USDA-ARS?s Scientific Manuscript database
Increased production of organic agricultural products and the relative ineffectiveness of traditional control measures support development of new biocontrol technologies for use against pink rot infections in storage. The microbiota of 84 different agricultural soils was individually transferred to...
Development of dry gram-negative bacteria biocontrol products and small pilot tests against dry rot
USDA-ARS?s Scientific Manuscript database
Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 suppress four important storage potato maladies; dry rot, late blight, pink rot, and sprouting. Studies were designed to identify methods for producing a dried, efficacious biological control product. The strains were evaluated individ...
USDA-ARS?s Scientific Manuscript database
Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 reduce important potato maladies in storage including dry rot, late blight, pink rot, and sprouting. Experiments were conducted to identify methods for producing a dried, efficacious biological control product from one or more of these...
Identification of Fusarium species isolated from stored apple fruit in Croatia.
Sever, Zdravka; Ivić, Dario; Kos, Tomislav; Miličević, Tihomir
2012-12-01
Several species of the genus Fusarium can cause apple fruit to rot while stored. Since Fusarium taxonomy is very complex and has constantly been revised and updated over the last years, the aim of this study was to identify Fusarium species from rotten apples, based on combined morphological characteristics and molecular data. We identified 32 Fusarium isolates from rotten apple fruit of cultivars Golden Delicious, Jonagold, Idared, and Pink Lady, stored in Ultra Low Oxygen (ULO) conditions. Fusarium rot was detected in 9.4 % to 33.2 % of naturally infected apples, depending on the cultivar. The symptoms were similar in all four cultivars: a soft circular brown necrosis of different extent, with or without visible sporulation. Fusarium species were identified by the morphology of cultures grown on potato-dextrose agar (PDA) and carnation leaf agar (CLA). Twenty one isolates were identified as Fusarium avenaceum and confirmed as such with polymerase chain reaction (PCR) using specific primer pair FA-ITSF and FA-ITSR. F. pseudograminearum,F. semitectum, F. crookwellense, and F. compactum were identified by morphological characteristics. F.avenaceum can produce several mycotoxins and its dominance in Fusarium rot points to the risk of mycotoxin contamination of apple fruit juices and other products for human consumption. Pathogenicity tests showed typical symptoms of Fusarium rot in most of the inoculated wounded apple fruits. In this respect Fusarium avenaceum, as the dominant cause of Fusarium rot in stored apple fruits is a typical wound parasite.
Zahari, R; Halimoon, N; Ahmad, M F; Ling, S K
2018-01-01
Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.
Madhaiyan, M; Suresh Reddy, B V; Anandham, R; Senthilkumar, M; Poonguzhali, S; Sundaram, S P; Sa, Tongmin
2006-10-01
This study, framed in two different phases, studied the plant-growth promotion and the induction of systemic resistance in groundnut by Methylobacterium. Seed imbibition with Methylobacterium sp. increased germination by 19.5% compared with controls. Combined inoculation of Methylobacterium sp. with Rhizobium sp. also significantly increased plant growth, nodulation, and yield attributes in groundnut compared with individual inoculation of Rhizobium sp. Methylobacterium sp. challenge-inoculated with Aspergillus niger/Sclerotium rolfsii in groundnut significantly enhanced germination percentage and seedling vigour and showed increased phenylalanine ammonia lyase (PAL), beta-1,3-glucanase, and peroxidase (PO) activities. Under pot-culture conditions, in Methylobacterium sp. seed-treated groundnut plants challenge-inoculated with A. niger/S. rolfsii through foliar sprays on day 30, the activities of enzymes PO, PAL, and beta-1,3-glucanase increased constantly from 24 to 72 hours, after which decreased activity was noted. Five isozymes of polyphenol oxidase and PO could be detected in Methylobacterium-treated plants challenged with A. niger/S. rolfsii. Induced systemic resistance activity in groundnut against rot pathogens in response to methylotrophic bacteria suggests the possibility that pink-pigmented facultative methylotrophic bacteria might be used as a means of biologic disease control.
Gabriel, Jiří; Žižka, Zdeněk; Švec, Karel; Nasswettrová, Andrea; Šmíra, Pavel; Kofroňová, Olga; Benada, Oldřich
2016-03-01
This work describes autofluorescence of the mycelium of the dry rot fungus Serpula lacrymans grown on spruce wood blocks impregnated with various metals. Live mycelium, as opposed to dead mycelium, exhibited yellow autofluorescence upon blue excitation, blue fluorescence with ultraviolet (UV) excitation, orange-red and light-blue fluorescence with violet excitation, and red fluorescence with green excitation. Distinctive autofluorescence was observed in the fungal cell wall and in granula localized in the cytoplasm. In dead mycelium, the intensity of autofluorescence decreased and the signal was diffused throughout the cytoplasm. Metal treatment affected both the color and intensity of autofluorescence and also the morphology of the mycelium. The strongest yellow signal was observed with blue excitation in Cd-treated samples, in conjunction with increased branching and the formation of mycelial loops and protrusions. For the first time, we describe pink autofluorescence that was observed in Mn-, Zn-, and Cu-treated samples with UV, violet or. blue excitation. The lowest signals were obtained in Cu- and Fe-treated samples. Chitin, an important part of the fungal cell wall exhibited intensive primary fluorescence with UV, violet, blue, and green excitation.
Osusky, Milan; Osuska, Lubica; Kay, William; Misra, Santosh
2005-08-01
Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.
Liebe, Sebastian; Varrelmann, Mark
2016-01-01
Storage rots represent an economically important factor impairing the storability of sugar beet by increasing sucrose losses and invert sugar content. Understanding the development of disease management strategies, knowledge about major storage pathogens, and factors influencing their occurrence is crucial. In comprehensive storage trials conducted under controlled conditions, the effects of environment and genotype on rot development and associated quality changes were investigated. Prevalent species involved in rot development were identified by a newly developed microarray. The strongest effect on rot development was assigned to environment factors followed by genotypic effects. Despite large variation in rot severity (sample range 0 to 84%), the spectrum of microorganisms colonizing sugar beet remained fairly constant across all treatments with dominant species belonging to the fungal genera Botrytis, Fusarium, and Penicillium. The intensity of microbial tissue necrotization was strongly correlated with sucrose losses (R² = 0.79 to 0.91) and invert sugar accumulation (R² = 0.91 to 0.95). A storage rot resistance bioassay was developed that could successfully reproduce the genotype ranking observed in storage trials. Quantification of fungal biomass indicates that genetic resistance is based on a quantitative mechanism. Further work is required to understand the large environmental influence on rot development in sugar beet.
Janahiraman, Veeranan; Anandham, Rangasamy; Kwon, Soon W; Sundaram, Subbiah; Karthik Pandi, Veeranan; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Samaddar, Sandipan; Sa, Tongmin
2016-01-01
The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis , and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B . subtilis PPT-1, and B . cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D . lacustris PPO-1, B . subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D . lacustris PPO-1, B . subtilis PPT-1, and B . cereus PPB-1 inoculated tomato plants, when challenged with F . oxysporum f. sp. lycopersici, S . rolfsii, P . ultimum , and R . solani , increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B . subtilis , and B . cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent.
Janahiraman, Veeranan; Anandham, Rangasamy; Kwon, Soon W.; Sundaram, Subbiah; Karthik Pandi, Veeranan; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Samaddar, Sandipan; Sa, Tongmin
2016-01-01
The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis, and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum, and R. solani, increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent. PMID:27872630
Comparative anatomy of the dorsal hump in mature Pacific salmon.
Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki
2017-07-01
Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.
Lee, Eun Jin; Yoo, Kil Sun; Patil, Bhimanagouda S
2010-10-01
The formation of pink-red pigments ("pinking") by various amino acids was investigated by reacting amino acids with compounds present in onion juice. The unknown pink-red pigments were generated and separated using high-performance liquid chromatography (HPLC) and a diode array detector (DAD) in the range of 200 to 700 nm. To generate pink-red pigments, we developed several reaction systems using garlic alliinase, purified 1-propenyl-L-cysteine sulfoxide (1-PeCSO), onion thiosulfinate, natural onion juice, and 21 free amino acids. The compound 1-PeCSO was a key compound associated with pinking in the presence of both the alliinase and amino acids. Numerous naturally occurring pink-red pigments were detected and separated from pink onion juice using the HPLC-DAD system at 515 nm. Most free amino acids, with the exceptions of histidine, serine, and cysteine, formed various pink-red pigments when reacted with onion thiosulfinate. This observation indicated that onion pinking is caused not by a single pigment, but by many. Furthermore, more than one color compound could be produced from a single amino acid; this explains, in part, why there were many pink-red compound peaks in the chromatogram of discolored natural onion juice. We presumed that the complexity of the pink-red pigments was due to the involvement of more than 21 natural amino acids as well as several derivatives of the color products produced from each amino acid. We observed that the pinking process in onion juice is very similar to that of the greening process in crushed garlic, emphasizing that both thiosulfinate from flavor precursors and free amino acids are absolutely required for the discoloration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luey, J.; Brouns, T.M.; Elliott, M.L.
1990-11-01
The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable formore » the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.« less
Calvo-Garrido, C; Viñas, I; Elmer, P; Usall, J; Teixidó, N
2013-10-01
Sour rot of grapes is becoming increasingly important disease in many wine-growing regions, while consistent chemical or biological control has not been reported. Authors evaluated relative incidence and severity of sour rot in untreated grapevines and the effect of different biologically based treatments on sour rot at harvest. Applications of Candida sake CPA-1 plus Fungicover® , Ulocladium oudemansii and chitosan were carried out in an organic vineyard in Lleida area, Spain, during the 2009 and 2010 growing seasons. At harvest, incidence and severity of sour rot were assessed. Significantly higher incidence and severity of sour rot were observed in untreated plots in 2009, when meteorological conditions after veraison were warmer. All treatments including C. sake CPA-1 significantly reduced (P < 0·05) severity of sour rot in both seasons, ranging from 40 to 67% compared with the untreated control. Incidence of sour rot was not significantly reduced by any treatment. This study helps to characterize development of sour rot in the dry Mediterranean climate conditions of the experiment, whereas also represents the first report of biological control of sour rot. Treatments with the tested biologically based products are a promising strategy to control sour rot. Studies on sour rot of grapes are scarce in literature, and this is the first work specifically evaluating sour rot in Spanish vineyards. Sour rot control in field conditions through applications of antagonistic micro-organisms is reported for first time in this study, showing elevated severity reductions (40-67% compared with control). As there are no options available for sour rot control in vineyards, results point Candida sake CPA-1 as an interesting control strategy against grape bunch rots. © 2013 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Derrien, Delphine; Bédu, Hélène; Buée, Marc; Kohler, Annegret; Goodell, Barry; Gelhaye, Eric
2017-04-01
Forest soils cover about 30% of terrestrial area and comprise between 50 and 80% of the global stock of soil organic carbon (SOC). The major precursor for this forest SOC is lignocellulosic material, which is made of polysaccharides and lignin. Lignin has traditionally been considered as a recalcitrant polymer that hinders access to the much more labile structural polysaccharides. This view appears to be partly incorrect from a microbiology perspective yet, as substrate alteration depends on the metabolic potential of decomposers. In forest ecosystems the wood-rotting Basidiomycota fungi have developed two different strategies to attack the structure of lignin and gain access to structural polysaccharides. White-rot fungi degrade all components of plant cell walls, including lignin, using enzymatic systems. Brown-rot fungi do not remove lignin. They generate oxygen-derived free radicals, such as the hydroxyl radical produced by the Fenton reaction, that disrupt the lignin polymer and depolymerize polysaccharides which then diffuse out to where the enzymes are located The objective of this study was to develop a model to investigate whether the lignin relative persistence could be related to the energetic advantage of brown-rot degradative pathway in comparison to white-rot degradative pathway. The model simulates the changes in substrate composition over time, and determines the energy gained from the conversion of the lost substrate into CO2. The energy cost for the production of enzymes involved in substrate alteration is assessed using information derived from genome and secretome analysis. For brown-rot fungus specifically, the energy cost related to the production of OH radicals is also included. The model was run, using data from the literature on populous wood degradation by Trametes versicolor, a white-rot fungus, and Gloeophyllum trabeum, a brown-rot fungus. It demonstrates that the brown-rot fungus (Gloeophyllum trabeum) was more efficient than the white-rot fungus (Trametes versicolor). The energy advantage could explain the emergence of the brown-rot degradative pathway from a white-rot degradative pathway and subsequently, the relative persistence of lignin in soil.
Koentjoro, Brianada; Park, Jin-Sung; Sue, Carolyn M
2017-03-10
Therapeutic targets are needed to develop neuroprotective treatments for Parkinson's disease (PD). Mitophagy, the selective autophagic elimination of dysfunctional mitochondria, is essential for the maintenance of mitochondrial integrity and is predominantly regulated by the PINK1/Parkin-mediated pathway. Loss of function mutations in Parkin and PINK1 cause an accumulation of dysfunctional mitochondria, leading to nigral neurodegeneration and early-onset PD with a high penetrance rate. We previously identified an asymptomatic homozygous Parkin mutation carrier who had not developed PD by her eighth decade despite the loss of functional Parkin. Here we discover a putative mechanism that protects her against PD. In contrast to Parkin-related PD patient-derived cells, the asymptomatic carrier cells show preserved mitochondrial function and mitophagy which is mediated by mitochondrial receptor Nip3-like protein X (Nix). Nix-mediated mitophagy was not affected by PINK1 knockdown. Both genetic and pharmacological induction of Nix restores mitophagy in PINK1- and Parkin-related PD patient cell lines, confirming its ability to induce mitophagy in the absence of PINK1/Parkin-mediated pathway. Moreover, Nix over-expression improves mitochondrial ATP production in these patient cells. Our results demonstrate that Nix can serve as an alternative mediator of mitophagy to maintain mitochondrial turnover, identifying Nix as a promising target for neuroprotective treatment in PINK1/Parkin-related PD.
Barata, André; Santos, Sara Correia; Malfeito-Ferreira, Manuel; Loureiro, Virgílio
2012-08-01
In this work, we studied the ecological interactions between grape berry microorganisms and Drosophila sp. flies involved in sour rot disease during grape ripening. After veráison the total microbial counts of grape berries affected by sour rot increased from about 2 log CFU/g of berries to more than 7 log CFU/g. Berry damage provoked a clear shift in yeast diversity from basidiomycetes to ascomycetous fermentative species. The latter were mostly Pichia terricola, Hanseniaspora uvarum, Candida zemplinina, and Zygoascus hellenicus. However, these species were not able to produce the metabolites characteristic of sour rot (gluconic and acetic acids) in inoculated berries. On the contrary, the acetic acid bacteria Gluconacetobacter saccharivorans produced high levels of these acids, mainly when berries were incubated in the presence of the insect Drosophila sp. Sour rot was not observed when grape bunches were physically separated from insects, even when berries were artificially injured. The wounds made in berry skin healed in the absence of insects, thus preventing the development of sour rot. Therefore, in the vineyard, the induction of sour rot depends on the contamination of wounded berries by a microbial consortium--yeasts and acetic acid bacteria--transported by drosophilid insects which disseminate sour rot among damaged berries. In the absence of these insects, plant defense mechanisms are effective and lead to skin healing, preventing disease spread. Thus, we showed that Drosophila sp. act as a vector for microorganisms associated with grape sour rot disease.
USDA-ARS?s Scientific Manuscript database
Phytophthora cinnamomi causes root rot of highbush blueberry and decreases plant growth, yield, and profitability for growers. Fungicides can suppress root rot, but cannot be used in certified organic production systems and fungicide resistance may develop. Alternative, non-chemical, cultural manag...
Parker, Nicole S; Anderson, Nolan R; Richmond, Douglas S; Long, Elizabeth Y; Wise, Kiersten A; Krupke, Christian H
2017-03-01
A 2 year study was conducted to determine whether western bean cutworm (Striacosta albicosta Smith) (WBC) larval feeding damage increases severity of the fungal disease Gibberella ear rot [Fusarium graminearum (Schwein.) Petch] in field corn (Zea mays L.). The effect of a quinone-outside inhibiting fungicide, pyraclostrobin, on Gibberella ear rot severity and mycotoxin production, both with and without WBC pressure, was also evaluated. The impact of each variable was assessed individually and in combination to determine the effect of each upon ear disease severity. There was a positive correlation between the presence of WBC larvae in field corn and Gibberella ear rot severity under inoculated conditions in the 2 years of the experiment. An application of pyraclostrobin did not impact Gibberella ear rot development when applied at corn growth stage R1 (silks first emerging). Feeding damage from WBC larvae significantly increases the development of F. graminearum in field corn. We conclude that an effective integrated management strategy for Gibberella ear rot should target the insect pest first, in an effort to limit disease severity and subsequent mycotoxin production by F. graminearum in kernels. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Evaluation of induced color changes in chicken breast meat during simulation of pink color defect.
Holownia, K; Chinnan, M S; Reynolds, A E; Koehler, P E
2003-06-01
The objective of the study was to establish a pink threshold and simulate the pink defect in cooked chicken breast meat with treatment combinations that would induce significant changes in the color of raw and cooked meat. The subjective pink threshold used in judging pink discoloration was established at a* = 3.8. Samples of three color groups (normal, lighter than normal, and darker than normal) of boneless, skinless chicken breast muscles were selected based on instrumental color values. The in situ changes were induced using sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite at two levels: present and not present. Fillets in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Samples were analyzed for color [lightness (L*), red/green axis (a*), yellow/blue axis (b*)] and reflectance spectra. Simulation of the pink defect was achieved in eight of the 16 treatment combinations when sodium nitrite was present and in an additional two treatment combinations when it was absent. Pinking in cooked samples was affected (P < 0.05) by L* of raw meat color. Results confirmed that it was possible to simulate the undesired pinking in cooked chicken white meat when in situ conditions were induced by sodium chloride, sodium tripolyphosphate, and sodium nitrite. The continuation of the simulation study can aid in developing alternative processing methods to eliminate potential pink defects.
Negri, Stefano; Lovato, Arianna; Boscaini, Filippo; Salvetti, Elisa; Torriani, Sandra; Commisso, Mauro; Danzi, Roberta; Ugliano, Maurizio; Polverari, Annalisa; Tornielli, Giovanni B.; Guzzo, Flavia
2017-01-01
The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines. PMID:28680428
Calvo-Garrido, Carlos; Usall, Josep; Viñas, Inmaculada; Elmer, Philip Ag; Cases, Elena; Teixidó, Neus
2014-06-01
Epidemiological studies have described the life cycle of B. cinerea in vineyards. However, there is a lack of information on the several infection pathways and the quantitative relationships between secondary inoculum and bunch rot at harvest. Over two seasons, different spray programmes were used to determine key phenological stages for bunch rot development. Secondary inoculum sources within the bunch were also studied. The relative importance of flowering was evidenced in the given conditions, as treatments that included two fungicide applications at flowering were the most effective. In 2010, under conducive meteorological conditions for B. cinerea development after veraison, an extra application provided significantly higher control. Infections of necrotic tissues inside the bunch and latent infections developed mainly during flowering, while very low quantities of B. cinerea conidia were recovered from the fruit surface at veraison. Regression analysis correlated the incidence of latent infections and B. cinerea incidence on calyptras and aborted fruits at veraison with incidence of Botrytis bunch rot at harvest, presenting R2 = 0.95 for the overall regression model. This work points out key phenological stages during the season for bunch rot and B. cinerea secondary inoculum development and relates quantitatively inoculum sources at veraison to bunch rot at harvest. Recommendations for field applications of antibotrytic products are also suggested. © 2013 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Southeastern states produce about 50% of the watermelons in the United States (U.S.) where conditions are optimal for development of Phytophthora fruit rot prevail. Phytophthora fruit rot significantly limits watermelon production by causing serious yield losses to growers before and after harvest. ...
RotCFD Software Validation - Computational and Experimental Data Comparison
NASA Technical Reports Server (NTRS)
Fernandez, Ovidio Montalvo
2014-01-01
RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.
McCaghey, Megan; Willbur, Jaime; Ranjan, Ashish; Grau, Craig R.; Chapman, Scott; Diers, Brian; Groves, Carol; Kabbage, Mehdi; Smith, Damon L.
2017-01-01
Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen of soybean that can cause significant yield losses to growers when environmental conditions are favorable for the disease. The development of resistant varieties has proven difficult. However, poor resistance in commercial cultivars can be improved through additional breeding efforts and understanding the genetic basis of resistance. The objective of this project was to develop soybean germplasm lines that have a high level of Sclerotinia stem rot resistance to be used directly as cultivars or in breeding programs as a source of improved Sclerotinia stem rot resistance. Sclerotinia stem rot-resistant soybean germplasm was developed by crossing two sources of resistance, W04-1002 and AxN-1-55, with lines exhibiting resistance to Heterodera glycines and Cadophora gregata in addition to favorable agronomic traits. Following greenhouse evaluations of 1,076 inbred lines derived from these crosses, 31 lines were evaluated for resistance in field tests during the 2014 field season. Subsequently, 11 Sclerotinia stem rot resistant breeding lines were moved forward for field evaluation in 2015, and seven elite breeding lines were selected and evaluated in the 2016 field season. To better understand resistance mechanisms, a marker analysis was conducted to identify quantitative trait loci linked to resistance. Thirteen markers associated with Sclerotinia stem rot resistance were identified on chromosomes 15, 16, 17, 18, and 19. Our markers confirm previously reported chromosomal regions associated with Sclerotinia stem rot resistance as well as a novel region of chromosome 16. The seven elite germplasm lines were also re-evaluated within a greenhouse setting using a cut petiole technique with multiple S. sclerotiorum isolates to test the durability of physiological resistance of the lines in a controlled environment. This work presents a novel and comprehensive classical breeding method for selecting lines with physiological resistance to Sclerotinia stem rot and a range of agronomic traits. In these studies, we identify four germplasm lines; 91–38, 51–23, SSR51–70, and 52–82B exhibiting a high level of Sclerotinia stem rot resistance combined with desirable agronomic traits, including high protein and oil contents. The germplasm identified in this study will serve as a valuable source of physiological resistance to Sclerotinia stem rot that could be improved through further breeding to generate high-yielding commercial soybean cultivars. PMID:28912790
Pink Breast Milk: Serratia marcescens Colonization
Valle, Cipatli Ayuzo del; Salinas, Emilio Treviño
2014-01-01
Background Breast milk can turn pink with Serratia marcescens colonization, this bacterium has been associated with several diseases and even death. It is seen most commonly in the intensive care settings. Discoloration of the breast milk can lead to premature termination of nursing. We describe two cases of pink-colored breast milk in which S. marsescens was isolated from both the expressed breast milk. Antimicrobial treatment was administered to the mothers. Return to breastfeeding was successful in both the cases. Conclusions Pink breast milk is caused by S. marsescens colonization. In such cases,early recognition and treatment before the development of infection is recommended to return to breastfeeding. PMID:25452881
PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis
Bueno, Marta; Lai, Yen-Chun; Romero, Yair; Brands, Judith; St. Croix, Claudette M.; Kamga, Christelle; Corey, Catherine; Herazo-Maya, Jose D.; Sembrat, John; Lee, Janet S.; Duncan, Steve R.; Rojas, Mauricio; Shiva, Sruti; Chu, Charleen T.; Mora, Ana L.
2014-01-01
Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung. PMID:25562319
Liu, Yan; Lin, Jingjing; Zhang, Minjie; Chen, Kai; Yang, Shengxi; Wang, Qun; Yang, Hongqin; Xie, Shusen; Zhou, Yongjian; Zhang, Xi; Chen, Fei; Yang, Yufeng
2016-11-15
Mitophagy is the selective degradation of mitochondria by autophagy, which is an important mitochondrial quality and quantity control process. During Drosophila metamorphosis, the degradation of midgut involves a large change in length and organization, which is mediated by autophagy. Here we noticed a cell-type specific mitochondrial clearance process that occurs in enterocytes (ECs), while most mitochondria remain in intestinal stem cells (ISCs) during metamorphosis. Although PINK1/PARKIN represent the canonical pathway for the elimination of impaired mitochondria in varied pathological conditions, their roles in developmental processes or normal physiological conditions have been less studied. To examine the potential contribution of PINK1 in developmental processes, we monitored the dynamic expression pattern of PINK1 in the midgut development by taking advantage of a newly CRISPR/Cas9 generated knock-in fly strain expressing PINK1-mCherry fusion protein that presumably recapitulates the endogenous expression pattern of PINK1. We disclosed a spatiotemporal correlation between the expression pattern of PINK1 and the mitochondrial clearance or persistence in ECs or ISCs respectively. By mosaic genetic analysis, we then demonstrated that PINK1 and PARKIN function epistatically to mediate the specific timely removal of mitochondria, and are involved in global autophagy in ECs during Drosophila midgut metamorphosis, with kinase-dead PINK1 exerting dominant negative effects. Taken together, our studies concluded that the PINK1/PARKIN is crucial for timely cell-type specific mitophagy under physiological conditions and demonstrated again that Drosophila midgut metamorphosis might serve as an elegant in vivo model to study autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.
Progress of Heart Rot Following Fire in Bottomland Red Oaks
E. Richard Toole; George M. Furnival
1957-01-01
The most important cause of cull in southern hardwood forests is heart rot that develops from wounds made by fire. This study derived means by which the forester working with bottomland red oaks can determine the amount of decay behind old fire scars and estimate the rot that can be expected from new wounds.
Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde
2015-01-01
Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706
Blanco-Ulate, Barbara; Amrine, Katherine C H; Collins, Thomas S; Rivero, Rosa M; Vicente, Ariel R; Morales-Cruz, Abraham; Doyle, Carolyn L; Ye, Zirou; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E; Cantu, Dario
2015-12-01
Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. © 2015 American Society of Plant Biologists. All Rights Reserved.
Relating induced in situ conditions of raw chicken breast meat to pinking.
Holownia, K; Chinnan, M S; Reynolds, A E; Davis, J W
2004-01-01
Our objective was to simulate the pink color defect in cooked chicken breast meat with treatment combinations that would induce measurable changes in the conditions of raw meat. In addition, the feasibility of using induced raw meat conditions to develop a logistic regression model for prediction of pinking was studied. Approximately 960 breast fillets from 2 plants with 2 replications were used for inducing in situ conditions with 16 combinations of sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite (present and not present). Muscles in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Raw samples were analyzed for pH, oxidation-reduction potential, and pigment evaluation. Results indicated a significant role of induced in situ conditions of raw meat in the occurrence of pinking. Presence of 1 ppm or more of sodium nitrite in raw meat produced significant pinking of cooked meat. The light muscle color group was least affected and the dark group was most affected by induced pH, oxidation-reduction potential conditions, and metmyoglobin and nitrosopigment content. The predictive ability of the logistic model was more than 90% with nitrosopigment, pH, and reducing conditions being the most important factors. Moreover, validation of the model was confirmed by close association between observed pink samples and those predicted as pink.
Holb, I J; Scherm, H
2008-01-01
In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C. pomonella. At the harvest assessment, two additional significant correlations were between brown rot and bird injury and between brown rot and growth cracks. In every case, correlation coefficients were larger in organic than in integrated blocks. Although it is well established that brown rot in pome fruits is closely associated with fruit injuries, this is the first study to provide season-long progress data on different injury types and quantitative analyses of their relative importance at different times in the growing season and across two distinct management systems.
USDA-ARS?s Scientific Manuscript database
Root rot diseases of bean (Phaseolus vulgaris L.) are a constraint to dry and snap bean production. We developed the RR138 RIL mapping population from the cross of OSU5446, a susceptible line that meets current snap bean processing industry standards, and RR6950, a root rot resistant dry bean in th...
Internal Rot Detection with the Use of Low-Frequency Flaw Detector
NASA Astrophysics Data System (ADS)
Proskórnicki, Marek; Ligus, Grzegorz
2014-12-01
The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.
USDA-ARS?s Scientific Manuscript database
Pink eye (PE) is a physiological tuber disorder that can result in serious processing complications and storage losses. The earliest external symptoms consist of an ephemeral pinkish discoloration around tuber eyes, predominately at the bud end of the tuber. These pinkish areas can then develop into...
2011-01-01
Background Botrytis cinerea is a phytopathogenic fungus responsible for the disease known as gray mold, which causes substantial losses of fruits at postharvest. This fungus is present often as latent infection and an apparently healthy fruit can deteriorate suddenly due to the development of this infection. For this reason, rapid and sensitive methods are necessary for its detection and quantification. This article describes the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for quantification of B. cinerea in apple (Red Delicious), table grape (pink Moscatel), and pear (William's) tissues. Results The method was based in the competition for the binding site of monoclonal antibodies between B. cinerea antigens present in fruit tissues and B. cinerea purified antigens immobilized by a crosslinking agent onto the surface of the microtiter plates. The method was validated considering parameters such as selectivity, linearity, precision, accuracy and sensibility. The calculated detection limit was 0.97 μg mL-1 B. cinerea antigens. The immobilized antigen was perfectly stable for at least 4 months assuring the reproducibility of the assay. The fungus was detected and quantified in any of the fruits tested when the rot was not visible yet. Results were compared with a DNA quantification method and these studies showed good correlation. Conclusions The developed method allowed detects the presence of B. cinerea in asymptomatic fruits and provides the advantages of low cost, easy operation, and short analysis time determination for its possible application in the phytosanitary programs of the fruit industry worldwide. PMID:21970317
Development of a ROT22 - DATAMAP interface
NASA Technical Reports Server (NTRS)
Shenoy, K. R.; Waak, T.; Brieger, J. T.
1986-01-01
This report (Contract NAS2-10331- Mod 10), outlines the development and validation of an interface between the three-dimensional transonic analysis program ROT22 and the Data from Aeromechanics Test and Analytics-Management and Analysis Package (DATAMAP). After development of the interface, the validation is carried out as follows. First, the DATAMAP program is used to analyze a portion of the Tip Aerodynamics and Acoustics Test (TAAT) data. Specifically, records 2872 and 2873 are analyzed at an azimuth of 90 deg, and record 2806 is analyzed at 60 deg. Trim conditions for these flight conditions are then calculated using the Bell performance prediction program ARAM45. Equivalent shaft, pitch, and twist angles are calculated from ARAM45 results and used as input to the ROT22 program. The interface uses the ROT22 results and creates DATAMAP information files from which the surface pressure contours and sectional pressure coefficients are plotted. Twist angles input to ROT22 program are then iteratively modified in the tip region until the computed pressure coefficients closely match the measurements. In all cases studied, the location of the shock is well predicted. However, the negative pressure coefficients were underpredicted. This could be accounted for by blade vortex interaction effects.
Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S.; Johnson-Cicalese, Jennifer; Polashock, James J.; White, James F.
2015-01-01
Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase. PMID:26322038
Using image analysis to predict the weight of Alaskan salmon of different species.
Balaban, Murat O; Unal Sengör, Gülgün F; Gil Soriano, Mario; Guillén Ruiz, Elena
2010-04-01
After harvesting, salmon is sorted by species, size, and quality. This is generally manually done by operators. Automation would bring repeatability, objectivity, and record-keeping capabilities to these tasks. Machine vision (MV) and image analysis have been used in sorting many agricultural products. Four salmon species were tested: pink (Oncorhynchus gorbuscha), red (Oncorhynchus nerka), silver (Oncorhynchus kisutch), and chum (Oncorhynchus keta). A total of 60 whole fish from each species were first weighed, then placed in a light box to take their picture. Weight compared with view area as well as length and width correlations were developed. In addition the effect of "hump" development (see text) of pink salmon on this correlation was investigated. It was possible to predict the weight of a salmon by view area, regardless of species, and regardless of the development of a hump for pinks. Within pink salmon there was a small but insignificant difference between predictive equations for the weight of "regular" fish and "humpy" fish. Machine vision can accurately predict the weight of whole salmon for sorting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirakashi, Ryo, E-mail: aa21150@iis.u-tokyo.ac.jp; Mischke, Miriam; Fischer, Peter
2012-11-09
Highlights: Black-Right-Pointing-Pointer Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. Black-Right-Pointing-Pointer The three-shell dielectric model matches the rotation spectra of medaka eggs. Black-Right-Pointing-Pointer The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to earlymore » somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.« less
USDA-ARS?s Scientific Manuscript database
Culturable fungal population diversity and succession were investigated in developing cranberry ovaries of fruit rot-resistant and rot-susceptible cranberry selections, from flower through mature fruit. Fungi were recovered in culture from 1185 of 1338 ovary tissues collected from June to September,...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... periodic reports since the period ended March 31, 2008. Universal Property is quoted on the Pink Sheets operated by Pink OTC Markets, Inc. under the ticker symbol UPDV. The Commission is of the opinion that the...
PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control.
Zhuang, Na; Li, Lin; Chen, She; Wang, Tao
2016-12-01
Mitochondrial dysfunction has been linked to the pathogenesis of a large number of inherited diseases in humans, including Parkinson's disease, the second most common neurodegenerative disorder. The Parkinson's disease genes pink1 and parkin, which encode a mitochondrially targeted protein kinase, and an E3 ubiquitin ligase, respectively, participate in a key mitochondrial quality-control pathway that eliminates damaged mitochondria. In the current study, we established an in vivo PINK1/Parkin-induced photoreceptor neuron degeneration model in Drosophila with the aim of dissecting the PINK1/Parkin pathway in detail. Using LC-MS/MS analysis, we identified Serine 346 as the sole autophosphorylation site of Drosophila PINK1 and found that substitution of Serine 346 to Alanine completely abolished the PINK1 autophosphorylation. Disruption of either PINK1 or Parkin phosphorylation impaired the PINK1/Parkin pathway, and the degeneration phenotype of photoreceptor neurons was obviously alleviated. Phosphorylation of PINK1 is not only required for the PINK1-mediated mitochondrial recruitment of Parkin but also induces its kinase activity toward Parkin. In contrast, phosphorylation of Parkin by PINK1 is dispensable for its translocation but required for its activation. Moreover, substitution with autophosphorylation-deficient PINK1 failed to rescue pink1 null mutant phenotypes. Taken together, our findings suggest that autophosphorylation of PINK1 is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin.
ERIC Educational Resources Information Center
Halim, May Ling; Ruble, Diane N.; Tamis-LeMonda, Catherine S.; Zosuls, Kristina M.; Lurye, Leah E.; Greulich, Faith K.
2014-01-01
Many young children pass through a stage of gender appearance rigidity; girls insist on wearing dresses, often pink and frilly, whereas boys refuse to wear anything with a hint of femininity. In 2 studies, we investigated the prevalence of this apparent hallmark of early gender development and its relation to children's growing identification with…
Stabilizing Oils from Smoked Pink Salmon (Oncorhynchus gorbuscha)
USDA-ARS?s Scientific Manuscript database
Smoking of meats and fish is one of the earliest preservation technologies developed by humans. In this study, the smoking process was evaluated as a method for reducing oxidation of Pink Salmon (Oncorhynchus gorbuscha) oils and also maintaining the quality of oil in aged fish prior to oil extractio...
Migratory routes and at-sea threats to Pink-footed Shearwaters
Adams, Josh; Felis, Jonathan J.; Hodum, Peter; Colodro, Valentina; Carle, Ryan; López, Verónica
2016-01-01
The Pink-footed Shearwater (Ardenna creatopus) is a seabird with a breeding range restricted to three islands in Chile and an estimated world population of approximately 56,000 breeding individuals (Muñoz 2011, Oikonos unpublished data). Due to multiple threats on breeding colonies and at-sea, Pink-footed Shearwaters are listed as Endangered by the government of Chile (Reglamento de Clasificación de Especies, 2011), Threatened by the government of Canada (Environment Canada 2008), and are listed under Appendix 1 of the Agreement on the Conservation of Albatrosses and Petrels (ACAP 2013). A principal conservation concern for the species is mortality from fisheries bycatch during the breeding and non-breeding seasons; thus, identification of areas of overlap between at-sea use by Pink-footed Shearwaters and fisheries is a high priority conservation objective (Hinojosa Sáez and Hodum 1997, Mangel et al. 2013, ACAP 2013). During the non-breeding period, Pink-footed Shearwaters range as far north as Canada, although little was known until recently about migration routes and important wintering areas where fisheries bycatch could be a risk. Additionally, Pink-footed Shearwaters face at-sea threats during the non-breeding season off the west coast of North America. Recently, areas used by wintering Pink-footed Shearwaters have been identified as areas of interest for developing alternative energy offshore in North America (e.g., floating wind generators; Trident Winds 2016). The goal of our study was to track Pink-footed Shearwater post-breeding movements with satellite tags to identify timing and routes of migration, locate important non-breeding foraging habitats, and determine population distribution among different wintering regions.
... you can put on your web pages. Conjunctivitis (Pink Eye) One-Page Overview Pink, itchy eyes? Conjunctivitis – or ... protect yourself from getting and spreading pink eye . Pink Eye: What To Do Discusses causes and treatment, when ...
PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control
Zhuang, Na; Li, Lin; Chen, She; Wang, Tao
2016-01-01
Mitochondrial dysfunction has been linked to the pathogenesis of a large number of inherited diseases in humans, including Parkinson's disease, the second most common neurodegenerative disorder. The Parkinson's disease genes pink1 and parkin, which encode a mitochondrially targeted protein kinase, and an E3 ubiquitin ligase, respectively, participate in a key mitochondrial quality-control pathway that eliminates damaged mitochondria. In the current study, we established an in vivo PINK1/Parkin-induced photoreceptor neuron degeneration model in Drosophila with the aim of dissecting the PINK1/Parkin pathway in detail. Using LC-MS/MS analysis, we identified Serine 346 as the sole autophosphorylation site of Drosophila PINK1 and found that substitution of Serine 346 to Alanine completely abolished the PINK1 autophosphorylation. Disruption of either PINK1 or Parkin phosphorylation impaired the PINK1/Parkin pathway, and the degeneration phenotype of photoreceptor neurons was obviously alleviated. Phosphorylation of PINK1 is not only required for the PINK1-mediated mitochondrial recruitment of Parkin but also induces its kinase activity toward Parkin. In contrast, phosphorylation of Parkin by PINK1 is dispensable for its translocation but required for its activation. Moreover, substitution with autophosphorylation-deficient PINK1 failed to rescue pink1 null mutant phenotypes. Taken together, our findings suggest that autophosphorylation of PINK1 is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin. PMID:27906179
The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.
Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter
2017-04-24
Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon mitochondrial stress and due to conformational changes in the active site does not exert kinase activity towards Ub. In patients' fibroblasts, biochemical assays and by structural analyses, we unraveled two pathomechanisms that lead to loss of function upon mutation of p.I368N and highlight potential strategies for future drug development.
Rai, Mahendra; Ingle, Avinash P; Paralikar, Priti; Anasane, Netravati; Gade, Rajendra; Ingle, Pramod
2018-06-09
Ginger (Zingiber officinale Rosc.) is a tropical plant cultivated all over the world due to its culinary and medicinal properties. It is one of the most important spices commonly used in food, which increases its commercial value. However, soft rot (rhizome rot) is a common disease of ginger caused by fungi such as Pythium and Fusarium spp. It is the most destructive disease of ginger, which can reduce the production by 50 to 90%. Application of chemical fungicides is considered as an effective method to control soft rot of ginger but extensive use of fungicides pose serious risk to environmental and human health. Therefore, the development of ecofriendly and economically viable alternative approaches for effective management of soft rot of ginger such diseases is essentially required. An acceptable approach that is being actively investigated involves nanotechnology, which can potentially be used to control Pythium and Fusarium. The present review is aimed to discuss worldwide status of soft rot associated with ginger, the traditional methods available for the management of Pythium and Fusarium spp. and most importantly, the role of various nanomaterials in the management of soft rot of ginger. Moreover, possible antifungal mechanisms for chemical fungicides, biological agents and nanoparticles have also been discussed.
Liu, Song; Lu, Bingwei
2010-12-09
Mutations in PINK1 and Parkin cause familial, early onset Parkinson's disease. In Drosophila melanogaster, PINK1 and Parkin mutants show similar phenotypes, such as swollen and dysfunctional mitochondria, muscle degeneration, energy depletion, and dopaminergic (DA) neuron loss. We previously showed that PINK1 and Parkin genetically interact with the mitochondrial fusion/fission pathway, and PINK1 and Parkin were recently proposed to form a mitochondrial quality control system that involves mitophagy. However, the in vivo relationships among PINK1/Parkin function, mitochondrial fission/fusion, and autophagy remain unclear; and other cellular events critical for PINK1 pathogenesis remain to be identified. Here we show that PINK1 genetically interacted with the protein translation pathway. Enhanced translation through S6K activation significantly exacerbated PINK1 mutant phenotypes, whereas reduction of translation showed suppression. Induction of autophagy by Atg1 overexpression also rescued PINK1 mutant phenotypes, even in the presence of activated S6K. Downregulation of translation and activation of autophagy were already manifested in PINK1 mutant, suggesting that they represent compensatory cellular responses to mitochondrial dysfunction caused by PINK1 inactivation, presumably serving to conserve energy. Interestingly, the enhanced PINK1 mutant phenotype in the presence of activated S6K could be fully rescued by Parkin, apparently in an autophagy-independent manner. Our results reveal complex cellular responses to PINK1 inactivation and suggest novel therapeutic strategies through manipulation of the compensatory responses.
Liu, Song; Lu, Bingwei
2010-01-01
Mutations in PINK1 and Parkin cause familial, early onset Parkinson's disease. In Drosophila melanogaster, PINK1 and Parkin mutants show similar phenotypes, such as swollen and dysfunctional mitochondria, muscle degeneration, energy depletion, and dopaminergic (DA) neuron loss. We previously showed that PINK1 and Parkin genetically interact with the mitochondrial fusion/fission pathway, and PINK1 and Parkin were recently proposed to form a mitochondrial quality control system that involves mitophagy. However, the in vivo relationships among PINK1/Parkin function, mitochondrial fission/fusion, and autophagy remain unclear; and other cellular events critical for PINK1 pathogenesis remain to be identified. Here we show that PINK1 genetically interacted with the protein translation pathway. Enhanced translation through S6K activation significantly exacerbated PINK1 mutant phenotypes, whereas reduction of translation showed suppression. Induction of autophagy by Atg1 overexpression also rescued PINK1 mutant phenotypes, even in the presence of activated S6K. Downregulation of translation and activation of autophagy were already manifested in PINK1 mutant, suggesting that they represent compensatory cellular responses to mitochondrial dysfunction caused by PINK1 inactivation, presumably serving to conserve energy. Interestingly, the enhanced PINK1 mutant phenotype in the presence of activated S6K could be fully rescued by Parkin, apparently in an autophagy-independent manner. Our results reveal complex cellular responses to PINK1 inactivation and suggest novel therapeutic strategies through manipulation of the compensatory responses. PMID:21151574
Jeknić, Zoran; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H H
2014-08-01
Genetic modulation of the carotenogenesis in I. germanica 'Fire Bride' by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors. Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, 'Fire Bride', with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin-capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica 'Fire Bride' and produce new flower traits.
Seedling mortality and development of root rot in white pine seedlings in two bare-root nurseries
J. Juzwik; D. J. Rugg
1996-01-01
Seedling mortality and development of root rot in white pine (Pinus strobus) were followed across locations and over time within three operational nursery fields with loamy sand soils at a provincial nursery in southwestern Ontario, Canada, and a state nursery in southern Wisconsin, USA. One Ontario field was fumigated with dazomet; the other was not...
PINK1 autophosphorylation is required for ubiquitin recognition.
Rasool, Shafqat; Soya, Naoto; Truong, Luc; Croteau, Nathalie; Lukacs, Gergely L; Trempe, Jean-François
2018-04-01
Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin. © 2018 The Authors.
Arantes, Valdeir; Milagres, Adriane M F; Filley, Timothy R; Goodell, Barry
2011-04-01
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe³+-reductants. Phenolates were the major compounds with Fe³+-reducing activity in both fungi and displayed Fe³+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe³+ and H₂O₂ (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum--a model brown rot fungus--other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
..., Commission, from R. Cromwell Coulson, Chief Executive Officer, Pink OTC Markets, Inc., dated September 23... Coulson, Chief Executive Officer, Pink OTC Markets, Inc., dated January 6, 2010 (``Pink OTC 2 Letter..., Chief Executive Officer, Pink OTC Markets Inc., dated April 9, 2010 (``Pink OTC 3 Letter''). II...
Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.
Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark
2016-01-01
Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.
422 A Rare Case of Food-induced Anaphylaxis to Pink Peppercorns
Kim, John; Minikes, Neil
2012-01-01
Background The incidence and prevalence of food allergies appear to be on the rise over the past 20 years. The most common foods to produce an IgE mediated hypersensitivity reaction in adults include peanut, tree nuts, and seafood. The increased use of spices in the U.S. has resulted in a growing number of patients presenting with hypersensitivity reactions. Methods We report a case of a 26 year-old-female who developed anaphylaxis after ingesting pink peppercorn seasoning. The patient was diagnosed with a tree nut allergy at 18 years of age when she developed hives, vomiting and throat closure after ingesting cashews. More recently, she had 3 similar anaphylactic episodes requiring epinephrine and emergency room care when she unknowingly consumed tree nuts contained in foods while dining out (veggie burger, pesto sauce, almonds in Indian food). She again had similar symptoms while eating a home prepared meal in which tree nuts were not included. Intramuscular epinephrine was administered and she was subsequently treated with oral steroids and antihistamines. It was later determined that a new peppercorn medley with pink peppercorns was used for seasoning. The reaction did not occur when she ate the same meal without pink peppercorn seasoning. Food specific IgE testing revealed an elevated IgE for cashews (2.52 kUA/L) and pistachios (2.85 kUA/L). Results Pink peppercorn is not a true pepper, but dried roasted berries derived from Schinus terebinthifolius, a flowering plant in the family Anacardiaceae, native to South America. Common names include Brazilian Pepper, Rose Pepper and Christmasberry. Pink peppercorns are used as a spice to add a mild pepper-like taste to foods. It may potentially cause an irritating skin effect and has been associated with atopic dermatitis in canines. Interestingly, S. terebinthifolius is a member of the family Anacardiaceae, which include plants in the genus Anacardium (cashew nut) and Pistacia (pistachio). No allergens from this plant have been characterized but there is potential for cross-reactivity among different members of the Anacardiaceae family. Conclusions This is the first reported case of a patient developing anaphylaxis after pink peppercorn ingestion. Patients with tree nut allergies may need to be educated regarding this potential allergen.
Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M
2014-03-15
Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.
Claus, James R; Jeong, Jong Youn
2018-02-01
This study was conducted to characterize the pink pigments associated with storing presalted (2%) and ground turkey breast trim at different processing conditions. Four treatments included: treatment (no NaCl, stored for 7 d before being cooked), treatment 2 (NaCl added and stored for 7 d before being cooked), treatment 3 (NaCl added and immediately cooked), and treatment 4 (stored for 7 d before NaCl added and cooked). All treatments were cooked to 4 endpoint temperatures (71.1, 73.9, 76.7, and 79.4°C). Processing conditions affected the pink defect in cooked ground turkey breast. Undenatured myoglobin in salted meat (treatment 2, 3, 4) still remained (17 to 19%) after cooking. Salted and stored ground turkey (treatment 2) produced a cooked product with the most reducing condition (lowest oxidation-reduction potential, ORP) and one of the most red coloration (CIE a* values). Final internal temperature had limited effects on pigment properties. ORP was similar across cooking temperatures but CIE a* values decreased with temperature. Even at 79.4°C, 15% undenatured myoglobin remained. Cooking yield decreased with temperature as expected (92.8 to 89.5%). Results indicate that to limit the degree of the pink color development processors should avoid storage of ground turkey, particularly when mixed with salt, as it favors the formation of nicotinamide-denatured globin hemochrome. © 2017 Poultry Science Association Inc.
Development of molecular methods to detect Macrophomina phaseolina from strawberry plants and soil
USDA-ARS?s Scientific Manuscript database
Macrophomina phaseolina is a broad-host range fungus that shows some degree of host preference on strawberry, and causes symptoms including charcoal rot and root rot. Recently, this pathogen has impacted strawberry production as fumigation practices have changed, leaving many growers in California a...
USDA-ARS?s Scientific Manuscript database
Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop loop-mediated isothermal...
Prevention of cataracts in pink-eyed RCS rats by dark rearing.
O'Keefe, T L; Hess, H H; Zigler, J S; Kuwabara, T; Knapka, J J
1990-11-01
Royal College of Surgeons rats have hereditary retinal degeneration and associated posterior subcapsular opacities (PSO) of the lens, detectable by slitlamp at 7-8 postnatal weeks in both pink- and black-eyed rats. The retinal degeneration is intensified by light, especially in pink-eyed rats. A fourth of pink-eyed rats developed mature cataracts by 9-12 months of age, but black-eyed rats whose retinas are protected from light by pigmented irises and pigment epithelium rarely have mature cataracts (3% or less), indicating light may be a factor in cataractogenesis. Prior work had shown that dark rearing reduced the rate of retinal degeneration in pink- but not black-eyed rats, but cataracts were not studied. In the present work, pregnant pink-eyed females were placed in a darkroom 1 week before parturition. Pups were removed over intervals at 20-85 postnatal days for: (a) microscopic study of fresh lenses and of fixed, stained retina and lens, and (b) counts of cells mm-2 of the web-like vitreous cortex after it had been dissected free. The macrophage-like cells are a quantitative index of immune reaction to retinal damage. At 50-53 postnatal days, in pink-eyed cyclic light reared RCS, the mean number of macrophages was 4.6-fold that in congenic controls, but in those that were dark reared it was only 1.4-fold. This was less than the increase in cyclic light reared black-eyed RCS (2.3-fold that in congenic black-eyed controls). Total absence of light reduced retinal degeneration and the number of macrophages, and prevented PSO detectable microscopically.(ABSTRACT TRUNCATED AT 250 WORDS)
Clinical assessment of infant colour at delivery
O'Donnell, Colm P F; Kamlin, C Omar F; Davis, Peter G; Carlin, John B; Morley, Colin J
2007-01-01
Objective Use of video recordings of newborn infants to determine: (1) if clinicians agreed whether infants were pink; and (2) the pulse oximeter oxygen saturation (Spo2) at which infants first looked pink. Methods Selected clips from video recordings of infants taken immediately after delivery were shown to medical and nursing staff. The infants received varying degrees of resuscitation (including none) and were monitored with pulse oximetry. The oximeter readings were obscured to observers but known to the investigators. A timer was visible and the sound was inaudible. The observers were asked to indicate whether each infant was pink at the beginning, became pink during the clip, or was never pink. If adjudged to turn pink during the clip, observers recorded the time this occurred and the corresponding Spo2 was determined. Results 27 clinicians assessed videos of 20 infants (mean (SD) gestation 31(4) weeks). One infant (5%) was perceived to be pink by all observers. The number of clinicians who thought each of the remaining 19 infants were never pink varied from 1 (4%) to 22 (81%). Observers determined the 10 infants with a maximum Spo2 ⩾95% never pink on 17% (46/270) of occasions. The Spo2 at which individual infants were perceived to turn pink varied from 10% to 100%. Conclusion Among clinicians observing the same videos there was disagreement about whether newborn infants looked pink with wide variation in the Spo2 when they were considered to become pink. PMID:17613535
Adaptive harvest management for the Svalbard population of pink-footed geese: briefing summary
Johnson, Fred A.
2013-01-01
The African-Eurasian Waterbird Agreement (AEWA; http://www.unep-aewa.org/) calls for means to manage populations which cause conflicts with certain human economic activities. The Svalbard population of the pink-footed goose has been selected as the first test case for such an international species management plan to be developed. This document describes progress to date on the development of an adaptive harvest management (AHM) strategy for maintaining pink-footed goose abundance near their target level by providing for sustainable harvasts in Norway and Denmark. This briefing supplements material provided in the Progress Summary distributed to the International Working Group on February 1, 2013. We emphasize that peer review is an essential aspect of the process of developing and implementing an AHM program for pink-footed geese, and we will continue to solicit reviews by the International Working Group and their staff, as well as scientists not engaged in this effort. We wish to make the Working Group aware the the following two manuscripts have been submitted recently to refereed journals and are available upon request from the senior authors: Jensen, G.H., J. Madsen, F.A. Johnson, and M. Tamstorf. Snow conditions as an estimator of the breeding output in high-Arctic pink-footed geese Anser brachyrhynchus. Polar Biology: In review. Johnson, F.A., G.H. Jensen, J. Madsen, and B.K. Williams. Uncertainity, robustness, and the value of information in managing an expanding Arctic goose population. Ecological Modeling: In review. In addition to these manuscripts, the Progress Summary (February 1, 2013), and this Briefing Summary (April 23, 2013) an annual report will be produced in August 2013 and every summer thereafter. Additional manuscripts for journal publication are also anticipated.
Orr, Adam L; Rutaganira, Florentine U; de Roulet, Daniel; Huang, Eric J; Hertz, Nicholas T; Shokat, Kevan M; Nakamura, Ken
2017-10-01
Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Truban, Dominika; Hou, Xu; Caulfield, Thomas R; Fiesel, Fabienne C; Springer, Wolfdieter
2017-01-01
The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.
Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi
2011-01-13
PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.
An insight into spore dispersal of Ganoderma boninense on oil palm.
Sanderson, F R
2005-01-01
The disease of oil palm caused by Ganoderma boninense, although universally referred to as Ganoderma basal stem rot, occurs in three very distinct phases, with basal stem rot only part of the disease cycle. G. boninense also causes a seedling disease and an upper stem rot. An understanding of spore dispersal provides an insight into where spores of G. boninense have a role in the infection process. This role will be discussed in relation to each of these three infection phases. This understanding is a critical component of developing a successful disease control strategy.
Gao, Fen; Ren, Xiao-xia; Wang, Meng-liang; Qin, Xue-mei
2015-11-01
In recent years, root rot diseases of Chinese herbal medicine have been posing grave threat to the development of the traditional Chinese medicine industry. This article presents a review on the occurring situation of the root rot disease, including the occurrence of the disease, the diversity of the pathogens, the regional difference in dominant pathogens,and the complexity of symptoms and a survey of the progress in bio-control of the disease using antagonistic microorganisms. The paper also discusses the existing problems and future prospects in the research.
PINK1 alleviates myocardial hypoxia-reoxygenation injury by ameliorating mitochondrial dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Qiu, Liangxian; Liu, Xiping
PTEN inducible kinase-1 (PINK1) mutant induces mitochondrial dysfunction of cells, resulting in an inherited form of Parkinson's disease. However its exact role in the cardiomyocytes is unclear. The present study examined the function of PINK1 in hypoxia-reoxygenation (H/R) induced H9c2 cell damage and its potential mechanism. The H/R model in H9c2 cells was established by 6 h of hypoxia and 12 h of reoxygenation. The CCK8 and LDH assay indicated that the cell viability was obviously reduced after H/R. The expression of PINK1 was decreased in H/R-induced H9c2 cells compared with control group. The vector overexpressing PINK1 was constructed to transfect intomore » H/R-induced H9c2 cells. Our results showed that cell viability was increased, cell apoptosis and caspase 3, cytochrome C (Cyto C) levels were decreased after LV-PINK1 transfection. Furthermore, PINK1 overexpression stabilized electron transport chain (ETC) activity, increased ATP production, mPTP opening and mitochondrial membrane potential (MMP), inhibited ROS-generating mitochondria, implying PINK1 alleviates H/R induced mitochondrial dysfunction in cardiomyocytes. In addition, the TRAP-1 siRNA was transfected into PINK1 treated H9c2 cells after H/R to detected the molecular mechanism of PINK1 protecting cardiomyocytes. The results indicated that silence of TRAP-1 reversed the effects of PINK1 in H/R-induced H9c2 cells. In conclusion, these results suggest that PINK1 overexpression alleviates H/R-induced cell damage of H9c2 cells by phosphorylation of TRAP-1, and that is a valid approach for protection from myocardial I/R injury. - Highlights: • Effects of H/R on cell viability and PINK1 expression in H9c2 cells. • Effects of PINK1 on cell viability in H9c2 cells with H/R model. • Effects of PINK1 on mitochondrial dysfunction in H9c2 cells with H/R model. • PINK1 ameliorates H/R-induced H9c2 cells injury by activating p-TRAP-1.« less
Lazarou, Michael; Jin, Seok Min; Kane, Lesley A; Youle, Richard J
2012-02-14
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation. Copyright © 2012 Elsevier Inc. All rights reserved.
Rojas-Garbanzo, Carolina; Gleichenhagen, Maike; Heller, Annerose; Esquivel, Patricia; Schulze-Kaysers, Nadine; Schieber, Andreas
2017-05-10
Pigments of pericarp and pulp of pink guava (Psidium guajava L. cv. 'Criolla') were investigated to elucidate the profile and the accumulation of main carotenoids during four stages of fruit ripening by using HPLC-DAD and APCI-MS/MS analysis. Seventeen carotenoids were identified, and changes in their profile during fruit ripening were observed. The carotenoids all-trans-β-carotene, 15-cis-lycopene, and all-trans-lycopene were present in all ripening stages, but all-trans-lycopene was found to be predominant (from 63% to 92% of total carotenoids) and responsible for the high lipophilic antioxidant capacity determined by spectrophotometric assays. By using light and transmission electron microscopy, the development of chromoplasts in pericarp and pulp was demonstrated. The accumulation of all-trans-lycopene and all-trans-β-carotene coincided with the development of large crystals; the chromoplasts of pink guava belong, therefore, to the crystalline type.
USDA-ARS?s Scientific Manuscript database
Basal stalk rot (BSR) caused by Sclerotinia sclerotiorum (Lib.) de Bary is a devastating disease that causes a significant damage to worldwide sunflower (Helianthus annuus L.) production by reducing seed yield and quality. The objective of this research was to develop highly BSR tolerant sunflower g...
USDA-ARS?s Scientific Manuscript database
Rosette (caused by the fungus Cercosporella rubi) is considered a limiting factor of blackberry production in the southern U. S. Fruit rots annually cause extensive losses to blackberry farmers. The development of cultivars with increased resistance to rosette, fruit rot and other diseases should r...
USDA-ARS?s Scientific Manuscript database
Fruit rot, caused by Phytophthora capsici, is a serious disease in most watermelon producing regions in southeastern U.S., and has caused devastating loss over the past few years. In many instances, severe losses occurred after harvest during transportation. Experiments were conducted in 2010, 201...
DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs.
Hood, D W; Dow, C S; Green, P N
1987-03-01
The genomic relatedness among 36 strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) was estimated by determination of DNA base composition and by DNA:DNA hybridization studies. A reproducible hybridization system was developed for the rapid analysis of multiple DNA samples. Results indicated that the PPFMs comprise four major and several minor homology groups, and that they should remain grouped in a single genus, Methylobacterium.
Following basal stem rot in young oil palm plantings.
Panchal, G; Bridge, P D
2005-01-01
The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base material at a greater frequency than would be expected by comparison with current infection levels. Comparisons are made between the height of the frond base infected, the number of frond bases infected, and subsequent development of basal stem rot. The preliminary results suggest that the development of basal stem rot may be more likely to occur when young lower frond bases are infected.
Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; ...
2015-02-12
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less
Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; Nagy, Laszlo G.; Koehler, Gage; Ransdell, Anthony S.; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A.; Kües, Ursula; Blanchette, Robert A.; Grigoriev, Igor V.; Minto, Robert E.; Hibbett, David S.
2015-01-01
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. Fistulina hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition towards a brown rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. PMID:25683379
Floudas, Dimitrios; Held, Benjamin W; Riley, Robert; Nagy, Laszlo G; Koehler, Gage; Ransdell, Anthony S; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A; Kües, Ursula; Blanchette, Robert A; Grigoriev, Igor V; Minto, Robert E; Hibbett, David S
2015-03-01
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. Copyright © 2015 Elsevier Inc. All rights reserved.
Everhart, S E; Scherm, H
2015-04-01
The purpose of this study was to determine the fine-scale genetic structure of populations of the brown rot pathogen Monilinia fructicola within individual peach tree canopies to better understand within-tree plant pathogen diversity and to complement previous work on spatiotemporal development of brown rot disease at the canopy level. Across 3 years in a total of six trees, we monitored disease development, collected isolates from every M. fructicola symptom during the course of the season, and created high-resolution three-dimensional maps of all symptom and isolate locations within individual canopies using an electromagnetic digitizer. Each canopy population (65 to 173 isolates per tree) was characterized using a set of 13 microsatellite markers and analyzed for evidence of spatial genetic autocorrelation among isolates during the epidemic phase of the disease. Results showed high genetic diversity (average uh=0.529) and high genotypic diversity (average D=0.928) within canopies. The percentage of unique multilocus genotypes within trees was greater for blossom blight isolates (78.2%) than for fruit rot isolates (51.3%), indicating a greater contribution of clonal reproduction during the preharvest epidemic. For fruit rot isolates, between 54.2 and 81.7% of isolates were contained in one to four dominant clonal genotypes per tree having at least 10 members. All six fruit rot populations showed positive and significant spatial genetic autocorrelation for distance classes between 0.37 and 1.48 m. Despite high levels of within-tree pathogen diversity, the contribution of locally available inoculum combined with short-distance dispersal is likely the main factor generating clonal population foci and associated spatial genetic clustering within trees.
Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P
2012-06-19
Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.
Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi
2011-01-01
Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1−/− mice to inflammation and injury-induced cell death. PMID:21249202
INFLUENCE OF $gamma$-IRRADIATION ON SOME KINDS OF FRUITS AND ON CANNED FRUIT (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatiashvili, Sh.M.; Tsetskhladze, T.V.; Cherkezishvili, L.I.
1960-01-01
Some results of observations of changes in organoleptic properties of different fresh fruits, their juices, and canned fruit under the influence of gamma irradiation (Co/sup 60/) are given. Irradiation of green persimmons to 1.5 million roentgen at 8500 r/hr leads to the gradual artificial ripening of the fruits. They do not gain any strange taste and are sweeter than the controls. During the same period of time the control green persimmons wither. Figs irradiated with 1.5 million roentgen are well conserved in hermetically closed jars for several weeks without changing their taste. Control flgs go sour in 2 to 3more » days under the same conditions. A wild plum is well conserved under gamma irradiation during a month without any changes of its taste or appearance. The total dose reached 1 miilion rcentgen per month. Control plums wither and rot after two or three days. Peaches irradiated in hermetically closed jars conserve their freshness, consistence, color, and taste for weeks when irradiated with 1.5 million roentgen at 8500 r/hr. With further storage the smell and taste of peaches changes sharply, but the appearance and consistence are conserved without any changes for more than 7 months. The control peaches under the same conditions of storage rot after 4 to 5 days. Tangerines and lemons under irradiation acquire a strange taste beginning at 100 thousand roentgen. If they are irradiated with 750 thousand roentgen, the period of storage is doubled or tripled. The irradiated tangerines have the taste of boiled ones. Grapes under the influence of gamma irradiation begin to spoil at 10000 r. Pink and black cherries are conserved for several weeks without changing their organoleptic properties if the dose is 750,000 r and the dose rate is 8500 r/hr. (auth)« less
Hirobe, Tomohisa; Ishikawa, Akira
2015-12-01
The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the mechanisms of age-related pigmentation in human skin, such as melasma and solar lentigines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Charcoal rot, caused by Macrophomina phaseolina (Tassi) Goidanich, is a disease that is a world-wide problem in soybean production for which no highly resistant cultivars are currently available. Soybean germplasm line DT99-16864, a maturity group V line, was developed by the U.S. Department of Ag...
USDA-ARS?s Scientific Manuscript database
Watermelon is an important crop grown in 44 states in the United States. Phytophthora fruit rot caused by Phytophthora capsici is a serious disease in the southeastern U.S., where over 50% of the watermelons are produced. The disease has resulted in severe losses to watermelon growers, especially in...
USDA-ARS?s Scientific Manuscript database
Determining the genes responsible for pest resistance in maize can allow breeders to develop varieties with lower losses and less contamination with undesirable toxins. A gene sequence coding for a geranyl geranyl transferase-like protein located in a fungal ear rot resistance quantitative trait loc...
Truban, Dominika; Hou, Xu; Caulfield, Thomas R.; Fiesel, Fabienne C.; Springer, Wolfdieter
2016-01-01
The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway. PMID:27911343
Spatial Heterogeneity of SOM Concentrations Associated with White-rot Versus Brown-rot Wood Decay.
Bai, Zhen; Ma, Qiang; Dai, Yucheng; Yuan, Haisheng; Ye, Ji; Yu, Wantai
2017-10-23
White- and brown-rot fungal decay via distinct pathways imparts characteristic molecular imprints on decomposing wood. However, the effect that a specific wood-rotting type of fungus has on proximal soil organic matter (SOM) accumulation remains unexplored. We investigated the potential influence of white- and brown-rot fungi-decayed Abies nephrolepis logs on forest SOM stocks (i.e., soil total carbon (C) and nitrogen (N)) and the concentrations of amino sugars (microbial necromass) at different depths and horizontal distances from decaying woody debris. The brown-rot fungal wood decay resulted in higher concentrations of soil C and N and a greater increase in microbial necromass (i.e., 1.3- to 1.7-fold greater) than the white-rot fungal wood decay. The white-rot sets were accompanied by significant differences in the proportions of the bacterial residue index (muramic acid%) with soil depth; however, the brown-rot-associated soils showed complementary shifts, primarily in fungal necromass, across horizontal distances. Soil C and N concentrations were significantly correlated with fungal rather than bacterial necromass in the brown-rot systems. Our findings confirmed that the brown-rot fungi-dominated degradation of lignocellulosic residues resulted in a greater SOM buildup than the white-rot fungi-dominated degradation.
Barrasa, José M; Blanco, María N; Esteve-Raventós, Fernando; Altés, Alberto; Checa, Julia; Martínez, Angel T; Ruiz-Dueñas, Francisco J
2014-11-01
During several forays for ligninolytic fungi in different Spanish native forests, 35 white-rot basidiomycetes growing on dead wood (16 species from 12 genera) and leaf litter (19 species from 10 genera) were selected for their ability to decolorize two recalcitrant aromatic dyes (Reactive Blue 38 and Reactive Black 5) added to malt extract agar medium. In this study, two dye decolorization patterns were observed and correlated with two ecophysiological groups (wood and humus white-rot basidiomycetes) and three taxonomical groups (orders Polyporales, Hymenochaetales and Agaricales). Depending on the above groups, different decolorization zones were observed on the dye-containing plates, being restricted to the colony area or extending to the surrounding medium, which suggested two different decay strategies. These two strategies were related to the ability to secrete peroxidases and laccases inside (white-rot wood Polyporales, Hymenochaetales and Agaricales) and outside (white-rot humus Agaricales) of the fungal colony, as revealed by enzymatic tests performed directly on the agar plates. Similar oxidoreductases production patterns were observed when fungi were grown in the absence of dyes, although the set of enzyme released was different. All these results suggest that the decolorization patterns observed could be related with the existence of two decay strategies developed by white-rot basidiomycetes adapted to wood and leaf litter decay in the field. Published by Elsevier Inc.
Riley, Robert; Salamov, Asaf A.; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitrios; Held, Benjamin W.; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio G.; Walton, Jonathan D.; Blanchette, Robert A.; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S.; Grigoriev, Igor V.
2014-01-01
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869
Root rot in sugar beet piles at harvest
USDA-ARS?s Scientific Manuscript database
Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...
Regulation of parkin and PINK1 by neddylation
Choo, Yeun Su; Vogler, Georg; Wang, Danling; Kalvakuri, Sreehari; Iliuk, Anton; Tao, W. Andy; Bodmer, Rolf; Zhang, Zhuohua
2012-01-01
Neddylation is a posttranslational modification that plays important roles in regulating protein structure and function by covalently conjugating NEDD8, an ubiquitin-like small molecule, to the substrate. Here, we report that Parkinson's disease (PD)-related parkin and PINK1 are NEDD8 conjugated. Neddylation of parkin and PINK1 results in increased E3 ligase activity of parkin and selective stabilization of the 55 kDa PINK1 fragment. Expression of dAPP-BP1, a NEDD8 activation enzyme subunit, in Drosophila suppresses abnormalities induced by dPINK1 RNAi. PD neurotoxin MPP+ inhibits neddylation of both parkin and PINK1. NEDD8 immunoreactivity is associated with Lewy bodies in midbrain dopaminergic neurons of PD patients. Together, these results suggest that parkin and PINK1 are regulated by neddylation and that impaired NEDD8 modification of these proteins likely contributes to PD pathogenesis. PMID:22388932
NASA Astrophysics Data System (ADS)
Shrestha, Prachand
This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.
Ali, M Liakat; Taylor, Jeff H; Jie, Liu; Sun, Genlou; William, Manilal; Kasha, Ken J; Reid, Lana M; Pauls, K Peter
2005-06-01
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.
Yun, Jina; Puri, Rajat; Yang, Huan; Lizzio, Michael A; Wu, Chunlai; Sheng, Zu-Hang; Guo, Ming
2014-01-01
Parkinson's disease (PD) genes PINK1 and parkin act in a common pathway that regulates mitochondrial integrity and quality. Identifying new suppressors of the pathway is important for finding new therapeutic strategies. In this study, we show that MUL1 suppresses PINK1 or parkin mutant phenotypes in Drosophila. The suppression is achieved through the ubiquitin-dependent degradation of Mitofusin, which itself causes PINK1/parkin mutant-like toxicity when overexpressed. We further show that removing MUL1 in PINK1 or parkin loss-of-function mutant aggravates phenotypes caused by loss of either gene alone, leading to lethality in flies and degeneration in mouse cortical neurons. Together, these observations show that MUL1 acts in parallel to the PINK1/parkin pathway on a shared target mitofusin to maintain mitochondrial integrity. The MUL1 pathway compensates for loss of PINK1/parkin in both Drosophila and mammals and is a promising therapeutic target for PD. DOI: http://dx.doi.org/10.7554/eLife.01958.001 PMID:24898855
Seeing the World Through "Pink-Colored Glasses": The Link Between Optimism and Pink.
Kalay-Shahin, Lior; Cohen, Allon; Lemberg, Rachel; Harary, Gil; Lobel, Thalma E
2016-12-01
This study investigated optimism, which is considered a personality trait, from the grounded cognition perspective. Three experiments were conducted to investigate the association between pink and optimism. In Experiment 1A, 22 undergraduates (10 females; M age = 23.68) were asked to classify words as optimistic or pessimistic as fast as possible. Half the words were presented in pink and half in black. Experiment 1B (N = 24; 14 females; M age = 22.82) was identical to 1A except for the color of the words-black and light blue instead of pink-to rule out the possible influence of brightness. Experiment 2 exposed 144 participants (74 females; M age = 25.18) to pink or yellow and then measured their optimism level. The findings for Experiments 1A and 1B indicated an association between pink and optimism regardless of brightness. Experiment 2 found that mere exposure to pink increased optimism levels for females. These results contribute to the dynamic view of personality, current views on optimism, and the growing literature on grounded cognition. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Heineman, K. D.; Russo, S. E.; Baillie, I. C.; Mamit, J. D.; Chai, P. P.-K.; Chai, L.; Hindley, E. W.; Lau, B.-T.; Tan, S.; Ashton, P. S.
2015-10-01
Fungal decay of heart wood creates hollows and areas of reduced wood density within the stems of living trees known as stem rot. Although stem rot is acknowledged as a source of error in forest aboveground biomass (AGB) estimates, there are few data sets available to evaluate the controls over stem rot infection and severity in tropical forests. Using legacy and recent data from 3180 drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of stem rot in a total of 339 tree species, and related variation in stem rot with tree size, wood density, taxonomy, and species' soil association, as well as edaphic conditions. Predicted stem rot frequency for a 50 cm tree was 53 % of felled, 39 % of drilled, and 28 % of cored stems, demonstrating differences among methods in rot detection ability. The percent stem volume infected by rot, or stem rot severity, ranged widely among trees with stem rot infection (0.1-82.8 %) and averaged 9 % across all trees felled. Tree taxonomy explained the greatest proportion of variance in both stem rot frequency and severity among the predictors evaluated in our models. Stem rot frequency, but not severity, increased sharply with tree diameter, ranging from 13 % in trees 10-30 cm DBH to 54 % in stems ≥ 50 cm DBH across all data sets. The frequency of stem rot increased significantly in soils with low pH and cation concentrations in topsoil, and stem rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the maximum percent of stem biomass lost to stem rot varied significantly with soil properties, and we estimate that stem rot reduces total forest AGB estimates by up to 7 % relative to what would be predicted assuming all stems are composed strictly of intact wood. This study demonstrates not only that stem rot is likely to be a significant source of error in forest AGB estimation, but also that it strongly covaries with tree size, taxonomy, habitat association, and soil resources, underscoring the need to account for tree community composition and edaphic variation in estimating carbon storage in tropical forests.
Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression☆
Gómez-Sánchez, Rubén; Gegg, Matthew E.; Bravo-San Pedro, José M.; Niso-Santano, Mireia; Alvarez-Erviti, Lydia; Pizarro-Estrella, Elisa; Gutiérrez-Martín, Yolanda; Alvarez-Barrientos, Alberto; Fuentes, José M.; González-Polo, Rosa Ana; Schapira, Anthony H.V.
2014-01-01
Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24 h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3 h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection. PMID:24184327
Kathryn Robbins; Philip M. Wargo
1989-01-01
Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...
Pink-color sign in esophageal squamous neoplasia, and speculation regarding the underlying mechanism
Ishihara, Ryu; Kanzaki, Hiromitsu; Iishi, Hiroyasu; Nagai, Kengo; Matsui, Fumi; Yamashina, Takeshi; Matsuura, Noriko; Ito, Takashi; Fujii, Mototsugu; Yamamoto, Sachiko; Hanaoka, Noboru; Takeuchi, Yoji; Higashino, Koji; Uedo, Noriya; Tatsuta, Masaharu; Tomita, Yasuhiko; Ishiguro, Shingo
2013-01-01
AIM: To investigate the reasons for the occurrence of the pink-color sign of iodine-unstained lesions. METHODS: In chromoendoscopy, the pink-color sign of iodine-unstained lesions is recognized as useful for the diagnosis of esophageal squamous cell carcinoma. Patients with superficial esophageal neoplasms treated by endoscopic resection were included in the study. Areas of mucosa with and without the pink-color sign were evaluated histologically. The following histologic features that were possibly associated with the pink-color sign were evaluated. The keratinous layer and basal cell layer were classified as present or absent. Cellular atypia was classified as high grade, moderate grade or low grade, based on nuclear irregularity, mitotic figures, loss of polarity, chromatin pattern and nuclear/cytoplasmic ratio. Vascular change was assessed based on dilatation, tortuosity, caliber change and variability in shape. Vessels with these four findings were classified as positive for vascular change. Endoscopic images of the lesions were captured immediately after iodine staining, 2-3 min after iodine staining and after complete fading of iodine staining. Quantitative analysis of color changes after iodine staining was also performed. RESULTS: A total of 61 superficial esophageal neoplasms in 54 patients were included in the study. The lesions were located in the cervical esophagus in one case, the upper thoracic esophagus in 10 cases, the mid-thoracic esophagus in 33 cases, and the lower thoracic esophagus in 17 cases. The median diameter of the lesions was 20 mm (range: 2-74 mm). Of the 61 lesions, 28 were classified as pink-color sign positive and 33 as pink-color sign negative. The histologic diagnosis was high-grade intraepithelial neoplasia (HGIN) or cancer invading into the lamina propria in 26 of the 28 pink-color sign positive lesions. There was a significant association between pink-color sign positive epithelium and HGIN or invasive cancer (P = 0.0001). Univariate analyses found that absence of the keratinous layer and cellular atypia were significantly associated with the pink-color sign. After Bonferroni correction, there were no significant associations between the pink-color sign and presence of the basal membrane or vascular change. Multivariate analyses found that only absence of the keratinous layer was independently associated with the pink-color sign (OR = 58.8, 95%CI: 5.5-632). Quantitative analysis was performed on 10 superficial esophageal neoplasms with both pink-color sign positive and negative areas in 10 patients. Pink-color sign positive mucosa had a lower mean color value in the late phase (pinkish color) than in the early phase (yellowish color), and had similar mean color values in the late and final phases. These findings suggest that pink-color positive mucosa underwent color fading from the color of the iodine (yellow) to the color of the mucosa (pink) within 2-3 min after iodine staining. Pink-color sign negative mucosa had similar mean color values in the late and early phases (yellowish color), and had a lower mean color value in the final phase (pinkish color) than in the late phase. These findings suggest that pink-color sign negative mucosa did not undergo color fading during the 2-3 min after iodine staining, and underwent color fading only after spraying of sodium thiosulfate. CONCLUSION: The pink-color sign was associated with absence of the keratinous layer. This sign may be caused by early fading of iodine staining. PMID:23885140
USDA-ARS?s Scientific Manuscript database
In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...
Tidal and seasonal effects on transport of pink shrimp postlarvae
Criales, Maria M.; Wang, Jingyuan; Browder, Joan A.; Robblee, M.B.
2005-01-01
Transport simulations were conducted to investigate a large seasonal peak in postlarvae of the pink shrimp Farfantepenaeus duorarum that occurs every summer on the northwestern border of Florida Bay. Daily vertical migration, a known behavior in pink shrimp postlarvae, was assumed in all scenarios investigated. A Lagrangian trajectory model was developed using a current field derived from a 3 yr ADCP (Acoustic Doppler Current Profiler) time series. To fit the estimated planktonic development time of pink shrimp, the model simulated larvae traveling at night over a 30 d period. We investigated 2 types of effects: (1) the effect of mismatch periodicity between tidal constituents and daily migration, and (2) the effect of seasonal changes in night length. The maximum eastward displacement with the semidiurnal lunar tidal constituent (M2) was 4 km, with periods of enhanced transport in both summer and winter. In contrast, eastward displacement with the semidiurnal solar tidal constituent (S2) and the lunisolar diurnal K1 was 65 km and the period of maximum distance occurred in summer every year. Because the periods of S2 and K1 are so close to the 24 h vertical migration period, and the eastward current (flood) of these constituents matches the diel cycle over extended intervals, they can induce strong horizontal transport during summer. Thus, diel vertical migration can interact with the S2 and the K1 tidal constituents and with the annual cycle of night length to produce a distinct annual cycle that may enhance transport of pink shrimp and other coastal species during summer in shallow areas of the Gulf of Mexico. ?? Inter-Research 2005.
Bulbar conjunctival sporotrichosis presenting as a salmon-pink tumor.
Kashima, Tomoyuki; Honma, Rika; Kishi, Shoji; Hirato, Junko
2010-05-01
To report a patient with bulbar conjunctival sporotrichosis presenting as a salmon-pink tumor. This was an interventional case report. A 62-year-old woman presented with conjunctival injection in her left eye. Despite administration of topical dexamethasone sodium, ofloxacin, and levocabastine hydrochloride, her symptoms failed to improve and she was referred to us. Four weeks after referral to us, the patient gradually developed conjunctival injection in both eyes and a salmon-pink tumor in the bulbar conjunctiva of the left eye. Excision biopsy was performed and pathologic examination revealed an epithelioid granuloma with microabscesses and infiltration of plasma cells with yeast-like spherules. A sporotrichin intradermal test was strongly positive. Based on a diagnosis of sporotrichosis, we treated her with topical fluconazole 0.2% in both eyes and oral potassium iodide (450 mg). The bilateral conjunctival injection and subconjunctival tumor in the left eye gradually resolved and had completely disappeared after 3 months of treatment. This is the first report of bulbar conjunctival sporotrichosis with a salmon-pink conjunctival tumor. Although rare, ophthalmologists should be aware of this entity during examination of patients with intractable conjunctival injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert; Salamov, Asaf; Brown, Daren W.
Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rotmore » classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.« less
Sharma, Brij B.; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R.
2017-01-01
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides. PMID:28769959
Sharma, Brij B; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R
2017-01-01
Black rot caused by Xanthomonas campestris pv. campestris ( Xcc ) is a very important disease of cauliflower ( Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B 1 ) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F 1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2 n = 18, CC) × B. carinata (2 n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2 n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F 1 hybrid and BC 1 plants. The F 1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC 1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC 1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.
Talukder, Zahirul I; Hulke, Brent S; Qi, Lili; Scheffler, Brian E; Pegadaraju, Venkatramana; McPhee, Kevin; Gulya, Thomas J
2014-01-01
Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana. Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r (2) = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r (2) = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.
Khabbaz, Salah Eddin; Abbasi, Pervaiz A
2014-01-01
Antagonistic bacteria are common soil inhabitants with potential to be developed into biofungicides for the management of seedling damping-off, root rot, and other soil-borne diseases of various crops. In this study, antagonistic bacteria were isolated from a commercial potato field and screened for their growth inhibition of fungal and oomycete pathogens in laboratory tests. The biocontrol potential of the 3 most effective antagonistic bacteria from the in vitro tests was evaluated against seedling damping-off and root rot of cucumber caused by Pythium ultimum. Based on phenotypic characteristics, biochemical tests, and sequence analysis of 16S-23S rDNA gene, the 3 antagonistic bacteria were identified as Pseudomonas fluorescens (isolate 9A-14), Pseudomonas sp. (isolate 8D-45), and Bacillus subtilis (isolate 8B-1). All 3 bacteria promoted plant growth and suppressed Pythium damping-off and root rot of cucumber seedlings in growth-room assays. Both pre- and post-planting application of these bacteria to an infested peat mix significantly increased plant fresh masses by 113%-184% and percentage of healthy seedlings by 100%-290%, and decreased damping-off and root rot severity by 27%-50%. The peat and talc formulations of these antagonistic bacteria applied as seed or amendment treatments to the infested peat mix effectively controlled Pythium damping-off and root rot of cucumber seedlings and enhanced plant growth. The survival of all 3 antagonistic bacteria in peat and talc formulations decreased over time at room temperature, but the populations remained above 10(8) CFU/g during the 180-day storage period. The peat formulation of a mixture of 3 bacteria was the best seed treatment, significantly increasing the plant fresh masses by 245% as compared with the Pythium control, and by 61.4% as compared with the noninfested control. This study suggests that the indigenous bacteria from agricultural soils can be developed and formulated as biofungicides for minimizing the early crop losses caused by seedling damping-off and root rot diseases.
7 CFR 301.52-9 - Movement of live pink bollworms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live pink bollworms. 301.52-9 Section 301... Regulations § 301.52-9 Movement of live pink bollworms. Regulations requiring a permit for, and otherwise governing the movement of live pink bollworms in interstate or foreign commerce are contained in the Federal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... 12-month finding on a petition to list Calopogon oklahomensis (Oklahoma grass pink orchid) under the... the Oklahoma grass pink or prairie grass pink, is a terrestrial species of orchid (family Orchidaceae... the genus Calopogon, a group of terrestrial orchids known as grass pinks. The number of species...
Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico
USDA-ARS?s Scientific Manuscript database
The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...
Kim, Seok Jin; Yoon, Dok Hyun; Jaccard, Arnaud; Chng, Wee Joo; Lim, Soon Thye; Hong, Huangming; Park, Yong; Chang, Kian Meng; Maeda, Yoshinobu; Ishida, Fumihiro; Shin, Dong-Yeop; Kim, Jin Seok; Jeong, Seong Hyun; Yang, Deok-Hwan; Jo, Jae-Cheol; Lee, Gyeong-Won; Choi, Chul Won; Lee, Won-Sik; Chen, Tsai-Yun; Kim, Kiyeun; Jung, Sin-Ho; Murayama, Tohru; Oki, Yasuhiro; Advani, Ranjana; d'Amore, Francesco; Schmitz, Norbert; Suh, Cheolwon; Suzuki, Ritsuro; Kwong, Yok Lam; Lin, Tong-Yu; Kim, Won Seog
2016-03-01
The clinical outcome of extranodal natural killer T-cell lymphoma (ENKTL) has improved substantially as a result of new treatment strategies with non-anthracycline-based chemotherapies and upfront use of concurrent chemoradiotherapy or radiotherapy. A new prognostic model based on the outcomes obtained with these contemporary treatments was warranted. We did a retrospective study of patients with newly diagnosed ENKTL without any previous treatment history for the disease who were given non-anthracycline-based chemotherapies with or without upfront concurrent chemoradiotherapy or radiotherapy with curative intent. A prognostic model to predict overall survival and progression-free survival on the basis of pretreatment clinical and laboratory characteristics was developed by filling a multivariable model on the basis of the dataset with complete data for the selected risk factors for an unbiased prediction model. The final model was applied to the patients who had complete data for the selected risk factors. We did a validation analysis of the prognostic model in an independent cohort. We did multivariate analyses of 527 patients who were included from 38 hospitals in 11 countries in the training cohort. Analyses showed that age greater than 60 years, stage III or IV disease, distant lymph-node involvement, and non-nasal type disease were significantly associated with overall survival and progression-free survival. We used these data as the basis for the prognostic index of natural killer lymphoma (PINK), in which patients are stratified into low-risk (no risk factors), intermediate-risk (one risk factor), or high-risk (two or more risk factors) groups, which were associated with 3-year overall survival of 81% (95% CI 75-86), 62% (55-70), and 25% (20-34), respectively. In the 328 patients with data for Epstein-Barr virus DNA, a detectable viral DNA titre was an independent prognostic factor for overall survival. When these data were added to PINK as the basis for another prognostic index (PINK-E)-which had similar low-risk (zero or one risk factor), intermediate-risk (two risk factors), and high-risk (three or more risk factors) categories-significant associations with overall survival were noted (81% [95% CI 75-87%], 55% (44-66), and 28% (18-40%), respectively). These results were validated and confirmed in an independent cohort, although the PINK-E model was only significantly associated with the high-risk group compared with the low-risk group. PINK and PINK-E are new prognostic models that can be used to develop risk-adapted treatment approaches for patients with ENKTL being treated in the contemporary era of non-anthracycline-based therapy. Samsung Biomedical Research Institute. Copyright © 2016 Elsevier Ltd. All rights reserved.
Premsagar Korripally; Vitaliy I. Timokhin; Carl J. Houtman; Michael D. Mozuch; Kenneth E. Hammel
2013-01-01
Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant...
Killikelly, April; Jakoncic, Jean; Benson, Meredith A.; ...
2014-10-20
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killikelly, April; Jakoncic, Jean; Benson, Meredith A.
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less
Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung
2014-02-19
Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.
Parkin and PINK1 functions in oxidative stress and neurodegeneration.
Barodia, Sandeep K; Creed, Rose B; Goldberg, Matthew S
2017-07-01
Loss-of-function mutations in the genes encoding Parkin and PINK1 are causally linked to autosomal recessive Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, and PINK1, a mitochondrial-targeted kinase, function together in a common pathway to remove dysfunctional mitochondria by autophagy. Presumably, deficiency for Parkin or PINK1 impairs mitochondrial autophagy and thereby increases oxidative stress due to the accumulation of dysfunctional mitochondria that release reactive oxygen species. Parkin and PINK1 likely have additional functions that may be relevant to the mechanisms by which mutations in these genes cause neurodegeneration, such as regulating inflammation, apoptosis, or dendritic morphogenesis. Here we briefly review what is known about functions of Parkin and PINK1 related to oxidative stress and neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Xingxia Ma; Grant T. Kirker; Carol A. Clausen; Mingliang Jiang; Haibin Zhou
2017-01-01
The modulus of elasticity (MOE) of wood is a sensitive indicator of rotfungal attack. To develop an alternative method of rapid assessment of fungal decay in the laboratory, changes in static MOE of untreated and preservative-treated wood were measured during exposure to the brownrot fungus, Gloeophyllum trabeum, and the white-rot fungus, Trametes...
C. A. Clausen; S. N. Kartal
2003-01-01
Early detection of wood decay is critical because decay fungi can cause rapid structural failure. The objective of this study was to compare the sensitivity of different methods purported to detect brown-rot decay in the early stages of development. The immunodiagnostic wood decay (IWD)test, soil block test/cake pan test, mechanical property tests, and chemical...
Zhou, Ting; Schneider, Karin E; Li, Xiu-Zhen
2008-08-15
An unconventional strategy of screening food microbes for biocontrol activity was used to develop biocontrol agents for controlling post-harvest peach brown rot caused by Monilinia fructicola. Forty-four microbial isolates were first screened for their biocontrol activity on apple fruit. Compared with the pathogen-only check, seven of the 44 isolates reduced brown rot incidence by >50%, including four bacteria: Bacillus sp. C06, Lactobacillus sp. C03-b and Bacillus sp. T03-c, Lactobacillus sp. P02 and three yeasts: Saccharomyces delbrueckii A50, S. cerevisiae YE-5 and S. cerevisiae A41. Eight microbial isolates were selected for testing on peaches by wound co-inoculation with mixtures of individual microbial cultures and conidial suspension of M. fructicola. Only two of them showed significant biocontrol activity after five days of incubation at 22 degrees C. Bacillus sp. C06 suppressed brown rot incidence by 92% and reduced lesion diameter by 88% compared to the pathogen-only check. Bacillus sp.T03-c reduced incidence and lesion diameter by 40% and 62%, respectively. The two isolates were compared with Pseudomonas syringae MA-4, a biocontrol agent for post-harvest peach diseases, by immersing peaches in an aliquot containing individual microbial isolates and the pathogen conidia. Treatments with isolates MA-4, C06 and T03-c significantly controlled brown rot by 91, 100, and 100% respectively. However, only isolates MA-4 and C06 significantly reduced brown rot by 80% and 15%, respectively when bacterial cells alone were applied. On naturally infected peaches, both the bacterial culture and its cell-free filtrate of the isolate C06 significantly controlled peach decay resulting in 77 and 90% reduction, respectively, whereas the treatment using only the bacterial cells generally had no effect. Isolate C06 is a single colony isolate obtained from a mesophilic cheese starter, and has been identified belonging to Bacillus amyloliquefaciens. The results have clearly demonstrated that isolate C06 has a great potential for being developed into a biocontrol agent.
Yu, Xin-Yi; Du, Bei-Bei; Gao, Zhi-Hong; Zhang, Shi-Jie; Tu, Xu-Tong; Chen, Xiao-Yun; Zhang, Zhen; Qu, Shen-Chun
2014-08-01
MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.
Belloy, Luc; Giacometti, Marco; Boujon, Patrick; Waldvogel, Andreas
2007-01-01
Severe keratinous hoof afflictions have been recorded in ibex (Capra ibex ibex) since 1995 and more recently in mouflon (Ovis aries musimon) in Switzerland. Based on clinical observations and comparison with diseases known to affect domestic ungulates, it was hypothesized these wild ungulates were affected by foot rot associated with infection with Dichelobacter nodosus. Dichelobacter nodosus has been shown to be the essential pathogen for initiation and establishment of foot rot, a highly contagious foot disease of sheep and goats. Because these bacteria could not be cultivated from affected ibex, we developed a nested polymerase chain reaction that allowed detection of D. nodosus without culture. Using this assay, we were able to diagnose D. nodosus infections of ibex, mouflon, and domestic sheep in natural outbreaks. From these results we conclude that D. nodosus plays an etiological role in foot rot not only in domestic but also in wild Caprinae.
Control of black walnut root rot diseases in nurseries.
Kenneth J. Jr. Kessler
1982-01-01
Current nursery methods used to control black walnut root rot diseases are considered in terms of integrated pest management. Suggestions for future root rot control research studies and procedures to minimize root rot problems are provided.
Robert Riley; Asaf A. Salamov; Daren W. Brown; Laszlo G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika A. Lindquist; Hui Sun; Kurt M. LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis Martin; Daniel Cullen; David S. Hibbett; Igor V. Grigoriev
2014-01-01
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic...
USDA-ARS?s Scientific Manuscript database
Work was conducted in 2008 to determine the stalk rot resistance of RILs from the RHA 280 x RHA 801 population, as well as to begin introgression of previously identified QTL for head rot resistance into elite sunflower germplasm lines. The stalk rot RILs and their testcrosses with cms HA 89 were t...
NASA Astrophysics Data System (ADS)
Heineman, K. D.; Russo, S. E.; Baillie, I. C.; Mamit, J. D.; Chai, P. P.-K.; Chai, L.; Hindley, E. W.; Lau, B.-T.; Tan, S.; Ashton, P. S.
2015-05-01
Fungal decay of heartwood creates hollows and areas of reduced wood density within the stems of living trees known as heart rot. Although heart rot is acknowledged as a source of error in forest aboveground biomass estimates, there are few datasets available to evaluate the environmental controls over heart rot infection and severity in tropical forests. Using legacy and recent data from drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of heart rot, and used generalized linear mixed effect models to characterize the association of heart rot with tree size, wood density, taxonomy, and edaphic conditions. Heart rot was detected in 55% of felled stems > 30 cm DBH, while the detection frequency was lower for stems of the same size evaluated by non-destructive drilling (45%) and coring (23%) methods. Heart rot severity, defined as the percent stem volume lost in infected stems, ranged widely from 0.1-82.8%. Tree taxonomy explained the greatest proportion of variance in heart rot frequency and severity among the fixed and random effects evaluated in our models. Heart rot frequency, but not severity, increased sharply with tree diameter, ranging from 56% infection across all datasets in stems > 50 cm DBH to 11% in trees 10-30 cm DBH. The frequency and severity of heart rot increased significantly in soils with low pH and cation concentrations in topsoil, and heart rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the percent of stem biomass lost to heart rot varied significantly with soil properties, and we estimate that 7% of the forest biomass is in some stage of heart rot decay. This study demonstrates not only that heart rot is a significant source of error in forest carbon estimates, but also that it strongly covaries with soil resources, underscoring the need to account for edaphic variation in estimating carbon storage in tropical forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan; Lin, Tsu-Kung
Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism.more » We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.« less
Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A
2013-01-01
Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010
Cui, Chen; Chen, Shihong; Qiao, Jingting; Qing, Li; Wang, Lingshu; He, Tianyi; Wang, Chuan; Liu, Fuqiang; Gong, Lei; Chen, Li; Hou, Xinguo
2018-04-06
Mitochondria play an important role in cellular metabolism and are closely related with metabolic stress. Recently, several studies have shown that mitophagy mediated by PTEN-induced putative kinase 1 (PINK1) and Parkin may play a critical role in clearing the damaged mitochondria and maintaining the overall balance of intracellular mitochondria in quality and quantity. A previous study showed that PINK1 and Parkin were overexpressed in adipose tissue in obese subjects. However, it is still unclear whether a direct relationship exists between obesity and mitophagy. In this study, we created a high-fat-diet (HFD)-induced obese mouse model and examined the expression of PINK1 and Parkin in adipose tissue using western blot and real-time quantitative PCR. After we confirmed that there is an interesting difference between regular-chow-fed mice and HFD-induced obese mice in the expression of PINK1 and Parkin in vivo, we further tested the expression of PINK1 and Parkin in 3T3-L1 preadipocytes in vitro by treating cells with palmitic acid (PA) to induce metabolic stress. To better understand the role of PINK1 and Parkin in metabolic stress, 3T3-L1 preadipocytes were transfected with small interfering RNA (siRNA) of PINK1 and Parkin followed by PA treatment. Our results showed that under lower concentrations of PA, PINK1 and Parkin can be activated and play a protective role in resisting the harmful effects of PA, including protecting the mitochondrial function and resisting cellular death, while under higher concentrations of PA, the expression of PINK1 and Parkin can be inhibited. These results suggest that PINK1-Parkin can protect mitochondrial function against metabolic stress induced by obesity or PA to a certain degree. Copyright © 2018 Elsevier Inc. All rights reserved.
Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.
2015-01-01
Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473
Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V
2015-11-01
Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, Ningbo; Li, Zishen; Yuan, Yunbin; Yuan, Hong
2017-04-01
Key words: Ionospheric irregularity, Rate of TEC (ROT), Rate of ROT index (RROT), GPS and GLONASS The ionospheric irregularities have a strong impact on many applications of Global Navigation Satellite Systems (GNSS) and other space-based radio systems. The rate of ionospheric total electron content (TEC) change index (ROTI, TECu/min), defined as the standard deviation of rate of TEC change (ROT) within a short time (e.g. 5 minutes), has been developed to describe the ionospheric irregularities and associated scintillations. However, ROT parameter may still contain the trend term of ionospheric TEC in spite of small-scale fluctuations. On the basis of single-differenced ROT (dROT) values, we develop a new ionosphere activity index, rate of ROT change index (RROT, TECu/min), to characterize the irregularity degree of the ionosphere. To illustrate the use of the index, we investigated the consistency between ROTI and RROT indexes, through the analysis of GPS data and S4 observations collected at two high-latitude stations of the northern hemisphere. It is confirmed that the correlation coefficients between RROT and S4 are higher than those between ROTI and S4 for the test period, meaning that the proposed RROT index is applicable to monitor the ionospheric irregularities and associated scintillations. RROT index can be easily calculated from dual-frequency GNSS signals (like GPS L1 and L2 carrier phase measurements). On the basis of GPS and GLONASS data provided by the IGS, ARGN, EPN and USCORS tracking networks (more than 1500 stations per day), absolute ROT (AROT), gradient of TEC index (GOTI), ROTI and RROT maps are generated to reflect the ionospheric irregularity activities. These maps are provided in an IONEX-like format on a global scale with a temporal resolution of 15 minutes and a spatial resolution of 5 and 2.5 degrees in longitude and latitude, respectively, and the maps with high spatial resolution (2x2 degrees) are also generated for European, Australia and North American regions. The product files are produced on a daily basis with a latency of 3 days. Users now can access these products from the ftp archive of the Chinese Academy of Sciences (CAS, ftp://ftp.gipp.org.cn/product/). These maps can be used for ionospheric weather services, ionospheric irregularity modeling and foresting, as well as other GNSS applications. Although they are provided in a post-processing mode at present, it is expected that the near real-time services will be available since the availability of real-time data streams from the IGS.
A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling.
Priyadarshini, M; Tuimala, J; Chen, Y C; Panula, P
2013-06-01
The PTEN induced putative kinase 1 (PINK1) gene is mutated in patients with hereditary early onset Parkinson's disease (PD). The targets of PINK1 and the mechanisms in PD are still not fully understood. Here, we carried out a high-throughput and unbiased microarray study to identify novel functions and pathways for PINK1. In larval zebrafish, the function of pink1 was inhibited using splice-site morpholino oligonucleotides and the samples were hybridized on a two-color gene expression array. We found 177 significantly altered genes in pink1 morphants compared with the uninjected wildtype controls (log fold change values from -1.6 to +0.9). The five most prominent pathways based on critical biological processes and key toxicological responses were hypoxia-inducible factor (HIF) signaling, TGF-β signaling, mitochondrial dysfunction, RAR activation, and biogenesis of mitochondria. Furthermore, we verified that potentially important genes such as hif1α, catalase, SOD3, and atp1a2a were downregulated in pink1 morphants, whereas genes such as fech, pax2a, and notch1a were upregulated. Some of these genes have been found to play important roles in HIF signaling pathways. The pink1 morphants were found to have heart dysfunction, increased erythropoiesis, increased expression of vascular endothelial growth factors, and increased ROS. Our findings suggest that a lack of pink1 in zebrafish alters many vital and critical pathways in addition to the HIF signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway.
Gu, Xueyan; Qi, Yongmei; Feng, Zengxiu; Ma, Lin; Gao, Ke; Zhang, Yingmei
2018-07-01
Lead (Pb), a widely distributed environmental pollutant, is known to induce mitochondrial damage as well as autophagy in vitro and in vivo. In this study, we found that Pb could trigger mitophagy in both HEK293 cells and the kidney cortex of male Kunming mice. However, whether ataxia telangiectasis mutated (ATM) which is reported to be linked with PTEN-induced putative kinase 1 (PINK1)/Parkin pathway (a well-characterized mitophagic pathway) participates in the regulation of Pb-induced mitophagy and its exact role remains enigmatic. Our results indicated that Pb activated ATM in vitro and in vivo, and further in vitro studies showed that ATM could co-localize with PINK1 and Parkin in cytosol and interact with PINK1. Knockdown of ATM by siRNA blocked Pb-induced mitophagy even under the circumstance of enhanced accumulation of PINK1 and mitochondrial Parkin. Intriguingly, elevation instead of reduction in phosphorylation level of PINK1 and Parkin was observed in response to ATM knockdown and Pb did not contribute to the further increase of their phosphorylation level, implying that ATM indirectly regulated PINK1/Parkin pathway. These findings reveal a novel mechanism for Pb toxicity and suggest the regulatory importance of ATM in PINK1/Parkin-mediated mitophagy. Copyright © 2018 Elsevier B.V. All rights reserved.
The antioxidant and Flavonoids contents of Althaea officinalis L. flowers based on their color.
Sadighara, Parisa; Gharibi, Soraya; Moghadam Jafari, Amir; Jahed Khaniki, Golamreza; Salari, Samira
2012-01-01
There has been a growing interest in finding plants with biological active ingredients for medicinal application. Three colors of petals of Althaea officinalis (A. officinalis) flowers, i.e., pink, reddish pink, and white were examined for total antioxidant activity and flavonoids content. The reddish pink flowers of A. officinalis have more antioxidant activity and the power of antioxidant activity was reddish pink > pink > white. Findings suggest that the dark color can serve as an indicator of antioxidant content of the plant. Flavonoid content was highest in white flower thus this result indicated that flowers with light color can be considered for medicinal uses.
Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.
Bickle, M; Delley, P A; Schmidt, A; Hall, M N
1998-01-01
The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237
Manuela Baietto; A. Dan Wilson
2010-01-01
The development of wood decay caused by 12 major root-rot and trunk-rot fungi was investigated in vitro with sapwood extracted from nine ornamental and landscape hardwood and conifer species native to southern temperate regions of North America, Europe, and the lower Mississippi Delta. Wood decay rates based on dry weight loss for 108 host treeâwood decay fungi...
USDA-ARS?s Scientific Manuscript database
Phytophthora root rot of soybean, caused by Phytophthora sojae is one of the most important diseases in the Midwest US, causing losses of up to 44 million bushels per year. Disease may also be caused by P. sansomeana, however the prevalence and damage caused by this species is not well known, partl...
PINK1 is degraded through the N-end rule pathway
Yamano, Koji; Youle, Richard J
2013-01-01
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination. PMID:24121706
Origin of the pinking phenomenon of white wines.
Andrea-Silva, Jenny; Cosme, Fernanda; Ribeiro, Luís Filipe; Moreira, Ana S P; Malheiro, Aureliano C; Coimbra, Manuel A; Domingues, M Rosário M; Nunes, Fernando M
2014-06-18
Pinking is the terminology used for the salmon-red blush color that may appear in white wines produced exclusively from white grape varieties. The isolation of pinking compounds and their analysis by RP-HPLC-DAD and ESI-MS(n) showed that the origin of the pinking phenomenon in white wines from Vitis vinifera L. of Sı́ria grape variety are the anthocyanins, mainly malvidin-3-O-glucoside. The analysis showed that the anthocyanins were located both in the pulp and in the skin. Wine pinking severity was negatively related with the increase of the average temperature of the first 10 days of October, the final period of grape maturation. The minimum amount of anthocyanins needed for the pink color visualization in wine was 0.3 mg/L. The appearance of pinking in white wines after bottling is due to the lowering of free sulfur dioxide, which leads to an increase of the relative amount of the anthocyanins red flavylium form and their polymerization, resulting in the formation of colored compounds resistant to pH changes and sulfur dioxide bleaching.
PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival.
Lee, Yunjong; Stevens, Daniel A; Kang, Sung-Ung; Jiang, Haisong; Lee, Yun-Il; Ko, Han Seok; Scarffe, Leslie A; Umanah, George E; Kang, Hojin; Ham, Sangwoo; Kam, Tae-In; Allen, Kathleen; Brahmachari, Saurav; Kim, Jungwoo Wren; Neifert, Stewart; Yun, Seung Pil; Fiesel, Fabienne C; Springer, Wolfdieter; Dawson, Valina L; Shin, Joo-Ho; Dawson, Ted M
2017-01-24
Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
The Ubiquitination of PINK1 Is Restricted to Its Mature 52-kDa Form.
Liu, Yuhui; Guardia-Laguarta, Cristina; Yin, Jiang; Erdjument-Bromage, Hediye; Martin, Brittany; James, Michael; Jiang, Xuejun; Przedborski, Serge
2017-07-05
Along with Parkin, PINK1 plays a critical role in maintaining mitochondrial quality control. Although PINK1 is expressed constitutively, its level is kept low in healthy mitochondria by polyubiquitination and ensuing proteasomal degradation of its mature, 52 kDa, form. We show here that the target of PINK1 polyubiquitination is the mature form and is mediated by ubiquitination of a conserved lysine at position 137. Notably, the full-length protein also contains Lys-137 but is not ubiquitinated. On the basis of our data, we propose that cleavage of full-length PINK1 at Phe-104 disrupts the major hydrophobic membrane-spanning domain in the protein, inducing a conformation change in the resultant mature form that exposes Lys-137 to the cytosol for subsequent modification by the ubiquitination machinery. Thus, the balance between the full-length and mature PINK1 allows its levels to be regulated via ubiquitination of the mature form and ensures that PINK1 functions as a mitochondrial quality control factor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari
2014-11-01
Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. Antioxidant potential of tomato puree (10 %; T-1), tomato pulp (12.5 %; T-2), lyophilized tomato peel (6 %; T-3), and pink guava pulp (10 %; T-4) was evaluated in raw pork emulsion during refrigerated storage for 9 days under aerobic packaging. The lycopene and β-carotene content varied in pork emulsion as T-3 > T-1 > T-2 > T-4 and decreased (P < 0.05) during storage. The surface redness (a* value) increased (P < 0.05) with the incorporation of tomato products and pink guava pulp. Furthermore, metmyoglobin formation and lipid oxidation were lower (P < 0.05) in tomato- and guava-treated emulsions than in control. Overall, incorporation of tomato products and pink guava pulp improved the visual colour and odour scores of raw pork emulsion. These results indicated that tomato products and guava pulp can be utilized as sources of natural antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.
Pruning of Manchurian crabapple for management of speck rot and Sphaeropsis rot in apple
USDA-ARS?s Scientific Manuscript database
Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens are two important quarantined fungal pathogens that cause post-harvest speck rot and Sphaeropsis rot, respectively, in apple. Due to detection of these pathogens in fruit shipments and quarantine regulation, export of apple from Washingto...
Impacts of fungal stalk rot pathogens on physicochemical properties of sorghum grain
USDA-ARS?s Scientific Manuscript database
Stalk rot diseases are among the most ubiquitous and damaging fungal diseases of sorghum worldwide. Although reports of quantitative stalk rot yield losses are available, the impact of stalk rot on the physicochemical attributes of sorghum grain is currently unknown. This study was conducted to test...
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a non-obligate plant pathogen of maize causing a number of specific diseases, including root rot, kernel rot, seed rot, stalk rot, and seedling blight. The saprophytic nature of this fungus, its production of the mycotoxin fumonisin, and complex relationship maize puts t...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured tobacco...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured tobacco...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured tobacco...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured tobacco...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured tobacco...
Cultivar selection for bacterial root rot in sugar beet
USDA-ARS?s Scientific Manuscript database
Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...
Akabane, Shiori; Matsuzaki, Kohei; Yamashita, Shun-ichi; Arai, Kana; Okatsu, Kei; Kanki, Tomotake; Matsuda, Noriyuki; Oka, Toshihiko
2016-01-01
Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy. PMID:27302064
Pink shrimp as an indicator for restoration of everglades ecosystems
Browder, Joan A.; Robblee, M.B.
2009-01-01
The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.
Wang, Dong; Zhang, Deng-Feng; Feng, Jia-Qi; Li, Guo-Dong; Li, Xiao-An; Yu, Xiu-Feng; Long, Heng; Li, Yu-Ye; Yao, Yong-Gang
2016-11-23
Leprosy is a chronic infectious and neurological disease caused by Mycobacterium leprae, an unculturable pathogen with massive genomic decay and dependence on host metabolism. We hypothesized that mitochondrial genes PARL and PINK1 would confer risk to leprosy. Thirteen tag SNPs of PARL and PINK1 were analyzed in 3620 individuals with or without leprosy from China. We also sequenced the entire exons of PARL, PINK1 and PARK2 in 80 patients with a family history of leprosy by using the next generation sequencing technology (NGS). We found that PARL SNP rs12631031 conferred a risk to leprosy (P adjusted = 0.019) and multibacillary leprosy (MB, P adjusted = 0.020) at the allelic level. rs12631031 and rs7653061 in PARL were associated with leprosy and MB (dominant model, P adjusted < 0.05) at the genotypic level. PINK1 SNP rs4704 was associated with leprosy at the genotypic level (P adjusted = 0.004). We confirmed that common variants in PARL and PINK1 were associated with leprosy in patients underwent NGS. Furthermore, PARL and PINK1 could physically interact with each other and were involved in the highly connected network formed by reported leprosy susceptibility genes. Together, our results showed that PARL and PINK1 genetic variants are associated with leprosy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akey, D.H.; Kimball, B.A.; Mauney, J.R.
1988-06-01
The pink bollworm, Pectinophora gossypiella (Saunders), was reared on the bolls of cotton plants grown in CO/sub 2/-enriched (649 ..mu..l/liter) and ambient CO/sub 2/ (371 ..mu..l/liter) chambers and in two open field plots, one with free-air CO/sub 2/ enrichment (522 ..mu..l/liter) and one without enrichment (ambient CO/sub 2/, 360 ..mu..l/liter). The effects of increased CO/sub 2/ levels on growth and development were examined. There was no difference in pupal weights of pink bollworm raised on CO/sub 2/-enriched cotton compared with those raised on ambient CO/sub 2/ cotton (26.80 versus 26.64 mg, respectively). Also, there was no difference in developmental timemore » (21-27 d). Analysis of percent seed damage by larvae showed no differences between CO/sub 2/-enriched and ambient CO/sub 2/ cotton. These results were attributed to the nutritional qualities of the seed remaining the same (specifically the carbon/nitrogen ratio) despite CO/sub 2/ and photosynthetic changes in the plant.« less
NASA Astrophysics Data System (ADS)
Gong, Mingfu; Lin, Tianxing; Huang, Jiao; Zeng, Bo
2018-04-01
Konjac soft rot has a serious impact on the production of konjac, the use of endophytic bacteria to inhibit konjac soft rot bacteria have many advantages. Twenty-three endophytic bacteria isolated from the medicinal plants were used to determine the antagonistic effects of endophytic bacteria on konjac soft rot in the Oxford cups. Of the strain. The results showed that 23 strains of endophytic bacteria had different antagonistic activities against konjac soft rot, 8 strains had very significant antibacterial effect, and YC06 and YC09 had strong antibacterial ability of two endophytic bacteria. Konjac soft rot fungi also have a strong antibacterial capacity.
Hauke, K; Creemers, P; Brugmans, W; Van Laer, S
2004-01-01
Signum, a new fungicide developed by BASF, was applied during 6 successive years against fungal diseases in strawberries. The product is formulated as a water dispersible granule, containing 6.7 % pyraclostrobin and 26.7 % boscalid. Pyraclostrobin is similar in chemistry to other strobilurin fungicides like kresoxim-methyl and trifloxystrobin, registered for fruit disease control. Boscalid belongs to the class of carboxyanilides. Both components in the premix formulation combine two different biochemical modes of action in the fungal cell respiration. Therefore, this co-formulation gives a broad-spectrum activity and also a reduced resistance risk for different target pathogens. Botrytis cinerea is the most important disease on strawberry-fruits and thus the control of fruit rot is mainly focused on this fungus. In average over 6 years, Signum has not only given a very good control against Botrytis fruit rot, but it has also shown a high performance in the control of Colletotrichum. Besides, Signum provides good control of powdery mildew (Podosphaera aphanis) and limits the shift to other fruit rots like leather rot (Phytophthora cactorum and leak (Rhizopus, Mucor). The availability of several categories of fungicide families with a different mode of action gives opportunities in alternating different fungicides and is the best guarantee for a sustainable control of fruit rot in all kinds of strawberry production methods. Signum should be integrated in an overall disease management program. Trials, in which the applications of Signum were timed on disease forecasting, based on environmental factors favorable for Botrytis development, were very promising. This tool can also help in establishing the IPM-concept in the production of strawberries.
Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility.
Shlevkov, Evgeny; Kramer, Tal; Schapansky, Jason; LaVoie, Matthew J; Schwarz, Thomas L
2016-10-11
The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.
Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility
Shlevkov, Evgeny; Kramer, Tal; Schapansky, Jason; LaVoie, Matthew J.; Schwarz, Thomas L.
2016-01-01
The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy. PMID:27679849
Bernat, Maria; Segarra, Joan; Casals, Carla; Teixidó, Neus; Torres, Rosario; Usall, Josep
2017-12-01
Brown rot caused by Monilinia spp. is one of the most important postharvest diseases of stone fruit. The aim of this study was to evaluate the relevance of the main postharvest operations of fruit - hydrocooling, cold room, water dump, sorting and cooling tunnel - in the development of M. laxa on peaches and nectarines artificially infected 48, 24 or 2 h before postharvest operations. Commercial hydrocooling operation reduced incidence to 10% in 'Pp 100' nectarine inoculated 2 and 24 h before this operation; however, in 'Fantasia' nectarine incidence was not reduced, although lesion diameter was decreased in all studied varieties. Hydrocooling operation for 10 min and 40 mg L -1 of sodium hypochlorite reduced brown rot incidence by 50-77% in nectarines inoculated 2 h before operation; however, in peach varieties it was not reduced. Water dump operation showed reduction of incidence on nectarine infected 2 h before immersion for 30 s in clean water at 4 °C and 40 mg L -1 sodium hypochlorite; however, in peach varieties it was not reduced. Cold room, sorting and cooling tunnel operation did not reduce brown rot incidence. From all studied handling operations on stone fruit packing houses, hydrocooling is the most relevant in the development of brown rot disease. Duration of the treatment seems to be more important than chlorine concentration. In addition, hydrocooling and water dump were less relevant in peaches than in nectarines. As a general trend, hydrocooling and water dump reduced incidence on fruit with recent infections (2 or 24 h before operation); however, when infections have been established (48 h before operation) diseases were not reduced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Worldwide, fruit rot of rambutan is an important problem that limits the storage, marketing and long-distance transportation of the fruit. A complex of pathogens has been reported to cause fruit rot of rambutan and significant post-harvest economic losses. During 2009 and 2011 rambutan fruit rot was...
Preservation of hyphal-forming brown- and white-rot wood-inhabiting basidiomycetes
Suki C. Croan
2001-01-01
Lyophilization is an excellent technique for the long-term preservation of hyphal-forming brown-and white-rot wood-inhabiting basidiomycotina. However, vegetative mycelial isolates are not lyophilizable. In this study, 10 brown-rot and 10 white-rot basidiomycetous non-sporulating, non-chlamydosporulating, and non-bubillerferous basidiomycetes fungi were tested for...
Lin, Huijiao; Jiang, Xiang; Yi, Jianping; Wang, Xinguo; Zuo, Ranling; Jiang, Zide; Wang, Weifang; Zhou, Erxun
2018-01-01
A rolling-circle amplification (RCA) method with padlock probes targeted on EF-1α regions was developed for rapid detection of apple bull's-eye rot pathogens, including Neofabraea malicorticis, N. perennans, N. kienholzii, and N. vagabunda (synonym: N. alba). Four padlock probes (PLP-Nm, PLP-Np, PLP-Nk, and PLP-Nv) were designed and tested against 28 samples, including 22 BER pathogen cultures, 4 closely related species, and 2 unrelated species that may cause serious apple decays. The assay successfully identified all the bull's-eye rot pathogenic fungi at the level of species, while no cross-reaction was observed in all target species and no false-positive reaction was observed with all strains used for reference. This study showed that the use of padlock probes and the combination of probe signal amplification by RCA provided an effective and sensitive method for the rapid identification of Neofabraea spp. The method could therefore be a useful tool for monitoring bull's-eye rot pathogens in port quarantine and orchard epidemiological studies.
2015-10-01
Schematic illustrating sites of biopsy for CRPC-NE ( dark pink) and CRPC-Adeno (light pink) subgroups. Numbers in circles indicate numerosity of samples...fractions (gray), CRPC-NE specific ( dark pink) and CRPC-Adeno specific (light pink). Data adjusted for tumor ploidy and purity. Highlighted genes are...Smith, H. R. Soule , H., Akaza, T. M. Beer, H. Beltran, A. M. Chinnaiyan, G. Daugaard, I. D. Davis, M. De Santis, C. G. Drake, R. A. Eeles, S. Fanti
Documentation for the Computer Assisted Diagnostic Program for Dental Pain
1989-04-10
Questioni 1, if "No" (2), then go to Questioni 20. 6. Aside from possible racial pigmentation , if present, what is the color of the gingival tissues... pigmentation , if present, what is the color of the gingival tissues (gum)? 1. Pink 2. Red 3. Pink with red gingival margins 4. Either #2 or #3 above, but...racial pigmentation , if present, what is the color of the gingival tissues (gum)? 1. Pink 2. Red 3. Pink with red gingival margins 4. Either #2 or #3
Dutta, B; Barman, A K; Srinivasan, R; Avci, U; Ullman, D E; Langston, D B; Gitaitis, R D
2014-08-01
Frankliniella fusca, the tobacco thrips, has been shown to acquire and transmit Pantoea ananatis, one of the causal agents of the center rot of onion. Although Thrips tabaci, the onion thrips, is a common pest of onions, its role as a vector of P. ananatis has been unknown. The bacterium, P. agglomerans, is also associated with the center rot of onion, but its transmission by thrips has not been previously investigated. In this study, we investigated the relationship of T. tabaci with P. ananatis and P. agglomerans. Surface-sterilized T. tabaci were provided with various acquisition access periods (AAP) on onion leaves inoculated with either P. ananatis or P. agglomerans. A positive exponential relationship was observed between thrips AAP duration and P. ananatis (R² = 0.967; P = 0.023) or P. agglomerans acquisition (R² = 0.958; P = 0.017). Transmission experiments conducted with T. tabaci adults indicated that 70% of the seedlings developed center rot symptoms 15 days after inoculation. Immunofluorescence microscopy with antibodies specific to P. ananatis revealed that the bacterium was localized only in the gut of T. tabaci adults. Mechanical inoculation of onion seedlings with fecal rinsates alone produced center rot but not with salivary secretions. Together these results suggested that T. tabaci could efficiently transmit P. ananatis and P. agglomerans.
Poddighe, Simone; De Rose, Francescaelena; Marotta, Roberto; Ruffilli, Roberta; Fanti, Maura; Secci, Pietro Paolo; Mostallino, Maria Cristina; Setzu, Maria Dolores; Zuncheddu, Maria Antonietta; Collu, Ignazio; Solla, Paolo; Marrosu, Francesco; Kasture, Sanjay; Acquas, Elio; Liscia, Anna
2014-01-01
The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3-6 (I), 10-15 (II) and 20-25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment.
Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells.
Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan
2017-01-01
With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1 -/- BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity.
Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells
Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan
2017-01-01
With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity. PMID:28331313
Moussaud-Lamodière, Elisabeth L.; Dourado, Daniel F. A. R.; Flores, Samuel C.; Springer, Wolfdieter
2014-01-01
Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design. PMID:25375667
Structure of PINK1 in complex with its substrate ubiquitin
Schubert, Alexander F.; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L.; Freund, Stefan M.V.; Steyaert, Jan; Maslen, Sarah L.; Komander, David
2018-01-01
Autosomal recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular in the E3 ubiquitin ligase Parkin (PARK2), and in its upstream protein kinase PINK1 (PARK6). PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like domain on structurally protected Ser65 to trigger mitophagy. We here report a crystal structure of a nanobody stabilised complex between Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the ‘C-terminally retracted’ (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the PINK1 N-lobe binds ubiquitin via a unique insertion. The flexible Ser65-loop in the Ub-CR conformation reaches the activation segment, facilitating placement of Ser65 in a phosphate accepting position. The structure also explains how autophosphorylation in the N-lobe stabilises structurally and functionally important insertions, and reveals the molecular basis for AR-JP causing mutations, some of which disrupt ubiquitin binding. PMID:29160309
USDA-ARS?s Scientific Manuscript database
Fusarium dry rot of potato is a postharvest disease caused by several Fusarium spp. and is of worldwide importance. Thirteen Fusarium spp. have been implicated in fungal dry rots of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern Un...
Sharma, Brij Bihari; Kalia, Pritam; Yadava, Devendra Kumar; Singh, Dinesh; Sharma, Tilak Raj
2016-01-01
Black rot caused by Xanthomonas campestris pv. campestris (Pam.) Dowson is the most destructive disease of cauliflower causing huge loss to the farmers throughout the world. Since there are limited sources of resistance to black rot in B. oleracea (C genome Brassica), exploration of A and B genomes of Brassica was planned as these were thought to be potential reservoirs of black rot resistance gene(s). In our search for new gene(s) for black rot resistance, F2 mapping population was developed in Brassica carinata (BBCC) by crossing NPC-17, a susceptible genotype with NPC-9, a resistant genotype. Out of 364 Intron length polymorphic markers and microsatellite primers used in this study, 41 distinguished the parental lines. However, resistant and susceptible bulks could be distinguished by three markers At1g70610, SSR Na14-G02 and At1g71865 which were used for genotyping of F2 mapping population. These markers were placed along the resistance gene, according to order, covering a distance of 36.30 cM. Intron length polymorphic markers At1g70610 and At1g71865 were found to be linked to black rot resistance locus (Xca1bc) at 6.2 and 12.8 cM distance, respectively. This is the first report of identification of markers linked to Xca1bc locus in Brassica carinata on B-7 linkage group. Intron length polymorphic markers provided a novel and attractive option for marker assisted selection due to high cross transferability and cost effectiveness for marker assisted alien gene introgression into cauliflower. PMID:27023128
Tan, Yan; Peng, Liangzhi; Yuan, Ling; Wang, Shaobo
2015-11-04
In order to develop a safe, nontoxic and efficient biological antistaling agent and to decrease the incidence of rot diseases caused by the Penicillium italicum and Penicillium digitatum in orange fruit storage. the present experiment was carried out with Pythium oligandrum broth (POB) produced by our self-isolated strain (P. oligandrum CQ2010) to study the toxicity to animal. Thereafter, mycelium growth and spore germination of both P. digitatum and P. italicum and control effect of rot disease in orange storage were compared after treated by liquid culture medium (control), POB, prochloraz (PC) , and PC + POB. Gastric lavage with large amount POB did not influence mouse weight. The animals also showed no abnormality in appearance, behaviors and pathology changes in heart, liver, kidney, lung and intestine. POB decreased the hyphal growth by 70.24% - 93.74% and spore germination by 44.91% - 87.82% (24 h after POB addition) of these two pathogenic fungi. Disease incidence of orange fruit following P. italicum inoculation changed in the sequence: CK > POB > PC > PC + POB and the control efficacy behaved otherwise. In commercial simulation storage, the disease incidence of orange fruit caused by P. digitatum and P. italicum was above 50% of the total. The fruit rot rate was 26.40% (CK), 15.03% (POB), 16.61% (PC) and 4.21% (PC + POB). There were no significant differences in fruit quality under different treatments. POB was safe to animal and could decrease rot disease incidence caused by P. italicum and P. digitatum in orange storage whereby producing a positive interaction with prochloraz and controlling rot diseases caused by these two fungi.
Krishna, Gokul; Muralidhara
2018-05-25
Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
1982-04-01
128 32. Effects of UV, Ozone and UV-Ozone on the Degradation of Pink Water at Zero Flow ............ ................. 130 33. Formation of...Nitrate Ion During UV-Ozonolysis of TNT in Zero Flow Mode ........ ... ........................ ..... 132 34. Detailed Analysis of Run 7-12...the Degradation of Pink Water at Zero Flow* (Layne et al., 1980) *This figure represents a combination of Figures 5 and 7 in the report. 130 - -+ TNT
[Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs].
Konovalova, A M; Shylin, S O; Rokytko, P V
2006-01-01
An effective method was developed for complete removal of pigments from the cells and solvent mixture for further separation of pigments using thin layer chromatography on silica gel. Carotenoid samples that have been obtained in this way are of good purity for further investigations. Carotenoid pigments of pink-pigmented facultative methylotrophic bacteria Methylobacterium have been characterized. These carotenoids are represented mainly by xanthophylls, particularly hydroxycarotenoids. Strains M. fujisawaense B-3365 and M. mesophilicum B-3352 also have nonpolar carotenes in a small amount. Physico-chemical properties of carotenoids have been studied.
Stauch, Kelly L; Villeneuve, Lance M; Purnell, Phillip R; Ottemann, Brendan M; Emanuel, Katy; Fox, Howard S
2016-12-01
Mutations in PTEN-induced putative kinase 1 (Pink1), a mitochondrial serine/threonine kinase, cause a recessive inherited form of Parkinson's disease (PD). Pink1 deletion in rats results in a progressive PD-like phenotype, characterized by significant motor deficits starting at 4 months of age. Despite the evidence of mitochondrial dysfunction, the pathogenic mechanism underlying disease due to Pink1-deficiency remains obscure. Striatal synaptic mitochondria from 3-month-old Pink1-deficient rats were characterized using bioenergetic and mass spectroscopy (MS)-based proteomic analyses. Striatal synaptic mitochondria from Pink1-deficient rats exhibit decreased complex I-driven respiration and increased complex II-mediated respiration compared with wild-type rats. MS-based proteomics revealed 69 of the 811 quantified mitochondrial proteins were differentially expressed between Pink1-deficient rats and controls. Down-regulation of several electron carrier proteins, which shuttle electrons to reduce ubiquinone at complex III, in the Pink1-knockouts suggests disruption of the linkage between fatty acid, amino acid, and choline metabolism and the mitochondrial respiratory system. These results suggest that complex II activity is increased to compensate for loss of electron transfer mechanisms due to reduced complex I activity and loss of electron carriers within striatal nerve terminals early during disease progression. This may contribute to the pathogenesis of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Onion Thrips (Thysanoptera: Thripidae) Feeding Promotes Infection By Pantoea ananatis in Onion.
Grode, Ari; Chen, Shicheng; Walker, Edward D; Szendrei, Zsofia
2017-12-05
Onion thrips, Thrips tabaci Lindeman, is a primary insect pest of onions (Allium cepa) worldwide. Onion thrips cause feeding damage by destroying epidermal tissue. They are also vectors of Pantoea ananatis (Serrano) Mergaert, the bacteria that causes center rot. Onions with center rot develop white streaks with water-soaked margins along the onion leaves, which turn necrotic and lead to bulb rot during storage. The role of thrips feeding on the establishment and progression of bacterial infection in onions has not been investigated. Onions infested with thrips and inoculated with P. ananatis had more necrotic tissue and symptoms were more severe with increasing thrips density. We conducted a fluorescence microscopy study that examined how P. ananatis (expressing a fluorescence protein gene) colonized a control group of onions without thrips in comparison to a test group of onions with thrips. We found that P. ananatis colonized some onions in the control group because of naturally existing wounds in the epidermal tissue but more colonization was found in the thrips infested group because of the increased presence of entry points caused by thrips feeding. Overall, our results demonstrate that wounds caused by thrips feeding facilitate center rot development by providing entry sites for the bacteria into leaf tissue. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gell, I; Cubero, J; Melgarejo, P
2007-12-01
To design a protocol for the universal diagnosis of brown rot by polymerase chain reaction (PCR) in plant material and subsequently Monilinia spp. identification. Primers for discrimination of Monilinia spp. from other fungal genera by PCR were designed following a ribosomal DNA analysis. Discrimination among species of Monilinia was subsequently achieved by developing primers using SCAR (Sequence Characterised Amplified Region) markers obtained after a random amplified polymorphic DNA study. In addition, an internal control (IC) based on the utilization of a mimic plasmid was designed to be used in the diagnostic protocol of brown rot to recognize false negatives due to the inhibition of PCR. The four sets of primers designed allowed detection and discrimination of all Monilinia spp. causing brown rot in fruit trees. Addition of an IC in each PCR reaction performed increased the reliability of the diagnostic protocol. The detection protocol presented here, that combined a set of universal primers and the inclusion of the plasmid pGMON as an IC for diagnosis of all Monilinia spp., and three sets of primers to discriminate the most important species of Monilinia, could be an useful and valuable tool for epidemiological studies. The method developed could be used in programmes to avoid the spread and introduction of this serious disease in new areas.
Tatulli, Giuseppe; Mitro, Nico; Cannata, Stefano M.; Audano, Matteo; Caruso, Donatella; D’Arcangelo, Giovanna; Lettieri-Barbato, Daniele; Aquilano, Katia
2018-01-01
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson’s disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition. PMID:29387000
Tatulli, Giuseppe; Mitro, Nico; Cannata, Stefano M; Audano, Matteo; Caruso, Donatella; D'Arcangelo, Giovanna; Lettieri-Barbato, Daniele; Aquilano, Katia
2018-01-01
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.
Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi
A. Ostrofsky; J. Jellison; K.T. Smith; W.C. Shortle
1997-01-01
Red spruce (Picea rubens Sarg.) wood blocks were incubated in modified soil block jars and inoculated with one of nine white rot or brown rot basidiomycetes. Concentrations of calcium, magnesium, potassium, iron, and aluminum were determined using inductively coupled plasma emission spectroscopy in wood incubated 0, 1.5, 4, and 8 months after...
Red Rot of Ponderosa Pine (FIDL)
Stuart R. Andrews
1971-01-01
Red rot caused by the fungus Polyporus anceps Peck is the most important heart rot of ponderosa pine (Pinus ponderosa Laws.) in the Southwest (in Arizona and New Mexico), the Black Hills of South Dakota, and some localities in Colorado, Montana, and Idaho. It causes only insignificant losses to this species elsewhere in the West. The red rot fungus rarely attacks other...
Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki
2016-12-01
In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.
Steel, Christopher C; Blackman, John W; Schmidtke, Leigh M
2013-06-05
Bunch rot of grape berries causes economic loss to grape and wine production worldwide. The organisms responsible are largely filamentous fungi, the most common of these being Botrytis cinerea (gray mold); however, there are a range of other fungi responsible for the rotting of grapes such as Aspergillus spp., Penicillium spp., and fungi found in subtropical climates (e.g., Colletotrichum spp. (ripe rot) and Greeneria uvicola (bitter rot)). A further group more commonly associated with diseases of the vegetative tissues of the vine can also infect grape berries (e.g., Botryosphaeriaceae, Phomopsis viticola ). The impact these fungi have on wine quality is poorly understood as are remedial practices in the winery to minimize wine faults. Compounds found in bunch rot affected grapes and wine are typically described as having mushroom, earthy odors and include geosmin, 2-methylisoborneol, 1-octen-3-ol, 2-octen-1-ol, fenchol, and fenchone. This review examines the current state of knowledge about bunch rot of grapes and how this plant disease complex affects wine chemistry. Current wine industry practices to minimize wine faults and gaps in our understanding of how grape bunch rot diseases affect wine production and quality are also identified.
Genetic basis for using Tradescantia clone 4430 as an environmental monitor of mutagens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmerling-Thompson, M.; Nawrocky, M.M.
1980-01-01
The Tradescantia stamen hair system developed by the late Dr. Arnold H. Sparrow has been used in a wide variety of radiobiological studies, and more recently as an environmental monitor for assessing the potential genetic hazards of various gaseous chemicals of both industrial and natural origin. The use of this system as a genetic monitor necessitates a thorough genetic analysis of the marker employed to measure mutagenicity. The phenotypic change in color from blue to pink in either petal or stamen hair cells has been used as a genetic marker under the assumption that the petal and stamen hair cellsmore » are heterozygous for blue, and if the dominant allele for blue color mutates or is lost, the recessive allele determines that the daughter cells will be pink. It is the purpose of this communication to present the results of genetic tests by conventional breeding methods involving the pink locus in Tradescantia clone 4430, the diploid clone used exclusively in the Mobile Monitoring Vehicle at Brookhaven National Laboratory. Confirmation of a genetic, as opposed to a physiological, origin of the pink color in the petal and stamen hair cells of Tradescantia clone 4430 is essential to evaluating the validity of this test system.« less
7 CFR 301.52-9 - Movement of live pink bollworms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live pink bollworms. 301.52-9 Section 301.52-9 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
..., Commission, from Liz Heese, Managing Director, Issuer Services, Pink OTC Markets, Inc. (``Pink OTC''), dated January 20, 2010 (``Pink OTC Letter''), and Letter to Elizabeth M. Murphy, Secretary, Commission, from...'') market. FINRA currently operates the OTC Bulletin Board (``OTCBB''), which provides a mechanism for FINRA...
Monaghan, James M; Vickers, Laura H; Grove, Ivan G; Beacham, Andrew M
2017-03-01
Postharvest pinking is a serious issue affecting lettuce quality. Previous studies suggested the possibility of using deficit irrigation to control discolouration; however, this approach may also affect yield. This study investigated the effect of varying irrigation deficits on iceberg lettuce (Lactuca sativa L.) to determine the relationship between irrigation deficit, pinking and fresh weight. The deficit imposed and head fresh weight obtained depended on both the duration and timing of withholding irrigation. Withholding irrigation for a period of 2 or 3 weeks in the middle or end of the growth period significantly reduced rib pinking compared to well-watered controls. Withholding irrigation for 2 weeks at the start of the growth period or 1 week at the end did not significantly reduce pinking. Withholding irrigation also reduced head fresh weight such that minimising pinking would be predicted to incur a loss of 40% relative to well-watered controls. However, smaller benefits to pinking reduction were achieved with less effect on head fresh weight. Deficit irrigation could be used to provide smaller but higher quality heads which are less likely to be rejected. The balance of these factors will determine the degree of adoption of this approach to growers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma.
Agnihotri, Sameer; Golbourn, Brian; Huang, Xi; Remke, Marc; Younger, Susan; Cairns, Rob A; Chalil, Alan; Smith, Christian A; Krumholtz, Stacey-Lynn; Mackenzie, Danielle; Rakopoulos, Patricia; Ramaswamy, Vijay; Taccone, Michael S; Mischel, Paul S; Fuller, Gregory N; Hawkins, Cynthia; Stanford, William L; Taylor, Michael D; Zadeh, Gelareh; Rutka, James T
2016-08-15
Proliferating cancer cells are characterized by high rates of glycolysis, lactate production, and altered mitochondrial metabolism. This metabolic reprogramming provides important metabolites for proliferation of tumor cells, including glioblastoma. These biological processes, however, generate oxidative stress that must be balanced through detoxification of reactive oxygen species (ROS). Using an unbiased retroviral loss-of-function screen in nontransformed human astrocytes, we demonstrate that mitochondrial PTEN-induced kinase 1 (PINK1) is a regulator of the Warburg effect and negative regulator of glioblastoma growth. We report that loss of PINK1 contributes to the Warburg effect through ROS-dependent stabilization of hypoxia-inducible factor-1A and reduced pyruvate kinase muscle isozyme 2 activity, both key regulators of aerobic glycolysis. Mechanistically, PINK1 suppresses ROS and tumor growth through FOXO3a, a master regulator of oxidative stress and superoxide dismutase 2. These findings highlight the importance of PINK1 and ROS balance in normal and tumor cells. PINK1 loss was observed in a significant number of human brain tumors including glioblastoma (n > 900) and correlated with poor patient survival. PINK1 overexpression attenuates in vivo glioblastoma growth in orthotopic mouse xenograft models and a transgenic glioblastoma model in Drosophila Cancer Res; 76(16); 4708-19. ©2016 AACR. ©2016 American Association for Cancer Research.
ISHIKAWA, Akira; SUGIYAMA, Makoto; HONDO, Eiichi; KINOSHITA, Keiji; YAMAGISHI, Yuki
2015-01-01
Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging. PMID:25739360
Ishikawa, Akira; Sugiyama, Makoto; Hondo, Eiichi; Kinoshita, Keiji; Yamagishi, Yuki
2015-01-01
Oca2(p-cas) (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2(p-cas) revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.
The emerging contribution of social wasps to grape rot disease ecology
Boyden, Sean D.; Soriano, Jonathan-Andrew N.; Corey, Tyler B.; Leff, Jonathan W.; Fierer, Noah; Starks, Philip T.
2017-01-01
Grape sour (bunch) rot is a polymicrobial disease of vineyards that causes millions of dollars in lost revenue per year due to decreased quality of grapes and resultant wine. The disease is associated with damaged berries infected with a community of acetic acid bacteria, yeasts, and filamentous fungi that results in rotting berries with high amounts of undesirable volatile acidity. Many insect species cause the initial grape berry damage that can lead to this disease, but most studies have focused on the role of fruit flies in facilitating symptoms and vectoring the microorganisms of this disease complex. Like fruit flies, social wasps are abundant in vineyards where they feed on ripe berries and cause significant damage, while also dispersing yeasts involved in wine fermentation. Despite this, their possible role in disease facilitation and dispersal of grape rots has not been explored. We tested the hypothesis that the paper wasp Polistes dominulus could facilitate grape sour rot in the absence of other insect vectors. Using marker gene sequencing we characterized the bacterial and fungal community of wild-caught adults. We used a sterilized foraging arena to determine if these wasps transfer viable microorganisms when foraging. We then tested if wasps harboring their native microbial community, or those inoculated with sour rot, had an effect on grape sour rot incidence and severity using a laboratory foraging arena. We found that all wasps harbor some portion of the sour rot microbial community and that they have the ability to transfer viable microorganisms when foraging. Foraging by inoculated and uninoculated wasps led to an increase in berry rot disease symptom severity and incidence. Our results indicate that paper wasps can facilitate sour rot diseases in the absence of other vectors and that the mechanism of this facilitation may include both increasing host susceptibility and transmitting these microbial communities to the grapes. Social wasps are understudied but relevant players in the sour rot ecology of vineyards. PMID:28462032
Manuela Baietto; Sofia Aquaro; Dan Wilson; Letizia Pozzi; Danieli Bassi
2015-01-01
Wood rot is a serious fungal disease of trees. Wood decay fungi penetrate and gain entry into trees through pruning cuts or open wounds using extracellular digestive enzymes to attack all components of the cell wall, leading to the destruction of sapwood which compromises wood strength and stability. On living trees, it is often difficult to diagnose wood rot disease,...
Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.
Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu
2014-09-01
Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains.
75 FR 41968 - Re-Registration and Renewal of Aircraft Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... the use of the second or ``Pink Copy'' of the application for registration for a reasonable period of... under ``Pink Copy'' temporary authority at any time if an application for registration is made. Due to... reference to the ``pink copy'' of the Aircraft Registration Application. V. Miscellaneous Comments A. Re...
50 CFR 600.1102 - Pacific Coast groundfish fee.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fishery means each of the fisheries for coastal Dungeness crab and pink shrimp in each of the States of California and Oregon and the fishery for coastal Dungeness crab and ocean pink shrimp in the State of... pink shrimp fee-share fishery, $674,202, (iii) Oregon coastal Dungeness crab fee-share fishery, $1,367...
50 CFR 600.1102 - Pacific Coast groundfish fee.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fishery means each of the fisheries for coastal Dungeness crab and pink shrimp in each of the States of California and Oregon and the fishery for coastal Dungeness crab and ocean pink shrimp in the State of... pink shrimp fee-share fishery, $674,202, (iii) Oregon coastal Dungeness crab fee-share fishery, $1,367...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... List the Oklahoma Grass Pink Orchid as Endangered or Threatened AGENCY: Fish and Wildlife Service... (Oklahoma grass pink orchid) as endangered or threatened under the Endangered Species Act of 1973, as... information, we request information on Calopogon oklahomensis (Oklahoma grass pink orchid) from governmental...
50 CFR 300.94 - Prohibitions and restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.94 Prohibitions and restrictions. In addition... sockeye and pink salmon fishing in the Fraser River Panel Area (U.S.): (1) The Fraser River Panel Area (U.S.) is closed to sockeye and pink salmon fishing, unless opened by Fraser River Panel regulations or...
50 CFR 300.94 - Prohibitions and restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.94 Prohibitions and restrictions. In addition... sockeye and pink salmon fishing in the Fraser River Panel Area (U.S.): (1) The Fraser River Panel Area (U.S.) is closed to sockeye and pink salmon fishing, unless opened by Fraser River Panel regulations or...
Rojas-Charry, Liliana; Cookson, Mark R.; Niño, Andrea; Arboleda, Humberto; Arboleda, Gonzalo
2016-01-01
It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson’s disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission. PMID:24792327
Zhao, Chuanyan; Chen, Zhuyun; Xu, Xueqiang; An, Xiaofei; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying; Yuan, Yanggang
2017-01-15
Cisplatin often causes acute kidney injury (AKI) in the treatment of a wide variety of malignancies. Mitochondrial dysfunction is one of the main reasons for cisplatin nephrotoxicity. Previous study showed that Pink1 and Parkin play central roles in regulating the mitophagy, which is a key protective mechanism by specifically eliminating dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy in cisplatin induced nephrotoxicity remain to be elucidated. The purpose of this study was to investigate the effects of Pink1/Parkin pathway in mitophagy, mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. In cultured human renal proximal tubular cells, we found that knockdown of Pink1/Parkin induced the aggravation of mitochondrial function, leading to the increase of cell injury through inhibition of mitophagy. Additionally, the overexpression of Pink1/Parkin protected against cisplatin-induced mitochondrial dysfunction and cell injury by promoting mitophagy. Our results provide clear evidence that Pink1/Parkin-dependent mitophagy has identified potential targets for the treatment of cisplatin-induced AKI. Copyright © 2016 Elsevier Inc. All rights reserved.
Structure of PINK1 in complex with its substrate ubiquitin.
Schubert, Alexander F; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L; Freund, Stefan M V; Steyaert, Jan; Maslen, Sarah L; Komander, David
2017-12-07
Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (PARK2, also known as PRKN) and its upstream protein kinase PINK1 (also known as PARK6). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the 'C-terminally retracted' (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.
Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage.
Lee, Jonghoon; Izzah, Nur Kholilatul; Jayakodi, Murukarthick; Perumal, Sampath; Joh, Ho Jun; Lee, Hyeon Ju; Lee, Sang-Choon; Park, Jee Young; Yang, Ki-Woung; Nou, Il-Sup; Seo, Joodeok; Yoo, Jaeheung; Suh, Youngdeok; Ahn, Kyounggu; Lee, Ji Hyun; Choi, Gyung Ja; Yu, Yeisoo; Kim, Heebal; Yang, Tae-Jin
2015-02-03
Black rot is a destructive bacterial disease causing large yield and quality losses in Brassica oleracea. To detect quantitative trait loci (QTL) for black rot resistance, we performed whole-genome resequencing of two cabbage parental lines and genome-wide SNP identification using the recently published B. oleracea genome sequences as reference. Approximately 11.5 Gb of sequencing data was produced from each parental line. Reference genome-guided mapping and SNP calling revealed 674,521 SNPs between the two cabbage lines, with an average of one SNP per 662.5 bp. Among 167 dCAPS markers derived from candidate SNPs, 117 (70.1%) were validated as bona fide SNPs showing polymorphism between the parental lines. We then improved the resolution of a previous genetic map by adding 103 markers including 87 SNP-based dCAPS markers. The new map composed of 368 markers and covers 1467.3 cM with an average interval of 3.88 cM between adjacent markers. We evaluated black rot resistance in the mapping population in three independent inoculation tests using F2:3 progenies and identified one major QTL and three minor QTLs. We report successful utilization of whole-genome resequencing for large-scale SNP identification and development of molecular markers for genetic map construction. In addition, we identified novel QTLs for black rot resistance. The high-density genetic map will promote QTL analysis for other important agricultural traits and marker-assisted breeding of B. oleracea.
Ruffilli, Roberta; Fanti, Maura; Secci, Pietro Paolo; Mostallino, Maria Cristina; Setzu, Maria Dolores; Zuncheddu, Maria Antonietta; Collu, Ignazio; Solla, Paolo; Marrosu, Francesco; Kasture, Sanjay; Acquas, Elio; Liscia, Anna
2014-01-01
The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3–6 (I), 10–15 (II) and 20–25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment. PMID:25340511
Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America
Malick, Michael J.; Cox, Sean P.
2016-01-01
Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510
2017-01-01
The objective of this study was to determine the effects of short-term presalting on pink color and pigment characteristics in ground chicken breasts after cooking. Four salt levels (0%, 1%, 2%, and 3%) were presalted and stored for 0 and 3 d prior to cooking. Cooking yield was increased as salt level was increased. However, no significant differences in pH values or oxidation reduction potential (ORP) of cooked chicken breasts were observed. Cooked products with more than 2% of salt level had less redder (lower CIE a* value) on day 3 than on those on day 0. As salt level was increased to 2%, myoglobin was denatured greatly. Myoglobin denaturation was leveled off when samples had 3% of salt. With increasing salt levels, residual nitrite contents were increased while nitrosyl hemochrome contents were decreased. These results demonstrate that salt addition to a level of more than 2% to ground meat may reduce the redness of cooked products and that presalting storage longer than 3 d should be employed to develop a natural pink color of ground chicken products when less than 1% salt is added to ground chicken meat. PMID:28316476
Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon
2016-06-21
We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.
Soft rot erwiniae: from genes to genomes.
Toth, Ian K; Bell, Kenneth S; Holeva, Maria C; Birch, Paul R J
2003-01-01
SUMMARY The soft rot erwiniae, Erwinia carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Ech) are major bacterial pathogens of potato and other crops world-wide. We currently understand much about how these bacteria attack plants and protect themselves against plant defences. However, the processes underlying the establishment of infection, differences in host range and their ability to survive when not causing disease, largely remain a mystery. This review will focus on our current knowledge of pathogenesis in these organisms and discuss how modern genomic approaches, including complete genome sequencing of Eca and Ech, may open the door to a new understanding of the potential subtlety and complexity of soft rot erwiniae and their interactions with plants. The soft rot erwiniae are members of the Enterobacteriaceae, along with other plant pathogens such as Erwinia amylovora and human pathogens such as Escherichia coli, Salmonella spp. and Yersinia spp. Although the genus name Erwinia is most often used to describe the group, an alternative genus name Pectobacterium was recently proposed for the soft rot species. Ech mainly affects crops and other plants in tropical and subtropical regions and has a wide host range that includes potato and the important model host African violet (Saintpaulia ionantha). Ecc affects crops and other plants in subtropical and temperate regions and has probably the widest host range, which also includes potato. Eca, on the other hand, has a host range limited almost exclusively to potato in temperate regions only. Disease symptoms: Soft rot erwiniae cause general tissue maceration, termed soft rot disease, through the production of plant cell wall degrading enzymes. Environmental factors such as temperature, low oxygen concentration and free water play an essential role in disease development. On potato, and possibly other plants, disease symptoms may differ, e.g. blackleg disease is associated more with Eca and Ech than with Ecc. http://www.scri.sari.ac.uk/TiPP/Erwinia.htm, http://www.ahabs.wisc.edu:16080/ approximately pernalab/erwinia/index.htm, http://www.tigr.org/tdb/mdb/mdbinprogress.html, http://www.sanger.ac.uk/Projects/E_carotovora/.
What Does Daniel Pink Have to Say?
ERIC Educational Resources Information Center
Passmore, Kaye
2007-01-01
In Daniel Pink's vision of the near future, Americans value artists and creative thinkers as much as computer programmers, good design is a necessity, and empathy is essential to all products and services. In this article, the author discusses what Pink, author of "A Whole New Mind: Why Right-Brainers will Rule the Future," has to say on creative…
Shades of Pink: Preschoolers Make Meaning in a Reggio-Inspired Classroom
ERIC Educational Resources Information Center
Kim, Bo Sun
2012-01-01
Shades of Pink study describes how six preschoolers and their teacher engaged in a collaborative learning project through which they learned about the shades of a color--in this case, pink. As the children learned through experimenting and discussing their theories, they represented ideas using art as a tool for discovery and learning. The study…
Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah
2015-07-01
The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.
Wearing pink as a stand against bullying: why we need to say more.
Naugler, Diane
2010-01-01
This article presents a contextual discourse analysis of the media response to a campaign against bullying that was developed in the spring of 2007 in the Canadian province of Nova Scotia. As a feature of masculine socialization, male-on-male bullying secures the reproduction of an aggressive and heteronormative hegemonic masculinity (Connell, 1987) for boys and young men in contemporary North American mainstream culture. I argue that the celebration of the "Pink Campaign" is illustrative of the normalizing silences, or "unremarkability," about the related discourses of sexism and homophobia that motivate everyday practices of male-on-male bullying.
Responses of pink salmon to CO2-induced aquatic acidification
NASA Astrophysics Data System (ADS)
Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.
2015-10-01
Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.
Phosphorylated ubiquitin chain is the genuine Parkin receptor
Okatsu, Kei; Koyano, Fumika; Kimura, Mayumi; Kosako, Hidetaka; Saeki, Yasushi
2015-01-01
PINK1 selectively recruits Parkin to depolarized mitochondria for quarantine and removal of damaged mitochondria via ubiquitylation. Dysfunction of this process predisposes development of familial recessive Parkinson’s disease. Although various models for the recruitment process have been proposed, none of them adequately explain the accumulated data, and thus the molecular basis for PINK1 recruitment of Parkin remains to be fully elucidated. In this study, we show that a linear ubiquitin chain of phosphomimetic tetra-ubiquitin(S65D) recruits Parkin to energized mitochondria in the absence of PINK1, whereas a wild-type tetra-ubiquitin chain does not. Under more physiologically relevant conditions, a lysosomal phosphorylated polyubiquitin chain recruited phosphomimetic Parkin to the lysosome. A cellular ubiquitin replacement system confirmed that ubiquitin phosphorylation is indeed essential for Parkin translocation. Furthermore, physical interactions between phosphomimetic Parkin and phosphorylated polyubiquitin chain were detected by immunoprecipitation from cells and in vitro reconstitution using recombinant proteins. We thus propose that the phosphorylated ubiquitin chain functions as the genuine Parkin receptor for recruitment to depolarized mitochondria. PMID:25847540
Zhong Yang; Zhehui Jiang; Chung Y. Hse; Ru Liu
2017-01-01
Small wood specimens selected from six slash pine (Pinus elliottii) trees were inoculated with brown-rot and white-rot fungi and then evaluated for static modulus of elasticity (MOE) and dynamic MOE (MOEsw). The experimental variables studied included a brown-rot fungus (Gloeophyllum trabeum) and a white-rot fungus (Trametes versicolor) for six exposure periods (2, 4,...
Senior Officer Course Manual. Military Justice and Civil Law.
1994-09-01
power of attorney. Waiver of appellate review. Other O - Page check: sequential ; # of pages: 11-87 Index sheet. Copy of ROT served on accused; attach...statement. - Special power of attorney. __Waiver of appellate review. Other Page check: sequential ; # of pages: Index sheet. Copy of ROT served on accused...8217 questions. Appellate rights statement. Other Page check: sequential ; # of pages: Index sheet. Copy of ROT served on accused; attach receipt of ROT (or
Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying
2011-09-28
The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.
Yan, Wang; Chen, Zhao-Ying; Chen, Jia-Qi; Chen, Hui-Min
2018-02-19
Long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) was found to be closely related to the pathological changes in brain and nervous system. However, the role of NEAT1 and its potential mechanism in Parkinson's disease (PD) largely remain uncharacterized. In this study, PD mouse model was established by intraperitoneal injection of MPTP. The numbers of TH + neurons, NEAT1 expression and the level of PINK1, LC3-II, LC3-I protein were assessed in PD mice. SH-SY5Y cells were treated with MPP + as PD cell model. RNA pull-down assay was used to identify the interaction between NEAT1 and PINK1 in vitro. The endogenous expression of NEAT1 was modified by lentiviral vector carrying interference sequence for NEAT1 in vivo. The numbers of TH + neurons significantly decreased in PD mice compared with the control. The expressions of NEAT1, PINK1 protein and LC3-II/LC3-I level were increased by MPTP in vitro and in vivo. Moreover, NEAT1 positively regulated the protein level of PINK1 through inhibition of PINK1 protein degradation. And NEAT1 mediated the effects of MPP + on SH-SY5Y cells through stabilization of PINK1 protein. The results of in vivo experiments revealed that NEAT1 knockdown could effectively suppress MPTP-induced autophagy in vivo that alleviated dopaminergic neuronal injury. LncRNA NEAT1 promoted the MPTP-induced autophagy in PD through stabilization of PINK1 protein. Copyright © 2017 Elsevier Inc. All rights reserved.
van der Merwe, Celia; van Dyk, Hayley Christy; Engelbrecht, Lize; van der Westhuizen, Francois Hendrikus; Kinnear, Craig; Loos, Ben; Bardien, Soraya
2017-05-01
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Mutations in the PINK1 gene result in an autosomal recessive form of early-onset PD. PINK1 plays a vital role in mitochondrial quality control via the removal of dysfunctional mitochondria. The aim of the present study was to create a cellular model of PD using siRNA-mediated knock down of PINK1 in SH-SY5Y neuroblastoma cells The possible protective effects of curcumin, known for its many beneficial properties including antioxidant and anti-inflammatory effects, was tested on this model in the presence and absence of paraquat, an additional stressor. PINK1 siRNA and control cells were separated into four treatment groups: (i) untreated, (ii) treated with paraquat, (iii) pre-treated with curcumin then treated with paraquat, or (iv) treated with curcumin. Various parameters of cellular and mitochondrial function were then measured. The PINK1 siRNA cells exhibited significantly decreased cell viability, mitochondrial membrane potential (MMP), mitochondrial respiration and ATP production, and increased apoptosis. Paraquat-treated cells exhibited decreased cell viability, increased apoptosis, a more fragmented mitochondrial network and decreased MMP. Curcumin pre-treatment followed by paraquat exposure rescued cell viability and increased MMP and mitochondrial respiration in control cells, and significantly decreased apoptosis and increased MMP and maximal respiration in PINK1 siRNA cells. These results highlight a protective effect of curcumin against mitochondrial dysfunction and apoptosis in PINK1-deficient and paraquat-exposed cells. More studies are warranted to further elucidate the potential neuroprotective properties of curcumin.
McLelland, Gian-Luca; Soubannier, Vincent; Chen, Carol X; McBride, Heidi M; Fon, Edward A
2014-01-01
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild-type but not PD-linked mutant parkin supports the biogenesis of a population of mitochondria-derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin- and PINK1-dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD. PMID:24446486
Color Differences Between Pink Veneering Ceramics and the Human Gingiva.
Valente, Nicola Alberto; Sailer, Irena; Fehmer, Vincent; Thoma, Daniel Stefan
2018-06-12
The aim of this study was to examine 10 different shades of pink ceramic to determine which one best matches the mean color of human gingiva. Bar-shaped zirconia samples were fabricated and veneered with 1 of 10 pink zirconia veneering ceramics. The color of the gingiva at the central maxillary incisors of 20 healthy volunteers was compared to the pink veneering ceramics using a spectrophotometer (Spectroshade, MHT). The obtained color parameters L*, a*, and b* (CIELAB) of the gingiva and the ceramics were used to calculate the color difference (ΔE). Mean ΔE values were descriptively analyzed and compared to the threshold value for visibility of color differences of gingiva (ΔE = 3.1). The lowest pink ceramic ΔE value obtained (closest to the mean ΔE of all the volunteers' gingiva) was 6.2. All the tested ceramics exhibited a color difference above the threshold value for visibility.
The GSTome Reflects the Chemical Environment of White-Rot Fungi
Deroy, Aurélie; Saiag, Fanny; Kebbi-Benkeder, Zineb; Touahri, Nassim; Hecker, Arnaud; Morel-Rouhier, Mélanie; Colin, Francis; Dumarcay, Stephane; Gérardin, Philippe; Gelhaye, Eric
2015-01-01
White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST). The interactions between GSTs from two white-rot fungi, Trametes versicolor and Phanerochaete chrysosporium, and an environmental library of wood extracts have been studied. The results demonstrate that the specificity of these interactions is closely related to the chemical composition of the extracts in accordance with the tree species and their localization inside the wood (sapwood vs heartwood vs knotwood). These data suggest that the fungal GSTome could reflect the chemical environment encountered by these fungi during wood degradation and could be a way to study their adaptation to their way of life. PMID:26426695
NASA Astrophysics Data System (ADS)
Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham
2013-03-01
Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.
Efficiency trial of 80% thiophanate-methyl and 72% streptomycin against konjac bacterial soft rot
NASA Astrophysics Data System (ADS)
Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Tan, Chunyan
2018-04-01
Amorphophallus konjac soft rot can cause severe yield losses, and the effects agent to prevent the disease had not been found currently in production. In this dissertation, inhibition on konjac soft rot bacteria of seven agricultural fungicides, as benzene ring yl ether, methyl thiophanate, streptomycin sulfate, methane frost hymexazol, bismerthiazol WP, gray mold and Dyson Mn-Zn, was determined by antagonistic petri dish method. The results indicated that: the tested fungicide s had certain inhibition on konjac soft rot bacteria, and the inhibitory effect of different fungicides was significant difference. 80% thiophanate-methyl and 72% streptomycin sulfate had a good inhibitory effect on konjac soft rot disease bacteria.
Mizumura, Kenji; Justice, Matthew J; Schweitzer, Kelly S; Krishnan, Sheila; Bronova, Irina; Berdyshev, Evgeny V; Hubbard, Walter C; Pewzner-Jung, Yael; Futerman, Anthony H; Choi, Augustine M K; Petrache, Irina
2018-04-01
The mechanisms by which lung structural cells survive toxic exposures to cigarette smoke (CS) are not well defined but may involve proper disposal of damaged mitochondria by macro-autophagy (mitophagy), processes that may be influenced by pro-apoptotic ceramide (Cer) or its precursor dihydroceramide (DHC). Human lung epithelial and endothelial cells exposed to CS exhibited mitochondrial damage, signaled by phosphatase and tensin homolog-induced putative kinase 1 (PINK1) phosphorylation, autophagy, and necroptosis. Although cells responded to CS by rapid inhibition of DHC desaturase, which elevated DHC levels, palmitoyl (C16)-Cer also increased in CS-exposed cells. Whereas DHC augmentation triggered autophagy without cell death, the exogenous administration of C16-Cer was sufficient to trigger necroptosis. Inhibition of Cer-generating acid sphingomyelinase reduced both CS-induced PINK1 phosphorylation and necroptosis. When exposed to CS, Pink1-deficient ( Pink1 -/- ) mice, which are protected from airspace enlargement compared with wild-type littermates, had blunted C16-Cer elevations and less lung necroptosis. CS-exposed Pink1 -/- mice also exhibited significantly increased levels of lignoceroyl (C24)-DHC, along with increased expression of Cer synthase 2 ( CerS2), the enzyme responsible for its production. This suggested that a combination of high C24-DHC and low C16-Cer levels might protect against CS-induced necroptosis. Indeed, CerS2 -/- mice, which lack C24-DHC at the expense of increased C16-Cer, were more susceptible to CS, developing airspace enlargement following only 1 month of exposure. These results implicate DHCs, in particular, C24-DHC, as protective against CS toxicity by enhancing autophagy, whereas C16-Cer accumulation contributes to mitochondrial damage and PINK1-mediated necroptosis, which may be amplified by the inhibition of C24-DHC-producing CerS2.-Mizumura, K., Justice, M. J., Schweitzer, K. S., Krishnan, S., Bronova, I., Berdyshev, E. V., Hubbard, W. C., Pewzner-Jung, Y., Futerman, A. H., Choi, A. M. K., Petrache, I. Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure.
Le, C N; Kruijt, M; Raaijmakers, J M
2012-02-01
To determine the role of phenazines (PHZ) and lipopeptide surfactants (LPs) produced by Pseudomonas in suppression of stem rot disease of groundnut, caused by the fungal pathogen Sclerotium rolfsii. In vitro assays showed that PHZ-producing Pseudomonas chlororaphis strain Phz24 significantly inhibited hyphal growth of S. rolfsii and suppressed stem rot disease of groundnut under field conditions. Biosynthesis and regulatory mutants of Phz24 deficient in PHZ production were less effective in pathogen suppression. Pseudomonas strains SS101, SBW25 and 267, producing viscosin or putisolvin-like LPs, only marginally inhibited hyphal growth of S. rolfsii and did not suppress stem rot disease. In contrast, Pseudomonas strain SH-C52, producing the chlorinated LP thanamycin, inhibited hyphal growth of S. rolfsii and significantly reduced stem rot disease of groundnut in nethouse and field experiments, whereas its thanamycin-deficient mutant was less effective. Phenazines and specific lipopeptides play an important role in suppression of stem rot disease of groundnut by root-colonizing Pseudomonas strains. Pseudomonas strains Phz24 and SH-C52 showed significant control of stem rot disease. Treatment of seeds or soil with these strains provides a promising supplementary strategy to control stem rot disease of groundnut. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Caryopteris ×clandonensis A. Simmonds ex C. H. Curtis 'Durio' Pink Chablis™, (Lamiaceae) a pink-flowered cultivar distinctive among the typically blue-flowered cultivars of bluebeard, is valued as a small, deciduous shrub in the landscape for its mounded growth habit, showy flower display in summer,...
Reconnaissance Report for Hydropower Redevelopment at Sault Ste. Marie, Michigan.
1981-01-01
Pink Salmon Oncorhynchus gorbuscha Round Whitefish Prosopium cylindraceum Cisco Coregonus spp. Northern Pike Esox lucius White Sucker Catostomus...from white to mottled pink and purple- scattered white and gray reduction spots are abundant. The bedding is irregular and characterized by ripple marks...Brook trout x lake trout Coho Salmon Oncorhynchus kisutch Chinook Salmon Oncorhynchus tshawytscha Pink Salmon Oncorhynchus gorbuscha Round Whitefish
ERIC Educational Resources Information Center
Pugh, Greg L.
2014-01-01
The pink triangle exercise is an example of an experiential learning exercise that creates cognitive dissonance and deep learning of unrealized internalized biases among social work students. Students wear a button with a pink triangle on it for 1 day and write a reflection paper. The exercise increases self-awareness, cultural competence, and the…
A new spontaneous allele at the pink-eyed dilution (p) locus discovered in Mus musculus castaneus.
Tsuji, A; Wakayama, T; Ishikawa, A
1995-10-01
Mutant mice characterized by a cream coat and pink eyes were spontaneously discovered among the descendants of Indonesian wild mice (Mus musculus castaneus). This mutant phenotype was controlled by a single autosomal recessive gene that was allelic to the pink-eyed dilution (p) gene. The mutant mouse phenotypically resembled the original p mouse which was the first mutant identified at this locus. Nevertheless, these two alleles differed in origin, a previous report suggesting that the original p allele was derived from Japanese wild mice (M. m. molossinus). Thus the symbol pcas (pink-eyed castaneus) was proposed for the present mutation allele.
9 CFR 590.510 - Classifications of shell eggs used in the processing of egg products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to include black rots, white rots, mixed rots, green whites, eggs with diffused blood in the albumen... any other filthy and decomposed eggs including the following: (1) Any egg with visible foreign matter...
9 CFR 590.510 - Classifications of shell eggs used in the processing of egg products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to include black rots, white rots, mixed rots, green whites, eggs with diffused blood in the albumen... any other filthy and decomposed eggs including the following: (1) Any egg with visible foreign matter...
Swarm Utilisation Analysis: LEO satellite observations for the ESA's SSA Space Weather network
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Stolle, Claudia; Rauberg, Jan; Olsen, Nils; Vennerstrøm, Susanne; Gullikstad Johnsen, Magnar; Hall, Chris
2017-04-01
ESA's (European Space Agency) constellation mission Swarm was successfully launched on 22 November 2013. The three satellites achieved their final constellation on 17 April 2014 and since then Swarm-A and Swarm-C orbiting the Earth at about 470 km (flying side-by-side) and Swarm-B at about 520 km altitude. Each of Swarm satellite carries instruments with high precision to measure magnetic and electric fields, neutral and plasma densities, and TEC (Total Electron Content) for which a dual frequency GPS receiver is used. SUA (Swarm Utilisation Analysis) is a project of the ESA's SSA (Space Situational Awareness) SWE (Space Weather) program. Within this framework GFZ (German Research Centre for Geosciences, Potsdam, Germany) and DTU (National Space Institute, Kongens Lyngby, Denmark) have developed two new Swarm products ROT (Rate Of change of TEC) and PEJ (Location and intensity level of Polar Electrojets), respectively. ROT is derived as the first time derivative from the Swarm measurements of TEC at 1 Hz sampling. ROT is highly relevant for users in navigation and communications: strong plasma gradients cause GPS signal degradation or even loss of GPS signal. Also, ROT is a relevant space weather asset irrespective of geomagnetic activity, e.g., high amplitude values of ROT occur during all geomagnetic conditions. PEJ is derived from the Swarm measurements of the magnetic field strength at 1 Hz sampling. PEJ has a high-level importance for power grid companies since the polar electrojet is a major cause for ground-induced currents. ROT and PEJ together with five existing Swarm products TEC, electron density, IBI (Ionospheric Bubble Index), FAC (Field-Aligned Current), and vector magnetic field build the SUA service prototype. This prototype will be integrated into ESA's SSA Space Weather network as a federated service and will be available soon from ESA's SSA SWE Ionospheric Weather and Geomagnetic Conditions Expert Service Centres (ESCs).
Disease notes - Bacterial root rot
USDA-ARS?s Scientific Manuscript database
Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...
Parsons, M W; Munkvold, G P
2010-05-01
Fusarium ear rot, caused by Fusarium verticillioides, is one of the most common diseases of maize, causing yield and quality reductions and contamination of grain by fumonisins and other mycotoxins. Drought stress and various insects have been implicated as factors affecting disease severity. Field studies were conducted to evaluate the interactions and relative influences of drought stress, insect infestation, and planting date upon Fusarium ear rot severity and fumonisin B1 contamination. Three hybrids varying in partial resistance to Fusarium ear rot were sown on three planting dates and subjected to four irrigation regimes to induce differing levels of drought stress. A foliar-spray insecticide treatment was imposed to induce differing levels of insect injury. Populations of thrips (Frankliniella spp.), damage by corn earworm (Helicoverpa zeae), Fusarium ear rot symptoms, and fumonisin B1 levels were assessed. There were significant effects of hybrid, planting date, insecticide treatment, and drought stress on Fusarium ear rot symptoms and fumonisin B1 contamination, and these factors also had significant interacting effects. The most influential factors were hybrid and insecticide treatment, but their effects were influenced by planting date and drought stress. The more resistant hybrids and the insecticide-treated plots consistently had lower Fusarium ear rot severity and fumonisin B1 contamination. Later planting dates typically had higher thrips populations, more Fusarium ear rot, and higher levels of fumonisin B1. Insect activity was significantly correlated with disease severity and fumonisin contamination, and the correlations were strongest for thrips. The results of this study confirm the influence of thrips on Fusarium ear rot severity in California, USA, and also establish a strong association between thrips and fumonisin B1 levels.
Allum, John H J; Cleworth, T; Honegger, Flurin
2016-07-01
We investigated how response asymmetries and deficit side response amplitudes for head accelerations used clinically to test the vestibular ocular reflex (VOR) are correlated with caloric canal paresis (CP) values. 30 patients were examined at onset of an acute unilateral peripheral vestibular deficit (aUPVD) and 3, 6, and 13 weeks later with three different VOR tests: caloric, rotating chair (ROT), and video head impulse tests (vHIT). Response changes over time were fitted with an exponential decay model and compared with using linear regression analysis. Recovery times (to within 10% of steady state) were similar for vHIT-asymmetry and CP (>10 weeks) but shorter for ROT asymmetry (<4 weeks). Regressions with CP were similar (vHIT asymmetry, R = 0.68, ROT, R = 0.62). Responses to the deficit side were also equally well correlated with CP values (R = 0.71). Specificity for vHIT and 20 degrees/s ROT deficit side responses was 100% in comparison to CP values, sensitivity was 74% for vHIT, 75% for ROT. A decrease in normal side responses occurred for ROT but not for vHIT at 3 weeks. Normal side responses were weekly correlated with CP for ROT (R = 0.49) but not for vHIT (R = 0.17). These results indicate that vHIT deficit side VOR gains are slightly better correlated with CP values than ROT, probably because of similar recovery time courses of vHIT and caloric responses and the lack of normal side vHIT changes. However, specificity and sensitivity is the same for vHIT and ROT tests.
78 FR 15885 - Western Pacific Fisheries; 2013 Annual Catch Limits and Accountability Measures
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
...,512 lb (2,500 kg). Coral. Makapuu Bed--Pink 2,205 lb (1,000 kg). Coral. Makapuu Bed--Bamboo 551 lb (250 kg). Coral. 180 Fathom Bank-- 489 lb (222 kg). Pink Coral. 180 Fathom Bank-- 123 lb (56 kg). Bamboo Coral. Brooks Bank--Pink 979 lb (444 kg). Coral. Brooks Bank--Bamboo 245 lb (111 kg). Coral. Kaena...
NASA Astrophysics Data System (ADS)
Milingo, Jackie; Saar, Steven; Marschall, Laurence
2018-01-01
We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period
Fish farms, parasites, and predators: implications for salmon population dynamics.
Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A
2011-04-01
For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.
USDA-ARS?s Scientific Manuscript database
Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...
Tolerance to Phytophthora Fruit Rot in Watermelon Plant Introductions
USDA-ARS?s Scientific Manuscript database
Phytophthora capsici is distributed worldwide, and is an aggressive pathogen with a broad host range infecting solanaceous, leguminaceous, and cucurbitaceous crops. Fruit rot, caused by P. capsici is an emerging disease in most watermelon producing regions of Southeast US. Resistance to fruit rot o...
Jasmonic acid and salicylic acid inhibit growth of three sugarbeet storage rot pathogens
USDA-ARS?s Scientific Manuscript database
Storage rots contribute to postharvest losses by consuming sucrose and increasing carbohydrate impurities that increase sugar loss to molasses during processing. They also increase root respiration rate, which causes additional sucrose loss and contributes to pile warming. Currently, storage rots ...
Sugarbeet Cultivar Evaluation for Bacterial Root Rot
USDA-ARS?s Scientific Manuscript database
Bacterial root rot of sugarbeet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, studies were conducted to establish an assa...
Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
RotCFD Analysis of the AH-56 Cheyenne Hub Drag
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen
2016-01-01
In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapin, M.A.; Tiller, G.M.; Mahaffie, M.J.
1996-12-31
Economic considerations of the deep-water turbidite play, in the Gulf of Mexico and elsewhere, require large reservoir volumes to be drained by relatively few, very expensive wells. Deep-water development projects to date have been planned on the basis of high-quality 3-D seismic data and sparse well control. The link between 3-D seismic, well control, and the 3-D geological and reservoir architecture model are demonstrated here for Pliocene turbidite sands of the {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. This information was used to better understand potential reservoir compartments for development well planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeehye; Lee, Gina; Chung, Jongkyeong
The two Parkinson's disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkinmore » mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.« less
Rao, Galla Narsing; Nagender, Allani; Satyanarayana, Akula; Rao, Dubasi Govardhana
2011-02-01
Quamachil aril powder samples were prepared and evaluated for chemical composition and sensory quality by packing in two packaging systems during storage for six months. The protein contents were 12.4 and 15.0% in white and pink aril powders respectively. The titrable acidity of white and pink aril powders were 2.4 and 4.8% respectively. Ca and Fe contents in white aril powder samples were 60 and 12 mg/100 g where as in pink aril powder 62 and 16 mg/100 g, respectively. The anthocyanin content in pink powder decreased from 50.5 to 11.2 and 14.1 mg/100 g in samples packed in polyethylene (PE) and metalised polyester polyethylene laminated pouches respectively. Total polyphenol amount increased in both the powders irrespective of packaging material. Sorption isotherms indicated that both white and pink aril powders were hygroscopic and equilibrated at low relative humidity of 28 and 32%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reysenbach, A.L.; Wickham, G.S.; Pace, N.R.
1994-06-01
This study uses a molecular phylogenetic approach to characterize the pink filament community at the outflow of Octopus Spring in Yellowstone National Park. The temperature range of the spring is from 84 to 88 C. The authors show that the pink filaments are most closely related to the hydrogen-oxidizing bacterium Aquifex pyrophilus and a close relative Hydrogenobacter thermophilus. 38 refs., 4 figs., 1 tab.
Sakurai, Masahiro; Kawamura, Takae; Nishimura, Hidekazu; Suzuki, Hiroyoshi; Tezuka, Fumiaki; Abe, Koji
2009-04-01
The mechanism of spinal cord injury has been thought to be related to the vulnerability of spinal motor neuron cells against ischemia. However, the mechanisms of such vulnerability are not fully understood. We investigated a possible mechanism of neuronal death by immunohistochemical analysis for DJ-1, PINK1, and alpha-Synuclein. We used a 15-min rabbit spinal cord ischemia model, with use of a balloon catheter. Western blot analysis for DJ-1, PINK1, and alpha-Synuclein; temporal profiles of DJ-1, PINK1, and alpha-Synuclein immunoreactivity; and double-label fluorescence immunocytochemical studies were performed. Western blot analysis revealed scarce immunoreactivity for DJ-1, PINK1, and alpha-Synuclein in the sham-operated spinal cords. However, they became apparent at 8 h after transient ischemia, which returned to the baseline level at 1 day. Double-label fluorescence immunocytochemical study revealed that both DJ-1 and PINK1, and DJ-1 and alpha-Synuclein were positive at 8 h of reperfusion in the same motor neurons, which eventually die. The induction of DJ-1 and PINK1 proteins in the motor neurons at the early stage of reperfusion may indicate oxidative stress, and the induction of alpha-Synuclein may be implicated in the programmed cell death change after transient spinal cord ischemia.
M'Angale, P Githure; Staveley, Brian E
2017-03-01
Mutations in parkin (PARK2) and Pink1 (PARK6) are responsible for autosomal recessive forms of early onset Parkinson's disease (PD). Attributed to the failure of neurons to clear dysfunctional mitochondria, loss of gene expression leads to loss of nigrostriatal neurons. The Pink1/parkin pathway plays a role in the quality control mechanism aimed at eliminating defective mitochondria, and the failure of this mechanism results in a reduced lifespan and impaired locomotor ability, among other phenotypes. Inhibition of parkin or Pink1 through the induction of stable RNAi transgene in the Ddc-Gal4-expressing neurons results in such phenotypes to model PD. To further evaluate the effects of the overexpression of the Bcl-2 homologue Buffy, we analysed lifespan and climbing ability in both parkin-RNAi- and Pink1-RNAi-expressing flies. In addition, the effect of Buffy overexpression upon parkin-induced developmental eye defects was examined through GMR-Gal4-dependent expression. Curiously, Buffy overexpression produced very different effects: the parkin-induced phenotypes were enhanced, whereas the Pink1-enhanced phenotypes were suppressed. Interestingly, the overexpression of Buffy along with the inhibition of parkin in the neuron-rich eye results in the suppression of the developmental eye defects.
Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.
Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo
2014-01-01
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.
Patanasatienkul, Thitiwan; Sanchez, Javier; Rees, Erin E; Krkosek, Martin; Jones, Simon R M; Revie, Crawford W
2013-07-22
Juvenile pink salmon Oncorhynchus gorbuscha and chum salmon O. keta were sampled by beach or purse seine to assess levels of sea lice infestation in the Knight Inlet and Broughton Archipelago regions of coastal British Columbia, Canada, during the months of March to July from 2003 to 2012. Beach seine data were analyzed for sea lice infestation that was described in terms of prevalence, abundance, intensity, and intensity per unit length. The median annual prevalence for chum was 30%, ranging from 14% (in 2008 and 2009) to 73% (in 2004), while for pink salmon, the median was 27% and ranged from 10% (in 2011) to 68% (in 2004). Annual abundance varied from 0.2 to 5 sea lice per fish with a median of 0.47 for chum and from 0.1 to 3 lice (median 0.42) for pink salmon. Annual infestation followed broadly similar trends for both chum and pink salmon. However, the abundance and intensity of Lepeophtheirus salmonis and Caligus clemensi, the 2 main sea lice species of interest, were significantly greater on chum than on pink salmon in around half of the years studied. Logistic regression with random effect was used to model prevalence of sea lice infestation for the combined beach and purse seine data. The model suggested inter-annual variation as well as a spatial clustering effect on the prevalence of sea lice infestation in both chum and pink salmon. Fish length had an effect on prevalence, although the nature of this effect differed according to host species.
Chen, Jia; Xue, Jin; Ruan, Jingsong; Zhao, Juan; Tang, Beisha; Duan, Ranhui
2017-12-01
Mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70-interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase-dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild-type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.-Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. © FASEB.
Xiao, Bin; Goh, Jian-Yuan; Xiao, Lin; Xian, Hongxu; Lim, Kah-Leong; Liou, Yih-Cherng
2017-10-06
Defective mitophagy linked to dysfunction in the proteins Parkin and PTEN-induced putative kinase 1 (PINK1) is implicated in the pathogenesis of Parkinson's disease. Although the mechanism by which Parkin mediates mitophagy in a PINK1-dependent manner is becoming clearer, the triggers for this mitophagy pathway remain elusive. Reactive oxygen species (ROS) have been suggested as such triggers, but this proposal remains controversial because ROS scavengers fail to retard mitophagy. Here we demonstrate that the role of ROS in mitophagy has been underappreciated as a result of the inefficiency of ROS scavengers to control ROS bursts after high-dose treatment with carbonyl cyanide m -chlorophenylhydrazone. Supporting this, combinatorial treatment with N -acetyl-l-cysteine and catalase substantially inhibited the ROS upsurge and PINK1-dependent Parkin translocation to mitochondria in response to carbonyl cyanide m -chlorophenylhydrazone treatment. In addition to the chemical mitophagy inducer, overexpression of voltage-dependent anion channel 1 (VDAC1) induced Parkin translocation to mitochondria, presumably by stimulating ROS generation. Similarly, combined N -acetyl-l-cysteine and catalase treatment also suppressed VDAC1-induced redistribution of Parkin. Alongside these observations, we also found that the elevated protein level of PINK1 was not necessary for Parkin translocation to mitochondria. Thus, our data suggest that ROS may act as a trigger for the induction of Parkin/PINK1-dependent mitophagy. In addition, our study casts doubt on the importance of protein quantity of PINK1 in the recruitment of Parkin to mitochondria. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Fiesel, Fabienne C; James, Elle D; Hudec, Roman; Springer, Wolfdieter
2017-12-05
Loss-of-function mutations in PINK1 or PARKIN are associated with early-onset Parkinson's disease. Upon mitochondrial stress, PINK1 and Parkin together mediate a response that protects cells from the accumulation of harmful, damaged mitochondria. PINK1, the upstream kinase accumulates on the mitochondrial surface and recruits the E3 ubiquitin ligase Parkin on site to ubiquitylate substrate proteins. The joint activity of both to generate phosphorylated poly-ubiquitin chains on the mitochondrial surface induces the recruitment of autophagy receptors and eventually whole organelles are cleared by autophagy. While this pathway is generally accepted to occur upon chemical uncoupling of mitochondria, the (patho-) physiologic relevance has been questioned. However, few studies have indicated that PINK1 and Parkin are also activated upon accumulation of misfolded proteins in the mitochondrial lumen upon overexpression of ΔOTC (Ornithine transcarbamylase). Here, we used the mitochondrial targeted HSP90 inhibitor Gamitrinib-triphenylphosphonium (G-TPP), an anti-cancer agent, to chemically interfere with mitochondrial protein folding. G-TPP treatment induced PINK1 accumulation, ubiquitin phosphorylation at Ser65, Parkin activation and its recruitment to mitochondria was specific for mitochondrial HSP90 inhibition and largely independent of mitochondrial membrane depolarization. Mitophagy induction was observed by monitoring autophagy receptor recruitment and the mitoKeima reporter. Importantly, mitophagy was not only induced in cancer cells but also in primary human fibroblasts and thereof converted neurons. G-TPP treatment might represent a novel strategy to study PINK1 and Parkin-mediated mitochondrial quality control using a more physiologically relevant stress.
Yin, Jian; Guo, Jiabin; Zhang, Qiang; Cui, Lan; Zhang, Li; Zhang, Tingfen; Zhao, Jun; Li, Jin; Middleton, Alistair; Carmichael, Paul L; Peng, Shuangqing
2018-09-01
The usefulness of doxorubicin (DOX), a potent anticancer agent, is limited by its cardiotoxicity. Mitochondria play a central role in DOX-induced cardiotoxicity though the precise mechanisms are still obscure. Increasing evidence indicates that excessive activation of mitophagy and mitochondrial dysfunction are key causal events leading to DOX-induced cardiac injury. The PINK1/parkin pathway has emerged as a critical pathway in regulation of mitophagy as well as mitochondrial function. The present study was aimed to investigate the role of PINK1/parkin pathway in DOX-induced mitochondrial damage and cardiotoxicity. Our results showed that DOX concentration-dependently induced cytotoxicity and mitochondrial toxic effects including mitochondrial superoxide accumulation, decreased mitochondrial membrane potential and mitochondrial DNA copy number, as well as mitochondrial ultrastructural alterations. DOX induced mitophagy as evidenced by increases of the markers of autophagosomes, LC3, Beclin 1, reduction of p62, and co-localization of LC3 in mitochondria. DOX activated PINK1/parkin pathway and promoted translocation of PINK1/parkin to mitochondria. Meanwhile, DOX inhibited the expression of PGC-1α and its downstream targets nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), and reduced the expression of mitochondrial proteins. Inhibition of mitophagy by mdivi-1 was found to attenuate activation of the PINK1/parkin pathway by DOX and preserve mitochondrial biogenesis, consequently mitigating DOX-induced mitochondrial superoxide overproduction and mitochondrial dysfunction. Moreover, scavenging mitochondrial superoxide by Mito-tempo was also found to effectively attenuate activation of the PINK1/parkin pathway and rescue the cells from DOX-induced adverse effects. Taken together, these findings suggest that DOX-induced mitophagy and mitochondrial damage in cardiomyocytes are mediated, at least in part, by dysregulation of the PINK1/parkin pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cross, Alison D.; Beauchamp, David A.; Armstrong, Janet L.; Blikshteyn, Mikhail; Boldt, Jennifer L.; Davis, Nancy D.; Haldorson, Lewis J.; Moss, Jamal H.; Myers, Katherine W.; Walker, Robert V.
2005-01-01
Prince William Sound hatcheries release over 600 million pink salmon ( Oncorhynchus gorbuscha) fry each year. The effect of the additional consumption demand by hatchery fish on prey biomass in Prince William Sound and the coastal Gulf of Alaska is unknown. The objectives of this study were to: (1) use bioenergetics models to compare spatial and temporal variation in the consumption demand and growth efficiency of hatchery and wild juvenile pink salmon in Prince William Sound and the coastal Gulf of Alaska between May and October 2001; and (2) compare localized population-level consumption in each region to the standing stock biomass of coexisting prey. In order to achieve observed growth, juvenile pink salmon consumed at 64-107% of their theoretical maximum consumption rate. Individual juvenile pink salmon consumed an average of 366.5 g of prey from marine entry through October of their first growing season. Growth efficiency ranged from 18.9% to 33.8% over the model simulation period. Juvenile salmon that migrated to the Gulf of Alaska grew more efficiently than those that remained in Prince William Sound until August, but after August juvenile salmon in Prince William Sound grew more efficiently than those in the Gulf of Alaska due to differences in prey quality between regions. Temperatures did not vary much between regions; thus differences in the thermal experience of juvenile pink salmon did not affect growth, consumption, and growth efficiency as much as the effects of different prey quality. Consumption demand by juvenile pink salmon exceeded the average standing stock biomass of key prey (large copepods, pteropods, hyperiid amphipods, and larvaceans) during some months. Our results are consistent with advection and production of these prey replenishing the forage base, or the reliance of individual pink salmon on high-density prey patches that occur at finer temporal scales than we were capable of sampling.
Management of Rhizoctonia root and crown rot of subarbeet
USDA-ARS?s Scientific Manuscript database
Rhizoctonia root and crown rot is caused by the fungus Rhizoctonia solani and is one of the most severe soil-borne diseases of sugarbeet in Minnesota and North Dakota. Rhizoctonia root and crown rot may reduce yield significantly, and diseased beets may cause problems in storage piles. Fields with...
Annosus Root Rot in Eastern Conifers
Kathryn Robbins
1984-01-01
The fungus Heterobasidion annosum (Fr.) Bref. (= Fomes annosus (Fr.) Karst.) causes a root and butt rot of conifers in many temperate parts of the world. The decay, called annosus root rot, often kills infected conifers; infected trees that survive grow more slowly and are susceptible to windthrow and bark beetle attack.
USDA-ARS?s Scientific Manuscript database
Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...
Evaluation of Sentinel-2A satellite imagery for mapping cotton root rot
USDA-ARS?s Scientific Manuscript database
Cotton (Gossypium hirsutum L.) is an economically important crop that is highly susceptible to cotton root rot. Remote sensing technology provides a useful and effective means for detecting and mapping cotton root rot infestations in cotton fields. This research assessed the potential of 10-m Sentin...
A diagnostic guide for Fusarium Root Rot of pea
USDA-ARS?s Scientific Manuscript database
Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...
Sphaeropsis Collar Rot of Red and Jack Pines
Glen Stanosz; Linda Haugen; Joseph O' Brien
2002-01-01
Sphaeropsis collar rot has been detected in red and jack pines in Wisconsin and Michigan, and it could be affecting pines in other states. This disease may be less familiar than Sphaeropsis shoot blight, but both the incidence and the distribution of collar rot appear to be increasing.
Interpreting diplodiosis: bioactive metabolites in Stenocarpella maydis ear rot of maize
USDA-ARS?s Scientific Manuscript database
Stenocarpella maydis is a fungal pathogen of major importance that causes a dry-rot of maize ears and is associated with a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. Chemical investigations of S. maydis rotted kernels at harvest in Illinois led to t...
USDA-ARS?s Scientific Manuscript database
Storage rots contribute to sugarbeet postharvest losses by consuming sucrose and producing carbohydrate impurities that increase sugar loss to molasses. Presently, storage rots are controlled by cooling storage piles. This method of control, however, requires favorable weather conditions for stora...
Cultivar Selection for Sugar Beet Root Rot Resistance
USDA-ARS?s Scientific Manuscript database
Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...
Cultivar selection for sugarbeet root rot resistance.
USDA-ARS?s Scientific Manuscript database
Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...
NASA Astrophysics Data System (ADS)
Lisnawita; Hanum, H.; Tantawi, A. R.
2016-08-01
Basal stem rot disease caused by Ganoderma sp. is a significant disease on oil palm plantations in Indonesia, especially in North Sumatera. Currently, the pathogen does not only attack the plants that have produced (old plants) but also attacks the plants that have not produced in the first generation yet. A survey of the distribution of the basal stem rot disease in the plantation of the community has been completed in order to illustrate the distribution and the incidence of the basal stem rot disease in 5 locations of the oil palm plantation of the community in Desa Bukit Kijang, Region of Asahan, North Sumatera, Indonesia. From the research, it is revealed that the basal stem rot disease has spread to all of the observed locations with the level of disease incidence between 0.71% in Kebun Bukit Kijang 3 to 50% in the 17 years old oil palm in Kebun Bukit Kijang 4 and Bukit Kijang 5. The observable symptoms of the basal stem rot disease are chlorotic leaves, the appearance of fruiting body, collapsed plants, and the existence of holes on the basal stem. The incidence of basal stem rot disease is higher on land due to a high sand content (>50%).
Kurzik-Dumke, U; Kaymer, M; Gundacker, D; Debes, A; Labitzke, K
1997-10-24
In this paper, we describe the structure and temporal expression pattern of the Drosophila melanogaster genes l(2)not and l(2)rot located at locus 59F5 vis à vis the tumor suppressor gene l(2)tid described previously and exhibiting a gene within gene configuration. The l(2)not protein coding region, 1530 nt, is divided into two exons by an intron, 2645 nt, harboring the genes l(2)rot, co-transcribed from the same DNA strand, and l(2)tid, co-transcribed from the opposite DNA strand, located vis à vis. To determine proteins encoded by the genes described in this study polyclonal rabbit antibodies (Ab), anti-Not and anti-Rot, were generated. Immunostaining of developmental Western blots with the anti-Not Ab resulted in the identification of a 45-kDa protein, Not45, which is smaller than the Not56 protein predicted from the sequence. Its localization in endoplasmic reticulum (ER) was established by immunoelectron microscopy of Drosophila melanogaster Schneider 2 cells. Not45 shows significant homology to yeast ALG3 protein acting as a dolichol mannosyltransferase in the asparagine-linked glycosylation. It is synthesized ubiquitously throughout embryonic life. The protein predicted from the l(2)rot sequence, Rot57, shows a homology to the NS2B protein of the yellow fever virus1 (yefv1). The results of l(2)rot RNA analysis by developmental Northern blot and by in situ RNA localization, as well as the results of the protein analysis via Western blot and immunohistochemistry suggest that l(2)rot is transcribed but not translated. Since RNAs encoded by the genes l(2)tid and l(2)rot are complementary and l(2)rot is presumably not translated we performed preliminary experiments on the function of the l(2)rot RNA as a natural antisense RNA (asRNA) regulator of l(2)tid expression, expressed in the same temporal and spatial manner as the l(2)tid- and l(2)not RNA. l(2)tid knock-out by antisense RNA yielded late embryonic lethality resulting from multiple morphogenetic defects.
NASA Astrophysics Data System (ADS)
Bedford, A. P.; Moore, P. G.
1985-01-01
Psammechinus miliaris occurs in the Clyde Sea area in large numbers (<18 individuals per 100 g -1 weed dry wt) on sublittoral beds of detached Laminaria saccharina. Its rôle in weed decomposition has been examined by comparing its responses (behavioural choice, growth rate, absorption efficiencies of both carbon and protein, gut retention times and rate of faecal output) to fresh and rotting weed. Younger urchins grew faster than older individuals on a diet of rotting weed but not on fresh weed. Large seasonal variation existed, however, with fast growth occurring in June-August and little, or no, growth in December-February, irrespective of diet. Starved controls did not grow. Correcting for seasonality, rotting kelp still promoted faster growth of young urchins than did fresh weed. Larger (older) individuals showed no difference. Urchins fed fresh weed had significantly longer gut retention times. Protein absorption efficiency was higher on fresh than rotting weed, varying with weed protein content and size of urchin. Very young individuals can only digest high protein weed efficiently, eg. material derived from near the frond meristem. Organic carbon content of rotting weed was significantly lower than fresh weed. Carbon absorption efficiencies were significantly higher on fresh weed which related to organic carbon content. Standard-sized urchins fed rotting weed produced larger dry weights of faeces per day, reflecting increased ingestion rate. In closed-system choice experiments urchins preferred rotting weed kinetically. Size-frequency analysis of field populations suggested that weed beds are principally colonized by larval settlement from the plankton. Mature Psammechinus have evolved different 'strategies' for exploiting fresh and rotting weed. Fresh weed is relatively difficult to digest and long gut retention times allow high protein absorption efficiencies to be attained. Rotting weed has microbial protein in quantities and a lower organic carbon fraction. Some bacterial protein is seemingly unavailable though and lower protein absorption efficiencies result. Thus gut retention time is shortened and more food passed through the gut. Growth remains equivalent. Substratum digestion is of paramount importance for Psammechinus feeding on either fresh or rotting weed, cf. the 'classical' microbe-stripping detritivore of Fenchel.
Dadson, Keith; Hauck, Ludger; Hao, Zhenyue; Grothe, Daniela; Rao, Vivek; Mak, Tak W; Billia, Filio
2017-02-02
Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule fl/fl(y) ;mcm) mice. Mule ablation in adult Mule fl/fl(y) ;mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.
Stress Tolerance of Methylobacterium Biofilms in Bathrooms
Yano, Takehisa; Kubota, Hiromi; Hanai, Junya; Hitomi, Jun; Tokuda, Hajime
2013-01-01
A comprehensive survey of microbial flora within pink biofilms in bathrooms was performed. Pink biofilms develop relatively rapidly in bathrooms, can be difficult to remove, and are quick to recur. Bacterium-sized cells were found to be predominant in 42 pink biofilms in Japan using a scanning electron microscope. Methylobacterium strains were detected from all samples in bathrooms by an isolation method. To explain this predominance, 14 biofilm samples were analyzed by fluorescence in situ hybridization. Methylobacterium was indicated to be the major genus in all biofilms. The isolated Methylobacterium survived after contact with 1.0% cleaning agents, including benzalkonium chloride for 24 h. Their tolerance did not differ under biofilm-like conditions on fiber reinforced plastics (FRP), a general material of bath tubs, floors, and walls. Also, the strains exhibited higher tolerance to desiccation than other isolated species on FRP. Some Methylobacterium survived and exhibited potential to grow after four weeks of desiccation without any nutrients. These specific characteristics could be a cause of their predominance in bathrooms, an environment with rapid flowing water, drying, low nutrients, and occasional exposure to cleaning agents. PMID:23207727
Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M
2007-06-01
Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.
More than meets the eye: the 'pink salmon patch'.
Pallavi, Ranjita; Popescu-Martinez, Andrea
2014-08-28
Ocular adnexal lymphomas account for 1-2% of all non-Hodgkin's lymphomas. Conjunctiva is the primary site of involvement in one-third of cases. We present a case of a 47-year-old Hispanic woman who presented with left eye itching and irritation associated with a painless pink mass. Physical examination revealed the presence of a 'pink salmon-patch' involving her left medial conjunctiva. Orbital CT showed a subcentimeter left preseptal soft tissue density. Biopsy revealed a dense subepithelial lymphoid infiltrate comprised predominantly of B cells that did not coexpress CD5 or CD43. These findings were consistent with B-cell marginal zone lymphoma. Further staging assessment did not reveal disseminated disease. She had stage 1E extranodal marginal zone lymphoma as per Ann Arbor staging system. She received external beam radiotherapy to her left eye with complete resolution of the lymphoma in 2 months and continues to remain tumour free at 8-month follow-up. She will be followed up closely for development of any local (unilateral or contralateral eye) or systemic recurrence in the long run. 2014 BMJ Publishing Group Ltd.
1989-01-01
methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking
Impact of Regulation on Spectral Clustering
2014-07-22
the eigenvector values. The regularization parameter was taken to be n. The shaded blue and pink regions corresponds to the nodes belonging to the two...values. As before, the shaded blue and pink regions corresponds to the nodes belonging to the two strong clusters. For plots (a) & (b) the blue line... pink regions corresponds to the nodes belonging to the liberal and conservative blogs respectively. insensitive for large τ . In this case 70% of the
Metabolism of the Aliphatic Nitramine 4-Nitro-2,4-Diazabutanal by Methylobacterium sp. Strain JS178
2005-08-01
soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink - pigmented facultative methylotroph affiliated with the...colonization by pink - pigmented facultative methylotrophic bacteria (PPFMs). FEMS Micro- bioi. Ecol. 47:319-326. 17. Schubert, K. R., and M. J. Boland... pink - pigmented , facultatively methylotrophic, bacterium isolated from pop- lar trees (Populus deltoides X nigra DN34). J. Syst. Evol. MicrobiaL 54
2013-01-01
Background This article aims to discuss the incorporation of traditional time in the construction of a management scenario for pink shrimp in the Patos Lagoon estuary (RS), Brazil. To meet this objective, two procedures have been adopted; one at a conceptual level and another at a methodological level. At the conceptual level, the concept of traditional time as a form of traditional ecological knowledge (TEK) was adopted. Method At the methodological level, we conduct a wide literature review of the scientific knowledge (SK) that guides recommendations for pink shrimp management by restricting the fishing season in the Patos Lagoon estuary; in addition, we review the ethno-scientific literature which describes traditional calendars as a management base for artisanal fishers in the Patos Lagoon estuary. Results Results demonstrate that TEK and SK describe similar estuarine biological processes, but are incommensurable at a resource management level. On the other hand, the construction of a “management scenario” for pink shrimp is possible through the development of “criteria for hierarchies of validity” which arise from a productive dialog between SK and TEK. Conclusions The commensurable and the incommensurable levels reveal different basis of time-space perceptions between traditional ecological knowledge and scientific knowledge. Despite incommensurability at the management level, it is possible to establish guidelines for the construction of “management scenarios” and to support a co-management process. PMID:23311826
Pandareesh, M D; Shrivash, M K; Naveen Kumar, H N; Misra, K; Srinivas Bharath, M M
2016-11-01
Curcumin (CUR), a dietary polyphenol has diverse pharmacologic effects, but is limited by poor bioavailability. This is probably due to decreased solubility, cellular uptake and stability. In order to enhance its solubility and bioavailability, we synthesized the CUR bioconjugate curcumin monoglucoside (CMG) and tested its bioavailability, neuroprotective and anti-apoptotic propensity against rotenone (ROT) induced toxicity in N27 dopaminergic neuronal cells and Drosophila models. Our results elucidate that CMG showed improved bioavailability than CUR in N27 cells. Pre-treatment with CMG protected against ROT neurotoxicity and exerted antioxidant effects by replenishing cellular glutathione levels and significantly decreasing reactive species. CMG pre-treatment also restored mitochondrial complex I and IV activities inhibited by ROT. ROT-induced nuclear damage was also restored by CMG as confirmed by comet assay. CMG induced anti-apoptotic effects was substantiated by decreased phosporylation of JNK3 and c-jun, which in turn decreased the cleavage of pro-caspase 3. Q-PCR analysis of redox genes showed up-regulation of NOS2 and down-regulation of NQO1 upon ROT exposure and this was attenuated by CMG pre-treatment. Studies in the Drosophila ROT model revealed that, CMG administration showed better survival rate and locomotor activity, improved antioxidant activity and dopamine content than ROT treated group and was comparable with the CUR group. Based on these data, we surmise that CMG has improved bioavailability and offered neuroprotection comparable with CUR, against ROT-induced toxicity both in dopaminergic neuronal cell line and Drosophila models, with therapeutic implications for PD.
Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.
Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody
2012-10-01
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Rhododendron root rot, caused by several Phytophthora species, can cause devastating losses in nursery-grown plants. Most research on chemical control of root rot has focused on Phytophthora cinnamomi. However, it is unknown whether treatments recommended for P. cinnamomi are also effective for othe...
USDA-ARS?s Scientific Manuscript database
Fruit rot of rambutan (Nephelium lappaceum L.) is a pre and post-harvest disease problem that affects fruit quality. Significant post-harvest losses have occurred worldwide and several pathogens have been identified in Malaysia, Costa Rica, Hawaii, Thailand, and Puerto Rico. In 2011, fruit rot was o...
First report of lily root rot caused by Thantephorus cucumeris AG 2-1 in the United States
USDA-ARS?s Scientific Manuscript database
A disease survey was undertaken in April, 2016 to profile the soilborne fungal pathogens causing root rot and lesions on lily (Lilium longiflorum) cv. Nellie White in Brookings, Oregon, Curry County. Diseased root samples were either blackened or rotted. Several fungal isolates were cultured from in...
First report of Calonectria hongkongensis causing fruit rot of rambutan (Nephelium lappaceum L.)
USDA-ARS?s Scientific Manuscript database
Fruit rot is a major pre- and post-harvest disease problem in rambutan orchards. In 2011, fruit rot was observed at the USDA-TARS orchards in Mayaguez, Puerto Rico. Infected fruit were collected and tissue sections (1 mm2) were superficially sterilized with 70% ethanol and 0.5% sodium hypochlorite. ...
Basidiomycetes Associated with Decay of Living Oak Trees
Frederick H. Berry; Frances F. Lombard
1978-01-01
Thirty-one identified species of wood-rotting hymenomycetes were associated with decay and cull in upland oak stands in Illinois, Indiana, Kentucky, Missouri, and Ohio. Seven of these species produced brown rots that accounted for a volume loss of approximately 381 ft3 in the trees sampled. The remaining species produced white rots that were...
Influence of Rhizoctonia-Bacterial root rot complex on storability of sugar beet
USDA-ARS?s Scientific Manuscript database
The root rot complex, caused by Rhizoctonia solani and Leuconostoc mesenteroides, can lead to yield loss in the field but may also lead to problems with sucrose loss in storage. Thus, studies were conducted to investigate if placing sugar beet roots suffering from root rot together with healthy roo...
Recent change in the nomenclature of Phellinus pini: What is Porodaedalea?
Jessie A. Glaeser; Karen K. Nakasone
2010-01-01
The white-rot genus Phellinus contains many important forest pathogens and saprotrophs, including those that produce heartrot, saprot, and root-rot or butt-rot. One of the most notorious species is Phellinus pini, the causal agent of "red ring decay" or "white fleck," which primarily affects older stands of...
USDA-ARS?s Scientific Manuscript database
Foliar diseases and stalk rots are among the most damaging diseases of sorghum in terms of lost production potential, thus commanding considerable research time and expenditure. This review will focus on anthracnose, a fungal disease that causes both foliar symptoms and stalk rots along with the st...
USDA-ARS?s Scientific Manuscript database
Speck rot caused by Phacidiopycnis washingtonensis and Sphaeropsis rot caused by S. pyriputrescens were reported as new postharvest fruit rot diseases in Washington State in the mid-2000s. Both diseases can cause significant postharvest losses of fruit if left uncontrolled, and the two fungi have be...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... (``PFOF'') program that helps its Specialists \\5\\ and Directed Registered Options Traders [[Page 13163... flow provider directing some or all of its order flow to that Specialist or Directed ROT. This program is funded through fees paid by Registered Options Traders (``ROTs''), Specialists and Directed ROTs...
USDA-ARS?s Scientific Manuscript database
Rhododendrons are an important component of the ornamental nursery industry, but are prone to Phytophthora root rot. Phytophthora root rot is a continuing issue on rhododendrons despite decades of research. Several Phytophthora species are known to cause root rot, but most research has focused on P....
Efficacy of management tools for control of Pythium root rot of Douglas fir seedlings, 2010
USDA-ARS?s Scientific Manuscript database
This study investigated the efficacy of management tools for control of Pythium root rot of Douglas fir seedlings. This effort was conducted as part of the IR-4 Ornamental Horticulture program to evaluate fungicides and biopesticides for management of root, crown and stem rot of ornamental plants ca...
USDA-ARS?s Scientific Manuscript database
Soft rot diseases of potato are caused by several species of bacteria belonging to the newly described family Pectobacteriaceae. Multiple species of Pectobacterium are known to cause soft rot diseases during field production and storage of potatoes. Recently, the genus Dickeya has been connected wi...
USDA-ARS?s Scientific Manuscript database
Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...
USDA-ARS?s Scientific Manuscript database
Aggregation and feeding behavior of the Formosan subterranean termite, Coptotermes formosanus Shiraki, was evaluated on wood decayed by three species of fungus that use different enzymatic pathways to degrade lignocellulose, the brown rot fungus, Gloeophyllum trabeum and two white rot fungi, Phanero...
Commercial Sugar Beet Cultivars Evaluated for Resistance to Bacterial Root Rot in Idaho, 2008
USDA-ARS?s Scientific Manuscript database
Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...
Experimental Sugar Beet Cultivars Evaluated for Resistance Bacterial Root Rot in Idaho, 2008
USDA-ARS?s Scientific Manuscript database
Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...
USDA-ARS?s Scientific Manuscript database
The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milstein, O.; Gersonde, R.; Huttermann, A.
1992-10-01
White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene (poly(1-phenylethylene)). The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4{percent} (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in thesemore » tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.« less
The fungus that came in from the cold: dry rot's pre-adapted ability to invade buildings.
Balasundaram, S V; Hess, J; Durling, M B; Moody, S C; Thorbek, L; Progida, C; LaButti, K; Aerts, A; Barry, K; Grigoriev, I V; Boddy, L; Högberg, N; Kauserud, H; Eastwood, D C; Skrede, I
2018-03-01
Many organisms benefit from being pre-adapted to niches shaped by human activity, and have successfully invaded man-made habitats. One such species is the dry rot fungus Serpula lacrymans, which has a wide distribution in buildings in temperate and boreal regions, where it decomposes coniferous construction wood. Comparative genomic analyses and growth experiments using this species and its wild relatives revealed that S. lacrymans evolved a very effective brown rot decay compared to its wild relatives, enabling an extremely rapid decay in buildings under suitable conditions. Adaptations in intracellular transport machineries promoting hyphal growth, and nutrient and water transport may explain why it is has become a successful invader of timber in houses. Further, we demonstrate that S. lacrymans has poor combative ability in our experimental setup, compared to other brown rot fungi. In sheltered indoor conditions, the dry rot fungus may have limited encounters with other wood decay fungi compared to its wild relatives. Overall, our analyses indicate that the dry rot fungus is an ecological specialist with poor combative ability against other fungi.
Improving quality and digestibility of cocoa pod with white rot fungi
NASA Astrophysics Data System (ADS)
Mustabi, J.; Wedawati; Armayanti, A. K.
2018-05-01
White rot fungi is a type of fungus that is able to degrade lignin in the feed material from waste, so it can be used to increase the added value of cocoa pod as alternative feed ingredients to meet the nutritional needs of cattle. The purpose of this study is to investigate the use of white rot fungi in improving the quality and digestibility cocoa pod as feed. The study consisted of two phases, namely fermentation using three isolates of white rot fungi (Coprinus comatus, Corilopsis polyzona and Lentinus torulosus) on pod husks and quality testing in vitro digestibility of fermented. Results of analysis of variance show that the treatment was highly significant on the content of lignin, cellulose and hemicellulose pod husks. Fermented cocoa husks with white rot fungi can degrade lignin content of 1.42% - 12.28% and highly significant improved on in vitro digestibility of dry matter and organic matter. The conclusion, isolates of white rot fungi most active in degrading lignin was Lentinus torulosus isolates and less ability to degrade cellulose and hemicellulose.
Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos
ERIC Educational Resources Information Center
Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.
2014-01-01
This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…
Taheri, Sima; Abdullah, Thohirah Lee; Ahmad, Zaiton; Abdullah, Nur Ashikin Psyquay
2014-01-01
The effects of eight different doses (0, 10, 20, 25, 35, 40, 60, and 100 Gy) of acute gamma irradiation on 44 (three varieties of Curcuma alismatifolia: Chiang Mai Red, Sweet Pink, Kimono Pink, and one Curcuma hybrid (Doi Tung 554) individual plants were investigated. Radiation sensitivity tests revealed that the LD50 values of the varieties were achieved at 21 Gy for Chiang Mai Red, 23 Gy for Sweet Pink, 25 Gy for Kimono Pink, and 28 Gy for Doi Tung 554. From the analysis of variance (ANOVA), significant variations were observed for vegetative traits, flowering development, and rhizome characteristics among the four varieties of Curcuma alismatifolia and dose levels as well as the dose × variety interaction. In irradiated plants, the leaf length, leaf width, inflorescence length, the number of true flowers, the number of pink bracts, number of shoots, plant height, rhizome size, number of storage roots, and number of new rhizomes decreased significantly (P < 0.05) as the radiation dose increased. The cophenetic correlation coefficient (CCC) between genetic dissimilarity matrix estimated from the morphological characters and the UPGMA clustering method was r = 0.93, showing a proof fit. In terms of genetic variation among the acutely irradiated samples, the number of presumed alleles revealed by simple sequence repeats ranged from two to seven alleles with a mean value of 3.1, 4.5, and 5.3 alleles per locus for radiation doses of 0, 10, and 20 Gy, respectively. The average values of the effective number of alleles, Nei's gene diversity, and Shannon's information index were 2.5–3.2, 0.51–0.66, and 0.9–1.3, respectively. The constructed dendrogram grouped the entities into seven clusters. Principal component analysis (PCA) supported the clustering results. Consequently, it was concluded that irradiation with optimum doses of gamma rays efficiently induces mutations in Curcuma alismatifolia varieties. PMID:24719878
Taheri, Sima; Abdullah, Thohirah Lee; Ahmad, Zaiton; Abdullah, Nur Ashikin Psyquay
2014-01-01
The effects of eight different doses (0, 10, 20, 25, 35, 40, 60, and 100 Gy) of acute gamma irradiation on 44 (three varieties of Curcuma alismatifolia: Chiang Mai Red, Sweet Pink, Kimono Pink, and one Curcuma hybrid (Doi Tung 554) individual plants were investigated. Radiation sensitivity tests revealed that the LD50 values of the varieties were achieved at 21 Gy for Chiang Mai Red, 23 Gy for Sweet Pink, 25 Gy for Kimono Pink, and 28 Gy for Doi Tung 554. From the analysis of variance (ANOVA), significant variations were observed for vegetative traits, flowering development, and rhizome characteristics among the four varieties of Curcuma alismatifolia and dose levels as well as the dose × variety interaction. In irradiated plants, the leaf length, leaf width, inflorescence length, the number of true flowers, the number of pink bracts, number of shoots, plant height, rhizome size, number of storage roots, and number of new rhizomes decreased significantly (P < 0.05) as the radiation dose increased. The cophenetic correlation coefficient (CCC) between genetic dissimilarity matrix estimated from the morphological characters and the UPGMA clustering method was r = 0.93, showing a proof fit. In terms of genetic variation among the acutely irradiated samples, the number of presumed alleles revealed by simple sequence repeats ranged from two to seven alleles with a mean value of 3.1, 4.5, and 5.3 alleles per locus for radiation doses of 0, 10, and 20 Gy, respectively. The average values of the effective number of alleles, Nei's gene diversity, and Shannon's information index were 2.5-3.2, 0.51-0.66, and 0.9-1.3, respectively. The constructed dendrogram grouped the entities into seven clusters. Principal component analysis (PCA) supported the clustering results. Consequently, it was concluded that irradiation with optimum doses of gamma rays efficiently induces mutations in Curcuma alismatifolia varieties.
CIV Polarization Measurements using a Vacuum Ultraviolet Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
West, Edward; Gary, G. Allen; Cirtain, Jonathan; David, John; Kobayashi, Ken; Pietraszewski, Chris
2009-01-01
Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry-P rot Interferometer that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry P rot.
Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo
2016-10-01
We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter -1 active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter -1 active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter -1 active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter -1 active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter -1 active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter -1 is effective in the control of fungal rot in tomatoes.
Stewart, John; Hughes, Julian M
2014-04-01
Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the swim bladders of pink snapper and mulloway ruptured after decreases in ~2.5 and 2.75 times the hydrostatic pressure to which the fish were acclimated, respectively. Differences in buoyancy, gas exchange rates, limitations to vertical movements and acclimation times between the two species are discussed in terms of their differing behaviour and ecology.
Richardson, L. T.; Monro, H. A. U.
1962-01-01
In a series of full-scale tests, the effectiveness of various fumigant treatments for the eradication of potato ring rot bacteria from bulk lots of contaminated jute bags was evaluated. Survival of these bacteria on infested sample fibers located at various positions within and around a tightly wired bale was determined quantitatively from the growth lag in a liquid medium as indicated by the rate of turbidity development. Ethylene oxide, though highly toxic to Corynebacterium sepedonicum in laboratory tests, failed to penetrate the jute sufficiently to be effective in the interior of a bale. Methyl bromide showed better penetration, but was not sufficiently toxic at practical dosage levels. A mixture of 5% ethylene oxide and 10% methyl bromide achieved complete eradication throughout a bale in an 18-hr exposure period. On the basis of these results, eradication of ring rot bacteria from contaminated jute bags by fumigation with a combination of these two gases would appear to be feasible under commercial conditions. PMID:13982125
Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.
2003-01-01
The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.
Basu, S; Ratcliffe, G; Green, M
2015-10-01
In recent years, there has been a decline in the manufacturing sector of the UK economy with a corresponding growth of service-orientated pink-collar jobs in some regions. While the health outcomes of white- and blue-collar workers are well-established, less is known about this emerging pink-collar group. To outline the health of pink-collar workers in comparison to their white-collar counterparts across a range of indicators. Area-level percentages for white-, pink- and blue-collar workers were derived from residents' routinely collected employment data in a northern English town. Area-level health data pertaining to male and female life expectancy, respiratory deaths and deaths from cardiovascular and circulatory causes (all age and under 75 years) were obtained from the local authority and public health observatory. Multivariate regression analyses were performed to assess relationships between job collar and health. When adjusted for deprivation, areas with higher percentages of pink-collar workers experienced lower rates of death from circulatory disease under the age of 75 in comparison to white-collar workers. Other relationships between collar status and health outcomes were not statistically significant. The reasons underlying the apparent protective effect of pink-collar status for deaths from circulatory disease are uncertain and merit further study. Possibilities include differences in age, exposure to occupational hazards and lifestyle behaviours. Our work has a number of limitations and longitudinal studies with detailed exposure data should assess the long-term health outcomes of these workers using agreed definitions. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pigment Production on L-Tryptophan Medium by Cryptococcus gattii and Cryptococcus neoformans
Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo
2014-01-01
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. PMID:24736553
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Pink T-shirt-clad friends and family cheer for the Space Coast FIRST Robotics Team, known as the Pink Team, at the 2005 FIRST Robotics Regional Competition held at the University of Central Florida March 10-12. The NASA-sponsored Roccobots took first place in the competition as part of a three- team alliance and advances to the Championship in Atlanta in April. The Pink Team comprises students from Rockledge High School and Cocoa Beach Junior/Senior High School.
2010-05-25
orange red violet yellow apricot bittersweet blue green blue violet brick red burnt sienna carnation pink cornflower peach...34 value=ŕ.0" /> <link source="maroon" target=" carnation pink" value=ŕ.0" /> <link source="bittersweet" target=" orange yellow" value=ŕ.0...violet" target="red orange " value=ŕ.0" /> <link source=" carnation pink" target="melon" value=ŕ.0" /> <link
The power of pink: cause-related marketing and the impact on breast cancer.
Harvey, Jennifer A; Strahilevitz, Michal A
2009-01-01
The pink ribbon is one of the most widely recognized symbols in the United States. It can symbolize strength, hope, responsibility, empathy, and permission to discuss breast cancer, though not all associations are uniformly positive. Cause-related marketing is an agreement between nonprofit and for-profit organizations to promote a product that provides benefit for the cause through increasing awareness and financial contributions from sales. For-profit organizations benefit through the association of the positive ideology of the pink ribbon. The relationship between the organizations should be mutually beneficial; the percentage of funds donated should be reasonable, and the organizations that benefit should be respected institutions. Many breast cancer organizations have obtained significant benefit from corporate partnerships in cause-related marketing. Certainly, breast cancer awareness is much stronger now than 15 years ago. However, not all products are appropriate for promotion, particularly products that may increase the risk for breast cancer, such as alcohol. No corporation is licensed to have exclusive use of the pink ribbon symbol, leaving it open to potential abuse. Backlash by consumers has raised awareness of the misuse of the pink ribbon and cause-related marketing. As marketing becomes more global, the impact of the pink ribbon in the third world may spur open dialogue and reduce the taboo associated with breast cancer observed in some cultures.
First de novo whole genome sequencing and assembly of the pink-footed goose.
Pujolar, J M; Dalén, L; Olsen, R A; Hansen, M M; Madsen, J
2018-03-01
Annotated genomes can provide new perspectives on the biology of species. We present the first de novo whole genome sequencing for the pink-footed goose. In order to obtain a high-quality de novo assembly the strategy used was to combine one short insert paired-end library with two mate-pair libraries. The pink-footed goose genome was assembled de novo using three different assemblers and an assembly evaluation was subsequently performed in order to choose the best assembler. For our data, ALLPATHS-LG performed the best, since the assembly produced covers most of the genome, while introducing the fewest errors. A total of 26,134 genes were annotated, with bird species accounting for virtually all BLAST hits. We also estimated the substitution rate in the pink-footed goose, which can be of use in future demographic studies, by using a comparative approach with the genome of the chicken, the mallard and the swan goose. A substitution rate of 1.38×10 -7 per nucleotide per generation was obtained when comparing the genomes of the two closely-related goose species (the pink-footed and the swan goose). Altogether, we provide a valuable tool for future genomic studies aiming at particular genes and regions of the pink-footed goose genome as well as other bird species. Copyright © 2017 Elsevier Inc. All rights reserved.
Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.
D'Souza, T M; Boominathan, K; Reddy, C A
1996-01-01
Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. PMID:8837429
Pink Cricket Balls Through Rose-Tinted Glasses: Enhancing Interceptive Timing
Adie, Joshua M.
2017-01-01
Cricket is a popular but potentially dangerous sport. It is played with a hard ball that can travel at great speeds. Serious injuries, including fatalities, have occurred when balls have struck participants. The game is traditionally played during daylight with a dark red ball, but recent games have been played during the day and at night using a ‘pink’ ball. We have reported data that seemed to justify concerns raised regarding the visibility of these new pink balls, as they were revealed to have a very low luminance contrast against pertinent backgrounds during twilight. Here, we report on the findings of a psychophysical experiment, wherein we mimicked twilight lighting conditions in an interceptive timing experiment using a pink moving disc as an analogue for pink cricket balls. We show that interceptive timing performance is diminished in conditions that mimic twilight. More importantly, we show that wearing glasses with a rose-tinted filter can alleviate this adverse impact by enhancing the luminance contrast of the pink ‘ball’ relative to pertinent backgrounds. PMID:29225767
Ordureau, Alban; Sarraf, Shireen A; Duda, David M; Heo, Jin-Mi; Jedrychowski, Mark P; Sviderskiy, Vladislav O; Olszewski, Jennifer L; Koerber, James T; Xie, Tiao; Beausoleil, Sean A; Wells, James A; Gygi, Steven P; Schulman, Brenda A; Harper, J Wade
2014-11-06
Phosphorylation is often used to promote protein ubiquitylation, yet we rarely understand quantitatively how ligase activation and ubiquitin (UB) chain assembly are integrated with phosphoregulation. Here we employ quantitative proteomics and live-cell imaging to dissect individual steps in the PINK1 kinase-PARKIN UB ligase mitochondrial control pathway disrupted in Parkinson's disease. PINK1 plays a dual role by phosphorylating PARKIN on its UB-like domain and poly-UB chains on mitochondria. PARKIN activation by PINK1 produces canonical and noncanonical UB chains on mitochondria, and PARKIN-dependent chain assembly is required for accumulation of poly-phospho-UB (poly-p-UB) on mitochondria. In vitro, PINK1 directly activates PARKIN's ability to assemble canonical and noncanonical UB chains and promotes association of PARKIN with both p-UB and poly-p-UB. Our data reveal a feedforward mechanism that explains how PINK1 phosphorylation of both PARKIN and poly-UB chains synthesized by PARKIN drives a program of PARKIN recruitment and mitochondrial ubiquitylation in response to mitochondrial damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Springer, Alan M; van Vliet, Gus B
2014-05-06
Climate change in the last century was associated with spectacular growth of many wild Pacific salmon stocks in the North Pacific Ocean and Bering Sea, apparently through bottom-up forcing linking meteorology to ocean physics, water temperature, and plankton production. One species in particular, pink salmon, became so numerous by the 1990s that they began to dominate other species of salmon for prey resources and to exert top-down control in the open ocean ecosystem. Information from long-term monitoring of seabirds in the Aleutian Islands and Bering Sea reveals that the sphere of influence of pink salmon is much larger than previously known. Seabirds, pink salmon, other species of salmon, and by extension other higher-order predators, are tightly linked ecologically and must be included in international management and conservation policies for sustaining all species that compete for common, finite resource pools. These data further emphasize that the unique 2-y cycle in abundance of pink salmon drives interannual shifts between two alternate states of a complex marine ecosystem.
Runge, Kristin K; Chung, Jennifer H; Su, Leona Yi-Fan; Brossard, Dominique; Scheufele, Dietram A
2018-09-01
In March 2012 ABC World News Report aired a series of reports on lean finely textured beef (LFTB) that resulted in a 10-year low for beef prices and the bankruptcy of a major firm that produced LFTB. Using a random sample survey, we tested the effects of the media frame "pink slime" and industry frame "lean finely textured beef," alongside media use, food-related knowledge, trust in food-related institutions and preference for local, fresh, organic and GMO-free foods on perceptions of risk related to ground beef containing pink slime/LFTB, processed foods and red meat. The "pink slime" frame was strongly and positively associated with risk related to ground beef, but not risk related to red meat or processed foods. Attention to news stories about pink slime/LFTB was strongly associated with risk related to ground beef and processed foods, but not red meat. We found varying effects of food values, knowledge and trust on all three dependent variables. Implications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.
Matsuda, Noriyuki
2016-04-01
Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Mosaic: a position-effect variegation eye-color mutant in the mosquito Anopheles gambiae.
Benedict, M Q; McNitt, L M; Cornel, A J; Collins, F H
2000-01-01
The Mosaic (Mos) mutation, isolated in the F1 of 60Co-irradiated mosquitoes, confers variegated eye color to third and fourth instar larvae, pupae, and adults of the mosquito Anopheles gambiae. Mos is recessive in wild pink eye (p+) individuals, but is dominant and confers areas of wild-type pigment in mutant pink eye backgrounds. Mos is located 14.4 cM from pink eye on the X chromosome and is associated with a duplication of division 2B euchromatin that has been inserted into division 6 heterochromatin. Various combinations of Mos, pink eye alleles, and the autosomal mutation red eye were produced. In all cases, the darker pigmented regions of the eye in Mos individuals show the phenotypic interactions expected if the phenotype of those regions is due to expression of a p+ allele. Expression of Mos is suppressed by rearing larvae at 32 degrees C relative to 22 degrees C. All of these characteristics are consistent with Mos being a duplicated wild copy of the pink eye gene undergoing position-effect variegation.
Potassium and Phosphorus effects on disease severity of charcoal rot of soybean
USDA-ARS?s Scientific Manuscript database
The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...
Copper tolerance of brown-rot fungi : time course of oxalic acid production
Frederick Green; Carol A. Clausen
2003-01-01
The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...
Storage rot in sugar beet: variable response over time and with different host germplasm
USDA-ARS?s Scientific Manuscript database
Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. While in storage the crop is subject to multiple post-harvest rots. In the Michigan growing region, little loss due to storage rots is observed until beets have been in storage for several mo...
Response of sugar beet recombinant inbred lines to post-harvest rot fungi
USDA-ARS?s Scientific Manuscript database
Sugar beet is commonly stored in outdoor piles prior to processing. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been little work done on host resistance to p...
Response of sugar beet (Beta vulgaris) recombinant inbred lines to post-harvest rot fungi
USDA-ARS?s Scientific Manuscript database
Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been...
Alič, Špela; Naglič, Tina; Llop, Pablo; Toplak, Nataša; Koren, Simon; Ravnikar, Maja; Dreo, Tanja
2015-09-10
The genus Dickeya contains bacteria causing soft rot of economically important crops and ornamental plants. Here, we report the draft genome sequences of two Dickeya sp. isolates from rotted leaves of Phalaenopsis orchids. Copyright © 2015 Alič et al.
Pruning and occurrence of heart rot in young Douglas-fir.
Thomas W. Childs; Ernest Wright
1956-01-01
Heart rot is sometimes common in pole-size Douglas-firs that had been heavily live-pruned for trail clearance when they were long-crowned saplings, This observation suggested that benefits from pruning for quality increment might be reduced appreciably by heart rot infections occurring through pruning wounds. The study described in this paper was therefore undertaken...
Evaluation of soybean genotypes for resistance to charcoal rot
USDA-ARS?s Scientific Manuscript database
Charcoal rot caused by Macrophomina phaseolina causes more yield loss in soybean than most other diseases in the southern U.S.A. There are no commercial genotypes marketed as resistant to charcoal rot of soybean. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V gen...
First report of brown rot on apple fruit caused by Monilinia fructicola in the United States
USDA-ARS?s Scientific Manuscript database
Brown rot, caused by Monilinia fructicola (G. Wint.) Honey, is the most devastating disease of stone fruits in North America resulting in significant economic losses. The fungus has been recently reported to cause pre and postharvest brown rot on apple fruit in Germany, Italy, and Serbia. However, M...
USDA-ARS?s Scientific Manuscript database
In recent years, an emerging, undescribed postharvest fruit rot disease was observed on mandarin fruit after extended storage in California. We collected decayed mandarin fruit from three citrus packinghouses in the Central Valley of California in 2015 and identified this disease as Mucor rot caused...
USDA-ARS?s Scientific Manuscript database
Airborne imagery has been successfully used for mapping cotton root rot within cotton fields toward the end of the growing season. To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusio...
Potassium and phosphorus have no effects on severity of charcoal rot of soybean
USDA-ARS?s Scientific Manuscript database
The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...
Declining wild salmon populations in relation to parasites from farm salmon.
Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A
2007-12-14
Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.
Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi.
Presley, Gerald N; Schilling, Jonathan S
2017-04-01
Brown rot fungi are wood-degrading fungi that employ both oxidative and hydrolytic mechanisms to degrade wood. Hydroxyl radicals that facilitate the oxidative component are powerful nonselective oxidants and are incompatible with hydrolytic enzymes unless they are spatially segregated in wood. Differential gene expression has been implicated in the segregation of these reactions in Postia placenta , but it is unclear if this two-step mechanism varies in other brown rot fungi with different traits and life history strategies that occupy different niches in nature. We employed proteomics to analyze a progression of wood decay on thin wafers, using brown rot fungi with significant taxonomic and niche distances: Serpula lacrymans (Boletales; "dry rot" lumber decay) and Gloeophyllum trabeum (order Gloeophyllales; slash, downed wood). Both fungi produced greater oxidoreductase diversity upon wood colonization and greater glycoside hydrolase activity later, consistent with a two-step mechanism. The two fungi invested very differently, however, in terms of growth (infrastructure) versus protein secretion (resource capture), with the ergosterol/extracted protein ratio being 7-fold higher with S. lacrymans than with G. trabeum In line with the native substrate associations of these fungi, hemicellulase-specific activities were dominated by mannanase in S. lacrymans and by xylanase in G. trabeum Consistent with previous observations, S. lacrymans did not produce glycoside hydrolase 6 (GH6) cellobiohydrolases (CBHs) in this study, despite taxonomically belonging to the order Boletales, which is distinguished among brown rot fungi by having CBH genes. This work suggests that distantly related brown rot fungi employ staggered mechanisms to degrade wood, but the underlying strategies vary among taxa. IMPORTANCE Wood-degrading fungi are important in forest nutrient cycling and offer promise in biotechnological applications. Brown rot fungi are unique among these fungi in that they use a nonenzymatic oxidative pretreatment before enzymatic carbohydrate hydrolysis, enabling selective removal of carbohydrates from lignin. This capacity has independently evolved multiple times, but it is unclear if different mechanisms underpin similar outcomes. Here, we grew fungi directionally on wood wafers and we found similar two-step mechanisms in taxonomically divergent brown rot fungi. The results, however, revealed strikingly different growth strategies, with S. lacrymans investing more in biomass production than secretion of proteins and G. trabeum showing the opposite pattern, with a high diversity of uncharacterized proteins. The "simplified" S. lacrymans secretomic system could help narrow gene targets central to oxidative brown rot pretreatments, and a comparison of its distinctions with G. trabeum and other brown rot fungi (e.g., Postia placenta ) might offer similar traction in noncatabolic genes. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Tuduri, Johann; Chauvet, Alain; Ennaciri, Aomar; Barbanson, Luc
2006-03-01
Based on a combined geometrical and mineralogical analysis, a three-stage model of formation of the mineralized veins of the giant Imiter silver deposit (Anti-Atlas, Morocco) is herein proposed. A first episode is characterized by the development of quartz, pink dolomite and Ag-rich minerals veins formed during a dextral transpressive event. The second episode is associated with a normal left-lateral motion that re-opens previous structures, filled by pink dolomite gangue. Alteration stages contribute to a local Ag enrichment. To cite this article: J. Tuduri et al., C. R. Geoscience 338 (2005).
Anisocoria Secondary to Anticholinergic Mydriasis from Homeopathic Pink Eye Relief Drops.
Chen, Lin; Yeung, Joseph C; Anderson, Dennis R
2017-12-01
A woman, aged 70 years, developed anisocoria after applying homeopathic eye drops (Similasan Pink Eye Relief) to her left eye. Her pupil was dilated for two weeks and did not respond to light or near stimuli for one week. Both 0.1% and 1% pilocarpine failed to constrict her left pupil, and magnetic resonance imaging of her brain did not reveal any abnormality. The eye drops she had used contain belladonna extracts which have a natural atropine component. This case demonstrates the importance, when evaluating a patient presenting with anisocoria, of knowing the chemical ingredients of the homeopathic eye drops, which often are not listed. © 2017 Marshfield Clinic.
Anusha, Chandran; Sumathi, Thangarajan; Joseph, Leena Dennis
2017-05-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra which is associated with oxidative stress, neuroinflammation and apoptosis. Apigenin (AGN), a non-mutagenic flavone found in fruits and vegetables, exhibits a variety of biological effects including anti-apoptotic, anti-inflammatory, and free radical scavenging activities. The current study was aimed to investigate the neuroprotective effects and molecular mechanisms of AGN in a rat model of PD induced by rotenone (ROT). Unilateral stereotaxic intranigral infusion of ROT caused the loss of tyrosine hydroxylase (TH) immunoreactivity in striatum and substantia nigra. AGN treatment (10 and 20 mg/kg, i.p.) showed a significant improvement in behavioral, biochemical and mitochondrial enzyme activities as compared to ROT exposed rats. The mRNA expression of inflammatory markers and neurotrophic factors was quantified by reverse transcriptase polymerase chain reaction (RT-PCR). Administration of AGN significantly attenuated the upregulation of NF-κB gene expression in ROT induced group and prevented the neuroinflammation in substantia nigra pars compacta (SNpc). Further, AGN inhibited the release of pro-inflammatory cytokines TNF- α, IL-6 and pro-inflammatory enzyme iNOS-1 induced by ROT. Additionally, AGN prevents the reduction of neurotrophic factors BDNF and GDNF mRNA expression in ROT lesioned rats. Immunoblot results illustrated that AGN treatment downregulated α-synuclein aggregation and upregulated the TH protein expression as well as dopamine D2 receptor (D2R) expression in ROT lesioned rats. Thus, the present findings collectively suggest that AGN exerts its neuroprotection in ROT model of PD and may act as an effective agent for treatment of PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Xu-Hong; Wang, Yu; Li, Long-Yun; Tan, Jun
2017-04-01
Illumina Hiseq 2500 high-throughput sequencing platform was used to study the bacteria richness and diversity, the soil enzyme activities, nutrients in unplanted soil, root-rot and healthy rhizophere soil of Coptis chinensis for deeply discussing the mechanism of the root-rot of C. chinensis. The high-throughput sequencing result showed that the artificial cultivation effected the bacteria community richness and diversity. The bacteria community richness in healthy and diseased rhizosphere soil showed significant lower than that of in unplanted soil (P<0.05) and declined bacteria diversity. The bacteria community richness in root-rot rhizosphere soil increased significantly than that of health and unplanted soil and the diversity was lower significant than that of unplanted soil (P<0.05). The results of soil nutrients and enzyme activities detected that the pH value, available phosphorus and urease activity decreased and the sucrase activity increased significantly (P<0.05). The content of organic carbon and alkaline hydrolysis nitrogen the catalase and urease activity in root rot soil samples was significantly lower than that of healthy soil samples (P<0.05). However, the contents of available phosphorus and available potassium were significantly in root-rot sample higher than that of healthy soil samples (P<0.05). Comprehensive analysis showed that the artificial cultivation declined the bacteria community richness and diversity. The bacteria community richness decreased significantly and the decreased diversity may be the cause of the root-rot. Meanwhile, the decrease of carbon and the catalase activity may be another cause of the root-rot in C. chinensis produced in Shizhu city, Chongqing province. Copyright© by the Chinese Pharmaceutical Association.
Comparative Genome Analysis of Basidiomycete Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert; Salamov, Asaf; Morin, Emmanuelle
Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypesmore » found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.« less
Bioconversion of dieldrin by wood-rotting fungi and metabolite detection.
Kamei, Ichiro; Takagi, Kazuhiro; Kondo, Ryuichiro
2010-08-01
Dieldrin is one of the most persistent organochlorine pesticides, listed as one of the 12 persistent organic pollutants in the Stockholm Convention. Although microbial degradation is an effective way to remediate environmental pollutants, reports on aerobic microbial degradation of dieldrin are limited. Wood-rotting fungi can degrade a wide spectrum of recalcitrant organopollutants, and an attempt has been made to select wood-rotting fungi that can degrade dieldrin, and to identify the metabolite. Thirty-four isolates of wood-rotting fungi were investigated for their ability to degrade dieldrin. Strain YK543 degraded 39.1 +/- 8.8% of dieldrin during 30 days of incubation. Phylogenetic analysis demonstrated that strain YK543 was closely related to the fungus Phlebia brevispora Nakasone TMIC33929, which has been reported as a fungus that can degrade chlorinated dioxins and polychlorinated biphenyls. 9-Hydroxydieldrin was detected as a metabolite in the cultures of strain YK543. It is important to select the microorganisms that degrade organic pollutants, and to identify the metabolic pathway for the development of bioremediation methods. Strain YK543 was selected as a fungus capable of degrading dieldrin. The metabolic pathway includes 9-hydroxylation reported in rat's metabolism catalysed by liver microsomal monooxygenase. This is the first report of transformation of dieldrin to 9-hydroxydieldrin by a microorganism. Copyright (c) 2010 Society of Chemical Industry.
GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.
Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan
2015-05-01
Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.
Nakazawa, Takehito; Izuno, Ayako; Horii, Masato; Kodera, Rina; Nishimura, Hiroshi; Hirayama, Yuichiro; Tsunematsu, Yuta; Miyazaki, Yasumasa; Awano, Tatsuya; Muraguchi, Hajime; Watanabe, Kenji; Sakamoto, Masahiro; Takabe, Keiji; Watanabe, Takashi; Isagi, Yuji; Honda, Yoichi
2017-12-01
Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales. Copyright © 2017 Elsevier Inc. All rights reserved.
Jasalavich, Claudia A.; Ostrofsky, Andrea; Jellison, Jody
2000-01-01
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region. PMID:11055916
Johansson, T; Nyman, P O
1993-01-01
The basidiomycete Trametes versicolor is a white-rot fungus and a potent degrader of lignin. The development of extracellular enzyme activities in the fungal culture under physiological conditions of secondary metabolism was investigated. Using the culture medium as starting material a large number of peroxidase forms were purified by the use of chromatographic techniques. Sixteen forms of lignin peroxidase and five forms of manganese(II) peroxidase were separated and the majority of these enzymes was characterized with respect to isoelectric point, molecular mass, and specific enzyme activity. The manganese(II) peroxidases showed a lower isoelectric point (pI 3.2-2.9) and a slightly higher molecular mass (44-45 kDa) than the lignin peroxidases (pI 3.7-3.1, and 41-43 kDa). Specific enzyme activities for the forms of lignin peroxidase, using veratryl alcohol as the substrate, were found to differ considerably. Certain differences in the specific enzyme activity were also observed among the forms of manganese(II) peroxidase. A multitude of peroxidase forms has previously been encountered in another white-rot fungus, Phanerochaete chrysosporium. The discovery that it also occurs in T. versicolor would suggest that this multiplicity could be a common feature among white-rot fungi and may be essential for the biodegradation of lignin.
Habitat Suitability Index Models: Pink shrimp
Mulholland, Rosemarie
1984-01-01
Shrimp support the most valuable seafood industry in the United States (Roedel 1973; National Marine Fisheries Service 1983). The three most important commercial species are the white shrimp (Penaeus setiferus L.), brown shrimp (P. aztecus Ives), and pink shrimp (P. duorarum Burkenroad). Adult pink shdmp are caught "in commercial quantities throughout most of the geographic ranqe of the species (L indner 1957), and juveni les support a sizable bait shrimp industry along the Florida coast and throughout the Gulf of Mexico (Saloman 1965).
Mycoplasma and associated bacteria isolated from ovine pink-eye.
Langford, E V
1971-01-01
A mycoplasma was recovered from the untreated conjunctival membranes of nine sheep affected by Pink-eye. It was neither isolated from the conjunctiva of treated animals which were affected nor from the conjunctiva of normal animals either in contact or not in contact with affected animals. Bacteria found on normal conjunctival membranes were Neisseria ovis, Escherichia coli, Staphylococcus epidermididis, Streptococcus and Bacillus spp. Bacteria found in clinical cases of Pink-eye were N. ovis, E. coli, a Streptococcus and Pseudomonas spp.
Ruggerone, G.T.; Nielsen, J.L.
2004-01-01
Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters. ?? Springer 2005.
USDA-ARS?s Scientific Manuscript database
Fusarium ear rot (caused by Fusarium verticillioides) is one of the most prevalent diseases of maize worldwide, and has one of the greatest negative economic impacts on this cereal crop globally. Fusarium ear rot is a highly complex trait, under polygenic control with minor effects per gene and low ...
USDA-ARS?s Scientific Manuscript database
In rambutan production, fruit rot is the main pre- and post-harvest disease of concern. In a 2008-2013 fruit disease survey, fruit rot was observed in eight orchards in Puerto Rico. Infected fruit were collected and 1 mm2 tissue sections were surface disinfested with 70% ethanol followed by 0.5% sod...
Characterizing butt-rot fungi on USA-affiliated islands in the western Pacific
Phil Cannon; Ned B. Klopfenstein; Robert L. Schlub; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Roland J. Quitugua; John W. Hanna; Amy L. Ross-Davis; J. D. Sweeney
2014-01-01
Ganoderma and Phellinus are genera that commonly cause tree butt-rot on USA-affiliated islands of the western Pacific. These fungal genera can be quite prevalent, especially in older mangrove stands. Although the majority of infections caused by these fungi lead to severe rotting of the heartwood, they typically do not directly kill the living tissues of the sapwood,...
First report of root rot of cowpea caused by Fusarium equiseti in Georgia in the United States
USDA-ARS?s Scientific Manuscript database
Root rot was observed on cowpea in Tift County, Georgia, in May of 2015. The disease occurred on approximately 10% of cowpea plants in 2 fields (2 ha). Symptoms appeared as sunken reddish brown lesions on roots and stems under the soil line, secondary roots became dark brown and rotted, and infected...
Fungal decay resistance of wood reacted with phosphorus pentoxide-amine system
Hong-Lin Lee; George C. Chen; Roger M. Rowell
2004-01-01
Resistance of wood reacted in situ with phosphorus pentoxide-amine to the brown-rot fungus Gloeophyllum trabeum and white-rot fungus Trametes versicolor was examined. Wood reacted with either octyl, tribromo, or nitro derivatives were more resistant to both fungi. Threshold retention values of phosphoramide-reacted wood to white-rot fungus T. versicolor ranged from 2.9...
Gai-Yun Li; Chung-Yun Hse; Te-Fu Qin
2012-01-01
The brown-rotted wood was liquefied in phenol with phosphoric acid as catalyst and the resulting liquefied products were condensed with formaldehyde to yield novolak liquefied wood-based phenol formaldehyde resin (LWPF). The results showed that brown-rotted wood could be more easily liquefied than sound wood in phenol. The residue content of liquefied wood decreased...
HOW to Identify and Minimize White Trunk Rot of Aspen
Michael E. Ostry; James W. Walters
1983-01-01
Phellinus tremulae (=Fomes ignarius var populinus) causes a heart rot of aspen that causes more volume loss than any other disease of aspen. Severity of the disease increases with stand age. In fact, incidence of white trunk rot is a major consideration in determining aspen rotations. Although no consistent relation exists between site and decay, generally less volume...
USDA-ARS?s Scientific Manuscript database
Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...
Code of Federal Regulations, 2010 CFR
2010-07-01
... infestation. Strawberry Fruit (a) California growers Moderate to severe black root rot or crown rot.Moderate... or purple nutsedge infestation.Moderate to severe nematode infestation. Moderate to severe black root.... (b) North Carolina and Tennessee growers Moderate to severe black root rot.Moderate to severe root...
Strength reduction in slash pine (Pinus elliotii) wood caused by decay fungi
Zhong Yang; Zhehui Jiang; Chung Y. Hse; Todd F. Shupe
2009-01-01
Small wood specimens selected from slash pine (Pinus elliotii )trees at three growth rates (fast, medium, and slow) were inoculated with brown-rot and white-rot fungi and then evaluated for work to maximum load (WML), modulus of rupture (MOR), and modulus of elasticity (MOE). The experimental variables studied included a brown-rot fungus (Gloeophyllum trabeum...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) California growers Moderate to severe black root rot or crown rot.Moderate to severe yellow or purple... to severe nematode infestation. Moderate to severe black root and crown rot. Strawberry Nurseries... dates (in Riverside county only) in California Rapid fumigation required to meet a critical market...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) California growers Moderate to severe black root rot or crown rot.Moderate to severe yellow or purple... to severe nematode infestation. Moderate to severe black root and crown rot. Strawberry Nurseries... dates (in Riverside county only) in California Rapid fumigation required to meet a critical market...
Code of Federal Regulations, 2011 CFR
2011-07-01
... infestation. Strawberry Fruit (a) California growers Moderate to severe black root rot or crown rot.Moderate... or purple nutsedge infestation.Moderate to severe nematode infestation. Moderate to severe black root.... (b) North Carolina and Tennessee growers Moderate to severe black root rot.Moderate to severe root...
Suki C. Croan
2000-01-01
White-rotting basidiomycetes do not colonize on southern yellow pine. This study seeks to reduce the resinous extractive content of southern yellow pine by treating it with blue stain fungi. The mycelial growth of wood-inhabiting ligninolytic white-rot fungi can be achieved on pretreated southern yellow pine wood. Aureobasidium, Ceratocystis, and Ophiostoma spp....
USDA-ARS?s Scientific Manuscript database
Stenocarpella maydis causes both dry-ear rot and stalk rot of maize. Maize inbreds have varying levels of resistance to S. maydis ear rot. The genetic basis of resistance appears to rely on multiple genetic factors, none of which are known. The commonly used stiff stalk inbred B73 has been shown ...
Heart rot of Virginia pine in Maryland
Richard H. Fenton; Frederick H. Berry
1956-01-01
Loggers and sawmill men have been wary of purchasing Virginia pine sawtimber. They point out that a heart rot, locally called "red heart, may spell the difference between profit and loss on a logging job. It is difficult to detect this rot in standing Virginia pine. It is even harder to estimate the volume loss. And total losses can be determined only after...
Stem rots of oil palm caused by Ganoderma boninense: pathogen biology and epidemiology.
Pilotti, C A
2005-01-01
Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected.
Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K
2014-05-01
Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.
Desjardins, Anne E; Busman, Mark; Manandhar, Gyanu; Jarosz, Andrew M; Manandhar, Hira K; Proctor, Robert H
2008-07-09
The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (1) or 4-deoxynivalenol (2), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance of 1 and 2 in maize ear rot, a survey of naturally contaminated maize in Nepal was combined with experiments in the field and in a plant growth room. In the survey, 1 contamination was 4-fold more frequent than 2 contamination and 1-producers (TRI13) were isolated more than twice as frequently as 2-producers (Psi TRI13). In maize ear rot experiments, genetically diverse 1-producers and 2-producers caused ear rot and trichothecene contamination. Among strains with the same genetic background, however, 1-producers caused less ear rot and trichothecene contamination than did 2-producers. The high frequency of 1 contamination and the high virulence of many 1-producers are of concern because maize is a staple food of rural populations in Nepal and because 1 has proven to be more toxic than 2 to animals.
Wang, Mian; Chen, Mingna; Yang, Zhen; Chen, Na; Chi, Xiaoyuan; Pan, Lijuan; Wang, Tong; Yu, Shanlin; Guo, Xingqi
2017-12-01
Peanut yield and quality are seriously affected by pod rot pathogens worldwide, especially in China in recent years. The goals of this study are to analyze the structure of fungal communities of peanut pod rot in soil in three peanut cultivars and the correlation of pod rot with environmental variables using 454 pyrosequencing. A total of 46,723 internal transcribed spacer high-quality sequences were obtained and grouped into 1,706 operational taxonomic units at the 97% similarity cut-off level. The coverage, rank abundance, and the Chao 1 and Shannon diversity indices of the operational taxonomic units were analyzed. Members of the phylum Ascomycota were dominant, such as Fusarium , Chaetomium , Alternaria , and Sordariomycetes , followed by Basidiomycota. The results of the heatmap and redundancy analysis revealed significant variation in the composition of the fungal community among the three cultivar samples. The environmental conditions in different peanut cultivars may also influence on the structure of the fungal community. The results of this study suggest that the causal agent of peanut pod rot may be more complex, and cultivars and environmental conditions are both important contributors to the community structure of peanut pod rot fungi.
Facts about Measles for Adults
... residents should be immune to measles before international travel. Symptoms Symptoms of measles include high fever, generalized rash, runny nose, pink, watery eyes, coughing, diarrhea, and earache. The average time between exposure to the measles virus and development ...
50 CFR 300.93 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.93 Reporting requirements. Any person fishing for sockeye or pink salmon within the Fraser River Panel Area (U.S.) and any person receiving or...
50 CFR 300.93 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.93 Reporting requirements. Any person fishing for sockeye or pink salmon within the Fraser River Panel Area (U.S.) and any person receiving or...
Kazlauskaite, Agne; Kelly, Van; Johnson, Clare; Baillie, Carla; Hastie, C. James; Peggie, Mark; Macartney, Thomas; Woodroof, Helen I.; Alessi, Dario R.; Pedrioli, Patrick G. A.; Muqit, Miratul M. K.
2014-01-01
Mutations in PINK1 and Parkin are associated with early-onset Parkinson's disease. We recently discovered that PINK1 phosphorylates Parkin at serine65 (Ser65) within its Ubl domain, leading to its activation in a substrate-free activity assay. We now demonstrate the critical requirement of Ser65 phosphorylation for substrate ubiquitylation through elaboration of a novel in vitro E3 ligase activity assay using full-length untagged Parkin and its putative substrate, the mitochondrial GTPase Miro1. We observe that Parkin efficiently ubiquitylates Miro1 at highly conserved lysine residues, 153, 230, 235, 330 and 572, upon phosphorylation by PINK1. We have further established an E2-ubiquitin discharge assay to assess Parkin activity and observe robust discharge of ubiquitin-loaded UbcH7 E2 ligase upon phosphorylation of Parkin at Ser65 by wild-type, but not kinase-inactive PINK1 or a Parkin Ser65Ala mutant, suggesting a possible mechanism of how Ser65 phosphorylation may activate Parkin E3 ligase activity. For the first time, to the best of our knowledge, we report the effect of Parkin disease-associated mutations in substrate-based assays using full-length untagged recombinant Parkin. Our mutation analysis indicates an essential role for the catalytic cysteine Cys431 and reveals fundamental new knowledge on how mutations may confer pathogenicity via disruption of Miro1 ubiquitylation, free ubiquitin chain formation or by impacting Parkin's ability to discharge ubiquitin from a loaded E2. This study provides further evidence that phosphorylation of Parkin at Ser65 is critical for its activation. It also provides evidence that Miro1 is a direct Parkin substrate. The assays and reagents developed in this study will be important to uncover new insights into Parkin biology as well as aid in the development of screens to identify small molecule Parkin activators for the treatment of Parkinson's disease. PMID:24647965
IR-stimulated visible fluorescence in pink and brown diamond.
Byrne, K S; Chapman, J G; Luiten, A N
2014-03-19
Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics.
Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem.
Springer, Alan M; van Vliet, Gus B; Bool, Natalie; Crowley, Mike; Fullagar, Peter; Lea, Mary-Anne; Monash, Ross; Price, Cassandra; Vertigan, Caitlin; Woehler, Eric J
2018-05-29
Pink salmon ( Oncorhynchus gorbuscha ) in the North Pacific Ocean have flourished since the 1970s, with growth in wild populations augmented by rising hatchery production. As their abundance has grown, so too has evidence that they are having important effects on other species and on ocean ecosystems. In alternating years of high abundance, they can initiate pelagic trophic cascades in the northern North Pacific Ocean and Bering Sea and depress the availability of common prey resources of other species of salmon, resident seabirds, and other pelagic species. We now propose that the geographic scale of ecosystem disservices of pink salmon is far greater due to a 15,000-kilometer transhemispheric teleconnection in a Pacific Ocean macrosystem maintained by short-tailed shearwaters ( Ardenna tenuirostris ), seabirds that migrate annually between their nesting grounds in the South Pacific Ocean and wintering grounds in the North Pacific Ocean. Over this century, the frequency and magnitude of mass mortalities of shearwaters as they arrive in Australia, and their abundance and productivity, have been related to the abundance of pink salmon. This has influenced human social, economic, and cultural traditions there, and has the potential to alter the role shearwaters play in insular terrestrial ecology. We can view the unique biennial pulses of pink salmon as a large, replicated, natural experiment that offers basin-scale opportunities to better learn how these ecosystems function. By exploring trophic interaction chains driven by pink salmon, we may achieve a deeper conservation conscientiousness for these northern open oceans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonar, S.A.; Pauley, G.B.; Thomas, G.L.
1989-01-01
Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. The pink salmon, often called humpback salmon or humpy, is easily identified by its extremely small scales (150 to 205) on the lateral line. They are the most abundant of the Pacific salmon species and spawn in North American and Asian streams bordering the Pacific and Arctic Oceans. They have a very simple two-year life cycle, which is so invariable that fish running in odd-numbered years are isolated from fish running inmore » even-numbered years so that no gene flow occurs between them. Adults spawn in the fall and the young fry emerge in the spring. The pink salmon is less desirable in commercial and sport catches than most other salmon because of its small size and its soft pale flesh. The Puget Sound region of Washington State is the southern geographic limit of streams supporting major pink salmon runs in the eastern North Pacific. Pink salmon runs are presently only in odd-numbered years in this region. Optimum water temperatures for spawning range from 7.2 to 12.8/degree/C. Productive pink salmon streams have less than 5.0% by volume of fine sediments (less than or equal to0.8 mm). 87 refs., 5 figs., 1 tab.« less
Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering
Shiba-Fukushima, Kahori; Arano, Taku; Matsumoto, Gen; Inoshita, Tsuyoshi; Yoshida, Shigeharu; Ishihama, Yasushi; Ryu, Kwon-Yul; Nukina, Nobuyuki; Hattori, Nobutaka; Imai, Yuzuru
2014-01-01
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. PMID:25474007
Cross, A.D.; Beauchamp, D.A.; Myers, K.W.; Moss, J.H.
2008-01-01
Although early marine growth has repeatedly been correlated with overall survival in Pacific salmon Oncorhynchus spp., we currently lack a mechanistic understanding of smolt-to-adult survival. Smolt-to-adult survival of pink salmon O. gorbuscha returning to Prince William Sound was lower than average for juveniles that entered marine waters in 2001 and 2003 (3% in both years), and high for those that entered the ocean in 2002 (9%) and 2004 (8%). We used circulus patterns from scales to determine how the early marine growth of juvenile pink salmon differed (1) seasonally during May-October, the period hypothesized to be critical for survival; (2) between years of low and high survival; and (3) between hatchery and wild fish. Juvenile pink salmon exhibited larger average size, migrated onto the continental shelf and out of the sampling area more quickly, and survived better during 2002 and 2004 than during 2001 and 2003. Pink salmon were consistently larger throughout the summer and early fall during 2002 and 2004 than during 2001 and 2003, indicating that larger, faster-growing juveniles experienced higher survival. Wild juvenile pink salmon were larger than hatchery fish during low-survival years, but no difference was observed during high-survival years. Differences in size among years were determined by some combination of growing conditions and early mortality, the strength of which could vary significantly among years. ?? Copyright by the American Fisheries Society 2008.
Ma, Xue Yan; Zheng, Bing Qing; Xu, Pao; Xu, Liang; Hua, Dan; Yuan, Xin Hua; Gu, Ruo Bo
2018-01-01
The basal media M199 or MEM was utilized in the classical method of vitro culture of glochidia where 1–5% CO2 was required to maintain stable physiological pH for completion of non-parasitic metamorphosis. The classical method encounters a great challenge to those glochidia which undergo development of visceral tissue but significantly increase in size during metamorphosis. The improved in vitro culture techniques and classical methods were firstly compared for non-parasitic metamorphosis and development of glochidia in pink heelsplitter. Based on the improved method, the optimal vitro culture media was further selected from 14 plasmas or sera, realizing the non-parasitic metamorphosis of axe-head glochidia for the first time. The results showed that addition of different plasma (serum) had significant effect on glochidial metamorphosis in pink heelsplitter. Only glochidia in the skewband grunt and red drum groups could complete metamorphosis, the metamorphosis rate in skewband grunt was 93.3±3.1% at 24±0.5°C, significantly higher than in marine and desalinated red drum. Heat-inactivated treatment on the plasma of yellow catfish and Barbus capito had significant effect on glochidia survival and shell growth. The metamorphosis rate also varied among different gravid period, and generally decreased with gravid time. Further comparison of free amino acid and fatty acid indicated that the taurine of high concentration was the only amino acid that might promote the rapid growth of glochidial shell, and the lack of adequate DPA and DHA might be an important reason leading to the abnormal foot and visceral development. Combined with our results of artificial selection of host fish, we tentatively established the mechanism of its host specialists in pink heelsplitter for the first time. This is the first report on non-parasite metamorphosis of axe-head glochidia based on our improved vitro culture method, which should provide important reference to fundamental theory research of glochidia metamorphosis and also benefit for better understand of mechanism of host specialists and generalists of Unionidae species. PMID:29447194
The plant cell wall--decomposing machinery underlies the functional diversity of forest fungi
Daniel C. Eastwood; Dimitrios Floudas; Manfred Binder; Andrzej Majcherczyk; Patrick Schneider; Andrea Aerts; Fred O. Asiegbu; Scott E. Baker; Kerrie Barry; Mika Bendiksby; Melanie Blumentritt; Pedro M. Coutinho; Dan Cullen; Ronald P. de Vries; Allen Gathman; Barry Goodell; Bernard Henrissat; Katarina Ihrmark; Havard Kauserud; Annegret Kohler; Kurt LaButti; Alla Lapidus; Jose L. Lavin; Yong-Hwan Lee; Erika Lindquist; Walt Lilly; Susan Lucas; Emmanuelle Morin; Claude Murat; Jose A. Oguiza; Jongsun Park; Antonio G. Pisabarro; Robert Riley; Anna Rosling; Asaf Salamov; Olaf Schmidt; Jeremy Schmutz; Inger Skrede; Jan Stenlid; Ad Wiebenga; Xinfeng Xie; Ursula Kues; David S. Hibbett; Dirk Hoffmeister; Nils Hogberg; Francis Martin; Igor V. Grigoriev; Sarah C. Watkinson
2011-01-01
Brown rot decay removes cellulose and hemicelluloses from wood, residual lignin contributing up to 30% of forest soil carbon, and is derived from an ancestral white rot saprotrophy where both lignin and cellulose are decomposed. Comparative and functional genomics of the âdry rotâ fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution...
Weevil - red rot associations in eastern white pine
Myron D. Ostrander; Clifford H. Foster
1957-01-01
The presence of red rot (Fomes pini) in pruned white pine stands has often been attributed to the act of pruning. This assumption may well be true for heavily stocked stands where thinning has been neglected and pruning scars are slow to heal. The question then arises: How do we account for the red rot often found in vigorous unpruned white pine stands? Evidence...
USDA-ARS?s Scientific Manuscript database
The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...
USDA-ARS?s Scientific Manuscript database
Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...
Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi
Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen
2012-01-01
Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...
USDA-ARS?s Scientific Manuscript database
Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...
Pathogenesis and Treatment of Bovine Foot Rot.
Van Metre, David C
2017-07-01
Bovine foot rot (BFR) is an infectious disease of the interdigital skin and subcutaneous tissues of beef and dairy cattle that occurs under a variety of management and environmental settings. The anaerobic, gram-negative bacteria Fusobacterium necrophorum, Porphyromonas levii, and Prevotella intermedia are commonly isolated from lesions. A multitude of host, agent, and environmental factors contribute to the development of BFR. Initiation of systemic antimicrobial therapy early in the course of disease commonly leads to resolution. Delays in treatment may result in extension of infection into deeper bone, synovial structures, or ligamentous structures, and the prognosis for recovery is reduced. Copyright © 2017 Elsevier Inc. All rights reserved.
The development of spectro-signature indicators of root disease
NASA Technical Reports Server (NTRS)
Wear, J. F.
1968-01-01
The development and testing of airborne sensors that might be effective in discrimination root rot infected trees from healthy ones are outlined. The sensing device is composed of a thermal infrared radiometer and an instant replay video scan system.
Atanasova-Penichon, Vessela; Pons, Sebastien; Pinson-Gadais, Laetitia; Picot, Adeline; Marchegay, Gisèle; Bonnin-Verdal, Marie-Noelle; Ducos, Christine; Barreau, Christian; Roucolle, Joel; Sehabiague, Pierre; Carolo, Pierre; Richard-Forget, Florence
2012-12-01
Fusarium graminearum is the causal agent of Gibberella ear rot and produces trichothecene mycotoxins. Basic questions remain unanswered regarding the kernel stages associated with trichothecene biosynthesis and the kernel metabolites potentially involved in the regulation of trichothecene production in planta. In a two-year field study, F. graminearum growth, trichothecene accumulation, and phenolic acid composition were monitored in developing maize kernels of a susceptible and a moderately resistant variety using quantitative polymerase chain reaction and liquid chromatography coupled with photodiode array or mass spectrometry detection. Infection started as early as the blister stage and proceeded slowly until the dough stage. Then, a peak of trichothecene accumulation occurred and infection progressed exponentially until the final harvest time. Both F. graminearum growth and trichothecene production were drastically reduced in the moderately resistant variety. We found that chlorogenic acid is more abundant in the moderately resistant variety, with levels spiking in the earliest kernel stages induced by Fusarium infection. This is the first report that precisely describes the kernel stage associated with the initiation of trichothecene production and provides in planta evidence that chlorogenic acid may play a role in maize resistance to Gibberella ear rot and trichothecene accumulation.
Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)
Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon
2016-01-01
Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382
Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).
Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon
2016-11-09
Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.
Parkinson's disease biomarker: a patent evaluation of WO2013153386.
Geldenhuys, Werner J; Abdelmagid, Samir M; Gallegos, Patrick J; Safadi, Fayez F
2014-08-01
Parkinson's disease (PD) is a neurodegenerative movement disorder resultant from the loss of dopaminergic neurons in the brain. There is an urgent need for effective biomarkers that can be used in the early diagnosis of PD. Mitochondrial dysfunction plays a significant role in PD pathology, which has led to the evaluation of mitophagy markers, PTEN-induced putative kinase 1 (PINK1), and PARKIN as possible biomarkers for the early diagnosis of PD. The current patent describes the use of phosphorylation of PINK1 and PARKIN as a diagnostic measure. Specifically, Ser65 on PARKIN, which is phosphorylated by PINK1, and the autophosphorylation of PINK1 at Thr257 are described. This patent describes a much needed methodology that can easily be adapted in the clinical setting by which a biological sample, such as serum or cerebrospinal fluid, is collected and analyzed for the phosphorylation markers. Here, the phosphorylation activity seen in PINK1 and PARKIN can differentiate between age-matched controls and PD patients. This patent presents a novel diagnostic measure in early PD, as well as determines which medications would have a beneficial effect on a patient's disease progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, E.L.; Moulton, L.L.; Gilbertson, L.G.
1995-12-31
This paper discusses results of field programs initiated within a few days of the spill and designed to assess spill effects on critical early life stages of pink salmon in postspill years. Samples of water and stream sediments from throughout the spill area were used to define the exposure of pink salmon to residual hydrocarbons from the spill. Mean sediment concentrations of polycyclic aromatic hydrocarbons (PAH) up to 300 ppb were measured in oiled streams in 1989 and generally followed a downward trend toward background in 1990 and 1991. These PAH concentrations were then used in regression analyses of potentialmore » effects on key early life stages of pink salmon. Water samples taken from both nearshore feeding and rearing areas and offshore migratory areas show that hydrocarbon concentrations were from one to four orders of magnitude lower than concentrations reported in the literature to cause acute or chronic effects on fish species. The postspill field and laboratory studies of pink salmon early life stages included examination of potential effects on 1989, 1990, and 1991 eggs, fry, and juveniles. 28 refs., 8 figs., 8 tabs.« less
The effect of irradiation in the preservation of pink pepper (Schinus terebinthifolius Raddi)
NASA Astrophysics Data System (ADS)
de Souza, Adriana Régia Marques; Arthur, Valter; Nogueira, Danielle Pires
2012-08-01
Pink peppers, also known as "pimenta-rosa" and "poivre rose", are the fruit of Schinus terebinthifolius Raddi, a species of pepper cultivated in Brazil, and have great potential for the exploration of uses. In efforts to lengthen the shelf life of this pepper, the purpose of this study was to evaluate the effect of different doses of radiation on its physical composition and color. The pink pepper samples were irradiated with doses of 0, 0.2, 0.4, 0.8 and 1.6 kGy, and the moisture, ash and lipid contents, pH and color were analyzed. The moisture content, lipid content and pH analysis indicated effects due to the irradiation (p>0.05) in which the higher doses resulted in decreases in the attribute. In contrast, there were no significant differences for the ash analysis (p<0.05) among the studied doses. The color of the pink peppers were affected by the irradiation: the parameters a* and b* were the most affected by the intermediate doses (0.2 and 0.8 kGy), which induced their elevation, enhancing the reddish and yellowish colors. Based on the presented data, irradiation is as an alternative preservation process for pink peppers.
50 CFR 300.95 - Treaty Indian fisheries.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...
50 CFR 300.95 - Treaty Indian fisheries.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...
Code of Federal Regulations, 2011 CFR
2011-01-01
... celery of similar varietal characteristics which are fairly well developed, which are clean, well trimmed... by crater rot, brown stem, wilting, cutworms, freezing, suckers, growth cracks, hollow crown, pithy...
[Micrococcus sp.--the pathogen of leaf necrosis of horse-chestnuts (Aesculus L.) in Kiev].
Iakovleva, L M; Makhinia, L V; Shcherbina, T N; Ogorodnik, L E
2013-01-01
A group of phytopathogenic bacteria was isolated from patterns of drying horse-chestnuts (Aesculus L.), which grow in Kyiv. The properties of slowly growing, highly aggressive microorganisms have been described in the paper. They grow up on the 8-10th day after sowing. The investigated microorganisms form very small (0.5-1 mm in diameter) colonies on the potato agar. Bacteria are protuberant, shining, smooth with flat edges, they are pale yellow, yellow, or pink. The bacteria are Gram-positive, spherical, are disposed in smears singly, in pairs, as accumulations, or netting. They are aerobes, do not form spores, are not mobile. They are inert in respect of different sources of carbon. They reduce nitrates, do not dilute gelatin, do not hydrolyze starch, do not release hydrogen sulphide and indole. The bacteria are catalase-positive, oxidase-negative. They do not cause potato and carrot rot. They lose quickly their viability under the laboratory conditions. The saturated acids C 14:0; C 15:0; C16:0; C18:0 have been revealed in the composition of cellular fatty acids. Microorganisms are identified as Micrococcus sp. Under artificial inoculation this highly aggressive pathogen causes drying of the horse-chestnut buds and necrosis, which occupies 1/3-1/2 of the leaf plate. A wide zone of chlorosis, surrounding necrosis, may occupy the whole leaf surface. The infected leaves use to twist up from the top (apex) or along a midrib and to dry.
Efficacy of pink guava pulp as an antioxidant in raw pork emulsion.
Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari
2014-08-01
Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. The antioxidant potential of pink guava pulp (PGP) was evaluated at different levels (0%; C, 5.0%; T-1, 7.5%; T-2 and 10.0%; T-3) in the raw pork emulsion during refrigerated storage of 9 days under aerobic packaging. Lycopene and β-carotene contents increased (P < 0.05) with PGP levels. The redness (a*) increased (P < 0.05), whereas L*decreased (P < 0.05) with the incorporation of PGP. The visual colour and odour scores were greater (P < 0.05) in PGP-treated products than control. Percent metmyoglobin formation was greater (P < 0.05) in the control than PGP-treated products, and increased (P < 0.05) during storage in all the treatments. Overall, peroxide value, thiobarbituric acid reactive substances and free fatty acid values were lower (P < 0.05) in PGP-treated raw emulsion than control throughout storage period. Our results indicated that pink guava pulp can be utilized as antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.
1982-02-01
BACKGROUND 1 1.2 TECHNICAL APPROACH 3 1.3 OBJECTIVES 3 2.0 INVESTIGATION 5 2.1 LITERATURE SEARCH 5 2.2 SITE ViSITS 6 2.3 PINK WATER SOURCES AND...Scale 10 5 and 106 GPD Plant Designs 13 3.1 Matrix of Pink Water Treatment Systems Compared on a PVUC Basis 28 3.2 Calculated Capital & Annual... 5 Year Planning Horizon 109 3.6 Calculated PVUC ($/K-GAL) for Each Alternative - 1,000,000 GPD - 5 Year Planning Horizon 110 3.7 Calculated Annual
Production and degradation of oxalic acid by brown rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espejo, E.; Agosin, E.
1991-07-01
Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted {sup 14}C-labeled oxalic acid to CO{sub 2} during cellulose depolymerization. The other brown rot fungi also oxidized {sup 14}C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay.more » Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize {sup 14}C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.« less
Cytochemical localization of cellulases in decayed and nondecayed wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murmanis, L.; Highley, T.L.; Palmer, J.G.
1987-01-01
Sawdust from undecayed western hemlock wood and from wood previously decayed by the brown-rot fungus Poria placenta or by the white-rot fungus Ganoderma applanatum was incubated with commercial cellulase from Trichoderma viride. Samples were treated cytochemically to locate cellulase activity and examined by TEM. Results showed that cellulase degraded undecayed wood extensively, with the attack starting on the outer border of a cell wall and progressing inside. Wood decayed by P. placenta, with or without cellulase incubation, and treated by the cytochemical test showed uniform distribution of electron dense particles throughout the cell walls. In wood decayed by G. applanatum,more » cellulase degradation was similar to that in undecayed wood. From measurements of particle diameter it is suggested that electron dense particles are cellulase. It is concluded that brown-rot and white-rot fungi have different effects on the microstructure of wood. The brown-rot fungus appears to open the wood microstructure so that cellulase can diffuse throughout the degraded tracheid wall.« less
Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya
2017-07-01
Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae
2017-09-01
Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.
PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.
Park, Yun Sun; Choi, Su Eun; Koh, Hyun Chul
2018-03-01
Mitochondrial dynamics and mitophagy are critical processes for regulating mitochondrial homeostasis. Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein that plays crucial roles in apoptosis and necroptosis, but the roles of PGAM5 in mitochondrial dynamics and mitophagy remain unclear. In this study, we investigated the role of PGAM5 in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced mitochondrial damage and the correlation between mitochondrial dynamics and mitophagy using SH-SY5Y cells. We found that CCCP decreased mitochondrial membrane potential, resulting in mitochondrial dysfunction. CCCP increased PGAM5, dynamin-related protein 1 (DRP1), and optic atrophy 1 (OPA1) expression of the mitochondrial fraction in a time-dependent manner. Knockdown of PGAM5 inhibited DRP1 translocation without a change in OPA1 expression in CCCP-treated cells. Furthermore, knockdown of PGAM5 and DRP1 significantly blocked the increase of PTEN-induced putative protein kinase 1 (PINK1) and Parkin expression in the mitochondrial fraction of CCCP-treated cells. Interestingly, CCCP did not alter PINK1/Parkin expression in the mitochondrial fraction of OPA1 knockdown cells. Inhibiting mitophagy by PGAM5 knockdown accelerated CCCP-induced apoptosis. CCCP treatment also results in PINK1 stabilization on the mitochondrial membrane, which subsequently increases Parkin recruitment from the cytosol to abnormal mitochondria. In addition, we found that CCCP increased the level of mitochondrial LC3II, indicating that Parkin recruitment of PINK1 is a result of mitophagy. We propose that activation of PGAM5 is associated with DRP1 recruitment and PINK1 stabilization, which contribute to the modulation of mitophagy in CCCP-treated cells with mitochondrial dysfunction. In conclusion, we demonstrated that PGAM5 regulates PINK1-Parkin-mediated mitophagy, which can exert a neuroprotective effect against CCCP-induced apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Phil Cannon; Ned B. Klopfenstein; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Robert L. Schlub; Roger Brown; Sara M. Ashiglar; Amy L. Ross-Davis; John W. Hanna
2014-01-01
Ganoderma and Phellinus are two common fungal genera causing butt-rot on trees growing on USA-affiliated islands of the western Pacific. Although these fungi can be quite prevalent, especially in some older mangrove stands, it appears that the majority of infections caused by these fungi leads to severe rotting of the heartwood but do not kill the living...
Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro
2014-03-01
Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.
Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile.
Guillén, Yudith; Navias, David; Machuca, Angela
2009-02-01
Understanding the effect of heavy metals and wood preservatives on the growth of wood-rot fungi native to a certain region may improve reliability in determining the effectiveness of antifungal products, particularly when dealing with new formulations. In this investigation, strains of copper-tolerant wood-rot fungi native to south-central Chile were evaluated against two preservatives: commercial chromated copper arsenate type C (CCA-C) and a new formulation with boron and silicon (BS). Thirteen native strains, mainly white-rot fungi, were selected for their high growth rates in solid medium containing 3 mM of copper. A short-term test was then carried out, consisting of adding cellulose disks impregnated with different concentrations of preservatives to solid culture media inoculated with selected copper tolerant strains. There was a great variability in interspecific and intraspecific responses to the presence of copper and preservatives in culture media. Among the native and commercial strains evaluated, the white-rot fungi Trametes versicolor 38 and mainly Ganoderma australe 100 were notable for their tolerance to all the CCA-C and BS concentrations. The brown-rot fungus Wolfiporia cocos, used as reference strain, showed a high tolerance to CCA-C, but not to BS preservative. T. versicolor 38 and G. australe 100 were selected for subsequent studies on preserved wood degradation.
Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.
Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P
2013-08-01
Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.
Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H H; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A D
2017-07-12
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus.
Effect of Preservative Pretreatment on the Biological Durability of Corn Straw Fiber/HDPE Composites
Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H. H.; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A. D.
2017-01-01
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus. PMID:28773150
76 FR 3153 - Endangered and Threatened Wildlife and Plants; Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... (Epioblasma torulosa rangiana), Orange-footed pimpleback pearlymussel (Plethobasus cooperianus), Pink mucket...'s paw pearlymussel, Fanshell (Cyprogenia stegaria), Fat pocketbook (Potamilus capax), Higgins' eye...: Clubshell, Northern riffleshell, Orange-footed pimpleback pearlymussel, Pink mucket pearlymussel, Rough...
PINK1 deficiency enhances autophagy and mitophagy induction.
Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A
2016-03-01
Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control.
PINK1 deficiency enhances autophagy and mitophagy induction
Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A
2016-01-01
Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control. PMID:27308585
Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.
Scruggs, A C; Quesada-Ocampo, L M
2016-08-01
Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease.
Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR
DOE Office of Scientific and Technical Information (OSTI.GOV)
D`Souza, T.M.; Boominathan, K.; Reddy, C.A.
1996-10-01
Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum,more » Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.« less
Fractal dimension and the navigational information provided by natural scenes.
Shamsyeh Zahedi, Moosarreza; Zeil, Jochen
2018-01-01
Recent work on virtual reality navigation in humans has suggested that navigational success is inversely correlated with the fractal dimension (FD) of artificial scenes. Here we investigate the generality of this claim by analysing the relationship between the fractal dimension of natural insect navigation environments and a quantitative measure of the navigational information content of natural scenes. We show that the fractal dimension of natural scenes is in general inversely proportional to the information they provide to navigating agents on heading direction as measured by the rotational image difference function (rotIDF). The rotIDF determines the precision and accuracy with which the orientation of a reference image can be recovered or maintained and the range over which a gradient descent in image differences will find the minimum of the rotIDF, that is the reference orientation. However, scenes with similar fractal dimension can differ significantly in the depth of the rotIDF, because FD does not discriminate between the orientations of edges, while the rotIDF is mainly affected by edge orientation parallel to the axis of rotation. We present a new equation for the rotIDF relating navigational information to quantifiable image properties such as contrast to show (1) that for any given scene the maximum value of the rotIDF (its depth) is proportional to pixel variance and (2) that FD is inversely proportional to pixel variance. This contrast dependence, together with scene differences in orientation statistics, explains why there is no strict relationship between FD and navigational information. Our experimental data and their numerical analysis corroborate these results.
Mukanga, Mweshi; Derera, John; Tongoona, Pangirayi; Laing, Mark D
2010-07-15
Maize ear rots reduce grain yield and quality with implication on food security and health. Some of the pathogenic fungi produce mycotoxins in maize grain posing a health risk to humans and livestock. Unfortunately, the levels of ear rot and mycotoxin infection in grain produced by subsistence farmers in sub-Saharan countries are not known. A survey was thus conducted to determine the prevalence of the ear rot problem and levels of mycotoxins in maize grain. A total of 114 farmsteads were randomly sampled from 11 districts in Lusaka and southern provinces in Zambia during 2006. Ten randomly picked cobs were examined per farmstead and the ear rot disease incidence and severity were estimated on site. This was followed by the standard seed health testing procedures for fungal isolation in the laboratory. Results indicated that the dominant ear rots were caused by Fusarium and Stenocarpella. Incidence of Fusarium verticillioides ranged from 2 to 21%, whereas that of Stenocarpella maydis reached 37% on ear rot diseased maize grain. In addition, 2-7% F. verticillioides, and 3-18% Aspergillus flavus, respectively, were recovered from seemingly healthy maize grain. The mean rank of fungal species, from highest to lowest, was F. verticillioides, S. maydis, A. flavus, Fusarium graminearum, Aspergillus niger, Penicillium spp., Botrydiplodia spp., and Cladosporium spp. The direct competitive ELISA-test indicated higher levels of fumonisins than aflatoxins in pre-harvest maize grain samples. The concentration of fumonisins from six districts, and aflatoxin from two districts, was 10-fold higher than 2 ppm and far higher than 2 ppb maximum daily intake recommended by the FAO/WHO. The study therefore suggested that subsistence farmers and consumers in this part of Zambia, and maybe also in similar environments in sub-Saharan Africa, might be exposed to dangerous levels of mycotoxins due to the high levels of ear rot infections in maize grain. 2010 Elsevier B.V. All rights reserved.
Koskinen, Patrik; Nokso-Koivisto, Jussi; Pasanen, Miia; Broberg, Martin; Plyusnin, Ilja; Törönen, Petri; Holm, Liisa; Pirhonen, Minna; Palva, E. Tapio
2012-01-01
Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well. PMID:23133391
Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study
NASA Astrophysics Data System (ADS)
Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.
1988-11-01
Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.
George, Andrée S; Cox, Clayton E; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H; McClelland, Michael; Brandl, Maria T; Teplitski, Max
2018-03-01
Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum ) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots. Copyright © 2018 George et al.
Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease
Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Abul Khair, Salema B; Haque, M Emdadul
2015-01-01
Parkinson’s disease (PD) is a chronic, progressive, and the second most common form of neurodegenerative disorders. In order to explore novel agents for the treatment of PD, in the current study, we have evaluated the neuroprotective efficacy of ferulic acid (FA) using rotenone (ROT)-induced rat model of PD. ROT was administered 2.5 mg/kg body weight to male Wistar rats for 4 weeks to induce the PD. Since PD is progressive and chronic in nature, the paradigm for evaluating FA was based on chronic administration for 4 weeks at the dose of 50 mg/kg, 30 minutes prior to ROT administration. ROT administration caused significant reduction in endogenous antioxidants such as superoxide dismutase, catalase, and glutathione. ROT challenge-induced lipid peroxidation evidenced by increased malondialdehyde following perturbation of antioxidant defense. Apart from oxidative stress, ROT also activated proinflammatory cytokines and enhanced inflammatory mediators such as cyclooxygenase-2 and inducible nitric oxide synthase. The immunofluorescence analysis revealed a significant increase in the number of activated microglia and astrocytes accompanied by a significant loss of dopamine (DA) neurons in the substantia nigra pars compacta area upon ROT injection. However, treatment with FA rescued DA neurons in substantia nigra pars compacta area and nerve terminals in the striatum from the ROT insult. FA treatment also restored antioxidant enzymes, prevented depletion of glutathione, and inhibited lipid peroxidation. Following treatment with FA, the inflammatory mediators such as cyclooxygenase-2 and inducible nitric oxide synthase and proinflammatory cytokines were also reduced. Further, the results were supported by a remarkable reduction of Iba-1 and GFAP hyperactivity clearly suggests attenuation of microglial and astrocytic activation. Results of our study suggest that FA has promising neuroprotective effect against degenerative changes in PD, and the protective effects are mediated through its antioxidant and anti-inflammatory properties. PMID:26504373
Cox, Clayton E.; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H.; McClelland, Michael; Brandl, Maria T.; Teplitski, Max
2017-01-01
ABSTRACT Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum. The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots. PMID:29247060
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2000-01-01
This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.
The development of spectro-signature indicators of root disease impacts on forest stands
NASA Technical Reports Server (NTRS)
Weber, F. P.; Wear, J. F.
1970-01-01
A field research program was begun in 1969 and intensified in 1970 on the physiology and biophysical responses of second-growth Douglas fir infected with root rot fungus. A double tramway system was suspended between three 100-foot instrument towers to carry sensors for measuring the energy response from above both healthy and infected trees. Processing and analysis was completed of airborne multispectral scanner imagery collected over the Wind River research area in 1969. Likelihood ratio processing of three-channel infrared data and Euclidean distance analysis of ten-channel spectrometer data did not identify incipient root rot infection outside the training sets. In all cases infected fir was misclassified as healthy fir. It was concluded from careful examination of physiological data that Poria root rot infection has little effect on water metabolism and energy exchange. What was identified was a low-grade stress that affects respiration and metabolism over long periods of time. This led to minor changes in the external physical symptoms of Poria-infected trees which was revealed only in the shortwave reflectance data.
Characterization of lignocellulolytic enzymes from white-rot fungi.
Manavalan, Tamilvendan; Manavalan, Arulmani; Heese, Klaus
2015-04-01
The development of alternative energy sources by applying lignocellulose-based biofuel technology is critically important because of the depletion of fossil fuel resources, rising fossil fuel prices, security issues regarding the fossil fuel supply, and environmental issues. White-rot fungi have received much attention in recent years for their valuable enzyme systems that effectively degrade lignocellulosic biomasses. These fungi have powerful extracellular oxidative and hydrolytic enzymes that degrade lignin and cellulose biopolymers, respectively. Lignocellulosic biomasses from either agricultural or forestry wastes are abundant, low-cost feedstock alternatives in nature but require hydrolysis into simple sugars for biofuel production. This review provides a complete overview of the different lignocellulose biomasses and their chemical compositions. In addition, a complete list of the white-rot fungi-derived lignocellulolytic enzymes that have been identified and their molecular structures, mechanism of action in lignocellulose hydrolysis, and biochemical properties is summarized in detail. These enzymes include ligninolytic enzymes (laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase) and cellulolytic enzymes (endo-glucanase, cellobiohydrolase, and beta-glucosidase). The use of these fungi for low-cost lignocellulolytic enzyme production might be attractive for biofuel production.
Ranasinghe, L; Jayawardena, B; Abeywickrama, K
2002-01-01
To develop a post-harvest treatment system against post-harvest fungal pathogens of banana using natural products. Colletotrichum musae was isolated and identified as the causative agent responsible for anthracnose peel blemishes while three fungi, namely Lasiodiplodia theobromae, C. musae and Fusarium proliferatum, were identified as causative agents responsible for crown rot. During the liquid bioassay, cinnamon [Cinnamomum zeylanicum (L.)] leaf, bark and clove [Syzygium aromaticum (L.)] oils were tested against the anthracnose and crown rot pathogens. The test oils were fungistatic and fungicidal against the test pathogens within a range of 0.03-0.11% (v/v). Cinnamon and clove essential oils could be used as antifungal agents to manage post harvest fungal diseases of banana. Cinnamon and clove essential oil could be used as alternative post-harvest treatments on banana. Banana treated with essential oil is chemically safe and acceptable to consumers. Benomyl (Benlate), which is currently used to manage fungal pathogens, can cause adverse health effects and could be replaced with volatile essential oils.
Alkan, Noam; Fortes, Ana M.
2015-01-01
Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204
Dong, Lin-Lin; Chen, Zhong-Jian; Wang, Yong; Wei, Fu-Gang; Zhang, Lian-Juan; Xu, Jiang; Wei, Guang-Fei; Wang, Rui; Yang, Juan; Liu, Wei-Lin; Li, Xi-Wen; Yu, Yu-Qi; Chen, Shi-Lin
2017-01-01
DNA marker-assisted selection of medicinal plants is based on the DNA polymorphism, selects the DNA sequences related to the phenotypes such as high yields, superior quality, stress-resistance and so on according to the technologies of molecular hybridization, polymerase chain reaction and high-throughput sequencing, and assists the breeding of new cultivars. This study bred the first disease-resistant cultivar of notoginseng "Miaoxiang Kangqi 1" using the technology of DNA marker-assisted selection of medicinal plants and systematic breeding. The disease-resistant cultivar of notoginseng contained 12 special SNPs based on the analysis of Restriction-site Associated DNA Sequencing (RAD-Seq). Among the SNP (record_519688) was related to the root rot-resistant characteristics, which indicated this SNP could serve as genetic markers of disease-resistant cultivars and assist the systematic breeding. Compared to the conventional cultivated cultivars, the incidence rate of root-rot and rust-rot in notoginseng seedlings decreased by 83.6% and 71.8%, respectively. The incidence rate of root-rot respectively declined by 43.6% and 62.9% in notoginseng cultivation for 2 and 3 years compared with those of the conventional cultivated cultivars. Additionally, the potential disease-resistant groups were screened based on the relative SNP, and this model enlarged the target groups and advanced the breeding efficiency. DNA marker-assisted selection of medicinal plants accelerated the breeding and promotion of new cultivars, and guaranteed the healthy development of Chinese medicinal materials industry. Copyright© by the Chinese Pharmaceutical Association.
Evidence of Neurobiological Changes in the Presymptomatic PINK1 Knockout Rat.
Ferris, Craig F; Morrison, Thomas R; Iriah, Sade; Malmberg, Samantha; Kulkarni, Praveen; Hartner, Jochen C; Trivedi, Malav
2018-01-01
Genetic models of Parkinson's disease (PD) coupled with advanced imaging techniques can elucidate neurobiological disease progression, and can help identify early biomarkers before clinical signs emerge. PTEN-induced putative kinase 1 (PINK1) helps protect neurons from mitochondrial dysfunction, and a mutation in the associated gene is a risk factor for recessive familial PD. The PINK1 knockout (KO) rat is a novel model for familial PD that has not been neuroradiologically characterized for alterations in brain structure/function, alongside behavior, prior to 4 months of age. To identify biomarkers of presymptomatic PD in the PINK1 -/- rat at 3 months using magnetic resonance imaging techniques. At postnatal weeks 12-13; one month earlier than previously reported signs of motor and cognitive dysfunction, this study combined imaging modalities, including assessment of quantitative anisotropy across 171 individual brain areas using an annotated MRI rat brain atlas to identify sites of gray matter alteration between wild-type and PINK1 -/- rats. The olfactory system, hypothalamus, thalamus, nucleus accumbens, and cerebellum showed differences in anisotropy between experimental groups. Molecular analyses revealed reduced levels of glutathione, ATP, and elevated oxidative stress in the substantia nigra, striatum and deep cerebellar nuclei. Mitochondrial genes encoding proteins in Complex IV, along with mRNA levels associated with mitochondrial function and genes involved in glutathione synthesis were reduced. Differences in brain structure did not align with any cognitive or motor impairment. These data reveal early markers, and highlight novel brain regions involved in the pathology of PD in the PINK1 -/- rat before behavioral dysfunction occurs.
PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila
Shiba-Fukushima, Kahori; Inoshita, Tsuyoshi; Hattori, Nobutaka; Imai, Yuzuru
2014-01-01
Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. PMID:24901221
Code of Federal Regulations, 2011 CFR
2011-01-01
... are not overripe or soft which are well developed, at least fairly well formed, fairly smooth, free..., sunburn, puffiness, catfaces, growth cracks, scars, dry rot, other diseases, insects, hail, or mechanical...
77 FR 69891 - Endangered and Threatened Wildlife and Plants; Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... higginsii), fat pocketbook (Potamilus capax), pink mucket pearlymussel (Lampsilis abrupta), and rayed bean... (Plethobasus cooperianus), Ouachita rock pocketbook (Arkansia wheeleri), pink mucket pearlymussel, rayed bean... pigtoe, fat pocketbook, winged mapleleaf, cumberland bean (Villosa trabalis), spectaclecase, snuffbox...
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.
2014-01-01
We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitinPhospho−Ser65 could hold promise as novel therapies for Parkinson's disease. PMID:24660806
Kazan, Kemal; Gardiner, Donald M
2017-11-04
Diseases caused by Fusarium pathogens inflict major yield and quality losses on many economically important plant species worldwide, including cereals. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a cereal disease that occurs in many arid and semi-arid cropping regions of the world. In recent years, this disease has become more prevalent, in part as a result of the adoption of moisture-preserving cultural practices, such as minimum tillage and stubble retention. In this pathogen profile, we present a brief overview of recent research efforts that have not only advanced our understanding of the interactions between F. pseudograminearum and cereal hosts, but have also provided new disease management options. For instance, significant progress has been made in the genetic characterization of pathogen populations, the development of new tools for disease prediction, and the identification and pyramiding of loci that confer quantitative resistance to FCR in wheat and barley. In addition, transcriptome analyses have revealed new insights into the processes involved in host defence. Significant progress has also been made in understanding the mechanistic details of the F. pseudograminearum infection process. The sequencing and comparative analyses of the F. pseudograminearum genome have revealed novel virulence factors, possibly acquired through horizontal gene transfer. In addition, a conserved pathogen gene cluster involved in the degradation of wheat defence compounds has been identified, and a role for the trichothecene toxin deoxynivalenol (DON) in pathogen virulence has been reported. Overall, a better understanding of cereal host-F. pseudograminearum interactions will lead to the development of new control options for this increasingly important disease problem. Taxonomy: Fusarium pseudograminearum O'Donnell & Aoki; Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. Disease symptoms: Fusarium crown rot caused by F. pseudograminearum is also known as crown rot, foot rot and root rot. Infected seedlings can die before or after emergence. If infected seedlings survive, typical disease symptoms are browning of the coleoptile, subcrown internode, lower leaf sheaths and adjacent stems and nodal tissues; this browning can become evident within a few weeks after planting or throughout plant development. Infected plants may develop white heads with no or shrivelled grains. Disease symptoms are exacerbated under water limitation. Identification and detection: Fusarium pseudograminearum macroconidia usually contain three to five septa (22-60.5 × 2.5-5.5 μm). On potato dextrose agar (PDA), aerial mycelia appear floccose and reddish white, with red or reddish-brown reverse pigmentation. Diagnostic polymerase chain reaction (PCR) tests based on the amplification of the gene encoding translation elongation factor-1a (TEF-1a) have been developed for molecular identification. Host range: All major winter cereals can be colonized by F. pseudograminearum. However, the main impact of this pathogen is on bread (Triticum aestivum L.) and durum (Triticum turgidum L. spp. durum (Dest.)) wheat and barley (Hordeum vulgare L.). Oats (Avena sativa L.) can be infected, but show little or no disease symptoms. In addition, the pathogen has been isolated from various other grass genera, such as Phalaris, Agropyron and Bromus, which may occur as common weeds. Useful websites: https://nt.ars-grin.gov/fungaldatabases/; http://plantpath.psu.edu/facilities/fusarium-research-center; https://nt.ars-grin.gov/fungaldatabases/; http://www.speciesfungorum.org/Names/Names.asp. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Wood decay: a submicroscopic view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, R.A.
1980-01-01
Typical patterns of decay in softwoods are shown by ultrastructural differences revealed by SEM. Illustrative micrographs are reproduced showing fungi and their effects. Brown rot fungi (e.g. Fomitopsis pinicolor) degrade cellulose leaving a lignin skeleton. White rot fungi (e.g. Coriolus versicolor and Hirschioporus abietinus) degrade both lignin and cellulose. White pocket rots (e.g. Phellinus pini) primarily degrade lignin; they have potential for use in paper making, or the production of animal feed.
A system for predicting the amount of Phellinus (Fomes) igniarius rot in trembling aspen stands
Robert L. Anderson; Arthur L. Jr. Schipper
1978-01-01
The occurrence of Phellinus (Fomes) igniarius white trunk rot in 45- to 50-year-old trembling aspen stands can be predicted by applying a constant to the stand basal area with P. igniarius conks to estimate the total basal area with P. igniarius rot. Future decay projections can be made by reapplying the basal area of hidden decay for each 6 years projected. This paper...
Diane Dietrich; Casey Crooks
2009-01-01
A pyranose 2-oxidase gene from the brown-rot basidiomycete Gloeophyllum trabeum was isolated using homology-based degenerate PCR. The gene structure was determined and compared to that of several pyranose 2-oxidases cloned from white-rot fungi. The G. trabeum pyranose 2-oxidase gene consists of 16 coding exons with canonical promoter CAAT and TATA elements in the 5âUTR...
Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK
2015-01-01
Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of ubiquitinPhospho-Ser65. PMID:26116755
Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan M F; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul M K
2015-08-01
Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin activators that mimic the effect of ubiquitin(Phospho-Ser65). © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Fang, Xiangling; Finnegan, Patrick M; Barbetti, Martin J
2013-01-01
Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR.
Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes; Lobo, Murillo
2017-01-01
Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen's optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen's density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans.
Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes
2017-01-01
Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen’s optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen’s density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans. PMID:29107985
Fine Mapping of Resistance Genes from Five Brown Stem Rot Resistance Sources in Soybean.
Rincker, Keith; Hartman, Glen L; Diers, Brian W
2016-03-01
Brown stem rot (BSR) of soybean [ (L.) Merr.] caused by (Allington & Chamb.) T.C. Harr. & McNew can be controlled effectively with genetic host resistance. Three BSR resistance genes , , and , have been identified and mapped to a large region on chromosome 16. Marker-assisted selection (MAS) will be more efficient and gene cloning will be facilitated with a narrowed genomic interval containing an gene. The objective of this study was to fine map the positions of genes from five sources. Mapping populations were developed by crossing the resistant sources 'Bell', PI 84946-2, PI 437833, PI 437970, L84-5873, and PI 86150 with either the susceptible cultivar Colfax or Century 84. Plants identified as having a recombination event near genes were selected and individually harvested to create recombinant lines. Progeny from recombinant lines were tested in a root-dip assay and evaluated for foliar and stem BSR symptom development. Overall, 4878 plants were screened for recombination, and progeny from 52 recombinant plants were evaluated with simple-sequence repeat (SSR) genetic markers and assessed for symptom development. Brown stem rot resistance was mapped to intervals ranging from 0.34 to 0.04 Mb in the different sources. In all sources, resistance was fine mapped to intervals inclusive of BARCSOYSSR_16_1114 and BARCSOYSSR_16_1115, which provides further evidence that one locus provides BSR resistance in soybean. Copyright © 2016 Crop Science Society of America.
... way to prevent spreading pink eye is to stay home — or keep your child at home — until eye ... re not able to take time off — just stay consistent in practicing good ... present in the mother's birth canal. These bacteria cause no symptoms in ...
50 CFR 622.2 - Definitions and acronyms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... part thereof: (1) Brown shrimp, Farfantepenaeus aztecus. (2) Pink shrimp, Farfantepenaeus duorarum. (3... of transferring property for money or credit, trading, or bartering, or attempting to so transfer...) Pink shrimp, Farfantepenaeus duorarum. (4) Royal red shrimp, Hymenopenaeus robustus. (5) Rock shrimp...
... medical treatment: unusual bleeding or bruising red or black, tarry stools pink, red, or dark brown urine coughing up or vomiting blood or material ... the following: unusual bleeding or bruising red or black, tarry stools pink, red, or dark brown urine coughing up or vomiting blood or material ...
Paradoxical darkening and removal of pink tattoo ink.
Kirby, William; Kaur, Ravneet Ruby; Desai, Alpesh
2010-06-01
It is widely accepted that Q-switched lasers are the gold-standard treatment for the resolution of unwanted tattoo ink. Although much safer than other tattoo removal modalities, the treatment of tattoo ink with Q-switched devices may be associated with long-term adverse effects including undesired pigmentary alterations such as tattoo ink darkening. Darkening of tattoo ink is most often reported in cosmetic, flesh-toned, white, peach, and pink tattoos. In this paper, we briefly review a case of pink tattoo ink that initially darkened paradoxically but eventually resolved with continued Q-switched laser treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-01-01
The objective of the study was to determine the impact of the Exxon Valdez oil spill on juvenile pink and chum salmon during their initial period of residency in nearshore marine habitats of western Prince William Sound. In oiled locations, both pink and chum salmon fry in the nearshore marine environment observations and laboratory experiments indicated that ingestion of whole oil or oil-contaminated prey was an important route of contamination.
Putman, Nathan F.; Jenkins, Erica S.; Michielsens, Catherine G. J.; Noakes, David L. G.
2014-01-01
Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214
Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
Aguirre, Jacob D; Dunkerley, Karen M; Mercier, Pascal; Shaw, Gary S
2017-01-10
Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.
Dawson, J A; Ekström, A; Frisk, C; Thio, M; Roehr, C C; Kamlin, C O F; Donath, S M; Davis, P G
2015-04-01
It takes several minutes for infants to become pink after birth. Preductal oxygen saturation (SpO2) measurements are used to guide the delivery of supplemental oxygen to newly born infants, but pulse oximetry is not available in many parts of the world. We explored whether the pinkness of an infant's tongue provided a useful indication that supplemental oxygen was required. This was a prospective observational study of infants delivered by Caesarean section. Simultaneous recording of SpO2 and visual assessment of whether the tongue was pink or not was made at 1-7 and 10 min after birth. The 38 midwives and seven paediatric trainees carried out 271 paired assessments on 68 infants with a mean (SD) birthweight of 3214 (545) grams and gestational age of 38 (2) weeks. When the infant did not have a pink tongue, this predicted SpO2 of <70% with a sensitivity of 26% and a specificity of 96%. Tongue colour was a specific but insensitive sign that indicated when SpO2 was <70%. When the tongue is pink, it is likely that an infant has an SpO2 of more than 70% and does not require supplemental oxygen. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Kuramoto, Takashi; Gohma, Hiroshi; Kimura, Kunio; Wedekind, Dirk; Hedrich, Hans J; Serikawa, Tadao
2005-09-01
We identified the rat pink-eyed dilution (p) and pink eye Mishima (p(m)) mutations. The p(m) mutation, which was isolated from a wild rat caught in Mishima Japan in 1961 and is carried in the NIG-III strain, is a splice donor site mutation in intron 5. The p mutation, which was first described in 1914 and is carried in several p/p rats including the RCS and BDV strains, is an intragenic deletion including exons 17 and 18. In addition to RCS and BDV strains, several albino strains, KHR, KMI and WNA, all descendants of albino stock of the Wistar Institute, are homozygous for the p allele. Analyses revealed that the colored p strains and the Wistar-derived albino p strains had the same marker haplotype spanning approximately 4 Mb around the P locus. This indicates that these p strains share a common ancestor and the p allele did not arise independently via recurrent mutations. The historical relationship among the p strains suggests that the p deletion had been maintained in stock heterogeneous for the C and P loci and then was inherited independently by the ancestor of the Wistar albino stock and the ancestor of the pink-eyed agouti rats in Europe.
NASA Astrophysics Data System (ADS)
Levaton, J.; Klein, A. N.; Binder, C.
2018-01-01
In the present work, we extensively discuss the role of N(2D) and N(2P) atoms in the ionization processes of pink afterglow based on optical emission spectroscopy analysis and kinetic numerical modelling. We studied the pink afterglow generated by a nitrogen DC discharge operating at 0.6 Slm-1 flow rate, 45 mA discharge current and pressures ranging from 250 to 1050 Pa. The 391.4 nm nitrogen band was monitored along the afterglow furnishing the relative density of the N2+(B2Σ+u, v = 0) state. A numerical model developed to calculate the nitrogen species densities in the afterglow fits the excited ion density profiles well for the experimental conditions. From the modelling results, we determine the densities of the N+, N2+, N3+, and N4+ ions; the calculations show that the N3+ ion density predominates in the afterglow at the typical residence times of the pink afterglow. This behaviour has been observed experimentally and reported in the literature. Furthermore, we calculate the fractional contribution in the ionization for several physical-chemical mechanisms in the post-discharge. Even with the N3+ ion density being dominant in the afterglow, we find through the calculations that the ionization is dominated by the reactions N(2D) + N(2P) → N2+(X2Σ+g) + e and N2(a'1Σ-u) + N2(X 1Σg+, v > 24) → N4+ + e. The ion conversion mechanisms, or ion transfer reactions, which are responsible for the fact that the N3+ density dominates in the post-discharge, are investigated.
Impaired Sense of Smell in a Drosophila Parkinson’s Model
Poddighe, Simone; Bhat, Krishna Moorthi; Setzu, Maria Dolores; Solla, Paolo; Angioy, Anna Maria; Marotta, Roberto; Ruffilli, Roberta; Marrosu, Francesco; Liscia, Anna
2013-01-01
Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor, akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of the disease. The fruit fly Drosophila melanogaster is becoming a powerful model organism to study neurodegenerative diseases. We sought to use this system to explore olfactory dysfunction, if any, in PINK1 mutants, which is a model for PD. PINK1 mutants display many important diagnostic symptoms of the disease such as akinetic motor behavior. In the present study, we describe for the first time, to the best of our knowledge, neurophysiological and neuroanatomical results concerning the olfactory function in PINK1 mutant flies. Electroantennograms were recorded in response to synthetic and natural volatiles (essential oils) from groups of PINK1 mutant adults at three different time points in their life cycle: one from 3–5 day-old flies, from 15–20 and from 27–30 days. The results obtained were compared with the same age-groups of wild type flies. We found that mutant adults showed a decrease in the olfactory response to 1-hexanol, α-pinene and essential oil volatiles. This olfactory response in mutant adults decreased even more as the flies aged. Immunohistological analysis of the antennal lobes in these mutants revealed structural abnormalities, especially in the expression of Bruchpilot protein, a marker for synaptic active zones. The combination of electrophysiological and morphological results suggests that the altered synaptic organization may be due to a neurodegenerative process. Our results indicate that this model can be used as a tool for understanding PD pathogensis and pathophysiology. These results help to explore the potential of using olfaction as a means of monitoring PD progression and developing new treatments. PMID:24009736
Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedges, J.I.; Weliky, K.; Devol, A.H.
1988-11-01
Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Althoughmore » two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.« less
A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes.
Ferreira, Patricia; Carro, Juan; Serrano, Ana; Martínez, Angel T
2015-01-01
The genomes of three representative Polyporales (Bjerkandera adusta, Phlebia brevispora and a member of the Ganoderma lucidum complex) recently were sequenced to expand our knowledge on the diversity and distribution of genes involved in degradation of plant polymers in this Basidiomycota order, which includes most wood-rotting fungi. Oxidases, including members of the glucose-methanol-choline (GMC) oxidoreductase superfamily, play a central role in the above degradative process because they generate extracellular H2O2 acting as the ultimate oxidizer in both white-rot and brown-rot decay. The survey was completed by analyzing the GMC genes in the available genomes of seven more species to cover the four Polyporales clades. First, an in silico search for sequences encoding members of the aryl-alcohol oxidase, glucose oxidase, methanol oxidase, pyranose oxidase, cellobiose dehydrogenase and pyranose dehydrogenase families was performed. The curated sequences were subjected to an analysis of their evolutionary relationships, followed by estimation of gene duplication/reduction history during fungal evolution. Second, the molecular structures of the near one hundred GMC oxidoreductases identified were modeled to gain insight into their structural variation and expected catalytic properties. In contrast to ligninolytic peroxidases, whose genes are present in all white-rot Polyporales genomes and absent from those of brown-rot species, the H2O2-generating oxidases are widely distributed in both fungal types. This indicates that the GMC oxidases provide H2O2 for both ligninolytic peroxidase activity (in white-rot decay) and Fenton attack on cellulose (in brown-rot decay), after the transition between both decay patterns in Polyporales occurred. © 2015 by The Mycological Society of America.
Efficacy of gaseous ozone to counteract postharvest table grape sour rot.
Pinto, L; Caputo, L; Quintieri, L; de Candia, S; Baruzzi, F
2017-09-01
This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m -3 ) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Desai, Vikram; Murthy, Jagdish; Saksena, Ravi; Gupta, Ajay
2009-11-01
Providing education access to the children in the age group 6-14 years is a constitutional obligation and challenge for the union as well state governments, as the development of elementary education is a key factor for a nation's development. Due to the non-availability of required number of trained and expert teachers' knowledge-divide exists between students population of urban and rural/remote areas. To bridge this gap Distance Learning or Tele-education is the best option. A dedicated satellite for the purpose (EDUSAT) was launched on 20th September 2004 to serve the nation in all the education activities. It was decided to provide a Tele-education network in and around the Sidhi district of Madhya Pradesh, with uplink and studio facility (Hub) at Jabalpur (MP) and around 700 receive only terminals (ROTs) in various schools. Since the medium of teaching used in this network is Hindi, it was later decided to extend the coverage to connect around 50 primary schools with ROTs in six surrounding states viz. Jharkhand, Bihar, Chhatisgarh, Uttar Pradesh, Rajasthan and Uttaranchal. The network is configured as a DTH network using state-of-art digital technology, in Ku-band with 3.8 m antenna and 16 W power amplifier at Hub. The ROTs are designed to operate on solar power for 2.5 h continuously, taking into consideration the non-availability of primary power in the rural areas. The teachers of the schools are trained for the proper operations of the ROTs. The teachers of these rural schools also contribute to the content generation, with local relevance, in coordination with Indira Gandhi National Open University (IGNOU). At present the network with around 1000 ROTs is being utilized for 2 h per day. The RGPEEE network is in the process of being augmented with 32 satellite interactive terminals (SITs), to be used for teachers training. The project is being managed by two tier management system. In order to oversee the project implementation and monitoring an Apex Core Group, consisting of Apex Committee and Standing Committee, has been constituted. The Apex Committee takes care of policy decisions where as, the Standing Committee takes care of day to day affair.
Anne Christine Steenkjaer Hastrup; Bo Jensen; Carol Clausen; Frederick Green
2006-01-01
The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated for 12 strains of S. lacrymans and compared to five brown-rot fungi....
Antifungal activity of n-tributyltin acetate against some common yam rot fungi.
Olurinola, P F; Ehinmidu, J O; Bonire, J J
1992-01-01
The antifungal activity of n-tributyltin acetate (TBTA) was examined in relation to combating yam rot disease. TBTA exhibited a significant effect in vitro and in vivo on four yam rot fungal isolates tested. However, the in vitro toxicity of TBTA was drastically reduced when 2.5% Tween 80 was the solvent instead of 25% acetone, as indicated by the MICs of 156.0 and 5.0 micrograms/ml, respectively. PMID:1610202
Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt
Hassan, Naglaa; Shimizu, Masafumi
2014-01-01
Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737
Hoffman, Shannon L.; Johnson, Molly B.; Zou, Dequan; Van Dillen, Linda R.
2012-01-01
Patterns of lumbar posture and motion are associated with low back pain (LBP). Research suggests LBP subgroups demonstrate different patterns during common tasks. This study assessed differences in end-range lumbar flexion during two tasks between two LBP subgroups classified according to the Movement System Impairment model. Additionally, the impact of gender differences on subgroup differences was assessed. Kinematic data were collected. Subjects in the Rotation (Rot) and Rotation with Extension (RotExt) LBP subgroups were asked to sit slumped and bend forward from standing. Lumbar end-range flexion was calculated. Subjects reported symptom behavior during each test. Compared to the RotExt subgroup, the Rot subgroup demonstrated greater end-range lumbar flexion during slumped sitting and a trend towards greater end-range lumbar flexion with forward bending. Compared to females, males demonstrated greater end-range lumbar flexion during slumped sitting and forward bending. A greater proportion of people in the Rot subgroup reported symptoms with each test compared to the RotExt subgroup. Males and females were equally likely to report symptoms with each test. Gender differences were not responsible for LBP subgroup differences. Subgrouping people with LBP provides insight into differences in lumbar motion within the LBP population. Results suggesting potential consistent differences across flexion-related tasks support the presence of stereotypical movement patterns that are related to LBP. PMID:22261650
NASA Astrophysics Data System (ADS)
Błachowicz, Tomasz
2000-08-01
The article presents results from work with Fabry-Pérot interferometers in Brillouin laser light scattering experiments, where optical signals of very low level intensity are observed. The information presented here can be useful in other types of optical experiments where scanning in the Fabry-Pérot interferometer spectral range has to be used. In such situations the shape of spectral lines as well as their relative distances can be detected. The key to the solution presented here is the use of a silicon-membrane pressure sensor coupled to a pressure chamber. It makes it possible to view spectral lines equally spaced after nonlinear flow of air from a chamber where the Fabry-Pérot interferometer is placed. Linear scanning in the spectral range equal to a frequency of about 150 GHz is possible. The method can be applied to Fabry-Pérot's etalons, very frequently produced some years ago. Now it should find new fields of application, in a simple and cost effective way, in student laboratories as well as in other research institutions.
Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots.
Pereira, G S; Camargos, R B; Balestre, M; Von Pinho, R G; C Melo, W M
2015-09-21
Leaf disease and ear rot have caused reductions in maize yield in Brazil and other producer countries. Therefore, the aims of this study were to analyze the association between husked ear yield and the severity of maize white spot, gray leaf spot, helminthosporium, and ear rot caused by Fusarium verticillioides and Diplodia maydis using biplots in a mixed-model approach. The responses of 238 lines introduced to Brazil and four controls were evaluated using an incomplete block design with three replicates in two locations: Lavras and Uberlândia, Minas Gerais, Brazil. Two experiments were conducted in each location, one with F. verticillioides and the other with D. maydis. The mixed models elucidated the relationship between yield, leaf disease, and ear disease. Significant genotype x environment and genotype x pathogen interactions were observed. In conclusion, husked ear yield is more associated with ear rot than with the leaf diseases evaluated, justifying the indirect selection for resistance to kernel rot in maize-F. verticillioides and maize-D. maydis pathosystems by yield evaluation.
Filamentous fungi associated with natural infection of noble rot on withered grapes.
Lorenzini, M; Simonato, B; Favati, F; Bernardi, P; Sbarbati, A; Zapparoli, G
2018-05-02
The effects of noble rot infection of grapes on the characteristics of different types of wine, including Italian passito wine, are well known. Nevertheless, there is still little information on filamentous fungi associated with noble-rotten grapes. In this study, withered Garganega grapes for passito wine production, naturally infected by noble rot, were analyzed and compared to sound grapes. Skin morphology and fungal population on berry surfaces were analyzed. Scanning electron microscopy analysis revealed microcracks, germination conidia and branched hyphae on noble-rotten berries. Penicillium, Aureobasidium and Cladosporium were the most frequent genera present. Analysis of single berries displayed higher heterogeneity of epiphytic fungi in those infected by noble-rot than in sound berries. Penicillium adametzoides, Cladosporium cladospoirioides and Coniochaeta polymorpha were recovered. These, to the best of our knowledge, had never been previously isolated from withered grapes and, for C. polymorpha, from grapevine. This study provided novel data on noble rot mycobiota and suggests that fungi that co-habit with B. cinerea could have an important role on grape and wine quality. Copyright © 2018 Elsevier B.V. All rights reserved.
Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex
Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica
2015-01-01
Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031
Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape.
Ioriatti, Claudio; Guzzon, Raffaele; Anfora, Gianfranco; Ghidoni, Franca; Mazzoni, Valerio; Villegas, Tomas Roman; Dalton, Daniel T; Walton, Vaughn M
2018-02-09
This research aimed to more clearly describe the interactions of Drosophila suzukii (Matsumura; Diptera: Drosophilidae) with microorganisms that may contribute to spoilage or quality loss of wine grapes during harvest. Experiments were conducted in controlled laboratory experiments and under field conditions to determine these effects. Laboratory trials determined the role of insect contact and oviposition to vector spoilage bacteria onto wine grapes. In the field, the roles of key organoleptic parameters in grape fruit ripening were assessed to determine their relative contribution to oviposition potential as fruit ripened. Finally, field trials determined the relationships of egg and larval infestation to sour rot levels. Non-ovipositional trials indicated elevated levels of microbiota when D. suzukii was present. D. suzukii oviposition exponentially increased the concentration of acetic acid bacteria. Both incised and sound berries showed a significant increase in concentrations of acetic acid bacteria exposed to D. suzukii. Volatile acidity was higher in treatments infested with D. suzukii. Fruit with only eggs did not develop a significant increase of volatile acidity. Larva-infested grape berries in 9.5% of samples developed higher volatile acidity after 14 d. Sound grape berries were less susceptible to the development of microbiota associated with sour rot and spoilage. D. suzukii oviposition and larval development increase risk of spoilage bacteria vectored by D. suzukii adults. Acetic acid bacteria induced fermentation and produced several volatile compounds contributing to spoilage. Spoilage bacteria may create a positive feedback loop that attracts both D. suzukii and other drosophilids, which may contribute to additional spoilage. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
50 CFR 622.2 - Definitions and acronyms.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (2) Pink shrimp, Farfantepenaeus duorarum. (3) White shrimp, Litopenaeus setiferus. Penaeid shrimp.... Sale or sell means the act or activity of transferring property for money or credit, trading, or... aztecus. (2) White shrimp, Litopenaeus setiferus. (3) Pink shrimp, Farfantepenaeus duorarum. (4) Royal red...
... medical treatment: unusual bleeding or bruising red or black, tarry stools pink, red, or dark brown urine coughing up or vomiting blood or material ... the following: unusual bleeding or bruising red or black, tarry stools pink, red, or dark brown urine coughing up or vomiting blood or material ...
Feasibility of white-rot fungi for biodegradation of PCP-treated ammunition boxes. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholze, R.J.; Lamar, R.T.; Bolduc, J.
1995-01-01
Millions of pounds of wood ammunition boxes treated with the wood preservative pentachiorophenol (PCP) are being stockpiled at military installations, primarily depots, because cost-effective disposal is not readily available. The Army needs cost-effective and environmentally benign treatment methods for destruction and disposal of PCP-treated wood products. This research investigated the use of white-rot fungi to biodegrade PCP-treated wood. Results showed that white-rot fungi effectively decreased the PCP concentration in contaminated hardwood and softwood chips. Under ideal laboratory conditions the fungi reduced the PCP concentration by 80 percent; a field study showed only a 30 percent decrease in PCP concentration. Despitemore » this disparity, this study demonstrated the feasibility of using white-rot fungi to reduce PCP in treated wood.« less
The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes.
Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martínez, Angel T; Otillar, Robert; Spatafora, Joseph W; Yadav, Jagjit S; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M; de Vries, Ronald P; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Górecki, Paweł; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kües, Ursula; Kumar, T K Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G; Nolan, Matt; Ohm, Robin A; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Dueñas, Francisco J; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C; St John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C; Martin, Francis; Cullen, Dan; Grigoriev, Igor V; Hibbett, David S
2012-06-29
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity
Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.
2014-01-01
Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038
Richey, Julie N.; Poore, Richard Z.; Flower, Benjamin P.; Hollander, David J.
2012-01-01
We evaluate the relationship between foraminiferal test size and shell geochemistry (δ13C, δ18O, and Mg/Ca) for two of the most commonly used planktonic foraminifers for paleoceanographic reconstruction in the subtropical Atlantic Ocean: the pink and white varieties of Globigerinoides ruber. Geochemical analyses were performed on foraminifera from modern core-top samples of high-accumulation rate basins in the northern Gulf of Mexico. Mg/Ca analysis indicates a positive relationship with test size, increasing by 1.1 mmol/mol (~ 2.5 °C) from the smallest (150–212 μm) to largest (> 500 μm) size fractions of G. ruber (pink), but with no significant relationship in G. ruber (white). In comparison, oxygen isotope data indicate a negative relationship with test size, decreasing by 0.6‰ across the size range of both pink and white G. ruber. The observed increase in Mg/Ca and decrease in δ18O are consistent with an increase in calcification temperature of 0.7 °C per 100 μm increase in test size, suggesting differences in the seasonal and/or depth distribution among size fractions. Overall, these results stress the necessity for using a consistent size fraction in downcore paleoceanographic studies. In addition, we compare downcore records of δ18O and Mg/Ca from pink and white G. ruber in a decadal-resolution 1000-year sedimentary record from the Pigmy Basin. Based on this comparison we conclude that pink G. ruber is calcifying in warmer waters than co-occurring white G. ruber, suggesting differences in the relative seasonal distribution and depth habitat of the two varieties.
Kwan, Grace; Charkowski, Amy O; Barak, Jeri D
2013-02-12
Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal and human hosts. Their populations are higher on plants cocolonized with the common bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum, turning edible plants into a risk factor for human disease. We inoculated leaves with P. carotovorum subsp. carotovorum and S. enterica or E. coli O157:H7 to study the interactions between these bacteria. While P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7, these human pathogens affected P. carotovorum subsp. carotovorum fundamentally differently. S. enterica reduced P. carotovorum subsp. carotovorum growth and acidified the environment, leading to less soft rot on leaves; E. coli O157:H7 had no such effects. As soft rot signals a food safety risk, the reduction of soft rot symptoms in the presence of S. enterica may lead consumers to eat healthy-looking but S. enterica-contaminated produce.
Kevin T. Smith
2001-01-01
Zone lines are narrow, usually dark markings formed in decaying wood. Zone lines are found most frequently in advanced white rot of hardwoods, although they occasionally are associated both with brown rot and with softwoods.
21 CFR 172.120 - Calcium disodium EDTA.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., nonstandardized 75 Preservative. Dried lima beans (cooked canned) 310 Promote color retention. Egg product that is... cooked canned, other than dried lima beans, pink beans, and red beans) 365 Promote color retention... pie filling 100 Promote color retention. Pink beans (cooked canned) 165 Promote color retention...
21 CFR 172.120 - Calcium disodium EDTA.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., nonstandardized 75 Preservative. Dried lima beans (cooked canned) 310 Promote color retention. Egg product that is... cooked canned, other than dried lima beans, pink beans, and red beans) 365 Promote color retention... pie filling 100 Promote color retention. Pink beans (cooked canned) 165 Promote color retention...
1982-10-28
122 2. Verticillium deciduous tree wilt (Verticillium alboatrum) ...... 124 3. Gray mold rot of conifer seedlings ( Botrytis cinerea ...or Botrytis cinerea . The overall occurrence of seedling wilt disease in young forest tree nur- series is shown in Table 53. Parasitic seedling wilt...successive years. 3. Gray mold rot of conifer seedlings ( Botrytis cinerea ) The occurrence of conifer seedling gray mold rot was confirmed on black pine
First Report of Sclerotium Rot on Cymbidium Orchids Caused by Sclerotium rolfsii in Korea
Lee, Seong-Chan; Lee, Jung-Sup; Soh, Jae-Woo; Kim, Su
2012-01-01
Sclerotium rot was found on Cymbidium orchids at Seosan-si, Chungcheongnam-do, Korea, in July, 2010. Symptoms occurred on low leaves, which turned yellowish, after which the entire plant wilted. Severely infected plants were blighted and eventually died. White mycelial mats and sclerotia appeared on pseudobulbs. Based on the mycological characteristics and pathogenicity, the causal fungus was identified as Sclerotium rolfsii. This is the first report of new Sclerotium rot on Cymbidium spp. caused by S. rolfsii in Korea. PMID:23323053
The Roles of PINK1, Parkin and Mitochondrial Fidelity in Parkinson's Disease
Pickrell, Alicia M.; Youle, Richard J.
2015-01-01
Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of Parkinsonism have been identified. Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive Parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease. PINK1 accumulates on the outer membrane of damaged mitochondria, activates Parkin's E3 ubiquitin ligase activity and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins to trigger selective autophagy. This review covers the normal functions that PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss. PMID:25611507
Phospho-ubiquitin: upending the PINK–Parkin–ubiquitin cascade
Matsuda, Noriyuki
2016-01-01
Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson’s disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1–Parkin–ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling. PMID:26839319
Allium discoloration: precursors involved in onion pinking and garlic greening.
Kubec, Roman; Hrbácová, Marcela; Musah, Rabi A; Velísek, Jan
2004-08-11
Precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing, respectively, have been studied. It has been confirmed that the formations of both pigments are of very similar natures, with (E)-S-(1-propenyl)cysteine sulfoxide (isoalliin) serving as the primary precursor. Upon disruption of the tissue, isoalliin and other S-alk(en)ylcysteine sulfoxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinates [CH3CH=CHS(O)SR; R = methyl, allyl, propyl, 1-propenyl] among others. The latter compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the propyl, 1-propenyl, and methyl derivatives form pink, pink-red, and magenta compounds, those containing the allyl group give rise to blue products after reacting with glycine at pH 5.0. The role of other thiosulfinates [RS(O)SR'] (R, R' = methyl, allyl, propyl) and (Z)-thiopropanal S-oxide (the onion lachrymatory principle) in the formation of the pigments is also discussed.
Effect of "Pink Eye" Label on Parents' Intent to Use Antibiotics and Perceived Contagiousness.
Scherer, Laura D; Finan, Caitlin; Simancek, Dalton; Finkelstein, Jerome I; Tarini, Beth A
2016-06-01
Parents of children who presented for a pediatrics appointment responded to a clinical vignette that described a child with symptoms consistent with acute viral conjunctivitis. In a 2 × 2 randomized survey design, the physician in the vignette either used the term "pink eye" or "eye infection" to describe the symptoms, and either told parents that antibiotics are likely ineffective at treating the symptoms or did not discuss effectiveness. When the symptoms were referred to as "pink eye," parents remained interested in antibiotics, despite being informed about their ineffectiveness. By contrast, when the symptoms were referred to as an "eye infection," information about antibiotic ineffectiveness significantly reduced interest, Mdiff = 1.63, P < .001. Parents who received the "pink eye" label also thought that the symptoms were more contagious and were less likely to believe that their child could go to child care, compared with parents who received the "eye infection" label, Mdiff = 0.37, P = .38. © The Author(s) 2015.
Menna, Lucia Francesca; Santaniello, Antonio; Gerardi, Federica; Di Maggio, Annamaria; Milan, Graziella
2016-07-01
The aim of this study was to evaluate the efficacy of animal-assisted therapy (AAT) in elderly patients affected by Alzheimer's disease based on the formal reality orientation therapy (ROT) protocol. Our study was carried out at an Alzheimer's centre for 6 months. A homogeneous sample (age, Mini-Mental State Examination (MMSE), 15-item Geriatric Depression Scale (GDS)) of 50 patients was selected at random and successively. Patients were divided into three groups: (i) 20 patients received a course of AAT (AAT group) based on the ROT protocol; (ii) 20 patients were engaged exclusively in activities based on the ROT group; and (iii) 10 patients (control group) participated in no stimulations. MMSE and GDS were administered at time 0 (T0 ) and time 1 (T1 ) to all three groups. Differences within groups between T0 and T1 for GDS and MMSE scores were analyzed by Student's t-test. Differences between group means were analyzed using an anova test with the Bonferroni-Dunn test for post-hoc comparisons. Both the AAT group and ROT group had improved GDS scores and showed a slight improvement in terms of mood. On the GDS, the AAT group improved from 11.5 (T0 ) to 9.5 (T1 ), and the ROT group improved from 11.6 (T0 ) to 10.5 (T1 ). At the same time, a slight improvement in cognitive function, as measured by the MMSE, was observed. In the AAT group, mean MMSE was 20.2 at T0 and 21.5 at T1 , and in the ROT group, it was 19.9 at T0 and 20.0 at T1 . In the control group, the average values of both the GDS and MMSE remained unchanged. The Bonferroni-Dunn results showed statistically significant differences between groups, particularly between the AAT group and the other two (P < 0.001). Pet therapy interventions based on the formal ROT protocol were effective and, compared to the ROT, provided encouraging and statistically significant results. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.
Field performance of a genetically engineered strain of pink bollworm.
Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke
2011-01-01
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles.
Roberts, Rosalind F; Tang, Matthew Y; Fon, Edward A; Durcan, Thomas M
2016-10-01
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson's disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Criales, Maria M.; Wang, John D.; Browder, Joan A.; Robblee, Michael B.; Jackson, Thomas L.; Hittle, Clinton D.
2006-01-01
The variability in the supply of pink shrimp (Farfantepenaeus duorarum) postlarvae and the transport mechanisms of planktonic stages were investigated with field data and simulations of transport. Postlarvae entering the nursery grounds of Florida Bay were collected for three consecutive years at channels that connect the Bay with the Gulf of Mexico, and in channels of the Middle Florida Keys that connect the southeastern margin of the Bay with the Atlantic Ocean. The influx of postlarvae in the Middle Florida Keys was low in magnitude and varied seasonally and among years. In contrast, the greater postlarval influx occurred at the northwestern border of the Bay, where there was a strong seasonal pattern with peaks in influx from July through September each year. Planktonic stages need to travel up to 150 km eastward between spawning grounds (northeast of Dry Tortugas) and nursery grounds (western Florida Bay) in about 30 days, the estimated time of planktonic development for this species. A Lagrangian trajectory model was developed to estimate the drift of planktonic stages across the SW Florida shelf. The model simulated the maximal distance traveled by planktonic stages under various assumptions of behavior. Simulation results indicated that larvae traveling with the instantaneous current and exhibiting a diel behavior travel up to 65 km and 75% of the larvae travel only 30 km. However, the eastward distance traveled increased substantially when a larval response to tides was added to the behavioral variable (distance increased to 200 km and 85% of larvae traveled 150 km). The question is, when during larval development, and where on the shallow SW Florida shelf, does the tidal response become incorporated into the behavior of pink shrimp.