Sample records for pine dominated forest

  1. Longleaf pine forests and woodlands: old growth under fire!

    Treesearch

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  2. Capturing forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes.

    PubMed

    Chakraborty, Anusheema; Joshi, Pawan Kumar; Sachdeva, Kamna

    2018-05-01

    Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.

  3. Restoring Upland Forests to Longleaf Pine: Initial Effects on Fuel Load, Fire Danger, Forest Vegetation, and Beetle Populations

    Treesearch

    James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris

    2004-01-01

    Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...

  4. Patterns of conifer regeneration following high severity wildfire in ponderosa pine - dominated forests of the Colorado Front Range

    Treesearch

    Marin E. Chambers; Paula J. Fornwalt; Sparkle L. Malone; Michael Battaglia

    2016-01-01

    Many recent wildfires in ponderosa pine (Pinus ponderosa Lawson & C. Lawson) - dominated forests of the western United States have burned more severely than historical ones, generating concern about forest resilience. This concern stems from uncertainty about the ability of ponderosa pine and other co-occurring conifers to regenerate in areas where no...

  5. Natural range of variation for yellow pine and mixed-conifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo National Forests, California, USA

    Treesearch

    Hugh D. Safford; Jens T. Stevens

    2017-01-01

    Yellow pine and mixed-conifer (YPMC) forests are the predominant montane forest type in the Sierra Nevada, southern Cascade Range, and neighboring forested areas on the Modoc and Inyo National Forests (the "assessment area"). YPMC forests occur above the oak woodland belt and below red fir forests, and are dominated by the yellow pines (ponderosa pine [

  6. Stand and fuel treatments for restoring old-growth ponderosa pine forests in the interior west (Boise Basin Experimental Forest)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    Fire exclusion, especially in the dry forests (i.e. those dominated or potentially dominated by ponderosa pine) has most often altered tree and shrub composition and structure and, though often overlooked in many locales, the forest floor from conditions that occurred historically (pre-1900).

  7. Red Pine in the Northern Lake States

    Treesearch

    Thomas L. Schmidt

    2003-01-01

    Red pine is an important tree species for the Northern Lake States. About 4 percent of the total area of timberland is dominated by red pine but most other forest types also have red pine as a component. The red pine forest type in the region has dramatically increased in area since the 1930s. Stand-size class distribution of the red pine forest type has changed over...

  8. Many ways to manage lodgepole pine forests

    Treesearch

    Lucia Solorzano

    1997-01-01

    Research underway at the Tenderfoot Creek Experimental Forest near White Sulphur Springs will provide insights on how to sustain lodgepole pine forests and water flow patterns over large areas. Lodgepole pine dominates a high percentage of forests in the northern Rocky Mountains. including the Bitterroot National Forest. About half the stands at Tenderfoot are two-aged...

  9. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Treesearch

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  10. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Treesearch

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  11. Description of Vegetation in Several Periodically Burned Longleaf Pine Forests on the Kisatchie National Forest

    Treesearch

    James D. Haywood; Finis L. Harris

    1999-01-01

    Abstract - In January 1993, the Kisatchie National Forest and Southern Research Station began a cooperative project on two Ranger Districts to monitor how prescribed burning affects tree, shrub, and herbaceous vegetation in upland longleaf pine (Pinus palustris Mill.) forests in Louisiana. Longleaf pine is the dominant species on...

  12. White pine in the American West: A vanishing species - can we save it?

    Treesearch

    Leon F. Neuenschwander; James W. Byler; Alan E. Harvey; Geral I. McDonald; Denise S. Ortiz; Harold L. Osborne; Gerry C. Snyder; Arthur Zack

    1999-01-01

    Forest scientists ask that everyone, from the home gardener to the forest manager, help revive western white pine by planting it everywhere, even in nonforest environments such as our neighborhood streets, parks, and backyards. White pine, long ago considered the "King Pine," once dominated the moist inland forests of the Northwest, eventually spawning whole...

  13. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    NASA Astrophysics Data System (ADS)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  14. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.

    PubMed

    Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R

    2016-08-01

    A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Fate of residual canopy trees following harvesting to underplant longleaf pine seedlings in loblolly pine stands in Georgia

    Treesearch

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Robert N. Addington

    2016-01-01

    Over the past few decades, reports of forest health problems have concerned scientists and forest managers in loblolly pine forests of the southeastern United States. Several interacting factors likely contribute to observed reductions in loblolly pine health, including low resource availability on many upland sites that were once dominated by longleaf pine. Currently...

  16. Changes in forest structure since 1860 in ponderosa pine dominated forests in the Colorado and Wyoming Front Range, USA

    Treesearch

    Mike A. Battaglia; Benjamin Gannon; Peter M. Brown; Paula J. Fornwalt; Antony S. Cheng; Laurie S. Huckaby

    2018-01-01

    Management practices since the late 19th century, including fire exclusion and harvesting, have altered the structure of ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) dominated forests across the western United States. These structural changes have the potential to contribute to uncharacteristic wildfire behavior and effects. Locally-...

  17. Predicting small-diameter loblolly pine aboveground biomass in naturally regenerated stands

    Treesearch

    Kristin M. McElligott; Don C. Bragg; Jamie L. Schuler

    2015-01-01

    There is growing interest in managing southern pine forests for both carbon sequestration and bioenergy. For instance, thinning otherwise unmerchantable trees in naturally regenerated pine-dominated forests should generate biomass without conflicting with more traditional forest products. However, we lack the tools to accurately quantify the biomass in these...

  18. Effects of Dwarf Mistletoe on Stand Structure of Lodgepole Pine Forests 21-28 Years Post-Mountain Pine Beetle Epidemic in Central Oregon

    PubMed Central

    Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963

  19. Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West.

    PubMed

    Windmuller-Campione, Marcella A; Long, James N

    2016-01-01

    As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is an increased need to link ecological understanding to applied management. Limber pine (Pinus flexilis James.), an understudied species of western North America, has been documented to dominate harsh environments and thought to be competitively excluded from mesic environments. An observational study was conducted using the Forest Inventory and Analysis Database (FIAD) to test the competitive exclusion hypothesis across a broad elevational and geographic area within the Intermountain West, USA. We anticipated that competitive exclusion would result in limber pine's absence from mid-elevation forest communities, creating a bi-modal distribution. Using the FIAD database, limber pine was observed to occur with 22 different overstory species, which represents a surprising number of the woody, overstory species commonly observed in the Intermountain West. There were no biologically significant relationships between measures of annual precipitation, annual temperature, or climatic indices (i.e. Ombrothermic Index) and limber pine dominance. Limber pine was observed to be a consistent component of forest communities across elevation classes. Of the plots that contained limber pine regeneration, nearly half did not have a live or dead limber pine in the overstory. However, limber pine regeneration was greater in plots with higher limber pine basal area and higher average annual precipitation. Our results suggest limber pine is an important habitat generalist, playing more than one functional role in forest communities. Generalists, like limber pine, may be increasingly important, as managers are challenged to build resistance and resilience to future conditions in western forests. Additional research is needed to understand how different silvicultural systems can be used to maintain multi-species forest communities.

  20. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... allow reestablishment of controlled periodic fire; and capturing the value of removed trees in an... mixed-severity fire regime that is dominated by lodgepole pine. Tree mortality from a mountain pine... other tree species native to the area including aspen, whitebark pine, and ponderosa pine do not occur...

  1. Longleaf pine can catch up

    Treesearch

    William D. Boyer

    1997-01-01

    One of the principal southern pines, longleaf (Pinus palustris Mill.) is the key tree species in a fire-dependent ecosystem. In pm-settlement times, longleaf pine forests covered much of the southeastern United States.Once the most extensive forest ecosystem in North America dominated by a single species longleaf pine now occupies only about 3...

  2. Species composition influences management outcomes following mountain pine beetle in lodgepole pine-dominated forests

    Treesearch

    Kristen Pelz; C. C. Rhoades; R. M. Hubbard; M. A. Battaglia; F. W. Smith

    2015-01-01

    Mountain pine beetle outbreaks have killed lodgepole pine on more than one million hectares of Colorado and southern Wyoming forest during the last decade and have prompted harvest operations throughout the region. In northern Colorado, lodgepole pine commonly occurs in mixed stands with subalpine fir, Engelmann spruce, and aspen. Variation in tree species composition...

  3. Growth response of dominant and co-dominant loblolly pines to organic matter removal, soil compaction, and competition control

    Treesearch

    Robert Eaton; William Smith; Kim Ludovici

    2010-01-01

    The Long Term Soil Productivity (LTSP) experiment is a U.S. Forest Service led effort to test the effects that organic matter removal, soil compaction, and competition control have forest soil productivity, as measured by tree growth. A replicated experiment was installed on the Croatan National Forest, NC, in winter 1991 and loblolly pine (Pinus taeda...

  4. Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West

    PubMed Central

    Windmuller-Campione, Marcella A.; Long, James N.

    2016-01-01

    As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is an increased need to link ecological understanding to applied management. Limber pine (Pinus flexilis James.), an understudied species of western North America, has been documented to dominate harsh environments and thought to be competitively excluded from mesic environments. An observational study was conducted using the Forest Inventory and Analysis Database (FIAD) to test the competitive exclusion hypothesis across a broad elevational and geographic area within the Intermountain West, USA. We anticipated that competitive exclusion would result in limber pine’s absence from mid-elevation forest communities, creating a bi-modal distribution. Using the FIAD database, limber pine was observed to occur with 22 different overstory species, which represents a surprising number of the woody, overstory species commonly observed in the Intermountain West. There were no biologically significant relationships between measures of annual precipitation, annual temperature, or climatic indices (i.e. Ombrothermic Index) and limber pine dominance. Limber pine was observed to be a consistent component of forest communities across elevation classes. Of the plots that contained limber pine regeneration, nearly half did not have a live or dead limber pine in the overstory. However, limber pine regeneration was greater in plots with higher limber pine basal area and higher average annual precipitation. Our results suggest limber pine is an important habitat generalist, playing more than one functional role in forest communities. Generalists, like limber pine, may be increasingly important, as managers are challenged to build resistance and resilience to future conditions in western forests. Additional research is needed to understand how different silvicultural systems can be used to maintain multi-species forest communities. PMID:27575596

  5. Chapter 5. Dynamics of ponderosa and Jeffrey pine forests

    Treesearch

    Penelope Morgan

    1994-01-01

    Ponderosa (Pinus ponderosa) and Jeffrey pine (Pinus jefferyi) forests are ecologically diverse ecosystems. The communities and landscapes in which these trees dominate are variable and often complex. Because of the economic value of resources, people have used these forests extensively.

  6. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.

    PubMed

    Hood, Sharon M; Baker, Stephen; Sala, Anna

    2016-10-01

    Fire frequency in low-elevation coniferous forests in western North America has greatly declined since the late 1800s. In many areas, this has increased tree density and the proportion of shade-tolerant species, reduced resource availability, and increased forest susceptibility to forest insect pests and high-severity wildfire. In response, treatments are often implemented with the goal of increasing ecosystem resilience by increasing resistance to disturbance. We capitalized on an existing replicated study of fire and stand density treatments in a ponderosa pine (Pinus ponderosa)-Douglas-fir (Pseudotsuga menziesii) forest in western Montana, USA, that experienced a naturally occurring mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak 5 yr after implementation of fuels treatments. We explored whether treatment effects on tree-level defense and stand structure affected resistance to MPB. Mortality from MPB was highest in the denser, untreated control and burn-only treatments, with approximately 50% and 39%, respectively, of ponderosa pine killed during the outbreak, compared to almost no mortality in the thin-only and thin-burn treatments. Thinning treatments, with or without fire, dramatically increased tree growth and resin ducts relative to control and burn-only treatments. Prescribed burning did not increase resin ducts but did cause changes in resin chemistry that may have affected MPB communication and lowered attack success. While ponderosa pine remained dominant in the thin and thin-burn treatments after the outbreak, the high pine mortality in the control and burn-only treatment caused a shift in species dominance to Douglas-fir. The high Douglas-fir component in the control and burn-only treatments due to 20th century fire exclusion, coupled with high pine mortality from MPB, has likely reduced resilience of this forest beyond the ability to return to a ponderosa pine-dominated system in the absence of further fire or mechanical treatment. Our results show treatments designed to increase resistance to high-severity fire in ponderosa pine-dominated forests in the Northern Rockies can also increase resistance to MPB, even during an outbreak. This study suggests that fuel and restoration treatments in fire-dependent ponderosa pine forests that reduce tree density increase ecosystem resilience in the short term, while the reintroduction of fire is important for long-term resilience. © 2016 by the Ecological Society of America.

  7. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Treesearch

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  8. Strategies, tools, and challenges for sustaining and restoring high elevation five-needle white pine forests in western North America

    Treesearch

    Robert E. Keane; Anna W. Schoettle

    2011-01-01

    Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...

  9. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Treesearch

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  10. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Treesearch

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  11. Fire histories from pine-dominant forest in the Madrean Archipelago

    Treesearch

    Thomas W. Swetnam

    2005-01-01

    The pine-dominated woodlands and forests of the Sky Islands typically sustained surface burns about once per decade until the turn of the 19th to the 20th centuries, when livestock grazing and organized fire suppression effectively ended this centuries-long pattern. Fire scar chronologies from 31 sites in 10 mountain ranges illustrate this history. By combining...

  12. Mixed-severity fire in lodgepole-dominated forests: Are historical regimes sustainable on Oregon's Pumice Plateau, USA?

    Treesearch

    Emily K. Heyerdahl; Rachel A. Loehman; Donald A. Falk

    2014-01-01

    In parts of central Oregon, coarse-textured pumice substrates limit forest composition to low-density lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson) with scattered ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and a shrub understory dominated by antelope bitterbrush (Purshia tridentata (Pursh) DC.). We reconstructed the...

  13. Silvicultural Considerations in Managing Southern Pine Stands in the Context of Southern Pine Beetle

    Treesearch

    James M. Guldin

    2011-01-01

    Roughly 30 percent of the 200 million acres of forest land in the South supports stands dominated by southern pines. These are among the most productive forests in the nation. Adapted to disturbance, southern pines are relatively easy to manage with even-aged methods such as clearcutting and planting, or the seed tree and shelterwood methods with natural regeneration....

  14. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China

    PubMed Central

    Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru

    2017-01-01

    Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324

  15. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.

    PubMed

    Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian

    2017-01-01

    Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.

  16. Fire Impacts on Mixed Pine-oak Forests Assessed with High Spatial Resolution Imagery, Imaging Spectroscopy, and LiDAR

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2016-12-01

    As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.

  17. Water balance of pine forests: Synthesis of new and published results

    Treesearch

    Pantana Tor-ngern; Ram Oren; Sari Palmroth; Kimberly Novick; Andrew Oishi; Sune Linder; Mikaell Ottosson-Lofvenius; Torgny Nasholm

    2018-01-01

    The forest hydrologic cycle is expected to have important feedback responses to climate change, impacting processes ranging from local water supply and primary productivity to global water and energy cycles. Here, we analyzed water budgets of pine forests worldwide. We first estimated local water balance of forests dominated by two wide-ranging species: Pinus...

  18. Reference conditions for old-growth pine forests in the Upper West Gulf Coastal Plain

    Treesearch

    Don C. Bragg

    2002-01-01

    Ecosystem restoration has become an important component of forest management. especially on public lands. However, determination of manageable reference conditions has lagged behind the interest. This paper presents a case study from pine-dominated forests in the Upper West Gulf Coastal Plain (UWGCP), with special emphasis on southern Arkansas. Decades of forest...

  19. Death of an ecosystem: perspectives on western white pine ecosystems of North America at the end of the twentieth century

    Treesearch

    Alan E. Harvey; James W. Byler; Geral I. McDonald; Leon F. Neuenschwander; Jonalea R. Tonn

    2008-01-01

    The effective loss of western white pine (Pinus monticola Dougl.) in the white pine ecosystem has far-reaching effects on the sustainability of local forests and both regional and global forestry issues. Continuing trends in management of this forest type has the potential to put western white pine, as well as the ecosystem it once dominated, at very...

  20. Remanat old-growth longleaf pine (Pinus palustris Mill.) savannas and forests of the southeastern USA: Status and threats

    Treesearch

    J. Moragan Varner; John S. Kush

    2004-01-01

    Old-growth savannas and forests dominated by longleaf pine (Pinus palustris Mill.) are of great conservation and research interest. Comprehensive inventories of old-growth communities, however, are lacking for most of longleaf pine's natural range. We searched the literature, interviewed regional experts, queried email discussion lists and...

  1. Carbon sequestration in the New Jersey Pine Barrens under different scenarios of fire management

    Treesearch

    Robert M. Scheller; Steve Van Tuyl; Kenneth L. Clark; John Hom; Inga. La Puma

    2011-01-01

    The New Jersey Pine Barrens (NJPB) is the largest forested area along the northeastern coast of the United States. The NJPB are dominated by pine (Pinus spp.) and oak (Quercus spp.) stands that are fragmented and subject to frequent disturbance and forest management. Over long time periods (>50 years), the balance between oak...

  2. Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard.

    Treesearch

    Morris C. Johnson; David L. Peterson; Crystal L. Raymond

    2007-01-01

    Guide to Fuel Treatments analyzes a range of fuel treatments for representative dry forest stands in the Western United States with overstories dominated by ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and pinyon pine (Pinus edulis). Six silvicultural options (no thinning; thinning...

  3. Amounts and spatial distribution of downed woody debris, snags, windthrow, and forest floor mass within streamside management zones occurring in shortleaf pine stands five years after harvesting

    Treesearch

    Hal Liechty

    2007-01-01

    Shortleaf pine (Pinus echinata Mill.) is a dominant tree species in pine and pine-hardwood forest communities located on ridges and upper- to mid-slope positions in the Ouachita Mountains. The stream reaches located in these stands flow infrequently and are classified as ephemeral or intermittent, have low stream orders, and have relatively narrow...

  4. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  5. Longleaf pine: A sustainable approach for increasing terrestrial carbon in the southern United States

    Treesearch

    John S. Kush; Ralph S. Meldahl; Charles K. McMahon; William D. Boyer

    2004-01-01

    Natural communities dominated by longleaf pine (Pinus palustris Mill.) once covered an estimated two thirds of the forested area in the southeastern United States. Today, less than 1.2 million ha remain. However, over the past 10-15 years, public land managers have begun to restore many longleaf pine forests. More recently incentive programs have...

  6. Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).

    PubMed

    Taniguchi, Takeshi; Kataoka, Ryota; Tamai, Shigenobu; Yamanaka, Norikazu; Futai, Kazuyoshi

    2009-04-01

    The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was detected in soil at depths of 0-5 and 5-10 cm from both these areas. This indicates that the disease severity of pine seedlings in this study was influenced by environmental conditions rather than the distribution of inoculum potential.

  7. Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?

    DOE PAGES

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    2014-11-01

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  8. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    USGS Publications Warehouse

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  9. The role of fire in sustaining northern goshawk habitat in Rocky Mountain forests

    Treesearch

    Russell T. Graham; Theresa B. Jain; Richard T. Reynolds; Douglas Boyce

    1997-01-01

    The northern goshawk (Accipiter gentilis), is a northern latitude, forest dwelling raptor. In the Western United States, goshawks live in most forests, including those dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.), lodgepole pine (Pinus contorta Dougl. ex. Loud.), ponderosa pine (Pinus ponderosa Dougl. ex Laws.), and western larch (Larix occidentalis...

  10. A dendrochronological analysis of a disturbance-succession model for oak-pine forests of the Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2010-01-01

    Disturbance-succession models describe the relationship between the disturbance regime and the dominant tree species of a forest type. Such models are useful tools in ecosystem management and restoration, provided they are accurate. We tested a disturbance-succession model for the oak-pine (Quercus spp. - Pinus spp.) forests of the...

  11. Biogeography: An interweave of climate, fire, and humans

    USGS Publications Warehouse

    Stambaugh, Michael C.; Varner, J. Morgan; Jackson, Stephen T.

    2017-01-01

    Longleaf pine (Pinus palustris) is an icon of the southeastern United States and has been considered a foundation species in forests, woodlands, and savannas of the region (Schwarz 1907; Platt 1999). Longleaf pine is an avatar for the extensive pine-dominated, fire-dependent ecosystems (Figure 2.1) that provide habitats for thousands of species and have largely vanished from the landscape. Longleaf pine is one of the world's most resilient and fire-adapted trees (Keeley and Zedler 1998), widely perceived as the sole dominant in forests across a large area of the Southeast (Sargent 1884; Mohr 1896; Wahlenberg 1946). Longleaf pine was once a primary natural resource, providing high-quality timber, resins, and naval stores that fueled social changes and economic growth through the 19th and early 20th centuries.

  12. Restoring a legacy: longleaf pine research at the Forest Service Escambia Experimental Forest

    Treesearch

    Kristina F. Connor; Dale G. Brockway; William D. Boyer

    2014-01-01

    Longleaf pine ecosystems are a distinct part of the forest landscape in the southeastern USA. These biologically diverse ecosystems, the native habitat of numerous federally listed species, once dominated more than 36.4 million ha but now occupy only 1.4 million ha of forested land in the region. The Escambia Experimental Forest was established in 1947 through a 99-...

  13. The longleaf pine forests of the southeast: requiem or renaissance?

    Treesearch

    J. Larry Landers; David H. van Lear; William D. Boyer

    1995-01-01

    Longleaf pine once may have occupied as much as 92 million acres throughout the southeastern United States, making it the most extensive forest ecosystem in North America dominated by a single species. Probably less than 3 million acres now remain, and the survival of this once vast ecosystem is in doubt.Longleaf pine has many favorable attributes that suit it to a...

  14. Overstory tree status following thinning and burning treatments in mixed pine-hardwood stands on the William B. Bankhead National Forest, Alabama

    Treesearch

    Callie Jo Schweitzer; Yong Wang

    2013-01-01

    Prescribed burning and thinning are intermediate stand treatments whose consequences when applied in mixed pine-hardwood stands are unknown. The William B. Bankhead National Forest in northcentral Alabama has undertaken these two options to move unmanaged, 20- to 50-year-old loblolly pine (Pinus taeda L.) plantations towards upland hardwood-dominated...

  15. Restoration of southern ecosystems

    Treesearch

    John A. Stanturf; Emile S. Gardiner; Kenneth Outcalt; William H. Conner; James M. Guldin

    2004-01-01

    Restoration of the myriad communities of bottomland hardwood and wetland forests and of the diverse communities of fire-dominated pine forests is the subject of intense interest in the Southern United States. Restoration practice is relatively advanced for bottomland hardwoods and longleaf pine (Pinus palustris Mill.), and less so for swamps and...

  16. Longleaf Pine: An Updated Bibliography

    Treesearch

    John S. Kush; Ralph S. Meldahl; William D. Boyer; Charles K. McMahon

    1996-01-01

    The longleaf pine (Pinus palustris Mill.) forest figured prominently in the cultural and economic development of the South. What was once one of the most extensive forest ecosystems in North America has now become critically endangered (6). At the time of European settlement, this ecosystem dominated as much as 92 million acres throughout the...

  17. Changes in forest soils as the result of exotic diseases, timber harvest, and fire exclusion and their implications on forest restoration

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    In the western United States and throughout the world, three general classes of coniferous forests can be identified with each having similar vegetative complexes, native disturbances, and climate (Daubenmire and Daubenmire 1968, Hann et al. 1997). Dry forests, often dominated by pines (Pinus), cold forests often dominated by spruces (Picea...

  18. Biogeography and diversity of pines in the Madrean Archipelago

    Treesearch

    George M. Ferguson; Aaron D. Flesch; Thomas R. Van Devender

    2013-01-01

    Pines are important dominants in pine-oak, pine and mixed-conifer forests across the Colorado Plateau, southern Rocky Mountains, Sierra Madre Occidental, and in the intervening Sky Islands of the United States-Mexico borderlands. All 17 native species of pines in the Sky Islands region or their adjacent mountain mainlands reach the northern or southern margins of their...

  19. Restoring old-growth southern pine ecosystems: strategic lessons from long-term silvicultural research

    Treesearch

    Don C. Bragg; Michael G. Shelton; James M. Guldin

    2008-01-01

    The successful restoration of old-growth-like loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests requires the integration of ecological information with long-term silvicultural research from places such as the Crossett Experimental Forest (CEF). Conventional management practices such as timber harvesting or competition control have supplied...

  20. Chemical properties of litter inputs and organic matter along the Canadian Boreal Forest Transect Case Study

    NASA Astrophysics Data System (ADS)

    Preston, C. M.; Bhatti, J. S.; Norris, C. E.; Quideau, S. A.; Arevalo, C.

    2012-04-01

    To improve prediction of climate change impacts on the carbon balance of boreal forests, we are investigating C stocks, fluxes and organic matter quality of jack pine (Pinus banksiana) and black spruce (Picea mariana) stands in northern Saskatchewan and Manitoba along the Boreal Forest Transect Case Study (BFTCS). Jack pine stands occupy well-drained sandy soils with thin forest floor, whereas poorly-drained black spruce stands have a thick moss-dominated forest floor. Carbon storage for jack pine and black spruce stands respectively was 3.0-5.5 kg m-2 and 5.2-8.2 kg m-2 in vegetation, and 0.20-0.85 kg m-2 and 0.12-0.40 kg m-2 in coarse woody debris. Forest floor C stock was much higher for black spruce (6.0-12.7 kg m-2) than for jack pine (0.6-0.82 kg m-2). Mineral soil C to 50 cm was also significantly higher for black spruce (3.3-12.5 kg m-2) than for jack pine sites (2.2-3.0 kg m-2). Black spruce forest floor properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted ^13C and ^15N values, high tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with charcoal in some samples. These contrasts are unlikely due to the small differences in aboveground litter inputs (110 vs 121 g m-2) for jack pine and black spruce respectively, 2000-2010 means) or litter quality. Development of colder, wetter and thicker black spruce forest floor is more likely associated with soil texture and drainage, further exacerbated by increasing sphagnum coverage and forest floor depth. This suggests that small environmental changes could trigger large C losses through enhanced forest floor decomposition. An investigation of mineral soil C stabilization in four jack pine sites showed that silt plus clay accounted for 15-43 % of 0-1 m C (1.5-2.8 kg m-2); silt held 0.9-3.3% of horizon mass and 13-31% of total C. Carbon-13 NMR of HF-treated silt fractions showed that alkyl and O-alkyl C dominated the A and B horizons, but C-horizon samples were higher in aromatic C, possibly of fire origin. HCl hydrolysis was used to to isolate older C, but most 14C dates were modern, with five samples from deeper horizons ranging from 141-5184 ybp. HCl residues were mainly alkyl and aromatic C. Especially for black spruce stands, soil C appears to be dominated by inputs from roots and moss, and stabilized mainly by environmental factors; soil C stored as thick forest floor is also vulnerable to loss by fire. Forest floor and mineral soil show evidence of pyrogenic C, but quantitative data are lacking to assess its role in long-term C sequestration. Considering the sensitivity of this region to climate change, further research should focus on understanding the processes controlling climate, vegetation and soil interactions throughout the lifecycle of jack pine and black spruce forests.

  1. Does tree diversity increase wood production in pine forests?

    PubMed

    Vilà, Montserrat; Vayreda, Jordi; Gracia, Carles; Ibáñez, Joan Josep

    2003-04-01

    Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.

  2. CO2 flux studies of different hemiboreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido

    2017-04-01

    Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).

  3. Lessons from 72 years of monitoring a once-cut pine-hardwood stand on the Crossett Experimental Forest, Arkansas, U.S.A

    Treesearch

    Don C. Bragg; Michael G. Shelton

    2011-01-01

    The Crossett Experimental Forest was established in 1934 to provide landowners in the Upper West Gulf Coastal Plain with reliable, science-based advice on how to manage their loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests. A key component of this program was the establishment of an unmanaged control, currently known as the Russell R....

  4. Species-site relationships in a Northern Arkansas upland forest

    Treesearch

    Eric Heitzman; Michael G. Shelton; Ruth Ann Chapman

    2006-01-01

    Phytosociological aspects of the forest vegetation were described for a 780-ha area on the Sylamore Experimental Forest in northern Arkansas. Pronounced changes in species composition occurred with topographic position in this deeply dissected area. For the overstory, oaks and pines dominated the upper slope positions, while other tree species dominated the lower...

  5. Shortleaf pine and mixed hardwood stands: thirty-four years after regeneration with the fell-and-burn technique in the Southern Appalachian Mountains

    Treesearch

    Lauren S. Pile; Tom Waldrop

    2016-01-01

    There has been considerable interest in developing management techniques for creating mixed shortleaf pine (Pinus echinata)–hardwood forests in the Southern Appalachian Mountains. This interest has increased in recent years due to the need to manage for more diverse and resilient forests, and to reestablish shortleaf pine as a dominant species throughout its native...

  6. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  7. HOW to Manage Eastern White Pine to Minimize Damage from Blister Rust and White Pine Weevil

    Treesearch

    Steven Katovich; Manfred E. Mielke

    1993-01-01

    White pine was once a dominant forest species in the north central and northeastern United States. Following logging in the late 1800's and the early part of this century, two major pests, white pine blister rust, Cronartium ribicola J.C.Fisch., and white pine weevil, Pissodes strobi (Peck), combined to reduce the value of white pine. Blister rust was introduced...

  8. Fire and stand history in two limber pine (Pinus flexilis) and Rocky Mountain bristlecone pine (Pinus aristata) stands in Colorado

    Treesearch

    Peter M. Brown; Anna W. Schoettle

    2008-01-01

    We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...

  9. Managing composition of piedmont forests with prescribed fire

    Treesearch

    Kenneth W. Outcalt

    2006-01-01

    Native Americans used frequent burning of forests in the South's Piedmont to maintain pine-dominated stands, to favor oak regeneration over other hardwoods, and to keep understories open. From 1950 to 1990, fire occurred rarely in the region, resulting in a gradual replacement of pines with hardwoods. More recently, however, prescribed burning has been used much...

  10. Serendipitous data following a severe windstorm in an old-growth pine stand

    Treesearch

    D.C. Bragg; J.D. Riddle

    2014-01-01

    Reliable dimensional data for old-growth pine-dominated forests in the Gulf Coastal Plain of Arkansas are hard to find, but sometimes unfortunate circumstances provide good opportunities to acquire this information. On July 11, 2013, a severe thunderstorm with high winds struck the Levi Wilcoxon Demonstration Forest (LWDF) near Hamburg, Arkansas. This storm uprooted or...

  11. 75 FR 10457 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses...

  12. Attractant and disruptant semiochemicals for Dendroctonus jeffreyi (Coleoptera: Curculionidae: Scolytinae)

    Treesearch

    Brian Strom; Smith S.L.; Brownie C.

    2013-01-01

    Jeffrey pine, Pinus jeffreyi Greville and Balfour, is a dominant yellow pine and important overstory component of forests growing on diverse sites from southwestern Oregon to Baja California to western Nevada. The Jeffrey pine beetle, Dedroctonus jeffreyi Hopkins (Coleoptera: Curculionidae: Scolytinae), is monophagous on Jeffrey...

  13. EXAMINING MULTI-SCALE CHANGES IN FOREST FRAGMENTATION

    EPA Science Inventory

    Forest fragmentation is a key measurement of forest condition. In comparison to the Chesapeake Bay region, dominant forest loss in New Jersey was less sensitive to forest loss, which may be attributable the protected status of the New Jersey Pine Barrens.

  14. Response of antelope bitterbrush to repeated prescribed burning in Central Oregon ponderosa pine forests

    Treesearch

    Matt D. Busse; Gregg M. Riegel

    2009-01-01

    Antelope  bitterbrush is a dominant shrub in many interior ponderosa pine forests  in the western United States. How it responds to prescribed fire is not  well understood, yet is of considerable concern to wildlife and fire  managers alike given its importance as a browse species and as a ladder  fuel in these fire-prone forests. We quantified bitterbrush...

  15. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    USGS Publications Warehouse

    Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan

    2013-01-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  16. Fungal and bacterial community succession differs for three wood types during decay in a forest soil.

    PubMed

    Prewitt, Lynn; Kang, Youngmin; Kakumanu, Madhavi L; Williams, Mark

    2014-08-01

    Wood decomposition by soil microorganisms is vital to carbon and nutrient cycles of forested ecosystems. Different wood types decompose at different rates; however, it is not known if there are differences in microbial community succession associated with the decay of different wood types. In this study, the microbial community associated with the decay of pine (decay-susceptible wood), western red cedar (decay resistant) and ACQ-treated pine (Ammoniacal Copper Quaternary, preservative-treated pine for decay resistance) in forest soil was characterized using DNA sequencing, phospholipid fatty acid (PLFA) analysis, and microbial activity over a 26-month period. Bray-Curtis ordination using an internal transcribed spacer (ITS) sequence and PLFA data indicated that fungal communities changed during succession and that wood type altered the pattern of succession. Nondecay fungi decreased over the 26 months of succession; however, by 18 months of decay, there was a major shift in the fungal communities. By this time, Trametes elegans dominated cedar and Phlebia radiata dominated pine and ACQ-treated pine. The description of PLFA associated with ACQ-treated pine resembled cedar more than pine; however, both PLFA and ITS descriptions indicated that fungal communities associated with ACQ-treated pine were less dynamic, perhaps a result of the inhibition by the ACQ preservative, compared with pine and cedar. Overall, fungal community composition and succession were associated with wood type. Further research into the differences in community composition will help to discern their functional importance to wood decay.

  17. Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1988-01-01

    Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).

  18. The Longleaf Alliance: A Regional Longleaf Pine Recovery Effort

    Treesearch

    Dean Gjerstad; Rhett Johnson

    2002-01-01

    Longleaf pine was once the dominate forest over nearly 70 percent of Alabama, ranging from just south of the Tennessee Valley to the Gulf Coast. Today longleaf represents less than 3 percent of Alabama's forest acreage. However, a dramatic recovery of this most important southern ecosystem is underway with interest and support at an all time high among landowners...

  19. Patterns and processes: Monitoring and understanding plant diversity in frequently burned longleaf pine (Pinus palustris) landscapes

    Treesearch

    J. O' Brien; L. Dyer; R. Mitchell; A. Hudak

    2013-01-01

    Longleaf pine (Pinus palustris) ecosystems are remarkably rich in plant species and represent the dominant upland forest type in several southeastern military installations. Management of these forests on installations is critical both to fulfill the military mission and to conserve this unique natural resource. The researchers will couple a series of field experiments...

  20. Late-Quaternary vegetation history at White Pond on the inner Coastal Plain of South Carolina*1

    NASA Astrophysics Data System (ADS)

    Watts, W. A.

    1980-03-01

    At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.

  1. Comparison of forest edge effects on throughfall deposition in different forest types.

    PubMed

    Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris

    2008-12-01

    This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.

  2. Effects of tornado damage, prescribed fire, and salvage logging on natural oak (Quercus spp.) regeneration in a xeric southern USA Coastal Plain oak/pine forest

    Treesearch

    Jeffery B. Cannon; J. Stephen Brewer

    2013-01-01

    Due in large part to fire exclusion, many oak-dominated (Quercus spp.) forests, woodlands, and savannas throughout eastern North America are being replaced by less diverse forest ecosystems. In the interior coastal plain of the southern United States, these forests are dominated in the mid- and understory by mesophytic species such as Acer...

  3. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  4. Crossdated fire histories (1650-1900) from ponderosa pine-dominated forests of Idaho and western Montana

    Treesearch

    Emily K. Heyerdahl; Penelope Morgan; James P. Riser

    2008-01-01

    For a broader study of the climate drivers of regional-fire years in the Northern Rockies, we reconstructed a history of surface fires at 21 sites in Idaho and western Montana. We targeted sites that historically sustained frequent surface fires and were dominated or codominated by ponderosa pine (Pinus ponderosa P. & C. Lawson). Our...

  5. Variability and persistence of post-fire biological legacies in jack pine-dominated ecosystems of northern Lower Michigan

    Treesearch

    Daniel Kashian; Gregory Corace; Lindsey Shartell; Deahn M. Donner; Philip Huber

    2011-01-01

    Stand-replacing wildfires have historically shaped the forest structure of dry, sandy jack pine-dominated ecosystems at stand and landscape scales in northern Lower Michigan. Unique fire behavior during large wildfire events often preserves long strips of unburned trees arranged perpendicular to the direction of fire spread. These biological legacies create...

  6. Warm summer nights and the growth decline of shore pine in Southeast Alaska

    Treesearch

    Patrick F Sullivan; Robin L Mulvey; Annalis H Brownlee; Tara M Barrett; Robert R Pattison

    2015-01-01

    Shore pine, which is a subspecies of lodgepole pine, was a widespread and dominant tree species in Southeast Alaska during the early Holocene. At present, the distribution of shore pine in Alaska is restricted to coastal bogs and fens, likely by competition with Sitka spruce and Western hemlock. Monitoring of permanent plots as part of the United States Forest Service...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Ken

    This is the AmeriFlux version of the carbon flux data for the site US-Dix Fort Dix. Site Description - The Fort Dix site is located in the upland forests of the New Jersey Pine Barrens, the largest continuous forested landscape on the Northeastern coastal plain. Upland forests occupy 62% of the 1.1 million acre Pine Barrens and can be divided into three dominant stand types, Oak/Pine (19.1%), Pine/Oak (13.1%), and Pitch Pine/Scrub oak (14.3%). The majority of mature upland forests are the product of regeneration following late 19th century logging and charcoaling activities. Gypsy moths first appeared in the Pinemore » Barrens of New Jersey in 1966. Since the time of arrival, the upland forest stands have undergone several episodes of defoliation, the most significant occurred in 1972, 1981, and 1990. In recent years, the overstory oaks and understory oaks and shrubs of the Fort Dix stand, underwent two periods of defoliation by Gypsy moth, in 2006 and 2007. During these two years, maximum leaf area reached only 70% of the 2005 summer maximum.« less

  8. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    PubMed

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  9. Impact of Market-Based Disturbance on the Composition of West Virginia's Forest Resource

    Treesearch

    William G. Luppold; John E. Baumgras; John E. Baumgras

    2000-01-01

    The eastern hardwood resource has been shaped by a combination of human and natural disturbances. This impact on the forest resources of West Virginia has been especially dramatic. This resource has changed from a virgin forest dominated white oak, chestnut, spruce, white pine, and hemlock in the late 19th century, to one dominated by red oak in the 1950's, to...

  10. Response of Planted Eastern White Pine (Pinus strobus L.) to Mechanical Release, Competition, and Drought in the Southern Appalachians

    Treesearch

    Barton D. Clinton; Katherine J. Elliott; Wayne T. Swank

    1997-01-01

    Conversion of low-quality, natural mixed pine hardwood ecosystems, containing a mountain laurel (Kalmia latifolia L.) dominated understory, to more productive eastern white pine (Pinus strobus L.)/mixed-hardwood systems is a common prescription on relatively xeric southern Appalachian forest sites. We examined the effects of...

  11. Influences of community composition on biogeochemistry of loblolly pine (Pinus taeda) systems

    Treesearch

    B.G. Lockaby; J.H. Miller; R.G. Clawson

    1995-01-01

    Litterfall and decomposition processes were compared among four forest plantations that were dominated by loblolly pine (Pinus taeda L) but that differed.in terms of presence or absence of deciduous and herbaceous components. Based on aboveground litterfall, the pine-only community was the most productive but had the slowest turnover of organic...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  13. Species composition, size structure, and disturbance: History of an old growth bottomland hardwood loblolly pine (Pinus taeda) forest in Arkansas, USA

    Treesearch

    Eric Heitzman; Michael G. Shelton; Adrian Grell

    2004-01-01

    The Lost Forty is a 16-ha old-growth bottomland hardwood-lobtolly pine (Pinus taeda L.) forest iocated in south-central Arkansas that has had little human disturbance. We established plots in the Lost Forty and collected data on species composition, tree size, age structure, and radial stem growth patterns. The overstory was dominated by species that...

  14. Structure and composition changes following restoration treatments of longleaf pine forests on the Gulf Coastal Plain of Alabama

    Treesearch

    K.W. Outcalt; D.G. Brockway

    2010-01-01

    Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2–4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while...

  15. Mismatch between herbivore behavior and demographics contributes to scale-dependence of host susceptibility in two pine species

    USGS Publications Warehouse

    Ylioja, T.; Slone, D.H.; Ayres, M.P.

    2005-01-01

    The impacts on forests of tree-killing bark beetles can depend on the species composition of potential host trees. Host susceptibility might be an intrinsic property of tree species, or it might depend on spatial patterning of alternative host species. We compared the susceptibility of loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) to southern pine beetle (Dendroctonus frontalis) at two hierarchical levels of geographic scale: within beetle infestations in heterospecific stands (extent ranging from 0.28 to 0.65 ha), and across a forest landscape (extent 72,500 ha) that was dominated by monospecific stands. In the former, beetles preferentially attacked Virginia pine (tree mortality = 65-100% in Virginia pine versus 0-66% in loblolly pine), but in the latter, loblolly stands were more susceptible than Virginia stands. This hierarchical transition in host susceptibility was predicted from knowledge of (1) a behavioral preference of beetles for attacking loblolly versus Virginia pine, (2) a negative correlation between preference and performance, and (3) a mismatch in the domain of scale between demographics and host selection by individuals. There is value for forest management in understanding the processes that can produce hierarchical transitions in ecological patterns. Copyright ?? 2005 by the Society of American Foresters.

  16. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.

    PubMed

    Rigling, Andreas; Bigler, Christof; Eilmann, Britta; Feldmeyer-Christe, Elisabeth; Gimmi, Urs; Ginzler, Christian; Graf, Ulrich; Mayer, Philipp; Vacchiano, Giorgio; Weber, Pascale; Wohlgemuth, Thomas; Zweifel, Roman; Dobbertin, Matthias

    2013-01-01

    An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner-Alpine regions, the species composition in low elevation forests is changing: The sub-boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub-Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger-scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed-effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small-diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services. © 2012 Blackwell Publishing Ltd.

  17. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management.

    PubMed

    Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri

    2008-07-12

    This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.

  18. Ammonia oxidizing archaea are the predominant nitrifiers in disturbed and undisturbed southern US pine forests

    NASA Astrophysics Data System (ADS)

    Mushinski, R. M.; Boutton, T. W.; Gentry, T. J.; Dorosky, R. J.

    2016-12-01

    The rate-limiting step in nitrification, ammonia oxidation, is performed by both ammonia oxidizing bacteria (AOB) and archaea (AOA); however, reports on the relative contribution of each of these groups to forest soil nitrification has varied. We coupled qPCR and next generation sequencing of the amoA gene to a whole-soil assay that stimulates nitrification and allows for the discrimination of AOA- from AOB-activity using 1-octyne, which inhibits the activity of the bacterial ammonia monooxygenase. Soils, to a depth of 1 meter, were collected from replicated (n = 3) loblolly pine (Pinus taeda L.) stands subjected to three different intensities of timber harvest (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands). The abundance of both bacterial and archaeal amoA were influenced by harvest method and soil depth; furthermore, archaeal amoA was 13x more abundant than bacterial amoA, across all soil depths. Sequencing and subsequent annotation of the ammonia oxidizing community revealed that the AOA were dominated by Crenarchaeota and AOB were dominated by Nitrosospira. Surface mineral soils (0-10 cm) amended with 1-octyne revealed that approximately 67-86% of total nitrification can be attributable to AOA activity. The highest rates of nitrification (total and 1-octyne resistant) occurred in the soils taken from the unharvested reference stands which were significantly greater than harvested stands. We can conclude that in this pine forest system, AOA dominates AOB in regards to amoA copy number and ammonia oxidizing activity. Not only is this study one of the first to investigate the ammonia-oxidizing population in southern pine forests, but also illustrates that timber harvest can lead to long-term alterations in nitrogen cycle processes.

  19. How will aspen respond to mountain pine beetle? A review of literature and discussion of knowledge gaps

    Treesearch

    Kristen A. Pelz; Frederick W. Smith

    2013-01-01

    There has been speculation that quaking aspen (Populus tremuloides) dominance of forests will increase due to mortality caused by mountain pine beetle (Dendroctonus ponderosae) (MPB). High aspen sucker densities have been observed inthe years following MPB-caused pine mortality, but it remains unclear if this disturbance will result in a pulse of aspen...

  20. The silvicultural implications of age patterns in two southern pine stands after 72 years of uneven-aged management

    Treesearch

    Don C. Bragg; James M. Guldin

    2015-01-01

    A randomized sample of 250 loblolly (Pinus taeda L.) and shortleaf (Pinus echinata Mill.) pine ring counts was collected from the Good and Poor Farm Forestry compartments on the Crossett Experimental Forest. These mature, pine-dominated stands have been managed using uneven-aged silviculture since 1937. Our sample shows that both...

  1. Effects of thinning and herbicide application on vertebrate communities in longleaf pine plantations

    Treesearch

    Kristina J. Brunjes; Karl V. Miller; W. Mark Ford; Timothy B. Harrington; M. Boyd Edwards

    2003-01-01

    Currently, nearly 98% of the land area once dominated by longleaf pine ecosystems has been converted to other uses. The U.S. Forest Service is replanting logged areas with longleaf pine at the Savannah River Site, New Ellenton, South Carolina, in an effort to restore these ecosystems. To ascertain the effects of various silvicultural management techniques on the...

  2. Designing Forest Adaptation Experiments through Manager-Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Nagel, L. M.; Swanston, C.; Janowiak, M.

    2014-12-01

    Three common forest adaptation options discussed in the context of an uncertain future climate are: creating resistance, promoting resilience, and enabling forests to respond to change. Though there is consensus on the broad management goals addressed by each of these options, translating these concepts into management plans specific for individual forest types that vary in structure, composition, and function remains a challenge. We will describe a decision-making framework that we employed within a manager-scientist partnership to develop a suite of adaptation treatments for two contrasting forest types as part of a long-term forest management experiment. The first, in northern Minnesota, is a red pine-dominated forest with components of white pine, aspen, paper birch, and northern red oak, with a hazel understory. The second, in southwest Colorado, is a warm-dry mixed conifer forest dominated by ponderosa pine, white fir, and Douglas-fir, with scattered aspen and an understory of Gambel oak. The current conditions at both sites are characterized by overstocking with moderate-to-high fuel loading, vulnerability to numerous forest health threats, and are generally uncharacteristic of historic structure and composition. The desired future condition articulated by managers for each site included elements of historic structure and natural range of variability, but were greatly tempered by known vulnerabilities and projected changes to climate and disturbance patterns. The resultant range of treatments we developed are distinct for each forest type, and address a wide range of management objectives.

  3. Biophysical characteristics influencing growth and abundance of western white pine (Pinus monticola) across spatial scales in the Coeur d'Alene River Basin, Idaho

    Treesearch

    Theresa Jain

    2001-01-01

    During the past 50 years the moist forests of northern Idaho changed from being dominated by western white pine (Pinus monticola), an early sera! species, to ones dominated by late serial species, grand fir (Abies grandis) and western hemlock (Tsuga heterophylla). Variable fire regimes, successional processes and endemic insects and pathogens worked in concert to...

  4. Holocene Vegetation and Fire Dynamics on the Chilcotin Plateau, BC, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, R.; Hawkes, B.

    2014-12-01

    The Chilcotin Plateau is a high elevation plateau in the west central interior of British Columbia, Canada. It is characterised by a continental climate and located in a rainshadow setting. Pine-dominated forests dominate. The region is prone to frequent fires and mountain pine beetle outbreaks. Several surface sediment cores and an overlapping Livingstone sediment core were collected from centrally-located Scum Lake and analysed for pollen, charcoal and insect remains. During the early-Holocene warm-dry interval, a non-arboreal vegetation community dominated by grass and sage dominated and surface fire disturbance was frequent. Model predictions suggest that non-arboreal vegetation may expand in this region in the future, suggesting that the fire regime will likewise change as in the early-Holocene. In the mid-Holocene, pine, possibly Pinus ponderosa, increased in abundance, suggesting that a surface fire regime persisted at that time. Pinus contorta pollen increased in the late-Holocene, representing the establishment of the modern forest and mixed/crown fire regime. Fire return intervals typically ranged between 20-100 years, consistent with tree-ring based observation (40-70 years). Analyses of the surface cores revealed that identifiable mountain pine beetle remains were rare, suggesting that alternative approaches may be required to assess to insect disturbance through time.

  5. Maine's forests 2008

    Treesearch

    George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall

    2011-01-01

    The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...

  6. Forests of the Black Hills National Forest 2011

    Treesearch

    Brian F. Walters; Christopher W. Woodall; Ronald J. Piva; Mark A. Hatfield; Grant M. Domke; David E. Haugen

    2013-01-01

    This inventory of the Black Hills National Forest (BHNF) covers the years 2007-2011 on the South Dakota portion of the forest and 2005 on the Wyoming portion. It reports more than 1.16 million acres of forest land dominated by ponderosa pine. Forest features reported on include volume, biomass, growth, removals, mortality, carbon, snags, and down woody material, along...

  7. New Jersey's forests, 2008

    Treesearch

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall; Bill Zipse

    2011-01-01

    The first full annual inventory of New Jersey's forests reports more than 2.0 million acres of forest land and 83 tree species. Forest land is dominated by oak-hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.4 billion cubic feet. The average...

  8. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqi; Guo, Zhiying; Chen, Chengrong; Jia, Zhongjun

    2017-04-01

    Forest plantations have been recognised as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms in determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e. slash pine, hoop pine and kauri pine) and a eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors in determining the patterns of soil bacterial and eukaryotic communities between the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight the importance of soil pH and physiochemical characteristics in microbially mediated ecological processes in forested soils.

  9. Site preparation burning to improve southern Appalachian pine-hardwood stands: aboveground biomass, forest floor mass, and nitrogen and carbon pools

    Treesearch

    J.M. Vose; W.T. Swank

    1993-01-01

    Prescribed fire is currently used as a site preparation treat-ment in mixed pine-hardwood ecosystems of the southern Appalachians.Stands receiving this treatment typically consist of mixtures of pitch pine (Pinus rigidu Mill.), scarlet oak (Quercus coccinea Muenchh.), chestnut oak (Quercus prinus L.), red maple (Acer rubrum L.), and dense under-stories dominated by...

  10. Carbon and nitrogen cycling in southwestern ponderosa fine forests

    Treesearch

    Stephen C. Hart; Paul C. Selmants; Sarah I. Boyle; Steven T. Overby

    2007-01-01

    Ponderosa pine forests of the southwestern United States were historically characterized by relatively open, parklike stands with a bunchgrass-dominated understory. This forest structure was maintained by frequent, low-intensity surface fires. Heavy livestock grazing, fire suppression, and favorable weather conditions following Euro-American settlement in the late 19th...

  11. Emissions from forest fires near Mexico City.

    Treesearch

    R.J. Yokelson; S.P. Urbanski; E.L. Atlas; D.E. Toohey; E.C. Alvarado; J.D. Crounse; P.O. Wennberg; M.E. Fisher; C.E. Would; T.L. Campos; K. Adachi; P.T. Buseck; W.M. Hao

    2007-01-01

    The emissions of NOx (defined as NO (nitric oxide) + NO2 (nitrogen dioxide)) and hydrogen cyanide (HCN), per unit amount of fuel burned from fires in the pine forests that dominate the mountains surrounding Mexico City (MC) are about 2 times higher than normally observed for forest burning. The ammonia (NH3...

  12. Truffle abundance and mycophagy by northern flying squirrels in eastern Washington forests.

    Treesearch

    John F. Lehmkuhl; Laura E. Gould; Efren Cazares; David R. Hosford

    2004-01-01

    Although much is known about truffle abundance and rodent mycophagy in mesic Douglas-fir forests in the Pacific Northwest, few data are available for dry interior montane forests dominated by ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and grand fir (Abies grandis). Our objective...

  13. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  14. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado

    Treesearch

    Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown

    2018-01-01

    In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Service’s Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...

  15. New Jersey Forests 2013

    Treesearch

    Susan J. Crocker; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Ronald J. Piva; Rachel Riemann; James E. Smith; Christopher W. Woodall; William. Zipse

    2017-01-01

    The second full annual inventory of New Jersey’s forests reports more than 2.0 million acres of forest land and 77 tree species. Forest land is dominated by oak/hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.3 billion cubic feet. Average annual net...

  16. Longleaf pine regeneration ecology and methods

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; William D. Boyer

    2006-01-01

    Regenerating longleaf pine (Pinus palustris) is key to its long-term sustainable production of forest resources and its perpetuation as the dominant tree species in a variety of important ecosystems ranging from xeric to mesic to hydric site conditions. Early regeneration to problems and the subsequent efforts to overcome these are significant...

  17. Reptile and amphibian responses to restoration of fire-maintained pine woodlands

    Treesearch

    Roger W Perry; D. Craig Rudolph; Ronald E. Thill

    2009-01-01

    Fire-maintained woodlands and savannas are important ecosystems for vertebrates in many regions of the world. These ecosystems are being restored by forest managers, but little information exists on herpetofaunal responses to this restoration in areas dominated by shortleaf pine (Pinus echinata). We compared habitat characteristics and...

  18. Forest health status in Hungary

    Treesearch

    Andras Szepesi

    1998-01-01

    Because Hungary has about 18 percent forest area, it is not as densely forested as most of the countries in Europe. Forests are dominated by native species such as oaks, beech, hornbeam, and other broadleaves. As a result of an intensive afforestation in the last 50 years, introduced species, such as black locust, Scots pine, and improved poplars were widely planted...

  19. The evolution of the New Jersey Pine Plains.

    PubMed

    Ledig, F Thomas; Hom, John L; Smouse, Peter E

    2013-04-01

    Fire in the New Jersey Pine Plains has selectively maintained a dwarf growth form of pitch pine (Pinus rigida), which is distinct from the surrounding tall forest of the Pine Barrens and has several other inherited adaptations that enable it to survive in an environment dominated by fire. Pitch pine progeny from two Pine Plains sites, the West and East Pine Plains, were grown in common garden environments with progeny from two Pine Barrens stands, Batsto and Great Egg Harbor River. The tests were replicated in five locations: in New Jersey, Connecticut, two sites in Massachusetts, and Korea. One of the tests was monitored for up to 36 yr. Progeny of Pine Plains origin were, in general, shorter, more crooked, precocious, bore more cones, had a higher frequency of serotinous cones, and had a higher frequency of stem cones than did Pine Barrens progeny, wherever they were grown. The Pine Plains is an ecotype that has evolved in response to disturbance. The several characters that distinguish it from the surrounding tall forest of the Pine Barrens are inherited. The dwarf stature and crooked form not only enable the ecotype to persist in an environment of frequent fires but also increase its flammability.

  20. Temperate pine barrens and tropical rain forests are both rich in undescribed fungi.

    PubMed

    Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning

    2014-01-01

    Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species.

  1. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Treesearch

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  2. Thinning and underburning effects on productivity and mensurational characteristics of Jeffrey Pine

    Treesearch

    R.M. Fecko; R.F. Walker; W.B. Frederick; W.W. Miller; D.W. Johnson

    2007-01-01

    Thinning utilizing cut-to-length and whole-tree harvesting systems with subsequent underburning were assessed for their influence on stand productivity and mensurational variables in uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) on the Tahoe National Forest. Both intermediate and a combination of dominant and codominant crown class...

  3. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.

    PubMed

    Barroetaveña, C; Cázares, E; Rajchenberg, M

    2007-07-01

    The putative ectomycorrhizal fungal species registered from sporocarps associated with ponderosa pine and Douglas-fir forests in their natural range distribution (i.e., western Canada, USA, and Mexico) and from plantations in south Argentina and other parts of the world are listed. One hundred and fifty seven taxa are reported for native ponderosa pine forests and 514 taxa for native Douglas-fir forests based on available literature and databases. A small group of genera comprises a high proportion of the species richness for native Douglas-fir (i.e., Cortinarius, Inocybe, and Russula), whereas in native ponderosa pine, the species richness is more evenly distributed among several genera. The comparison between ectomycorrhizal species richness associated with both trees in native forests and in Patagonia (Argentina) shows far fewer species in the latter, with 18 taxa for the ponderosa pine and 15 for the Douglas-fir. Epigeous species richness is clearly dominant in native Douglas-fir, whereas a more balanced relation epigeous/hypogeous richness is observed for native ponderosa pine; a similar trend was observed for Patagonian plantations. Most fungi in Patagonian Douglas-fir plantations have not been recorded in plantations elsewhere, except Suillus lakei and Thelephora terrestris, and only 56% of the fungal taxa recorded in Douglas-fir plantations around the world are known from native forests, the other taxa being new associations for this host, suggesting that new tree + ectomycorrhizal fungal taxa associations are favored in artificial situations as plantations.

  4. Breeding birds in riparian and upland dry forests of the Cascade Range

    Treesearch

    John F. Lehmkuhl; E. Dorsey Burger; Emily K. Drew; John P. Lindsey; Maryellen Haggard; Kent Z. Woodruff

    2007-01-01

    We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along six third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland mesic forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii...

  5. Development of ecological restoration experiments in fire adapted forests at Grand Canyon National Park

    Treesearch

    Thomas A. Heinlein; W. Wallace Covington; Peter Z. Fule; Margaret H. Moore; Hiram B. Smith

    2000-01-01

    The management of national park and wilderness areas dominated by forest ecosystems adapted to frequent, low-intensity fires, continues to be a tremendous challenge. Throughout the inland West and particularly in the Southwest, ponderosa pine (Pinus ponderosa) and mixed conifer forests have become dense and structurally homogeneous after periods of...

  6. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    PubMed

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.

  7. Associations between regional moisture gradient, tree species dominance, and downed wood abundance

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Mills, J.

    2007-12-01

    Downed wood functions as a source of nurse logs, physical structure in streams, food, and carbon. Because downed wood is important in upland and aquatic habitats, an understanding of wood recruitment along a continuum from wet to dry landscapes is critical for both preservation of biodiversity and restoration of natural ecosystem structure and function. We assessed downed wood in public and private forests of Washington and Oregon by using a subset of the Forest Inventory and Analysis (FIA) database including 15,842 sampled conditions. Multivariate regression trees, ANOVA, and t-tests were used to discern environmental conditions most closely associated with abundance of woody debris. Of the 16 parameters included in the analysis, rainfall, forest ownership, number of damaged standing trees, and forest elevation were most indicative of woody debris abundance. The Hemlock/spruce Group, including hemlock, spruce, cedar, and white pine, most associated with wetter soils, had significantly more downed wood than 12 other forest groups. The Ponderosa Pine Group, indicative of drier sites with higher fire frequencies, included ponderosa pine, sugar pine, and incense cedar, and had significantly less downed wood volume. Overall, the amount of woody debris in either the Spruce/hemlock Group or the Ponderosa Pine Group did not change significantly as tree age increased from 5 to 350 years. Plots within the Hemlock/spruce with greater standing tree volume also had significantly greater downed wood volume. In contrast, greater downed wood volume was not associated with greater standing tree volume in the Ponderosa Pine Group. Knowledge of linkages among environmental variables and stand characteristics are useful in development of regional forest models aimed at understanding the effects of climate change and disturbance on forest succession.

  8. Relationship between herbaceous layer, stand, and site variables in the Bankhead National Forest, Alabama

    Treesearch

    Joel C. Zak; Luben D. Dimov; Callie Jo Schweitzer; Stacy L. Clark

    2010-01-01

    We studied herbaceous layer richness, diversity and cover in stands on the southern Cumberland Plateau. The stands are mixed pine-hardwoods dominated by 25-40-year-old planted loblolly pine (Pinus taeda L.). Scheduled future treatments combining thinning and fire are designed to restore the hardwood component, particularly oak (Quercus...

  9. Species mixture effects in northern red oak-eastern white pine stands in Maine, USA

    Treesearch

    Justin Waskiewicz; Laura Kenefic; Aaron Weiskittel; Robert Seymour

    2013-01-01

    Growth and yield studies of mixed-species stands lack generality, though mixture effects appear to be most likely in stands of species with contrasting traits and/or with vertical stratification. The northern red oak (Quercus rubra L.) - eastern white pine (Pinus strobus L.) forest type of the US Northeast is dominated by species...

  10. Influences of climate on fire regimes in montane forests of north-western Mexico

    Treesearch

    Carl N. Skinner; Jack H. Burk; Michael G. Barbour; Ernesto Franco-Vizcaino; Scott L. Stephens

    2008-01-01

    Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north-western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)- dominated mixed-conifer...

  11. Temperate Pine Barrens and Tropical Rain Forests Are Both Rich in Undescribed Fungi

    PubMed Central

    Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning

    2014-01-01

    Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species. PMID:25072783

  12. Return of the giants: Restoring white pine ecosystems by breeding and aggressive planting of blister rust-resistant white pines

    Treesearch

    Lauren Fins; James Byler; Dennis Ferguson; Al Harvey; Mary Francis Mahalovich; Geral I. McDonald; Dan Miller; John Schwandt; Art Zack

    2001-01-01

    In 1883, when the Northern Pacific Railroad made its way through northern Idaho, western white pines dominated the moist, mid-elevation, mixed-species forests of the Inland Northwest between 2,000 and 6,000 feet. These majestic trees often lived to 350 years but could reach the ripe old ages of 400 and even 500 years. They were an integral part of the most productive...

  13. Management of Peatland Shrub- and Forest-Dominated Communities for Threatened and Endangered Species.

    DTIC Science & Technology

    1998-12-01

    land Pond Pine Woodland NCNHP and TNC 1995 Dare County Bombing Range Pocosin Low Pocosin , High Pocosin NCNHP and TNC 1995 Army Camp Mackall...in height, but may include widely spaced, stunted and gnarled pond pine. High pocosins (Figure 7) have a shrub layer ranging from 1.5 to 3 m tall, a... Pond Pine Woodland 18 Basin Pocosins 19 Streamhead Pocosin 22 Cypress Domes 23 Occurrence on Military Installations 25 3 Biodiversity and

  14. Soil propagule bank of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana) grown in a manganese mine wasteland

    PubMed Central

    Han, Qisheng; Li, Junjian

    2018-01-01

    Ectomycorrhizal (ECM) fungal propagule bank could facilitate the regeneration and plantation of seedlings in disturbed area. In this study, Masson pine (Pinus massoniana) seedlings were used to bait the ECM fungal propagule bank buried in the soils collected from a manganese (Mn) mine wasteland and a non-polluted area in China. After 6-month growth, we found the seedlings grown in the Mn mine soil (Mn:3200 mg kg-1) did not display any toxicity symptoms. Based on morphotyping and ITS-PCR sequencing, we identified a total of 16 ECM fungal OTUs (operative taxonomic units) at 97% similarity threshold, among which 11 OTUs were recovered in the Mn mine soils and 14 in the non-polluted soil. Two soil types shared 9 OTUs and both of them were dominated by a Tylospora sp. Based on those soil propagule banks in Masson pine forests reported in previous, we speculated that some Atheliaceae species may be preferred in the soil propagule bank of some pine species, such as Masson pine. In addition, NMDS ordination displayed geographical position effects on soil propagule banks in five Masson pine forest from three sites at regional scale. In conclusion, Masson pine ECM seedlings could grow well in the Mn wasteland as a suitable tree species used for reforestation application in Mn mineland, in addition, Mn pollution did not alter the dominant ECM fungal species in the soil propagule banks. PMID:29870548

  15. Fuels management in the Subtropical Mountains Division

    Treesearch

    James M. Guldin

    2012-01-01

    The heterogeneity of the forests west of the Mississippi River in the Southern United States is strongly influenced by physiography and topography. The west Gulf Coastal Plain of southern Arkansas, northwestern Louisiana, and eastern Texas features highly productive pine-dominated forests (Pinus spp.) on gentle terrain that are interspersed by major...

  16. Saproxylic Hemiptera Habitat Associations

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  17. Dalmatian toadflax (Linaria dalmatica) response to wildfire in a Southwestern USA forest

    Treesearch

    Rita S. Dodge; Peter Z. Fule; Carolyn Hull Sieg

    2008-01-01

    Severe wildfires often facilitate the spread of exotic invasive species, such as Dalmatian toadflax (Linaria dalmatica). We hypothesized that toadflax growth and reproduction would increase with increasing burn severity in a ponderosa pine (Pinus ponderosa)-dominated forest. We measured toadflax density, cover, flowering stalks,...

  18. Alternative approaches to mixed conifer forest restoration: partitioning the competitive neighborhood

    Treesearch

    Michael I. Premer; Sophan Chhin; Jianwei Zhang

    2017-01-01

    Forest restoration efforts in the intermountain west of North America generally seek to promote the continuation of pine dominance, enhance wildlife habitat, and decrease hazardous fuels, thereby mitigating catastrophic losses from various stressors and disturbances. We propose a method of focal tree release thinning that partitions the...

  19. Vascular flora of the Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana

    Treesearch

    Scott A. Mincemoyer; Jennifer L. Birdsall

    2006-01-01

    Tenderfoot Creek Experimental Forest (TCEF) is situated in the Little Belt Mountains of Montana, 120 km east of the Continental Divide. TCEF is composed of 3693 ha at elevations between 1840 and 2420 m and is dominated by lodgepole pine forest, which covers about 3366 ha, with interspersed floristically rich meadows. Our floristic inventory is based on collections and...

  20. Postfire changes in forest carbon storage over a 300-year chronosequence of Pinus contorta-dominated forests

    Treesearch

    Daniel M. Kashian; William H. Romme; Daniel B. Tinker; Monica G. Turner; Michael G. Ryan

    2013-01-01

    A warming climate may increase the frequency and severity of stand-replacing wildfires, reducing carbon (C) storage in forest ecosystems. Understanding the variability of postfire C cycling on heterogeneous landscapes is critical for predicting changes in C storage with more frequent disturbance. We measured C pools and fluxes for 77 lodgepole pine (Pinus contorta...

  1. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Treesearch

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  2. Implementation of the Montreal Process: An Oregon Case Study

    Treesearch

    J. E. Brown

    2006-01-01

    The state of Oregon has about 28 million acres of forestland. The west side of the state is dominated by Douglas-fir forests, and most of the east side forests are occupied by Ponderosa pines or mixed conifers. The Oregon Board of Forestry is charged with making policy for Oregon’s forests. It has relied on quantitative assessments of forest conditions for many years,...

  3. Seasonal influences on ozone uptake and foliar injury to ponderosa and Jeffrey pines at a southern California site

    Treesearch

    Patrick J. Temple; Paul R. Miller

    1998-01-01

    Ambient ozone was monitored from 1992 to 1994 near a forested site dominated by mature Jeffrey and ponderosa pines (Pinus jeffrey Grev. & Balf. and Pinus ponderosa Dougl. ex Laws.) at 2,000 m in the San Bernardino Mountains of southern California. Ozone injury symptoms, including percent chlorotic mottle and foliage retention,...

  4. Longleaf Pine Regeneration and Management: An Overstory Overview

    Treesearch

    William D. Boyer

    1997-01-01

    Longleaf pine is the key tree in fire-dependent ecosystems long native to the southeastern United States. Once the most extensive forest ecosystem in North America dominated by a single species, it now occupies only a small fraction of its former range. Longleaf has the reputation of being a slow-growing species that is nearly impossible to regenerate and so...

  5. Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site

    Treesearch

    James D. Haywood; Finis L. Harris; Harold E. Grelen; Henry A. Pearson

    2001-01-01

    From 1962 through 1998, 20 prescribed bums were applied in a natural stand of longleaf pine(Pinus palustris Mill.) to determine the effects of various fire regimes on the forest plant community. The original longleaf seedlings regenerated from the 1955 seed crop and were growing in a grass-dominated cover when the study began. By 1999, prescribed...

  6. Effects of global climate change on biodiversity in forests of the Southern United States

    Treesearch

    Margaret S. Devall; Bernard R. Parresol

    1998-01-01

    Climate has not been stable in the past. Fluctuations of pine (Pinus) pollen in a 50,000-year sequence from Lake Tulane in Florida indicate that major vegetation shifts occurred during the last glacial cycle. Phases of pollen dominated by pine (indicating a wet climate) were interspersed with periods with plentiful oak (Quercus), ragweed, and marsh elder (...

  7. Fire history in the ponderosa pine/Douglas-fir forests on the east slope of the Washington Cascades.

    Treesearch

    Richard L. Everett; Richard Schellhaas; Dave Keenum

    2000-01-01

    We collected 490 and 233 fire scars on two ponderosa pine (Pinus ponderosa)/Douglas-fir (Pseudotsuga menziesii) dominated landscapes on the east slope of the Washington Cascades that contained a record of 3901 and 2309 cross-dated fire events. During the pre-settlement period (1700/1750±1860), the Weibull median fire-free...

  8. [Effect of pine plantations on soil arthropods in a high Andean forest].

    PubMed

    León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth

    2010-09-01

    One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine plantations affect the diversity, composition, community dynamic and trophic structure of soil arthropods. Also, some estimators of soil stability give signals that these effects are reducing the ecosystem function in the region.

  9. Forest Health Monitoring in New Hampshire, 1996-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    New Hampshire has mature forests dominated by hardwood species but with significant softwood resources. The majority of the trees are healthy with full crowns (low transparency, high density), little dieback and little damage. Red maple had higher dieback and more damage than other species. Eastern white pine had lower crown densities and little damage.

  10. Alterations on flow variability due to converting hardwood forests to pine

    Treesearch

    Yusuf Serengil; Wayne T. Swank; James M. Vose

    2012-01-01

    Flow variability is a potential indicator of land use impacts on aquatic ecosystems and a dominating factor for lotic habitats. Vegetation management effects on the stream habitat conditions must be better understood to propose forest management activities that are compatible with general ecosystem management objectives (integrity, diversity, sustainability, etc.). In...

  11. Late Holocene and modern pollen records from three sites in Shannon and Carter Counties, southeast Missouri Ozarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, J.K.

    Palynological investigations of a small sinkhole bog (Buttonbush Bog) and two archaeological sites (Round Spring Shelter, Round Spring Site 23SH19 and Gooseneck Site 23CT54) located in Shannon and Carter counties, Missouri provide a 3,100 year record of vegetational change. Bryophytic polsters and surface samples were also collected in Shannon and Carter counties in the southeast Missouri Ozarks to determine modern pollen rain. A 302-cm core retrieved from Buttonbush Bog has a basal data of 3,130 [+-] 100 yr B.P. and a date of 1,400 [+-] 100 yr B.P. at 52--56 cm. The Buttonbush Bog pollen sequence is divided into threemore » pollen-assemblage zones. The pollen spectra from Buttonbush Bog indicate that pine did not become well established in the southeast Missouri Ozarks until after 3,100 yr B.P. Zone 1 (the oldest) represents a mixed oak forest with minor components of pine and hickory. In Zone 2, pine values increase, indicating a shift to a pine-oak forest. The pollen sequence from Round Spring Shelter is divided into two pollen-assemblage zones. The lower zone (Zone 1) suggests the presence of a pine-oak forest in the vicinity of Round Spring prior to an Ambrosia rise at the top of the sequence in Zone 2. Regional pollen rain and variation in the local pollen rain are reflected by modern pollen spectra extracted from the bryophytic polsters surface samples. In this area the average regional pollen rain is dominated by pine, oak, hickory, and Ambrosia. The data are consistent with the mosaic of pine-oak and oak-hickory-pine forests characteristic of this region.« less

  12. [Energy balance and evapotranspiration in broad-leaved Korean pine forest in Changbai Mountains].

    PubMed

    Zhang, Xin-jian; Yuan, Feng-hui; Chen, Ni-na; Deng, Jun-li; Yu, Xiao-zhou; Sheng, Xue-jiao

    2011-03-01

    Based on the continuous measurements of an open-path eddy covariance system, this paper analyzed the characteristics of energy balance components and evapotranspiration in a broad-leaved Korean pine forest in Changbai Mountains in 2008, as well as the differences of energy balance components and evapotranspiration between growth season and dormant season. For the test forest, the year-round energy balance closure was 72%, being at a medium level, compared to the other studies in the Fluxnet community. The energy balance components had significant differences in their diurnal and seasonal variations. In growth season, turbulent energy exchange was dominated by upward latent heat flux, accounting for 66% of available energy; while in dormant season, the turbulent energy exchange was dominated by upward sensible heat flux, accounting for 63% of available energy. The accumulated annual evapotranspiration in the study site in 2008 was 484.7 mm, occupying 87% of the precipitation at the same time period (558.9 mm), which demonstrated that evapotranspiration was the main water loss item in temperate forests of northern China.

  13. Site preparation burning to improve southern Appalachian pine-hardwood stands: vegetation composition and diversity of 13-year-old stands

    Treesearch

    Barton D. Clinton; J.M. Vose; W.T. Swank

    1993-01-01

    Stand restoration of low-quality, mixed pine-hardwood ecosystems containing a Kalmia Zatifolia L. dominated understory, through cutting, burning, and planting of Pinus strobus L., is common on xeric southern Appalachian forest sites. We examined the effects of this treatment on early vegetation composition and diversity. Four 13-year-old stands were examined. Two of...

  14. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.T. Rader

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment.more » Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.« less

  15. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests.

    PubMed

    Smithers, Brian V; North, Malcolm P; Millar, Constance I; Latimer, Andrew M

    2018-02-01

    In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal and establishment may result in future communities with very different specific composition. © 2017 John Wiley & Sons Ltd.

  16. AmeriFlux US-Me6 Metolius Young Pine Burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me6 Metolius Young Pine Burn. Site Description - The study site is located east of the Cascade mountains, near Sisters, Central Oregon and is part of the Metolius cluster sites with different age and disturbance classes within the AmeriFlux network. After a severe fire in 1979, the site was salvage logged, was acquired by the US Forest Service land and re-forested in 1990. The dominant overstory vegetation are 20-year old ponderosa pine trees with an average height of 5.2 +/- 1.1 m. The season maximum overstory half-sidedmore » LAI was 0.6 m2 m-2 in 2010. Tree density is low, with ca. 162 trees ha-1.« less

  17. Comparative Transcriptomics Among Four White Pine Species

    PubMed Central

    Baker, Ethan A. G.; Wegrzyn, Jill L.; Sezen, Uzay U.; Falk, Taylor; Maloney, Patricia E.; Vogler, Detlev R.; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A.; Famula, Randi A.; Liu, Jun-Jun; Kueppers, Lara M.; Neale, David B.

    2018-01-01

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus. The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. PMID:29559535

  18. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels

    Treesearch

    Jesse K. Kreye; Leda N. Kobziar; Wayne C. Zipperer

    2013-01-01

    Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yetlittle research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida...

  19. Simulating the impacts of fire: A computer program

    NASA Astrophysics Data System (ADS)

    Ffolliott, Peter F.; Guertin, D. Phillip; Rasmussen, William D.

    1988-11-01

    Recurrent fire has played a dominant role in the ecology of southwestern ponderosa pine forests. To assess the benefits or losses of fire in these forests, a computer simulation model, called BURN, considers vegetation (mortality, regeneration, and production of herbaceous vegetation), wildlife (populations and habitats), and hydrology (streamflow and water quality). In the formulation of the model, graphical representations (time-trend response curves) of increases or losses (compared to an unburned control) after the occurrence of fire are converted to fixedterm annual ratios, and then annuities for the simulation components. Annuity values higher than 1.0 indicate benefits, while annuity values lower than 1.0 indicate losses. Studies in southwestern ponderosa pine forests utilized in the development of BURN are described briefly.

  20. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1988-01-01

    The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.

  1. Forest Health Monitoring in Maine, 1996-1999.

    Treesearch

    Northeastern Research Station

    2002-01-01

    Maine has mixed-age forests dominated by softwood species. Most of the trees are healthy, with full crowns (low transparency, high density), little dieback and little damage. Red maple had higher amounts of dieback but seemed to maintain crown fullness. Eastern white pine and northern white cedar had lower densities as well as higher rates of damage.

  2. Geoecology of a forest watershed underlain by serpentine in Central Europe

    Treesearch

    Pavel Krám; Filip Oulehle; Veronika Štedrá; Jakub Hruška; James B. Shanley; Rakesh Minocha; Elena Traister

    2009-01-01

    The geoecology of a serpentinite-dominated site in the Czech Republic was investigated by rock, soil, water, and plant analyses. The 22-ha Pluhuv Bor watershed is almost entirely forested by a nearly 110-year old plantation of Picea abies (Norway Spruce) mixed with native Pinus sylvestris (Scots Pine) in the highest elevations...

  3. Dynamical role of predators in population cycles of a forest insect: an experimental test.

    Treesearch

    P. Turchin; A.D. Taylor; J.D. Reeve

    1999-01-01

    Population cycles occur frequently in forest insects.Time-series analysis of fluctuations in one such insect, the southern pine beetle (Dendroctonus frontalis), suggests that beetle dynamics are dominated by an ecological process acting in a delayed density-dependent manner.The hypothesis that delayed density-dependence in this insect results from its interaction with...

  4. Science You Can Use Bulletin: Return of the king: Western white pine conservation and restoration in a changing climate

    Treesearch

    Sarah Hines; Ned Klopfenstein; Bryce Richardson; Marcus Warwell; Mee-Sook Kim

    2013-01-01

    Western white pine (Pinus monticola) is a species that used to dominate the forests of the Interior Northwest prior to the expansion of the Northern Pacific Railroad in the late 19th century. Its foundational role contributed to a landscape that was resilient, fire-adapted, and provided abundant suitable habitat for terrestrial and aquatic species. However, substantial...

  5. Ecosystem Nitrogen Retention Following Severe Bark Beetle and Salvage Logging Disturbance in Lodgepole Pine Forests: a 15N Enrichment Study

    NASA Astrophysics Data System (ADS)

    Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.

    2017-12-01

    In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.

  6. [Relative abundance and microhabitat use by the frog Geobatrachus walkeri (Anura: Strabomantidae) in two habitats of Sierra Nevada de Santa Marta, Colombia].

    PubMed

    Martínez Baños, Vera; Pacheco Florez, Vanesa; Ramírez-Pinilla, Martha P

    2011-06-01

    Geobatrachus walkeri belongs to a monotypic frog genus endemic to the San Lorenzo area, Sierra Nevada de Santa Marta, Colombia. This species has been categorized as endangered because of its small distribution area and the decline in the extent and quality of its habitat. It inhabits two forest types with different composition and structure, the native secondary forest and a pine plantation (dominated by Pinus patula). To compare the relative abundance and microhabitat use of this species in these habitat types, 30 quadrants/environment were distributed randomly. The individual number, microhabitat use and other aspects of its natural history were registered using visual encounter surveys in both sites, including non-sampled areas in the quadrants. The relative abundance of frogs was significantly different between habitats and among seasons. The highest abundance of G. walkeri relative to the total area was found in the pine plantation, being 2.3 times higher than in the natural forest. More frogs were significantly found during the rainy season; nevertheless, active individuals were also found during the dry season. Significant differences were found in the microhabitat use with respect to the forest type and season. The most frequently microhabitat used in the two forest types was the pine leaf-litter; besides, in the native forest, the microhabitat occupied more frequently presented medium and large size stones. Geobatrachus walkeri is a successful species in pine plantations, associated permanently to its leaf-litter environment where it seems to develop its entire life cycle. The clear modifications in the soils and water, derived from the introduction of the pine plantation in this area, seem not to have negatively affected the conservation and successful maintenance of this species.

  7. AmeriFlux CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998.

    DOE Data Explorer

    Amiro, Brian [University of Manitoba; Canadian Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998.. Site Description - The 1998 burn site (F98) was in the east part of Prince Albert National Park, Saskatchewan, in the Waskesiu Fire, ignited by lightning that burned about 1700 ha in July 1998. The pre-fire forest consisted of jack pine and black spruce stands, with some intermixed aspen. The fire was severe, consuming much of the top layer of organic soil and killing all trees. In 2001, much of the regenerating vegetation consisted of aspen saplings about 1 m tall and shorter jack pine and black spruce seedlings. An overstory of dead, leafless jack pine trees dominated at a height of 18 m. Sparse grass and herbs, such as fireweed (Epilobium angustifolium L.) covered the ground. There were a large number of fallen dead trees, mostly perched above the ground and not decomposing quickly.

  8. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula.

    PubMed

    Vilà-Cabrera, Albert; Martínez-Vilalta, Jordi; Vayreda, Jordi; Retana, Javier

    2011-06-01

    The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results suggest a large-scale self-thinning related to the recent densification of Scots pine forests. This process appears to be enhanced by dry conditions and may lead to a mismatch in forest turnover. Forest management may be an essential adaptive tool under the drier conditions predicted by most climate models.

  9. Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA

    Treesearch

    Andrew T. Hudak; Benjamin C. Bright; Scott M. Pokswinski; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Carine Klauberg; Carlos A. Silva

    2016-01-01

    Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety...

  10. Regime Shifts and Weakened Environmental Gradients in Open Oak and Pine Ecosystems

    PubMed Central

    Hanberry, Brice B.; Dey, Dan C.; He, Hong S.

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections. PMID:22848467

  11. Regime shifts and weakened environmental gradients in open oak and pine ecosystems.

    PubMed

    Hanberry, Brice B; Dey, Dan C; He, Hong S

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections.

  12. Growth-climate relationships across topographic gradients in the northern Great Lakes

    USGS Publications Warehouse

    Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.

    2016-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.

  13. Simulation of forest change in the New Jersey Pine Barrens under current and pre-colonial conditions

    Treesearch

    Robert M. Scheller; Steve Van Tuyl; Kenneth Clark; Nicholas G. Hayden; John Hom; David J. Mladenoff

    2008-01-01

    Changes in land use patterns in and around forests, including rural development and road building, have occurred throughout the United States and are accelerating in many areas. As a result, there have been significant departures from 'natural' or pre-settlement disturbance regimes. Altered disturbance regimes can shift composition and dominance in tree...

  14. Comparing aboveground biomass predictions for an uneven-aged pine-dominated stand using local, regional, and national models

    Treesearch

    D.C. Bragg; K.M. McElligott

    2013-01-01

    Sequestration by Arkansas forests removes carbon dioxide from the atmosphere, storing this carbon in biomass that fills a number of critical ecological and socioeconomic functions. We need a better understanding of the contribution of forests to the carbon cycle, including the accurate quantification of tree biomass. Models have long been developed to predict...

  15. Natural canopy damage and the ecological restoration of fire-indicative groundcover vegetation in an oak-pine forest

    Treesearch

    J. Stephen Brewer

    2016-01-01

    An important goal of restoring fire to upland oak-dominated communities that have experienced fire exclusion is restoring groundcover plant species diversity and composition indicative of fire-maintained habitats. Several studies have shown that fire alone, however, may not be sufficient to accomplish this goal. Furthermore, treatment-driven declines in rare forest...

  16. The northern hardwood forests of the Anthracite Region

    Treesearch

    C. F. Burnham; M. J. Ferree; F. E. Cunningham

    1947-01-01

    The northern hardwood type forest is found only in the northern counties of the Anthracite Region. It dominates the highlands from Sullivan County on the west, to Monroe County on the east. The early lumbermen back in the 1860's, according to Illick and Frontz, "found (some) valleys, hillsides and mountains covered with a dense growth of enormous white pine...

  17. Structural characteristics of forest stands within home ranges of Mexican spotted owls in Arizona and New Mexico

    Treesearch

    Joseph L. Ganey; William M. Block; Steven H. Ackers

    2003-01-01

    As part of a set of studies evaluating home-range size and habitat use of radio-marked Mexican spotted owls (Strix occidentalis lucida), we sampled structural characteristics of forest stands within owl home ranges on two study areas in Arizona and New Mexico. Study areas were dominated by ponderosa pine (Pinus ponderosa)-Gambel...

  18. Predation of Artificial Nests in Hardwood Fragments Enclosed by Pine and Agricultural Habitats

    Treesearch

    Robert A. Sargent; John C. Kilgo; Briand R. Chapman; Karl V. Miller

    1998-01-01

    Nesting success of songbirds often is poor in edge-dominated habitats. Because the spatial juxtaposition of forest fragments relative to other habitats may influence nest success, we tested the hypothesis that the depredation rate for bird nests in small hardwood forests would decrease if the degree of edge contrast with adjoining habitats was reduced. Over 4 trials,...

  19. Comparative Transcriptomics Among Four White Pine Species.

    PubMed

    Baker, Ethan A G; Wegrzyn, Jill L; Sezen, Uzay U; Falk, Taylor; Maloney, Patricia E; Vogler, Detlev R; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A; Famula, Randi A; Liu, Jun-Jun; Kueppers, Lara M; Neale, David B

    2018-05-04

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine ( Pinus monticola ), limber pine ( Pinus flexilis ), whitebark pine ( Pinus albicaulis) , and sugar pine ( Pinus lambertiana ) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. Copyright © 2018 Baker et al.

  20. Use of lodgepole pine cover types by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    1997-01-01

    Lodgepole pine (Pinus contorta) forests are a large and dynamic part of grizzly bear (Ursus arctos) habitat in the Yellowstone ecosystem. Research in other areas suggests that grizzly bears select for young open forest stands, especially for grazing and feeding on berries. Management guidelines accordingly recommend timber harvest as a technique for improving habitat in areas potentially dominated by lodgepole pine. In this paper I examine grizzly bear use of lodgepole pine forests in the Yellowstone area, and test several hypotheses with relevance to a new generation of management guidelines. Differences in grizzly bear selection of lodgepole pine cover types (defined on the basis of stand age and structure) were not pronounced. Selection furthermore varied among years, areas, and individuals. Positive selection for any lodgepole pine type was uncommon. Estimates of selection took 5-11 years or 4-12 adult females to stabilize, depending upon the cover type. The variances of selection estimates tended to stabilize after 3-5 sample years, and were more-or-less stable to slightly increasing with progressively increased sample area. There was no conclusive evidence that Yellowstone's grizzlies favored young (<40 yr) stands in general or for their infrequent use of berries. On the other hand, these results corroborated previous observations that grizzlies favored open and/or young stands on wet and fertile sites for grazing. These results also supported the proposition that temporally and spatially robust inferences require extensive, long-duration studies, especially for wide-ranging vertebrates like grizzly bears.

  1. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.

    PubMed

    Garcia, Maria O; Smith, Jane E; Luoma, Daniel L; Jones, Melanie D

    2016-05-01

    Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish within the historic P. contorta range and dominant EMF assemblages may be conserved.

  2. Forest Fires as a Possible Source of Isotopically Light Marine Fe Aerosols

    NASA Astrophysics Data System (ADS)

    Tegler, L. A.; Sherry, A. M.; Romaniello, S. J.; Anbar, A. D.

    2016-12-01

    Iron (Fe) is an important limiting micronutrient for primary productivity in many high-nutrient, low-chlorophyll (HNLC) regions of the ocean. These marine systems receive a significant fraction of their Fe from atmospheric deposition, which is thought to be dominated by mineral dust with an Fe isotopic composition at or above 0‰. However, Mead et al. (2013) observed isotopically light Fe in marine aerosols smaller than 2.5 μm, which is difficult to reconcile with known sources of marine aerosols. Based on previous experimental work, we hypothesize that biomass burning is the source of isotopically light Fe in atmospheric particles and suggest that biomass burning might represent an underappreciated source of Fe to marine ecosystems. While Guelke et al (2007) demonstrated that Fe in agricultural plants is isotopically light, few studies have examined the Fe isotope composition of naturally occurring forests likely to be a significant source of Fe during forest fires. To address this question, we measured the isotopic composition of Ponderosa pine growing in northern Arizona. Ponderosa pine is one the most common forest types in the western US and thus representative of an important North American fire region. Pine needles were chosen because they are susceptible to complete combustion during biomass burning events. To determine the Fe isotopic composition of pine trees, pine needles were sampled at various tree heights. We found that these samples had δ56Fe values between -1.5 and 0‰, indicating that pine needles can be isotopically light compared to local grasses and soil. These results support the hypothesis that biomass burning may contribute isotopically light Fe to marine aerosols.

  3. Understory biomass from southern pine forests as a fuel source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, T.T.; Baker, J.B.

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2more » ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.« less

  4. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    PubMed

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  5. Snag longevity and surface fuel accumulation following post-fire logging in a ponderosa pine dominated forest

    Treesearch

    Martin W. Ritchie; Eric E. Knapp; Carl N. Skinner

    2013-01-01

    In a study of post-fire logging effects over an 8 year period at Blacks Mountain Experimental Forest, salvage logging was conducted at varying levels of intensity after a 2002 wildfire event. In a designed experiment, harvest prescriptions with snag retention levels ranging from 0% to 100% in 15 experimental units were installed. Observations of standing snags and...

  6. Home range, habitat use, survival, and fecundity of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; William M. Block; James P. Ward; Brenda E. Strohmeyer

    2005-01-01

    We studied home range, habitat use, and vital rates of radio-marked Mexican spotted owls (Strix occidentalis lucida) in 2 study areas in the Sacramento Mountains, New Mexico. One study area (mesic) was dominated by mixed-conifer forest, the other (xeric) by ponderosa pine (Pinus ponderosa) forest and pinon (P. edulis)-juniper (Juniperus) woodland. Based on existing...

  7. A density management diagram for Scots pine (Pinus sylvestris L.): A tool for assessing the forest's protective effect

    Treesearch

    Giorgio Vacchiano; Renzo Motta; James N. Long; John D. Shaw

    2008-01-01

    Density management diagrams (DMD) are graphical tools used in the design of silvicultural regimes in even-aged forests. They depict the relationship between stand density, average tree size, stand yield and dominant height, based upon relevant ecological and allometric relationships such as the self-thinning rule, the yield-density effect, and site index curves. DMD...

  8. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Treesearch

    Sara E. Jenkins; Carolyn Hull Sieg; Diana E. Anderson; Darrell S. Kaufman; Philip A. Pearthree

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area...

  9. Environmental Assessment for Kirtland Air Force Base Perimeter Fencing

    DTIC Science & Technology

    2004-07-01

    Xylene, Styrene, Toluene, Methyl ethyl ketone, 1,3-Butadiene, Phenol, Propionaldehyde, n-Hexane, Chlorobenzene, Cumene, 1,1,2-Trichloroethane, 2,2,4...piñon-juniper community ranges in elevation from 6,300 to 7,700 feet. This dominant plant community is composed of Colorado piñon pine ( Pinus edulis...Kirtland AFB Perimeter Fencing EA 3-21 Final - July 2004 Ponderosa pine ( Pinus ponderosa) forests occur in the upper elevations, usually above 7,700 feet

  10. Disturbance and productivity interactions mediate stability of forest composition and structure.

    PubMed

    O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P

    2017-04-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.

  11. Synchrony of forest responses to climate from the aspect of tree mortality in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, W. K.; Piao, D.; Choi, G. M.; Gang, H. U.

    2016-12-01

    Mortality is a key process in forest-stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number (MSN) per ha over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba's theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper range of observed stem numbers per ha. The mortality model and validation statistic reveal significant differences between the observed data and the model predictions (R2 = 0.55-0.81), and no obvious dependencies or patterns that indicate systematic trends between the residuals and the independent variable. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not of oak species (Chinese cork oak and Mongolian oak). Based on linear regression from residuals, we found that the mortality of coniferous forests tended to increase when the annual mean temperature increased. Conversely, oak mortality nonsignificantly decreased with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and are expected to contribute to policy decisions to support and forest management practices.

  12. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle.

    PubMed

    Erbilgin, Nadir; Cale, Jonathan A; Lusebrink, Inka; Najar, Ahmed; Klutsch, Jennifer G; Sherwood, Patrick; Enrico Bonello, Pierluigi; Evenden, Maya L

    2017-03-01

    Bark beetles are important agents of tree mortality in conifer forests and their interaction with trees is influenced by host defense chemicals, such as monoterpenes and phenolics. Since mountain pine beetle (Dendroctonus ponderosae Hopkins) has expanded its host range from lodgepole pine (Pinus contorta Doug. ex Loud. (var. latifolia Engelm.))-dominated forests to the novel jack pine (Pinus banksiana Lamb.) forests in western Canada, studies investigating the jack pine suitability as a host for this beetle have exclusively focused on monoterpenes, and whether phenolics affect jack pine suitability to mountain pine beetle and its symbiotic fungus Grosmannia clavigera is unknown. We investigated the phenolic and monoterpene composition in phloem and foliage of jack and lodgepole pines, and their subsequent change in response to water deficit and G. clavigera inoculation treatments. In lodgepole pine phloem, water deficit treatment inhibited the accumulation of both the total and richness of phenolics, but had no effect on total monoterpene production or richness. Fungal infection also inhibited the total phenolic production and had no effect on phenolic or monoterpene richness, but increased total monoterpene synthesis by 71%. In jack pine phloem, water deficit treatment reduced phenolic production, but had no effect on phenolic or monoterpene richness or total monoterpenes. Fungal infection did not affect phenolic or monoterpene production. Lesions of both species contained lower phenolics but higher monoterpenes than non-infected phloem in the same tree. In both species, richness of monoterpenes and phenolics was greater in non-infected phloem than in lesions. We conclude that monoterpenes seem to be a critical component of induced defenses against G. clavigera in both jack and lodgepole pines; however, a lack of increased monoterpene response to fungal infection is an important evolutionary factor defining jack pine suitability to the mountain pine beetle invasion in western Canada. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Relationships between dead wood and arthropods in the Southeastern United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, Michael, Darragh

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., amore » species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.« less

  14. Long-term scenarios of the invasive black cherry in pine-oak forest: Impact of regeneration success

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Margot; Baeten, Lander; Verbeeck, Hans; Hermy, Martin; Verheyen, Kris

    2011-05-01

    The spread of invasive tree species in forests can be slow because of their long life span and the lag phases that may occur during the invasion process. Models of forest succession are a useful tool to explore how these invasive species might affect long-term forest development. We used the spatially explicit individual tree model SORTIE-ND to gain insight into the long-term development of a gap-dependent invasive tree species, Prunus serotina, in a pine-oak forest on sandy soil, the forest type in which P. serotina occurs most often in its introduced range. Forest inventory data, tree ring data, and photographs of the tree crowns were collected in a forest reserve in the Netherlands, characterized by high game densities. The collected data were then combined with data from literature to parameterize the model. We ran the model for two different scenarios in order to evaluate the impact of differences in the regeneration success of the native Quercus robur and the invasive P. serotina. The outcome of the simulations shows two differing courses of forest development. The invasive P. serotina became the dominant species when the regeneration of Q. robur was hindered, e.g., because of high herbivore densities. When both Q. robur and P. serotina were able to regenerate, Q. robur became the most abundant species in the long-term. We hypothesize that the relatively short life span of P. serotina may preclude its dominance if other long-lived tree species are present and able to regenerate.

  15. Predicting Impacts of Climate Change on the Aboveground Carbon Sequestration Rate of a Temperate Forest in Northeastern China

    PubMed Central

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species. PMID:24763409

  16. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    PubMed

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  17. Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response

    PubMed Central

    Rhoades, Charles C.; McCutchan, James H.; Cooper, Leigh A.; Clow, David; Detmer, Thomas M.; Briggs, Jennifer S.; Stednick, John D.; Veblen, Thomas T.; Ertz, Rachel M.; Likens, Gene E.; Lewis, William M.

    2013-01-01

    A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species. PMID:23319612

  18. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  19. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  20. Chromium and fluoride sorption/desorption on un-amended and waste-amended forest and vineyard soils and pyritic material.

    PubMed

    Romar-Gasalla, Aurora; Santás-Miguel, Vanesa; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María J

    2018-05-22

    Using batch-type experiments, chromium (Cr(VI)) and fluoride (F - ) sorption/desorption were studied in forest and vineyard soil samples, pyritic material, pine bark, oak ash, hemp waste and mussel shell, as well as on samples of forest and vineyard soil, and of pyritic material, individually treated with 48 t ha -1 of pine bark, oak ash, and mussel shell. Pine bark showed the highest Cr(VI) sorption (always > 97% of the concentration added) and low desorption (<1.5%). Pyritic material sorbed between 55 and 98%, and desorbed between 0.6 and 9%. Forest and vineyard soils, oak ash, mussel shell and hemp waste showed Cr(VI) sorption always < 32%, and desorption between 22 and 100%. Pine bark also showed the highest F - retention (sorption between 62 and 73%, desorption between 10 and 15%), followed by oak ash (sorption 60-69%, desorption 11-14%), forest soil (sorption 60-73%, desorption 19-36%), and pyritic material (sorption 60-67%, desorption 13-15%), whereas in vineyard sorption was 49-64%, and desorption 24-27%, and in hemp waste sorption was 26-36%, and desorption 41-59%. Sorption data showed better fitting to the Freundlich than to the Langmuir model, especially in the case of Cr(VI), indicating that multilayer sorption dominated. The addition of by-products to the forest and vineyard soils, and to the pyritic material, caused an overall increase in F - sorption, and decreased desorption. Furthermore, the pine bark amendment resulted in increases in Cr(VI) retention by both soils and the pyritic material. These results could be useful to favor the recycling of the by-products studied, aiding in the management of soils and degraded areas affected by Cr(VI) and F - pollution, and in the removal of both anions from polluted waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Summary of preliminary step-trend analysis from the Interagency Whitebark Pine Long-termMonitoring Program—2004-2013

    USGS Publications Warehouse

    Legg, Kristin; Shanahan, Erin; Daley, Rob; Irvine, Kathryn M.

    2014-01-01

    In mixed and dominant stands, whitebark pine (Pinus albicaulis) occurs in over two million acres within the six national forests and two national parks that comprise the Greater Yellowstone Ecosystem (GYE). Currently, whitebark pine, an ecologically important species, is impacted by multiple ecological disturbances; white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), wildfire, and climate change all pose significant threats to the persistence of whitebark pine populations. Substantial declines in whitebark pine populations have been documented throughout its range.Under the auspices of the Greater Yellowstone Coordinating Committee (GYCC), several agencies began a collaborative, long-term monitoring program to track and document the status of whitebark pine across the GYE. This alliance resulted in the formation of the Greater Yellowstone Whitebark Pine Monitoring Working Group (GYWPMWG), which consists of representatives from the U.S. Forest Service (USFS), National Park Service (NPS), U.S. Geological Survey (USGS), and Montana State University (MSU). This groundbased monitoring program was initiated in 2004 and follows a peer-reviewed protocol (GYWPMWG 2011). The program is led by the Greater Yellowstone Inventory and Monitoring Network (GRYN) of the National Park Service in coordination with multiple agencies. More information about this monitoring effort is available at: http://science. nature.nps.gov/im/units/gryn/monitor/whitebark_pine.cfm. The purpose of this report is to provide a draft summary of the first step-trend analysis for the interagency, long-term monitoring of whitebark pine health to the Interagency Grizzly Bear Study Team (IGBST) as part of a synthesis of the state of whitebark pine in the GYE. Due to the various stages of the analyses and reporting, this is the most efficient way to provide these results to the IGBST.

  2. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau

    PubMed Central

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau. PMID:29049349

  3. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau.

    PubMed

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen; Zhao, Zhong

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau.

  4. [CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains].

    PubMed

    Wu, Jia-bing; Guan, De-xin; Sun, Xiao-min; Shi, Ting-ting; Han, Shi-jie; Jin, Chang-jie

    2007-05-01

    The measurement of CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains by an open-path eddy covariance system showed that with near neutral atmospheric stratification, the CO2 and vertical wind components over canopy in inertial subrange followed the expected -2/3 power law, and the dominant vertical eddy scale was about 40 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01-2.0 Hz, and the eddy translated by low frequency over canopy contributed more of CO2 fluxes. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because the increment of non turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence needed to revise correspondingly.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles

    ABSTRACT Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995-2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number ofmore » fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 _ 37,444 fruits; 12,009 _ 2,392 g/ha), upland hardwoods (60,769 _ 7,667 fruits; 5,079 _ 529 g/ha), and bottomland hardwoods (65,614 _ 8,351 fruits; 4,621 _ 677 g/ha), and lowest in longleaf pine (44,104 _ 8,301 fruits; 4,102 _ 877 g/ha) and loblolly (39,532 _ 5,034 fruits; 3,261 _ 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995-2003). Fruit availability was highest June-September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. Land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes. .« less

  6. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas

    PubMed Central

    Rodríguez-Caro, Roberto C.; Oedekoven, Cornelia S.; Graciá, Eva; Anadón, José D.; Buckland, Stephen T.; Esteve-Selma, Miguel A.; Martinez, Julia; Giménez, Andrés

    2017-01-01

    In the transition between Mediterranean forest and the arid subtropical shrublands of the southeastern Iberian Peninsula, humans have transformed habitat since ancient times. Understanding the role of the original mosaic landscapes in wildlife species and the effects of the current changes as pine forest plantations, performed even outside the forest ecological boundaries, are important conservation issues. We studied variation in the density of the endangered spur-thighed tortoise (Testudo graeca) in three areas that include the four most common land types within the species’ range (pine forests, natural shrubs, dryland crop fields, and abandoned crop fields). Tortoise densities were estimated using a two-stage modeling approach with line transect distance sampling. Densities in dryland crop fields, abandoned crop fields and natural shrubs were higher (>6 individuals/ha) than in pine forests (1.25 individuals/ha). We also found large variation in density in the pine forests. Recent pine plantations showed higher densities than mature pine forests where shrub and herbaceous cover was taller and thicker. We hypothesize that mature pine forest might constrain tortoise activity by acting as partial barriers to movements. This issue is relevant for management purposes given that large areas in the tortoise’s range have recently been converted to pine plantations. PMID:28273135

  7. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas.

    PubMed

    Rodríguez-Caro, Roberto C; Oedekoven, Cornelia S; Graciá, Eva; Anadón, José D; Buckland, Stephen T; Esteve-Selma, Miguel A; Martinez, Julia; Giménez, Andrés

    2017-01-01

    In the transition between Mediterranean forest and the arid subtropical shrublands of the southeastern Iberian Peninsula, humans have transformed habitat since ancient times. Understanding the role of the original mosaic landscapes in wildlife species and the effects of the current changes as pine forest plantations, performed even outside the forest ecological boundaries, are important conservation issues. We studied variation in the density of the endangered spur-thighed tortoise (Testudo graeca) in three areas that include the four most common land types within the species' range (pine forests, natural shrubs, dryland crop fields, and abandoned crop fields). Tortoise densities were estimated using a two-stage modeling approach with line transect distance sampling. Densities in dryland crop fields, abandoned crop fields and natural shrubs were higher (>6 individuals/ha) than in pine forests (1.25 individuals/ha). We also found large variation in density in the pine forests. Recent pine plantations showed higher densities than mature pine forests where shrub and herbaceous cover was taller and thicker. We hypothesize that mature pine forest might constrain tortoise activity by acting as partial barriers to movements. This issue is relevant for management purposes given that large areas in the tortoise's range have recently been converted to pine plantations.

  8. Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon.

    PubMed

    Gonthier, P; Nicolotti, G; Linzer, R; Guglielmo, F; Garbelotto, M

    2007-04-01

    It was recently reported that North American (NA) individuals of the forest pathogen Heterobasidion annosum were found in a single pine stand near Rome, in association with the movement of US troops during World War II. Here, we report on some aspects of the invasion biology of this pathogen in Italian coastal pinewoods, and on its interaction with native (EU) Heterobasidion populations. Spores of Heterobasidion were sampled using woody traps in pine stands along 280 km of coast around Rome. DNA of single-spore colonies was characterized by two sets of nuclear and one set of mitochondrial taxon-specific polymerase chain reaction primers. NA spores were found not only in a single site, but in many locations over a wide geographic area. Invasion occurred at an estimated rate of 1.3 km/year through invasion corridors provided by single trees, and not necessarily by sizable patches of forests. Within the 100-km long range of expansion, the NA taxon was dominant in all pure pine stands. Because abundance of the EU taxon is low and identical among stands within and outside the area invaded by NA individuals, we infer that the exotic population has invaded habitats mostly unoccupied by the native species. Discrepancy between a mitochondrial and a nuclear marker occurred in 3.8% of spores from one site, a mixed oak-pine forest where both taxa were equally represented. Combined phylogenetic analyses on nuclear and mitochondrial loci confirmed these isolates were recombinant. The finding of hybrids indicates that genetic interaction between NA and EU Heterobasidion taxa is occurring as a result of their current sympatry.

  9. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  10. Postglacial vegetation history of Mitkof Island, Alexander Archipelago, southeastern Alaska

    USGS Publications Warehouse

    Ager, T.A.; Carrara, P.E.; Smith, Jane L.; Anne, V.; Johnson, J.

    2010-01-01

    An AMS radiocarbon-dated pollen record from a peat deposit on Mitkof Island, southeastern Alaska provides a vegetation history spanning ∼12,900 cal yr BP to the present. Late Wisconsin glaciers covered the entire island; deglaciation occurred > 15,400 cal yr BP. The earliest known vegetation to develop on the island (∼12,900 cal yr BP) was pine woodland (Pinus contorta) with alder (Alnus), sedges (Cyperaceae) and ferns (Polypodiaceae type). By ∼12,240 cal yr BP, Sitka spruce (Picea sitchensis) began to colonize the island while pine woodland declined. By ∼11,200 cal yr BP, mountain hemlock (Tsuga mertensiana) began to spread across the island. Sitka spruce-mountain hemlock forests dominated the lowland landscapes of the island until ∼10,180 cal yr BP, when western hemlock (Tsuga heterophylla) began to colonize, and soon became the dominant tree species. Rising percentages of pine, sedge, and sphagnum after ∼7100 cal yr BP may reflect an expansion of peat bog habitats as regional climate began to shift to cooler, wetter conditions. A decline in alders at that time suggests that coastal forests had spread into the island's uplands, replacing large areas of alder thickets. Cedars (Chamaecyparis nootkatensis, Thuja plicata) appeared on Mitkof Island during the late Holocene.

  11. Postglacial vegetation history of Mitkof Island, Alexander Archipelago, southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Ager, Thomas A.; Carrara, Paul E.; Smith, Jane L.; Anne, Victoria; Johnson, Joni

    2010-03-01

    An AMS radiocarbon-dated pollen record from a peat deposit on Mitkof Island, southeastern Alaska provides a vegetation history spanning ˜12,900 cal yr BP to the present. Late Wisconsin glaciers covered the entire island; deglaciation occurred > 15,400 cal yr BP. The earliest known vegetation to develop on the island (˜12,900 cal yr BP) was pine woodland ( Pinus contorta) with alder ( Alnus), sedges (Cyperaceae) and ferns (Polypodiaceae type). By ˜12,240 cal yr BP, Sitka spruce ( Picea sitchensis) began to colonize the island while pine woodland declined. By ˜11,200 cal yr BP, mountain hemlock ( Tsuga mertensiana) began to spread across the island. Sitka spruce-mountain hemlock forests dominated the lowland landscapes of the island until ˜10,180 cal yr BP, when western hemlock ( Tsuga heterophylla) began to colonize, and soon became the dominant tree species. Rising percentages of pine, sedge, and sphagnum after ˜7100 cal yr BP may reflect an expansion of peat bog habitats as regional climate began to shift to cooler, wetter conditions. A decline in alders at that time suggests that coastal forests had spread into the island's uplands, replacing large areas of alder thickets. Cedars ( Chamaecyparis nootkatensis, Thuja plicata) appeared on Mitkof Island during the late Holocene.

  12. The importance of shortleaf pine for wildlife and diversity in mixed oak-pine forests and in pine-grassland woodlands

    Treesearch

    Ronald E. Masters

    2007-01-01

    Shortleaf pine, by virtue of its wide distribution and occurrence in many forest types in eastern North America, is an important species that provides high habitat value for many wildlife species. Shortleaf pine functions as a structural habitat element in both mixed oak-pine forests and in pine-grassland woodlands. It also adds diversity throughout all stages of plant...

  13. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  14. A Common-Pool Resource Approach to Forest Health: The Case of the Southern Pine Beetle

    Treesearch

    John Schelhas; Joseph Molnar

    2012-01-01

    The southern pine beetle, Dendroctonus frontalis, is a major threat to pine forest health in the South, and is expected to play an increasingly important role in the future of the South’s pine forests (Ward and Mistretta 2002). Once a forest stand is infected with southern pine beetle (SPB), elimination and isolation of the infested and immediately...

  15. 75 FR 23666 - Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... DEPARTMENT OF AGRICULTURE Forest Service Huron-Manistee National Forests, White Pines Wind Farm... environmental impact statement for the White Pines Wind Farm Project on National Forest System (NFS) lands... terminates the environmental analysis process for the White Pines Wind Farm Project. DATES: The Notice of...

  16. Ecology of southwestern ponderosa pine forests

    Treesearch

    William H. Moir; Brian W. Geils; Mary Ann Benoit; Dan Scurlock

    1997-01-01

    Ponderosa pine forests are important because of their wide distribution, commercial value, and because they provide habitat for many plants and animals. Ponderosa pine forests are noted for their variety of passerine birds resulting from variation in forest composition and structure modified by past and present human use. Subsequent chapters discuss how ponderosa pine...

  17. Southern pine beetles in central hardwood forests: frequency, spatial extent, and changes to forest structure

    Treesearch

    John Nowak; Kier Klepzig; D R Coyle; William Carothers; Kamal J K Gandhi

    2015-01-01

    EXCERPT FROM: Natural Disturbances and Historic Range Variation 2015. The southern pine beetle (SPB) is a major disturbance in pine forests throughout the range of southern yellow pines, and is a significant influence on forests throughout several Central Hardwood Region (CHR) ecoregions...

  18. White-headed woodpecker nesting ecology after wildfire

    Treesearch

    Catherine S. Wightman; Victoria A. Saab; Chris Forristal; Kim Mellen-Mclean; Amy Markus

    2010-01-01

    Within forests susceptible to wildfire and insect infestations, land managers need to balance dead tree removal and habitat requirements for wildlife species associated with snags. We used Mahalanobis distance methods to develop predictive models of white-headed woodpecker (Picoides albolarvatus) nesting habitat in postfire ponderosa pine (Pinus ponderosa)-dominated...

  19. Red-cockaded woodpecker foraging behavior in relation to midstory vegetation

    Treesearch

    D. Craig Rudolph; Richard N. Conner; Richard R. Schaefer

    2002-01-01

    Red-cockaded Woodpeckers (Picoides borealis) nest and forage in pine-dominated forests. Research indicates that substantial hardwood midstory encroachment is detrimental to Red-cockaded Woodpecker populations, although the exact mechanisms are unknown. We examined foraging behavior in relation to midstory between August 1989 and February 1990. Red...

  20. Photosynthetic phenological variation may promote coexistence among co-dominant tree species in a Madrean sky island mixed conifer forest.

    PubMed

    Potts, D L; Minor, R L; Braun, Z; Barron-Gafford, G A

    2017-09-01

    Across much of western North America, forests are predicted to experience a transition from snow- to rain-dominated precipitation regimes due to anthropogenic climate warming. Madrean sky island mixed conifer forests receive a large portion of their precipitation from summertime convective storms and may serve as a lens into the future for snow-dominated forests after prolonged warming. To better understand the linkage between physiological traits, climate variation, and the structure and function of mixed conifer forests, we measured leaf photosynthetic (A) responses to controlled variation in internal CO2 concentration (Ci) to quantify interspecific phenological variation in A/Ci-derived ecophysiological traits among ponderosa pine (Pinus ponderosa Lawson and C. Lawson), southwestern white pine (Pinus strobiformis Engelm.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Species had similar, positive responses in net photosynthesis under ambient conditions (Anet) to the onset of summertime monsoonal precipitation, but during the cooler portions of the year P. ponderosa was able to maintain greater Anet than P. menziesii and P. strobiformis. Moreover, P. ponderosa had greater Anet in response to ephemerally favorable springtime conditions than either P. menziesii or P. strobiformis. Monsoonal precipitation was associated with a sharp rise in the maximum rates of electron transport (Jmax) and carboxylation (VCmax) in P. menziesii in comparison with P. ponderosa and P. strobiformis. In contrast, species shared similar low values of Jmax and VCmax in response to cool winter temperatures. Patterns of relative stomatal limitation followed predictions based on species' elevational distributions, reinforcing the role of stomatal behavior in maintaining hydraulic conductivity and shaping bioclimatic limits. Phenological variation in ecophysiologial traits among co-occurring tree species in a Madrean mixed conifer forest may promote temporal resource partitioning and thereby contribute to species' coexistence. Moreover, these results provide a physiological basis for predicting the ecological implications of North American mixed conifer forests currently transitioning from snow- to rain-dominated precipitation regimes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA.

    PubMed

    Mietkiewicz, Nathan; Kulakowski, Dominik

    2016-12-01

    Extensive outbreaks of bark beetles have killed trees across millions of hectares of forests and woodlands in western North America. These outbreaks have led to spirited scientific, public, and policy debates about consequential increases in fire risk, especially in the wildland-urban interface (WUI), where homes and communities are at particular risk from wildfires. At the same time, large wildfires have become more frequent across this region. Widespread expectations that outbreaks increase extent, severity, and/or frequency of wildfires are based partly on visible and dramatic changes in foliar moisture content and other fuel properties following outbreaks, as well as associated modeling projections. A competing explanation is that increasing wildfires are driven primarily by climatic extremes, which are becoming more common with climate change. However, the relative importance of bark beetle outbreaks vs. climate on fire occurrence has not been empirically examined across very large areas and remains poorly understood. The most extensive outbreaks of tree-killing insects across the western United States have been of mountain pine beetle (MPB; Dendroctonus ponderosae), which have killed trees over >650,000 km 2 , mostly in forests dominated by lodgepole pine (Pinus contorta). We show that outbreaks of MPB in lodgepole pine forests of the western United States have been less important than climatic variability for the occurrence of large fires over the past 29 years. In lodgepole pine forests in general, as well as those in the WUI, occurrence of large fires was determined primarily by current and antecedent high temperatures and low precipitation but was unaffected by preceding outbreaks. Trends of increasing co-occurrence of wildfires and outbreaks are due to a common climatic driver rather than interactions between these disturbances. Reducing wildfire risk hinges on addressing the underlying climatic drivers rather than treating beetle-affected forests. © 2016 by the Ecological Society of America.

  2. Secondary succession: Composition of the vegetation and primary production in the field-to-forest at Brookhaven, Long Island, N.Y.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodwell,G.M.; Holt, B. R.; Flaccus, E.

    1973-08-23

    Natural communities respond to disruption through a series of changes in plant and animal communities that are broadly predictable. The field-to-forest sere of central Long Island follows the pattern set forth earlier for the Piedmont of North Carolina and for New Jersey. The communities of herbs that occur in the years immediately after abandonment are followed by an Andropogon stage which is replaced before the 20th year by pine forest. The pine is replaced in the next 25 years by oak-pine, which in the normal Course is followed by oak-hickory. With repeated burning the oak-pine stage in various combinations ofmore » oaks and pine may be maintained indefinitely. Diversity, measured as number of species per unit land area, increased in this sere through the 3-5th years after abandonment to a maximum, dropped, and rose again in the later forest stages. Exotics were a conspicuous part of the communities of the earlier stages but their importance diminished as succession progressed and their contribution to net production was zero beyond the 20th year. The removal of exotics would probably not have changed the pattern of diversity appreciably. Net primary production increased with succession in this sere with major changes occurring as life-forms of the dominants shifted to woody plants. The peak net production was in the most mature forest, about 1200 g/m{sup 2}/yr. Root/shoot ratios declined from 4-5 in the early stages of succession to 0.3-0.5 with later stages. The standing crop of organic matter including humus throughout the sere was about 15 times the net production, indicating a halftime of residence for all organic matter throughout the sere of about 10 years.« less

  3. Ecological attributes and distribution of Anatolian black pine [Pinus nigra Arnold. subsp. pallasiana Lamb. Holmboe] in Turkey.

    PubMed

    Atalay, Ibrahim; Efe, Recep

    2012-04-01

    The aim of this study is to determine ecoregions and the effect of ecological properties on natural distribution of Anatolian black pine [Pinus nigra Arnold. subsp. pallasiana Lamb. (Holmboe)] in Turkey. The results suggest that 6 ecoregions exist and climate, parent material, topography, anthropogenic factors, floristic composition, competition are ecological factors that determine the distribution of Black pine in Turkey. But, climatic elements such as precipitation and temperature are the dominant factors. The six ecoregions with different characteristics have been identified and distribution ofAnatolian black pine revealed depending on ecological features of each region. Each region has its own characteristics that affect the growth and distribution of black pine. Productive black pine forest are found on the subhumid-semiarid areas receiving humid air mass coming from the seas either on northern or southern coastal mountains of Turkey. The poor and/or lowest productive stands occur in the semiarid parts of Inner Anatolia. Black pine can grow on all material in the semi-arid and sub-humid cold climates, but deep weatheared parent materials are the best for growing of black pine.

  4. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings.

    PubMed

    Schulz, Horst; Schäfer, Tina; Storbeck, Veronika; Härtling, Sigrid; Rudloff, Renate; Köck, Margret; Buscot, François

    2012-01-01

    Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.

  5. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Treesearch

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  6. An Old-Growth Definition for Wet Pine Forests, Woodlands, and Savannas

    Treesearch

    William R. Harms

    1996-01-01

    The ecological, site, and vegetation characteristics of pine wetland forests of the flatwoods region of the Southeastern United States are described. Provisional working definitions of old-growth characteristics are provided for longleaf pine, slash pine, and pond pine forests. These definitions can be used to identify and evaluate stands for retention in old-growth...

  7. Multi-scale reference conditions in an interior pine-dominated landscape in northeastern California

    Treesearch

    Martin W. Ritchie

    2016-01-01

    A plot-based census was conducted of trees >8.9 cm in breast height diameter in a 4000 ha forest in northeastern California in 1933 and 1934, prior to any harvest activity. The trees were tallied by size class and species on contiguous plots specified to be 1.01 ha in size, although some plots had a forested area less than this specification due to natural...

  8. Ecological Impacts of Southern Pine Beetle

    Treesearch

    Maria D. Tchakerian; Robert N. Coulson

    2011-01-01

    The southern pine beetle (SPB) is the most important biotic disturbance in southern pine forests and causes extensive changes to the forest environment. In this chapter we provide an overview of the ecological impacts of the SPB on forest conditions (the state of the forest) and on forest resources (uses and values associated with the forest). We define ecological...

  9. Guide to the Blacks Mountain Experimental Forest - A sustained yield experiment in ponderosa pine in northeastern California

    Treesearch

    E.I. Kotok

    1938-01-01

    Experimental forests, watersheds, and ranges are the field laboratories in the research structure of the Forest Service. The California Forest and Range Experiment Station maintains four experimental forests representing the more important timber types in the Pine Region.The Blacks Mountain Experimental Forest represents the ponderosa pine...

  10. Dominance of ammonia-oxidizing archaea community induced by land use change from Masson pine to eucalypt plantation in subtropical China.

    PubMed

    Zhang, Fang-Qiu; Pan, Wen; Gu, Ji-Dong; Xu, Bin; Zhang, Wei-Hua; Zhu, Bao-Zhu; Wang, Yu-Xia; Wang, Yong-Feng

    2016-08-01

    A considerable proportion of Masson pine forests have been converted into eucalypt plantations in the last 30 years in Guangdong Province, subtropical China, for economic reasons, which may affect the ammonia-oxidizing archaea (AOA) community and the process of ammonia transformation. In order to determine the effects of forest conversion on AOA community, AOA communities in a Masson pine (Pinus massoniana) plantation and a eucalypt (Eucalyptus urophylla) plantation, which was converted from the Masson pine, were compared. Results showed that the land use change from the Masson pine to the eucalypt plantation decreased soil nutrient levels. A significant decrease of the potential nitrification rates (PNR) was also observed after the forest conversion (p < 5 %, n = 6). AOA were the only ammonia oxidizers in both plantations (no ammonia-oxidizing bacteria were detected). The detected AOA are affiliated with the genera Nitrosotalea and Nitrososphaera. A decrease of AOA abundance and an increase of the diversity were evident with the plantation conversion in the surface layer. AOA amoA gene diversity was negatively correlated with organic C and total N, respectively (p < 0.05, n = 12). AOA amoA gene abundance was negatively correlated with NH4 (+) and available P, respectively (p < 0.05, n = 12). However, AOA abundance was positively correlated with PNR, but not significantly (p < 0.05, n = 6), indicating AOA community change was only a partial reason for the decrease of PNR.

  11. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain

    DOE PAGES

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; ...

    2012-02-06

    Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly ( Pinus taeda) and longleaf pine ( P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual numbermore » of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes.« less

  12. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Treesearch

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  13. Are Scots pine forest edges particularly prone to drought-stress?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette

    2017-04-01

    In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).

  14. 75 FR 5941 - Umatilla National Forest, Walla Walla Ranger District, Walla Walla, WA; Cobbler II Timber Sale...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... construction (that will be decommissioned after project use), new road construction, danger tree removal along... increasing population. Late seral tree species have become dominant after long periods without disturbance... and vigor. Timber stands of seral tree species such as western larch and ponderosa pine are infilling...

  15. Fire and mice: Seed predation moderates fire's influence on conifer recruitment

    Treesearch

    Rafal Zwolak; Dean E. Pearson; Yvette K. Ortega; Elizabeth E. Crone

    2010-01-01

    In fire-adapted ecosystems, fire is presumed to be the dominant ecological force, and little is known about how consumer interactions influence forest regeneration. Here, we investigated seed predation by deer mice (Peromyscus maniculatus) and its effects on recruitment of ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) seedlings in unburned...

  16. Characteristics, histories, and future succession of northern Pinus pugens stands

    Treesearch

    Patrick Brose

    2017-01-01

    Pinus pungens (Table Mountain pine) stands are rare conifer-dominated communities that occur on xeric ridges and upper slopes throughout the central and southern Appalachian Mountains. At the northern end of this range, this uncommon forest community is essentially unstudied. Therefore, in 2006 I initiated a dendroecology study of three ...

  17. Effects of short-rotation controlled burning on amphibians and reptiles in pine woodlands

    Treesearch

    Roger W. Perry; D. Craig Rudolph; Ronald E. Thill

    2012-01-01

    Fire is being used increasingly as a forest management tool throughout North America, but its effects on reptiles and amphibians in many ecosystems are unclear. Open woodlands with understories dominated by herbaceous vegetation benefit many wildlife species, but maintaining these woodlands requires frequent burning. Although many studies have compared herpetofaunal...

  18. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Treesearch

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  19. An analysis of modern pollen rain from the Maya lowlands of northern Belize

    USGS Publications Warehouse

    Bhattacharya, T.; Beach, T.; Wahl, D.

    2011-01-01

    In the lowland Maya area, pollen records provide important insights into the impact of past human populations and climate change on tropical ecosystems. Despite a long history of regional paleoecological research, few studies have characterized the palynological signatures of lowland ecosystems, a fact which lowers confidence in ecological inferences made from palynological data. We sought to verify whether we could use pollen spectra to reliably distinguish modern ecosystem types in the Maya lowlands of Central America. We collected 23 soil and sediment samples from eight ecosystem types, including upland, riparian, secondary, and swamp (bajo) forests; pine savanna; and three distinct wetland communities. We analyzed pollen spectra with non-metric multidimensional scaling (NMDS), and found significant compositional differences in ecosystem types' pollen spectra. Forested sites had spectra dominated by Moraceae/Urticaceae pollen, while non-forested sites had significant portions of Poaceae, Asteraceae, and Amaranthaceae pollen. Upland, bajo, and riparian forest differed in representation of Cyperaceae, Bactris-type, and Combretaceae/Melastomataceae pollen. High percentages of pine (Pinus), oak (Quercus), and the presence of Byrsonima characterized pine savanna. Despite its limited sample size, this study provides one of the first statistical analyses of modern pollen rain in the Maya lowlands. Our results show that pollen assemblages can accurately reflect differences between ecosystem types, which may help refine interpretations of pollen records from the Maya area. ?? 2010 Elsevier B.V.

  20. Successional trends of six mature shortleaf pine forests in Missouri

    Treesearch

    Michael C. Stambaugh; Rose-Marie Muzika

    2007-01-01

    Many of Missouri's mature oak-shortleaf pine (Quercus-Pinus echinata) forests are in a mid-transition stage characterized by partial pine overstory, limited pine recruitment, and minimal pine regeneration. Restoration of shortleaf pine communities at a large scale necessitates the understanding and management of natural regeneration. To...

  1. Restoring fire in lodgepole pine forests of the Intermountain west

    Treesearch

    Colin C. Hardy; Ward W. McCaughey

    1997-01-01

    We are developing new management treatments for regenerating and sustaining lodgepole pine (Pinus contorta) forests through emulation of natural disturbance processes. Lodgepole pine is the principal forest cover on over 26 million hectares in western North America. While infrequent, stand replacing fires following mountain pine beetle outbreaks are common to the...

  2. Greenhouse gas balance of a Scots pine forest using biometric, eddy covariance and chamber measurements.

    NASA Astrophysics Data System (ADS)

    Gielen, Bert; De Vos, Bruno; Papale, Dario; Janssens, Ivan

    2013-04-01

    In recent years, the status of forests as sources or sinks of carbon has received much attention. Nonetheless, evidence-based long-term estimates of the magnitude of the carbon sequestration in forests are still scarce. In this study we present two independent estimates of net carbon sequestration in a temperate Scots pine dominated forest ecosystem over a 9 year period (2002-2010) and in addition, to determine the full greenhouse gas balance, the first results of automated chamber measurements of N2O and CH4. First, the net ecosystem carbon balance (NECB) was estimated from net ecosystem CO2 exchange as measured by the eddy covariance technique (NECBEC). To this end, the eddy covariance estimates were combined with non-CO2 carbon fluxes such as DOC leaching and VOC emissions. The second approach to determine the carbon sequestration was based on the changes in the ecosystem carbon stocks over time (NECBSC). For this NECBSC estimate, two assessments of the ecosystem carbon stocks (2002 and 2010) were compared. Results showed that the eddy covariance approach estimated a net uptake of 2.4 ± 1.25 tC ha-1 yr-1, while the stock based approach suggested a carbon sink of 1.8 ± 1.20 tC ha-1 yr-1. No significant change was observed in the mineral soil carbon, while the carbon stock of the litter layer slightly decreased. Phytomass was thus the main carbon sink (2.1 tC ha-1 yr-1) in the pine forest, predominantly in the stems (1.3 tC ha-1 yr-1). The fact that stem wood is the main carbon sink within the ecosystem implies that the future harvesting has the potential to fully offset the CO2 uptake by this Scots pine forest. Estimates of the impact of N2O and CH4 emissions from the soil on the total greenhouse gas budget will be presented.

  3. Forest inventory and management-based visual preference models of southern pine stands

    Treesearch

    Victor A. Rudis; James H. Gramann; Edward J. Ruddell; Joanne M. Westphal

    1988-01-01

    Statistical models explaining students' ratings of photographs of within stand forest scenes were constructed for 99 forest inventory plots in east Texas pine and oak-pine forest types. Models with parameters that are sensitive to visual preference yet compatible with forest management and timber inventories are presented. The models suggest that the density of...

  4. The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest.

    PubMed

    Li, Weibin; Bai, Zhen; Jin, Changjie; Zhang, Xinzhong; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing

    2017-07-15

    Soil respiration is the largest terrestrial carbon flux into the atmosphere, and different tree species could directly influence root derived respiration and indirectly regulate soil respiration rates by altering soil chemical and microbial properties. In this study, we assessed the small scale spatial heterogeneity of soil respiration and the microbial community below the canopy of three dominant tree species (Korean pine (Pinus koraiensis), Mongolian oak (Quercus mongolica), and Manchuria ash (Fraxinus mandshurica)) in a temperate mixed forest in Northeast China. Soil respiration differed significantly during several months and increased in the order of oak

  5. Forecasts of forest conditions

    Treesearch

    Robert Huggett; David N. Wear; Ruhong Li; John Coulston; Shan Liu

    2013-01-01

    Key FindingsAmong the five forest management types, only planted pine is expected to increase in area. In 2010 planted pine comprised 19 percent of southern forests. By 2060, planted pine is forecasted to comprise somewhere between 24 and 36 percent of forest area.Although predicted rates of change vary, all forecasts reveal...

  6. Longleaf Pine Forests...in the Mountains?

    Treesearch

    Morgan Varner

    1999-01-01

    While most people familiar with Alabama's forests associate longleaf pine with the gently rolling hills of lower Alabama, longleaf pine forests extend up into the hills, ridges and mountains of north Alabama. These forests, termed "montane" or "mountain longleaf," still thrive in several spots, but are becoming increasingly rare. These rare...

  7. Quantifying thermal constraints on carbon and water fluxes in a mixed-conifer sky island ecosystem

    NASA Astrophysics Data System (ADS)

    Braun, Z.; Minor, R. L.; Potts, D. L.; Barron-Gafford, G. A.

    2012-12-01

    Western North American forests represent a potential, yet uncertain, sink for atmospheric carbon. Revealing how predicted climatic conditions of warmer temperatures and longer inter-storm periods of moisture stress might influence the carbon status of these forests requires a fuller understanding of plant functional responses to abiotic stress. While data related to snow dominated montane ecosystems has become more readily available to parameterize ecosystem function models, there is a paucity of data available for Madrean sky island mixed-conifer forests, which receive about one third of their precipitation from the North American Monsoon. Thus, we quantified ecophysiological responses to moisture and temperature stress in a Madrean mixed-conifer forest near Tucson, Arizona, within the footprint of the Mt. Bigelow Eddy Covariance Tower. In measuring a series of key parameters indicative of carbon and water fluxes within the dominant species across pre-monsoon and monsoon conditions, we were able to develop a broader understanding of what abiotic drivers are most restrictive to plant performance in this ecosystem. Within Pinus ponderosa (Ponderosa Pine), Pseudotsuga menziesii (Douglas Fir), and Pinus strobiformis (Southwestern White Pine) we quantified: (i) the optimal temperature (Topt) for maximum photosynthesis (Amax), (ii) the range of temperatures over which photosynthesis was at least 50% of Amax (Ω50), and (iii) each conifer's water use efficiency (WUE) to relate to the balance between carbon uptake and water loss in this high elevation semiarid ecosystem. Our findings support the prediction that photosynthesis decreases under high temperatures (>30°C) among the three species we measured, regardless of soil moisture status. However, monsoon moisture reduced sensitivity to temperature extremes and fluctuations (Ω50), which substantially magnified total photosynthetic productivity. In particular, wet conditions enhanced Amax the most dramatically for P. menziesii, elevating rates by 590%, while Ω50 grew most substantially for P. strobifomis (by 180%). Interspecific differences in temperature optima (Topt) elucidated possible species dominance predictions for seasonal and gradual temperature changes. P. menziesii may out-perform the pine species in the event that temperatures rise in conjunction with abundant summer moisture. However, if monsoon rains fail to accumulate, P. menziesii may remain at subsistence levels of photosynthesis. Together, these data will enable the parameterization of models to approximate the productivity and, ultimately, the composition of Madrean sky island mixe d-conifer forests under forecasted climate conditions of increased temperatures and more frequent drought.

  8. Improving ecosystem-scale modeling of evapotranspiration using ecological mechanisms that account for compensatory responses following disturbance

    NASA Astrophysics Data System (ADS)

    Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale

    2017-09-01

    Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.

  9. Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future

    Treesearch

    Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo

    2012-01-01

    We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...

  10. The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest

    Treesearch

    Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell

    2002-01-01

    Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...

  11. Historic forests and endemic mountain pine beetle and dwarf mistletoe

    Treesearch

    Jose Negron

    2012-01-01

    Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...

  12. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests

    Treesearch

    John R. Butnor; Lisa J. Samuelson; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez Benecke; Claudia M. Boot; M. Francesca Cotrufo; Katherine A. Heckman; Jason A. Jackson; Thomas A. Stokes; Stanley J. Zarnoch

    2017-01-01

    Longleaf pine (Pinus palustris Miller) forests in the southern United States are being restored and actively managed for a variety of goals including: forest products, biodiversity, C sequestration and forest resilience in the face of repeated isturbances from hurricanes and climate change. Managed southern pine forests can be sinks for atmospheric...

  13. Ground water differences on pine and hardwood forests of the Udell Experimental Forest in Michigan.

    Treesearch

    Dean H. Urie

    1977-01-01

    Ground water recharge under hardwood and pine forests was measured from 1962 to 1971 on the Udell Experimental Forest in Michigan. Hardwood forests produced more net ground water than pine forests by an average of 50 and 100 mm/year, using two methods of analysis. Shallow water-table lands yield 80 to 100 mm/year less water than deep, well-drained sands. Water yield...

  14. Disturbance-mediated accelerated succession in two Michigan forest types

    USGS Publications Warehouse

    Abrams, Marc D.; Scott, Michael L.

    1989-01-01

    In northern lower Michigan, logging accelerated sugar maple (Acer saccharum) dominance in a northern white cedar (Thuja occidentals) community, and clear-cutting and burning quickly converted certain sites dominated by mature jack pine (Pinus banksiana) to early-succesional hardwoods, including Prunus, Populus, and Quercus. In both forest types the succeeding hardwoods should continue to increase in the future at the expense of the pioneer conifer species. In the cedar example, sugar maple was also increasing a an undisturbed, old-growth stand, but at a much reduced rate than in the logged stand. Traditionally, disturbance was through to set back succession to some earlier stage. However, out study sites and at least several other North American forest communities exhibited accelerated succession following a wide range of disturbances, including logging fire, ice storms, wind-throw, disease, insect attack, and herbicide spraying.

  15. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    USGS Publications Warehouse

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  16. Response of two terrestrial salamander species to spring burning in the Sierra Nevada, California

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell

    2009-01-01

    Terrestrial salamanders may be vulnerable to prescribed fire applications due to their moist, permeable skin and limited mobility. We present data collected on terrestrial salamander populations in a ponderosa pine-dominated forest in the Sierra Nevada where fire was applied in the spring. Two species, Sierra ensatina (Ensatina eschscholtzi platensis...

  17. Red-bellied woodpecker Melanerpes carolinus

    Treesearch

    Clifford E. Shackelford; Raymond E. Brown; Richard N. Conner

    2000-01-01

    This familiar, eastern U.S. woodpecker is an active and vocal species, with a preference for humid forests dominated by pines or hardwoods, or a mixture of both. It seldom excavates wood for insects; instead, depending on season, it forages opportunistically for a wide range of fruit, mast, seeds and arboreal arthropods. It is also known to take small or young...

  18. Effects of climate on competitive dynamics in mixed conifer forests of the Sierra Nevada

    Treesearch

    Christal Johnson; Sophan Chhin; Jianwei Zhang

    2017-01-01

    Trees in more competitive environments appear to respond to climate differently than trees in less competitive environments. In turn, climate patterns may affect inter- or intra-specific competition, favoring certain individuals over others. Using dendrochronological methods, we sampled cores from dominant pine trees and their nearby competitors in 40 stands in the...

  19. Effects of Prescribed Fire on Herpetofauna Within Hardwood Forests of the Upper Piedmont of South Carolina: A Preliminary Analysis

    Treesearch

    Thomas M. Floyd; Kevin R. Russell; Christopher E. Moorman; David H. van Lear; David C. Guynn; J. Drew Lanham

    2002-01-01

    Despite a large body of knowledge concerning the use of prescribed burning for wildlife management, amphibians and reptiles (collectively, herpetofauna) have received relatively little attention regarding their responses to fire. With few exceptions, previous studies of herpetofauna and prescribed burning have been confined to fire-maintained, pine-dominated...

  20. Relationships between firing pattern, fuel consumption, and turbulence and energy exchange during prescribed fires

    Treesearch

    Kenneth L. ​Clark; Michael Gallagher; Warren E. Heilman; Nicholas Skowronski; Eric Mueller; Albert. Simeoni

    2017-01-01

    Fuel loading and consumption during prescribed fires are well-characterized for many pine-dominated forests, but relationships between firing practices, consumption of specific fuel components, and above-canopy turbulence and energy exchange have received less attention (Ottmar et al. 2016, Clements et al. 2016). However, quantitative information on how firing patterns...

  1. Soil biodiversity in artificial black pine stands after selective silvicultural treatments: preliminary results

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Butti, Fabrizio; De Meo, Isabella; Bianchetto, Elisa; Landi, Silvia; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2016-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wildfires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this reafforestation was to re-establish the pine as a first cover, pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil biodiversity under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera). The results displayed a significant difference between the overall biodiversity of the two areas. In particular, microbial diversity assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (PCR-DGGE) approaches highlighted different a composition and activity of microbial communities within the two areas before thinning. Furthermore, little but significant differences were observed for mesofauna and nematode community as well which displayed a higher diversity level in Amiata areas compared to Pratomagno. In contrast, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis specie dominated, compared to Amiata. As expected, a general degraded biodiversity was observed in both areas before thinning.

  2. Results and conclusions of pine treeline advanced project in subarctic Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siren, G.

    1997-12-31

    The original project components dealt with seed germination, soil conditions, competition, seedling ecology in and development. Subsequent research into flowering, seed maturation, dispersal and sexual development gained notable interest, as the uninhibited advance of the pine treeline continued. Since then the significant roles of repeated seed years and stand development became evident as stem numbers first increased and thereafter decreased. Improving bio-energy resources and quantifying the increasing CO{sub 2} sink dominated the sup-projects in the final stages. Ultimately the careful age and dry weight measurements and stem inventories prove decisively important in determining what factors were the main prerequisites formore » the advance of pine on forest-tundra and the development of the new CO{sub 2} sink. During the 20th century the favorable climate has promoted the advance of pine in the far north of Finland, which would appear to support the IPCC message of global warming. A consequence of this climate warming might be that the productive forest area in northernmost Finland will increase rather dramatically during the next century. Considering the longevity of pine, the standing productive forest stock and CO{sub 2} sink capacity would hence increase accordingly. It would therefore seem prudent to recommend the enhancement of conifer seed years and intensified experimentation with genetically tested conifer species throughout the circumpolar treeline regions. Consequently, through sustainable use of new biomass reserves, new areas south of the timberline could be opened to allow for potential ecological forestry practices and alternate energy sources could be developed. At the same time, this will create new employment opportunities for local people in all circumpolar regions.« less

  3. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Contributions of silvicultural studies at Fort Valley to watershed management of Arizona's ponderosa pine forests (P-53)

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Daniel G. Neary

    2008-01-01

    Watershed management and water yield augmentation have been important objectives for chaparral, ponderosa pine, and mixed conifer management in Arizona and New Mexico. The ponderosa pine forests and other vegetation types generally occur in relatively high precipitation zones where the potential for increased water yields is great. The ponderosa pine forests have been...

  5. Photosynthetically active radiation measurements in pure pine and mixed pine forests in Poland

    Treesearch

    Jaroslaw Smialkowski

    1998-01-01

    Photosynthetically active radiation (PAR) has been measured in pure pine and mixed pine forests on 15 sites in two transects in Poland: the "climatic" (from the western to the eastern border), and the "Silesian" (from the most to the less polluted part of the country). PAR was measured by using the standard procedure developed by the USDA Forest...

  6. Contributions of silvicultural studies at Fort Valley to watershed management of Arizona's ponderosa pine forests

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Daniel G. Neary

    2008-01-01

    Watershed management and water yield augmentation have been important objectives for chaparral, ponderosa pine, and mixed conifer management in Arizona and New Mexico. The ponderosa pine forests and other vegetation types generally occur in relatively high precipitation zones where the potential for increased water yields is great. The ponderosa pine forests have been...

  7. Blister rust control in the management of western white pine

    Treesearch

    Kenneth P. Davis; Virgil D. Moss

    1940-01-01

    The forest industry of the western white pine region depends on the production of white pine as a major species on about 2,670,000 acres of commercial forest land. Continued production of this species and maintenance of the forest industry at anything approaching its present level is impossible unless the white pine blister rust is controlled. Existing merchantable...

  8. Vegetative response to water availability on the San Carlos Apache Reservation

    USGS Publications Warehouse

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different vegetation types displayed various responses to water availability, further highlighting the need for individual management plans for forest and woodland, especially considering the projected drier conditions in the Southwest U.S. and other arid or semi-arid regions around the world.

  9. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.

  10. Protecting and restoring longleaf pine forests on the Kisatchie National Forest in Louisiana

    Treesearch

    James D. Haywood; Michael Elliot-Smith; Finis Harris; Alton Martin

    2000-01-01

    Longleaf pine (Pinus palustris Mill.) forests once constituted a major ecosystem in the Southern United States stretching from southeastern Virginia south to central Florida and west into East Texas. These forests covered a wide range of site conditions, from wet pine flatwoods to dry mountain slopes. Intensive exploitation reduced the extent of old-...

  11. Measuring moisture dynamics to predict fire severity in longleaf pine forests.

    Treesearch

    Sue A. Ferguson; Julia E. Ruthford; Steven J. McKay; David Wright; Clint Wright; Roger Ottmar

    2002-01-01

    To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of...

  12. Role of fire in restoration of a ponderosa pine forest, Washington

    Treesearch

    Richy J. Harrod; Richard W. Fonda; Mara K. McGrath

    2007-01-01

    Ponderosa pine forests in the Eastern Cascades of Washington support dense, overstocked stands in which crown fires are probable, owing to postsettlement sheep grazing, logging, and fire exclusion. In 1991, the Okanogan-Wenatchee National Forests began to apply long-term management techniques to reverse postsettlement changes in ponderosa pine forests. For 9 years, the...

  13. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, small-diameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  14. Grazing Potential of Louisiana Pine Forest-Ranges

    Treesearch

    Herbert S. Sternitzke

    1975-01-01

    Louisiana's 5 million acres of pine forest-range have an estimated forage potential for 135,776 yearlong cow-calf units. Two-thirds of the units can be sustained on loblolly-shortleaf pine ranges; the rest, on longleaf-slash pine ranges.

  15. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    NASA Astrophysics Data System (ADS)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field work quantifying the carbon cycle, particularly belowground processes and respiration, could help constrain parameter uncertainty.

  16. Emissions and Photochemistry of BVOCs in a Ponderosa Pine woodland

    NASA Astrophysics Data System (ADS)

    Kim, S.; Karl, T.; Rasmussen, R.; Apel, E.; Harley, P.; Waldo, S.; Roberts, S.; Guenther, A.

    2008-12-01

    We deployed two proton-transfer-reaction mass spectrometry instruments (PTR-MS, IONICON ANALYTIK) for ambient and branch enclosure measurements at the Manitou Experimental Forest, located in the Southern Rocky Mountain area as a part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) field campaign in 2008. Vegetation at the field site is dominated by Ponderosa Pine. BVOC emissions from Ponderosa Pine along with temperature, photosynthetic photon flux density (ppfd), relative humidity, and CO2 uptake were measured from two branch-enclosures (shade and sun). Diurnal variations and the emission response to environmental conditions are described and compared to existing models. In addition, we analyzed the speciation of BVOCs from enclosures by GC-MS. We will present quantitative and qualitative characteristics of BVOC emissions from Ponderosa Pine and analytical characteristics of PTR-MS such as fragmentation patterns of semi-volatile compounds (sesquiterpene, bornyl acetate etc) that we identified as major emissions from the enclosures. BVOC emissions observed in the enclosures will be quantitatively compared to BVOC distributions in ambient air. We explore the presence of possibly unidentified BVOCs in the forest canopy by examining PTR-MS mass spectra of enclosure and ambient air samples based on mass scans between 40 - 210 amu.

  17. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Treesearch

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  18. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    NASA Astrophysics Data System (ADS)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  19. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    PubMed

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D; Simmons, Breana L; Wall, Diana H

    2009-06-18

    Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.

  20. SUMO Target Tree Info

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)

    2018-01-01

    Information regarding species, plot, treatment, and chamber associated with each Tree_ID for use with all other raw data files. The Los Alamos Survival-Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. The tree community at SUMO is dominated by pinon pine (Pinus edulis Engelm.) and one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) with Gambel oak (Quercus gambelli Nutt.), and the occasional ponderosa pine (Pinus ponderosa Douglas ex C.Lawson). Soils are Hackroy clay loam and range in depth from 40 to 80 cm above a parent material of volcanic tuff. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  1. A presettlement fire history in an oak-pine forest near Basin Lake, Algonquin Park, Ontario

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    1995-01-01

    Fire scars from natural remnants of red pine (Pinus resinosa Ait.) in an oak-pine forest near Basin Lake, Algonquin Park, Ontario, were dated using dendrochronological methods. A fire scar chronology was constructed from 28 dated fire scars on 26 pine remnants found in a 1 km2 area of this forest. From pith and outside ring...

  2. Has Virginia pine declined? The use of Forest Health Monitoring and other information in the determination

    Treesearch

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly...

  3. Has Virginia pine declined? The use of forest health monitoring and other information in the determination

    Treesearch

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly poorer crown...

  4. Health of whitebark pine forests after mountain pine beetle outbreaks

    Treesearch

    Sandra Kegley; John Schwandt; Ken Gibson; Dana Perkins

    2011-01-01

    Whitebark pine (Pinus albicaulis), a keystone high-elevation species, is currently at risk due to a combination of white pine blister rust (WPBR) (Cronartium ribicola), forest succession, and outbreaks of mountain pine beetle (MPB) (Dendroctonus ponderosae). While recent mortality is often quantified by aerial detection surveys (ADS) or ground surveys, little...

  5. Southern Pine Beetle Information System (SPBIS)

    Treesearch

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  6. SOA Formation Potential of Emissions from Soil and Leaf Litter

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be dominated by soil/litter emissions--soil/litter monoterpene emissions in spring could contribute up to 63% of total forest emissions. If this is the case, a significant portion of total forest monoterpene emission rates would be controlled by factors that affect soil/litter emissions rather than factors that affect plant emissions.

  7. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Treesearch

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  8. Forest floor fuels in red and jack pine stands

    Treesearch

    James K. Brown

    1966-01-01

    An investigation to determine the quantity and density of forest floor fuels in red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb.) stands was conducted on National Forests in Michigan and Minnesota. The study was designed to answer three questions: How much fuel per acre exits in individual layers of the forest floor? How reliably can weight of...

  9. Deriving biomass models for small-diameter loblolly pine on the Crossett Experimental Forest

    Treesearch

    K.M. McElligott; D.C. Bragg

    2013-01-01

    Foresters and landowners have a growing interest in carbon sequestration and cellulosic biofuels in southern pine forests, and hence need to be able to accurately predict them. To this end, we derived a set of aboveground biomass models using data from 62 small-diameter loblolly pines (Pinus taeda) sampled on the Crossett Experimental Forest in...

  10. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis (P-53)

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, smalldiameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  11. Restoring fire-adapted forested ecosystems—research in longleaf pine on the Kisatchie National Forest.

    Treesearch

    James D. Haywood

    2007-01-01

    Prescribed burning research on the Kisatchie National Forest, Louisiana spanned the last five decades and led to a greater understanding of fire behavior and the importance of burning in longleaf pine (Pinus palustris P. Mill.) forests. Early research found that biennial burning in May favored the growth of longleaf pine seedlings. However, burning...

  12. Impact Assessment of Pine Wilt Disease Using the Species Distribution Model and the CLIMEX Model

    NASA Astrophysics Data System (ADS)

    KIM, J. U.; Jung, H.

    2016-12-01

    The plant disease triangle consists of the host plant, pathogen and environment, but their interaction has not been considered in climate change adaptation policy. Our objectives are to predict the changes of a coniferous forest, pine wood nematodes (Bursaphelenchus xylophilus) and pine sawyer beetles (Monochamus spp.), which is a cause of pine wilt disease in the Republic of Korea. We analyzed the impact of pine wilt disease on climate change by using the species distribution model (SDM) and the CLIMEX model. Area of coniferous forest will decline and move to northern and high-altitude area. But pine wood nematodes and pine sawyer beetles are going to spread because they are going to be in a more favorable environment in the future. Coniferous forests are expected to have high vulnerability because of the decrease in area and the increase in the risk of pine wilt disease. Such changes to forest ecosystems will greatly affect climate change in the future. If effective and appropriate prevention and control policies are not implemented, coniferous forests will be severely damaged. An adaptation policy should be created in order to protect coniferous forests from the viewpoint of biodiversity. Thus we need to consider the impact assessment of climate change for establishing an effective adaptation policy. The impact assessment of pine wilt disease using a plant disease triangle drew suitable results to support climate change adaptation policy.

  13. Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire.

    PubMed

    Kamczyc, Jacek; Urbanowski, Cezary; Pers-Kamczyc, Emilia

    2017-06-01

    Density, diversity and assemblage structure of Mesostigmata (cohorts Gamasina and Uropodina) were investigated in Scots pine forests differing in forest age (young: 9-40 years and mature: 83-101 years) in which wildfire occurred. This animal group belongs to the dominant acarine predators playing a crucial role in soil food webs and being important as biological control agents. In total, six forests (three within young and three within mature stands) were inspected in Puszcza Knyszyńska Forest Complex in May 2015. At each forest area, sampling was done from burned and adjacent control sites with steel cylinders for heat extraction of soil fauna. Data were analyzed statistically with nested ANOVA. We found a significant effect on mite density of both fire and forest age, with more mites in mature forests and control plots. In total, 36 mite taxa were identified. Mite diversity differed significantly between forest ages but not between burned versus control. Our study indicated that all studied forests are characterized by unique mite species and that the mite communities are dominated by different mite species depending on age forest and surface wildfire occurrence. Finally, canonical correspondence analysis ranked the mite assemblages from control mature, through burned young and burned mature, away from the control young.

  14. Final Environmental Assessment, Construct Guard House at Cape Cod Air Force Station, Massachusetts

    DTIC Science & Technology

    2004-01-01

    Pine - Scrub Oak Forest Northern Pine Barren with Oak Forest... barren vegetation communities were identified on Cape Cod AFS, pitch pine – scrub oak barren and northern pine barren with oak trees. The majority of...area on the east side of the access road just north of the installation is northern pine barren with oak trees. Pitch pine and scarlet oak

  15. Treatments that enhance the decomposition of forest fuels for use in partially harvested stands in the moist forests of the northern Rocky Mountains (Priest River Experimental Forest)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    The moist forests of the Rocky Mountains typically support late seral western hemlock, moist grand fir, or western redcedar forests. In addition to these species, Douglas-fir, western white pine, western larch, ponderosa pine, and lodgepole pine can occur creating a multitude of species compositions, structures, and successional stages that can be arrayed in a variety...

  16. Nitrogen retention in contrasting temperate forests exposed to high nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Staelens, J.; Adriaenssens, S.; Wuyts, K.; Verheyen, K.; Boeckx, P. F.

    2011-12-01

    A better understanding of factors affecting nitrogen (N) retention is needed to assess the impact of changing anthropogenic N emissions and climatic conditions on N cycling and N loss by terrestrial ecosystems. Retention of N has been demonstrated for a wide range of forests, including ecosystems exposed to chronically enhanced N deposition, but it is still unclear which factors determine this N retention capacity. Therefore, we examined the possible effects of forest type on N retention using stable N isotopes. The study was carried out in adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) stands with a similar stand history and growing on a well-drained sandy soil in a region with enhanced N deposition (Belgium). The N input-output budgets and gross soil N transformation rates differed significantly between the two stands. The forest floor was exposed to a high inorganic N input from atmospheric deposition, which was nearly twice as high in the pine stand (33 ± 2 kg N ha-1 yr-1; mean ± standard error) as in the oak stand (18 ± 1 kg N ha-1 yr-1). The N input was reflected in the soil solution under the rooting zone, but the mean nitrate concentration was eight times higher under pine (19 ± 5 mg N L-1) than under oak (2.3 ± 0.9 mg N L-1). Gross N dynamics in the mineral topsoil were determined by in situ 15N labelling of undisturbed soil cores combined with numerical data analysis. Gross N mineralization was two times faster in the oak soil while nitrate production was two times faster in the pine soil, indicating a dominant effect of vegetation cover on soil N cycling. The higher gross nitrification, particularly due to oxidation of organic N, in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, was in line with the higher nitrate leaching under the pine forest. On a larger spatial and temporal scale, the fate of dissolved inorganic N within these forests was studied by spraying three pulses of 15N onto the forest floor during the growing season, either as ammonium or as nitrate. Four months and one year after the first application, 15N recovery was determined in the organic and mineral soil layers, fine tree roots, soil water percolate, ferns, and tree foliage. As hypothesized, N retention in the forest floor and mineral soil horizons was lower in the pine stand compared to oak, while N retention was lower for nitrate than for ammonium in both stands. The differences in 15N retention confirm that tree species affect the N balance of ecosystems under high anthropogenic N inputs and agree with the findings on gross soil N dynamics and N input-output budgets. Overall, the research underlines the importance of considering the interaction between tree species and carbon and N turnover when assessing the response of forest ecosystems to global change scenarios.

  17. A Comparison of the Ecological Effects of Herbicide and Prescribed Fire in a Mature Longleaf Pine Forest: Response of Juvenile and Overstory Pine

    Treesearch

    Jennifer L. Gagnon; Steven B. Jack

    2004-01-01

    Prescribed fire may be removed as a forest management tool by regulatory agencies concerned about air quality issues. Herbicides have been proposed as substitutes for prescribed fires in southern pine forests, but we are aware of no studies that examine the effects of herbicide application in mature, fire maintained longleaf pine (Pinus palustris...

  18. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.

  19. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  20. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  1. Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

    NASA Astrophysics Data System (ADS)

    Korneikova, M. V.; Redkina, V. V.; Shalygina, R. R.

    2018-02-01

    The structure of algological and mycological complexes in Al-Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpina, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria-algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

  2. Quantitative Classification and Environmental Interpretation of Secondary Forests 18 Years After the Invasion of Pine Forests by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in China

    PubMed Central

    Wang, Zhuang; Luo, You-Qing; Shi, Juan; Gao, Ruihe; Wang, Guoming

    2014-01-01

    Abstract With growing concerns over the serious ecological problems in pine forests ( Pinus massoniana , P. thunbergii ) caused by the invasion of Bursaphelenchus xylophilus (the pine wood nematode), a particular challenge is to determine the succession and restoration of damaged pine forests in Asia. We used two-way indicator species analysis and canonical correlation analysis for the hierarchical classification of existing secondary forests that have been restored since the invasion of B. xylophilus 18 years ago. Biserial correlation analysis was used to relate the spatial distribution of species to environmental factors. After 18 years of natural recovery, the original pine forest had evolved into seven types of secondary forest. Seven environmental factors, namely soil depth, humus depth, soil pH, aspect, slope position, bare rock ratio, and distance to the sea, were significantly correlated with species distribution. Furthermore, we proposed specific reform measures and suggestions for the different types of secondary forest formed after the damage and identified the factors driving the various forms of restoration. These results suggest that it is possible to predict the restoration paths of damaged pine forests, which would reduce the negative impact of B. xylophilus invasions. PMID:25527600

  3. Soil carbon storage in plantation forests and pastures: land-use change implications

    NASA Astrophysics Data System (ADS)

    Scott, Neal A.; Tate, Kevin R.; Ford-Robertson, Justin; Giltrap, David J.; Tattersall Smith, C.

    1999-04-01

    Afforestation may lead to an accumulation of carbon (C) in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Plantation forest carbon budget models often omit mineral soil C changes from stand-level C budget calculations, while including forest floor C accumulation, or predict continuous soil C increases over several rotations. We used national soil C databases to quantify differences in soil C content between pasture and exotic pine forest plantations dominated by P. radiata (D. Don), and paired site studies to quantify changes in soil C with conversion of pasture to plantation forest in New Zealand. Overall, mineral soil C to 0.10 m was 20 40% lower under pine for all soil types (p<0.01) except soils with high clay activity (HCA), where there was no difference. Similar trends were observed in the 0.1 0.3 m layer. Moreover, mineral soil C to 0.1 m was 17 40% lower under pine than pasture in side-by-side comparisons. The only non-significant difference occurred at a site located on a HCA soil (p=0.08). When averaged across the site studies and the national databases, the difference in soil C between pasture and pine was about 16 t C ha-1on non-HCA soils. This is similar to forest floor C averaged across our individual sites (about 20 t C ha-1). The decrease in mineral soil C could result in about a 15% reduction in the average C sequestration potential (112 t C ha-1) when pasture is converted to exotic plantation forest on non-HCA soils. The relative importance of this change in mineral soil C will likely vary depending on the productivity potential of a site and harvest impacts on the forest floor C pool. Our results emphasize that changes in soil C should be included in any calculations of C sequestration attributed to plantation forestry.

  4. Pine dwarfmistletoe on the Pringle Falls Experimental Forest.

    Treesearch

    L.F. Roth

    1953-01-01

    Dwarfmistletoe (Arceuthobium campylopodum forma typicum (Engelm.) Gill) is widespread in the ponderosa pine forests of Oregon and Washington. The importance of dwarfmistletoe as a damaging agent in the pine forest of the Pacific Northwest was described by Weir in 1916. In some localities present infestations are so heavy that...

  5. Managing Gambel oak in southwestern ponderosa pine forests: the status of our knowledge

    Treesearch

    Scott R. Abella

    2008-01-01

    Gambel oak (Quercus gambelii) is a key deciduous species in southwestern ponderosa pine (Pinus ponderosa) forests and is important for wildlife habitat, soil processes, and human values. This report (1) summarizes Gambel oak's biological characteristics and importance in ponderosa pine forests, (2) synthesizes literature on...

  6. Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine.

    Treesearch

    Timothy B. Harrington; Laura T. Rader-Dixon; John W. Jr. Taylor

    2003-01-01

    Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a...

  7. Climate drivers of regionally synchronous fires in the inland northwest (1651-1900)

    Treesearch

    Emily K. Heyerdahl; Donald McKenzie; Lori D. Daniels; Amy E. Hessl; Jeremy S. Littell; Nathan J. Mantua

    2008-01-01

    We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon,Washington and southern British Columbia).Years with widespread fires (35 years with fire at 7 to 11 sites) had warm...

  8. Private timberlands: growing demands, shrinking land base.

    Treesearch

    Ralph Alig; John Mills; Brett Butler

    2002-01-01

    By 2050, US timberland area is projected to be about 3 percent smaller than today due to increasing demands for urban and related land uses from another 126 million people. An increasing area of southern planted pine will be accompanied by a reduction in the area of upland hardwoods. Hardwoods will continue to dominate the forested landscape in the South. Plantation...

  9. Around the world nursery inoculations and conifer establishment using Rhizopogon mycorrhizal fungi

    Treesearch

    Mike Amaranthus

    2002-01-01

    Rhizopogon is a large genus mycorrhizal fung of particular importance to the Pinaceae. Rhizopogon species occur in both young and old forests, in diverse habitats and are present on every continent but Antarctica. Ths ecological amplitude was recognized early in the 20th century when Rhizopogon species were observed as dominant ectomycorrhizal fungi in exotic pine...

  10. Prescribed fire, snag population dynamics, and avian nest site selection

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell; John T. Rotenberry

    2008-01-01

    Snags are an important resource for a wide variety of organisms, including cavity-nesting birds. We documented snag attributes in a mixed conifer forest dominated by ponderosa pine in the Sierra Nevada, California where fire is being applied during spring. A total of 328 snags were monitored before and after fire on plots burned once, burned twice, or left unburned to...

  11. Long-term protection effects of National Reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China.

    PubMed

    Bai, Fan; Sang, WeiGuo; Li, GuangQi; Liu, RuiGang; Chen, LingZhi; Wang, Kun

    2008-10-01

    The Changbai Mountain Nature Reserve (CNR) was established in 1960 to protect the virgin Korean pine mixed hardwood forest, a typical temperate forest of northeast China. We conducted systematic studies of vascular diversity patterns on the north slope of the CNR mountainside forests (800-1700 m a.s.l.) in 1963 and 2006 respectively. The aim of this comparison is to assess the long-term effects of the protection on plant biodiversity of CNR during the interval 43 years. The research was carried out in three types of forests: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon-Wiener index were found different in the same elevations and forest types during the 43-year interval. The floral composition and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layers, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF from 1963 to 2006. However, originally dominant species, P. koraiensis for example, tended to decline, while the proportion of broad-leaved trees increased, and the species turnover in the succession layers trended to shift to higher altitudes. The diversity pattern of the under canopy fluctuated along the altitudinal gradient due to micro-environmental variations. Comparison of the alpha diversity in the three forests shows that the diversity of the shrub and herb layer decreased with time. During the process of survey, we also found some rare and medicinal species disappeared. Analysis indicates that the changes of the diversity pattern in this region are caused by both nature and human factors. Meteorological records revealed that climate has changed significantly in the past 43 years. We also found the most severe human disturbance to the CNR forests in the process of another field survey that is the exploitation of herb medicines and Korean pine nuts. We hope this research would give some guidance to the future reserve management in Changbai Mountain area.

  12. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Treesearch

    E. Matthew Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  13. Mathematical model of forest succession and land use for the North Carolina Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.C.

    1977-01-01

    A linear, constant-coefficient compartment model was constructed to simulate temporal changes in the areal extent of major forest types in the North Carolina Piedmont. Model structure and transfer coefficients were derived from published ecological literature and available USDA Forest Service statistical summaries. The results show the importance of old-field abandonment to the perpetuation of extensive loblolly pine (Pinus taeda) forests in the Piedmont. Should abandonment cease, post-harvest treatment and planting of loblolly pine would have to be increased considerably over current levels to maintain an extensive loblolly pine forest type. Extrapolation of current rates of change forward 250 years wouldmore » result in a sizeable increase in the area of loblolly pine and loblolly pine-oak types, a slight increase in oak-hickory, a sizeable decline in shortleaf and Virginia pine (Pinus echinata, Pinus virginiana, resp.) types and a slight decline for other mixed pine-hardwood and lowland and dry upland hardwood categories compared to current conditions. The technique can be a useful tool either to assess some long-term effects of present management and use trends or to suggest strategies necessary to obtain a desired regional mixture of forest types.« less

  14. Snow interception, accumulation, accumulation, and melt in lodgepole pine forests in the Blue Mountains of eastern Oregon.

    Treesearch

    Norman H. Miner; James M. Trappe

    1957-01-01

    Lodgepole pine (Pinus contorta) forests in the Blue Mountains of eastern Oregon occupy important water-producing lands. These forests generally occur at middle to high elevations on north slopes, where a substantial portion of the precipitation is snow. To learn more about the influence of lodgepole pine forests on accumulation of mow and rate of...

  15. Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.B. Harrington; L.T. Rader-Dixon; J.W. Taylor, Jr.

    Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a nonsprayed check), in which loblolly pines were planted at three densities (0, 1, and 4 seedlings m22) to induce competition and potentially delay kudzu recovery. This split-plot design was replicated on each of the four kudzu-dominated sites near Aiken, SC. Relative light intensity (RLI) andmore » soil water content (SWC) were measured periodically to identify mechanisms of interference among plant species. Two years after treatment (1999), crown coverage of kudzu averaged , 2% in herbicide plots compared with 93% in the nonsprayed check, and these differences were maintained through 2001, except in clopyralid plots where kudzu cover increased to 15%. In 2001, pine interference was associated with 33, 56, and 67% reductions in biomass of kudzu, blackberry, and herbaceous vegetation, respectively. RLI in kudzu-dominated plots (4 to 15% of full sun) generally was less than half that of herbicide-treated plots. SWC was greatest in tebuthiuron plots, where total vegetation cover averaged 26% compared with 77 to 111% in other plots. None of the treatments eradicated kudzu, but combinations of herbicides and induced pine competition delayed its recovery.« less

  16. Lluciapomaresius nisae, a new species of Ephippigerini (Orthoptera: Tettigoniidae: Bradyporinae) from the northeast of the Iberian Peninsula.

    PubMed

    Olmo-Vidal, Josep Maria

    2017-01-16

    A new species of the genus Lluciapomaresius Barat, 2012 is described from Serra de Llaberia in Catalonia (in the northeast of Iberian Peninsula). Lluciapomaresius nisae n. sp. was collected in a Mediterranean pine forest dominated by European black pine (Pinus nigra) and secondarily by Calcicolous rosemary scrub. L. nisae is compared to L. panteli (Navàs, 1899) from which it can be separated mainly by the shape of the male cerci, the titillators and the male calling song. Also in the females by the protuberances at the base of the ventral valves of the ovipositor.

  17. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest

    USGS Publications Warehouse

    Keeley, J.E.; McGinnis, T.W.

    2007-01-01

    Following the reintroduction of fire Bromus tectorum has invaded the low elevation ponderosa pine forests in parts of Kings Canyon National Park, California. We used prescribed burns, other field manipulations, germination studies, and structural equation modelling, to investigate how fire and other factors affect the persistence of cheatgrass in these forests. Our studies show that altering burning season to coincide with seed maturation is not likely to control cheatgrass because sparse fuel loads generate low fire intensity. Increasing time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibit cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank. Using structural equation modelling, postfire cheatgrass dominance was shown to be most strongly controlled by the prefire cheatgrass seedbank; other factors include soil moisture, fire intensity, soil N, and duration of direct sunlight. Current fire management goals in western conifer forests are focused on restoring historical fire regimes; however, these frequent fire regimes may enhance alien plant invasion in some forest types. Where feasible, fire managers should consider the option of an appropriate compromise between reducing serious fire hazards and exacerbating alien plant invasions. ?? IAWF 2007.

  18. Proceedings of the ninth Lake States Forest Tree Improvement Conference, August 22-23, 1969.

    Treesearch

    USDA

    1970-01-01

    Presents nine papers concerning recent research in forest genetics, physiology, and allied fields. Species discussed include Scotch pine, red pine, jack pine, white pine, larch, white spruce, black spruce, balsam fir, yellow birch, sugar maple, red oak, American elm, and aspen.

  19. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks.

    PubMed

    McIntyre, Patrick J; Thorne, James H; Dolanc, Christopher R; Flint, Alan L; Flint, Lorraine E; Kelly, Maggi; Ackerly, David D

    2015-02-03

    We document changes in forest structure between historical (1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees (<30 cm) have increased. Large tree declines were found in all surveyed regions of California, whereas small tree increases were found in every region except the south and central coast. Large tree declines were more severe in areas experiencing greater increases in climatic water deficit since the 1930s, based on a hydrologic model of water balance for historical climates through the 20th century. Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  20. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks

    USGS Publications Warehouse

    McIntyre, Patrick J.; Thorne, James H.; Dolanc, Christopher R.; Flint, Alan L.; Flint, Lorraine E.; Kelly, Maggi; Ackerly, David D.

    2015-01-01

    We document changes in forest structure between historical(1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees ( < 30 cm) have increased. Large tree declines were found in all surveyed regions of California, whereas small tree increases were found in every region except the south and central coast. Large tree declines were more severe in areas experiencing greater increases in climaticwater deficit since the 1930s, based on a hydrologicmodel of water balance for historical climates through the 20th century. Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  1. Availability of yellow pine sawtimber in Alabama

    Treesearch

    William H. McWilliams

    1991-01-01

    Alabama's timberland supports 76.2 billion board feet of sawtimber (International 1/4-inch Rule), of which 55 percent is contributed by yellow pine species. Currently, yellow pine sawtimber volume totals 41.8 billion board feet. The recent inventory conducted by the USDA-Forest Service, Southern Forest Experiment Station, Forest Inventory and Analysis Unit (SO-...

  2. Highlights of the Forest Health Protection Whitebark Pine Restoration Program

    Treesearch

    John Schwandt

    2011-01-01

    In 2005, Forest Health Protection (FHP) initiated a rangewide health assessment for whitebark pine (Pinus albicaulis). This assessment summarized the forest health condition of whitebark pine throughout its range and also documented information needs, potential restoration strategies, and challenges to restoration that need to be addressed (Schwandt 2006). This led to...

  3. Price and Welfare Effects of Catastrophic Forest Damage from Southern Pine Beetle Epidemics

    Treesearch

    Thomas P. Holmes

    1991-01-01

    Southern pine beetle (Dendroctonus frontalis) epidemics are periodically responsible for catastrophic levels of mortality to southern yellow pine forests. Traditional forest damage appraisal techniques developed for site specific economic analysis are theoretically weak since they do not consider aggregate impacts across ecosystems and related markets. Because the...

  4. Associations among breeding birds and gambel oak in Southwestern ponderosa pine forests

    Treesearch

    Stephanie Jentsch; R. William Mannan; Brett G. Dickson; William M. Block

    2008-01-01

    Ponderosa pine (Pinus ponderosa) forests with Gambel oak (Quercus gambelii) are associated with higher bird abundance and diversity than are ponderosa pine forests lacking Gambel oak. Little is known, however, about specific structural characteristics of Gambel oak trees, clumps, and stands that may be important to birds in...

  5. Financial results of ponderosa pine forest restoration in southwestern Colorado

    Treesearch

    Dennis L. Lynch

    2001-01-01

    From 1996 to 1998, the Ponderosa Pine Partnership conducted an experimental forest restoration project on 493 acres of small diameter ponderosa pine in the San Juan National Forest, Montezuma County, Colorado. The ecological basis and the financial analysis for this project are discussed. Specific financial results of the project including products sold, revenues...

  6. Fire effects on Gambel oak in southwestern ponderosa pine-oak forests

    Treesearch

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Gambel oak (Quercus gambelii) is ecologically and aesthetically valuable in southwestern ponderosa pine (Pinus ponderosa) forests. Fire effects on Gambel oak are important because fire may be used in pine-oak forests to manage oak directly or to accomplish other management objectives. We used published literature to: (1) ascertain...

  7. Regenerating the Natural Longleaf Pine Forest

    Treesearch

    William D. Boyer

    1979-01-01

    Natural regeneration by the shldterwood system is a reliable, low-cost alternative for existing longleaf pine (Pine palustris Mill.) forests. The system is well suited to the nautral attributes and requirements of the species. It may be attractive to landownders wishing to retain a natural forest and aboid high costs of site preparation and...

  8. Determining fire history from old white pine stumps in an oak-pine forest

    Treesearch

    Richard P. Guyette; Daniel C. Dey; Chris McDonell

    1995-01-01

    Fire scars on stumps of white pine (Pinus strobus L.) in a red oak (Quercus rubra L.) white pine forest near Bracebridge, Ontario, were dated using dendrochronological methods. A chronological record of fires that caused basal scarring is preserved in the remnant white pine stumps, which were estimated to be up to 135 years old...

  9. Shortleaf pine (Pinus echinata Mill.) and hardwood regeneration after thinning natural shortleaf pine forests in southern United States

    Treesearch

    Anup KC; Thomas B. Lynch; James M. Guldin

    2016-01-01

    Understory pine and hardwood regeneration in the Ozark and Ouachita National Forests were measured in 1995 for the first time following thinning and hardwood control at plot establishment 1985-87. Red maple (Acer rubrum), shortleaf pine and flowering dogwood (Cornus florida) were the most frequently recorded species. Understory shortleaf pine stems have declined...

  10. Recent trends in the afforestation and reforestation of nonindustrial private pine forests in Alabama

    Treesearch

    William H. McWilliams

    1992-01-01

    A shrinking of Alabama's nonindustrial private pine forest prompted an analysis of recent trends in afforestation and regeneration. There has been an 828,100-acre addition to the nonindustrial pine-site timberland base from nonforest land uses. Planting has replaced natural seeding as the major cause of afforestation to pine. The area of nonindustrial pine-site...

  11. Thirty year change in lodgepole and lodgepole/mixed conifer forest structure following 1980s mountain pine beetle outbreak in western Colorado, USA

    Treesearch

    Kristen A. Pelz; Frederick W. Smith

    2012-01-01

    Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...

  12. Mountain pine beetle infestations and Sudden Aspen Decline in Colorado: Can the Forest Inventory and Analysis annual inventory system address the issues?

    Treesearch

    Michael T. Thompson

    2009-01-01

    There are two events occurring in Colorado that are concerning forest managers in Colorado. There is severe and widespread mortality of lodgepole pine due to the mountain pine beetle and aspen forests in some areas of the state have experienced widespread, severe, and rapid crown deterioration leading to mortality. Implementation of the Forest Inventory and Analysis...

  13. Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics

    Treesearch

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    As urbanization can involve multiple alterations to the soil environment, it is uncertain how urbanization effects soil nitrogen cycling. We established 22–0.04 ha plots in six different land cover types—rural slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n=3), rural natural oak forests (n=4), urban pine forests (n=3), urban oak forests (n...

  14. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    NASA Astrophysics Data System (ADS)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests, forest management, and climate change. These efforts will enable our stakeholders to enhance the productivity of southern pine forests, while maintaining social, economic, and ecological sustainability.

  15. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Pinus flexilis on Pine Mountain, Humboldt National Forest, Elko County, northeastern Nevada, U.S.A.

    Treesearch

    Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling

    2017-01-01

    In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...

  16. Millennial-scale vegetation changes in the north-eastern Russian Arctic during the Pliocene/Pleistocene transition (2.7-2.5 Ma) inferred from the pollen record of Lake El'gygytgyn

    NASA Astrophysics Data System (ADS)

    Andreev, Andrei A.; Tarasov, Pavel E.; Wennrich, Volker; Melles, Martin

    2016-09-01

    The sediment record of Lake El'gygytgyn (67°30‧N, 172°05‧E) spans the past 3.6 Ma and provides unique opportunities for qualitative and quantitative reconstructions of the regional paleoenvironmental history of the terrestrial Arctic. Millennial-scale pollen studies of the sediments that accumulated during the Late Pliocene and Early Pleistocene (ca. 2.7 to 2.5 Ma) demonstrate orbitally-driven vegetation and climate changes during this transitional interval. Pollen spectra show a significant vegetation shift at the Pliocene/Pleistocene boundary that is, however, delayed by a few thousand years compared to lacustrine response. About 2.70-2.68 Ma the vegetation at Lake El'gygytgyn, currently a tundra area was mostly dominated by larch forests with some shrub pine, shrub alder and dwarf birch in understory. During the marine isotope stages G3 and G1, ca. 2.665-2.647 and 2.625-2.617 Ma, some spruce trees grew in the local larch-pine forests, pointing to relatively warm climate conditions. At the beginning of the Pleistocene, around 2.588 Ma, a prominent climatic deterioration led to a change from larch-dominated forests to predominantly treeless steppe- and tundra-like habitats. Between ca. 2.56-2.53 Ma some climate amelioration is reflected by the higher presence of coniferous taxa (mostly pine and larch, but probably also spruce) in the area. After 2.53 Ma a relatively cold and dry climate became dominant again, leading to open steppe-like and shrubby environments followed by climate amelioration between ca. 2.510 and 2.495 Ma, when pollen assemblages show that larch forests with dwarf birch and shrub alder still grew in the lake's vicinity. Increased contents of green algae colonies (Botryococcus) remains and Zygnema cysts around 2.691-2.689, 2.679-2.677, 2.601-2.594, 2.564-2.545, and 2.532-2.510 Ma suggest a spread of shallow-water environments most likely due to a lake-level lowering. These events occurred simultaneously with dry climate conditions inferred from broad distribution of steppe habitats with Artemisia and other herbs.

  17. Effects of thinning and herbicide application on vertebrate communities in longleaf pine plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunjes, Kristina J.; Miller, Karl V.; Ford, Mark W.

    Currently, nearly 98% of the land area once dominated by longleaf pine ecosystems has been converted to other uses. The U.S. Forest Service is replanting logged areas with longleaf pine at the Savannah River Site, New Ellenton, South Carolina, in an effort to restore these ecosystems. To ascertain the effects of various silvicultural management techniques on the vertebrate communities, we surveyed small mammal, herpetofaunal, and avian communities in six 10- to 13-year-old longleaf pine plantations subjected to various thinning and herbicide regimes. Areas within each plantation were randomly assigned one of four treatments: thinning, herbicide spraying, thinning and herbicide, andmore » an untreated control. For all vertebrate groups, abundance and species diversity tended to be less in the controls than treated areas. Birds and small mammals were most abundant and diverse in thinned treatments versus spray only and control. Herpetofauna capture rates were low and, thus, we were unable to detect treatment-related differences. Silvicultural treatments that reduce hardwood stem density and pine basal area can enhance habitat conditions for numerous vertebrate species.« less

  18. Harvest Activity and Residual Pine Stocking on Prvate Timberland in Arkansas, 1978-88

    Treesearch

    William H. McWilliams

    1989-01-01

    Commercial harvesting, carried out on 39 percent of the privately owned timberland (5.3 million acres) in Arkansas from 1978-88, had a heavy impact on forest industry timberland. On a percentage basis, cutting was heaviest in pine forest types. Fifty-four percent of the heavily cut pine and mixed pine-hardwood stands were at least 60 percent stocked with pine following...

  19. Identifying "redtops": Classification of satellite imagery for tracking mountain pine beetle progression through a pine forest

    Treesearch

    Richard Cutler; Leslie Brown; James Powell; Barbara Bentz; Adele Cutler

    2003-01-01

    Mountain pine beetles (Dendroctonus ponderosae Hopkins) are a pest indigenous to the pine forests of the western United States. Capable of exponential population growth, mountain pine beetles can destroy thousands of acres of trees in a short period of time. The research reported here is part of a larger project to demonstrate the application of, and evaluate,...

  20. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Treesearch

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  1. Effects of fire season on vegetation in longleaf pine (Pinus palustris) forests

    Treesearch

    Bryan T. Mudder; G. Geoff Wang; Joan L. Walker; J. Drew Lanham; Ralph Costa

    2010-01-01

    Forest managers in the Southeastern United States are interested in the restoration of not only longleaf pine (Pinus palustris) trees, but also the characteristic forest structure and ground-layer vegetation of the longleaf pine ecosystem. Season of burn, fire intensity, and fire frequency are critical components of a fire regime that supports...

  2. Needs and Opportunities for Longleaf Pine Ecosystem Restoration in Florida

    Treesearch

    Kenneth W. Outcalt

    1997-01-01

    Data from permanent plots measured periodically by Forest Inventory and Analyses of the Southern Research Station, USDA Forest Service shows a continuing decline in the longleaf pine (Pinus pulustris Mill,) ecosystem in Florida from 1987 to 1995. Conversion to some other forest type resulted in a net loss of 58,000 ha natural stands of longleaf pine...

  3. White Pine Site Index for the Southern Forest Survey

    Treesearch

    Bernard R. Parresol; John S. Vissage

    1998-01-01

    Second-growth white pine age-height data a A base-ageinvariant polymorphic site index equation was used to model the white pine (Pinus strobus L.) site-quality data provided by Frothingham (1914). These data are the accepted standard used by the Southern Forest Inventory and Analysis unit of the U.S. Department of Agriculture, Forest Service. An all...

  4. Guide to understory burning in ponderosa pine-larch-fir forests in the Intermountain West

    Treesearch

    Bruce M. Kilgore; George A. Curtis

    1987-01-01

    Summarizes the objectives, prescriptions, and techniques used in prescribed burning beneath the canopy of ponderosa pine stands, and stands of ponderosa pine mixed with western larch, Douglas-fir, and grand fir. Information was derived from 12 districts in two USDA Forest Service Regions and seven National Forests in Montana and Oregon.

  5. Changes in Gambel oak densities in southwestern ponderosa pine forests since Euro-American settlement

    Treesearch

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Densities of small-diameter ponderosa pine (Pinus ponderosa) trees have increased in southwestern ponderosa pine forests during a period of fire exclusion since Euro-American settlement in the late 1800s. However, less well known are potential changes in Gambel oak (Quercus gambelii) densities during this period in these forests....

  6. A historical overview

    Treesearch

    Dan Scurlock; Deborah M. Finch

    1997-01-01

    This chapter reviews the historical: 1) occupancy, use of and impacts on ponderosa pine forests by early American Indians and European settlers; and 2) the human use of and impacts on birds in ponderosa pine forests. Contemporary ecology and human use of ponderosa pine forests are described in this publication by Moir et al. and Raish et al. Recent human impacts on...

  7. Lessons learned from prescribed fire in ponderosa pine forests of the southern Sierra Nevada

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell

    2009-01-01

    Prescribed fire is a commonly used management tool in fire-suppressed ponderosa pine (Pinus ponderosa) forests, but effects of these fires on birds are largely unstudied. We investigated both direct and indirect impacts on breeding birds in ponderosa pine forests of the southern Sierra Nevada where fires were applied in the spring. Following...

  8. Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California.

    Treesearch

    Andrew Youngblood; Timothy Max; Kent Coe

    2004-01-01

    Quantitative metrics of horizontal and vertical structural attributes in eastside old-growth ponderosa pine (Pinus ponderosa P. and C. Lawson var. ponderosa) forests were measured to guide the design of restoration prescriptions. The age, size structure, and the spatial patterns were investigated in old-growth ponderosa pine forests at three...

  9. Effects of the amount and composition of the forest floor on emergence and early establishment of loblolly pine seedlings

    Treesearch

    Michael G. Shelton

    1995-01-01

    Five forest floor weights (0, 10, 20, 30, and 40 MgJha), three forest floor compositions (pine, pine-hardwood, and hardwood), and two seed placements (forest floor and soil surface) were tested in a three-factorial. split-plot design with four incomplete, randomized blocks. The experiment was conducted in a nursery setting and used wooden frames to define 0.145-m

  10. Assessing the impact of a mountain pine beetle infestation on stand structure of lodgepole pine forests in Colorado using the Forest Inventory and Analysis Annual forest inventory

    Treesearch

    Michael T. Thompson

    2017-01-01

    The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...

  11. Ecological Restoration Through Silviculture--A Savanna Management Demonstration Area, Sinkin Experimental Forest, Missouri

    Treesearch

    Edward F. Loewenstein; Kenneth R. Davidson

    2002-01-01

    In 1998, a project was initiated to demonstrate techniques and evaluate the efficacy of reducing overstory tree density and reintroducing fire in order to develop the tree composition, structure, and herbaceous complex typical of a savanna. On three study areas, two dominated by oak and one by shortleaf pine, the total basal area of all trees = 1.6 inches DBH was...

  12. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  13. Impacts of logging and prescribed burning in longleaf pine forests managed under uneven-aged silviculture

    Treesearch

    Ferhat Kara; Edward Francis Loewenstein

    2015-01-01

    The longleaf pine (Pinus palustris Mill.) ecosystem has historically been very important in the southeastern United States due to its extensive area and high biodiversity. Successful regeneration of longleaf pine forests requires an adequate number of well distributed seedlings. Thus, mortality of longleaf pine seedlings during logging operations...

  14. Development of understory tree vegetation after thinning naturally occurring shortleaf pine forests

    Treesearch

    K.C. Anup; Thomas B. Lynch; Douglas Stevenson; Duncan Wilson; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    During the 25 years since establishment of more than 200 growth study plots in even-aged, naturally regenerated shortleaf pine (Pinus echinata Mill.) forests, there has been considerable development of hardwood understory trees, shrubs, and some shortleaf pine regeneration. During the period from 1985-1987, even-aged shortleaf pine growth-study...

  15. Radiographic Analysis of Shortleaf Pine Seeds From the Ouachita and Ozark National Forests

    Treesearch

    Alex C. Mangini; William W. Bruce; James L. Hanula

    2004-01-01

    Abstract - Shortleaf pine, Pinus echinata Mill., is indigenous to the Ouachita Mountains and the Magazine Mountain area of Arkansas. Natural regeneration of shortleaf pine is a priority on National Forest lands in this area. Insects infesting cones and seeds of shortleaf pine reduce the healthy seeds available for natural...

  16. Disturbance from southern pine beetle, suppression, and wildfire affects vegetation composition in central Louisiana: a case study

    Treesearch

    T.W. Coleman; Alton Martin; J.R. Meeker

    2010-01-01

    We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...

  17. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Treesearch

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  18. Ponderosa pine ecosystems

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  19. Integrating management strategies for the mountain pine beetle with multiple-resource management of lodgepole pine forests

    Treesearch

    Mark D. McGregor; Dennis M. Cole

    1985-01-01

    Provides guidelines for integrating practices for managing mountain pine beetle populations with silvicultural practices for enhancing multiple resource values of lodgepole pine forests. Summarizes published and unpublished technical information and recent research on the ecology of pest and host and presents visual and classification criteria for recognizing...

  20. A race against beetles: Conservation of limber pine

    Treesearch

    Anna Schoettle; Kelly Burns; Sheryl Costello; Jeff Witcosky; Brian Howell; Jeff Connor

    2008-01-01

    The Rocky Mountain Research Station, Forest Health Management, Rocky Mountain National Park, Arapaho-Roosevelt National Forest, and the Medicine Bow NF are coordinating efforts to conserve limber pine along the Front Range of the southern Rockies. Mountain pine beetle (MPB) populations are increasing dramatically in the area and killing limber pines in their...

  1. Altered species interactions and implications for natural regeneration in whitebark pine communities

    Treesearch

    Shawn T. McKinney; Diana F. Tomback; Carl E. Fiedler

    2011-01-01

    Whitebark pine (Pinus albicaulis) decline has altered trophic interactions and led to changes in community dynamics in many Rocky Mountain subalpine forests (McKinney and Tomback 2007). Here we discuss how altered species interactions, driven by disproportionate whitebark pine mortality, constrain the capability of whitebark pine forests to contribute genetic material...

  2. Response of southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) stands to prescribed burning

    Treesearch

    N.T. Welch; Thomas A. Waldrop; E.R. Buckner

    2000-01-01

    Southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) forests require disturbance for regeneration. Lightning-ignited fires and cultural burning practices provided the disturbance that prehistorically and historically maintained these forests. Burning essentially ceased on public lands in the early...

  3. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.

  4. Ecosystem scale VOC exchange measurements at Bosco Fontana (IT) and Hyytiälä (FI)

    NASA Astrophysics Data System (ADS)

    Schallhart, S.; Rantala, P.; Taipale, R.; Nemitz, E.; Tillmann, R.; Mentel, T. F.; Ruuskanen, T.; Rinne, J.

    2013-12-01

    The ozone production and destruction mechanisms in the troposphere depend on the abundance of NOx and volatile organic compounds (VOCs). As the latter originate not only from human activities, but to a large extent from vegetation it is important to quantify these biogenic sources as well. The VOC-fluxes were measured in Bosco Fontana forest as a part of an intensive measurement campaign of the Eclaire project, which investigates how climate change alters the threat of air pollution. Measurements were carried out at the Nature Reserve 'Bosco della Fontana' in the Po valley, Italy. The area of the forest is 198 ha and the dominanting tree species are Quercus robur (English oak), Quercus cerris (Turkey oak) and Carpinus betulus (hornbeam). The fluxes were measured on at a height of 32 metres using the eddy covariance method. A PTR-TOF (Ionicon Analytik, Austria) measured volatile organic compounds up to a mass of 300 atomic mass units. The instrument is capable of recording full spectra of VOCs in real-time with a resolution of 10 Hz. In addition to the mass spectrometer a 3D Anemometer was placed next to the inlet. Results will be presented and compared with disjunct eddy covariance measurements (Taipale et al. 2011) from a Pinus sylvestris (Scots Pine) dominated forest in Hyytiälä, Finland. The two forests are characterized by a different emission profile; the Bosco Fontana forest emits large amounts of isoprene, whereas the terpenoid emissions from Hyytiälä forest are dominated by monoterpenes. The magnitude of the emissions differs as emission from Bosco Fontana is much higher. The monoterpene emission from Bosco Fontana is likely to follow different dynamics than that from Hyytiälä as it correlates well with the radiation. This leads to the conclusion, that monoterpenes are released right after they are produced (de novo). In Hyytiälä the emissions are light and temperature dependent, which is caused by de novo and storage emissions. Pines have large monoterpenes storages, which are emitted at high temperatures. The results of both forests are consistent with the cuvette measurements of Ghirardo et al. (2010). This research received funding from the EC Seventh Framework Programme (Collaborative project "ECLAIRE" grant no. 282910) and by the Academy of Finland Center of Excellence program (project number 141135). References.: Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler, J-P. and Rinne, J. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant, Cell & Environment,33,5,781-792,2010. Taipale, R., Kajos, M.K., Patokoski, J., Rantala, P., Ruuskanen, T.M. and Rinne, J. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences, 8, 8, 2247-2255, 2011.

  5. Deception Creek Experimental Forest

    Treesearch

    Theresa B. Jain; Russell T. Graham

    1996-01-01

    Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...

  6. AmeriFlux US-UMd UMBS Disturbance

    DOE Data Explorer

    Curtis, Peter [Ohio State University; Gough, Christopher [Virginia Commonwealth University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-UMd UMBS Disturbance. Site Description - The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). In Spring 2008, every aspen and birch tree (>6,700, ~35% canopy LAI), the dominant early successional trees, were girdled over 39 ha of the FASET treatment plot to stimulate a disturbance that will move the forest into a later successional stage, dominated by maples, oaks, and white pine. This treatment caused aspen and birch mortality within 2 - 3 years. As a result of the changed canopy structure, there is a divergence in net ecosystem exchange between the control plot (enhanced carbon uptake) and the treatment plot (reduced carbon uptake).

  7. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  8. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Treesearch

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  9. Growth performance of loblolly shortleaf, and pitch X loblolly pine hybrid growing along the western margin of commercial pine range

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C Hennessey; Thomas B. Lynch; Robert Heinemann; Randal Holeman

    2015-01-01

    Expansion of the commercial pine range is one of the opportunities to improve forest production and counterbalance the loss of forest land to other uses. The potential genotypes for the purpose are fast-growing loblolly pine (Pinus taeda L.), the slower growing, but more drought tolerant shortleaf pine (P. echinata Mill.), and the more cold tolerant pitch x loblolly...

  10. Ecology of whitebark pine populations in relation to white pine blister rust infection in subalpine forests of the Lake Tahoe Basin: Implications for restoration

    Treesearch

    Patricia E. Maloney; Detlev R. Vogler; Camille E. Jensen; Annette Delfino Mix

    2012-01-01

    For over a century, white pine blister rust (WPBR), caused by the introduced fungal pathogen, Cronartium ribicola J.C. Fisch., has affected white pine (Subgenus Strobus) individuals, populations, and associated forest communities in North America. We surveyed eight populations of whitebark pine (Pinus albicaulis Engelm.) across a range of environmental conditions in...

  11. Vegetation and Water Level Changes for the Northeast U.S. During the "8.2 ka Event"

    NASA Astrophysics Data System (ADS)

    Newby, P. E.; Donnelly, J. P.; Shuman, B.; MacDonald, D.

    2006-12-01

    Cool conditions, known as the "8.2 ka event", occurred between 8400 and 7900 cal yr B.P. in Greenland, Europe and elsewhere in the North Atlantic. The impact of this brief cool interval on local forests is recorded in radiocarbon-dated, high-resolution pollen stratigraphies for New Long Pond (41^{0}50'N, 70^{0}42'W) and Davis Pond (42^{0}30'N, 73^{0}19'W), Massachusetts. The vegetation response to the event is recorded differently for regions with contrasting soil types. At New Long Pond, the sandy outwash derived soils are associated with changes in jack/red, white and pitch pine populations, whereas the dominant changes in vegetation for the clay-rich, proglacial lake derived soils around Davis Pond are among oak, hemlock, and beech. At both sites, pollen evidence for the "8.2 ka event" may be easily overlooked within the more dominant regional pattern for the Northeast, which shows a shift from dry to moist conditions in conjunction with changes from predominantly white pine to oak with more mesic plant taxa between 9000 and 8000 cal yr B.P. At New Long Pond, the "8.2 ka event" is brief, preceded by a low-stand in water-level during the early Holocene and dominated by white pine pollen. After 9000 cal yr B.P., pitch pine with beech, maple, hop/hornbeam, elm and ash pollen indicate a mixed mesophytic forest. A radiocarbon-dated decrease in loss-on-ignition values at 8400 cal yr B.P., likely related to a drawdown in lake level, distinguishes the "8.2 event" and helps highlight subtle shifts in vegetation that favor colder and drier conditions than before the event. Following this brief episode, the pollen data indicate a return to warm and moist conditions until about 5600 years ago. At Davis Pond, increased oak and decreased hemlock pollen abundances, followed by an increase in beech pollen abundance is evident and show what may be the dominant regional pollen signature for the "8.2 ka event" in the Northest. This pattern is also recorded at nearby Berry and North Ponds in western Massachusetts. The appearance of ragweed pollen at both Davis and New Long Pond may indicate perturbations to the vegetation that also relate to the "8.2 ka event".

  12. Habitat of birds in ponderosa pine and aspen/birch forest in the Black Hills, South Dakota

    Treesearch

    Todd R. Mills; Mark A. Rumble; Lester D. Flake

    2000-01-01

    Birds with both eastern and western distributions occur in the Black Hills of western South Dakota. This forest is mostly ponderosa pine (Pinus ponderosa) and is managed for timber. Logging alters forest characteristics and the bird community. We studied habitat relations of breeding songbirds at the stand- and site-level scales in ponderosa pine and...

  13. Heterogeneous nonmarket benefits of managing white pine bluster rust in high-elevation pine forests

    Treesearch

    James R. Meldrum; Patricia A. Champ; Craig A. Bond

    2013-01-01

    This article describes a nonmarket valuation study about benefits of managing the invasive disease white pine blister rust in highelevation forests in the Western United States. Results demonstrate that, on average, households in the Western United States are willing to pay $154 to improve the resiliency of these forests. Factor analysis shows that long-run protection...

  14. Is the footprint of longleaf pine in the Southeastern United States still shrinking?

    Treesearch

    Christopher M. Oswalt; Christopher W. Woodall; Horace W. Brooks

    2015-01-01

    Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically important tree species in the southern United States. Longleaf pine and the accompanying longleaf forest ecosystems covered vast swaths of the South. Longleaf forests covered an estimated 92 million acres at their peak distribution and represented one of the most extensive forest ecosystems in...

  15. Breeding Birds of Late-Rotation Pine Hardwood Stands: Community Characteristics and Similarity to Other Regional Pine Forests

    Treesearch

    Daniel R. Petit; Lisa J. Petit; Thomas E. Martin; others

    1994-01-01

    The relative abundances of bird species and the ecological characteristics of the overall avian community were quantified within 20 late-rotation pine-hardwood sites in the Ouschitn and Ozark National Forests in Arkansas and Oklahoma during 1992 and 1993. In addition, similarities in species composition and guild representation were compared with those of forest...

  16. Effects of bark beetle attack on canopy fuel flammability and crown fire potential in lodgepole pine and Engelmann spruce forests

    Treesearch

    Wesley G. Page; Martin E. Alexander; Michael J. Jenkins

    2015-01-01

    Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...

  17. Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics

    Treesearch

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    Urbanization can alter nutrient cycling. This research evaluated how urbanization affected nutrient dynamics in the subtropics. We established 17–0.04 ha plots in five different land cover types—slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n= 3), rural natural oak forests (n=4), urban pine forests (n=3) and urban oak forests (n=4) in the...

  18. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    PubMed

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  19. Forest diversity and disturbance: changing influences and the future of Virginia's Forests

    Treesearch

    Christine J. Small; James L. Chamberlain

    2015-01-01

    The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginia’s forests also have been...

  20. Long term carbon fluxes in south eastern U.S. pine ecosystems.

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Martin, T.; Gonzalez-Benecke, C. A.; Sharp, J.

    2015-12-01

    Forests in the southeastern U.S. are a critical component of the national carbon balance storing a third of the total forest carbon (C) in conterminous USA. South eastern forests occupy 60% of the land area, with a large fraction dominated by the genus Pinus distributed in almost equal proportions of naturally-regenerated and planted stands. These stands often differ in structure (e.g., stem density, leaf area index (LAI)) and in the intensity with which they are managed (e.g. naturally-regenerated, older pine stands are often managed less intensively, with prescribed fire). We measured C fluxes using the eddy covariance approach (net ecosystem production, -NEP) in planted (Pinus elliottii var. elliottii) and naturally-regenerated mixed stand of long leaf (Pinus palustris Mill) and slash pine (Pinus elliottii var. elliottii) accompanied by biometric estimations of C balance. Measurements spanned more than a decade and included interannual climatic variability ranging from severe droughts (e.g. Palmer Drought severity index (PDSI) averaged -2.7 from January 2000 to May 2002, and -3.3 from June 2006 to April 2008), to years with tropical storms. Annual NEP for the older, naturally-regenerated stand fluctuated from -1.60 to -5.38 Mg C ha-1 yr-1 with an average of -2.73 ± 1.17 Mg C ha-1 yr-1 while in plantations after canopy closure NEP fluctuated from -4.0 to -8.2 Mg C ha-1 yr-1 with an average of -6.17 ± 1.34 Mg C ha-1 yr-1. Annual NEP in naturally-regenerated pine was mainly driven by a combination of water availability and understory burning while in plantations it was driven by water availability after canopy closure. Woody and above ground net primary productivity (NPP) followed gross ecosystem carbon exchange (GEE) in both ecosystems. Naturally-regenerated and planted pine are a strong carbon sink under the current management and environmental fluctuations accumulating 28 and 130 Mg C ha-1 in a decade, respectively, and are among the most productive forests in the world.

  1. Madrean pine-oak forest in Arizona: altered fire regimes, altered communities

    Treesearch

    Andrew M. Barton

    2005-01-01

    In Madrean pine-oak forests in the Chiricahua Mountains, surface fire favors pines, which exhibit high top-survival, but resprouting allows oaks to rebound during inter-fire periods. These patterns plus age structure and radial growth data suggest that frequent presettlement surface fire maintained open stands, promoted a high pine:oak ratio, and excluded less fire...

  2. Natural regeneration in the western white pine type

    Treesearch

    Irvine T. Haig; Kenneth P. Davis; Robert H. Weidman

    1941-01-01

    The purpose of this bulletin is to bring together the available information on natural regeneration of the western white pine type, based on about 25 years of forest research and 30 years of national-forest timber-cutting experience. Western white pine (Pinus monticola) forms the key species of the valuable western white pine type of northern Idaho and contiguous...

  3. Forest Restoration following Southern Pine Beetle

    Treesearch

    John D. Waldron

    2011-01-01

    Forest restoration is the process of transforming a damaged or unhealthy forest into a healthy one. After the southern pine beetle (SPB) has damaged a forest, it is sometimes, if not most times, necessary to restore that forest. It is important to know the restoration goals, conditions prior to SPB, current conditions, and potential future conditions of the forest...

  4. The South's forestland - on the hot seat to provide more

    Treesearch

    Raymond M. Sheffield; James G. Dickson

    1998-01-01

    Forests of the Southern United States range from tropical/subtropical forests on the southern extremities of the region, oak savanna forests on the western fringe, to central hardwood forests, and high elevation boreal forests in the north. Upland and bottomland hardwood, southern pine, and mixed pine-hardwood forests are found on the more moderate sites between these...

  5. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    PubMed

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Morales-Molino, César; García-Antón, Mercedes; Postigo-Mijarra, José M.; Morla, Carlos

    2013-01-01

    A new palaeoecological sequence from the western Iberian Central Range significantly contributes to the knowledge on the Holocene vegetation dynamics in central Iberia. This sequence supports the existence of time-transgressive changes in the vegetation cover during the beginning of the Holocene over these central Iberian mountains, specifically the replacement of boreal birch-pine forests with Mediterranean communities. Anthracological analyses also indicate the replacement of boreal pines (Pinus sylvestris) with Mediterranean ones (Pinus pinaster) during the early Holocene. The observed vegetation changes were generally synchronous with climatic phases previously reconstructed for the western Mediterranean region, and they suggest that the climatic trends were most similar to those recorded in the northern Mediterranean region and central Europe. Several cycles of secondary succession after fire ending with the recovery of mature forest have been identified, which demonstrates that the vegetation of western Iberia was highly resilient to fire disturbance. However, when the recurrence of fire crossed a certain threshold, the original forests were not able to completely recover and shrublands and grasslands became dominant; this occurred approximately 5800-5400 cal yr BP. Afterwards, heathlands established as the dominant vegetation, which were maintained by frequent and severe wildfires most likely associated with human activities in a climatic framework that was less suitable for temperate trees. Finally, our palaeoecological record provides guidelines on how to manage protected areas in Mediterranean mountains of southwestern Europe, especially regarding the conservation and restoration of temperate communities that are threatened there such as birch stands.

  7. Proceedings of the Eighth Lake States Forest Tree Improvement conference, Sept. 12-13, 1967.

    Treesearch

    NCFES

    1968-01-01

    Presents 11 papers concerning recent research in forest genetics, physiology, and allied fields. Species discussed include red pine, jack pine, Scotch pine, black spruce, larch, yellow birch, sugar maple, silver maple, cottonwood, and walnut.

  8. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    PubMed

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P < 0. 05), and the soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P < 0.05) under medium N deposition, but not under low N deposition. In pine forest, the positive effect was significant (P < 0.05) under high N deposition, especially for the number of soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  9. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  10. Shortleaf pine in perspective: outlook for the national forests

    Treesearch

    James R. Crouch

    1986-01-01

    Shortleaf pine occupies more acreage on southern national forests than does any other softwood species but major concentrations on national forest lands occur only in Arkansas, Texas and Missouri. National forests in these states intend to continue to regenerate most shortleaf stands to shortleaf.

  11. Long-term flow dynamics of three coastal experimental forested watersheds

    Treesearch

    Devendra M. Amatya; Artur Radecki-Pawlik

    2005-01-01

    Three 1st2nd, and 3rd order experimental forested watersheds located within Francis Marion National Forest in Coastal South Carolina were monitored for rainfall and stream outflows. These watersheds were WS80, a pine-hardwood forest (206 ha); WS79 a predominantly pine forest (500 ha); and WS78, a...

  12. Deception Creek Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    Deception Creek Experimental Forest is located in one of the most productive forests of the Rocky Mountains. When the forest was established in 1933, large, old western white pines were important for producing lumber products, matches, and toothpicks. Deception Creek is located in the heart of the western white pine forest type, allowing researchers to focus on the...

  13. History of human activity in last 800 years reconstructed from combined archive data and high-resolution analyses of varved lake sediments from Lake Czechowskie, Northern Poland

    NASA Astrophysics Data System (ADS)

    Słowiński, Michał; Tyszkowski, Sebastian; Ott, Florian; Obremska, Milena; Kaczmarek, Halina; Theuerkauf, Martin; Wulf, Sabine; Brauer, Achim

    2016-04-01

    The aim of the study was to reconstruct human and landscape development in the Tuchola Pinewoods (Northern Poland) during the last 800 years. We apply an approach that combines historic maps and documents with pollen data. Pollen data were obtained from varved lake sediments at a resolution of 5 years. The chronology of the sediment record is based on varve counting, AMS 14C dating, 137Cs activity concentration measurements and tephrochronology (Askja AD 1875). We applied the REVEALS model to translate pollen percentage data into regional plant abundances. The interpretation of the pollen record is furthermore based on pollen accumulation rate data. The pollen record and historic documents show similar trends in vegetation development. During the first phase (AD 1200-1412), the Lake Czechowskie area was still largely forested with Quercus, Carpinus and Pinus forests. Vegetation was more open during the second phase (AD 1412-1776), and reached maximum openness during the third phase (AD 1776-1905). Furthermore, intensified forest management led to a transformation from mixed to pine dominated forests during this period. Since the early 20th century, the forest cover increased again with dominance of the Scots pine in the stand. While pollen and historic data show similar trends, they differ substantially in the degree of openness during the four phases with pollen data commonly suggesting more open conditions. We discuss potential causes for this discrepancy, which include unsuitable parameters settings in REVEALS and unknown changes in forest structure. Using pollen accumulation data as a third proxy record we aim to identify the most probable causes. Finally, we discuss the observed vegetation change in relation the socio-economic development of the area. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis - ICLEA- of the Helmholtz Association and National Science Centre, Poland (grant No. 2011/01/B/ST10/07367 and 2015/17/B/ST10/03430).

  14. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    Treesearch

    M. D. Petrie; A. M. Wildeman; J. B. Bradford; Robert Hubbard; W. K. Lauenroth

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling...

  15. Secondary forest succession following reproduction cutting on the Upper Coastal Plain of southeastern Arkansas, USA

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2001-01-01

    To contribute to an understanding of forest management on secondary forest succession, we conducted vegetation surveys in a chronosequence of pine stands ranging in age from 1 to 59 years. Adjacent areas were compared at 1, 7, 12, and 17 years following two reproduction cutting methods (clearcuts or pine seed-tree cuts); a 59-year-old pine stand that...

  16. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA

    Treesearch

    Joseph L. Ganey; Scott C. Vojta

    2011-01-01

    We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...

  17. The forest fire season at different elevations in Idaho

    Treesearch

    J. A. Larsen

    1925-01-01

    In any fire-ridden forest region, such as north Idaho, there is great need for a tangible basis by which to judge the length and the intensity of the fire season in different forest types and at different elevations. The major and natural forest types, such as the western yellow pine forests, the western white-pine forests, and the subalpine forests occur in...

  18. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests

    Treesearch

    Matthew D. Hurteau; Shuang Liang; Katherine L. Martin; Malcolm P. North; George W. Koch; Bruce A. Hungate

    2016-01-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and...

  19. Ecosystem-based management in the whitebark pine zone

    Treesearch

    Robert E. Keane; Stephen F. Arno; Catherine A. Stewart

    2000-01-01

    Declining whitebark pine (Pinus albicaulis) forests have necessitated development of innovative methods to restore these ecologically valuable, high elevation ecosystems. We have began an extensive restoration study using prescribed fire and silvicultural cuttings to return native ecological processes to degenerating whitebark pine forests....

  20. Climate impact on the tree growth, vigor and productivity in Siberia

    NASA Astrophysics Data System (ADS)

    Kharuk, V.; Im, S.; Petrov, I.; Dvinskaya, M.

    2017-12-01

    Changing climate has an impact on the Siberian taiga forests. We analyzed GPP and NPP trends, growth index, and stands mortality within the Central Siberia (48°- 75°N/80°-115°E). Considered forests included larch-dominant (Larix sibirica, L. dahurica) and "dark needle conifer" (DNC: Abies sibirica, Pinus sibirica, Picea obovata) stands. GPP and NPP trends calculated based on the Terra/MODIS products. Growth index calculations based on dendrochronology data. Water stress analysis based on the gravimetric and microwave satellite data and MERRA-2 database. Analyzed variables included precipitation, air temperature, VPD, drought index SPEI, and root zone wetness. We found positive GPP trends within majority (>90%) of larch-dominant and DNC ranges, whereas NPP trends are positive on the <40% territory. Negative NPP trends correlated with growth index within key-sites. Siberian pine and fir growth index increase since late 1970th, turning to depression since late 1980th. Within permafrost zone larch growth correlated with sum of positive (t>+10C°) temperatures and vegetation period length. During recent years larch experience water stress in the beginning of vegetation period. Tree decline and mortality observed within DNC stands, and that phenomenon regularly coincided with zones of negative NPP trends. Mortality correlated with VPD, SPEI, and root zone moisture content. Bark beetles (including aggressive species Polygraphus proximus, similar to Dendroctonus ponderosae in American forests) attacked water-stressed trees. Geographically, mortality began on the margins of the DNC range (e.g., within the forest-steppe ecotone) and on terrain features with maximal water stress risk (narrow-shaped hilltops, convex steep south facing slopes, shallow well-drained soils). Currently, Siberian pine and fir decline observed within southern range of these species. In addition, air temperature and aridity increase promotes Siberian silkmoth (Dendrolimus sibiricus) outbreak that occurred about one degree northward of formerly range. Observing and predicting aridity increase will lead to the replacement of Siberian pine and fir within southern range of these species with more tolerant species (e.g., Pinus sylvestris, Larix spp.).

  1. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Treesearch

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  2. The status of whitebark pine along the Pacific Crest National Scenic Trail on the Umpqua National Forest.

    Treesearch

    Ellen Michaels Goheen; Donald J. Goheen; Katy Marshall; Robert S. Danchok; John A. Petrick; Diane E. White

    2002-01-01

    Because of concern over widespread population declines, the distribution, stand conditions, and health of whitebark pine (Pinus albicaulis Englem.) were evaluated along the Pacific Crest National Scenic Trail on the Umpqua National Forest. Whitebark pine occurred on 76 percent of the survey transects. In general, whitebark pine was found in stands...

  3. AmeriFlux CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Alan

    This is the AmeriFlux version of the carbon flux data for the site CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine). Site Description - 53.87581° N, 104.64529° W, BOREAS 1994, 1996, BERMS climate and flux measurements to begin Spring 2003

  4. The concept: Restoring ecological structure and process in ponderosa pine forests

    Treesearch

    Stephen F. Arno

    1996-01-01

    Elimination of the historic pattern of frequent low-intensity fires in ponderosa pine and pine-mixed conifer forests has resulted in major ecological disruptions. Prior to 1900, open stands of large, long-lived, fire-resistant ponderosa pine were typical. These were accompanied in some areas by other fire-dependent species such as western larch. Today, as a result of...

  5. Long-term efficacy of diameter-limit cutting to reduce mountain pine beetle-caused tree mortality in a lodgepole pine forest

    Treesearch

    J. C. Vandygriff; E. Hansen; Barbara Bentz; K. K. Allen; G. D. Amman; L. A. Rasmussen

    2015-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility...

  6. Measurement and simulation of evapotranspiration at a wetland site in the New Jersey Pinelands

    Treesearch

    David M. Sumner; Robert S. Nicholson; Kenneth L. Clark

    2012-01-01

    Evapotranspiration (ET) was monitored above a wetland forest canopy dominated by pitch-pine in the New Jersey Pinelands during November 10, 2004–February 20, 2007, using an eddy-covariance method. Twelve-month ET totals ranged from 786 to 821 millimeters (mm). Minimum and maximum ET rates occurred during December–February and in July, respectively. Relations between ET...

  7. Mapping wetland and forest landscapes in Siberia with Landsat data

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Kleptsova, Irina; Glagolev, Mikhail; Sedykh, Vladimir; Kuzmenko, Ekaterina; Silaev, Anton; Frolov, Alexander; Nikolaeva, Svetlana; Fedorov, Alexander

    2014-05-01

    Landsat data availability provides opportunity for improving the knowledge of the Siberian ecosystems necessary for quantifying the response of the regional carbon cycle to the climate change. We developed a new wetland map based on Landsat data for whole West Siberia aiming at scaling up the methane emission observations. Mid-summer Landsat scenes were used in supervised classification method, based on ground truth data obtained during multiple field surveys. The method allows distinguishing following wetland types: pine-dwarf shrubs-sphagnum bogs or ryams, ridge-hollows complexes, shallow-water complexes, sedge-sphagnum poor fens, herbaceous-sphagnum poor fens, sedge-(moss) poor fens and fens, wooded swamps or sogra, palsa complexes. In our estimates wetlands cover 36% of the taiga area. Total methane emission from WS taiga mires is estimated as 3.6 TgC/yr,which is 77% larger as compared to the earlier estimate based on partial Landsat mapping combined with low resolution map due to higher fraction of fen area. We make an attempt to develop a forest typology system useful for a dynamic vegetation modeling and apply it to the analysis of the forest type distribution for several test areas in West and East Siberia, aiming at capability of mapping whole Siberian forests based on Landsat data. Test region locations are: two in West Siberian middle taiga (Laryegan and Nyagan), and one in East Siberia near Yakutsk. The ground truth data are based on analysis of the field survey, forest inventory data from the point of view of the successional forest type classification. Supervised classification was applied to the areas where ample ground truth and inventory data are available, using several limited area maps and vegetation survey. In Laryegan basin the upland forest areas are dominated (as climax forest species) by Scots pine on sandy soils and Siberian pine with presence of fir and spruce on the others. Those types are separable using Landsat spectral data alone. In the permafrost area around Yakutsk the most widespread succession type is birch to larch succession. Three stages of the birch to larch succession are detectable from Landsat image. When Landsat data is used in both West and East Siberia, distinction between deciduous broad-leaved species (birch, aspen, and willow) is difficult due to similarity in spectral signatures. Same problem exists for distinguishing between dark coniferous species (Siberian pine, fir and spruce). Forest classification can be improved by applying landscape type analysis, such as separation into floodplain, terrace, sloping hills.

  8. Longleaf pine

    Treesearch

    William D. Boyer; Donald W. Patterson

    1983-01-01

    Abstract:This report describes the longleaf pine forest type and the characteristics of both tree and forest that can affect management decisions.Longleaf pine is highly adaptable to a range of management goals and silvicultural systems.Management options and appropriate silvicultural methods for the regeneration and management of this species are...

  9. Analysis of Landsat-4 Thematic Mapper data for classification of forest stands in Baldwin County, Alabama

    NASA Technical Reports Server (NTRS)

    Hill, C. L.

    1984-01-01

    A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.

  10. The weight of the past: land-use legacies and recolonization of pine plantations by oak trees.

    PubMed

    Navarro-González, Irene; Pérez-Luque, Antonio J; Bonet, Francisco J; Zamora, Regino

    2013-09-01

    Most of the world's plantations were established on previously disturbed sites with an intensive land-use history. Our general hypothesis was that native forest regeneration within forest plantations depends largely on in situ biological legacies as a source of propagules. To test this hypothesis, we analyzed native oak regeneration in 168 pine plantation plots in southern Spain in relation to land use in 1956, oak patch proximity, and pine tree density. Historical land-use patterns were determined from aerial photography from 1956, and these were compared with inventory data from 2004-2005 and additional orthophoto images. Our results indicate that oak forest regeneration in pine plantations depends largely on land-use legacies, although nearby, well-conserved areas can provide propagules for colonization from outside the plantation, and pine tree density also affected oak recruit density. More intense land uses in the past meant fewer biological legacies and, therefore, lower likelihood of regenerating native forest. That is, oak recruit density was lower when land use in 1956 was croplands (0.004 +/- 0.002 recruits/m2 [mean +/- SE]) or pasture (0.081 +/- 0.054 recruits/m2) instead of shrubland (0.098 +/- 0.031 recruits/m2) or oak formations (0.314 +/- 0.080 recruits/m2). Our study shows that land use in the past was more important than propagule source distance or pine tree density in explaining levels of native forest regeneration in plantations. Thus, strategies for restoring native oak forests in pine plantations may benefit from considering land-use legacies as well as distance to propagule sources and pine density.

  11. Mountain pine beetle, a major disturbance agent in US Western coniferous forests: A synthesis of the state of knowledge [Research In Review

    Treesearch

    Jose F. Negron; Christopher J. Fettig

    2014-01-01

    In recent years, the mountain pine beetle, Dendroctonus ponderosae, has impacted 8.9 million hectares of forests in the western United States. Historically a common occurrence in western forests, particularly in lodgepole and ponderosa pine, the magnitude and extent of recent outbreaks have exceeded past events since written records are available and have occurred in...

  12. The effects of bark beetle outbreaks on forest development, fuel loads and potential fire behavior in salvage logged and untreated lodgepole pine forests

    Treesearch

    B. J. Collins; C. C. Rhoades; M. A. Battaglia; R. M. Hubbard

    2012-01-01

    Recent mountain pine beetle infestations have resulted in widespread tree mortality and the accumulation of dead woody fuels across the Rocky Mountain region, creating concerns over future forest stand conditions and fire behavior. We quantified how salvage logging influenced tree regeneration and fuel loads relative to nearby, uncut stands for 24 lodgepole pine...

  13. Evaluating the role of cutting treatments, fire and soil seed banks in an experimental framework in ponderosa pine forests of the Black Hills, South Dakota

    Treesearch

    Cody L. Wienk; Carolyn Hull Sieg; Guy R. McPherson

    2004-01-01

    Pinus ponderosa Laws. (ponderosa pine) forests have changed considerably during the past century, partly because recurrent fires have been absent for a century or more. A number of studies have explored the influence of timber harvest or burning on understory production in ponderosa pine forests, but study designs incorporating cutting and prescribed...

  14. Predicting the effects of tropospheric ozone on regional productivity of ponderosa pine and white fir.

    Treesearch

    D.A. Weinstein; J.A. Laurence; W.A. Retzlaff; J.S. Kern; E.H. Lee; W.E. Hogsett; J. Weber

    2005-01-01

    We simulated forest dynamics of the regional ponderosa pine-white fir conifer forest of the San Bernadino and Sierra Nevada mountains of California to determine the effects of high ozone concentrations over the next century and to compare the responses to our similar study for loblolly pine forests of the southeast. As in the earlier study, we linked two models, TREGRO...

  15. A forest transect of pine mountain, Kentucky: changes since E. Lucy Braun and chestnut blight

    Treesearch

    Tracy S. Hawkins

    2006-01-01

    In 1997, forest composition and structure were determined for Hi Lewis Pine Barrens State Nature Preserve, a 68-ha tract on the south slope of Pine Mountain, Harlan County, Kentucky. Data collected from 28 0.04-ha plots were used to delineate forest types. Percent canopy compositions were compared with those reported by Dr. E. Lucy Braun prior to the peak of chestnut...

  16. Carbon allocation to biomass production of leaves, fruits and woody organs at seasonal and annual scale in a deciduous- and evergreen temperate forest

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Gielen, B.; Granier, A.; Verstraeten, A.; Neirynck, J.; Janssens, I. A.

    2010-10-01

    Carbon taken up by the forest canopy is allocated to tree organs for biomass production and respiration. Because tree organs have different life span and decomposition rate, the tree C allocation determines the residence time of C in the ecosystem and its C cycling rate. The study of the carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. Previous studies mostly focused on comparison of the annual NPP-GPP ratio among forests of different functional types, biomes and age. In this study, we extend the current knowledge by assessing (i) the annual NPP-GPP ratio and its interannual variability (for five years) for five tree organs (leaves, fruits, branches, stem and coarse roots), and (ii) the seasonal dynamic of NPP-GPP ratio of leaves and stems, for two stands dominated by European beech and Scots pine. The average NPP-GPP ratio for the beech stand (38%) was similar to previous estimates for temperate deciduous forests, whereas the NPP-GPP ratio for the pine stand (17%) is the lowest recorded till now in the literature. The proportion of GPP allocated to leaf NPP was similar for both species, whereas beech allocated a remarkable larger proportion of GPP to wood NPP than pine (29% vs. 6%, respectively). The interannual variability of the NPP-GPP ratio for wood was substantially larger than the interannual variability of the NPP-GPP ratio for leaves, fruits and overall stand and it is likely to be controlled by previous year air temperature (both species), previous year drought intensity (beech) and thinning (pine). Seasonal pattern of NPP-GPP ratio greatly differed between beech and pine, with beech presenting the largest ratio in early season, and pine a more uniform ratio along the season. For beech, NPP-GPP ratio of leaves and stems peaked during the same period in the early season, whereas they peaked in opposite periods of the growing season for pine. Seasonal differences in C allocation are likely due to functional differences between deciduous and evergreen species and temporal variability of the sink strength. The similar GPP and autotrophic respiration between stands and the remarkable larger C allocation to wood at the beech stand indicate that at the beech ecosystem C has a longer residence time than at the pine ecosystem. Further research on belowground production and particularly on fine roots and ectomycorrhizal fungi likely represents the most important step to progress our knowledge on C allocation dynamics.

  17. Historical land-use influences the long-term stream turbidity response to a wildfire.

    PubMed

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  18. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA

    Treesearch

    Tania Schoennagel; Thomas T. Veblen; Jose F. Negron; Jeremy M. Smith

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared...

  19. Evolution of a research prototype expert system for endemic populations of mountain pine beetle in lodgepole pine forests

    Treesearch

    Dale L. Bartos; Kent B. Downing

    1989-01-01

    A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...

  20. Longleaf pine stumpwood supply in four southeastern survey units

    Treesearch

    E.L. Demmon

    1936-01-01

    This release presents advanc3 ·information on the amount of longleaf pine stumpviOod in four Forest Survey Units. The wood referred to is that in the seasoned stumps resulting from the cutting of the longleaf pine of the original forest. These stumps, together with other highly rosinimpregnated wood in the tops and limbs of fallen old-growth longleaf pine, are used in...

  1. Early survival and growth of planted shortleaf pine seedlings as a function of initial size and overstory stocking

    Treesearch

    John M. Kabrick; Daniel C. Dey; Stephen R. Shifley; Jason L. Villwock

    2011-01-01

    Shortleaf pine was once abundant throughout the Missouri Ozarks and there is renewed interest in its restoration. Past research suggested that the greatest survival and growth of shortleaf pine seedlings occurred where there was little competition for sunlight. This study, in the oak and oak-pine forests of the Sinkin Experimental Forest in southeastern Missouri,...

  2. Slash disposal and site preparation in converting old-growth sugar pine-fir forests to regulated stands

    Treesearch

    Donald T. Gordon; Richard D. Cosens

    1952-01-01

    Records of permanent sample plots and extensive observations by forest management research workers indicate that tree selection methods of cutting in sugar pine-fir types have not favored the establishment of sugar pine reproduction. Since sugar pine is a highly prized lumber producing species in the California region, special measures to preserve or increase its place...

  3. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Treesearch

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  4. Management guide to ecosystem restoration treatments: two-aged lodgepole pine forests of central Montana, USA

    Treesearch

    Sharon M. Hood; Helen Y. Smith; David K. Wright; Lance S. Glasgow

    2012-01-01

    Lodgepole pine is one of the most widely distributed conifers in North America, with a mixed-severity rather than stand-replacement fire regime throughout much of its range. These lodgepole pine forests are patchy and often two-aged. Fire exclusion can reduce two-aged lodgepole pine heterogeneity. This management guide summarizes the effects of thinning and prescribed...

  5. The U.S. Forest Service's renewed focus on gene conservation of five-needle pine species

    Treesearch

    2011-01-01

    The U.S. Forest Service (FS) has been actively working with five-needle pine species for decades. The main focus of this interest has been in restoration efforts involving disease-resistance screening activities in western white (Pinus monticola), sugar (Pinus lambertiana), and eastern white (Pinus strobus) pines in the face of white pine blister rust (WPBR), caused by...

  6. The proactive strategy for sustaining five-needle pine populations: An example of its implementation in the southern Rocky Mountains

    Treesearch

    A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko

    2011-01-01

    The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...

  7. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  8. Long-Term Effects of Liming on Health and Growth of a Masson Pine Stand Damaged by Soil Acidification in Chongqing, China

    PubMed Central

    Li, Zhiyong; Wang, Yanhui; Liu, Yuan; Guo, Hao; Li, Tao; Li, Zhen-Hua; Shi, Guoan

    2014-01-01

    In the last decades, the Masson pine (Pinus massoniana) forests in Chongqing, southwest China, have increasingly declined. Soil acidification was believed to be an important cause. Liming is widely used as a measure to alleviate soil acidification and its damage to trees, but little is known about long-term effects of liming on the health and growth of declining Masson pine forests. Soil chemical properties, health condition (defoliation and discoloration), and growth were evaluated following application of limestone powder (0 (unlimed control), 1, 2, 3, and 4 t ha−1) in an acidified and declining Masson pine stand at Tieshanping (TSP) of Chongqing. Eight years after liming, in the 0–20 cm and 20–40 cm mineral soil layers, soil pH values, exchangeable calcium (Ca) contents, and Ca/Al molar ratios increased, but exchangeable aluminum (Al) levels decreased, and as a result, length densities of living fine roots of Masson pine increased, with increasing dose. Mean crown defoliation of Masson pines (dominant, codominant and subdominant pines, according to Kraft classes 1–3) decreased with increasing dose, and it linearly decreased with length densities of living fine roots. However, Masson pines (Kraft classes 1–3) in all treatments showed no symptoms of discoloration. Mean current-year twig length, twig dry weight, needle number per twig, needle length per twig, and needle dry weight per twig increased with increasing dose. Over 8 years, mean height increment of Masson pines (Kraft classes 1–3) increased from 5.5 m in the control to 5.8, 6.9, 8.3, and 9.5 m in the 1, 2, 3, and 4 t ha−1 lime treatments, and their mean DBH (diameter at breast height) increment increased from 3.1 to 3.2, 3.8, 4.9, and 6.2 cm, respectively. The values of all aboveground growth parameters linearly increased with length densities of living fine roots. Our results show that liming improved tree health and growth, and these effects increased with increasing dose. PMID:24728089

  9. Long-term effects of liming on health and growth of a Masson pine stand damaged by soil acidification in Chongqing, China.

    PubMed

    Li, Zhiyong; Wang, Yanhui; Liu, Yuan; Guo, Hao; Li, Tao; Li, Zhen-Hua; Shi, Guoan

    2014-01-01

    In the last decades, the Masson pine (Pinus massoniana) forests in Chongqing, southwest China, have increasingly declined. Soil acidification was believed to be an important cause. Liming is widely used as a measure to alleviate soil acidification and its damage to trees, but little is known about long-term effects of liming on the health and growth of declining Masson pine forests. Soil chemical properties, health condition (defoliation and discoloration), and growth were evaluated following application of limestone powder (0 (unlimed control), 1, 2, 3, and 4 t ha(-1)) in an acidified and declining Masson pine stand at Tieshanping (TSP) of Chongqing. Eight years after liming, in the 0-20 cm and 20-40 cm mineral soil layers, soil pH values, exchangeable calcium (Ca) contents, and Ca/Al molar ratios increased, but exchangeable aluminum (Al) levels decreased, and as a result, length densities of living fine roots of Masson pine increased, with increasing dose. Mean crown defoliation of Masson pines (dominant, codominant and subdominant pines, according to Kraft classes 1-3) decreased with increasing dose, and it linearly decreased with length densities of living fine roots. However, Masson pines (Kraft classes 1-3) in all treatments showed no symptoms of discoloration. Mean current-year twig length, twig dry weight, needle number per twig, needle length per twig, and needle dry weight per twig increased with increasing dose. Over 8 years, mean height increment of Masson pines (Kraft classes 1-3) increased from 5.5 m in the control to 5.8, 6.9, 8.3, and 9.5 m in the 1, 2, 3, and 4 t ha(-1) lime treatments, and their mean DBH (diameter at breast height) increment increased from 3.1 to 3.2, 3.8, 4.9, and 6.2 cm, respectively. The values of all aboveground growth parameters linearly increased with length densities of living fine roots. Our results show that liming improved tree health and growth, and these effects increased with increasing dose.

  10. Belowground carbon trade among tall trees in a temperate forest.

    PubMed

    Klein, Tamir; Siegwolf, Rolf T W; Körner, Christian

    2016-04-15

    Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange. Copyright © 2016, American Association for the Advancement of Science.

  11. Climate Change Effects on Treeline Communty Dynamics in Basin and Range Mountains

    NASA Astrophysics Data System (ADS)

    Smithers, B.; Millar, C.; North, M.

    2014-12-01

    Treeline advance is an expected sensitive indicator of climate change effects on species distributions. However, little evidence of treeline advance has been shown due to past disturbance or geomorphological limitations. The Basin and Range Mountains of Nevada and eastern California have seen minimal human impact and have been free of major glaciation, making these mountains an ideal location to test for climate change impacts on treeline. Great Basin treelines are dominated by bristlecone pine but recent observations show that usually downslope-growing limber pine appears to be pushing treeline upslope. In this study, we used modified belt transects at above and below adult treeline and at stand mid-elevation to compare species regeneration with adult, cone-bearing tree basal area. Our results show that limber pine regeneration surpasses bristlecone pine regeneration at treeline in terms of raw numbers of individuals. When adult basal area is taken into consideration, it appears that the very few adult limber pines have far more regeneration success at treeline than the bristlecone pine adults. This may have long-term ramifications on community composition of bristlecone pine forests, as these long-lived individuals largely exclude one another once established. Limber pine appears to be far better adapted to take advantage of rapid climate change. Even if bristlecone pine is ultimately better adapted to treeline in the long-term and this "changing of the guard" at treeline is temporary, due to their long lifespan, this effect could last thousands of years.

  12. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    NASA Astrophysics Data System (ADS)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  13. Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.

    2012-12-01

    The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.

  14. The Crossett Experimental Forest's contributions to southern pine improvement programs

    Treesearch

    Don C. Bragg; Jess Riddle; Joshua Adams; James M. Guldin

    2016-01-01

    Long renowned for its contributions to silvicultural practices in naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine, the Crossett Experimental Forest (CEF) has also played an important, if much less well known, role in southern pine tree improvement. A decades-long program centered at Crossett...

  15. Proceedings of the 12th biennial southern silvicultural research conference

    Treesearch

    Kristina F. Connor; [Editor

    2004-01-01

    Ninety-two papers and thirty-six poster summaries address a range of issues affecting southern forests. Papers are grouped in 15 sessions that include wildlife ecology; fire ecology; natural pine management; forest health; growth and yield; upland hardwoods - natural regeneration; hardwood intermediate treatments; longleaf pine; pine plantation silviculture; site...

  16. One seed source of Jeffrey pine shows resistance to dwarf mistletoe

    Treesearch

    Robert F. Scharpf; Bohun B. Kinloch; James L. Jenkinson

    1992-01-01

    Four seed sources of Jeffrey pine (Pinus jeffreyi) were selected for testing through controlled inoculation for resistance to dwarf mistletoe (Arceuthobium campylopodum). The pines were 7 years old and part of a progeny test planting established by the USDA Forest Service's Institute of Forest Genetics, Placewille,...

  17. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Treesearch

    Victoria A. Saab; Quresh S. Latif; Mary M. Rowland; Tracey N. Johnson; Anna D. Chalfoun; Steven W. Buskirk; Joslin E. Heyward; Matthew A. Dresser

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to...

  18. Proceedings of the IUFRO joint conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere; 2014 June 15–20; Fort Collins, CO

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko; John T. Kliejunas

    2018-01-01

    Proceedings from the 2014 IUFRO Joint Conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere in Fort Collins, Colorado. The published proceedings include 91 papers pertaining to research conducted on the genetics and pathology of five-needle pines and rusts of forest trees. Topic areas are: ecology and climate change, common garden genetics...

  19. Uptake and Distribution of Nitrogen from Acidic Fog within a Ponderosa Pine (Pinus ponderosa Laws.)/Litter/Soil System

    Treesearch

    Mark E. Fenn; Theodor D. Leininger

    1995-01-01

    The magnitude and importance of wet deposition of N in forests of the South Coast (Los Angeles) Air Basin have not been well characterized. We exposed 3-yr-old ponderosa pine (Pinus ponderos Laws.) seedlings growing in native forest soil to acidic fog treatments (pH 3.1) simulating fog chemistry from a pine forest near Los Angeles, California. Fog solutions contained...

  20. Indigenous vegetation in a Southern Arkansas pine-hardwood forest after a half century without catastrophic disturbances

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1994-01-01

    In 1992 we analyzed the composition of a 32-ha pine-hardwood forest that originated from the partial cutting of the existing virgin forest around 1915. The area has been reserved from timber management since 1935. Pines >9 cm in diameter at a height of 1.37 m accounted for 61% of overstory and midstory basal area but only 21% of density. Of those trees that had...

  1. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Treesearch

    Jennifer S. Briggs; Paula J. Fornwalt; Jonas A. Feinstein

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor...

  2. 2004 report on the health of Colorado's forests: Special issue: Ponderosa pine forests

    Treesearch

    Paige Lewis; Merrill R. Kaufmann; Laurie S. Huckaby; Dave Leatherman

    2005-01-01

    The 2004 Report on the Health of Colorado's Forests begins with an overview of significant incidents and trends in forest insect and disease activity across the state. The remainder of the Report provides an in-depth examination of the ecology, condition and management of Colorado's ponderosa pine forests. Unlike previous editions, which highlighted a range...

  3. Ecological, Physical, and Socioeconomic Relationships Within Southern National Forests- Proceedings of the Southern Evaluation Project Workshop

    Treesearch

    Henry A. Pearson; Fred E. Smeins; Ronald E. Thill

    1987-01-01

    The results of 43 projects, which evaluated the flora, fauna, watersheds, socioeconomics,and forest pests located on southern National Forests were presented and discussed in 4 major categories: Management Outlook and Evaluation, Loblolly-Shortleaf Pine Type, Longleaf-Slash Pine Type, and Watersheds, Socioeconomics,and Forest Pests.

  4. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: understory vegetation response

    Treesearch

    Becky K. Kerns; Michelle Buonopane; Walter G. Thies; Christine. Niwa

    2011-01-01

    Reestablishing historical fire regimes is a high priority for North American coniferous forests, particularly ponderosa pine (Pinus ponderosa) ecosystems. These forests are also used extensively for cattle (Bos spp.) grazing. Prescribed fires are being applied on or planned for millions of hectares of these forests to reduce...

  5. Ponderosa pine forest reconstruction: Comparisons with historical data

    Treesearch

    David W. Huffman; Margaret M. Moore; W. Wallace Covington; Joseph E. Crouse; Peter Z. Fule

    2001-01-01

    Dendroecological forest reconstruction techniques are used to estimate presettlement structure of northern Arizona ponderosa pine forests. To test the accuracy of these techniques, we remeasured 10 of the oldest forest plots in Arizona, a subset of 51 historical plots established throughout the region from 1909 to 1913, and compared reconstruction outputs to historical...

  6. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire.

    PubMed

    Dore, Sabina; Montes-Helu, Mario; Hart, Stephen C; Hungate, Bruce A; Koch, George W; Moon, John B; Finkral, Alex J; Kolb, Thomas E

    2012-10-01

    Carbon uptake by forests is a major sink in the global carbon cycle, helping buffer the rising concentration of CO 2 in the atmosphere, yet the potential for future carbon uptake by forests is uncertain. Climate warming and drought can reduce forest carbon uptake by reducing photosynthesis, increasing respiration, and by increasing the frequency and intensity of wildfires, leading to large releases of stored carbon. Five years of eddy covariance measurements in a ponderosa pine (Pinus ponderosa)-dominated ecosystem in northern Arizona showed that an intense wildfire that converted forest into sparse grassland shifted site carbon balance from sink to source for at least 15 years after burning. In contrast, recovery of carbon sink strength after thinning, a management practice used to reduce the likelihood of intense wildfires, was rapid. Comparisons between an undisturbed-control site and an experimentally thinned site showed that thinning reduced carbon sink strength only for the first two posttreatment years. In the third and fourth posttreatment years, annual carbon sink strength of the thinned site was higher than the undisturbed site because thinning reduced aridity and drought limitation to carbon uptake. As a result, annual maximum gross primary production occurred when temperature was 3 °C higher at the thinned site compared with the undisturbed site. The severe fire consistently reduced annual evapotranspiration (range of 12-30%), whereas effects of thinning were smaller and transient, and could not be detected in the fourth year after thinning. Our results show large and persistent effects of intense fire and minor and short-lived effects of thinning on southwestern ponderosa pine ecosystem carbon and water exchanges. © 2012 Blackwell Publishing Ltd.

  7. Cheesman Lake-a historical ponderosa pine landscape guiding restoration in the South Platte Watershed of the Colorado Front Range

    Treesearch

    Merrill R. Kaufmann; Paula J. Fornwalt; Laurie S. Huckaby; Jason M. Stoker

    2001-01-01

    An unlogged and ungrazed ponderosa pine/Douglas-fir landscape in the Colorado Front Range provides critical information for restoring forests in the South Platte watershed. A frame-based model was used to describe the relationship among the four primary patch conditions in the 35-km2 Cheesman Lake landscape: (1) openings, (2) ponderosa pine forest, (3) ponderosa pine/...

  8. Mountain pine beetle infestation: GCxGCTOFMS and GC-MS of lodgepole pine (pinus contorta) acetone extractives

    Treesearch

    Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann

    2015-01-01

    The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...

  9. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Treesearch

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  10. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    USGS Publications Warehouse

    Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter classes, generated diameter distributions more closely approximating those found in old growth within a shorter time frame than depicted in long-term examinations of old-growth structural development. These results suggest that extended rotation treatments may accelerate the development of old-growth structural characteristics, provided that coarse woody debris and snags are deliberately retained and created on site. These and other developmental characteristics of old-growth systems can inform forest management when objectives include the restoration of structural conditions found in late-successional forests.

  11. Holocene disturbance dynamics from a pine-dominated forest in central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, N.; Condor, N.; Hebda, R.; Hawkes, B.

    2013-12-01

    A lake sediment record was retrieved from the Sub-Boreal Pine-Spruce biogeoclimatic zone on the Chilcotin Plateau in central British Columbia, Canada. The record is being analyzed for charcoal, pollen, and magnetic susceptibility, as well as insect and mollusc content. The oldest radiocarbon age is 9.2 cal BP, illustrating that the record spans most of the Holocene. Regarding fire disturbance, charcoal fragments are persistent throughout the core, revealing that fire disturbance has characterized the site for millennia. In total, 74 fire events were recognized. During the warm dry early Holocene, fire frequency was 12-15 fires 2000 yr-1 and peak magnitudes were low, possibly in response to a more open landscape. A change in fire regime occurred at ca. 5000 cal BP, as fire frequency increased, peaking at ca. 20 fires 2000 yr-1 by 3000 cal BP. Peak magnitude likewise increased notably, possibly in response to the development of denser forest cover. On-going analysis of pollen will better constrain the vegetation history in this poorly sampled region. In contrast to charcoal, which was pervasive, Dendroctonus ponderosae (mountain pine beetle) remains were absent in both modern and paleo samples. Given that several insect outbreaks have occurred in the region in the last 100 years, the scarcity of remains is likely related to taphonomic issues.

  12. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  13. Surface Fire Influence on Carbon Balance Components in Scots Pine Forest of Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Ivanova, G. A.; Conard, S. G.; Soja, A. J.

    2008-12-01

    Wildfire is one of the most important disturbances in boreal forests, and it can have a profound effect on forest-atmosphere carbon exchange. Pinus sylvestris (Scots pine) stands of Siberia are strongly impacted by fires of low to high severity. Biomass distribution in mature lichen/feathermoss Scots pine stands indicates that they are carbon sinks before fire. Fires contribute significantly to the carbon budget resulting in a considerable carbon efflux, initially through direct consumption of forest fuels and later as a result of tree mortality and decomposition of dead material accumulated on the forest floor. In initial postfire years these processes dominate over photosynthetic carbon assimilation, and the ecosystems become a carbon source. Over several postfire years, above-ground carbon in dead biomass tends to increase, with the increase depending significantly on fire severity. High-severity fire enhances dead biomass carbon, while moderate- and low-severity fires have minimal effect on above-ground carbon distribution in Scots pine ecosystems. Dead stand biomass carbon increases, primarily during the first two years following fires, due to tree mortality. This increase can account for up to 12.4% of the total stand biomass after low- and moderate- intensity fires. We found tree dieback following a high-intensity fire is an order of magnitude higher, and thus the dead biomass increases up to 88.1% of total above-ground biomass. Photosynthetic CO2 uptake decreases with increasing tree mortality, and needle foliage and bark are incorporated into the upper layer of the forest floor in the course of years. Ground vegetation and duff carbon were >90, 71-83, and 82% of prefire levels after fires of low, moderate, and high severity, respectively for the first 4 to 5 years after fire. Fires of low and moderate severity caused down woody fuel carbon to increase by 2.1 and 3.6 t ha-1 respectively by four years after burning as compared to the pre-fire values. Climate change and increasing drought length observed in recent decades have increased the probability of high-intensity fire occurrence. Areas burned have increased in extent and severity across Siberia, resulting in increased carbon emissions to the atmosphere from fuel combustion and post fire decomposition.

  14. Quantifying understorey vegetation in the US Lake States: a proposed framework to inform regional forest carbon stocks

    USGS Publications Warehouse

    Russell, Matthew B.; D'Amato, Anthony W.; Schulz, Bethany K.; Woodall, Christopher W.; Domke, Grant M.; Bradford, John B.

    2014-01-01

    The contribution of understorey vegetation (UVEG) to forest ecosystem biomass and carbon (C) across diverse forest types has, to date, eluded quantification at regional and national scales. Efforts to quantify UVEG C have been limited to field-intensive studies or broad-scale modelling approaches lacking field measurements. Although large-scale inventories of UVEG C are not common, species- and community-level inventories of vegetation structure are available and may prove useful in quantifying UVEG C stocks. This analysis developed a general framework for estimating UVEG C stocks by employing per cent cover estimates of UVEG from a region-wide forest inventory coupled with an estimate of maximum UVEG C across the US Lake States (i.e. Michigan, Minnesota and Wisconsin). Estimates of UVEG C stocks from this approach reasonably align with expected C stocks in the study region, ranging from 0.86 ± 0.06 Mg ha-1 in red pine-dominated to 1.59 ± 0.06 Mg ha-1 for aspen/birch-dominated forest types. Although the data employed here were originally collected to assess broad-scale forest structure and diversity, this study proposes a framework for using UVEG inventories as a foundation for estimating C stocks in an often overlooked, yet important ecosystem C pool.

  15. Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland

    PubMed Central

    Rey Benayas, José M.; Carrascal, Luis M.

    2015-01-01

    Afforestation programs such as the one promoted by the EU Common Agricultural Policy have spread tree plantations on former cropland. These afforestations attract generalist forest and ubiquitous species but may cause severe damage to open habitat species, especially birds of high conservation value. We investigated the effects of young (<20 yr) tree plantations dominated by pine P. halepensis on bird communities inhabiting the adjacent open farmland habitat in central Spain. We hypothesize that pine plantations located at shorter distances from open fields and with larger surface would affect species richness and conservation value of bird communities. Regression models controlling for the influence of land use types around plantations revealed positive effects of higher distance to pine plantation edge on community species richness in winter, and negative effects on an index of conservation concern (SPEC) during the breeding season. However, plantation area did not have any effect on species richness or community conservation value. Our results indicate that the effects of pine afforestation on bird communities inhabiting Mediterranean cropland are diluted by heterogeneous agricultural landscapes. PMID:26664801

  16. Phenology of the Pine Bark Adelgid, Pineus strobi (Hemiptera: Adelgidae), in White Pine Forests of Southwestern Virginia.

    PubMed

    Wantuch, Holly A; Kuhar, Thomas P; Salom, Scott M

    2017-12-08

    The pine bark adelgid, Pineus strobi Hartig (Hemiptera: Adelgidae), is a native herbivore of eastern white pine, Pinus strobus L. (Pinales: Pinaceae), in eastern North America. P. strobi does not appear to have any dominant overwintering lifestage in southwest Virginia, as it does in its northern range. Eggs can be found consistently from late March through early December and may be produced sporadically later throughout the winter during warm periods. Two distinct generations were observed in the spring, after which life stage frequencies overlapped. Adult body size varied seasonally and was greatest in the spring. The present study constitutes the first recording of phenological details of the P. strobi in its southern range, informing biological control efforts aimed at closely related invasive pests. The phenological plasticity observed between northern and southern P. strobi populations provides insight into the potential effects of climate on the population dymanics of this and related species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Three studies on ponderosa pine management on the Warm Springs Indian Reservation: stocking control in uneven-aged stands, forest products from fire-damage trees, and fuels reduction

    Treesearch

    John V. Arena

    2005-01-01

    Over 60,000 acres of ponderosa pine (Pinus ponderosa P. and C. Lawson) forest on the Warm Springs Indian Reservation (WSIR) in Oregon are managed using an uneven-age system. Three on-going studies on WSIR address current issues in the management of pine forests: determining levels of growing stock for uneven-age management, fire effects on wood...

  18. Resiliency of an interior ponderosa pine forest to bark beetle infestations following fuel-reduction and forest-restoration treatments

    Treesearch

    Christopher J Fettig; Stephen R. McKelvey

    2014-01-01

    Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest...

  19. Woodpecker abundance and habitat use in three forest types in eastern Texas

    Treesearch

    Clifford E. Shackelford; Richard N. Conner

    1997-01-01

    Woodpeckers were censused in 60 fixed-radius (300 m) circular plots (divided into eight 45B-arc pie-shaped sectors) in mature forests (60 to 80 years-old) of three forest types (20 plots per type) in eastern Texas: bottomland hardwood forest; longleaf pine (Pinus palustris) savanna; and mixed pine-hardwood forest. A total of 2,242 individual woodpeckers of eight...

  20. A hierarchical approach to forest landscape pattern characterization.

    PubMed

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  1. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Treesearch

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  2. Shortleaf Pine Seed Production in the Piedmont

    Treesearch

    David L. Bramlett

    1965-01-01

    Shortleaf pine occupies millions of acres of commercial forest land in the Southeastern United States and is one of the preferred pine species throughout much of its range. Natural regeneration of this species after harvest, however, is a major problem for forest managers. Adequate seed production is the first requirement of successful natural regeneration, and annual...

  3. Choosing suitable times for prescribed burning in southern New Jersey

    Treesearch

    S. Little; H. A. Somes; J. P. Allen

    1952-01-01

    Prescribed burning is useful in managing pine-oak forests in the Pine Region of southern New Jersey. It favors reproduction of pine by preparing suitable seed beds; it checks the development of hardwood reproduction; and it protects against wild fires by reducing the amount of fuel on the forest floor.

  4. Risk Assessment for the Southern Pine Beetle

    Treesearch

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  5. Pine pollen collections dates - annual and geographic variation

    Treesearch

    J. W. Duffield

    1953-01-01

    Activity in pine breeding has increased throughout the temperate forest regions of the world since the Institute of Forest Genetics issued its first summary of pollen collection dates in 1947. Cooperation between pine breeders has increased at the same time. The information most essential for conducting cooperative breeding operations are the dates of pollen collection...

  6. Comparison of Monterey pine stress in urban and natural forests

    Treesearch

    David J. Nowak; Joe R. McBride

    1991-01-01

    Monterey pine street trees within Carmel, California and its immediate vicinity, as well as forest-grown Monterey pine within adjacent natural stands, were sampled with regard to visual stress characteristics, and various environmental and biological variables. Two stress indices were computed, one hypothesized before data collection was based on relative foliage...

  7. Madrean pine-oak forest in Arizona: past dynamics, present problems

    Treesearch

    Andrew M. Barton

    2008-01-01

    This paper synthesizes research on presettlement dynamics and modern disruption of Madrean pine-oak forests in Arizona. In response to surface fires characteristic of presettlement times, pines were fire resistant, exhibiting high top-survival, whereas oaks were fire resilient, exhibiting lower top-survival but pronounced resprouting. Thus, low-severity fire favors...

  8. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae)

    Treesearch

    K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender

    2007-01-01

    The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...

  9. Nature of resistance of pines to bark beetles

    Treesearch

    Robert Z. Callaham

    1966-01-01

    Patterns of susceptibility of pines to attack by certain species of Dendroctonus bark beetles suggest that a resistance mechanism exists. This situation was first called to my attention in 1949 by John M. Miller, entomologist at the Berkeley Forest Insect Laboratory. He was studying the resistance of pines to insects, at the Institute of Forest...

  10. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Treesearch

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  11. Uneven-aged management of longleaf pine forests: a scientist and manager dialogue

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; James M. Guldin; William D. Boyer; Joan L. Walker; D. Craig Rudolph; Robert B. Rummer; James P. Barnett; Shibu Jose; Jarek Nowak

    2005-01-01

    Interest in appropriate management approaches for sustaining longleaf pine (Pinus palustris Mill.) forests has increased substantially during the recent decade. Although long-leaf pine can be managed using even-aged techniques, interest in uneven-aged methods has grown significantly as a result of concern for sustaining the wide range of ecological...

  12. Relationships of red pine seed source, seed weight, seedling weight, and height growth in Kane test plantation

    Treesearch

    A. F. Hough

    1952-01-01

    In 1928 the Lake States Forest Experiment Station of the U. S. Forest Service began studies of various races or strains of red pine (Pinus resinosa Ait.), to find out how well red pine is adapted to climatic regions distant from its natural seed sources.

  13. Forest Statistics for Minnesota's Northern Pine Unit.

    Treesearch

    Pat Murray

    1991-01-01

    The fifth inventory of Minnesota's Northern Pine Unit reports 11.1 million acres of land, of which 6.3 million acres are forested. This bulletin presents statistical highlights and contains detailed tables of forest area, as well as timber volume, growth, removals, mortality, and ownership.

  14. Proceedings of the Fifth Biennial Southern Silvicultural Research Conference

    Treesearch

    James H. Miller; [Compiler

    1989-01-01

    Forest Service, forest industry, and university representatives present 4 general session papers giving projections for the 2030 forest and an additional 93 papers dealing with 15 subject areas: atmospheric influences, ecophysiology, seedling production, site preparation, pine regeneration, pine management, hardwood regeneration, hardwood management, vegetation,...

  15. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests

    Treesearch

    Lisa J. Samuelson; Thomas A. Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Wendell P. Cropper; Pete H. Anderson; Michael R. Ramirez; John C. Lewis

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5...

  16. Sampling and modeling visual component dynamics of forested areas

    Treesearch

    Victor A. Rudis

    1990-01-01

    A scaling device and sample design have been employed to assess vegetative screening of forested stands as part of an extensive forest inventory.Referenced in a poster presentation are results from East Texas pine and oak-pine stands and Alabama forested areas.Refinements for optimizing measures to distinguish differences in scenic beauty, disturbances, and stand...

  17. 3-PG simulations of young ponderosa pine plantations under varied management intensity: why do they grow so differently?

    Treesearch

    Liang Wei; Marshall John; Jianwei Zhang; Hang Zhou; Robert Powers

    2014-01-01

    Models can be powerful tools for estimating forest productivity and guiding forest management, but their credibility and complexity are often an issue for forest managers. We parameterized a process-based forest growth model, 3-PG (Physiological Principles Predicting Growth), to simulate growth of ponderosa pine (Pinus ponderosa) plantations in...

  18. The southern pine beetle prevention initiative: working for healthier forests

    Treesearch

    John Nowak; Christopher Asaro; Kier Klepzig; Ronald Billings

    2008-01-01

    The southern pine beetle (SPB) is the most destructive forest pest in the South. After a recent SPB outbreak, the US Forest Service (Forest Health Protection and Southern Research Station [SRS]) received SPB Initiative (SPBI) funding to focus more resources on proactive SPB prevention work. This funding is being used for on-the-ground accomplishments, landowner...

  19. Forests in transition: Post-epidemic vegetation conditions [Chapter 4

    Treesearch

    Rob Hubbard; Michael Battaglia; Chuck Rhoades; Jim Thinnes; Tom Martin; Jeff Underhill; Mark Westfahl

    2014-01-01

    More than 23 million acres of lodgepole pine forests across the western U.S. have experienced overstory mortality following the recent mountain pine beetle (MPB) epidemic (USDA Forest Service 2013). Unknowns regarding the immediate and long-term consequences of the epidemic challenge the ability of managers to make informed decisions aimed at sustaining forest health...

  20. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby Oak-Hickory forest

    Treesearch

    S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren

    2005-01-01

    Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...

  1. Economic evaluation of restoring the shortleaf pine-bluestem grass ecosystem on the Ouachita National Forest

    Treesearch

    Michael M. Huebschmann; Daniel S. Tilley; Thomas B. Lynch; David K. Lewis; James M. Guldin

    2002-01-01

    The USDA Forest Service is restoring pre-European settlement forest conditions on about 10 percent (155,000 acres) of the Ouachita National Forest in western Arkansas. These conditions - characterized by large, scattered shortleaf pine and hardwoods maintained on 120-year rotations, with bluestem grass and associated herbaceous vegetation in the understory - are...

  2. Tree ring δ18O reveals no long-term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Zhang, Xuanwen; Zhao, Liangju; Xu, Guobao; Wang, Lixin; Sun, Weizhen; Zhang, Qiuliang; Wang, Wenzhi; Zeng, Xiaomin; Wu, Guoju

    2017-07-01

    Global warming will significantly increase transpirational water demand, which could dramatically affect plant physiology and carbon and water budgets. Tree ring δ18O is a potential index of the leaf-to-air vapor-pressure deficit (VPD) and therefore has great potential for long-term climatic reconstruction. Here we developed δ18O chronologies of two dominant native trees, Dahurian larch (Larix gmelinii Rupr.) and Mongolian pine (Pinus sylvestris var. mongolica), from a permafrost region in the Great Hinggan Mountains of northeastern China. We found that the July-August VPD and relative humidity were the dominant factors that controlled tree ring δ18O in the study region, indicating strong regulation of stomatal conductance. Based on the larch and pine tree ring δ18O chronologies, we developed a reliable summer (July-August) VPD reconstruction since 1800. Warming growing season temperatures increase transpiration and enrich cellulose 18O, but precipitation seemed to be the most important influence on VPD changes in this cold region. Periods with stronger transpirational demand occurred around the 1850s, from 1914 to 1925, and from 2005 to 2010. However, we found no overall long-term increasing or decreasing trends for VPD since 1800, suggesting that despite the increasing temperatures and thawing permafrost throughout the region, forest transpirational demand has not increased significantly during the past two centuries. Under current climatic conditions, VPD did not limit growth of larch and pine, even during extremely drought years. Our findings will support more realistic evaluations and reliable predictions of the potential influences of ongoing climatic change on carbon and water cycles and on forest dynamics in permafrost regions.

  3. White pine blister rust at mountain home demonstration state forest: a case study of the epidemic and prospects for genetic control.

    Treesearch

    Bohun B. Kinloch; Dulitz Jr.

    1990-01-01

    The behavior of white pine blister rust at Mountain Home State Demonstration Forest and surrounding areas in the southern Sierra Nevada of California indicates that the epidemic has not yet stabilized and that the most likely prognosis is a pandemic on white pines in this region within the next few decades. The impact on sugar pines, from young regeneration to old...

  4. Development of a Site Comparison Index: Southeast Upland Forests

    DTIC Science & Technology

    2007-05-01

    was recorded to 0.1 cm, and only individual trees with a DBH =/> 5 cm were tallied. Pine snags and deciduous snags were also measured. Forty-three... tree species (plus Pine Snags and Deciduous Snags) represent- ing 7031 individuals were identified at the 40 sites, ranging from 1433 Loblolly Pines...of 40 sites. Based on basal areas of 24 tree species (N=6903), pine and deciduous snags. Table 1. Ten forest communities independently

  5. Reproducing pine stands on the eastern shore of Maryland using a seed-tree cutting and preparing seedbeds with machinery and summer fires

    Treesearch

    S. Little; J. J. Mohr

    1954-01-01

    Pure pine stands are the most profitable forest crop on upland sites of the Eastern Shore of Maryland. The stands have been common in the past, because loblolly pine and pond pine usually made up most of the first forest growth on abandoned farmland. And apparently nearly all upland sites have been tilled at one time or another.

  6. Helicopter spraying with 2,4,5-T to release young white pines

    Treesearch

    Thomas W. McConkey

    1958-01-01

    When forest fires swept over southwestern Maine in 1947, some 130,000 acres of forest land were burned over. This was mostly white pine land--sites too poor to grow good hardwood stands. After the fire, white pine reproduction became established on 5,000 to 6,000 acres of this land. But by 1954 most of the young pine was suppressed or at least was in competition with...

  7. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.

    PubMed

    McKinney, Shawn T; Fiedler, Carl E; Tomback, Diana F

    2009-04-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of approximately 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers (probability > or = 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area > 5.0 m2/ha. The risk of mutualism disruption is greatest in northern most Montana (USA), where three-year mean cone production and live basal area fell below predicted threshold levels. There, nutcracker occurrence, seed dispersal, and whitebark pine regeneration were the lowest of the three ecosystems. Managers can use these threshold values to differentiate between restoration sites requiring planting of rust-resistant seedlings and sites where nutcracker seed dispersal can be expected.

  8. Eco-physiological characteristics and variation in water source use between montane Douglas-Fir and lodgepole pine trees in southwestern Alberta

    NASA Astrophysics Data System (ADS)

    Andrews, S.; Flanagan, L. B.

    2009-12-01

    Winter weather on the Canadian prairies is now warmer and drier than 50 years ago and this has implications for soil water re-charge in montane ecosystems with consequences for tree and ecosystem function. We used measurements of the hydrogen isotope ratio of tree stem water to analyze the use of different water sources (winter snow melt, ground water, summer precipitation) in two montane forest sites, one dominated by Douglas-Fir and the other dominated by lodgepole pine trees. On average during the growing season (May-October) stem water in both Douglas-Fir and lodgepole pine trees was composed of 60% summer precipitation. However, during late summer Douglas-Fir trees showed an increased use of ground water as summer precipitation was minimal and ground water was accessible at the bottom of a relatively large soil reservoir. The low summer precipitation and reduced soil water availability in the shallow soils at the lodgepole pine site resulted in severely reduced photosynthetic capacity in late summer. Increased precipitation during the autumn resulted in recovery of photosynthetic gas exchange in lodgepole pine before winter dormancy was induced by low temperatures. Stomatal limitation of photosynthesis, as estimated from measurements of the carbon isotope composition of leaf tissue, was higher in Douglas-Fir than lodgepole pine. This was also associated with lower midday water potential values in Douglas-Fir and sapwood cross-sectional area that was only 70% of that measured in lodgepole pine. The vulnerability of xylem to loss of conductivity with declines in water potential was very similar between the two species. However, midday water potential in Douglas-Fir approached values where cavitation and loss of conductivity were apparent, while in lodgepole pine midday water potential was always much higher than the point at which loss of hydraulic conductivity occurred. These data suggest that, despite the presence of Douglas-Fir on deeper and higher quality soils, lodgepole pine appears to have eco-physiological characteristics that allow it to better withstand and recover from exposure to summer water deficits that may increase in association with trends to warmer and drier conditions.

  9. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    PubMed Central

    Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  10. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    PubMed

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  11. Climate change and ecosystem disruption: the health impacts of the North American Rocky Mountain pine beetle infestation.

    PubMed

    Embrey, Sally; Remais, Justin V; Hess, Jeremy

    2012-05-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation.

  12. Climate Change and Ecosystem Disruption: The Health Impacts of the North American Rocky Mountain Pine Beetle Infestation

    PubMed Central

    Remais, Justin V.; Hess, Jeremy

    2012-01-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation. PMID:22420788

  13. Common Herbaceous Plants of Southern Forest Range

    Treesearch

    Harold E. Grelen; Ralph H. Hughes

    1984-01-01

    Illustrations and descriptions are given for approximately 125 species of grasses, grasslikes (sedges and rushes), and forbs representative of the pine and pine-hardwood forests of the southeastern United States.

  14. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    PubMed

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  15. A participatory assessment of post-fire management alternatives in eastern Spain

    NASA Astrophysics Data System (ADS)

    Llovet, Joan

    2015-04-01

    Transformational socio-economic changes during the last decades of the 20th century led to the abandonment of mountainous areas in western Mediterranean countries (Puigdefábregas and Mendizábal, 1998). This process was accelerated in the Ayora Valley (inland Valencia province, E Spain) by a major forest fire in 1979. Restoration and management actions were implemented through the 1990's to promote the recovery of the area affected by this fire. In 2010 these past actions were assessed using an integrated and participatory evaluation protocol (IAPro). The selected actions were shrubland regenerated after the fire (no-action); pine plantation over the shrubland; pine forest regenerated after the fire (no-action); and thinning of densely regenerated pines. The assessment involved the identification and engagement of a comprehensive and representative set of local and regional stakeholders who provided a baseline assessment, identified and prioritized essential indicators, considered data collected against those indicators, and participated in re-assessment of actions after an outranking multi-criteria decision aiding integration (MCDA) conducted by the expert team (Roy and Bertier, 1973). This process facilitated a collaborative integration of biophysical indicators (i.e. carbon sequestration, water and soil conservation, soil quality, biodiversity, fire risk and forest health) and socio-economic indicators (i.e. productive, recreational and touristic, aesthetic, and cultural values, cost of the actions, and impact on family finances). It was completed with activities for exchanging experiences and sharing knowledge with the platform of stakeholders. Stakeholder platform suggested that fire risk was the most important indicator, followed by water conservation and soil conservation. Least important indicators were cost of actions, aesthetic value, and recreational and touristic value. Data collected on each action showed the thinned pine forest action with the lowest value on the fire risk criterion; shrubland had a fire risk three times higher, whereas pine plantation and dense pine forest showed a fire risk four times higher than thinned pine forest. Thinned pine forest showed the highest impact on family finances, as well as productive, cultural, recreational and touristic, and aesthetic values. The best value on forest health corresponded to shrubland, and the worst were the dense pine forest and thinned pine forest. Pine plantation showed the highest cost, whereas no-actions had not direct costs. The rest of indicators showed low or inexistent differences between actions. The indicator priorities combined with data collected through the MCDA integration showed that the thinning of densely regenerated pine forest action, outranked the other actions in most of the criteria. The second action was pine plantation, whereas shrubland and dense pine forest obtained the lowest assessment. As conclusion, the participatory methodology was fundamental in understanding the impact of perceptions and stakeholders' priorities in a usually very technical and non-participatory process. Similar methodologies could enhance knowledge exchange between scientists, managers and stakeholders, while improve society-science collaboration in land management and restoration research and practice. Acknowledgements Inhabitants and other people related to the Ayora Valley kindly collaborated with our work. Some collaborators helped us in both field work and meetings with stakeholders. This research has been supported by the projects PRACTICE (EU grant number 226818), RECARE (EU grant number 603498) and GRACCIE (Consolider program, Spanish Ministry of Education and Science grant number CSD2007-00067). The CEAM Foundation is supported by Generalitat Valenciana. References Puigdefábregas, J. and Mendizábal, T. 1998. Perspectives on desertification: Western Mediterranean. Journal of Arid Environments 39: 209-224. Roy, B. and Bertier, P. 1973. La méthode ELECTRE II - Une application au média-planning. In: M. Ross (editor) OR'72. North-Holland Publishing Company, Amsterdam, pp 291-302.

  16. Wildlife and shortleaf pine management

    Treesearch

    T. Bently Wigley

    1986-01-01

    Shortleaf pine forests (Pinus echinata) are used for multiple purposes. This paper discusses the effects that timber management, livestock grazing, and recreational uses of the shortleaf forest may have on its wildlife resources.

  17. Timber, Browse, and Herbage on Selected Loblolly-Shortleaf Pine-Hardwood Forest Stands

    Treesearch

    Gale L. Wolters; Alton Martin; Warren P. Clary

    1977-01-01

    A thorough vegetation inventory was made on loblolly-shortleaf pine-hardwood stands scheduled by forest industry for clearcutting, site preparation, and planting to pine in north central Louisiana and southern Arkansas. Overstory timber, on the average, contained about equal proportions of softwood and hardwood basal area. Browse plants ranged from 5,500 to over 70,...

  18. Fuel accumulations in Piedmont loblolly pine plantations

    Treesearch

    Ernst V. Brender; W. Henry McNab; Shelton Williams

    1976-01-01

    Weight of minor vegetation under unthinned loblolly pine (Pinus taeda L.) plantations was closely related to stand age and basal area stocking. Weight of this vegetation peaked 3 years after clearcutting and planting, then diminished as the pine canopy became denser. Forest floor weight increased steadily through age 23, when it began to level off. Equilibrium forest...

  19. Longleaf pine site response to repeated fertilization and forest floor removal by raking and prescribed burning

    Treesearch

    Kim Ludovici; Robert Eaton; Stanley Zarnoch

    2018-01-01

    Removal of forest floor litter by pine needle raking and prescribed burning is a common practice in longleaf pine (Pinus palustris Mill.) stands on Coastal Plain sites in the Southeastern United States. Repeated removal of litter by raking and the loss of surface organic matter from controlled burns can affect the...

  20. Explaining the apparent resiliency of loblolly pine plantation to organic matter removal

    Treesearch

    Jeff A. Hatten; Eric B. Surce; Zakiya Leggett; Jason Mack; Scott D. Roberts; Janet Dewey; Brian Strahm

    2015-01-01

    We utilized 15-year measurements from an organic matter manipulation experiment in a loblolly pine plantation in the Upper Coastal Plain of Alabama to examine the apparent resiliency of a loblolly pine stand to organic matter removal. Treatments included complete removal of harvest residues and forest floor (removed), doubling of harvest residues and forest floor (...

Top