
2011-01-01
Southern pine beetle (SPB) is one of the most formidable insect pests impacting southern forests. Federal, State, and private forest managers have always dealt with this pest in some capacity. One of the primary requirements for controlling SPB is locating infestations on the ground. Once the infestation has been located, data is collected and used in management...
Melanin and the ecology of southern pine beetle associated fungi
Kier D. Klepzig
2006-01-01
I report here a series of initial investigations into effects of melanins on the interactions of the three primary species of fungi associated with the southern pine beetle (SPB), and into possible means for mitigating the damaging activities of the melanistic fungus, Ophiostoma minus. Growth of the SPB mutualistic fungus Entomocorticium...
Archana Vasanthakumar; Italo Delalibera; Jo Handelsman; Kier D. Klepzig; Patrick D. Schloss; Kenneth F. Raffa
2006-01-01
We report the first study of gut-associated bacteria of bark beetles using both culture dependent and culture-independent methods. These insects are major pests of pine trees but also contribute to important ecological functions such as nutrient cycling. We found members of the
Mountain pine beetle-caused tree mortality in partially cut plots surrounded by unmanaged stands
J. M. Schmid; S. A. Mata
2005-01-01
Mountain pine beetle activity was monitored in one set of 2.5 acre plots in the southern portion of the Black Hills National Forest over a 17-year period. Beetles attacked 77 percent of the trees in the uncut control, 48 percent of the trees in the growing stock level (GSL) 100/110, 53 percent of the trees in the GSL 80/90, and 9 percent of the trees in the GSL 60/70....
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2013 CFR
2013-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2014 CFR
2014-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2011 CFR
2011-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2012 CFR
2012-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
Bark beetle outbreaks in western North America: Causes and consequences
Barbara Bentz; Jesse Logan; Jim MacMahon; Craig D. Allen; Matt Ayres; Ed Berg; Allan Carroll; Matt Hansen; Jeff Hicke; Linda Joyce; Wallace Macfarlane; Steve Munson; Jose Negron; Tim Paine; Jim Powell; Ken Raffa; Jacques Regniere; Mary Reid; Bill Romme; Steven J. Seybold; Diana Six; Diana Tomback; Jim Vandygriff; Tom Veblen; Mike White; Jeff Witcosky; David Wood
2009-01-01
Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded...
Bark beetle outbreaks in western North America: Causes and consequences
Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff
2005-01-01
Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.
Jules, Erik S; Jackson, Jenell I.; van Mantgem, Phillip J.; Beck, Jennifer S.; Murray, Michael P.; Sahara, E. April
2016-01-01
Pathogens and insect pests have become increasingly important drivers of tree mortality in forested ecosystems. Unfortunately, understanding the relative contributions of multiple mortality agents to the population decline of trees is difficult, because it requires frequent measures of tree survival, growth, and recruitment, as well as the incidence of mortality agents. We present a population model of whitebark pine (Pinus albicaulis), a high-elevation tree undergoing rapid decline in western North America. The loss of whitebark pine is thought to be primarily due to an invasive pathogen (white pine blister rust; Cronartium ribicola) and a native insect (mountain pine beetle; Dendroctonus ponderosae). We utilized seven plots in Crater Lake National Park (Oregon, USA) where 1220 trees were surveyed for health and the presence of blister rust and beetle activity annually from 2003–2014, except 2008. We constructed size-based projection matrices for nine years and calculated the deterministic growth rate (λ) using an average matrix and the stochastic growth rate (λs) by simulation for whitebark pine in our study population. We then assessed the roles of blister rust and beetles by calculating λ and λsusing matrices in which we removed trees with blister rust and, separately, trees with beetles. We also conducted life-table response experiments (LTRE) to determine which demographic changes contributed most to differences in λ between ambient conditions and the two other scenarios. The model suggests that whitebark pine in our plots are currently declining 1.1% per year (λ = 0.9888, λs = 0.9899). Removing blister rust from the models resulted in almost no increase in growth (λ = 0.9916, λs = 0.9930), while removing beetles resulted in a larger increase in growth (λ = 1.0028, λs = 1.0045). The LTRE demonstrated that reductions in stasis of the three largest size classes due to beetles contributed most to the smaller λ in the ambient condition. Our work demonstrates a method for assessing the relative effects of different mortality agents on declining tree populations, and it shows that the effects of insects and pathogens can be markedly different from one another. In our study, beetle activity significantly reduced tree population growth while a pathogen had minimal effect, thus management actions to stabilize our study population will likely need to include reducing beetle activity.