Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.
2003-01-01
Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.
Use of pine nuts by grizzly and black bears in the Yellowstone area
Kendall, Katherine C.
1983-01-01
The large seeds (pine nuts) of whitebark pine are commonly eaten in the spring (March-May) and fall (September-November) by grizzly and black bears in Yellowstone National Park and adjacent areas (Craighead and Craighead 1972, Blanchard 1978, Mealey 1980) and western Montana (Tisch 1961; J. Sumner and J. J. Craighead, unpubl. rep., Montant Coop. Wildl. Res. Unit, Univ. Montana, Missoula, 1973). Similar nuts from limber pine are eaten by grizzly bears on the east Rocky Mountain Front of northwestern Montana (Schallenberger and Jonkel, annual rep., Border Grizzly Project, Univ. Montana, Missoula, 1980). The nuts of the European stone pine (P. cembra) are an important food for brown bears (U. arctos) throughout the taiga zone in the Soviet Union (Pavlov and Zhdanov 1972, Ustinov 1972, Yazan 1972). Both the production of whitebark pine cones (Forcella 1977, Blanchard 1978, Mealey 1980) and the quantity of nuts consumed by bears vary annually (Mealey 1975, Blancard 1978). Pine nuts are also an important food for red squirrels in whitebark forests. In fall, squirrels remove cones from trees and cache them in middens. Bears as well as other mammalian and avian seed predators compete with squirrels for whitebark nuts (Forcella 1977, Tomback 1977). Confusion about the ripening process of whitebark pine cones has resulted in errors in the literature on the availability of pine nuts as a bear food. Whitebark cones are indehiscent and do not disintegrate (Tomback 1981). Vertebrate foraging probably leaves few, if any, seed-bearing cones on trees by late fall; the cones remaining abscise sometime thereafter (Tomback 1981). Because cones do not abscise or release their seed in fall, bears may obtain pine nuts in 2 ways. Black bears may climb whitebark pine trees and break off cone-bearing brnahces to feed on cones (Tisch 1961, Mealey 1975, Forcella 1977); or both black bears and grizzly bears may raid squirrel caches to feed on pine nuts (Tisch 1961, Craighead and Craighead 1972, Blanchard 1978). The purpose of this study was to determine (1) the major source of pine nuts for bears, (2) why cone scales do not appear in bear scat containing pine nuts, and (3) what factors influence bear use of pine nuts.
Coates, Peter S.; Andrle, Katie M.; Ziegler, Pilar T.; Casazza, Michael L.
2016-09-29
The Bi-State distinct population segment (DPS) of greater sage-grouse (Centrocercus urophasianus) that occurs along the Nevada–California border was proposed for listing as threatened under the Endangered Species Act (ESA) by the U.S. Fish and Wildlife Service (FWS) in October 2013. However, in April 2015, the FWS determined that the Bi-State DPS no longer required protection under the ESA and withdrew the proposed rule to list the Bi-State DPS (U.S. Fish and Wildlife Service, 2015). The Bi-State DPS occupies portions of Alpine, Mono, and Inyo Counties in California, and Douglas, Esmeralda, Lyon, Carson City, and Mineral Counties in Nevada. Unique threats facing this population include geographic isolation, expansion of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma), anthropogenic activities, and recent changes in predator communities. Estimating population vital rates, identifying seasonal habitat, quantifying threats, and identifying movement patterns are important first steps in developing effective sage-grouse management and conservation plans. During 2011–15, we radio- and Global Positioning System (GPS)-marked (2012–14 only) 44, 47, 17, 9, and 3 sage-grouse, respectively, for a total of 120, in the Pine Nut Mountains Population Management Unit (PMU). No change in lek attendance was detected at Mill Canyon (maximum=18 males) between 2011 and 2012; however, 1 male was observed in 2014 and no males were observed in 2013 and 2015. Males were observed near Bald Mountain in 2013, making it the first year this lek was observed to be active during the study period. Males were observed at a new site in the Buckskin Range in 2014 during trapping efforts and again observed during surveys in 2015. Findings indicate that pinyon-juniper is avoided by sage-grouse during every life stage. Nesting females selected increased sagebrush cover, sagebrush height, and understory horizontal cover, and brood-rearing females selected similar areas, but also preferred increased perennial forb abundance. Using maximum likelihood estimation, nest survival for the Pine Nut Mountains PMU during 2011–14 was 23.8 percent (95-percent confidence interval [CI]=0.3–40.6 percent) and appeared lower in comparison to the average 42 percent nest success for sage-grouse range-wide. Brood survival for 50-day brood-rearing phase in the Pine Nut Mountains PMU during 2011–14 was 53.8 percent (95-percent CI=30.0–73.4 percent). Adult survival during 2011–15 was 67.4 percent (95-percent CI=56.1–76.5 percent). During 2011–14, 696 raptor/raven surveys were completed and results indicate a greater number of raven detections (n=464) in the Pine Nut Mountains PMU than at other study areas in Nevada. These data will be used to develop a predator index. We conducted a more minimal monitoring effort of sage-grouse populations during the 2015 field season, which included trapping efforts, general telemetry, brood monitoring, and GPS monitoring. Nest monitoring, microhabitat sampling, and raptor/raven surveys were not conducted in the 2015 season. Deployment of GPS transmitters has expanded our knowledge of movement corridors and fine-scale movement patterns by sage-grouse in the Pine Nut Mountains PMU. Movement corridors between seasonal habitats were identified with one sage-grouse traveling greater than 100 kilometers south to the Bodie Mountains in California for the winter season. The use of GPS technology to monitor movements in conjunction with intensive field efforts will be important in developing habitat models and maps for the Pine Nut Mountains PMU.
Jeton, Anne E.; Maurer, Douglas K.
2007-01-01
Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide estimates of ground-water inflow using similar water input. The calibration periods were water years 1990-2002 for watersheds in the Carson Range, and water years 1981-97 for watersheds in the Pine Nut Mountains. Daily mean values for water years 1990-2002 were then simulated using the calibrated watershed models in the Pine Nut Mountains. The daily mean values of precipitation, runoff, evapotranspiration, and ground-water inflow simulated from the watershed models were summed to provide annual mean rates and volumes for each year of the simulations, and mean annual rates and volumes computed for water years 1990-2002. Mean annual bias for the period of record for models of Daggett Creek and Fredericksburg Canyon watersheds, two gaged perennial watersheds in the Carson Range, was within 4 percent and relative errors were about 6 and 12 percent, respectively. Model fit was not as satisfactory for two gaged perennial watersheds, Pine Nut and Buckeye Creeks, in the Pine Nut Mountains. The Pine Nut Creek watershed model had a large negative mean annual bias and a relative error of -11 percent, underestimated runoff for all years but the wet years in the latter part of the record, but adequately simulated the bulk of the spring runoff most of the years. The Buckeye Creek watershed model overestimated mean annual runoff with a relative error of about -5 percent when water year 1994 was removed from the analysis because it had a poor record. The bias and error of the calibrated models were within generally accepted limits for watershed models, indicating the simulated rates and volumes of runoff and ground-water inflow were reasonable. The total mean annual ground-water inflow to Carson Valley computed using estimates simulated by the watershed models was 38,000 acre-feet, including ground-water inflow from Eagle Valley, recharge from precipitation on eolian sand and gravel deposits, and ground-water recharge from precipitation on the western alluvial fans. The estimate was in close agreement with that obtained from the chloride-balance method, 40,000 acre-feet, but was considerably greater than the estimate obtained from the water-yield method, 22,000 acre-feet. The similar estimates obtained from the watershed models and chloride-balance method, two relatively independent methods, provide more confidence that they represent a reasonably accurate volume of ground-water inflow to Carson Valley. However, the two estimates are not completely independent because they use similar distributions of mean annual precipitation. Annual ground-water recharge of the basin-fill aquifers in Carson Valley ranged from 51,000 to 54,000 acre-feet computed using estimates of ground-water inflow to Carson Valley simulated from the watershed models combined with previous estimates of other ground-water budget components. Estimates of mean annual ground-water discharge range from 44,000 to 47,000 acre-feet. The low range estimate for ground-water recharge, 51,000 acre-feet per year, is most similar to the high range estimate for ground-water discharge, 47,000 acre-feet per year. Thus, an average annual volume of about 50,000 acre-feet is a reasonable estimate for mean annual ground-water recharge to and discharge from the basin-fill aquifers in Carson Valley. The results of watershed models indicate that significant interannual variability in the volumes of ground-water inflow is caused by climate variations. During multi-year drought conditions, the watershed simulations indicate that ground-water recharge could be as much as 80 percent less than the mean annual volume of 50,000 acre-feet.
Pine nut use in the Early Holocene and beyond: The danger cave archaeobotanical record
Rhode, D.; Madsen, D.B.
1998-01-01
Nuts of limber pine (Pinus flexilis) from Early Holocene strata in Danger Cave, Utah, are distinguishable by seed-coat sculpturing from pine nuts of single-needled pinyon (Pinus monophylla), which occur in strata dating <7000 years BP. Owls and other taphonomic agents may deposit pine nuts in archaeological sites, but the morphology of the pine nuts in Danger Cave strongly indicate they were deposited by human foragers who brought small quantities with them for food for at least the last 7500 years. Large-scale transport of pine nuts to Danger Cave from distant hinterlands is unlikely, however. The seamless transition from limber pine to pinyon pine nuts in the Danger Cave record suggests that foragers who had utilized limber pine as a food resource easily switched to using pinyon pine nuts when pinyon pine migrated into the region at the close of the Early Holocene.
Children monosensitized to pine nuts have similar patterns of sensitization.
Novembre, Elio; Mori, Francesca; Barni, Simona; Ferrante, Giuliana; Pucci, Neri; Ballabio, Cinzia; Uberti, Francesca; Penas, Elena; Restani, Patrizia
2012-12-01
Several cases of pine nut allergies and anaphylaxis have been reported in the literature, but only few pine nut allergens have been characterized. The aim of this research is to identify through immunoelectrophoretic techniques the major pine nut allergens in a group of children monosensitized to pine nuts. We studied five children with pine nut allergies and no other sensitization to food except to pine nuts, confirmed by in vivo (prick test, prick-to-prick) and in vitro tests (specific IgE determinations [CAP-FEIA]). The protein profile of pine nuts was analyzed by Sodium Dodecyl sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Immunoblotting was performed after incubation of membranes with the sera from the children included in the present study. Immunoblotting (SDS-PAGE) demonstrated five similar bands between 6 and 47 kDa in all the subjects studied. These bands should be considered the potential allergens for pine nut allergic children. © 2012 John Wiley & Sons A/S.
Fardin-Kia, Ali Reza; Handy, Sara M; Rader, Jeanne I
2012-03-14
Taste disturbances following consumption of pine nuts, referred to as "pine mouth", have been reported by consumers in the United States and Europe. Nuts of Pinus armandii have been associated with pine mouth, and a diagnostic index (DI) measuring the content of Δ5-unsaturated fatty acids relative to that of their fatty acid precursors has been proposed for identifying nuts from this species. A 100 m SLB-IL 111 GC column was used to improve fatty acid separations, and 45 pine nut samples were analyzed, including pine mouth-associated samples. This study examined the use of a DI for the identification of mixtures of pine nut species and showed the limitation of morphological characteristics for species identification. DI values for many commercial samples did not match those of known reference species, indicating that the majority of pine nuts collected in the U.S. market, including those associated with pine mouth, are mixtures of nuts from different Pinus species.
Pasman, Wilrike J; Heimerikx, Jos; Rubingh, Carina M; van den Berg, Robin; O'Shea, Marianne; Gambelli, Luisa; Hendriks, Henk F J; Einerhand, Alexandra W C; Scott, Corey; Keizer, Hiskias G; Mennen, Louise I
2008-03-20
Appetite suppressants may be one strategy in the fight against obesity. This study evaluated whether Korean pine nut free fatty acids (FFA) and triglycerides (TG) work as an appetite suppressant. Korean pine nut FFA were evaluated in STC-1 cell culture for their ability to increase cholecystokinin (CCK-8) secretion vs. several other dietary fatty acids from Italian stone pine nut fatty acids, oleic acid, linoleic acid, alpha-linolenic acid, and capric acid used as a control. At 50 muM concentration, Korean pine nut FFA produced the greatest amount of CCK-8 release (493 pg/ml) relative to the other fatty acids and control (46 pg/ml). A randomized, placebo-controlled, double-blind cross-over trial including 18 overweight post-menopausal women was performed. Subjects received capsules with 3 g Korean pine (Pinus koraiensis) nut FFA, 3 g pine nut TG or 3 g placebo (olive oil) in combination with a light breakfast. At 0, 30, 60, 90, 120, 180 and 240 minutes the gut hormones cholecystokinin (CCK-8), glucagon like peptide-1 (GLP-1), peptide YY (PYY) and ghrelin, and appetite sensations were measured. A wash-out period of one week separated each intervention day.CCK-8 was higher 30 min after pine nut FFA and 60 min after pine nut TG when compared to placebo (p < 0.01). GLP-1 was higher 60 min after pine nut FFA compared to placebo (p < 0.01). Over a period of 4 hours the total amount of plasma CCK-8 was 60% higher after pine nut FFA and 22% higher after pine nut TG than after placebo (p < 0.01). For GLP-1 this difference was 25% after pine nut FFA (P < 0.05). Ghrelin and PYY levels were not different between groups. The appetite sensation "prospective food intake" was 36% lower after pine nut FFA relative to placebo (P < 0.05). This study suggests that Korean pine nut may work as an appetite suppressant through an increasing effect on satiety hormones and a reduced prospective food intake.
USDA-ARS?s Scientific Manuscript database
RATIONALE: Pine nut allergy cases have been reported, but pine nut allergens remain to be identified and characterized. Korean pine nut is one of the major varieties of pine nuts that are widely consumed. Vicilins belong to one of a few protein families that contain more than 85% of the known food a...
Handy, Sara M; Parks, Matthew B; Deeds, Jonathan R; Liston, Aaron; de Jager, Lowri S; Luccioli, Stefano; Kwegyir-Afful, Ernest; Fardin-Kia, Ali R; Begley, Timothy H; Rader, Jeanne I; Diachenko, Gregory W
2011-10-26
Pine nuts are a part of traditional cooking in many parts of the world and have seen a significant increase in availability/use in the United States over the past 10 years. The U.S. Food and Drug Administration (US FDA) field offices received 411 complaints from U.S. consumers over the past three years regarding taste disturbances following the consumption of pine nuts. Using analysis of fatty acids by gas chromatography with flame ionization detection, previous reports have implicated nuts from Pinus armandii (Armand Pine) as the causative species for similar taste disturbances. This method was found to provide insufficient species resolution to link FDA consumer complaint samples to a single species of pine, particularly when samples contained species mixtures of pine nuts. Here we describe a DNA based method for differentiating pine nut samples using the ycf1 chloroplast gene. Although the exact cause of pine nut associated dysgeusia is still not known, we found that 15 of 15 samples from consumer complaints contained at least some Pinus armandii, confirming the apparent association of this species with taste disturbances.
Cao, Baiying; Fang, Li; Liu, Chunlei; Min, Weihong; Liu, Jingsheng
2018-01-01
High hydrostatic pressure treatments could increase the protein solubility (200 MPa), water holding capacity (400 MPa), and oil holding capacity (400 MPa) of pine nuts protein fractions, respectively. The exposed sufhydryl content for albumin was highest at 100 MPa while for other fractions it was 400 MPa, contrary for total sufhydryl content-generally it was at 100 MPa, except glutelin (400 MPa). Pine nuts protein fractions demonstrated the typical behavior of weak gels (G' > G″). After the treatments of high hydrostatic pressure the specific surface area of pine nuts protein particle was increased upon pressure, and the surface of protein became rough which increased the particle size. The functional groups of protein were found to be unchanged, but the characteristic peaks of pine nuts protein moved to a low-band displacement and the value of peaks was amplified accordingly to the pressure. The high hydrostatic pressure treatments were found to improve the functional properties of pine nuts protein isolates by enhancing the heat-induced gel strength of pine nuts protein isolates which make proteins more stretchable. These results suggest that high hydrostatic pressure treatments can increase the functional properties and alter the rheological properties of pine nuts protein fractions which will broaden its applications in food industry.
Mineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand
Vanhanen, Leo P.; Savage, Geoffrey P.
2013-01-01
Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine (Pinus armandii Franch), Swiss stone pine (Pinus cembra L.), Mexican pinyon (Pinus cembroides Zucc. var. bicolor Little), Coulter pine (Pinus coulteri D. Don), Johann’s pine (Pinus johannis M.F. Robert), Italian stone pine (Pinus pinea L.) and Torrey pine (Pinus torreyana Parry ex Carrière), was carried out using an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Fourteen different minerals (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S and Zn) were identified in all seven varieties, except that no Al or Na was found in Pinus coulteri D. Don. New Zealand grown pine nuts are a good source of Cu, Mg, Mn, P and Zn, meeting or exceeding the recommended RDI for these minerals (based on an intake of 50 g nuts/day) while they supplied between 39%–89% of the New Zealand RDI for Fe. Compared to other commonly eaten tree-nuts New Zealand grown pine nuts are an excellent source of essential minerals. PMID:28239104
Mineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand.
Vanhanen, Leo P; Savage, Geoffrey P
2013-04-03
Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine ( Pinus armandii Franch), Swiss stone pine ( Pinus cembra L.), Mexican pinyon ( Pinus cembroides Zucc. var. bicolor Little), Coulter pine ( Pinus coulteri D. Don), Johann's pine ( Pinus johannis M.F. Robert), Italian stone pine ( Pinus pinea L.) and Torrey pine ( Pinus torreyana Parry ex Carrière), was carried out using an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Fourteen different minerals (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S and Zn) were identified in all seven varieties, except that no Al or Na was found in Pinus coulteri D. Don. New Zealand grown pine nuts are a good source of Cu, Mg, Mn, P and Zn, meeting or exceeding the recommended RDI for these minerals (based on an intake of 50 g nuts/day) while they supplied between 39%-89% of the New Zealand RDI for Fe. Compared to other commonly eaten tree-nuts New Zealand grown pine nuts are an excellent source of essential minerals.
Destaillats, Frédéric; Cruz-Hernandez, Cristina; Giuffrida, Francesca; Dionisi, Fabiola
2010-02-24
Pine nuts are traditionally used in various part of the world for the preparation of desserts or sauces or in salads. Local production is not sufficient to cope with the high demand of pine nuts around the world, and countries such as China or Pakistan are exporting much of their production to Western countries. Almost all the nuts that are traditionally consumed belong to the Pinus genus, but over the past years, the number of consumer complaints following consumption of commercial pine nuts increased. Some consumers experienced taste disturbance lasting for up to two weeks after consumption. Food safety agencies raised some concerns regarding pine nuts imported from Asia and their association with taste disturbance. However, even though a formal association has not been found to date, the Pinus genus comprises species that are not classified as edible and could be eventually used to adulterate edible species. Pinus spp. seed lipids are known to contain very specific polyunsaturated fatty acids know as Delta5-olefinic acids. Seed fatty acid profile of conifers had been used in the past as a taxonomic marker, and in the present study to identify the botanical origin of pine nut in nine commercial products. Fast gas-liquid chromatography (GLC) was used to resolve the complete fatty acid profile of Pinus spp. samples in less than 5 min. A diagnostic index based on the relative levels of the main fatty acids including distinctive Delta5-olefinic acids was used to identify botanical origins. Results revealed the occurrence of the following Pinus spp. in commercial products: P. pinea, P. koraiensis, P. gerardiana, P. armandii and P. massoniana. The later two species, known as Chinese white pine and Chinese red pine, are only cultivated in China and are not listed as common source of edible pine nuts by the Food and Agriculture Organization (FAO). The present study shows that the botanical origin of pine nuts can be identified in products based on the fatty acid profile.
The effects of food irradiation on quality of pine nut kernels
NASA Astrophysics Data System (ADS)
Gölge, Evren; Ova, Gülden
2008-03-01
Pine nuts ( Pinus pinae) undergo gamma irradiation process with the doses 0.5, 1.0, 3.0, and 5.0 kGy. The changes in chemical, physical and sensory attributes were observed in the following 3 months of storage period. The data obtained from the experiments showed the peroxide values of the pine nut kernels increased proportionally to the dose. On contrary, irradiation process has no effect on the physical quality such as texture and color, fatty acid composition and sensory attributes.
Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in ...
USDA-ARS?s Scientific Manuscript database
The major tree nuts include almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, pecans, pine nuts, pistachio nuts, and walnuts. Tree nut oils are appreciated in food applications because of their flavors and are generally more expensive than other gourmet oils. Research during the last de...
USDA-ARS?s Scientific Manuscript database
Prevalence of allergic reactions to tree nuts is increasing and can be particularly severe. Pine nuts from Pinus pinea have been consumed for over 2000 years in the Mediterranean region and today they are extensively consumed worldwide as a high nutrient ingredient. Of the reported cases of allergy ...
Eidson, Erika L; Mock, Karen E; Bentz, Barbara J
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.
Mock, Karen E.; Bentz, Barbara J.
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks. PMID:29715269
Wang, Han; Zu, Ge; Yang, Lei; Zu, Yuan-gang; Wang, Hua; Zhang, Zhong-hua; Zhang, Ying; Zhang, Lin; Wang, Hong-zheng
2011-12-28
The effects of carnosic acid (CA) of different concentrations (0.05, 0.1, and 0.2 mg/g) and two common antioxidants (butylated hydroxytoluene and α-tocopherol) on oxidative stability in pine nut oil at different accelerated conditions (heating and ultraviolet radiation) were compared. The investigation focused on the increase in peroxide and conjugated diene values, as well as free fatty acid and thiobarbituric acid-reactive substances. The changes in trans fatty acid and aldehyde compound contents were investigated by Fourier transform infrared spectroscopy, while the changes in pinolenic acid content were monitored by gas chromatography-mass spectrometry. The results show that CA was more effective in restraining pine nut oil oxidation under heating, UV-A and UV-B radiation, in which a dose-response relationship was observed. The antioxidant activity of CA was stronger than that of α-tocopherol and butylated hydroxytoluene. Pine nut oil supplemented with 0.2 mg/g CA exhibited favorable antioxidant effects and is preferable for effectively avoiding oxidation.
Bedard, B; Kennedy, B S; Weimer, A C
2014-12-01
In 2011, from August to November, the Monroe County Department of Public Health (MCDPH) investigated 47 salmonellosis cases. Geographical information software (GIS) was used to map the address locations of these cases. The resulting GIS analysis and culture information indicated that there were two distinct clusters of Salmonella that were geographically different. Pulsed-field gel electrophoresis (PFGE) testing was run at the New York State Department of Health Wadsworth Laboratory and identified S. Enteritidis (23 cases) and S. Typhimurium (10 cases). The epidemiological investigation identified Turkish pine nuts as the link between ill S. Enteritidis cases. Pine nut samples sent for laboratory testing were a PFGE match to human isolates with S. Enteritidis. A national recall of Turkish pine nuts ensued. A multistate outbreak was identified as a result of the initial investigation of MCDPH, in which 43 people were infected with the outbreak strain from five states. GIS software and shopper card data provided important tools in the epidemiological investigation.
75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...
Ryan, E; Galvin, K; O'Connor, T P; Maguire, A R; O'Brien, N M
2006-01-01
Nuts contain bioactive constituents that elicit cardio-protective effects including phytosterols, tocopherols and squalene. The objective of the present study was to determine the total oil content, peroxide value, fatty acid composition and levels of tocopherols, squalene and phytosterols in oil extracted from freshly ground brazil, pecan, pine, pistachio and cashew nuts. The total oil content of the nuts ranged from 40.4 to 60.8% (w/w) while the peroxide values ranged from 0.14 to 0.22 mEq O2/kg oil. The most abundant monounsaturated fatty acid was oleic acid (C18:1), while linoleic acid (C18:2) was the most prevalent polyunsaturated fatty acid. The levels of total tocopherols ranged from 60.8 to 291.0 mg/g. Squalene ranged from 39.5 mg/g oil in the pine nut to 1377.8 mg/g oil in the brazil nut. beta-Sitosterol was the most prevalent phytosterol, ranging in concentration from 1325.4 to 4685.9 mg/g oil. In conclusion, the present data indicate that nuts are a good dietary source of unsaturated fatty acids, tocopherols, squalene and phytosterols.
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2010-01-01
Limber Pine (Pinus flexilis) populations in the southern Rock Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pineâs critical role these high elevation ecosystems heightens the importance of mitigating impacts. To develop forest-scale planting methods six seedling planting trial sites were installed...
USDA-ARS?s Scientific Manuscript database
Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and ...
Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry
2016-01-01
Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.
Fungal Presence in Selected Tree Nuts and Dried Fruits
Tournas, VH; Niazi, NS; Kohn, JS
2015-01-01
Sixty-four tree nut samples (almonds, pecans, pine nuts, and walnuts) and 50 dried fruit samples (apricots, cranberries, papaya, pineapple, and raisins) were purchased from local supermarkets and analyzed for fungal contamination using conventional culture as well as molecular methods. The results of our study showed that the highest yeast and mold (YM) counts (5.34 log10 CFU g−1) were found in walnuts and the lowest in pecans. The most common mold in nuts was Aspergillus niger, relatively low numbers of A. flavus were found across the board, while Penicillium spp. were very common in pine nuts and walnuts. Low levels (2.00–2.84 log10 CFU g−1) of yeasts were recovered from only two pine nut samples. Fungal contamination in dried fruits was minimal (ranging from <2.00 to 3.86 log10 CFU g−1). The highest fungal levels were present in raisins. All papaya samples and the majority of cranberry, pineapple, and apricot samples were free of live fungi. The most common mold in dried fruits was A. niger followed by Penicillium spp. One apricot sample also contained low levels (2.00 log10 CFU g−1) of yeasts. PMID:26056470
Fungal Presence in Selected Tree Nuts and Dried Fruits.
Tournas, V H; Niazi, N S; Kohn, J S
2015-01-01
Sixty-four tree nut samples (almonds, pecans, pine nuts, and walnuts) and 50 dried fruit samples (apricots, cranberries, papaya, pineapple, and raisins) were purchased from local supermarkets and analyzed for fungal contamination using conventional culture as well as molecular methods. The results of our study showed that the highest yeast and mold (YM) counts (5.34 log10 CFU g(-1)) were found in walnuts and the lowest in pecans. The most common mold in nuts was Aspergillus niger, relatively low numbers of A. flavus were found across the board, while Penicillium spp. were very common in pine nuts and walnuts. Low levels (2.00-2.84 log10 CFU g(-1)) of yeasts were recovered from only two pine nut samples. Fungal contamination in dried fruits was minimal (ranging from <2.00 to 3.86 log10 CFU g(-1)). The highest fungal levels were present in raisins. All papaya samples and the majority of cranberry, pineapple, and apricot samples were free of live fungi. The most common mold in dried fruits was A. niger followed by Penicillium spp. One apricot sample also contained low levels (2.00 log10 CFU g(-1)) of yeasts.
Update on the healthful lipid constituents of commercially important tree nuts.
Robbins, Katherine S; Shin, Eui-Cheol; Shewfelt, Robert L; Eitenmiller, Ronald R; Pegg, Ronald B
2011-11-23
Uncharacteristic of most whole foods, the major component of tree nuts is lipid; surprisingly, information on the lipid constituents in tree nuts has been sporadic and, for the most part, not well reported. Most published papers focus on only one nut type, or those that report a cultivar lack a quality control program, thus making data comparisons difficult. The present study was designed to quantify the healthful lipid constituents of 10 different types of commercially important tree nuts (i.e., almonds, black walnuts, Brazil nuts, cashews, English walnuts, hazelnuts, macadamias, pecans, pine nuts, and pistachios) according to standardized, validated methods. The total lipid content of each nut type ranged from 44.4 ± 1.9% for cashews to 77.1 ± 1.7% for macadamias. As expected, the major fatty acids present in the tree nuts were unsaturated: oleic (18:1 ω9) and linoleic (18:2 ω6) acids. A majority of the lipid extracts contained <10% saturated fatty acids with the exceptions of Brazil nuts (24.5%), cashews (20.9%), macadamias (17.1%), and pistachios (13.3%). The total tocopherol (T) content ranged from 1.60 ± 1.27 mg/100 g nutmeat in macadamias to 32.99 ± 0.78 in black walnuts. The predominant T isomers in the nut types were α- and γ-T. Tocotrienols were also detected, but only in 6 of the 10 nut types (i.e., Brazil nut, cashews, English walnuts, macadamias, pine nuts, and pistachios). In most cases, total phytosterol contents were greater in the present study than reported in peer-reviewed journal papers and the USDA National Nutrient Database for Standard Reference, which is attributed to total lipid extraction and the inclusion of steryl glucosides in the analysis; the levels were highest for pistachios (301.8 ± 15.4 mg/100 g nutmeat) and pine nuts (271.7 ± 9.1 mg/100 g nutmeat). Minor sterols were also quantified and identified using GC-FID and GC-MS techniques.
Restoration planting options for limber pines in the southern Rocky Mountains
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2011-01-01
Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pine's critical role in these high elevation ecosystems heightens the importance of mitigating these impacts.
Gravity survey and depth to bedrock in Carson Valley, Nevada-California
Maurer, D.K.
1985-01-01
Gravity data were obtained from 460 stations in Carson Valley, Nevada and California. The data have been interpreted to obtain a map of approximate depth to bedrock for use in a ground-water model of the valley. This map delineates the shape of the alluvium-filled basin and shows that the maximum depth to bedrock exceeds 5,000 feet, on the west side of the valley. A north-south trending offset in the bedrock surface shows that the Carson-Valley/Pine-Nut-Mountain block has not been tilted to the west as a simple unit, but is comprised of several smaller blocks. (USGS)
Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan
2016-01-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...
Curtis A. Gray; Justin B. Runyon; Michael J. Jenkins; Andrew D. Giunta
2015-01-01
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not...
Zhang, Guodong; Hu, Lijun; Melka, David; Wang, Hua; Laasri, Anna; Brown, Eric W; Strain, Errol; Allard, Marc; Bunning, Vincent K; Musser, Steven M; Johnson, Rhoma; Santillana Farakos, Sofia; Scott, Virginia N; Pouillot, Régis; Doren, Jane M Van; Hammack, Thomas S
2017-03-01
Nuts have been identified as a vector for salmonellosis. The objective of this project was to estimate the prevalence and contamination level of Salmonella in raw tree nuts (cashews, pecans, hazelnuts, macadamia nuts, pine nuts, and walnuts) at retail markets in the United States. A total of 3,656 samples of six types of tree nuts were collected from different types of retail stores and markets nationwide between October 2014 and October 2015. These samples were analyzed using a modified version of the Salmonella culture method from the U.S. Food and Drug Administration's Bacteriological Analytical Manual. Of the 3,656 samples collected and tested, 32 were culturally confirmed as containing Salmonella. These isolates represented 25 serotypes. Salmonella was not detected in pecans and in-shell hazelnuts. Salmonella prevalence estimates (and 95% confidence intervals) in cashews, shelled hazelnuts, pine nuts, walnuts, and macadamia nuts were 0.55% [0.15, 1.40], 0.35% [0.04, 1.20], 0.48% [0.10, 1.40], 1.20% [0.53, 2.40], and 4.20% [2.40, 6.90], respectively. The rates of Salmonella isolation from major or big chain supermarkets, small chain supermarkets, discount, variety, or drug stores, and online were 0.64% [0.38, 1.00], 1.60% [0.80, 2.90], 0.00% [0.00, 2.40], and 13.64% [2.90, 35.00], respectively (Cochran-Mantel-Haenszel test: P = 0.02). The rates of Salmonella isolation for conventional and organic nuts were not significantly different. Of the samples containing Salmonella, 60.7% had levels less than 0.003 most probable number (MPN)/g. The highest contamination level observed was 0.092 MPN/g. The prevalence and levels of Salmonella in these tree nut samples were comparable to those previously reported for similar foods.
Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles
Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble
2009-01-01
Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine...
Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...
R.A. Progar; D.C. Blackford; D.R. Cluck; S. Costello; L.B. Dunning; T. Eager; C.L. Jorgensen; A.S. Munson; B. Steed; M.J. Rinella
2013-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: CurcuIionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of...
Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen
2008-01-01
Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...
75 FR 48550 - Amendment of Class E Airspace; Pine Mountain, GA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... Airport, GA (Lat. 32[deg]50'26'' N., long. 84[deg]52'57'' W.) Pine Mountain NDB, GA (Lat. 32[deg]50'34'' N...-0498; Airspace Docket No. 10-ASO-26] Amendment of Class E Airspace; Pine Mountain, GA AGENCY: Federal... Pine Mountain, GA, to accommodate the Standard Instrument Approach Procedures (SIAPs) developed for...
Options for the management of white pine blister rust in the Rocky Mountain Region
Kelly S. Burns; Anna W. Schoettle; William R. Jacobi; Mary F. Mahalovich
2008-01-01
This publication synthesizes current information on the biology, distribution, and management of white pine blister rust (WPBR) in the Rocky Mountain Region. In this Region, WPBR occurs within the range of Rocky Mountain bristlecone pine (Pinus aristata), limber pine (P. flexilis), and whitebark pine (P. albicaulis...
Mountain pine beetle in high-elevation five-needle white pine ecosystems
Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six
2011-01-01
Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...
Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph
1989-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...
Monitoring limber pine health in the Rocky Mountains and North Dakota
Kelly Burns; Jim Blodgett; Marcus Jackson; Brian Howell; William Jacobi; Anna Schoettle; Anne Marie Casper; Jennifer Klutsch
2011-01-01
Ecological impacts are occurring as white pine blister rust spreads and intensifies through ecologically and culturally important limber pine ecosystems of the Rocky Mountains and surrounding areas. The imminent threat of mountain pine beetle has heightened concerns. Therefore, information on the health status of limber pine is needed to facilitate management and...
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.
Strohm, S; Tyson, R C; Powell, J A
2013-10-01
Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.
B. J. Bentz; D. Endreson
2004-01-01
Spatial accuracy in the detection and monitoring of mountain pine beetle populations is an important aspect of both forest research and management. Using ground-collected data, classification models to predict mountain pine beetle-caused lodgepole pine mortality were developed for Landsat TM, ETM+, and IKONOS imagery. Our results suggest that low-resolution imagery...
Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)
Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie
2013-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2017-01-01
Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but...
A. W. Schoettle
2004-01-01
Limber pine and Rocky Mountain bristlecone pine are currently threatened by the non-native pathogen white pine blister rust (WPBR). Limber pine is experiencing mortality in the Northern Rocky Mountains and the infection front continues to move southward. The first report of WPBR on Rocky Mountain bristlecone pine was made in 2003 (Blodgett and Sullivan 2004), at a site...
Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L
2013-09-01
Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.
Christy M. Cleaver; Kelly S. Burns; Anna W. Schoettle
2017-01-01
Limber pine, designated by Rocky Mountain National Park (RMNP) as a Species of Management Concern, is a keystone species that maintains ecosystem structure, function, and biodiversity. Limber pine is declining in the park due to the interacting effects of recent severe droughts and the climate-exasperated mountain pine beetle (Dendroctonus ponderosae) outbreak, and is...
Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan
2017-01-01
Recent mountain pine beetle outbreaks in whitebark pine forests have been extensive and severe. Understanding the climate influences on these outbreaks is essential for developing management plans that account for potential future mountain pine beetle outbreaks, among other threats, and informing listing decisions under the Endangered Species Act. Prior research has...
Mountain pine beetle in southwestern white pine in the Pinaleno Mountains
Ann M. Lynch; Christopher D. O' Connor
2013-01-01
Mountain pine beetle has rarely been found in the Madrean Sky Island Archipelago and has not been reported from the Pinaleño Mountains until recently. This insect began killing southwestern white pine in 1996 or earlier, with additional mortality each year since. Activity has increased in the last 2 years. The life cycle in the Pinaleños during this time has been...
Richard Cutler; Leslie Brown; James Powell; Barbara Bentz; Adele Cutler
2003-01-01
Mountain pine beetles (Dendroctonus ponderosae Hopkins) are a pest indigenous to the pine forests of the western United States. Capable of exponential population growth, mountain pine beetles can destroy thousands of acres of trees in a short period of time. The research reported here is part of a larger project to demonstrate the application of, and evaluate,...
Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron
2011-01-01
A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...
Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li
2014-01-01
Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....
Nicole Turrill Welch; Thomas A. Waldrop
2001-01-01
Table mountain pine (Pinus pungens Lamb.) communities of the Southern Appalachian Mountains have been maintained historically by lightning- and human-caused fires. Characteristic stands have a table mountain pine overstory, a chestnut oak (Quercus prinus L.), scarlet oak (Q. coccinea Muenchh.), and blackgum (
A race against beetles: Conservation of limber pine
Anna Schoettle; Kelly Burns; Sheryl Costello; Jeff Witcosky; Brian Howell; Jeff Connor
2008-01-01
The Rocky Mountain Research Station, Forest Health Management, Rocky Mountain National Park, Arapaho-Roosevelt National Forest, and the Medicine Bow NF are coordinating efforts to conserve limber pine along the Front Range of the southern Rockies. Mountain pine beetle (MPB) populations are increasing dramatically in the area and killing limber pines in their...
Barbara J. Bentz
2006-01-01
Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
The prevalence of stand-replacing fire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
The prevalence of stand-replacing tire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...
Limber pine conservation strategy: Recommendations for Rocky Mountain National Park
Christy M. Cleaver; Anna W. Schoettle; Kelly S. Burns; J. Jeff Connor
2015-01-01
Limber pine (Pinus flexilis), designated by Rocky Mountain National Park (RMNP) as a Species of Management Concern, is a keystone species that maintains ecosystem structure, function, and biodiversity in the park. In RMNP, limber pine is declining due to the interacting effects of recent severe droughts and the climate-exacerbated mountain pine beetle (...
Jose F. Negron; Jennifer G. Klutsch
2017-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...
Jonathan D. Coop; Anna W. Schoettle
2011-01-01
Rocky Mountain bristlecone pine (Pinus aristata Engelm) and limber pine (P. flexilis James) are high-elevation, fiveneedle pines of the southern Rocky Mountains. The pre-settlement role of fire in bristlecone and limber pine forests remains the subject of considerable uncertainty; both species likely experienced a wide range of fire regimes across gradients of site...
76 FR 66629 - Establishment of the Pine Mountain-Cloverdale Peak Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... explains. The petition states that local growers report that Pine Mountain vineyards are naturally free of.... Southern storms often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other..., and very well to excessively well-drained. Also, these mountain soils include large amounts of sand...
A comparison of northern and southern table mountain pine stands
Patrick H. Brose; Thomas A. Waldrop; Helen H. Mohr
2010-01-01
Table Mountain pine (Pinus pungens) stands occur throughout the Appalachian Mountains, but ecological research has concentrated on the southern part of this region. In 2006, research was initiated in northern Table Mountain pine stands growing in PA to compare some basic attributes of those stands with previously described ones in TN. Overall, the...
Patterns of Seed Productions in Table Mountain Pine
Ellen A. Gray; John C. Rennie; Thomas A. Waldrop; James L. Hanula
2002-01-01
The lack of regeneration in stands of Table Mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains is of concern, particularly to federal land managers. Efforts to regenerate Table Mountain pine (TMP) stands with prescribed burning have been less successful than expected. Several factors that may play a key role in successful...
Nilova, L P; Pilipenko, T V
2016-01-01
The purpose was to study the effect of enriched bakery products in the diet of rats on indicators of prooxidant-antioxidant system of blood serum. Experiment was carried out on male Wistar rats with initial weight 140-180 g. After a quarantine during the preparatory period rats for 14 days were accustomed to the partial (50%) replacement of the standard diet by bakery products with standard compounding. Then, 7 groups of rats were formed: the 1st group of rats (control group, n=10) continued to receive bakery products of a standard composition; groups with the 2nd on 7th (experimental, n=8 in everyone) received enriched bakery products: the 2nd group - with blueberry powder; the 3rd group - with mountain ash powder; the 4th group - with sea-buckthorn powder; the 5th group - with flour of a pine nut; the 6th group - with rice bran oil; the 7th group - with pumpkin oil. The intensity of free radical oxidation and antioxidant activity (by chemiluminescence method), activity of superoxide dismutase and level of secondary oxidation products reacted with thiobarbituric acid (by spectrophotometry) were monitored in rat blood serum. It has been shown that the use of bakery products with different compounding in the animal diet had different effects on indicators of prooxidant-antioxidant system of blood serum. Bakery products containing sea buckthorn pomace powder, flour of pine nut and rice bran oil reduced intensity of free radical oxidation in rat blood serum by 36.0, 24.6 and 18.8%, respectively. It is suggested that bakery products containing flour of pine nut products brake a free radical oxidation in rat blood serum in case of simultaneous content of natural antioxidants and melanoidins. The anthocyanins of powder from blueberry berries can render antioxidant effect and slow down formation of by-products of oxidation. No statistically significant change on indicators of prooxidant-antioxidant system of blood serum of rats treated with bakery products with rowan powder or pumpkin oil was found, that may be due to animal refusal to eat such products.
Historic forests and endemic mountain pine beetle and dwarf mistletoe
Jose Negron
2012-01-01
Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...
Restoration planting options for limber pine (Pinus flexilis James) in the Southern Rocky Mountains
A. M. A. Casper; W. R. Jacobi; Anna Schoettle; K. S. Burns
2016-01-01
Limber pine Pinus flexilis James populations in the southern Rocky Mountains are threatened by the combined impacts of mountain pine beetles and white pine blister rust. To develop restoration planting methods, six P. flexilis seedling planting trial sites were installed along a geographic gradient from southern Wyoming to southern Colorado. Experimental...
Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow
2008-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...
Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.
2015-01-01
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317
Dale L. Bartos; Gordon D. Booth
1994-01-01
Temperature measurements were made to better understand the role of microclimate on mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), activity as a result of thinning lodgepole pine stands. Sampling was done over 61 days on the north slope of the Unita Mountain Range in northeastern Utah. Principal components analysis was applied to all...
Pinon Pine Tree Study, Los Alamos National Laboratory: Source document
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. R. Fresquez; J. D. Huchton; M. A. Mullen
One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soils (0- to 12-in. [31 cm] depth underneath themore » tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of {sup 3}H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 {micro}Sv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.« less
W. Matt Jolly; Russell A. Parsons; Ann M. Hadlow; Greg M. Cohn; Sara S. McAllister; John B. Popp; Robert M. Hubbard; Jose F. Negron
2012-01-01
Very little is known about how foliar moisture and chemistry change after a mountain pine beetle attack and even less is known about how these intrinsic foliar characteristics alter foliage ignitability. Here, we examine the fuel characteristics and ignition potential of Pinus contorta (lodgepole pine) foliage during the early stages of a mountain pine beetle attack....
Restoration planting options for limber pines in Colorado and Wyoming
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2011-01-01
Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pineʼs critical role in these high elevation ecosystems heightens the importance of mitigating these impacts. To develop forest-scale planting methods, six limber pine seedling...
USDA-ARS?s Scientific Manuscript database
Tree nuts contain an array of phytochemicals including carotenoids, phenolic acids, phytosterols and polyphenolic compounds such as flavonoids, proanthocyanidins (PAC) and stilbenes, all of which are included in nutrient databases, as well as phytates, sphingolipids, alkylphenols and lignans, which ...
Are Crown Fires Necessary For Table Mountain Pine?
Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis
2003-01-01
Ridgetop pine communities of the southern Appalachian Mountains have historically been maintained by lightning- and human-caused fires. Because of fire supression for several decades, these stands are entering later seral stages. Such stands typically have an overstory of Table Mountain Pine (Pinus pungens) that is being replaced by shade tolerant...
Longleaf Pine Forests...in the Mountains?
Morgan Varner
1999-01-01
While most people familiar with Alabama's forests associate longleaf pine with the gently rolling hills of lower Alabama, longleaf pine forests extend up into the hills, ridges and mountains of north Alabama. These forests, termed "montane" or "mountain longleaf," still thrive in several spots, but are becoming increasingly rare. These rare...
Lerch, Andrew P.; Pfammatter, Jesse A.
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks. PMID:27783632
Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that...
Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann
2015-01-01
The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...
Mountain pine beetle-killed trees as snags in Black Hills ponderosa pine stands
J. M. Schmid; S. A. Mata; W. C. Schaupp
2009-01-01
Mountain pine beetle-killed ponderosa pine trees in three stands of different stocking levels near Bear Mountain in the Black Hills National Forest were surveyed over a 5-year period to determine how long they persisted as unbroken snags. Rate of breakage varied during the first 5 years after MPB infestation: only one tree broke during the first 2 years in the three...
Health of whitebark pine forests after mountain pine beetle outbreaks
Sandra Kegley; John Schwandt; Ken Gibson; Dana Perkins
2011-01-01
Whitebark pine (Pinus albicaulis), a keystone high-elevation species, is currently at risk due to a combination of white pine blister rust (WPBR) (Cronartium ribicola), forest succession, and outbreaks of mountain pine beetle (MPB) (Dendroctonus ponderosae). While recent mortality is often quantified by aerial detection surveys (ADS) or ground surveys, little...
Kannamkumarath, Sasi S; Wróbel, Kazimierz; Wróbel, Katarzyna; Caruso, Joseph A
2004-03-24
In this work the quantitative determination and analytical speciation of arsenic were undertaken in different types of nuts, randomly purchased from local markets. The hardness of the whole nuts and high lipid content made the preparation of this material difficult for analysis. The lack of sample homogeneity caused irreproducible results. To improve the precision of analysis, arsenic was determined separately in nut oil and in the defatted sample. The lipids were extracted from the ground sample with the two portions of a mixture of chloroform and methanol (2:1). The defatted material was dried and ground again, yielding a fine powder. The nut oil was obtained by combining the two organic extracts and by evaporating the solvents. The two nut fractions were microwave digested, and total arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained for oils from different types of nuts showed element concentration in the range 2.9-16.9 ng g(-)(1). Lower levels of arsenic were found in defatted material (<0.1 ng g(-)(1) with the exception of Brazil nuts purchased with and without shells, 3.0 and 2.8 ng g(-)(1) respectively). For speciation analysis of arsenic in nut oils, elemental species were extracted from 2 g of oil with 12 mL of chloroform/methanol (2:1) and 8 mL of deionized water. The aqueous layer, containing polar arsenic species, was evaporated and the residue dissolved and analyzed by ion chromatography-ICP-MS. The anion exchange chromatography enabled separation of As(III), dimethylarsinic acid (DMAs(V)), monomethylarsonic acid (MMAs(V)), and As(V) within 8 min. Several types of nuts were analyzed, including walnuts, Brazil nuts, almonds, cashews, pine nuts, peanuts, pistachio nuts, and sunflower seeds. The recovery for the speciation procedure was in the range 72.7-90.6%. The primary species found in the oil extracts were As(III) and As(V). The arsenic concentration levels in these two species were 0.7-12.7 and 0.5-4.3 ng g(-)(1), respectively. The contribution of As in DMAs(V) ranged from 0.1 +/- 0.1 ng g(-)(1) in walnuts to 1.3 +/- 0.3 ng g(-)(1) in pine nuts. MMAs(V) was not detected in almonds, peanuts, pine nuts, sunflower seeds, or walnuts, and the highest concentration was found in pistachio nuts (0.5 +/- 0.2 ng g(-)(1)).
Phoretic symbionts of the mountain pine beetle (Dendroctonus ponderosae Hopkins)
Javier E. Mercado; Richard W. Hofstetter; Danielle M. Reboletti; Jose F. Negron
2014-01-01
During its life cycle, the tree-killing mountain pine beetle Dendroctonus ponderosae Hopkins interacts with phoretic organisms such as mites, nematodes, fungi, and bacteria. The types of associations these organisms establish with the mountain pine beetle (MPB) vary from mutualistic to antagonistic. The most studied of these interactions are those between beetle and...
Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae
Jacques Regniere; Barbara Bentz
2007-01-01
Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...
Mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)
Barbara Bentz
2008-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is considered one of the most economically important insect species in coniferous forests of western North America. Adult beetles are capable of successfully reproducing in at least 12 North American species of Pinus (Pineacea) from southern British Columbia to northern Baja Mexico. Mountain pine beetle adults...
Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón
2014-01-01
There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests...
Erin M. Borgman; Anna W. Schoettle; Amy L. Angert
2015-01-01
Active management is needed to sustain healthy limber pine (Pinus flexilis E. James) forests in the Southern Rocky Mountains (henceforth, Southern Rockies), as they are threatened by the interaction of the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic, climate change, and the spread of the non-native pathogen that causes white pine blister...
Anna W. Schoettle; Richard A. Sniezko; Angelia Kegley; Kelly S. Burns
2011-01-01
Limber pine ( Pinus flexilis James) and Rocky Mountain bristlecone pine (P. aristata Engelm.; hereafter referred to as bristlecone pine) are the dominant pines that occupy high elevation habitats of the southern Rockies. Bristlecone pine is primarily a subalpine and tree-line species while limber pine in the southern Rocky Mountains grows from 1600 m in the short grass...
Jonathan D. Coop; Anna W. Schoettle
2009-01-01
Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important highelevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function...
Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726
Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.
Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen
2012-01-01
In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...
Forest development and carbon dynamics after mountain pine beetle outbreaks
E. Matthew Hansen
2014-01-01
Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...
Marion Page; Michael I. Haverty; Charles E. Richmond
1985-01-01
The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive insect that attacks lodgepole pine (Pinus contorta Dougl.), a species valued for multiple uses throughout North America. The effective residual life of carbaryl, applied as a 2 percent suspension of Sevimol to the bark of lodgepole pine to prevent...
Biogeography and diversity of pines in the Madrean Archipelago
George M. Ferguson; Aaron D. Flesch; Thomas R. Van Devender
2013-01-01
Pines are important dominants in pine-oak, pine and mixed-conifer forests across the Colorado Plateau, southern Rocky Mountains, Sierra Madre Occidental, and in the intervening Sky Islands of the United States-Mexico borderlands. All 17 native species of pines in the Sky Islands region or their adjacent mountain mainlands reach the northern or southern margins of their...
Wang, Hua; Gill, Vikas S; Cheng, Chorng-Ming; Gonzalez-Escalona, Narjol; Irvin, Kari A; Zheng, Jie; Bell, Rebecca L; Jacobson, Andrew P; Hammack, Thomas S
2015-04-01
Foodborne outbreaks, involving pine nuts and peanut butter, illustrate the need to rapidly detect Salmonella in low moisture foods. However, the current Bacteriological Analytical Manual (BAM) culture method for Salmonella, using lactose broth (LB) as a pre enrichment medium, has not reliably supported real-time quantitative PCR (qPCR) assays for certain foods. We evaluated two qPCR assays in LB and four other pre enrichment media: buffered peptone water (BPW), modified BPW (mBPW), Universal Pre enrichment broth (UPB), and BAX(®) MP media to detect Salmonella in naturally-contaminated pine nuts (2011 outbreak). A four-way comparison among culture method, Pathatrix(®) Auto, VIDAS(®) Easy SLM, and qPCR was conducted. Automated DNA extraction techniques were compared with manual extraction methods (boiling or InstaGene™). There were no significant differences (P > 0.05) among the five pre enrichment media for pine nuts using the culture method. While both qPCR assays produced significantly (P ≤ 0.05) higher false negatives in 24 h pre enriched LB than in the other four media, they were as sensitive as the culture method in BPW, mBPW, UPB, and BAX media. The VIDAS Easy and qPCR were equivalent; Pathatrix was the least effective method. The Automatic PrepSEQ™ DNA extraction, using 1000 μL of pre enrichment, was as effective as manual extraction methods. Published by Elsevier Ltd.
Ha, Jae-Won
2015-01-01
The aim of this study was to investigate the efficacy of near-infrared radiation (NIR) heating combined with lactic acid (LA) sprays for inactivating Salmonella enterica serovar Enteritidis on almond and pine nut kernels and to elucidate the mechanisms of the lethal effect of the NIR-LA combined treatment. Also, the effect of the combination treatment on product quality was determined. Separately prepared S. Enteritidis phage type (PT) 30 and non-PT 30 S. Enteritidis cocktails were inoculated onto almond and pine nut kernels, respectively, followed by treatments with NIR or 2% LA spray alone, NIR with distilled water spray (NIR-DW), and NIR with 2% LA spray (NIR-LA). Although surface temperatures of nuts treated with NIR were higher than those subjected to NIR-DW or NIR-LA treatment, more S. Enteritidis survived after NIR treatment alone. The effectiveness of NIR-DW and NIR-LA was similar, but significantly more sublethally injured cells were recovered from NIR-DW-treated samples. We confirmed that the enhanced bactericidal effect of the NIR-LA combination may not be attributable to cell membrane damage per se. NIR heat treatment might allow S. Enteritidis cells to become permeable to applied LA solution. The NIR-LA treatment (5 min) did not significantly (P > 0.05) cause changes in the lipid peroxidation parameters, total phenolic contents, color values, moisture contents, and sensory attributes of nut kernels. Given the results of the present study, NIR-LA treatment may be a potential intervention for controlling food-borne pathogens on nut kernel products. PMID:25911473
Peter M. Brown; Anna W. Schoettle
2008-01-01
We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...
Estimating the probability of mountain pine beetle red-attack damage
Michael A Wulder; J. C. White; Barbara J Bentz; M. F. Alvarez; N. C. Coops
2006-01-01
Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these...
Pruning to manage white pine blister rust in the southern Rocky Mountains
Amanda Crump; William R. Jacobi; Kelly S. Burns; Brian E. Howell
2011-01-01
White pine blister rust is an exotic, invasive disease that severely damages and kills white pines in the southern Rocky Mountains. We evaluated the efficacy of preventive pruning (removing lower branches) and/or sanitation pruning (removing cankered branches) to reduce disease impacts in limber (Pinus flexilis James) and Rocky Mountain bristlecone (P. aristata Englm...
Mountain pine beetle infestations in relation to lodgepole pine diameters
Walter E. Cole; Gene D. Amman
1969-01-01
Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...
Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A
2016-12-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. © 2016 by the Ecological Society of America.
Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
2012-01-01
Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...
Kristen Pelz; C. C. Rhoades; R. M. Hubbard; M. A. Battaglia; F. W. Smith
2015-01-01
Mountain pine beetle outbreaks have killed lodgepole pine on more than one million hectares of Colorado and southern Wyoming forest during the last decade and have prompted harvest operations throughout the region. In northern Colorado, lodgepole pine commonly occurs in mixed stands with subalpine fir, Engelmann spruce, and aspen. Variation in tree species composition...
Are high elevation pines equally vulnerable to climate change-induced mountain pine beetle attack?
Barbara J. Bentz; Erika L. Eidson
2016-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB), a native insect to western North America, caused extensive tree mortality in pine ecosystems during a recent warm and dry period. More than 24 million acres were affected, including in the relatively low elevation lodgepole (Pinus contorta) and ponderosa (P. ponderosa) pines, and the high-elevation whitebark (P....
Lauren E. Barringer; Diana F. Tomback; Michael B. Wunder
2011-01-01
Whitebark pine (Pinus albicaulis) is declining in the central and northern Rocky Mountains from infection by the exotic pathogen Cronartium ribicola, which causes white pine blister rust, and from outbreaks of mountain pine beetle (Dendroctonus ponderosae). White pine blister rust has been present in Glacier and Waterton Lakes National Parks (NP) about two decades...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
A dendrochronology study was conducted in four upland yellow pine communities in Georgia, South Carolina, and Tennessee to determine whether the number and frequency of stand-level disturbances had changed since 1900. Increment cores of Table Mountain pine (Pinus pungens Lamb.), pitch pine (P. rigida Mill.), shortleaf pine (
Identifying ponderosa pines infested with mountain pine beetles
William F. McCambridge
1974-01-01
Trees successfully and unsuccessfully attacked by mountain pine beetles have several symptoms in common, so that proper diagnosis is not always easy. Guidelines presented here enable the observer to correctly distinguish nearly all attacked trees.
Fraser, Jordie D; Bonnett, Tiffany R; Keeling, Christopher I; Huber, Dezene P W
2017-01-01
Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.
Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W
2014-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in this new host.
Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling
2017-01-01
In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...
Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray
2011-01-01
Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow geographic and elevational distribution and occurs in disjunct mountain-top populations throughout Colorado and New Mexico in its core range. The species' unique aesthetic and ecological traits combined with the threats of the exotic disease white pine blister rust (WPBR), climate change in high...
76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... allow reestablishment of controlled periodic fire; and capturing the value of removed trees in an... mixed-severity fire regime that is dominated by lodgepole pine. Tree mortality from a mountain pine... other tree species native to the area including aspen, whitebark pine, and ponderosa pine do not occur...
Dose-dependent pheromone responses of mountain pine beetle in stands of lodgepole pine
Daniel R. Miller; B. Staffan Lindgren; John H. Borden
2005-01-01
We conducted seven behavioral choice tests with Lindgren multiple-funnel traps in stands of mature lodgepole pine in British Columbia, from 1988 to 1994, to determine the dosedependent responses of the mountain pine beetle, Dendroctonus ponderosae Hopkins, to its pheromones. Amultifunctional dose-dependent response was exhibited by D. ...
Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation
Gene D. Amman; Kevin C. Ryan
1994-01-01
The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the...
Insects of whitebark pine with emphasis on mountain pine beetle
Dale L. Bartos; Kenneth E. Gibson
1990-01-01
Few insects that live on whitebark pine (Pinus albicaulis) are considered pests or potential pests. Those that inhabit cones can cause reductions in reproduction of the tree by destroying seed crops. Decreases in food for animals ranging from squirrels to grizzly bears may also result. A single insect species, mountain pine beetle (Dendroctonus...
Restoring whitebark pine forests of the northern Rocky Mountains, USA
Robert E. Keane; Russell A. Parsons
2010-01-01
Whitebark pine (Pinus albicaulis) has been declining across much of its range in North America because of the combined effects of mountain pine beetle (Dendroctonus ponderosae) epidemics, fire exclusion policies, and widespread exotic blister rust infections. Whitebark pine seed is dispersed by a bird, the Clark's nutcracker (Nucifraga columbiana), which caches in...
Remnant fire disturbed montane longleaf pine forest in west central georgia
Robert Carter; Andrew J. Londo
2006-01-01
Fire disturbed ecosystems are characteristic of the Southeastern Coastal Plain of the United States. Less well known are fire disturbed mountainous regions of the Piedmont and Appalachian region that support longleaf pine (Pinus palustris P. Mill.) ecosystems. The Pine Mountain Range in the Piedmont of west central Georgia has remnant longleaf pine...
Radiographic Analysis of Shortleaf Pine Seeds From the Ouachita and Ozark National Forests
Alex C. Mangini; William W. Bruce; James L. Hanula
2004-01-01
Abstract - Shortleaf pine, Pinus echinata Mill., is indigenous to the Ouachita Mountains and the Magazine Mountain area of Arkansas. Natural regeneration of shortleaf pine is a priority on National Forest lands in this area. Insects infesting cones and seeds of shortleaf pine reduce the healthy seeds available for natural...
The importance of wilderness to whitebark pine research and management
Robert E. Keane
2000-01-01
Whitebark pine is a keystone species in upper subalpine forests of the northern Rocky Mountains, Cascades, and Sierra Nevada that has been declining because of recent mountain pine beetle and exotic blister rust epidemics, coupled with advancing succession resulting from fire exclusion. Whitebark pine and Wilderness have a mutually beneficial relationship because 1)...
Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils
Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu
2014-01-01
The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...
Mark D. McGregor; Dennis M. Cole
1985-01-01
Provides guidelines for integrating practices for managing mountain pine beetle populations with silvicultural practices for enhancing multiple resource values of lodgepole pine forests. Summarizes published and unpublished technical information and recent research on the ecology of pest and host and presents visual and classification criteria for recognizing...
N.T. Welch; Thomas A. Waldrop; E.R. Buckner
2000-01-01
Southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) forests require disturbance for regeneration. Lightning-ignited fires and cultural burning practices provided the disturbance that prehistorically and historically maintained these forests. Burning essentially ceased on public lands in the early...
Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron
2008-01-01
In the ponderosa pine forests of the northern Front Range of Colorado, downed woody debris amounts, fuel arrangement, and stand characteristics were assessed in areas infested with southwestern dwarf mistletoe (Arceuthobium vaginatum subsp. cryptopodum), mountain pine beetle (Dendroctonus ponderosae) and
Jose F. Negron; Wayne A. Shepperd; Steve A. Mata; John B. Popp; Lance A. Asherin; Anna W. Schoettle; John M. Schmid; David A. Leatherman
2001-01-01
Three experiments were conducted to evaluate the use of solar radiation for reducing survival of mountain pine beetle populations in infested logs. Ponderosa pine logs were used in experiments 1 and 2 and lodgepole pine logs were used in experiment 3. Experiment 1 comprised three treatments: (1) one-layer solar treatment without plastic sheeting and logs rotated one-...
Jennifer Klutsch; Nadir Erbilgin
2012-01-01
In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...
Molly L. Retzlaff; Signe B. Leirfallom; Robert E. Keane
2016-01-01
Whitebark pine plays a prominent role in high elevation ecosystems of the northern Rocky Mountains. It is an important food source for many birds and mammals as well as an essential component of watershed stabilization. Whitebark pine is vanishing from the landscape due to three main factors: white pine blister rust, mountain pine beetle outbreaks, and successional...
Carbon dynamics in central US Rockies lodgepole pine type after mountain pine beetle outbreaks
E. Matthew Hansen; Michael C. Amacher; Helga Van Miegroet; James N. Long; Michael G. Ryan
2015-01-01
Mountain pine beetle-caused tree mortality has substantially changed live tree biomass in lodgepole pine ecosystems in western North America since 2000. We studied how beetle-caused mortality altered ecosystem carbon (C) stocks and productivity using a central US Rockies age sequence of ecosystem recovery after infestation, augmented with growth-and-yield...
Genetic and phenotypic resistance in lodgepole pine to attack by mountain pine beetle
Alvin Yanchuk; Kimberly Wallin
2007-01-01
The recent outbreak of mountain pine beetle (MPB) (Dendroctonus ponderosae) in British Columbia provided an opportunity to examine genetic variation of differential attack and resistance in a 20-year old lodgepole pine open-pollinated (OP) family trial. Approximately 2,500 individuals from 180 OP parent-tree collections (~14 trees per parent), from...
Jose F. Negron; Jill L. Wilson; John A. Anhold
2000-01-01
Stand conditions associated with outbreak populations of the roundheaded pine beetle, Dendroctonus adjunctus Blandford, in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests were studied in the Pinaleno Mountains, AZ, and the Pine Valley Mountains, UT. Classification tree models to estimate the probability of infestation based on stand attributes were built for...
Restoration of whitebark pine forests in the northern Rocky Mountains, USA
Robert E. Keane
2011-01-01
Whitebark pine (Pinus albicaulis) has been declining across much of its range in North America because of the combined effects of mountain pine beetle epidemics, fire exclusion policies, and widespread exotic blister rust infections. Whitebark pine seed is dispersed by a bird, the Clark's nutcracker, which caches seed in open, pattern-rich landscapes created by...
Jose F. Negron; Kurt Allen; McMillin. Joel; Henry Burkwhat
2006-01-01
In 2000 and 2002, Verbenone, a compound with anti-aggregation properties for mountain pine beetle, Dendroctonus ponderosae, was tested for reducing attacks by the insect in Ponderosa pine, Pinus ponderosae forests. The verbenone was released to the environment with the use of permeable membranes; the first year with plastic...
Barbara J. Bentz; Celia Boone; Kenneth F. Raffa
2015-01-01
Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.
Using prescribed fire to regenerate Table Mountain pine in the Southern Appalachian Mountains
Patrick H. Brose; Thomas A. Waldrop
2000-01-01
Stand-replacing prescribed fires are recommended to regenerate stands of Table Mountain pine (Pinus pungens) in the southern Appalachian Mountains because the species has serotinous cones and its seedlings require abundant sunlight and a thin forest floor. A 350-hectare prescribed fire in northeastern Georgia provided an opportunity to observe...
Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron
2013-01-01
The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...
Erin L. Landguth; Zachary A. Holden; Mary F. Mahalovich; Samuel A. Cushman
2017-01-01
Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the...
Nancy E. Gillette; E. Matthew Hansen; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; Nadir Erbilgin; David L. Wood
2012-01-01
DISRUPT Micro-Flake Verbenone Bark Beetle Anti-Aggregant flakes (Hercon Environmental, Inc., Emigsville, Pennsylvania) were applied in two large-scale tests to assess their efficacy for protecting whitebark pine Pinus albicaulis Engelm. from attack by mountain pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytinae) (MPB). At two locations, five...
Large-scale thinning, ponderosa pine, and mountain pine beetle in the Black Hills, USA
Jose F. Negron; Kurt K. Allen; Angie Ambourn; Blaine Cook; Kenneth Marchand
2017-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB), can cause extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality in the Black Hills of South Dakota and Wyoming, USA. Lower tree densities have been associated with reduced MPB-caused tree mortality, but few studies have reported on large-scale thinning and most data come from small plots that...
Is lodgepole pine mortality due to mountain pine beetle linked to the North American Monsoon?
Sara A. Goeking; Greg C. Liknes
2012-01-01
Regional precipitation patterns may have influenced the spatial variability of tree mortality during the recent mountain pine beetle (Dendroctonus ponderosa) (MPB) outbreak in the western United States. Data from the Forest Inventory and Analysis (FIA) Program show that the outbreak was especially severe in the state of Colorado where over 10 million lodgepole pines (...
Brian Strom; Sheri Smith; D.A. Wakarchuk
2008-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins 1902, is found in pine forests throughout the western U.S., north to northern British Columbia and Alberta, Canada and south to Mexico. It causes high levels of pine mortality throughout its range. Hosts include many species of Pinus (Pinaceae); in northern California,
Byron J. Collins; Charles C. Rhoades; Jeffrey Underhill; Robert M. Hubbard
2010-01-01
The extent and severity of overstory lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) mortality from mountain pine beetle (Dendroctonus ponderosae Hopkins) has created management concerns associated with forest regeneration, wildfire risk, human safety, and scenic, wildlife, and watershed resources in western North America. Owing to the unprecedented...
An economic assessment of mountain pine beetle timber salvage in the west
Jeffrey P. Prestemon; Karen L. Abt; Kevin M. Potter; Frank H. Koch
2013-01-01
The mountain pine beetle has killed lodgepole pine and other species of pines in the western United States in an ongoing epidemic. The most heavily affected states are in the interior West: Colorado, Idaho, Montana, and Wyoming, with smaller losses elsewhere. Timber salvage is one response to the epidemic, which could generate revenues for affected landowners and...
Andrew P. Lerch; Jesse A. Pfammatter; Barbara J. Bentz; Kenneth F. Raffa
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three...
Preparation of Fe-cored carbon nanomaterials from mountain pine beetle-killed pine wood
Sung Phil Mun; Zhiyong Cai; Jilei Zhang
2015-01-01
The mountain pine beetle-killed lodgepole pine (Pinus contorta) wood treated with iron (III) nitrate solution was used for the preparation of Fe-cored carbon nanomaterials (Fe-CNs) under various carbonization temperatures. The carbonization yield of Fe-treated sample (5% as Fe) was always 1â3% higher (after ash compensation) than that of the non-...
J. C. Vandygriff; E. Hansen; Barbara Bentz; K. K. Allen; G. D. Amman; L. A. Rasmussen
2015-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility...
Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage
Wesley G. Page; Michael J. Jenkins; Justin B. Runyon
2012-01-01
During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...
Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility
David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan
2000-01-01
Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...
NASA Astrophysics Data System (ADS)
Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.
2013-12-01
pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.
Leung, Elvis M K; Tang, Phyllis N Y; Ye, Yuran; Chan, Wan
2013-10-16
2-Alkylcyclobutanones (2-ACBs) have long been considered as unique radiolytic products that can be used as indicators for irradiated food identification. A recent report on the natural existence of 2-ACB in non-irradiated nutmeg and cashew nut samples aroused worldwide concern because it contradicts the general belief that 2-ACBs are specific to irradiated food. The goal of this study is to test the natural existence of 2-ACBs in nut samples using our newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with enhanced analytical sensitivity and selectivity ( Ye , Y. ; Liu , H. ; Horvatovich , P. ; Chan , W. Liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 2-alkylcyclobutanones in irradiated chicken by precolumn derivatization with hydroxylamine . J. Agric. Food Chem. 2013 , 61 , 5758 - 5763 ). The validated method was applied to identify 2-dodecylcyclobutanone (2-DCB) and 2-tetradecylcyclobutanone (2-TCB) in nutmeg, cashew nut, pine nut, and apricot kernel samples (n = 22) of different origins. Our study reveals that 2-DCB and 2-TCB either do not exist naturally or exist at concentrations below the detection limit of the existing method. Thus, 2-DCB and 2-TCB are still valid to be used as biomarkers for identifying irradiated food.
Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.
Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A
2008-08-01
Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, B.J.; Powell, J.A.; Logan, J.A.
1996-12-01
Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less
Clow, David W.; Rhoades, Charles; Briggs, Jenny S.; Caldwell, Megan K.; Lewis, William M.
2011-01-01
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO3-">NO3- or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO3-">NO3- and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.
Barbara J. Bentz; James A. Powell
2014-01-01
Mountain pine beetle tree colonization typically occurs in July and August, with completion of a generation one (univoltinism) or two (semivoltinism) years later. In a 2012 publication, Mitton and Ferrenberg suggested that climate change resulted in an unprecedented generation between June and September (a summer generation), with a concomitant shift to two...
Tania Schoennagel; Thomas T. Veblen; Jose F. Negron; Jeremy M. Smith
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared...
Dale L. Bartos; Kent B. Downing
1989-01-01
A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...
Jose Negron
1997-01-01
Classification trees and linear regression analysis were used to build models to predict probabilities of infestation and amount of tree mortality in terms of basal area resulting from roundheaded pine beetle, Dendroctonus adjunctus Blandford, activity in ponderosa pine, Pinus ponderosa Laws., in the Sacramento Mountains, New Mexico. Classification trees were built for...
Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder
2017-01-01
The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...
Protecting whitebark pines through a mountain pine beetle epidemic with verbenone-is it working?
Dana L. Perkins; Carl L. Jorgensen; Matt Rinella
2011-01-01
We initiated a multi-year project to protect individual cone-bearing whitebark pines (Pinus albicaulis) from mountain pine beetle (MPB), Dendroctonus ponderosae (Hopkins), attack with the anti-aggregating pheromone, verbenone (4,5,5-trimethylbicyclo [3.1.1] hept-3-en-2-one). Our objective was to protect trees through the course of the epidemic that began ca. 2000 in...
A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko
2011-01-01
The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...
Robert E. Keane; Russell A. Parsons
2010-01-01
Whitebark pine is declining across much of its range in North America because of the combined effects of mountain pine beetle epidemics, fire exclusion policies, and widespread exotic blister rust infections. This management guide summarizes the extensive data collected at whitebark pine treatment sites for three periods: (1) pre-treatment, (2) 1 year post-treatment,...
Current research on restoring ridgetop pine communities with stand replacement fire
Thomas A. Waldrop; Nicole Turrill Welch; Patrick H. Brose; [and others
2000-01-01
Ridgetop pine communities of the Southern Appalachian Mountains historically have been maintained by lightning- and human-caused fires. With fire suppression for several decades, characteristic stands are entering later seral stages. They typically have an overstory of Table Mountain (Pinus pungens)and/or pitch pine (P. rigida), a...
USDA-ARS?s Scientific Manuscript database
Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations and is threatened by multiple stresses, including rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and pop...
Victoria A. Saab; Quresh S. Latif; Mary M. Rowland; Tracey N. Johnson; Anna D. Chalfoun; Steven W. Buskirk; Joslin E. Heyward; Matthew A. Dresser
2014-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to...
Frizzell, Virgil A.; Kuizon, Lucia
1984-01-01
The Miranda Pine, Horseshoe Springs, Tepusquet Peak, La Brea, Spoor Canyon, Fox Mountain and Little Pine Roadless Areas together occupy about 246 sq mi in the Los Padres National Forest, California. Mineral-resource surveys indicate demonstrated resources of barite, copper, and zinc at two localities in the La Brea Roadless Area and demonstrated resources of phosphate at a mine in the Fox Mountain Roadless Area. A building stone quarry is present on the southern border of the Horseshoe Spring Roadless Area and an area of substantiated resource potential extends into the area. The Miranda Pine, Tepusquet Peak, Spoor Canyon, and Little Pine Roadless Areas have little promise for the occurrence of mineral resources and there is little promise for the occurrence of energy resources in any of the roadless areas.
M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan
2014-01-01
The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...
Holly S. J. Kearns; William R. Jacobi; Brian W. Geils
2009-01-01
Epidemiological studies of white pine blister rust on limber pine require a temporal component to explain variations in incidence of infection and mortality. Unfortunately, it is not known how long the pathogen has been present at various sites in the central Rocky Mountains of North America. Canker age, computed from canker length and average expansion rate, can be...
R.A. Progar
2005-01-01
The antiaggregation pheromone verbenone was operationally tested for 5 yr to deter mass attack by the mountain pine beetle on lodgepole pine in campgrounds and administrative areas surrounding Redfish and Little Redfish Lakes at the Sawtooth National Recreation Area in central Idaho. Each year, five-gram verbenone pouches were evenly distributed (-10 m apart) within...
Sheryl L. Costello; William R. Jacobi; Jose F. Negron
2013-01-01
Wood borers (Coleoptera: Cerambycidae and Buprestidae) and bark beetles (Coleoptera: Curculionidae) infest ponderosa pines, Pinus ponderosa P. Lawson and C. Lawson, killed by mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and fire. No data is available comparing wood borer and bark beetle densities or species guilds associated with MPB-killed or fire-...
Jacob M. Griffin; Monica G. Turner; Martin Simard
2011-01-01
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...
Daniel R. Miller; B. Staffan Lindgren
2000-01-01
Multiple-funnel traps baited with exo-brevicomin and a mixture of cis- and trans-verbenol were used to test the relative attractiveness of myrcene and (-)-a -pinene to the mountain pine beetle, Dendroctonus ponderosae Hopkins, in a stand...
The mountain pine beetle: causes and consequences of an unprecedented outbreak
Allan L. Carroll
2011-01-01
The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.
Limber pine health survey in the Rocky Mountains and North Dakota
James T. Blodgett; Kelly S. Burns; Brian Howell; Marcus Jackson; William R. Jacobi; Anna W. Schoettle
2010-01-01
Limber pines are widely distributed across the Rocky Mountains and are especially important because of their unique cultural and ecological characteristics. Recent surveys have suggested that significant ecological impacts are occurring as a result of white pine blister rust (WPBR) and other damaging agents. Additionally, several new WPBR infestations have...
Costs of harvesting beetle-killed lodgepole pine in Eastern Oregon.
Peter J. Ince; John W. Henley; John B. Grantham; Douglas L. Hunt
1984-01-01
The cost of harvesting and recovering round wood logs and whole-tree chips from small diameter lodgepole pine (Pinus contorta) infested by mountain pine beetle (Dendroctonus sp.) was studied in the Blue Mountains of eastern Oregon in 1979. Mechanized harvest operations were conducted on six study sites totaling 134 acres. The...
The use of verbenone to protect whitebark pine from mountain pine beetle
Sandra Kegley; Ken Gibson
2011-01-01
Verbenone is a known anti-aggregation pheromone of mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and has been tested in protecting susceptible host trees from attack since 1988. Inconsistent performance of verbenone during field trials caused formulations and release devices to change through time, resulting in three products currently registered with...
The mountain pine beetle and whitebark pine waltz: Has the music changed?
Barbara J. Bentz; Greta Schen-Langenheim
2007-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...
K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender
2007-01-01
The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...
Characteristics of endemic-level mountain pine beetle populations in south-central Wyoming
Dale L. Bartos; Richard F. Schmitz
1998-01-01
This study was conducted to evaluate the dynamics of endemic populations of mountain pine beetle (Dendroctonus ponderosae Hopkins). In addition, we extended the geographical range of an existing data base recorded in Utah with similar data from Wyoming. This work was accomplished in lodgepole pine (Pinus contorta Dougl. Var.
Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis
2002-01-01
Abstract - After several decades of fire suppression, ridgetop pine communities of the Southern Appalachians are entering later seral stages and beginning to disappear. They typically have an overstory of Table Mountain pine (Pinus pungens), which is being replaced by shade-tolerant chestnut oaks (Quercus prinus...
Barton D. Clinton; James M. Vose
2000-01-01
Recent declines in the yellow pine component of pine-hardwood stands in the Southern Appalachian Mountains has prompted managers to increase the use of fire as a silvicultural tool. The fell and burn treatment is designed to remove competing vegetation (hardwoods and mountain laurel...
Periodic Burning In Table Mountain-Pitch Pine Stands
Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon
2002-01-01
Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...
Online LC-GC-based analysis of minor lipids in various tree nuts and peanuts.
Esche, Rebecca; Müller, Luisa; Engel, Karl-Heinz
2013-11-27
As information on free sterols/stanols and steryl/stanyl esters in nuts is lacking, the compositions and contents of these lipid constituents in ten different nut types were analyzed. The applied approach was based on online liquid chromatography-gas chromatography and enabled the simultaneous analysis of free sterols/stanols and individual steryl/stanyl fatty acid esters, and additionally of tocopherols and squalene. Total contents of free sterols/stanols ranged from 0.62 mg/g nut in hazelnuts to 1.61 mg/g nut in pistachios, with sitosterol as the predominant compound. Total contents of steryl/stanyl fatty acid esters were in the range of 0.11-1.26 mg/g nut, being lowest in Brazil nuts and highest in pistachios. There were considerable differences between the various nut types not only regarding the contents, but also the compositions of both classes. The levels of tocopherols were highest in pine nuts (0.33 mg/g nut); those of squalene were remarkably high in Brazil nuts (1.11 mg/g nut).
Mediterranean nuts: origins, ancient medicinal benefits and symbolism.
Casas-Agustench, Patricia; Salas-Huetos, Albert; Salas-Salvadó, Jordi
2011-12-01
To consider historical aspects of nuts in relation to origin and distribution, attributed medicinal benefits, symbolism, legends and superstitions. Review of historical aspects of nuts. Mediterranean region. The varieties reviewed include almonds, walnuts, hazelnuts, pine nuts and pistachios. Like other foods, nuts have a wide variety of cultural connections to the areas where they grow and to the people who live there or eat them. History, symbolism and legends reveal the ancient tradition of nuts and how they are related to the lives of our ancestors. Archaeological excavations in eastern Turkey have uncovered the existence of a non-migratory society whose economy centred on harvesting nuts. This shows that nuts have been a staple in the human diet since the beginnings of history. Moreover, since ancient times nuts have been used for their medicinal properties. They also play a role in many old legends and traditions.
40 CFR 180.491 - Propylene oxide; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...
40 CFR 180.491 - Propylene oxide; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...
40 CFR 180.491 - Propylene oxide; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...
Bohun B. Kinloch; Dulitz Jr.
1990-01-01
The behavior of white pine blister rust at Mountain Home State Demonstration Forest and surrounding areas in the southern Sierra Nevada of California indicates that the epidemic has not yet stabilized and that the most likely prognosis is a pandemic on white pines in this region within the next few decades. The impact on sugar pines, from young regeneration to old...
Ponderosa pine mortality resulting from a mountain pine beetle outbreak
William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut
1982-01-01
From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...
B. J. Bentz; S. Kegley; K. Gibson; R. Their
2005-01-01
The effcacy of verbenone as a stand-level protectant against mountain pine beetle, Dendroctonus ponderosae Hopkins, attacks was tested in lodgepole and whitebark pine stands at five geographically separated sites, including three consecutive years at one site. Forty and 20 high-dose pouches, with a verbenone emission rate up to 50 mg/d per pouch, were spaced in a grid...
Mehyar, Ghadeer F; Al-Ismail, Khalid; Han, Jung H; Chee, Grace W
2012-02-01
Edible coatings made of whey protein isolate (WPI), pea starch (PS), and their combinations with carnauba wax (CW) were prepared and characterized. WPI combined with CW formed stable emulsion while PS with CW formed unstable emulsion and both formulations produced non-homogeneous films. Addition of PS to WPI: CW combination at the ratio of 1:1:1, respectively, resulted in stable emulsion and homogenous films. The emulsion PS: WPI: CW (1:1:2) was stable and formed a continuous film but had less homogenous droplets size distribution when compared to 1:1:1 film. Combined films had a reduced tensile strength and elongation compared to single component films. WPI : CW (1:1) films had higher elastic modulus than the WPI films, but the modulus reduced by the addition of PS. All the coating formulations were effective in preventing oxidative and hydrolytic rancidity of walnuts and pine nuts stored at 25 °C throughout the storage (12 d) but were less effective at 50 °C. Increasing the concentration of CW from 1:1:1 to 1:1:2 in PS: WPI: CW formulation did not contribute in further prevention of oil rancidity at 25 °C. Using of PS: WPI: CW (1:1:1) coating on both nuts significantly (P < 0.05) improved their smoothness and taste but the PS: WPI: CW (1:1:2) coatings imparted unacceptable yellowish color on walnuts. Edible coating of walnuts and pine nuts by whey protein isolate, pea starch, and carnauba wax reduced the oxidative and hydrolytic rancidity of the nuts and improved sensory characteristics. © 2012 Institute of Food Technologists®
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
Diesel fuel oil for increasing mountain pine beetle mortality in felled logs
S. A. Mata; J. M. Schmid; D. A. Leatherman
2002-01-01
Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....
X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu
2010-01-01
The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....
E.I. Kotok
1938-01-01
Experimental forests, watersheds, and ranges are the field laboratories in the research structure of the Forest Service. The California Forest and Range Experiment Station maintains four experimental forests representing the more important timber types in the Pine Region.The Blacks Mountain Experimental Forest represents the ponderosa pine...
P.H. Cochran; James W. Barrett
1995-01-01
Growth and mortality in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) stand were investigated for 24 years. High mortality rates from mountain pine beetle (Dendroctonus ponderosae Hopkins) occurred on some plots where values for stand density index exceeded 140. Periodic annual increments for quadratic mean diameters...
Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray
2012-01-01
Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...
2010-04-01
Dendroctonus ponderosae) and dwarf mistletoe 20 (Arceuthobium spp.) have been observed in these areas. 21 3.2.1.3 Oak-Pine Woodlands 22 The oak-pine...plant dwarf mistletoe and, to a 6 lesser degree, mountain pine beetles. These pests can damage and kill coniferous trees and may occur in 7 widespread
Small Mammal Communities of Mature Pine Hardwood Stands in the Ouachita Mountains
Phillip A. Tappe; Ronald E. Thill; Joseph J. Krystofik; Gary A. Heidt
1994-01-01
A study was conducted on the Ouachita and Ozark National Forests in Arkansas to evaluate the effects of alternative pine-hardwood reproduction cutting methods on small mammal abundance and diversity. Pretreatment characteristics of small mammal communities on 20 late-rotation mixed pine-hardwood stands in four physiographic zones of the Ouachita Mountain region of...
Bigler, Christof
2016-01-01
A within-species trade-off between growth rates and lifespan has been observed across different taxa of trees, however, there is some uncertainty whether this trade-off also applies to shade-intolerant tree species. The main objective of this study was to investigate the relationships between radial growth, tree size and lifespan of shade-intolerant mountain pines. For 200 dead standing mountain pines (Pinus montana) located along gradients of aspect, slope steepness and elevation in the Swiss National Park, radial annual growth rates and lifespan were reconstructed. While early growth (i.e. mean tree-ring width over the first 50 years) correlated positively with diameter at the time of tree death, a negative correlation resulted with lifespan, i.e. rapidly growing mountain pines face a trade-off between reaching a large diameter at the cost of early tree death. Slowly growing mountain pines may reach a large diameter and a long lifespan, but risk to die young at a small size. Early growth was not correlated with temperature or precipitation over the growing period. Variability in lifespan was further contingent on aspect, slope steepness and elevation. The shade-intolerant mountain pines follow diverging growth trajectories that are imposed by extrinsic environmental influences. The resulting trade-offs between growth rate, tree size and lifespan advance our understanding of tree population dynamics, which may ultimately improve projections of forest dynamics under changing environmental conditions. PMID:26930294
Charles A. Wellner
1962-01-01
Western white pine grows along west coast mountain ranges from Vancouver Island and the Homathko River on the adjacent mainland in British Columbia southward to the San Bernardino Mountains of southern California (13, 65, 75, 83). In the interior its range is from Quesnel Lake through the Selkirk Mountains of British Columbia southward into northern Idaho, western...
Jr. Bohun B. Kinloch
1996-01-01
A virulent race of blister rust capable of neutralizing major gene resistance (MGR) in sugar pine made its first appearance nearly two decades ago at a test plantation of resistant sugar pines near Happy Camp, in northern California. Until this year (1996), it had not been found outside the very close neighborhood of this site. Its discovery last summer at Mountain...
NASA Astrophysics Data System (ADS)
Larson, E. R.; Grissino-Mayer, H. D.
2004-12-01
Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long-term spatiotemporal dynamics of fire activity over the northern Rocky Mountains in terms of climate change and atmospheric teleconnections.
Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.
2014-01-01
Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963
Maurer, Douglas K.
2002-01-01
Ground-water flow and recharge from infiltration near Pine Nut Creek, east of Gardnerville, Nevada, were simulated using a single-layer numerical finite-difference model as part of a study made by the U.S. Geological Survey in cooperation with the Carson Water Subconservancy District. The model was calibrated to 190 water-level measurements made in 27 wells in December 2000, and in 9 wells from August 1999 through April 2001. The purpose of this study was to estimate reasonable limits for the approximate volume of water that may be stored by recharge through infiltration basins, and the rate at which recharged water would dissipate or move towards the valley floor. Measured water levels in the study area show that infiltration from the Allerman Canal and reservoir has created a water-table mound beneath them that decreases the hydraulic gradient east of the canal and increases the gradient west of the canal. North of Pine Nut Creek, the mound causes ground water to flow toward the northern end of the reservoir. South of Pine Nut Creek, relatively high water levels probably are maintained by the mound beneath the Allerman Canal and possibly by greater rates of recharge from the southeast. Water-level declines near Pine Nut Creek from August 1999 through April 2001 probably are caused by dissipation of recharge from infiltration of Pine Nut Creek streamflow in the springs of 1998 and 1999. Using the calibrated model, a simulation of recharge through a hypothetical infiltration basin covering 12.4 acres near Pine Nut Creek applied 700 acre-feet per year of recharge over a six-month period, for a total of 3,500 acre-feet after 5 consecutive years. This recharge requires a diversion rate of about 2 cubic feet per second and an infiltration rate of 0.3 foot per day. The simulations showed that recharge of 3,500 acre-feet caused water levels near the basin to rise over 70 feet, approaching land surface, indicating 3,500 acre-feet is the maximum that may be stored in a 5-year period, given the basin location and surface area used in the simulations. Greater amounts probably could be stored if separate infiltration basins were installed at different locations along the Pine Nut Creek alluvial fan, applying the recharge over a larger area. The water-table mound resulting from recharge extended 7,000 feet north, west, and south of the infiltration basin. After recharge ceased, water levels near the center of the mound declined rapidly to within 20 feet of initial levels after 2 years, and within 10 feet of initial levels after 7 years. The recharge mound dissipates laterally across the modeled area at decreasing rates over time. A water-level rise of 1 foot moved westward towards the valley floor 660 feet from peak conditions after 1 year, and averaged 550 feet, 440 feet, and 330 feet per year for the periods 1-4, 4-7, and 7-10 years, respectively, after recharge ceased. Simulations of subsequent pumping from hypothetical wells near the infiltration basin were made by applying pumping near the basin beginning 1 year after recharge of 3,500 acre-feet ceased. Pumping was applied over a 6-month period for 4 years from one well at 400 acre-feet per year, withdrawing 1,600 acre-feet or 45 percent of that recharged, and from two wells totaling 800 acre-feet per year, withdrawing 3,200 acre-feet or 90 percent of that recharged. Pumping of 1,600 acre-feet caused water-levels near the infiltration basin to decline only slightly below initial levels. Pumping of 3,200 acre-feet caused water-levels near the infiltration basin to decline a maximum of 30 feet below initial levels, with smaller declines extending laterally in all directions for 4,000 feet from the pumping wells. Water-level declines are a result of pumping at a rate sufficient to withdraw the majority of the water recharged through the infiltration basin. Although the declines may affect water levels in nearby domestic wells, the simulations show that water levels recover quickly after
The magnificent high-elevation five-needle white pines: Ecological roles and future outlook
Diana F. Tomback; Peter Achuff; Anna W. Schoettle; John W. Schwandt; Ron J. Mastrogiuseppe
2011-01-01
The High Five symposium is devoted to exchanging information about a small group of pines with little commercial value but great importance to the ecology of high-mountain ecosystems of the West. These High Five pines include the subalpine and treeline species - whitebark (Pinus albicaulis), Rocky Mountain bristlecone (P. aristata), Great Basin bristlecone (P. longaeva...
Growth of ponderosa pine stands in relation to mountain pine beetle susceptibility
R. A. Obedzinski; J. M. Schmid; S. A. Mata; W. K. Olsen; R. R. Kessler
1999-01-01
Ten-year diameter and basal area growth were determined for partially cut stands at 4 locations. Average diameters in the partially cut plots generally increased by 1 inch or more, while average diameter in the uncut controls increased by 0.9 inches or less. Individual tree growth is discussed in relation to potential susceptibility to mountain pine beetle infestation...
Canopy accession patterns of table mountain and pitch pines during the 19th and 20th centuries
Patrick H. Brose; Thomas A. Waldrop
2012-01-01
A dendrochronology study was conducted in three upland yellow pine stands in Georgia to determine whether the individual Table Mountain (Pinus pungens) and pitch (P. rigida) pines originated in sunny gaps or shaded understories, whether they grew uninterrupted into the canopy or were assisted by one or more releases, and whether...
Lumber recovery from insect-killed lodgepole pine in the northern Rocky Mountains.
Marlin E. Plank
1984-01-01
A total of 496 logs from lodgepole pine (Pinus contorts Dougl. ex Loud.) trees killed by the mountain pine beetle (Dendroctonus ponderosae Hopk.) were compared with 189 logs from similar live trees. Logs were processed through a stud mill. In most cases lumber recovery from trees dead 1 to 3 years was the same as that from live...
Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard
2012-01-01
Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...
Kristen A. Pelz; Frederick W. Smith
2013-01-01
There has been speculation that quaking aspen (Populus tremuloides) dominance of forests will increase due to mortality caused by mountain pine beetle (Dendroctonus ponderosae) (MPB). High aspen sucker densities have been observed inthe years following MPB-caused pine mortality, but it remains unclear if this disturbance will result in a pulse of aspen...
Limber pine conservation in Rocky Mountain National Park
Jeff Connor; Anna Schoettle; Kelly Burns; Erin Borgman
2012-01-01
Limber pines are one of the most picturesque trees in Rocky Mountain National Park (RMNP). Growing in some of the park's most exposed rocky sites, the trees' gnarled trunks give testimony to fierce winds that buffet them in winter. Limber pines live to great ages, with some in the park exceeding 1,000 years. An especially photogenic stand of ancient trees...
James M. Guldin; Gerald Heath
2001-01-01
An unreplicated demonstration was established in the Ouachita Mountains in which shortleaf pine (Pinus echinata Mill.) trees were harvested and overstory hardwoods were retained. A new stand was established by underplanting shortleaf pine seedlings. After the third growing season, five 0.5-acre plots were established, and one of five overstory...
Derek W. Rosenberger; Robert C. Venette; Mitchell P. Maddox; Brian H. Aukema; Gadi V.P. Reddy
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine...
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully...
Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin
2016-01-01
Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriamâs wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...
Thomas A. Waldrop; Patrick H. Brose
1999-01-01
Stand-replacement prescribed fire has been recommended to regenerate stands of table mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains because the species has serotinous cones and is shade intolerant. A 350 ha prescribed fire in northeast Georgia provided an opportunity to observe overstory mortality and regeneration of table...
AmeriFlux US-Vcp Valles Caldera Ponderosa Pine
Litvak, Marcy [University of New Mexico
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.
Carbon and oxygen isotope signatures in conifers from the Swiss National Park
NASA Astrophysics Data System (ADS)
Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof
2015-04-01
Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507
Limber Pine Dwarf Mistletoe (FIDL)
Jane E. Taylor; Robert L. Mathiason
1999-01-01
Limber pine dwarf mistletoe (Arceuthobium cyanocarpum (A. Nelson ex Rydberg) Coulter & Nelson) is a damaging parasite of limber pine (Pinus flexilis James), whitebark pine (P. albicaulis Engelm.), Rocky Mountain bristlecone pine (P. aristata Engelm.) and Great Basin bristlecone pine (P. longaeva D.K. Bailey). Limber pine dwarf mistletoe occurs in the Rocky...
NASA Astrophysics Data System (ADS)
Lawrence, R.; Landenburger, L.; Jewett, J.
2007-12-01
Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.
Ridgetop fire history of an oak-pine forest in the Ozark Mountains of Arkansas
Bear L. Engbring; Eric Heitzman; Martin A. Spetich
2008-01-01
A total of 53 fire-scarred Pinus echinata (shortleaf pine) trees were examined to reconstruct a ridgetop fi re chronology of an oak-pine forest in the Ozark Mountains of north-central Arkansas. This process yielded 104 fire scars dating to 61 separate fire years. Fire frequency was greatest during the Euro-American Settlement Period (1820â1900), when...
Hal O. Liechty; Kenneth R. Luckow; Jessica Seifert Daniel; Daniel A. Marion; Martin Spetich; James M. Guldin
2004-01-01
A number of organizations and government agencies have been involved with restoration of overstocked shortleaf pine-hardwood stands to shortleaf pine-bluestem ecosystems in the Ouachita Mountains of the southern United States. These restoration efforts entail the reduction of stand density by harvesting and midstory competition control as well as the reintroduction of...
W. Matt Jolly; Russell Parsons; J. Morgan Varner; Bret W. Butler; Kevin C. Ryan; Corey L. Gucker
2012-01-01
An expansive mountain pine beetle (MPB) epidemic is currently impacting North American forests (Raffa et al. 2008). As beetle-attacked trees die, lose their needles, and eventually fall to the ground, there are substantial changes in stand structure. These fuel changes likely affect both surface and crown fire behavior, but there is not yet a consensus among experts...
Norman H. Miner; James M. Trappe
1957-01-01
Lodgepole pine (Pinus contorta) forests in the Blue Mountains of eastern Oregon occupy important water-producing lands. These forests generally occur at middle to high elevations on north slopes, where a substantial portion of the precipitation is snow. To learn more about the influence of lodgepole pine forests on accumulation of mow and rate of...
Ashley N. Schulz; Angela M. Mech; Christopher Asaro; David R. Coyle; Michelle M. Cram; Rima D. Lucardi; Kamal J.K. Gandhi
2018-01-01
A novel and emerging eastern white pine (Pinus strobus L.) dieback phenomenon is occurring in the Southern Appalachian Mountains in the eastern United States. Symptomatic eastern white pine trees exhibit canopy thinning, branch dieback, and cankers on the branches and bole. These symptoms are often associated with the presence of a scale insect, Matsucoccus...
Barbara J. Bentz; Sharon A. Hood; Matt Hansen; Jim Vandygriff; Karen E. Mock
2016-01-01
Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB)...
Low concentration of lindane plus induced attraction traps mountain pine beetle
Richard H. Smith
1976-01-01
Mountain pine beetles were induced to attack lodgepole pine sprayed with 0.2 percent or 0.3 percent lindane emulsion. Large numbers of beetles were killed and fell into traps at the base of the tree. The few successfully attacking beetles caused the sprayed trees to remain attractive to beetles for about two months. The incidence of attacked trees in the immediate area...
David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis
2011-01-01
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...
Derek W. Rosenberger; Brian H. Aukema; Robert C. Venette
2017-01-01
Novel hosts may have unforeseen impacts on herbivore life history traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a tree-killing bark beetle native to western North America but constrained by cold temperatures in the northern limits of its distribution. In recent years, this insect has spread north and east of its historical...
Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant
2017-01-01
The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...
Seok-Woo Lee; F. Thomas Ledig; David R. Johnson
2002-01-01
We compared genetic diversity estimated from allozymes and from random amplified polymorphic DNA (RAPDs) in a sample of 210 Great Basin bristlecone pines (Pinus longaeva Bailey) from three groves in the White Mountains, California, USA. The White Mountains are the most westerly extension of bristlecone pine and home to the oldest known living trees....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amman, G.D.; Ryan, K.C.
The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the basal circumference of lodgepole pines. When the peat moss was ignited, it simulated the smoldering of natural duff, generating temperatures that killed the cambium. The four treatments tested were uninjured tree, heat-injured tree, heat-injured tree treated with verbenone, and heat-injured tree treated with verbenone plus ipsdienol. Treatments were replicated 20 times. Mountain pine beetles weremore » attracted into treatment blocks by placing mountain pine beetle tree baits on metal posts 3 to 5 meters from treated trees. Fisher's Extract Test showed that treatment and beetle infestation were not independent (P < 0.015). Check treatments contained more unattacked and mass-attacked trees, whereas pheromone treatments contained more unsuccessfully attacked trees.« less
Jose F. Negron; Christopher J. Fettig
2014-01-01
In recent years, the mountain pine beetle, Dendroctonus ponderosae, has impacted 8.9 million hectares of forests in the western United States. Historically a common occurrence in western forests, particularly in lodgepole and ponderosa pine, the magnitude and extent of recent outbreaks have exceeded past events since written records are available and have occurred in...
Christopher J. Fettig; Beverly M. Bulaon; Christopher P. Dabney; Christopher J. Hayes; Stepehen R. McKelvey
2012-01-01
In western North America, recent outbreaks of the mountain pine beetle, Dendroctonus ponderosae Hopkins, have been severe, long-lasting and well-documented. We review previous research that led to the identification of Verbenone Plus, a novel four-component semiochemical blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (â)-verbenone]...
Mountain pine beetle emergence from lodgepole pine at different elevations near Fraser, CO
J Tishmack; S.A. Mata; J.M. Schmid
2005-01-01
Mountain pine beetle emergence was studied at 8760 ft, 9200 ft, and 9900 ft near Fraser, CO. Beetles began emerging at 8760 ft between July 9 and July 14 while no beetles emerged at 9200 ft and only one beetle emerged at 9900 ft during the same period. Beetle emergence continued at relatively low but fluctuating rates for the next two to three weeks. Peak emergence...
B. J. Collins; C. C. Rhoades; M. A. Battaglia; R. M. Hubbard
2012-01-01
Recent mountain pine beetle infestations have resulted in widespread tree mortality and the accumulation of dead woody fuels across the Rocky Mountain region, creating concerns over future forest stand conditions and fire behavior. We quantified how salvage logging influenced tree regeneration and fuel loads relative to nearby, uncut stands for 24 lodgepole pine...
Kristen A. Pelz; Frederick W. Smith
2012-01-01
Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...
Michael T. Thompson
2009-01-01
There are two events occurring in Colorado that are concerning forest managers in Colorado. There is severe and widespread mortality of lodgepole pine due to the mountain pine beetle and aspen forests in some areas of the state have experienced widespread, severe, and rapid crown deterioration leading to mortality. Implementation of the Forest Inventory and Analysis...
Karl Malcolm; Chuck Rhoades; Michael Battaglia; Paula Fornwalt; Rob Hubbard; Kelly Elder; Byron Collins
2012-01-01
Changing climatic conditions and an abundance of dense, mature pine forests have helped to spur an epidemic of mountain pine beetles larger than any in recorded history. Millions of forested acres have been heavily impacted and have experienced extreme rates of tree mortality. This has raised concerns among many people that the death, desiccation, and decomposition of...
A forest transect of pine mountain, Kentucky: changes since E. Lucy Braun and chestnut blight
Tracy S. Hawkins
2006-01-01
In 1997, forest composition and structure were determined for Hi Lewis Pine Barrens State Nature Preserve, a 68-ha tract on the south slope of Pine Mountain, Harlan County, Kentucky. Data collected from 28 0.04-ha plots were used to delineate forest types. Percent canopy compositions were compared with those reported by Dr. E. Lucy Braun prior to the peak of chestnut...
Evaluation of US 119 Pine Mountain safety improvements : interim report.
DOT National Transportation Integrated Search
2003-10-01
The safety improvement project for a section of US 119 across Pine Mountain in Letcher County was initiated as an interim effort to address safety issues related t o roadway geometrics and specific problems related to truck traffic. : Specific object...
Forested communities of the pine mountain region, Georgia, USA
Robert Floyd; Robert Carter
2013-01-01
Seven landscape scale communities were identified in the Pine Mountain region having a mixture of Appalachian, Piedmont, and Coastal Plain species. The diagnostic environmental variables included elevation, B-horizon depth, A-horizon silt, topographic relative moisture index, and A-horizon potassium (K).
Amy L. Morgan; Wayne K. Clatterbuck
2013-01-01
Table Mountain pine (Pinus pungens Lamb.) (TMP) is a threatened species, endemic to the Southern Appalachian Mountains. This study focuses on the release of TMP stems in an overstocked and pure TMP stand on the Cherokee National Forest in eastern Tennessee. The objective of the case study was to produce a cost analysis/comparison of releasing young...
Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...
Bonnett, Tiffany R; Robert, Jeanne A; Pitt, Caitlin; Fraser, Jordie D; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2012-12-01
Mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives. We have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples. These first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166
Keville, Megan P; Reed, Sasha C; Cleveland, Cory C
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Erbilgin, Nadir; Cale, Jonathan A; Lusebrink, Inka; Najar, Ahmed; Klutsch, Jennifer G; Sherwood, Patrick; Enrico Bonello, Pierluigi; Evenden, Maya L
2017-03-01
Bark beetles are important agents of tree mortality in conifer forests and their interaction with trees is influenced by host defense chemicals, such as monoterpenes and phenolics. Since mountain pine beetle (Dendroctonus ponderosae Hopkins) has expanded its host range from lodgepole pine (Pinus contorta Doug. ex Loud. (var. latifolia Engelm.))-dominated forests to the novel jack pine (Pinus banksiana Lamb.) forests in western Canada, studies investigating the jack pine suitability as a host for this beetle have exclusively focused on monoterpenes, and whether phenolics affect jack pine suitability to mountain pine beetle and its symbiotic fungus Grosmannia clavigera is unknown. We investigated the phenolic and monoterpene composition in phloem and foliage of jack and lodgepole pines, and their subsequent change in response to water deficit and G. clavigera inoculation treatments. In lodgepole pine phloem, water deficit treatment inhibited the accumulation of both the total and richness of phenolics, but had no effect on total monoterpene production or richness. Fungal infection also inhibited the total phenolic production and had no effect on phenolic or monoterpene richness, but increased total monoterpene synthesis by 71%. In jack pine phloem, water deficit treatment reduced phenolic production, but had no effect on phenolic or monoterpene richness or total monoterpenes. Fungal infection did not affect phenolic or monoterpene production. Lesions of both species contained lower phenolics but higher monoterpenes than non-infected phloem in the same tree. In both species, richness of monoterpenes and phenolics was greater in non-infected phloem than in lesions. We conclude that monoterpenes seem to be a critical component of induced defenses against G. clavigera in both jack and lodgepole pines; however, a lack of increased monoterpene response to fungal infection is an important evolutionary factor defining jack pine suitability to the mountain pine beetle invasion in western Canada. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ken Gibson; Sandy Kegley; Barbara Bentz
2009-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.
Russell T. Graham; Theresa B. Jain
2007-01-01
The moist forests of the Rocky Mountains typically support late seral western hemlock, moist grand fir, or western redcedar forests. In addition to these species, Douglas-fir, western white pine, western larch, ponderosa pine, and lodgepole pine can occur creating a multitude of species compositions, structures, and successional stages that can be arrayed in a variety...
Michael T. Thompson
2017-01-01
The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...
Whitebark and limber pine restoration and monitoring in Glacier National Park
Jennifer M. Asebrook; Joyce Lapp; Tara. Carolin
2011-01-01
Whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) are keystone species important to watersheds, grizzly and black bears, squirrels, birds, and other wildlife. Both high elevation five-needled pines have dramatically declined in Glacier National Park primarily due to white pine blister rust (Cronartium ribicola) and fire exclusion, with mountain pine...
West, Daniel R.; Briggs, Jenny S.; Jacobi, William R.; Negron, Jose F.
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle ( Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.
Evaluation of US 119 Pine Mountain safety improvements : final report.
DOT National Transportation Integrated Search
2007-09-01
The Transportation Center at the University of Kentucky was requested to perform an evaluation of the safety improvement project over a 7.1-mile section of US 119 on t he Whitesburg side of Pine Mountain in Letcher County to determine whether the typ...
Goodsman, Devin W; Grosklos, Guenchik; Aukema, Brian H; Whitehouse, Caroline; Bleiker, Katherine P; McDowell, Nate G; Middleton, Richard S; Xu, Chonggang
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Growth-Form Characteristics of Ancient Rocky Mountain Bristlecone Pines (Pinus aristata), Colorado
Brunstein, F. Craig
2006-01-01
This report describes and illustrates growth-form characteristics of Rocky Mountain bristlecone pines (Pinus aristata) at several sites in the Rocky Mountains in Colorado. Most of this study concentrates on 1,000- to 2,500-year-old bristlecone pines; however, the report also describes some of the growth-form characteristics of younger trees (about 20 to less than 1,000 years old) in order to show the continuous changes in tree form from youth to old age. To better describe the trees in this study, some tree-structure nomenclature is introduced and a growth-form classification system is provided. Other topics include the relationship of the trees to their substrate and the potential changes in the growth forms of some bristlecone pines due to damage caused by fire, porcupines, impacts from tumbling boulders, and lightning strikes.
Ecological roles of five-needle pine in Colorado: Potential consequences of their loss
Anna Schoettle
2004-01-01
Limber pine (Pinus flexilis James) and Rocky Mountain bristlecone pine (Pinus aristata Engelm.) are two white pines that grow in Colorado. Limber pine has a broad distribution throughout western North America while bristlecone pineâs distribution is almost entirely within the state of Colorado. White pine blister rust (Cronartium ribicola J. C. Fisch.) was...
James A. Powell; Barbara J. Bentz
2014-01-01
For species with irruptive population behavior, dispersal is an important component of outbreak dynamics. We developed and parameterized a mechanistic model describing mountain pine beetle (Dendroctonus ponderosae Hopkins) population demographics and dispersal across a landscape. Model components include temperature-dependent phenology, host tree colonization...
75 FR 28765 - Amendment of Class E Airspace; Pine Mountain, GA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
... triplicate to the Docket Management System (see ADDRESSES section for address and phone number). You may also... proposes to amend Class E Airspace at Pine Mountain, GA, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Harris County Airport. This action...
Seedbed Requirements For Regenerating Table Mountain Pine With Prescribed Fire
Thomas A. Waldrop; Helen H. Mohr; Patrick H. Brose; Richard B. Baker
1999-01-01
High-intensity, stand-replacement fires have been recommnded to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) because its seeds require mineral soil to germinate and seedlings are intolerant of shade. Early prescribed fire efforts resulted in poor regeneration success where crown fires created seedbeds with abundant insolation....
Optimal Seedbed Requirements For Regenerating Table Mountain Pine
Helen H. Mohr; Thomas A. Waldrop; Victor B. Shelburne
2002-01-01
High-intensity, stand replacement fires have been recommended to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) because its seeds require mineral soil to germinate and seedlings are intolerant of shade. Recent prescribed fires have resulted in poor regeneration, even though crown fires created seedbeds with abundant insolation and...
Verbenone flakes may help slow mountain pine beetle's spread
Nancy (featured scientist) Gillette
2009-01-01
According to "Aerially Applied Verbenone-Releasing Laminated Flakes Protect Pinus contorta Stands from Attack by Dendroctonus ponderosae (mountain pine beetle) in California and Idaho," a US Forest Serviceâfunded study appearing in the February issue of Forest Ecology and Management, not only has the "current...
Lauren S. Pile; Tom Waldrop
2016-01-01
There has been considerable interest in developing management techniques for creating mixed shortleaf pine (Pinus echinata)âhardwood forests in the Southern Appalachian Mountains. This interest has increased in recent years due to the need to manage for more diverse and resilient forests, and to reestablish shortleaf pine as a dominant species throughout its native...
USDA-ARS?s Scientific Manuscript database
The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich...
36 CFR 223.216 - Special Forest Products definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Christmas trees, cones, ferns, firewood, forbs, fungi (including mushrooms), grasses, mosses, nuts, pine straw, roots, sedges, seeds, transplants, tree sap, wildflowers, fence material, mine props, posts and...
40 CFR 180.364 - Glyphosate; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., globe 0.2 Asparagus 0.5 Atemoya 0.2 Avocado 0.2 Bamboo, shoots 0.2 Banana 0.2 Barley, bran 30 Beet... 0.2 Ginger, white, flower 0.2 Gourd, buffalo, seed 0.1 Governor's plum 0.2 Gow kee, leaves 0.2 Grain... Mamey apple 0.2 Mango 0.2 Mangosteen 0.2 Marmaladebox 0.2 Mioga, flower 0.2 Noni 0.20 Nut, pine 1.0 Nut...
Richard A. Sniezko; Angelia Kegley; Robert Danchok; Anna W. Schoettle; Kelly S. Burns; Dave Conklin
2008-01-01
All nine species of white pines (five-needle pines) native to the United States are highly susceptible to Cronartium ribicola, the fungus causing white pine blister rust. The presence of genetic resistance will be the key to maintaining or restoring white pines in many ecosystems and planning gene conservation activities. Operational genetic...
Re-measurement of whitebark pine infection and mortality in the Canadian Rockies
Cyndi M. Smith; Brenda Shepherd; Cameron Gillies; Jon Stuart-Smith
2011-01-01
Whitebark pine (Pinus albicaulis) populations are under threat across the species' range from white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), fire exclusion and climate change (Tomback and Achuff 2010). Loss of whitebark pine is predicted to have cascading effects on the following ecological services: provision of...
West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F
2016-02-01
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Interior ponderosa pine in the Black Hills
Charles E. Boldt; Robert R. Alexander; Milo J. Larson
1983-01-01
The gross area of the Black Hills of South Dakota and associated Bear Lodge Mountains of eastern Wyoming is about 3.5 million acres (1.4 million ha). Roughly half the area supports forest or woodland cover. Essentially pure stands of climax Rocky Mountain ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) predominate on about...
Living artifacts: The ancient ponderosa pines of the West
Stephen F. Arno; Lars Östlund; Robert E. Keane
2008-01-01
Until late in the nineteenth century, magnificent ponderosa pine forests blanketed much of the inland West. They covered perhaps 30 million acres, an area the size of New York state, spreading across the mountains of New Mexico, Arizona, and California and flourishing throughout the eastern Cascades, the intermountain Pacific Northwest, and the Rocky Mountains...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
...In response to a request from a viticulture industry group, we are extending the comment period for Notice No. 105, Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area, a notice of proposed rulemaking published in the Federal Register on May 27, 2010, for an additional 45 days.
Deception Creek Experimental Forest
Theresa B. Jain; Russell T. Graham
1996-01-01
Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...
Eddy J. Dowle; Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz; Gregory J. Ragland
2017-01-01
Chromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North...
Landscape dynamics of mountain pine beetles
John E. Lundquist; Robin M. Reich
2014-01-01
The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...
Cultural practices for prevention and control of mountain pine beetle infestations
Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón
2014-01-01
In recent years, the mountain pine beetle, Dendroctonus ponderosae Hopkins, has impacted >8.9 million hectares of forests in the western United States. During endemic populations, trees weakened by other agents are often colonized by D. ponderosae but may be difficult to detect due to their scarcity. Once populations reach...
Litter decomposition across an air-pollution gradient in the San Bernardino Mountains
Mark E. Fenn; Paul H. Dunn
1989-01-01
Air pollution may affect forest ecosystems by altering nutrient cycling rates. The objective of this study was to compare decomposition rates of L-layer litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf,) collected from across an air-pollution gradient in the San Bernardino Mountains...
Mark E. Fenn
1991-01-01
Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...
Applied chemical ecology of the mountain pine beetle
Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich
2014-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...
Interactions among the mountain pine beetle, fires, and fuels
Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz
2014-01-01
Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...
The once and future forest: Consequences of mountain pine beetle treatment decisions
Nancy E. Gillette; David L. Wood; Sarah J. Hines; Justin B. Runyon; Jose F. Negron
2014-01-01
Entomologists and silviculturists have long recommended management of stand basal area and/or mean tree diameter to mitigate the risk of mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) outbreaks while simultaneously reducing wildfire risk. In recent decades, however, wildfire suppression and reduced harvests in western North America have created a forest...
Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado
Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle
2011-01-01
The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...
Climate Change Effects on Treeline Communty Dynamics in Basin and Range Mountains
NASA Astrophysics Data System (ADS)
Smithers, B.; Millar, C.; North, M.
2014-12-01
Treeline advance is an expected sensitive indicator of climate change effects on species distributions. However, little evidence of treeline advance has been shown due to past disturbance or geomorphological limitations. The Basin and Range Mountains of Nevada and eastern California have seen minimal human impact and have been free of major glaciation, making these mountains an ideal location to test for climate change impacts on treeline. Great Basin treelines are dominated by bristlecone pine but recent observations show that usually downslope-growing limber pine appears to be pushing treeline upslope. In this study, we used modified belt transects at above and below adult treeline and at stand mid-elevation to compare species regeneration with adult, cone-bearing tree basal area. Our results show that limber pine regeneration surpasses bristlecone pine regeneration at treeline in terms of raw numbers of individuals. When adult basal area is taken into consideration, it appears that the very few adult limber pines have far more regeneration success at treeline than the bristlecone pine adults. This may have long-term ramifications on community composition of bristlecone pine forests, as these long-lived individuals largely exclude one another once established. Limber pine appears to be far better adapted to take advantage of rapid climate change. Even if bristlecone pine is ultimately better adapted to treeline in the long-term and this "changing of the guard" at treeline is temporary, due to their long lifespan, this effect could last thousands of years.
Liu, Liu; Hao, Zhen-Zhen; Liu, Yan-Yan; Wei, Xiao-Xin; Cun, Yu-Zhi; Wang, Xiao-Quan
2014-01-01
Geographic barriers and Quaternary climate changes are two major forces driving the evolution, speciation, and genetic structuring of extant organisms. In this study, we used Pinus armandii and eleven other Asian white pines (subsection Strobus, subgenus Pinus) to explore the influences of geographic factors and Pleistocene climatic oscillations on species in South China, a region known to be centers of plant endemism and biodiversity hotspots. Range-wide patterns of genetic variation were investigated using chloroplast and mitochondrial DNA markers, with extensive sampling throughout the entire range of P. armandii. Both cpDNA and mtDNA revealed that P. armandii exhibits high levels of genetic diversity and significant population differentiation. Three geographically distinct subdivisions corresponding to the Qinling-Daba Mountains (QDM), Himalaya-Hengduan Mountains (HHM) and Yungui Plateau (YGP) were revealed in mainland China by cpDNA. Their break zone was located in the southeastern margin of the Qinghai-Tibetan Plateau (QTP). A series of massive mountains, induced by the QTP uplift, imposed significant geographic barriers to genetic exchange. The disjunct distribution patterns of ancestral haplotypes suggest that a large continuous population of the white pines may have existed from southwest to subtropical China. Repeated range shifts in response to the Pleistocene glaciations led to the isolation and diversification of the subtropical species. The two Taiwanese white pines share a common ancestor with the species in mainland China and obtain their chloroplasts via long-distance pollen dispersal from North Asian pines. Distinct genetic patterns were detected in populations from the Qinling-Daba Mountains, Yungui Plateau, Himalaya-Hengduan Mountains, and subtropical China, indicating significant contributions of geographic factors to the genetic differentiation in white pines. Our study depicts a clear picture of the evolutionary history of Chinese white pines and highlights the heterogeneous contributions of geography and Pleistocene climatic fluctuations to the extremely high plant species diversity and endemism in South China. PMID:24465789
NASA Astrophysics Data System (ADS)
Millar, C.; Westfall, R. D.; Delany, D.
2016-12-01
In the Great Basin of southwestern USA, limber pine (Pinus flexilis) is a common subalpine species, often forming the upper treeline of the central to northern mountain ranges in this region. Multiple rainshadows, created by successive mountain ranges inland from Pacific-dominated storm tracks, leave interior ranges arid. Combined with cool climate, minimal alpine and subalpine herbaceous vegetation, and lack of landscape-scale fires or biotic disturbance, dead wood of limber pine persists for millennia across the mountain slopes. Using dendroecological methods, we studied distribution and ages of live and relict wood in the Wassuk Range (summit elevation, 3440m), west-central Great Basin. Currently live limber pines grow sparsely on north slopes, whereas relict wood, with stem diameters to 1 m and lengths to 10 m, is widely distributed. We cross-dated 440 limber pine stems and relict wood from 9 sites; taken altogether, limber pines have grown without gap across the last 3597 years in this mountain range. The mean elevation range of live trees is 3078m to 2821m, which is not significantly different from the mean elevation range of relict wood, which is 3096m to 2816m. Relict wood occurred on all main aspects, with age pulses of colonization and extirpation over time. Colonization periods related to the ends of centennial-scale dry periods, known from other proxies in the region. Extirpations, by corollary, roughly coincided with these long droughts, demonstrating successive diminishment of limber pine from all but north slopes over four millennia. The last gasp of pines on non-north aspects was during the warm, dry Medieval Climate Anomaly, ca 1000 yrs ago. That pines did not shift upward during warm or dry historic periods, given 340m available above uppermost tree distribution, suggests that significant climate variability was met by shifting aspect rather than elevation in this range.
Flight Period of Mountain Pine Beetle (Coleoptera: Curculionidae) in its Recently Expanded Range.
Bleiker, K P; Van Hezewijk, B H
2016-12-01
The ability to predict key phenological events, such as the timing of flight periods, is useful for the monitoring and management of insect pests. We used empirical data to describe the flight period of mountain pine beetle, Dendroctonus ponderosae Hopkins, in its recently expanded range east of the Rocky Mountains in Canada and developed a degree-day model based on the number of trapped beetles. Data were collected over four degrees of latitude and six years. The main flight period, when the middle 70% of the total number of beetles were caught, started during the second or third week of July, lasted 26 d, and peaked within 2 wk of starting. The best model accounted for 89% of the variation in the data. Mountain pine beetle's flight tended to start later and be more contracted at higher latitudes. The synchrony of mountain pine beetle's flight period in the expanded range appears to be comparable to the limited reports from the historic range, although it may start earlier. This suggests that conditions in the new range are suitable for a coordinated dispersal flight, which is critical for the beetle's strategy of overwhelming tree defenses by attacking en masse. Forest managers can use the model to support operational decisions, e.g., when to impose hauling restrictions to reduce the risk of spread through the transport of infested material, or the time frame for control programs. Understanding the flight period may also improve our ability to assess the response of mountain pine beetle to novel and changing climates in the future. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?
Cathy L. Cripps; Robert K. Antibus
2011-01-01
Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....
White pine blister rust in the interior Mountain West
Kelly Burns; Jim Blodgett; Dave Conklin; Brian Geils; Jim Hoffman; Marcus Jackson; William Jacobi; Holly Kearns; Anna Schoettle
2010-01-01
White pine blister rust is an exotic, invasive disease of white, stone, and foxtail pines (also referred to as white pines or five-needle pines) in the genus Pinus and subgenus Strobus (Price and others 1998). Cronartium ribicola, the fungus that causes WPBR, requires an alternate host - currants and gooseberries in the genus Ribes and species of Pedicularis...
Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine
Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim
2006-01-01
From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...
Michael I. Haverty; Patrick J. Shea; James T. Hoffman; John M. Wenz; Kenneth E. Gibson
1998-01-01
The effectiveness of registered and experimental application rates of insecticides esfenvalerate (Asana XL), cyfluthrin (Tempo WP and Tempo 2), and carbaryl (Sevimol and Sevin SL) was assessed for protection of individual high-value lodgepole pines from mountain pine beetles in Montana and ponderosa pines from western pine beetles in Idaho and California. This field...
Lodgepole pine in the Blue Mountains of northeastern Oregon.
James M. Trappe; Robert W. Harris
1958-01-01
Lodgepole pine (Pinus contorta) is a major species in northeastern Oregon. The lodgepole type covers nearly 400,000 acres in the Blue and Wallowa Mountains, and individual trees are scattered over many of the remaining six million forested acres in this area (2). The type blankets large areas in watersheds in a region where spring floods and summer...
The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism
A. L. Addison; J. A. Powell; D. L. Six; M. Moore; B. J. Bentz
2013-01-01
As global climate patterns continue to change and extreme weather events become increasingly common, it is likely that many ecological interactions will be affected. One such interaction is the multipartite symbiosis that exists between the mountain pine beetle and two species of fungi, Grosmannia clavigera and Ophiostoma montium. In this mutualism, the fungi provide...
Robert E. Means
2011-01-01
Lower treeline limber pine woodlands have received little attention in peer-reviewed literature and in management strategies. These ecologically distinct systems are thought to be seed repositories between discontinuous populations in the northern and central Rocky Mountains, serving as seed sources for bird dispersal between distinct mountain ranges. Their position on...
Andrea Brunelle; Gerald E. Rehfeldt; Barbara Bentz; A. Steven Munson
2008-01-01
Paleoecological reconstructions from two lakes in the U.S. northern Rocky Mountain region of Idaho and Montana revealed the presence of bark beetle elytra and head capsules (cf. Dendroctonus spp., most likely D. ponderosae, mountain pine beetle). Occurrence of these macrofossils during the period of time associated with the 1920/...
Barbara J. Bentz; Jacob P. Duncan; James A. Powell
2016-01-01
Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...
Ronald E. Thill; D. Craig Rudolph; Nancy E. Koerth
2004-01-01
The more xeric south- and west-facing slopes of the Ouachita Mountains of west-central Arkansas once supported fire-maintained shortleaf pine (Pinus echinata) forests with a well-developed herbaceous understory. Fire suppression following the original harvest of these forests resulted in forests with increasingly abundant woody vegetation in the...
Ectomycorrihizae of Table Mountain Pine and the Influence of Prescribed Burning on their Survival
Lisa E. Ellis; Thomas A. Waldrop; Frank H. Tainter
2002-01-01
High-intensity prescribed fires have been recommended to regenerate Table Mountain pine (Pinus pungens). However, tests of these burns produced few seedlings, possibly due to soil sterilization. This study examined abundance of mycorrhizal root tips in the field after a high-intensity fire and in the laboratory after exposing rooting media to...
Thomas W. Bonnot; Mark A. Rumble; Joshua J. Millspaugh
2008-01-01
Black-backed Woodpeckers (Picoides arcticus) are burned-forest specialists that rely on beetles (Coleoptera) for food. In the Black Hills, South Dakota, standing dead forests resulting from mountain pine beetle (Dendroctonus ponderosae) outbreaks offer food resources for Black-backed Woodpeckers, in addition to providing habitat...
Distribution of bark beetle attacks after whitebark pine restoration treatments: A case study
Kristen M. Waring; Diana L. Six
2005-01-01
Whitebark pine (Pinus albicaulis Engelm.), an important component of high elevation ecosystems in the western United States and Canada, is declining due to fire exclusion, white pine blister rust (Cronartium ribicola J.C. Fisch.), and mountain pine beetle (Dendroctonus ponderosae Hopkins). This study was...
J.D. Waldron; C.W. Lafon; R.N. Coulson; D.M. Cairns; M.D. Tchakerian; A. Birt; K.D. Klepzig
2007-01-01
Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle?Location: Southern Appalachian Mountains, USA.Methods: We used LANDIS to model vegetation disturbance and succession...
American College of Allergy, Asthma & Immunology
... Why Anaphylaxis Types of Allergies: Ragweed Allergy Pine Tree Allergy Hives (Urticaria) Food Allergy Types of Food ... Fish Allergy Eosinophilic Esophagitis Egg Allergy Corn Allergy Tree Nut Allergy Food Allergy Diagnosis Food Allergy Avoidance ...
76 FR 79146 - Propylene Oxide; Proposed Tolerance Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... and pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene..., prune, dried 2.0 (2) Tolerances are established for residues of the reaction product, propylene...
The Effects of Degradational Factors on the Ecosystem of Mount Madra
NASA Astrophysics Data System (ADS)
Efe, R.; Soykan, A.; Sönmez, S.; Cürebal, I.
2009-04-01
Significant degradation has been observed in Turkey's Mediterranean woodlands and mountainous areas. Mediterranean climate prevails in the southern and western part of Turkey. Mount Madra, which is located on Turkey's western Aegean coast, is part of a rangeland which is particularly exposed to the effects of degradation resulting from human activities. The principal factors in the degradation are inappropriate land use, destruction of forests, mining, construction, overgrazing and transhumance. Mount Madra and its environs benefit from a Mediterranean climate, experiencing dry, hot summers and cool, wet winters. The average yearly rainfall is 700-1000 mm, of which most occurs in the winter months. The mountain extends from east to west, and between the South and North slopes there is great variety in terms of plant species and biodiversity. The regeneration of the lost plant cover has been hindered by the mountain's geomorphologic characteristics. The slopes have suffered destruction of vegetation and, as a result of severe erosion, the soil has been swept away and in many places the bedrock has become exposed. The Kozak plateau on mount Madra is notable for the richness of its natural vegetation. This plateau, covered in pine forest (Pinus pinea), is the site for the traditional transhumance of over 500 families. Pine nuts and livestock breeding are livelihood of these families. Mount Madra and its surrounding area is one of the most important locations with gold mining potential in Turkey and it is estimated that it has 16.7 tons of gold reserve. The gold mining which took place on the west of the Madra Mountain around Ovacik village in 1994 led to serious land degradation in the surrounding area. The new mining on the study area and the proposed feldspar mining on the Madra riverbed poses a serious threat to the region's ecosystem and biodiversity. The removal of increasing amounts of granite and other quarrying has had a negative impact on the natural environment of Kozak Plataeu, and in addition to this, quarrying activity has recently begun in the area around Burhaniye. All these activities have led to problems such as erosion, decreased biodiversity, and pollution of water sources on Mount Madra. The forest clearances which have been made, for various reasons, on the northern and southern slopes of Mount Madra, have caused the topsoil to be worn away by surface water. The most striking examples of this can be seen on Mount Şabla (1111m) and on the southern slopes of Maya peak (1344m). The trimming recently carried out by the Forestry Commission on sections of Mount Madra has badly damaged the forest's vegetation and in a short space of time caused irreversible harm to the ecosystem of the mountain. For thousands of years, parts of the top of Mount Madra and the Kozak plateau have been used as summer grounds and, as a result, the forest has been cleared from a wide section. On the north-facing slopes of Mount Madra, the number of chestnut trees (Castanea sativa) found within pine woods is increasing daily. The pine trees around the chestnuts are being chopped down in order to increase the number of chestnut trees, whose fruit are harvested for the economic benefit they bring. The pine forests are, for this reason, in constant decline. Forest roads, both planned and unplanned, have led to further destruction of forest vegetation. Apart from the forest vegetation of the Mountain, other natural resources are under threat; particularly water sources. Facilities for fish farming have been built with no pre-planning or research, leading to the clearance of forest and pollution of the environment. Mount Madra is an important water source for the rivers in the surrounding areas. It is the source of the Madra and Karınca Rivers which flow into the Aegean Sea, the Kocaçay River which feeds Manyas Lake and several tributaries of the Bakırçay River. The protection of Mount Madra and its freshwater sources and biodiversity is therefore of great importance. Around 90 plant species, including 19 endemic species are found on the study area and it is vital that its ecosystem is protected, the threats are eliminated, and the sustainable use of its resources is secured. Key words: Madra Mountains, Degradation, Human Activities, Mediterranean Ecosystem, Biodiversity, Turkey.
Son, E; Kim, J-J; Lim, Y W; Au-Yeung, T T; Yang, C Y H; Breuil, C
2011-01-01
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.
Patrick J. Vogan; Anna W. Schoettle
2015-01-01
Limber pine (Pinus flexilis) mortality is increasing across the West as a result of the combined stresses of white pine blister rust (Cronartium ribicola; WPBR), mountain pine beetle (Dendroctonus ponderosae), and dwarf mistletoe (Arceuthobium cyanocarpum) in a changing climate. With the continued spread of WPBR, extensive mortality will continue with strong selection...
Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz
2011-01-01
There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...
Paul E. Trusty; Cathy L. Cripps
2011-01-01
Whitebark pine (Pinus albicaulis) is a threatened keystone species in subalpine zones of Western North America that plays a role in watershed dynamics and maintenance of high elevation biodiversity (Schwandt, 2006). Whitebark pine has experienced significant mortality due to white pine blister rust, mountain pine beetle outbreaks and successional replacement possibly...
Limber pine seed and seedling planting experiment in Waterton Lakes National Park, Canada
Cyndi M. Smith; Graeme Poll; Cameron Gillies; Celina Praymak; Eileen Miranda; Justin Hill
2011-01-01
Limber pine plays an important role in the harsh environments in which it lives, providing numerous ecological services, especially because its large, wingless seeds serve as a high energy food source for many animals. Limber pine populations are declining due to a combination of white pine blister rust, mountain pine beetle, drought, and fire suppression. Outplanting...
Teresa J. Lorenz; Carol Aubry; Robin. Shoal
2008-01-01
Whitebark pine is a critical component of subalpine ecosystems in western North America, where it contributes to biodiversity and ecosystem function and in some communities is considered a keystone species. Whitebark pine is undergoing rangewide population declines attributed to the combined effects of mountain pine beetle, white pine blister rust, and fire suppression...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsman, Devin W.; Grosklos, Guenchik; Aukema, Brian H.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountainmore » pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.« less
Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir
2016-09-01
Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.
Goodsman, Devin W.; Grosklos, Guenchik; Aukema, Brian H.; ...
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountainmore » pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.« less
Courtney Flint; Hua Qin; Michael Daab
2008-01-01
The US Forest Service, Pacific Northwest Research Station funded research to assess community responses to forest disturbance by mountain pine beetles (Dendroctonus ponderosae) and public reaction to invasive plants in north central Colorado. In the Spring of2007, 4,027 16-page questionnaires were mailed to randomly selected households with addresses in Breckenridge,...
Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker
2017-01-01
Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...
Garrett W. Meigs; Robert E. Kennedy; Andrew N. Gray; Matthew J. Gregory
2015-01-01
Across the western US, the two most prevalent native forest insect pests are mountain pine beetle (MPB; Dendroctonus ponderosae; a bark beetle) and western spruce budworm (WSB; Choristoneura freemani; a defoliator). MPB outbreaks have received more forest management attention than WSB outbreaks, but studies to date have not compared their cumulative mortality impacts...
Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes
2012-01-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...
M. A. Wulder; J. C. White; B. J. Bentz
2005-01-01
Estimates of the location and extent of the red attack stage of mountain pine beetle (Dentroctonus ponderosae Hopkins) infestations are critical for forest management. The degree of spatial and temporal precision required for these estimates varies according to the management objectives and the nature of the infestation. This paper outlines a hierarchy of information...
Barbara Bentz; James Vandygriff; Camille Jensen; Tom Coleman; Patricia Maloney; Sheri Smith; Amanda Grady; Greta Schen-Langenheim
2014-01-01
Substantial genetic variation in development time is known to exist among mountain pine beetle (Dendroctonus ponderosae Hopkins) populations across the western United States. The effect of this variation on geographic patterns in voltinism (generation time) and thermal requirements to produce specific voltinism pathways have not been investigated. The influence of...
M. A. Wulder; J. C. White; B. J. Bentz; T. Ebata
2006-01-01
Estimates of the location and extent of the red-attack stage of mountain pine beetle (Dendroctonus ponderosae Hopkins) infestations are critical for forest management. The degree of spatial and temporal precision required for these estimates varies according to the management objectives and the nature of the infestation. This paper outlines the range...
Accuracy of eastern white pine site index models developed in the Southern Appalachian Mountains
W. Henry McNab
2002-01-01
Three older, anamorphic eastern white pine (Pinus sfrobus L.) site index models developed in the southern Appalachian Mountains between 1932 and 1962 were evaluated for accuracy and compared with a newer, polymorphic model developed in 1971. Accuracies of the older models were tested with data used in development of the 1971 model, in which actual...
Stock Type Affects Performance of Shortleaf Pine Planted in the Ouachita Mountains Through 10 Years
James P. Barnett; John C. Brissette
2004-01-01
Shortleaf pine (Pinus echinata Mill.) seeds collected from several half-sib families were grown as both bare-root and container stock and outplanted on two sites in the Ouachita Mountains of Arkansas. When outplanted, the bare-root seedlings had greater mean height and root-collar diameter than the container seedlings. However, the container...
Patterns of resistance to Cronartium ribicola in Pinus aristata, Rocky Mountain bristlecone pine
A. W. Schoettle; R. A. Sniezko; A. Kegley; R. Danchok; K. S. Burns
2012-01-01
The core distribution of Rocky Mountain bristlecone pine, Pinus aristata Engelm., extends from central Colorado into northern New Mexico, with a disjunct population on the San Francisco Peaks in northern Arizona. Populations are primarily at high elevations and often define the alpine treeline; however, the species can also be found in open mixed conifer stands with...
James A. Powell; Barbara J. Bentz
2009-01-01
It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a...
Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions
Michele Eatough Jones; Timothy D. Paine; Mark E. Fenn; Mark A. Poth
2004-01-01
Four years of severe drought from 1999 through 2003 led to unprecedented bark beetle activity in ponderosa and Jeffrey pine in the San Bernardino and San Jacinto Mountains of southern California. Pines in the San Bernardino Mountains also were heavily impacted by ozone and nitrogenous pollutants originating from urban and agricultural areas in the Los Angeles basin. We...
Audrey Addison; James A. Powell; Barbara J. Bentz; Diana L. Six
2015-01-01
The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of...
Jianwei Zhang; Martin W. Ritchie
2008-01-01
The ecological research project of interior ponderosa pine forests at the Blacks Mountain Experimental Forest in northeastern California was initiated by an interdisciplinary team of scientists in the early 1990s. The objectives of this study were to determine the effect of stand structure, and prescribed fire on vegetation growth, resilience, and sustainability of...
Determination of Trace Elements in Edible Nuts in the Beijing Market by ICP-M.
Yin, Liang Liang; Tian, Qing; Shao, Xian Zhang; Kong, Xiang Yin; Ji, Yan Qin
2015-06-01
Nuts have received increased attention from the public in recent years as important sources of some essential elements, and information on the levels of elements in edible nuts is useful to consumers. Determination of the elemental distributions in nuts is not only necessary in evaluating the total dietary intake of the essential elements, but also useful in detecting heavy metal contamination in food. The aim of this study was to determine the mineral contents in edible nuts, and to assess the food safety of nuts in the Beijing market. Levels of Li, Cr, Mn, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Th, and U in 11 types of edible nuts and seeds (macadamia nuts, lotus nuts, pistachios, sunflower seeds, pine nuts, almonds, walnuts, chestnuts, hazelnuts, cashews, and ginkgo nuts) as well as raisins were determined by inductively coupled plasma mass spectrometry (ICP-MS). The accuracy of the method was validated using standard reference materials GBW10014 (cabbage) and GBW10016 (tea). Our results provide useful information for evaluating the levels of trace elements in edible nuts in the Beijing market, will be helpful for improving food safety, and will aid in better protecting consumer interests. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Whitebark pine direct seeding trials in the Pacific Northwest
John Schwandt; Kristen Chadwick; Holly Kearns; Chris Jensen
2011-01-01
Whitebark pine (Pinus albicaulis) is a critical species in many high elevation ecosystems and is currently in serious decline due to white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), and competition from other species (Schwandt 2006; Tomback and Achuff 2010; Tomback and others 2001). Many areas needing restoration are very...
Restoring fire in lodgepole pine forests of the Intermountain west
Colin C. Hardy; Ward W. McCaughey
1997-01-01
We are developing new management treatments for regenerating and sustaining lodgepole pine (Pinus contorta) forests through emulation of natural disturbance processes. Lodgepole pine is the principal forest cover on over 26 million hectares in western North America. While infrequent, stand replacing fires following mountain pine beetle outbreaks are common to the...
Restoring whitebark pine ecosystems in the face of climate change
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...
Altered species interactions and implications for natural regeneration in whitebark pine communities
Shawn T. McKinney; Diana F. Tomback; Carl E. Fiedler
2011-01-01
Whitebark pine (Pinus albicaulis) decline has altered trophic interactions and led to changes in community dynamics in many Rocky Mountain subalpine forests (McKinney and Tomback 2007). Here we discuss how altered species interactions, driven by disproportionate whitebark pine mortality, constrain the capability of whitebark pine forests to contribute genetic material...
Lodgepole Pine Dwarf Mistletoe
Frank G. Hawksworth; Oscar J. Dooling
1984-01-01
Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...
Signe B. Leirfallom; Robert E. Keane; Diana F. Tomback; Solomon Z. Dobrowski
2015-01-01
Whitebark pine (Pinus albicaulis Engelm.) populations are declining nearly rangewide from a combination of factors, including mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) outbreaks, the exotic pathogen Cronartium ribicola J.C. Fisch. 1872, which causes the disease white pine blister rust, and successional replacement due to historical fire...
Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest
2013-01-01
Background The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. Results We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Conclusions Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects. PMID:23537049
Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J.; Fraser, Jordie; Yuen, Macaire M.S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P.W.
2016-01-01
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome. PMID:27441109
Robert, Jeanne A; Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J; Fraser, Jordie; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2016-01-01
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period-early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.
Michael G. Shelton
1995-01-01
Some of the factors affecting the establishment of shortleaf pine regeneration after the initial treatments implementing uneven-aged silviculture in shortleaf pine-hardwood stands are quantitatively described in this publication.
Sparkle L. Malone; Anna W. Schoettle; Jonathan D. Coop
2018-01-01
Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to...
Theresa B. Jain; Russell T. Graham; Jonathan Sandquist; Matthew Butler; Karen Brockus; Daniel Frigard; David Cobb; Han Sup-Han; Jeff Halbrook; Robert Denner; Jeffrey S. Evans
2008-01-01
Restoration and fuel treatments in the moist forests of the northern Rocky Mountains are complex and far different from those applicable to the dry ponderosa pine forests. In the moist forests, clearcuts are the favored method to use for growing early-seral western white pine and western larch. Nevertheless, clearcuts and their associated roads often affect wildlife...
Hal O. Liechty; Kenneth R. Luckow; James M. Guldin
2005-01-01
Harvesting and repeated burning are frequently used to restore shortleaf pine-bluestem ecosystems within the Ouachita Mountains of Oklahoma and Arkansas, USA. These practices have been shown to adequately restore much of the habitat for bird and mammal species that utilize this ecosystem. However, there have been only limited studies to quantify the impact of...
Paul Miller; Raleigh Guthrey; Susan Schilling; John Carroll
1998-01-01
Ozone injury was monitored on foliage of ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey (Pinus jeffreyi Grev. & Balf.) pines at 11 locations in the Sierra Nevada and 1 site in the San Bernardino Mountains of southern California. Ozone injury on all age cohorts of needles on about 1,600 trees was surveyed annually from...
Jose F. Negron; Christopher J. Fettig
2014-01-01
It is well documented in the scientific and popular literature that large-scale bark beetle outbreaks are occurring across many coniferous forests in the western United States. One of the major species exhibiting extensive eruptive populations resulting in high levels of tree mortality is the mountain pine beetle, Dendroctonus ponderosae (Hopkins) (Negron et al. 2008...
James M. Guldin; James P. Barnett
2004-01-01
Automated weather stations collected microclimatic data over a 4.75-year period in six reproduction cutting treatmentsâa clearcut, two shelterwoods, a group selection, a single-tree selection, and an unmanaged controlâin shortleaf pine stands in the Ouachita Mountains of west-central Arkansas. Treatment means for air temperature at 15 cm, soil temperature, solar...
Benjamin C. Bright; Jeffrey A. Hicke; Andrew T. Hudak
2012-01-01
Mountain pine beetle outbreaks have caused widespread tree mortality in North American forests in recent decades, yet few studies have documented impacts on carbon cycling. In particular, landscape scales intermediate between stands and regions have not been well studied. Remote sensing is an effective tool for quantifying impacts of insect outbreaks on forest...
Chuck Rhoades; Carl Chambers; Kelly Elder; Derek Pierson; Banning Starr
2012-01-01
Mountain pine beetle outbreaks have caused an unprecedented amount of tree mortality in northern Colorado and southern Wyoming forests over the past decade. The extensive overstory mortality and associated salvage logging activities may threaten the sustained delivery of clean water from beetle-affected forests. In this study, we evaluate nutrient retention by riparian...
Christopher T. Rota; Joshua J. Millspaugh; Mark A. Rumble; Chad P. Lehman; Dylan C. Kesler
2014-01-01
Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic...
C. S. Davis; K. E. Mock; B. J. Bentz; S. M. Bromilow; N. V. Bartell; B. W. Murray; A. D. Roe; J. E. K. Cooke
2009-01-01
We isolated 16 polymorphic microsatellite loci in the mountain pine beetle (Dendroctonus ponderosae Hopkins) and developed conditions for amplifying these markers in four multiplex reactions. Three to 14 alleles were detected per locus across two sampled populations. Observed and expected heterozygosities ranged from 0.000 to 0.902 and from 0.100 to 0.830, respectively...
Kate A. Clyatt; Christopher R. Keyes; Sharon M. Hood
2017-01-01
Fuel treatments in ponderosa pine forests of the northern Rocky Mountains are commonly used to modify fire behavior, but it is unclear how different fuel treatments impact the subsequent production and distribution of aboveground biomass, especially in the long term. This research evaluated aboveground biomass responses 23 years after treatment in two silvicultural...
Soil moisture depletion in three lodgepole pine stands in northeastern Oregon.
Daniel M. Bishop
1961-01-01
A 1-year study in the Blue Mountains of northeastern Oregon indicates that substantial amounts of soil moisture are consumed during the growing season in lodgepole pine stands. Dual purposes of the study were to estimate the quantities of water that can be stored in basalt-pumice soils typical of the Blue Mountains, and to determine the rate and amount of moisture...
James I. Price; Daniel W. McCollum; Robert P. Berrens
2010-01-01
In recent years mountain pine beetles (MPB), Dendroctonus ponderosae, along with several other bark beetle species, have severely damaged coniferous forests in the western United States (U.S.) and Canada (Morris and Walls, 2009). Colorado provides one example of a region that has been heavily affected. The Colorado State Forest Service estimates that 769,000ha of...
Thomas A. Waldrop; Helen H. Mohr; Patrick H. Brose
2006-01-01
Interest in using stand-replacement prescribed fires to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) has increased in the past decade, but the type and intensity of fire needed to achieve success have been undefined. In an earlier paper, we concluded from first-year results that flames must reach into the crowns to kill most...
Charles C. Rhoades; Robert M. Hubbard; Kelly Elder
2017-01-01
Forests of western North America are currently experiencing extensive tree mortality from a variety of bark beetle species, and insect outbreaks are projected to increase under warmer, drier climates. Unlike the abrupt biogeochemical changes typical after wildfire and timber harvesting, the outcomes of insect outbreaks are poorly understood. The mountain pine bark...
Madrean pine-oak forest in Arizona: altered fire regimes, altered communities
Andrew M. Barton
2005-01-01
In Madrean pine-oak forests in the Chiricahua Mountains, surface fire favors pines, which exhibit high top-survival, but resprouting allows oaks to rebound during inter-fire periods. These patterns plus age structure and radial growth data suggest that frequent presettlement surface fire maintained open stands, promoted a high pine:oak ratio, and excluded less fire...
The Mexican pine beetle (Dendroctonus mexicanus), our "newest" invasive species
Kier D. Klepzig; John C. Moser; B. A. Fitzgibbon
2003-01-01
The Mexican pine beetle, Dendroctonus mexicanus Hopkins (XPB), is recorded here for the first time as a new introduction for the U.S. Individuals of this species are occupying the same logs of Pinus leiophilla and several other pines in the Chiricahua mountains, AZ with the sibling species of XPB, the southern pine beetle,
Pre-dispersal seed predator dynamics at the northern limits of limber pine distribution
Vernon S. Peters
2011-01-01
Limber pine (Pinus flexilis) is listed provincially as endangered in the northern part of its geographic range (Alberta) due to the high mortality caused by white pine blister rust (WPBR) (Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae), and limited regeneration opportunities due to fire exclusion. In the case of an endangered species, seed...
A range-wide restoration strategy for whitebark pine (Pinus albicaulis)
Robert E. Keane; D. F. Tomback; C. A. Aubry; A. D. Bower; E. M. Campbell; C. L. Cripps; M. B. Jenkins; M. F. Mahalovich; M. Manning; S. T. McKinney; M. P. Murray; D. L. Perkins; D. P. Reinhart; C. Ryan; A. W. Schoettle; C. M. Smith
2012-01-01
Whitebark pine (Pinus albicaulis), an important component of western high-elevation forests, has been declining in both the United States and Canada since the early Twentieth Century from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the spread of the exotic disease white pine blister rust (caused by the...
Pinus contorta X banksiana hybrids tested in northern Rocky Mountains
G. E. Rehfeldt; J. E. Lotan
1970-01-01
Between 1950 and 1955 hybrid progenies of lodgepole pine (Pinus contorta Dougl.) X jack pine (Pinus banksiana Lamb.) were tested to determine whether adaptation and performance in Montana and Idaho justified improvement of lodgepole pine by hybridization. Average heights, diameters, and survival rates of hybrids, of jack pines native to the Lake States, and of...
Crossability and relationships of Washoe pine
William B. Critchfield
1984-01-01
Washoe pine, related to ponderosa pine but occurring at higher elevations along the western edge of the Great Basin, crosses freely with the Rocky Mountain race of ponderosa despite evidence of long-term separation. Washoe is morphologically distinct from the parapatric Pacific race of ponderosa pine, and the two taxa are kept separate partly by genetic barriers that...
Regeneration History of Three Table Mountain Pine/Pitch Pine Stands in Northern Georgia
Patrick H. Brose; Frank Tainter; Thomas A. Waldrop
2002-01-01
A dendrochronology study was conducted on three ridgetop pine communities in northern Georgia to document the current composition and structure, ascertain when the different species became established, and compare their establishment dates with the occurrence of disturbance or drought. Most oaks and pines in these stands date to the early 1900's and became...
White pines, blister rust, and management in the Southwest
D. A. Conklin; M Fairweather; D Ryerson; B Geils; D Vogler
2009-01-01
White pines in New Mexico and Arizona are threatened by the invasive disease white pine blister rust, Cronartium ribicola. Blister rust is already causing severe damage to a large population of southwestern white pine in the Sacramento Mountains of southern New Mexico. Recent detection in northern and western New Mexico suggests that a major expansion of the...
Resistance to white pine blister rust in Pinus flexilis and P
Anna W. Schoettle; Richard A. Sniezko; Angelia Kegley; Jerry Hill; Kelly S. Burns
2010-01-01
The non-native fungus Cronartium ribicola, that causes white pine blister rust (WPBR), is impacting or threatening limber pine, Pinus flexilis, and Rocky Mountain bristlecone pine, Pinus aristata. In the Southern Rockies, where the rust invasion is still expanding, we have the opportunity to be proactive and prepare the landscape for invasion. Genetic...
Late Quaternary alluviation and offset along the eastern Big Pine fault, southern California
DeLong, S.B.; Minor, S.A.; Arnold, L.J.
2007-01-01
Determining late Quaternary offset rates on specific faults within active mountain belts is not only a key component of seismic hazard analysis, but sheds light on regional tectonic development over geologic timescales. Here we report an estimate of dip-slip rate on the eastern Big Pine oblique-reverse fault in the upper Cuyama Valley within the western Transverse Ranges of southern California, and its relation to local landscape development. Optically stimulated luminescence (OSL) dating of sandy beds within coarse-grained alluvial deposits indicates that deposition of alluvium shed from the Pine Mountain massif occurred near the southern margin of the Cuyama structural basin at the elevation of the Cuyama River between 25 and 14??ka. This alluvial deposit has been offset ??? 10??m vertically by the eastern Big Pine fault, providing a latest Quaternary dip-slip rate estimate of ??? 0.9??m/ky based on a 50?? fault dip. Incision of the adjacent Cuyama River has exposed a section of older Cuyama River sediments beneath the Pine Mountain alluvium that accumulated between 45 and 30??ka on the down-thrown footwall block of the eastern Big Pine fault. Corroborative evidence for Holocene reverse-slip on the eastern Big Pine fault is ??? 1??m of incised bedrock that is characteristically exposed beneath 2-3.5??ka fill terraces in tributaries south of the fault. The eastern Big Pine fault in the Cuyama Valley area has no confirmed record of historic rupture; however, based on our results, we suggest the likelihood of multiple reverse-slip rupture events since 14??ka. ?? 2007 Elsevier B.V. All rights reserved.
Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.
Teste, François P; Lieffers, Victor J; Landhausser, Simon M
2011-01-01
There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone burial; cone opening; Dendroctonus ponderosae; ground-foraging vertebrates; mountain pine beetle; natural regeneration; Pinus contorta var. latifolia; Rocky Mountain lodgepole pine; seed banks; serotiny (canopy seed storage); Tamiasciurus hudsonicus.
Bentz, Barbara J; Hood, Sharon M; Hansen, E Matthew; Vandygriff, James C; Mock, Karen E
2017-01-01
Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB) region, North America. Defense and susceptibility in two long-lived species, GB bristlecone pine (Pinus longaeva) and foxtail pine (P. balfouriana), are unclear, although they are sympatric with a common MPB host, limber pine (P. flexilis). We surveyed stands with sympatric GB bristlecone-limber pine and foxtail-limber pine to determine relative MPB attack susceptibility and constitutive defenses. MPB-caused mortality was extensive in limber, low in foxtail and absent in GB bristlecone pine. Defense traits, including constitutive monoterpenes, resin ducts and wood density, were higher in GB bristlecone and foxtail than in limber pine. GB bristlecone and foxtail pines have relatively high levels of constitutive defenses which make them less vulnerable to climate-driven MPB range expansion relative to other high-elevation pines. Long-term selective herbivore pressure and exaptation of traits for tree longevity are potential explanations, highlighting the complexity of predicting plant-insect interactions under climate change. No claim to original US Government works. New Phytologist © 2016 New Phytologist Trust.
2013-01-01
Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205
Reciprocal selection causes a coevolutionary arms race between crossbills and lodgepole pine.
Benkman, Craig W; Parchman, Thomas L; Favis, Amanda; Siepielski, Adam M
2003-08-01
Few studies have shown both reciprocal selection and reciprocal adaptations for a coevolving system in the wild. The goal of our study was to determine whether the patterns of selection on Rocky Mountain lodgepole pine (Pinus contorta spp. latifolia) and red crossbills (Loxia curvirostra complex) were concordant with earlier published evidence of reciprocal adaptations in lodgepole pine and crossbills on isolated mountain ranges in the absence of red squirrels (Tamiasciurus hudsonicus). We found that selection (directional) by crossbills on lodgepole pine where Tamiasciurus are absent was divergent from the selection (directional) exerted by Tamiasciurus on lodgepole pine. This resulted in divergent selection between areas with and without Tamiasciurus that was congruent with the geographic patterns of cone variation. In the South Hills, Idaho, where Tamiasciurus are absent and red crossbills are thought to be coevolving with lodgepole pine, crossbills experienced stabilizing selection on bill size, with cone structure as the agent of selection. These results show that crossbills and lodgepole pine exhibit reciprocal adaptations in response to reciprocal selection, and they provide insight into the traits mediating and responding to selection in a coevolutionary arms race.
Robert F. Wittwer; Micahel G. Shelton; James M. Guldin
2003-01-01
Shortleaf pine (Pinus echinata Mill.) seed production was monitored for 4 yr in stands harvested by a range of even- and uneven-aged reproduction cutting methods. The fifty-two 35â40 ac stands were distributed throughout the Ouachita Mountains from central Arkansas to eastern Oklahoma. Seed crops were characterized as good, poor, poor, and bumper,...
John C. Brissette; James P. Barnett
2003-01-01
Shortleaf pine (Pinus echinata Mill.) seeds collected from six half-sib families were grown as both bareroot and container stock and outplanted on two sites in the Ouachita Mountains of Arkansas. Survival and growth were measured at years 1, 3, 5, and 10 afier planting. Stock-type and family interacted to affect height at year 1 on one site. There...
Russell T. Graham; Lance A. Asherin; Michael A. Battaglia; Terrie Jain; Stephen A. Mata
2016-01-01
This publication chronicles the understanding, controlling, and impacts of mountain pine beetles (MPB) central to the Black Hills of South Dakota and Wyoming from the time they were described by Hopkins in 1902, through the presentation of data from work started by Schmid and Mata in 1985. The plots established by these two men from 1985 through 1994 were subjected to...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... Service did not adequately consider the impacts of global warming and other factors on whitebark pine nuts... the point where making a change to its status was appropriate. Subsequently, three lawsuits...
Richard A. Sniezko; Michael P. Murray; Charlie V. Cartwright; Jenifer Beck; Dan Omdal; Amy Ramsey; Zolton Bair; George McFadden; Doug Manion; Katherine Fitch; Philip Wapato; Jennifer A. Gruhn; Michael Crawford; Regina M. Rochefort; John Syring; Jun-Jun Liu; Heather E. Lintz; Lorinda Bullington; Brianna A. McTeague; Angelia Kegley
2017-01-01
Whitebark pine (WBP, Pinus albicaulis) is a keystone species distributed widely at high elevations across western North America. It is in decline due to a combination of threats including infection from white pine blister rust (WPBR, caused by the non-native fungal pathogen Cronartium ribicola), mountain pine beetle (...
Ronald E. Thill; Roger W. Perry; Nancy E. Koerth; Philip A. Tappe; David G. Peitz
2004-01-01
In conjunction with phase II bird and small mammal studies, we measured an array of habitat features in 20 stands representing 4 replications of 4 pine regeneration treatments (clearcut/plant, pine-hardwood shelterwood, pine-hardwood single-tree selection, and pine-hardwood group selection) plus 4 untreated controls. At study initiation, all stands were > 60 years...
An old-growth definition for xeric pine and pine-oak woodlands
Paul A. Murphy; Gregory J. Nowacki
1997-01-01
The old-growth characteristics of xeric pine and pine-oak woodlands are summarized from a survey of the available scientific literature. This type occurs throughout the South and is usually found as small inclusions on ridgetops and south-facing slopes in the mountains or on excessively drained, sandy uplands in gentle terrain. Historically, this type has had frequent...
Lauren Fins; Ben Hoppus
2013-01-01
Whitebark pine (Pinus albicaulis Engelm.) is in serious decline across its range, largely due to the combined effects of Cronartium ribicola J. C. Fisch (an introduced fungal pathogen that causes white pine blister rust), replacement by late successional species, and widespread infestation of mountain pine beetle (...
Robert E. Keane; Anna W. Schoettle
2011-01-01
Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Major declines of whitebark pine forests throughout western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (WPBR) have spurred many restoration actions. However, projected future warming and drying may further exacerbate the speciesâ decline and...
Pellegrini, Nicoletta; Serafini, Mauro; Salvatore, Sara; Del Rio, Daniele; Bianchi, Marta; Brighenti, Furio
2006-11-01
With the aim to expand the Italian total antioxidant capacity (TAC) database, the TAC values of 11 spices, 5 dried fruits, 7 sweets, 18 cereal products, 5 pulses, and 6 nuts were determined using three different assays and considering the contribution of bound antioxidant compounds in fiber-rich foods (i. e. cereals, legumes, and nuts). Among spices, saffron displayed the highest antioxidant capacity, whereas among dried fruits, prune exhibited the highest value. The TAC values of all the chocolates analyzed were far higher than the other sweet extracts measured. Among cereal products, whole meal buckwheat and wheat bran had the greatest TAC. Among pulses and nuts, broad bean, lentil and walnuts had the highest antioxidant capacity, whereas chickpeas, pine nuts and peanuts were less effective. The contribution of bound phytochemicals to the overall TAC was relevant in cereals as well as in nuts and pulses. The complete TAC database could be utilized to properly investigate the role of dietary antioxidants in disease prevention.
A Dendroclimatic Analysis of Fluctuations in the Great Salt Lake.
1986-01-01
in the Great Salt Lake drainage basin , and are therefore only an estimate of the amount of precipitation falling there; Tree ring indices end, for the...Express Nevada PONY Pinyon Pine 30 39 49’N 114 37’W 1400 - 1982 Uinta Mountains, Site D Utah UINTAD Pinyon Pine 8 40 37’N 109 57’W 1430 - 1971 Conners Pass...Single Leaf Pinyon 14 39 16’N 114 07’W 1610 - 1978 Uinta Mountains, North Utah UINTAN Englemann Spruce 18 40 57’N 110 26’W 1610 - 1971 Uinta Mountains
West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year were similar, and were progressively smaller the last four years of the study period. Our results suggest that, in contrast to previous reports, ponderosa and lodgepole pine were equally susceptible to MPB infestation in the CO Front Range during our study period. This suggests that forest managers may anticipate similar impacts in both hosts during similar environmental conditions when epidemic-level MPB populations are active in mixed-pine stands.
Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.
2011-01-01
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.
Shoda-Kagaya, E
2007-04-01
To study the dispersal process of the pine sawyer Monochamus alternatus (Hope) in frontier populations, a microsatellite marker-based genetic analysis was performed on expanding populations at the northern limit of its range in Japan. In Asian countries, M. alternatus is the main vector of pine wilt disease, the most serious forest disease in Japan. Sawyers were collected from nine sites near the frontier of the pine wilt disease damage area. A mountain range divides the population into western and eastern sides. Five microsatellite loci were examined and a total of 188 individuals was genotyped from each locus with the number of alleles ranged from two to nine. The mean observed heterozygosity for all loci varied from 0.282 to 0.480 in the nine sites, with an overall mean of 0.364. None of the populations have experienced a significant bottleneck. Significant differentiation was found across the mountain range, but the genetic composition was similar amongst populations of each side. It is believed that the mountain range acts as a geographical barrier to dispersal and that gene flow without a geographical barrier is high. On the west side of the mountain range, a pattern of isolation by distance was detected. This was likely to be caused by secondary contact of different colonizing routes on a small spatial scale. Based on these data, a process linking genetic structure at local (kilometres) and regional spatial scales (hundreds of kilometres) was proposed.
Plant defenses and climate change: doom or destiny for the lodgepole pine?
USDA-ARS?s Scientific Manuscript database
Lodgepole pine is a species of great importance to the forestry industry of British Columbia. However, recent climate-change associated outbreaks of insect pests (i.e. the mountain pine beetle) and diseases (Dothistroma needle blight) have limited productivity of stands throughout its northern range...
Climate change and the outbreak ranges of two North American bark beetles
David W. Williams; Andrew M. Liebhold
2002-01-01
One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...
Restoration of Longleaf Pine Ecosystems
Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; Everett E. Johnson
2005-01-01
Longleaf pine (Pinus palustris) ecosystems once occupied 38 million ha in the Southeastern United States, occurring as forests, woodlands, and savannas on a variety of sites ranging from wet flatwoods to xeric sandhills and rocky mountainous ridges. Characterized by an open parklike structure, longleaf pine ecosystems are a product of frequent fires...
Frontalin interrupts attraction of Ips pini (Coleoptera; Scolytidae) to ipsdienol
Daniel R. Miller
2001-01-01
The pine engraver, Ips pini (Say), breeds in the phloem tissue of dead, dying, or downed pines, occasionally attacking standing live trees when populations build up to significant levels following logging activities or infestations by the mountain pine beetle, Dendroctonus ponderosae Hopkins, (Furniss and Carolin 1980). In British...
Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don
2015-01-01
After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.
Anna W. Schoettle; Richard A. Sniezko; Kelly S. Burns
2009-01-01
Limber pine, Pinus flexilis James, is characterized by a patchy distribution that displays metapopulation dynamics and spans a broad latitudinal and elevational range in North America (Webster and Johnson 2000). In the southern Rocky Mountains limber pine grows from below the forest-grassland ecotone up to the forest-alpine ecotone, from ~1600 m above sea level in the...
Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina
2017-07-01
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions. © 2016 John Wiley & Sons Ltd.
Jun-Jun Liu; Anna W. Schoettle; Richard A. Sniezko; Rona N. Sturrock; Arezoo Zamany; Holly Williams; Amanda Ha; Danelle Chan; Bob Danchok; Douglas P. Savin; Angelia Kegley
2016-01-01
Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal...
Diana F. Tomback; Lynn M. Resler; Robert E. Keane; Elizabeth R. Pansing; Andrew J. Andrade; Aaron C. Wagner
2016-01-01
Whitebark pine (Pinus albicaulis) has the largest and most northerly distribution of any white pine (Subgenus Strobus) in North America, encompassing 18° latitude and 21° longitude in western mountains. Within this broad range, however, whitebark pine occurs within a narrow elevational zone, including upper subalpine and treeline forests, and functions...
Adrian Leslie; Brendan Wilson
2011-01-01
Whitebark pine is a keystone species of high elevation forests in western North America that is experiencing rapid decline due to fire exclusion policies, mountain pine beetle, and the introduced pathogen, white pine blister rust. Restoration activities include collecting cones and growing seedlings from individuals that show mechanisms for resistance to blister rust...
Anna W. Schoettle; Richard A. Sniezko; Kelly S. Burns; Freeman Floyd
2007-01-01
White pine blister rust is now a permanent resident of North America. The disease continued to cause tree mortality and impact ecosystems in many areas. However, not all high elevation white pine ecosystems have been invaded; the pathogen is still spreading within the distributions of the whitebark, limber, foxtail, Rocky Mountain bristlecone pine and has yet to infect...
Michael G. Shelton
2004-01-01
Abstract - Treatments were two overstory compositions (a pine basal area of 30 square feet per acre with and without 15 square feet per acre of hardwoods) and two methods of submerchantable hardwood control (chainsaw felling with and without stump-applied herbicide). After the fifth growing season, pine regeneration averaged 1,870 seedlings per acre...
Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton
2012-01-01
In the Southern Appalachian Mountains of eastern USA, pine-hardwood ecosystems have been severely impacted by the interactions of past land use, fire exclusion, drought, and southern pine beetle (SPB, Dendroctonus frontalis). We examined the effects of restoration treatments: burn only (BURN); cut + burn on dry sites (DC + B); cut + burn on sub-mesic sites (MC + B);...
Little, C L; Jemmott, W; Surman-Lee, S; Hucklesby, L; de Pinnal, E
2009-04-01
There is little published information on the prevalence of Salmonella in edible nut kernels. A study in early 2008 of edible roasted nut kernels on retail sale in England was undertaken to assess the microbiological safety of this product. A total of 727 nut kernel samples of different varieties were examined. Overall, Salmonella and Escherichia coli were detected from 0.2 and 0.4% of edible roasted nut kernels. Of the nut varieties examined, Salmonella Havana was detected from 1 (4.0%) sample of pistachio nuts, indicating a risk to health. The United Kingdom Food Standards Agency was immediately informed, and full investigations were undertaken. Further examination established the contamination to be associated with the pistachio kernels and not the partly opened shells. Salmonella was not detected in other varieties tested (almonds, Brazils, cashews, hazelnuts, macadamia, peanuts, pecans, pine nuts, and walnuts). E. coli was found at low levels (range of 3.6 to 4/g) in walnuts (1.4%), almonds (1.2%), and Brazils (0.5%). The presence of Salmonella is unacceptable in edible nut kernels. Prevention of microbial contamination in these products lies in the application of good agricultural, manufacturing, and storage practices together with a hazard analysis and critical control points system that encompass all stages of production, processing, and distribution.
Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan
2013-01-01
Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.
78 FR 8175 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
..., Crested Butte, CO 81224. Town of Marble Blackstock Government Center, 221 North Wisconsin Street, Gunnison... Building, 462 Pine Drive, Pine Lake, GA 30072. City of Stone Mountain City Hall, 922 Main Street, Stone...
Shortleaf Pine Seed Production Following Partial Cutting In The Ouachita Mountains
Robert F. Wittwer; Michael G. Shelton
2004-01-01
Abstract - Seed production is one of the principal determinants of successful natural regeneration of shortleaf pine (Pinus echinata Mill.) in both uneven-aged and even-aged silvicultural systems. In this paper, we describe the amount and periodicity of shortleaf pine seed production observed in a number of stands with monitoring...
Daniel R. Miller; John H. Borden
2000-01-01
The effect of pheromones of Dendroctonus ponderosae Hopkins on the attraction of Ips pini (Say) to its pheromone, ipsdienol, was investigated in stands of lodgepole pine. The mixture of cis- and trans-verbenol significantly reduced catches of I. pini in traps baited with...
Many ways to manage lodgepole pine forests
Lucia Solorzano
1997-01-01
Research underway at the Tenderfoot Creek Experimental Forest near White Sulphur Springs will provide insights on how to sustain lodgepole pine forests and water flow patterns over large areas. Lodgepole pine dominates a high percentage of forests in the northern Rocky Mountains. including the Bitterroot National Forest. About half the stands at Tenderfoot are two-aged...
Jennifer G. Klutsch; Jose F. Negron; Sheryl L. Costello; Charles C. Rhoades; Daniel R. West; John Popp; Rick Caissie
2009-01-01
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a currentmountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during...
Matt R. Whiles; J. Bruce Wallace
1997-01-01
Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...
Robert F. Scharpf; Detlev Vogler
1986-01-01
Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...
Fire-injured ponderosa pine provide a pulsed resource for bark beetles
Ryan S. Davis; Sharon Hood; Barbara J. Bentz
2012-01-01
Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine...
Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron
2016-01-01
The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...
Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir
2018-02-01
Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.
Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir
2015-01-01
The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (-):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.
Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...
Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan
2017-01-01
Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.
NASA Astrophysics Data System (ADS)
Wehner, Christine E.; Stednick, John D.
2017-09-01
Natural or human-influenced disturbances are important to the health and diversity of forests, which in turn, are important to the water quantity and quality exported from a catchment. However, human-induced disturbances (prescribed fire and harvesting) have been decreasing, and natural disturbances (fires and insects) have been increasing in frequency and severity. One such natural disturbance is the mountain pine beetle (MPB), ( Dendroctonus ponderosae) an endemic species. A recent epidemic resulted in the mortality of millions of hectares of lodgepole pine ( Pinus contorta) forests in Colorado, USA. Beetle-induced tree mortality brings about changes to the hydrologic cycle, including decreased transpiration and interception with the loss of canopy cover. This study examined the effect of the mountain pine beetle kill on source water contributions to streamflow in snowmeltdominated headwater catchments using stable isotopes (2H and 18O) as tracers. Study catchments with varying level of beetle-killed forest area (6% to 97%) were sampled for groundwater, surface water, and precipitation. Streams were sampled to assess whether beetle-killed forests have altered source water contributions to streamflow. Groundwater contributions increased with increasing beetle-killed forest area ( p = 0.008). Both rain and snow contributions were negatively correlated with beetle-killed forest area ( p = 0.035 and p = 0.011, respectively). As the beetle-killed forest area increases, so does fractional groundwater contribution to streamflow.
First report of the white pine blister rust pathogen, Cronartium ribicola, in Arizona
M. L. Fairweather; Brian Geils
2011-01-01
White pine blister rust, caused by Cronartium ribicola J.C. Fisch., was found on southwestern white pine (Pinus flexilis James var. reflexa Engelm., synonym P. strobiformis Engelm.) near Hawley Lake, Arizona (Apache County, White Mountains, 34.024°N, 109.776°W, elevation 2,357 m) in April 2009. Although white pines in the Southwest (Arizona and New Mexico) have been...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewers, Brent; Pendall, Elise
This is the AmeriFlux version of the carbon flux data for the site US-CPk Chimney Park. Site Description - High elevation, primarily lodge-pole pine forest with high amounts of Mountain Pine Bark Beetle mortality
Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence
Assal, Timothy J.; Sibold, Jason; Reich, Robin M.
2014-01-01
Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the landscape.
An ecosystem services framework for multidisciplinary research in the Colorado River headwaters
Semmens, D.J.; Briggs, J.S.; Martin, D.A.
2009-01-01
A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can be updated and improved adaptively on an annual basis as tree mortality, climatic conditions, and management actions unfold.
Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee
2017-03-01
The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.
2018-01-01
Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to bristlecone pine forests. Measuring changes in the suitable climate space for lineage groups is an important step beyond models that assume species are genetically homogenous. The suitable climate space for bristlecone pine in the year 2090 is projected to decline by 74% and the proportional distribution of suitable climate space for genetic lineages shifts toward those associated with warmer and wetter conditions. The 2090 climate space for bristlecone pine exhibits a bimodal distribution along an elevation gradient, presumably due to the persistence of the climate space in the Southern Rocky Mountains and exclusion at mid-elevations by conditions that favor the climate space of other species. These shifts have implications for changes in fire regimes, vulnerability to pest and pathogens, and altered carbon dynamics across the southern Rockies, which may reduce the likelihood of bristlecone pine trees achieving exceptional longevity in the future. The persistence and expansion of climate space for southern bristlecone pine genetic lineage groups in 2090 suggests that these sources may be the least vulnerable in the future. While these lineages may be more likely to persist and therefore present opportunities for proactive management (e.g., assisted migration) to maintain subalpine forest ecosystem services in a warmer world, our findings also imply heighted conservation concern for vulnerable northern lineages facing range contractions. PMID:29554097
Peng, Jian-Feng; Li, Guo-Dong; Li, Ling-Ling
2014-07-01
By using the dendrochronology research methods, this paper developed the 1915-2011 tree ring-width standard chronology of the Huangshan pine (Pinus taiwanesis) at the north slope of western Dabie Mountains in the junction of Hubei, Henan and Anhui provinces. High mean sensitivity (MS) indicated that there was conspicuous high-frequency climate signals and high first-order autocorrelation (AC) showed there were significant lag-effects of tree previous growth. The higher signal-to-noise ratio (SNR) and expressed population signal (EPS) indicated that the trees had high levels of common climate signals. Correlations between the tree ring-width standard chronology and climatic factors (1959-2011) revealed the significant influences of temperature, precipitation and relative humidity on the tree width growth of Huangshan pine by the end of growing season (September and October). Significant positive correlations were found between the tree-ring indices and the Palmer drought severity index (PDSI) of current September and October. In conclusion, the combination of water and heat of September and October is the major effect factor for the growth of Huangshan pine in western Dabie Mountains.
Protecting and restoring longleaf pine forests on the Kisatchie National Forest in Louisiana
James D. Haywood; Michael Elliot-Smith; Finis Harris; Alton Martin
2000-01-01
Longleaf pine (Pinus palustris Mill.) forests once constituted a major ecosystem in the Southern United States stretching from southeastern Virginia south to central Florida and west into East Texas. These forests covered a wide range of site conditions, from wet pine flatwoods to dry mountain slopes. Intensive exploitation reduced the extent of old-...
Barton D. Clinton; Katherine J. Elliott; Wayne T. Swank
1997-01-01
Conversion of low-quality, natural mixed pine hardwood ecosystems, containing a mountain laurel (Kalmia latifolia L.) dominated understory, to more productive eastern white pine (Pinus strobus L.)/mixed-hardwood systems is a common prescription on relatively xeric southern Appalachian forest sites. We examined the effects of...
Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem
Jianwei Zhang; Martin W. Ritchie; William W. Oliver
2008-01-01
A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...
Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn
2011-01-01
This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...
John H. Borde; D.R. Delvin; Dan R. Miller
1991-01-01
The capture of pine engravers, Ips pini (Say), in ipdienol-baited, multiple-funnel traps in British Columbia was significantly reduced when devices releasing ipsenol or verbenone were placed in the traps. These results suggest that ipsenol and verbenone are synomones release by Ips latidens (LeC.) and the mountain pine beetle,
Pest Fact Sheet 2007: Southern Pine Beetle prevention initiative: Working for healthier forests
R-8 and Southern Research Station U.S. Department of Agriculture Forest Service Forest Health Protection
2007-01-01
From 1999 to 2003, southern pine beetle (SPB) caused unprecedented damage to pine forests in southern Appalachian mountains. These losses severely impacted the natural resource base that supports the South's tourism and wood-based manufacturing industries and also destroyed the habitat of threatened and endangered species, such as the red-cockaded woodpecker....
Managing western white pine plantations for multiple resource objectives
Russell T. Graham; Jonalea R. Tonn; Theresa B. Jain
1994-01-01
Western white pine (Pinus monticola Dougl. ex D. Don) continues to be one of the most important coniferous tree species growing in Northern Rocky Mountain forests. Because large wildfires occurred early in the 1900s, many plantations of western white pine with varying levels of resistance to blister rust (Cronartium ribicola Fisch.) were established. Thinning these...
Second-growth western white pine stands
Richard F. Watt
1960-01-01
The western white pine type is the most valuable timber cover type of the Inland Empire. The large volumes per acre, greater than those found in any associated type, and the high value of the type species, western white pine (Pinus monticola Dougl.), combine to give stumpage returns that greatly exceed those of other regional types, lagging in the mountainous country...
C.J. Fettig; S.R. McKelvey
2010-01-01
Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in substantial changes to the structure and composition of interior ponderosa pine forests. Mechanical thinning and the...
Food Reserves In Mountain Longleaf Pine Roots During Shoot Elongation
Charles H. Walkinshaw; William J. Otrosina
2002-01-01
Abstract - Survival and growth of longleaf pine seedlings depends upon a well-developed root system. Soil moisture is also critical for the seedling to emerge from the grass-stage. When longleaf pine seedlings emerge from the grass stage, they grow rapidly in height and diameter. Branches are often few in number and, if present, may have low...
Four Site-Preparation Techniques for Regenerating Pine-Hardwood Mixtures in the Piedmont
Thomas A. Waldrop
1997-01-01
Four variations of the fell-and-burn technique, a system developed to produce mixedpine- hardwood stands in the Southern Appalachian Mountains, were compared in the Piedmont region. All variations of this technique successfully improved the commercial value of low-quality hardwood stands by introducing a pine component. After six growing seasons, loblolly pine (Pinus...
Western white pine growth relative to forest openings
Theresa B. Jain; Russell T. Graham; Penelope Morgan
2004-01-01
In northern Rocky Mountains moist forests, timber harvesting, fire exclusion, and an introduced stem disease have contributed to the decline in western white pine (Pinus monticola Dougl. ex D. Don) abundance (from 90% to 10% of the area). Relations between canopy openings (0.1-15 ha) and western white pine growth within different physical settings are identified....
Mountain pine beetle-caused tree mortality in partially cut plots surrounded by unmanaged stands
J. M. Schmid; S. A. Mata
2005-01-01
Mountain pine beetle activity was monitored in one set of 2.5 acre plots in the southern portion of the Black Hills National Forest over a 17-year period. Beetles attacked 77 percent of the trees in the uncut control, 48 percent of the trees in the growing stock level (GSL) 100/110, 53 percent of the trees in the GSL 80/90, and 9 percent of the trees in the GSL 60/70....
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... normal business hours. SUPPLEMENTARY INFORMATION: Bald Mountain Mine (BMM), owned by Barrick Gold US Inc... Statement for the Proposed Bald Mountain Mine North and South Operations Area Projects, White Pine County.... ADDRESSES: You may submit comments related to the Bald Mountain Mine North and South Operations Area...
Hal Liechty
2007-01-01
Shortleaf pine (Pinus echinata Mill.) is a dominant tree species in pine and pine-hardwood forest communities located on ridges and upper- to mid-slope positions in the Ouachita Mountains. The stream reaches located in these stands flow infrequently and are classified as ephemeral or intermittent, have low stream orders, and have relatively narrow...
John V. Syring; Jacob A. Tennessen; Tara N. Jennings; Jill Wegrzyn; Camille Scelfo-Dalbey; Richard Cronn
2016-01-01
Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats â climate change, white pine blister rust, mountain pine beetle, and fire exclusion â and it is suffering significant mortality range-wide, prompting the tree to be listed as â...
Mountain pine beetle impacts on vegetation and carbon stocks
Hawbaker, Todd J.; Briggs, Jennifer S.; Caldwell, Megan K.; Stitt, Susan
2013-01-01
In the Southern Rocky Mountains, an epidemic outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality unprecedented in recorded history. The impacts of this mortality on vegetation composition, forest structure, and carbon stocks have only recently received attention, although the impacts of other disturbances such as fires and land-use/land-cover change are much better known. This study, initiated in 2010, aims to increase our understanding of MPB outbreaks and their impacts. We have integrated field-collected data with vegetation simulation models to assess and quantify how long-term patterns of vegetation and carbon stocks have and may change in response to MPB outbreaks and other disturbances.
The Relationship Between Basal Area and Hard Mast Production in the Ouachita Mountains
Roger W. Perry; Ronald E. Thill; Philip A. Tappe; David G. Peitz
2004-01-01
Abstract - Because the relationship between stand density and hard mast production is not clear, we investigated the effects of varying total overstory basal area (BA) on acorn and hickory nut production in the Ouachita Mountains. We used Whitehead visual surveys to estimate mast production in oaks (Quercus spp.) and hickories (...
Silvics of whitebark pine (Pinus albicaulis)
Stephen F. Arno; Raymond J. Hoff
1989-01-01
Whitebark pine (Pinus albicaulis) is a long-lived tree inhabiting the upper subalpine forest and timberline zone on high mountains of Western North America. The species' habitat, life history, growth and yield, mortality factors, special uses, and genetics are described.
20. GROVE OF TREES PINES, MULBERRY, JUNIPER, BLUE SPRUCE ...
20. GROVE OF TREES -- PINES, MULBERRY, JUNIPER, BLUE SPRUCE -- TRANSPLANTED FROM NEW MEXICO MANZANO MOUNTAINS, WEST OF BUILDINGS 4 AND T-59, LOOKING NORTHWEST - U. S. Veterans Administration Medical Center, 2100 Ridgecrest Southeast, Albuquerque, Bernalillo County, NM
Logan, Jesse A; MacFarlane, William W; Willcox, Louisa
2010-06-01
Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.
Inherent Variation Among Slash Pine Progenies at the Ida Cason Callaway Foundation
John C. Barber
1964-01-01
Reported here in detail is information obtained from two open-pollinated progeny tests of slash pine at the Ida Cason Callaway Foundation, Pine Mountain, Georgia. Because of the small amount of similar data available to tree improvement workers, it was decided to include as much information as possible, even though some of it is too limited for statistical analyses...
Low-cost regeneration techniques for mixed-species management – 20 years later
Thomas A. Waldrop; Helen H. Mohr
2012-01-01
Four variations of the fell-and-burn technique, a low-cost regeneration system developed for pine-hardwood mixtures in the Southern Appalachian Mountains, were tested in the Piedmont of South Carolina. All variations successfully improved the commercial value of low-quality hardwood stands by introducing a pine component. After 20 years, pines were almost as numerous...
Jennifer Gene Klutsch
2008-01-01
The effect of forest disturbances, such as bark beetles and dwarf mistletoes, on fuel dynamics is important for understanding forest dynamics and heterogeneity. Fuel loads and other fuel parameters were assessed in areas of ponderosa pine (Pinus ponderosa Laws.) infested with southwestern dwarf mistletoe (Arceuthobium vaginatum...
Modeling the potential distribution of white pine blister rust in the central Rocky Mountains.
Holly S. J. Kearns; William R. Jacobi
2006-01-01
Cronartium ribicola (J. C. Fischer ex Rabh.), the causal agent of white pine blister rust (WPBR), was introduced to western North America via infected nursery stock imported from France to Point Grey near Vancouver, British Columbia (Mielke 1943). Primary infection of white pines occurs on the needles where fungal spores land, enter through stomata,...
Fire history in interior ponderosa pine communities of the Black Hills, South Dakota, USA
Peter M. Brown; Carolyn Hull Sieg
1996-01-01
Chronologies of fire events were reconstructed from crossdated fire-scarred ponderosa pine trees for four sites in the south-central Black Hills. Compared to other ponderosa pine forests in the southwest US or southern Rocky Mountains, these communities burned less frequently. For all sites combined, and using all fires detected, the mean fire interval (MFI), or number...
Impact of fire in two old-growth montane longleaf pine stands
John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow
2013-01-01
The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleafâs range are considered...
Robert E. Keane; Diana F. Tomback; Michael P. Murray; Cyndi M. Smith
2011-01-01
High elevation five-needle pines are rapidly declining throughout North America. The six species, whitebark (Pinus albicaulis Engelm.), limber (P. flexilis James), southwestern white (P. strobiformis Engelm.), foxtail (P. balfouriana Grev. & Balf.), Great Basin bristlecone (P. longaeva D.K. Bailey), and Rocky Mountain bristlecone pine (P. aristata Engelm.), have...
Model-based time-series analysis of FIA panel data absent re-measurements
Raymond L. Czaplewski; Mike T. Thompson
2013-01-01
An epidemic of lodgepole pine (Pinus contorta) mortality from the mountain pine beetle (Dendroctonus ponderosae) has swept across the Interior West. Aerial surveys monitor the areal extent of the epidemic, but only Forest Inventory and Analysis (FIA) field data support a detailed assessment at the tree level. Dynamics of the lodgepole pine population occur at a more...
Paul E. Tilden
1985-01-01
Lindane is registered for remedial control of bark beetles; however, forestry uses are controversial and alternative chemicals are needed. Chlorpyrifos (Dursban 4E), carbaryl (Sevimol 4), and fenitrothion (Sumithion 8E) at 1, 2, and 4 pct active ingredient, and lindane at the registered dosage of 0.6 pct were sprayed on lodgepole pine (Pinus contorta...
Jennifer D. Scott; Diana F. Tomback; Michael B. Wunder
2011-01-01
Whitebark pine (Pinus albicaulis), one of five stone pines worldwide, is found at treeline and subalpine elevations in the mountains of western North America (McCaughey and Schmidt 2001). Considered a keystone species, it helps maintain subalpine biodiversity, protects watersheds and promotes post-fire regeneration (Tomback and others 2001). The Clark's nutcracker...
Wesley G. Page; Martin E. Alexander; Michael J. Jenkins
2015-01-01
Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...
Site Index Comparisons for Several Tree Species in the Virginia- Carolina Piedmont
David F. Olson; Lino Della-Bianca
1959-01-01
The Piedmont of southern Virginia and the Carolinas contains thousands of acres of pine-hardwood forests. The most widespread commercial timber type of the region is the shortleaf pine-hardwood type. The less extensive Virginia pine-hardwood type lies along the western edge of the Piedmont, but reaches its peak development in the adjacent Appalachian Mountain region (...
Uneven-aged management for longleaf pine: freedom to choose
David Dyson
2012-01-01
Longleaf pine once was present on 90 million acres of the southern landscape, ranging from coastal Virginia to east Texas and from central Florida to the mountains of Alabama. On nearly two-thirds of that area, longleaf pine grew in nearly pure (single-species) stands maintained by frequent, low-intensity surface fires of both natural and human origin. The remaining...
NASA Astrophysics Data System (ADS)
Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale
2017-09-01
Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.
Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.
2012-01-01
Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley margins. A groundwater-flow model of Quaternary and Tertiary sediments in Carson Valley was developed using MODFLOW and calibrated to simulate historical conditions from water years 1971 through 2005. The 35-year transient simulation represented quarterly changes in precipitation, streamflow, pumping and irrigation. Inflows to the groundwater system simulated in the model include mountain-front recharge from watersheds in the Carson Range and Pine Nut Mountains, valley recharge from precipitation and land application of wastewater, agricultural recharge from irrigation, and septic-tank discharge. Outflows from the groundwater system simulated in the model include evapotranspiration from the water table and groundwater withdrawals for municipal, domestic, irrigation and other water supplies. The exchange of water between groundwater, the Carson River, and the irrigation system was represented with a version of the Streamflow Routing (SFR) package that was modified to apply diversions from the irrigation network to irrigated areas as recharge. The groundwater-flow model was calibrated through nonlinear regression with UCODE to measured water levels and streamflow to estimate values of hydraulic conductivity, recharge and streambed hydraulic-conductivity that were represented by 18 optimized parameters. The aquifer system was simulated as confined to facilitate numerical convergence, and the hydraulic conductivity of the top active model layers that intersect the water table was multiplied by a factor to account for partial saturation. Storage values representative of specific yield were specified in parts of model layers where unconfined conditions are assumed to occur. The median transmissivity (T) values (11,000 and 800 ft2/d for the fluvial and alluvial-fan sediments, respectively) are both within the third quartile of T values estimated from specific-capacity data, but T values for Tertiary sediments are larger than the third quartile estimated from specific-capacity data. The estimated vertical anisotropy for the Quaternary fluvial sediments (9,000) is comparable to the value estimated for a previous model of Carson Valley. The estimated total volume of mountain-front recharge is equivalent to a previous estimate from the Precipitation-Runoff Modeling System (PRMS) watershed models, but less recharge is estimated for the Carson Range and more recharge is estimated for the Pine Nut Mountains than the previous estimate. Simulated flow paths indicate that groundwater flows faster through the center of Carson Valley and slower through the lower hydraulic-conductivity Tertiary sediments to the east. Shallow flow in the center of the valley is towards drainage channels, but deeper flow is generally directed toward the basin outlet to the north. The aquifer system is in a dynamic equilibrium with large inflows from storage in dry years and large outflows to storage in wet years. Pumping has historically been less than 10 percent of outflows from the groundwater system, and agricultural recharge has been less than 10 percent of inflows to the groundwater system. Three principal sources of uncertainty that affect model results are: (1) the hydraulic characteristics of the Tertiary sediments on the eastern side of the basin, (2) the composition of sediments beneath the alluvial fans and (3) the extent of the confining unit represented within fluvial sediments in the center of the basin. The groundwater-flow model was used in five 55-year predictive simulations to evaluate the long-term effects of different water-use scenarios on water-budget components, groundwater levels, and streamflow in the Carson River. The predictive simulations represented water years 2006 through 2060 using quarterly stress periods with boundary conditions that varied cyclically to represent the transition from wet to dry conditions observed from water years 1995 through 2004. The five scenarios included a base scenario with 2005 pumping rates held constant throughout the simulation period and four other scenarios using: (1) pumping rates increased by 70 percent, including an additional 1,340 domestic wells, (2A) pumping rates more than doubled with municipal pumping increased by a factor of four over the base scenario, (2B) pumping rates of 2A with 2,040 fewer domestic wells, and (3) pumping rates of 2A with 3,700 acres removed from irrigation. The 55-year predictive simulations indicate that increasing groundwater withdrawals under the scenarios considered would result in as much as 40 ft and 60 ft of water-table decline on the west and east sides of Carson Valley, respectively. The water table in the central part of the valley would remain essentially unchanged, but water-level declines of as much as 30 ft are predicted for the deeper, confined aquifer. The increased withdrawals would reduce the volume of groundwater storage and decrease the mean downstream flow in the Carson River by as much as 16,500 acre-ft/yr. If, in addition, 3,700 acres were removed from irrigation, the reduction in mean downstream flow in the Carson River would be only 6,500 acre-ft/yr. The actual amount of flow reduction is uncertain because of potential changes in irrigation practices that may not be accounted for in the model. The projections of the predictive simulations are sensitive to rates of mountain-front recharge specified for the Carson Range and the Pine Nut Mountains. The model provides a tool that can be used to aid water managers and planners in making informed decisions. A prudent management approach would include continued monitoring of water levels on both the east and west sides of Carson Valley to either verify the predictions of the groundwater-flow model or to provide additional data for recalibration of the model if the predictions prove inaccurate.
77 FR 28493 - Propylene Oxide; Tolerance Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene... oxide and the reaction product from the use of propylene oxide, known as propylene chlorohydrin. Also... Pistachio 300 Plum, prune, dried 2.0 (2) Tolerances are established for residues of the reaction product...
USDA-ARS?s Scientific Manuscript database
The 7S vicilin and 11S legumin seed storage globulins belong to the cupin protein superfamily and are major food allergens in many of the “big eight” food allergen groups. Korean pine vicilin and pecan vicilin are thus predicted to be food allergens. Recombinant vicilins were expressed in E. coli an...
Lusebrink, Inka; Evenden, Maya L; Blanchet, F Guillaume; Cooke, Janice E K; Erbilgin, Nadir
2011-09-01
The mountain pine beetle (Dendroctonus ponderosae, MPB) has killed millions of lodgepole pine (Pinus contorta) trees in Western Canada, and recent range expansion has resulted in attack of jack pine (Pinus banksiana) in Alberta. Establishment of MPB in the Boreal forest will require use of jack pine under a suite of environmental conditions different from those it typically encounters in its native range. Lodgepole and jack pine seedlings were grown under controlled environment conditions and subjected to either water deficit or well watered conditions and inoculated with Grosmannia clavigera, a MPB fungal associate. Soil water content, photosynthesis, stomatal conductance, and emission of volatile organic compounds (VOCs) were monitored over the duration of the six-week study. Monoterpene content of bark and needle tissue was measured at the end of the experiment. β-Phellandrene, the major monoterpene in lodgepole pine, was almost completely lacking in the volatile emission profile of jack pine. The major compound in jack pine was α-pinene. The emission of both compounds was positively correlated with stomatal conductance. 3-Carene was emitted at a high concentration from jack pine seedlings, which is in contrast to monoterpene profiles of jack pine from more southern and eastern parts of its range. Fungal inoculation caused a significant increase in total monoterpene emission in water deficit lodgepole pine seedlings right after its application. By 4 weeks into the experiment, water deficit seedlings of both species released significantly lower levels of total monoterpenes than well watered seedlings. Needle tissue contained lower total monoterpene content than bark. Generally, monoterpene tissue content increased over time independent from any treatment. The results suggest that monoterpenes that play a role in pine-MPB interactions differ between lodgepole and jack pine, and also that they are affected by water availability.
1981-08-01
valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part
J. M. Schmid; S. A. Mata; R. A. Schmidt
1991-01-01
Bark temperatures on the north and south sides of five ponderosa pines (Pinus ponderosa Laws.) in each of four growing stock levels in two areas in the Black Hills of South Dakota were monitored periodically from May through August 1989. Temperatures were significantly different among growing stock levels and between sides of the tree. The magnitude of differences...
James M. Guildin
2007-01-01
Shortleaf pine (Pinus echinata Mill.) is the only naturally-occurring pine ~Distributed throughout the Ozark-Ouachita Highlands. Once dominant on south-facing and ridgetop stands and important in mixed stands, it is now restricted to south- and southwestfacing ~slopes in the Ouachita and southern Ozark Mountains, and to isolated pure and mixed stands...
Growth of lodgepole pine stands and its relation to mountain pine beetle susceptibility
S.A. Mata; J.M. Schmid; W.K. Olsen
2003-01-01
Periodic diameter and basal area growth were determined for partially cut stands of lodgepole pine at five locations over approximately 10 year periods. After cutting, average diameters in the partially cut plots generally increased by 0.8 inches or more, while average diameter in the uncut controls increased by 0.6 inches or less. Diameter growth in the partially cut...
J.M. Schmid; S.A. Mata; R.R. Kessler; J.B. Popp
2007-01-01
Ponderosa pine stands were partially cut to various stocking levels at five locations, periodically surveyed, and remeasured during the 20 years after installation. Mean diameter generally increased 2 inches over the 20-year period on most partially cut plots and less than 2 inches on unmanaged controls. Average diameter growth for diameter classes in partially cut...
Jessica C. Seifert; Hal O. Liechty; Martin A. Spetich; Daniel A. Marion
2004-01-01
Abstract - The Ouachita National Forest is restoring pine-mixed hardwood forests to a shortleaf pine-bluestem grass ecosystem through harvesting, midstory control, and the application of prescribed fire. Mean mass and volume of downed woody debris (DWD) in plots following initial harvesting and midstory-control were respectively 335 percent and 253...
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from rea...
Thinning decreases mortality and increases growth of Ponderosa pine in northeastern California
Gary O. Fiddler; Troy A. Fiddler; Dennis R. Hart; Philip M. McDonald
1989-01-01
Overstocked 70- to 90-year-old stands of ponderosa pine on medium- to low-quality sites were thinned in 1980 to 40, 55, and 70 percent of normal basal area and compared to an unthinned control. Mortality, diameter, and height in these northern California stands were measured annually from 1980 to 1987. After 8 years, mortality, primarily from mountain pine beetle (
James M. Guldin
2007-01-01
Shortleaf pine (Pinus echinata Mill.) is the only naturally-occurring pine distributed throughout the Ozark-Ouachita Highlands. Once dominant on south-facing and ridgetop stands and important in mixed stands, it is now restricted to south- and southwestfacing slopes in the Ouachita and southern Ozark Mountains, and to isolated pure and mixed stands...
J. Larry Landers; William D. Boyer
1999-01-01
Upland longleaf pine forests, woodlands, and savannas once occupied most of the Atlantic and Gulf Coastal Plains from southeastern Virginia south through the northern two-thirds of Florida and west to east Texas, with extensions into the Piedmont and mountains of Alabama and northwest Georgia. South Florida slash pine is native to the southern half of peninsular...
Presence of carbaryl in the smoke of treated lodgepole and ponderosa pine bark
Chris J. Peterson; Sheryl L. Costello
2013-01-01
Lodgepole and ponderosa pine trees were treated with a 2% carbaryl solution at recreational areas near Fort Collins, CO, in June 2010 as a prophylactic bole spray against the mountain pine beetle. Bark samples from treated and untreated trees were collected one day following application and at 4-month intervals for one year. The residual amount of carbaryl was...
Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality.
Walter G. Thies; Douglas J. Westlind; Mark Loewen
2005-01-01
A study of the effects of season of prescribed burn on tree mortality was established in mixed-age ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the south end of the Blue Mountains near Burns, Oregon. Each of six previously thinned stands was subdivided into three experimental units and one of three treatments was randomly assigned to each:...
Field test of lindane against overwintering broods of the western pine beetle
Robert L. Lyon; Kenneth M. Swain
1968-01-01
The insecticide lindane, applied on bark any time of the year, can effectively destroy broods of the western pine beetle. It may also be effective the year round on the mountain pine beetle, the California five-spined ips, and probably other California species of bark beetles. In tests on the Sierra National Forest, lindane sprays formulated at 1.5 percent...
Brian W. Geils; David A. Conklin; Eugene P. van Arsdel
1999-01-01
Blister rust, caused by the introduced fungus Cronartium ribicola, is a serious disease of white pines in North America. Since about 1970, an outbreak has been increasing in the Sacramento Mountains of southern New Mexico and threatens southwestern white pine. To help determine the expected extent and impact of blister rust, we propose a preliminary...
Monitoring of high-altitude terrestrial ecosystems in the Altai Mountains
NASA Astrophysics Data System (ADS)
Timoshok, E. E.; Timoshok, E. N.; Nikolaeva, S. A.; Savchuk, D. A.; Filimonova, E. O.; Skorokhodov, S. N.; Bocharov, A. Yu
2016-11-01
The Aktru mountain glacier basin (the North-Chuya Ridge, Altai Mountains) is a region of highly important ecosystems. We have been performing a monitoring of the autotrophic component of the basin ecosystems for the last 16 years. The primary indicator species with the most clearly defined response to climatic changes are Siberian stone pine and Siberian larch with their individuals and populations. The ecosystem level of the monitoring includes that of old forests, ecotone ecosystems, and ecosystems on the new moraines. The old forests have remained stable for about 1000 years. The reasons for this stability are the long lifespan and the long generative stage of stone pine and larch, their ability to produce several growth forms, optimal ecological conditions of the basin for these species and high a-diversity of the old forests. The treeline has moved up by 100-200 m for the last 150 years and by 40-90 m for the last 40 years, mostly because of an invasion of stone pine to the ecotone. The primary successions on the moraines are also relatively stable, although at present only stone pine has been involved in the successions. No regeneration of larch has been observed for the last 16 years in the entire basin.
Levels of inorganic constituents in raw nuts and seeds on the Swedish market.
Rodushkin, I; Engström, E; Sörlin, D; Baxter, D
2008-03-25
The levels of approximately 70 elements were determined in different culinary nuts (hazelnuts, walnuts, almonds, bitter almonds, pecans, cashews, Brazil nuts, pistachios, pine nuts, peanuts and coconuts) and seeds (pumpkin and sunflower) available on the Swedish market. The study was limited to raw, virtually unprocessed nuts and seeds (both shelled and unshelled) excluding mixed, roasted or salted products. In total, 44 products from different suppliers were analyzed, with the number of samples per nut/seed variety reflecting the availability of unprocessed products in retail outlets, varying from two for bitter almonds and pistachios to six for hazelnuts and walnuts. This selection includes samples from at least 11 different countries of origin. The optimized analytical procedure consists of microwave-assisted sample digestion using a HNO3/HF mixture, followed by multi-elemental analysis by double focusing, sector field inductively coupled plasma mass spectrometry. The analyses were accompanied by rigorous quality control measures including thorough control of potential sample contamination at all analytical stages, participation in inter-laboratory performance assessment schemes, and the analysis of certified reference materials of plant origin. Concentrations thus obtained were compared with data from product labels (where available), food composition tables and other relevant surveys, demonstrating, depending on the elements in question, close agreement as well as considerable differences.
Genetic variation and hybridization of ponderosa pine
M. Thompson Conkle; William B. Critchfield
1988-01-01
Ponderosa pine's (Pinus ponderosa Laws.) geographic range is centered in the montane western United States, where it is the most widely adapted and ubiquitous conifer. A western variety, P. ponderosa var. ponderosa, extends from the mountains of southern California, northward, on the western and eastern...
Landguth, Erin L; Holden, Zachary A; Mahalovich, Mary F; Cushman, Samuel A
2017-01-01
Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the Endangered Species Act, which has intensified interest in developing management strategies for maintaining and restoring the species. An important, but poorly studied, aspect of WBP restoration is the spatial variation in adaptive genetic variation and the potential of blister rust resistant strains to maintain viable populations in the future. Here, we present a simulation modeling framework to improve understanding of the long-term genetic consequences of the blister rust pathogen, the evolution of rust resistance, and scenarios of planting rust resistant genotypes of whitebark pine. We combine climate niche modeling and eco-evolutionary landscape genetics modeling to evaluate the effects of different scenarios of planting rust-resistant genotypes and impacts of wind field direction on patterns of gene flow. Planting scenarios showed different levels for local extirpation of WBP and increased population-wide blister rust resistance, suggesting that the spatial arrangement and choice of planting locations can greatly affect survival rates of whitebark pine. This study presents a preliminary, but potentially important, framework for facilitating the conservation of whitebark pine.
Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.
Arbellay, Estelle; Daniels, Lori D; Mansfield, Shawn D; Chang, Alice S
2017-12-01
Both mountain pine beetle (MPB) Dendroctonus ponderosae Hopkins and fire leave scars with similar appearance on lodgepole pine Pinus contorta Dougl. ex Loud. var. latifolia Engelm. that have never been compared microscopically, despite the pressing need to determine the respective effects of MPB and fire injury on tree physiology. We analysed changes in wood formation in naturally caused scars on lodgepole pine, and tested the hypotheses that (i) MPB and fire injury elicit distinct anomalies in lodgepole pine wood and (ii) anomalies differ in magnitude and/or duration between MPB and fire. Mountain pine beetle and fire injury reduced radial growth in the first year post-injury. Otherwise, radial growth and wood density increased over more than 10 years in both MPB and fire scars. We found that the general increase in radial growth was of greater magnitude (up to 27%) and of longer duration (up to 5 years) in fire scars compared with MPB scars, as shown in earlywood width. We also observed that the increase in latewood density was of greater magnitude (by 12%) in MPB scars, but of longer duration (by 4 years) in fire scars. Crystallinity decreased following MPB and fire injury, while microfibril angle increased. These changes in fibre traits were of longer duration (up to 4 years) in MPB scars compared with fire scars, as shown in microfibril angle. We found no significant changes in carbon and nitrogen concentrations. In conclusion, we stress that reduced competition and resistance to cavitation play an important role alongside cambial injury in influencing the type and severity of changes. In addition, more research is needed to validate the thresholds introduced in this study. Our findings serve as a foundation for new protocols to distinguish between bark beetle and fire disturbance, which is essential for improving our knowledge of historical bark beetle and fire regimes, and their interactions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
..., including: (a) Habitat requirements for feeding, breeding, and sheltering; (b) Genetics and taxonomy; (c...-grouse breeding complex) counts, population trends, and land ownership information is available in the... local breeding complexes. The six PMUs include: Pine Nut, Desert Creek-Fales, Bodie, Mount Grant, South...
Stephen A. Wyka; Joseph J. Doccola; Brian L. Strom; Sheri L. Smith; Douglas W. McPherson; Srdan G. Acimovic; Kier D. Klepzig
2016-01-01
Bark beetles carry a number of associated organisms that are transferred to the host tree upon attack that are thought to play a role in tree decline. To assess the pathogenicity to western white pine (WWP; Pinus monticola) of fungi carried by the mountain pine beetle (MPB; Dendroctonus ponderosae), and to evaluate the...
First report of two cone and seed insects on Pinus flexilis
Anna Schoettle; Jose Negron
2001-01-01
Limber pine (Pinus flexilis James) ranges in latitude from 33°N to 51°N and in elevation from 870 m above sea level (asl) in North Dakota to ~3400 m asl in Colorado (Burns and Honkala 1990). In the central Rocky Mountains, limber pine co-occurs with many tree species due to its broad elevational range (Peet 1981). Limber pine seeds are large, generally...
Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint
2015-01-01
Over the period 1883â2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...
D.A. Weinstein; J.A. Laurence; W.A. Retzlaff; J.S. Kern; E.H. Lee; W.E. Hogsett; J. Weber
2005-01-01
We simulated forest dynamics of the regional ponderosa pine-white fir conifer forest of the San Bernadino and Sierra Nevada mountains of California to determine the effects of high ozone concentrations over the next century and to compare the responses to our similar study for loblolly pine forests of the southeast. As in the earlier study, we linked two models, TREGRO...
Haifeng Zhou; J.Y. Zhu; Xiaolin Luo; Shao-Yuan Leu; Xiaolei Wu; Roland Gleisner; Bruce S. Dien; Ronald E. Hector; Dongjie Yang; Xueqing Qiu; Eric Horn; Jose Negron
2013-01-01
Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up...
Optimization of pressurized liquid extraction of inositols from pine nuts (Pinus pinea L.).
Ruiz-Aceituno, L; Rodríguez-Sánchez, S; Sanz, J; Sanz, M L; Ramos, L
2014-06-15
Pressurized liquid extraction (PLE) has been used for the first time to extract bioactive inositols from pine nuts. The influence of extraction time, temperature and cycles of extraction in the yield and composition of the extract was studied. A quadratic lineal model using multiple linear regression in the stepwise mode was used to evaluate possible trends in the process. Under optimised PLE conditions (50°C, 18 min, 3 cycles of 1.5 mL water each one) at 10 MPa, a noticeable reduction in extraction time and solvent volume, compared with solid-liquid extraction (SLE; room temperature, 2h, 2 cycles of 5 mL water each one) was achieved; 5.7 mg/g inositols were extracted by PLE, whereas yields of only 3.7 mg/g were obtained by SLE. Subsequent incubation of PLE extracts with Saccharomyces cerevisiae (37°C, 5h) allowed the removal of other co-extracted low molecular weight carbohydrates which may interfere in the bioactivity of inositols. Copyright © 2014 Elsevier Ltd. All rights reserved.
Overview of the Future Forest Webinar Series [Chapter 1
Sarah Hines; Megan Matonis
2014-01-01
The Future Forest Webinar Series was created to facilitate dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle1 (MPB) epidemic. A core team of scientists and managers from the USFS Rocky Mountain Research Station and the Northern and Rocky Mountain Regions worked together to develop the format and content...
Ozone exposure was related to ozone-induced visible foliar injury in ponderosa and Jeffrey pines growing on the western slopes of the Sierra Nevada Mountains of California. Measurements of ozone exposure, chlorotic mottle and fascicle retention were collected during the years ...
Silvical characteristics of pitch pine (Pinus rigida)
S. Little
1959-01-01
Pitch pine (Pinus rigida Mill.) grows over a wide geographical range - from central Maine to New York and extreme southeastern Ontario, south to Virginia and southern Ohio, and in the mountains to eastern Tennessee, northern Georgia, and western South Carolina. Because it grows mostly on the poorer soils, its distribution is spotty.
Limber pine health in the Canadian Rockies
Cyndi M. Smith; David Langor; Colin Myrholm; Jim Weber; Cameron Gillies; Jon Stuart-Smith
2011-01-01
Limber pine (Pinus flexilis) reaches the northern limit of its range at about 52 degrees latitude in Alberta (AB) and 51 degrees latitude in British Columbia (BC). Most populations are found on the eastern slopes of the Rocky Mountains, with a few disjunct populations west of the Continental Divide in southeastern BC.
Monitoring limber pine health in the Rocky Mountains and North Dakota
Kelly Burns; Jim Blodgett; Marcus Jackson; Brian Howell; William Jacobi; Anna Schoettle; Anne Marie Casper; Jennifer Klutsch
2012-01-01
Limber pine (Pinus flexilis James) is an ecologically and culturally important, yet little studied, tree species within the Western United States. Its distribution extends from Alberta and southeastern British Colombia to New Mexico, Arizona, and southeastern California with isolated populations in North Dakota, South Dakota, Nebraska, eastern Oregon...
PARTITIONING OF WATER FLUX IN A SIERRA NEVADA PONDEROSA PINE PLANTATION. (R826601)
The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus pond...
Distribution of Ribes, an alternate host of white pine blister rust, in Colorado and Wyoming
Holly S. J. Kearns; William R. Jacobi; Kelly S. Burns; Brian W. Geils
2008-01-01
Ribes (currants and gooseberries) are alternate hosts for Cronartium ribicola, the invasive fungus that causes blister rust of white pines (Pinus, subgenus Strobus) in the Rocky Mountain region of Colorado and Wyoming. The location, species, and density of Ribes can affect...
Individual tree growth models for natural even-aged shortleaf pine
Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin
2006-01-01
Shortleaf pine (Pinus echinata Mill.) measurements were available from permanent plots established in even-aged stands of the Ouachita Mountains for studying growth. Annual basal area growth was modeled with a least-squares nonlinear regression method utilizing three measurements. The analysis showed that the parameter estimates were in agreement...
White pine provenances for Christmas trees in eastern Kentucky and Ohio
Russell S. Walters; Russell S. Walters
1971-01-01
In a study of trees grown from seed obtained from 16 regions throughout the natural range of white pine (Pinus strobus L.), the best Christmas tree qualities were found in trees grown from seed that came from the Appalachian Mountain regions and from lower Michigan.
Michael G. Shelton
1997-01-01
The shelterwood reproduction cutting method using two overstory compositions (a pine basal area of 30 ft* per acre with and without 15 ftâ per acre of hardwoods) and two methods of submerchantable hardwood control (chain-saw felling with and without stump-applied herbicide) was tested in a 2x2 factorial, split-plot design with four randomized complete blocks....
Chemical composition of nuts and seeds sold in Korea
Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon
2013-01-01
Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety. PMID:23610599
Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg
2013-01-01
The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290