Sample records for pioglitazone enhances mitochondrial

  1. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.

    PubMed

    Fernandez-Boyanapalli, Ruby F; Frasch, S Courtney; Thomas, Stacey M; Malcolm, Kenneth C; Nicks, Michael; Harbeck, Ronald J; Jakubzick, Claudia V; Nemenoff, Raphael; Henson, Peter M; Holland, Steven M; Bratton, Donna L

    2015-02-01

    Deficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder. We sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense. Wild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated. As demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo. Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Administration of pioglitazone alone or with alogliptin delays diabetes onset in UCD-T2DM rats

    PubMed Central

    Cummings, Bethany P; Bettaieb, Ahmed; Graham, James L; Stanhope, Kimber; Haj, Fawaz G; Havel, Peter J

    2015-01-01

    There is a need to identify strategies for type 2 diabetes prevention. Therefore, we investigated the efficacy of pioglitazone and alogliptin alone and in combination to prevent type 2 diabetes onset in UCD-T2DM rats, a model of polygenic obese type 2 diabetes. At 2 months of age, rats were divided into four groups: control, alogliptin (20 mg/kg per day), pioglitazone (2.5 mg/kg per day), and alogliptin+pioglitazone. Non-fasting blood glucose was measured weekly to determine diabetes onset. Pioglitazone alone and in combination with alogliptin lead to a 5-month delay in diabetes onset despite promoting increased food intake and body weight (BW). Alogliptin alone did not delay diabetes onset or affect food intake or BW relative to controls. Fasting plasma glucose, insulin, and lipid concentrations were lower and adiponectin concentrations were threefold higher in groups treated with pioglitazone. All treatment groups demonstrated improvements in glucose tolerance and insulin secretion during an oral glucose tolerance test with an additive improvement observed with alogliptin+pioglitazone. Islet histology revealed an improvement of islet morphology in all treatment groups compared with control. Pioglitazone treatment also resulted in increased expression of markers of mitochondrial biogenesis in brown adipose tissue and white adipose tissue, with mild elevations observed in animals treated with alogliptin alone. Pioglitazone markedly delays the onset of type 2 diabetes in UCD-T2DM rats through improvements of glucose tolerance, insulin sensitivity, islet function, and markers of adipose mitochondrial biogenesis; however, addition of alogliptin at a dose of 20 mg/kg per day to pioglitazone treatment does not enhance the prevention/delay of diabetes onset. PMID:24627447

  3. Pioglitazone ameliorates the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    PubMed

    Takada, Shingo; Hirabayashi, Kagami; Kinugawa, Shintaro; Yokota, Takashi; Matsushima, Shouji; Suga, Tadashi; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Mizushima, Wataru; Masaki, Yoshihiro; Furihata, Takaaki; Katsuyama, Ryoichi; Okita, Koichi; Tsutsui, Hiroyuki

    2014-10-05

    We have reported that exercise capacity is reduced in high fat diet (HFD)-induced diabetic mice, and that this reduction is associated with impaired mitochondrial function in skeletal muscle (SKM). However, it remains to be clarified whether the treatment of diabetes ameliorates the reduced exercise capacity. Therefore, we examined whether an insulin-sensitizing drug, pioglitazone, could improve exercise capacity in HFD mice. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated with or without pioglitazone (3 mg/kg/day) to yield the following 4 groups: ND+vehicle, ND+pioglitazone, HFD+vehicle, and HFD+pioglitazone (n=10 each). After 8 weeks, body weight, plasma glucose, and insulin in the HFD+vehicle were significantly increased compared to the ND+vehicle group. Pioglitazone normalized the insulin levels in HFD-fed mice, but did not affect the body weight or plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in the HFD+vehicle, and this reduction was almost completely ameliorated in HFD+pioglitazone mice. ADP-dependent mitochondrial respiration, complex I and III activities, and citrate synthase activity were significantly decreased in the SKM of the HFD+vehicle animals, and these decreases were also attenuated by pioglitazone. NAD(P)H oxidase activity was significantly increased in the HFD+vehicle compared with the ND+vehicle, and this increase was ameliorated in HFD+pioglitazone mice. Pioglitazone improved the exercise capacity in diabetic mice, which was due to the improvement in mitochondrial function and attenuation of oxidative stress in the SKM. Our data suggest that pioglitazone may be useful as an agent for the treatment of diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Pioglitazone Enhances Mitochondrial Biogenesis and Ribosomal Protein Biosynthesis in Skeletal Muscle in Polycystic Ovary Syndrome

    PubMed Central

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen; Tan, Qihua; Jensen, Thomas; Kruse, Torben A.; Beck-Nielsen, Henning; Højlund, Kurt

    2008-01-01

    Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZDs) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZDs in PCOS is, in part, mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity. Using Affymetrix microarrays, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene expression in skeletal muscle of 10 obese women with PCOS metabolically characterized by a euglycemic-hyperinsulinemic clamp. Moreover, we explored gene expression changes between these PCOS patients before treatment and 13 healthy women. Treatment with pioglitazone improved insulin-stimulated glucose metabolism and plasma adiponectin, and reduced fasting serum insulin (all P<0.05). Global pathway analysis using Gene Map Annotator and Pathway Profiler (GenMAPP 2.1) and Gene Set Enrichment Analysis (GSEA 2.0.1) revealed a significant upregulation of genes representing mitochondrial oxidative phosphorylation (OXPHOS), ribosomal proteins, mRNA processing reactome, translation factors, and proteasome degradation in PCOS after pioglitazone therapy. Quantitative real-time PCR suggested that upregulation of OXPHOS genes was mediated by an increase in PGC-1α expression (P<0.05). Pretreatment expression of genes representing OXPHOS and ribosomal proteins was down-regulated in PCOS patients compared to healthy women. These data indicate that pioglitazone therapy restores insulin sensitivity, in part, by a coordinated upregulation of genes involved in mitochondrial OXPHOS and ribosomal protein biosynthesis in muscle in PCOS. These transcriptional effects of pioglitazone may contribute to prevent the onset of type 2 diabetes in these women. PMID:18560589

  5. Pioglitazone-induced improvements in insulin sensitivity occur without concomitant changes in muscle mitochondrial function.

    PubMed

    Bajpeyi, Sudip; Pasarica, Magdalena; Conley, Kevin E; Newcomer, Bradley R; Jubrias, Sharon A; Gamboa, Cecilia; Murray, Kori; Sereda, Olga; Sparks, Lauren M; Smith, Steven R

    2017-04-01

    Pioglitazone (Pio) is known to improve insulin sensitivity in skeletal muscle. However, the role of Pio in skeletal muscle lipid metabolism and skeletal muscle oxidative capacity is not clear. The aim of this study was to determine the effects of chronic Pio treatment on skeletal muscle mitochondrial activity in individuals with type 2 diabetes (T2D). Twenty-four participants with T2D (13M/11F 53.38±2.1years; BMI 36.47±1.1kg/m 2 ) were randomized to either a placebo (CON, n=8) or a pioglitazone (PIO, n=16) group. Following 12weeks of treatment, we measured insulin sensitivity by hyperinsulinemic-euglycemic clamp (clamp), metabolic flexibility by calculating the change in respiratory quotient (ΔRQ) during the steady state of the clamp, intra- and extra-myocellular lipid content (IMCL and EMCL, respectively) by 1 H magnetic resonance spectroscopy ( 1 H-MRS) and muscle maximal ATP synthetic capacity (ATPmax) by 31 P-MRS. Following 12weeks of PIO treatment, insulin sensitivity (p<0.0005 vs. baseline) and metabolic flexibility (p<0.05 vs. CON) significantly increased. PIO treatment significantly decreased IMCL content and increased EMCL content in gastrocnemius, soleus and tibialis anterior muscles. ATPmax was unaffected by PIO treatment. These results suggest that 12weeks of pioglitazone treatment improves insulin sensitivity, metabolic flexibility and myocellular lipid distribution without any effect on maximal ATP synthetic capacity in skeletal muscle. Consequently, pioglitazone-induced enhancements in insulin responsiveness and fuel utilization are independent of mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes

    PubMed Central

    Shannon, Christopher E.; Daniele, Giuseppe; Galindo, Cynthia; Abdul-Ghani, Muhammad A.; DeFronzo, Ralph A.; Norton, Luke

    2017-01-01

    Pioglitazone is used globally for the treatment of type 2 diabetes mellitus (T2DM) and is one of the most effective therapies for improving glucose homeostasis and insulin resistance in T2DM patients. However, its mechanism of action in the tissues and pathways that regulate glucose metabolism are incompletely defined. Here we investigated the direct effects of pioglitazone on hepatocellular pyruvate metabolism and the dependency of these observations on the purported regulators of mitochondrial pyruvate transport, MPC1 and MPC2. In cultured H4IIE hepatocytes, pioglitazone inhibited [2-14C]-pyruvate oxidation and pyruvate-driven oxygen consumption and, in mitochondria isolated from both hepatocytes and human skeletal muscle, pioglitazone selectively and dose-dependently inhibited pyruvate-driven ATP synthesis. Pioglitazone also suppressed hepatocellular glucose production (HGP), without influencing the mRNA expression of key HGP regulatory genes. Targeted siRNA silencing of MPC1 and 2 caused a modest inhibition of pyruvate oxidation and pyruvate-driven ATP synthesis, but did not alter pyruvate-driven HGP and, importantly, it did not influence the actions of pioglitazone on either pathway. In summary, these findings outline a novel mode of action of pioglitazone relevant to the pathogenesis of T2DM and suggest that targeting pyruvate metabolism may lead to the development of effective new T2DM therapies. PMID:27987376

  7. Protective effects of peroxisome proliferator-activated receptor agonists on human podocytes: proposed mechanisms of action

    PubMed Central

    Miglio, Gianluca; Rosa, Arianna Carolina; Rattazzi, Lorenza; Grange, Cristina; Camussi, Giovanni; Fantozzi, Roberto

    2012-01-01

    BACKGROUND AND PURPOSE Peroxisome proliferator-activated receptor (PPAR) agonists exert anti-albuminuric effects. However, the nephroprotective effects of these drugs remain to be fully understood. We have investigated whether gemfibrozil, GW0742 and pioglitazone protect human podocytes against nutrient deprivation (ND)-induced cell death and the role of mitochondrial biogenesis as a cytoprotective process. EXPERIMENTAL APPROACH Immortalized human podocytes were pre-treated with the PPAR agonists and exposed to ND (5 h) under normoxia, hypoxia or in the presence of pyruvate. Cell death was measured at the end of the ND and of the recovery phase (24 h). Mitochondrial mass, cytochrome c oxidase (COX) subunits 1 and 4 were measured as markers of mitochondrial cell content, while membrane potential as an index of mitochondrial function. PGC-1α, NRF1 and Tfam expression was studied, as crucial regulators of mitochondrial biogenesis. KEY RESULTS Cell pre-treatment with gemfibrozil, GW0742, or pioglitazone significantly decreased the ND-induced cell loss, necrosis and apoptosis. These effects were attenuated by hypoxia and potentiated by pyruvate. Pre-treatment with these drugs significantly increased mitochondrial cell content, while it did not affect mitochondrial function. In all these experiments pioglitazone exerted significantly larger effects than gemfibrozil or GW0742. CONCLUSIONS AND IMPLICATIONS Gemfibrozil, GW0742 and pioglitazone may exert direct protective effects on human podocytes. Mitochondrial biogenesis is a cell response to the PPAR agonists related to their cytoprotective activity. These results provide a mechanistic support to the clinical evidence indicating PPAR agonists as disease-modifying agents for glomerular diseases. PMID:22594945

  8. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    PubMed

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the American Physiological Society.

  9. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: An in vitro model in mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dan; Wu, Chun-qi; Li, Ze-jun

    Objective: To characterize the mechanism of action of thiazolidinedione (TZD)-induced liver mitochondrial toxicity caused by troglitazone, rosiglitazone, and pioglitazone in HepaRG cells. Methods: Human hepatoma cells (HepaRG) were treated with troglitazone, rosiglitazone, or pioglitazone (12.5, 25, and 50 μM) for 48 h. The Seahorse Biosciences XF24 Flux Analyzer was used to measure mitochondrial oxygen consumption. The effect of TZDs on reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. The mitochondrial ultrastructure of HepaRG cells was observed under a transmission electrical microscope (TEM). mtDNA content was evaluated by real-time PCR, and ATP content and mitochondrialmore » respiratory chain (MRC) complex I, II, III, IV activity were measured via chemiluminescence. Results were considered statistically significant at p < 0.05. Results: Among the three drugs, troglitazone exhibited the highest potency, followed by rosiglitazone, and then pioglitazone. The TZDs caused varying degrees of mitochondrial respiratory function disorders including decreases in oxygen consumption, MRC activity, and ATP level, and an elevation in ROS level. TZD treatment resulted in mtDNA content decline, reduction in MMP, and alterations of mitochondrial structure. Conclusion: All investigated TZDs show a certain degree of mitochondrial toxicity, with troglitazone exhibiting the highest potency. The underlying mechanism of TZD-induced hepatotoxicity may be associated with alterations in mitochondrial respiratory function disorders, oxidative stress, and changes in membrane permeability. These parameters may be used early in drug development to further optimize risk:benefit profiles. - Highlights: • We compared three TZD mitochondrial toxicity characteristics in HepaRG cells. • TZD induced respiratory disorders and mitochondrial structural damage. • Mitochondrial toxicity evaluation presents guidance value for hepatotoxicity.« less

  10. A novel MitoNEET ligand, TT01001, improves diabetes and ameliorates mitochondrial function in db/db mice.

    PubMed

    Takahashi, Takehiro; Yamamoto, Masashi; Amikura, Kazutoshi; Kato, Kozue; Serizawa, Takashi; Serizawa, Kanako; Akazawa, Daisuke; Aoki, Takumi; Kawai, Koji; Ogasawara, Emi; Hayashi, Jun-Ichi; Nakada, Kazuto; Kainoh, Mie

    2015-02-01

    The mitochondrial outer membrane protein mitoNEET is a binding protein of the insulin sensitizer pioglitazone (5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione) and is considered a novel target for the treatment of type II diabetes. Several small-molecule compounds have been identified as mitoNEET ligands using structure-based design or virtual docking studies. However, there are no reports about their therapeutic potential in animal models. Recently, we synthesized a novel small molecule, TT01001 [ethyl-4-(3-(3,5-dichlorophenyl)thioureido)piperidine-1-carboxylate], designed on the basis of pioglitazone structure. In this study, we assessed the pharmacological properties of TT01001 in both in vitro and in vivo studies. We found that TT01001 bound to mitoNEET without peroxisome proliferator-activated receptor-γ activation effect. In type II diabetes model db/db mice, TT01001 improved hyperglycemia, hyperlipidemia, and glucose intolerance, and its efficacy was equivalent to that of pioglitazone, without the pioglitazone-associated weight gain. Mitochondrial complex II + III activity of the skeletal muscle was significantly increased in db/db mice. We found that TT01001 significantly suppressed the elevated activity of the complex II + III. These results suggest that TT01001 improved type II diabetes without causing weight gain and ameliorated mitochondrial function of db/db mice. This is the first study that demonstrates the effects of a mitoNEET ligand on glucose metabolism and mitochondrial function in an animal disease model. These findings support targeting mitoNEET as a potential therapeutic approach for the treatment of type II diabetes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Study of the Effects of ATP Suppliers and Thiol Reductants on Toxicity of Pioglitazone in Isolated Rat Liver Mitochondria

    PubMed Central

    Rezaiean Mehrabadi, Abbas; Jamshidzadeh, Akram; Rashedinia, Marzieh; Niknahad, Hossein

    2015-01-01

    Pioglitazone (PG) is one of thiazolidinediones used for the treatment of type II diabetes mellitus. Some reports of its hepatotoxicity exist, but the mechanism of its hepatotoxicity is not well known. In the present study, the protective effect of some ATP suppliers are investigated against mitochondrial toxicity of PG in isolated rat mitochondria. Mitochondrial viability was investigated by MTT assay. The effects of PG on superoxide dismutase activity, ATP production, mitochondrial swelling and oxidative stress were also investigated. PG reduced mitochondrial viability with an LC50 of 880±32 µM. It reduced ATP production and superoxide dismutase activity in mitochondria and increased mitochondrial swelling, but no oxidant effect was present as measured by TBARS formation. Fructose, dihydroxyacetone, dithioteritol, and N-acetylcysteine reduced mitochondrial toxicity of PG. Therefore, PG toxicity may be due to its mitochondrial toxicity and energy depletion, and ATP suppliers could be effective in preventing its toxicity. PMID:26330870

  12. The novel 2Fe–2S outer mitochondrial protein mitoNEET displays conformational flexibility in its N-terminal cytoplasmic tethering domain

    PubMed Central

    Conlan, Andrea R.; Paddock, Mark L.; Axelrod, Herbert L.; Cohen, Aina E.; Abresch, Edward C.; Wiley, Sandra; Roy, Melinda; Nechushtai, Rachel; Jennings, Patricia A.

    2009-01-01

    A primary role for mitochondrial dysfunction is indicated in the pathogenesis of insulin resistance. A widely used drug for the treatment of type 2 diabetes is pioglitazone, a member of the thiazolidinedione class of molecules. MitoNEET, a 2Fe–2S outer mitochondrial membrane protein, binds pioglitazone [Colca et al. (2004 ▶), Am. J. Physiol. Endocrinol. Metab. 286, E252–E260]. The soluble domain of the human mitoNEET protein has been expressed C-terminal to the superfolder green fluorescent protein and the mitoNEET protein has been isolated. Comparison of the crystal structure of mitoNEET isolated from cleavage of the fusion protein (1.4 Å resolution, R factor = 20.2%) with other solved structures shows that the CDGSH domains are superimposable, indicating proper assembly of mitoNEET. Furthermore, there is considerable flexibility in the position of the cytoplasmic tethering arms, resulting in two different conformations in the crystal structure. This flexibility affords multiple orientations on the outer mitochondrial membrane. PMID:19574633

  13. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease.

    PubMed

    Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L

    2017-09-01

    Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2.

    PubMed

    Wang, Peijian; Li, Binghu; Cai, Guocai; Huang, Mingqing; Jiang, Licheng; Pu, Jing; Li, Lu; Wu, Qi; Zuo, Li; Wang, Qiulin; Zhou, Peng

    2014-12-01

    Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.

  15. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone.

    PubMed

    Wang, Yiming; Landry, Aaron P; Ding, Huangen

    2017-06-16

    Increasing evidence suggests that mitoNEET, a target of the type II diabetes drug pioglitazone, is a key regulator of energy metabolism in mitochondria. MitoNEET is anchored to the mitochondrial outer membrane via its N-terminal α helix domain and hosts a redox-active [2Fe-2S] cluster in its C-terminal cytosolic region. The mechanism by which mitoNEET regulates energy metabolism in mitochondria, however, is not fully understood. Previous studies have shown that mitoNEET specifically interacts with the reduced flavin mononucleotide (FMNH 2 ) and that FMNH 2 can quickly reduce the mitoNEET [2Fe-2S] clusters. Here we report that the reduced mitoNEET [2Fe-2S] clusters can be readily oxidized by oxygen. In the presence of FMN, NADH, and flavin reductase, which reduces FMN to FMNH 2 using NADH as the electron donor, mitoNEET mediates oxidation of NADH with a concomitant reduction of oxygen. Ubiquinone-2, an analog of ubiquinone-10, can also oxidize the reduced mitoNEET [2Fe-2S] clusters under anaerobic or aerobic conditions. Compared with oxygen, ubiquinone-2 is more efficient in oxidizing the mitoNEET [2Fe-2S] clusters, suggesting that ubiquinone could be an intrinsic electron acceptor of the reduced mitoNEET [2Fe-2S] clusters in mitochondria. Pioglitazone or its analog NL-1 appears to inhibit the electron transfer activity of mitoNEET by forming a unique complex with mitoNEET and FMNH 2 The results suggest that mitoNEET is a redox enzyme that may promote oxidation of NADH to facilitate enhanced glycolysis in the cytosol and that pioglitazone may regulate energy metabolism in mitochondria by inhibiting the electron transfer activity of mitoNEET. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.

    PubMed

    Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.

  17. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer.

    PubMed

    Colca, J R; VanderLugt, J T; Adams, W J; Shashlo, A; McDonald, W G; Liang, J; Zhou, R; Orloff, D G

    2013-04-01

    It may be possible to achieve insulin sensitivity through the recently identified mitochondrial target of thiazolidinediones (mTOT), thereby avoiding peroxisome proliferator-activated receptor-γ (PPAR-γ)-dependent side effects. In this phase IIb clinical trial, 258 patients with type 2 diabetes completed a 12-week protocol with 50, 100, or 150 mg of MSDC-0160 (an mTOT modulator), 45 mg pioglitazone HCl (a PPAR-γ agonist), or a placebo. The two active treatments lowered fasting glucose levels to the same extent. The decreases in glycated hemoglobin (HbA1c) observed with the two higher doses of MSDC-0160 were not different from those associated with pioglitazone. By contrast, fluid retention as evidenced by reduction in hematocrit, red blood cells, and total hemoglobin was 50% less in the MSDC-0160-treated groups. There was also a smaller increase in high-molecular-weight (HMW) adiponectin with MSDC-0160 than with pioglitazone (P < 0.0001), suggesting that MSDC-0160 produces less expansion of white adipose tissue. Thus, mTOT modulators may have glucose-lowering effects similar to those of pioglitazone but without the adverse effects associated with PPAR-γ agonists.

  18. Nanoparticle-mediated delivery of pioglitazone enhances therapeutic neovascularization in a murine model of hindlimb ischemia.

    PubMed

    Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke

    2012-10-01

    Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery disease with critical limb ischemia.

  19. Mitochondrial dysfunction contribute to diabetic neurotoxicity induced by streptozocin in mice: protective effect of Urtica dioica and pioglitazone.

    PubMed

    Shokrzadeh, Mohammad; Mirshafa, Atefeh; Yekta Moghaddam, Niusha; Birjandian, Behnoosh; Shaki, Fatemeh

    2018-04-18

    Uncontrolled chronic hyperglycemia in diabetic patients could result in various complications, including neurotoxicity. Urtica dioica L. (UD) is known for its hypoglycemic and antioxidant effects. In this study, we evaluated the efficacy of UD and pioglitazone (PIO) in reduction of neurotoxicity and oxidative stress in streptozocin-induced diabetic mice. Male mice were divided into seven groups: control, diabetic, dimethyl sulfoxide-treated control, PIO-treated, UD-treated, UD-PIO-treated, and vitamin E-treated. For induction of diabetes, streptozocin was injected in a single dose (65 mg/kg, i.p.). All treatments were performed for 5 weeks. Neurotoxicity was evaluated through hot plate and formalin test. Then, animals were killed, brain tissue was separated and the mitochondrial fraction was isolated with different centrifuge technique. Also, oxidative stress markers (reactive oxygen species, lipid peroxidation, protein carbonyl, glutathione) were measured in brain. Mitochondrial function was evaluated by MTT test in brain isolated mitochondria. Elevation of oxidative stress markers and mitochondrial damage were observed in diabetic mice compared to control group. Administration of PIO and UD ameliorated the oxidative stress and mitochondrial damage (p < 0.05) in diabetic mice. Also increase in pain score was shown in diabetic mice that treatment with UD and PIO diminished elevation of pain score in diabetic mice. Interestingly, simultaneous administration of PIO and UD showed synergism effect in attenuation of oxidative stress and hyperglycemia. UD showed a therapeutic potential for the attenuation of oxidative stress and diabetes-induced hyperglycemia that can be considered as co-treatment in treatment of diabetic neurotoxicity.

  20. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in Chronic Granulomatous Disease

    PubMed Central

    Fernandez-Boyanapalli, Ruby F.; Frasch, S. Courtney; Thomas, Stacey M.; Malcolm, Kenneth C.; Nicks, Michael; Harbeck, Ronald J.; Jakubzick, Claudia V.; Nemenoff, Raphael; Henson, Peter M.; Holland, Steven M.; Bratton, Donna L.

    2015-01-01

    Background Deficient production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase in Chronic Granulomatous Disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. PPARγ agonists including pioglitazone (Pio), approved for Type 2 diabetes therapy, alter cellular metabolism and can heighten ROS production. It was hypothesized that Pio treatment of gp91phox−/− mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of S. aureus, a significant pathogen in this disorder. Objectives We sought to determine if Pio treatment of gp91phox−/− mice enhanced phagocyte oxidant production and host defense. Methods Wild type (WT) and gp91phox−/− mice were treated with the PPARγ agonist Pio, and phagocyte ROS and killing of S. aureus investigated. Results As demonstrated by three different ROS sensing probes, short-term treatment of gp91phox−/− mice with Pio enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS (mtROS). Findings were replicated in human CGD monocytes following ex vivo Pio treatment. Importantly, while mtROS were deficient in gp91phox−/− phagocytes, their restoration with treatment significantly enabled killing of S. aureus both ex vivo and in vivo. Conclusions Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production, and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. PMID:25498313

  1. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation.

    PubMed

    Mehta, Jawahar L; Hu, Bo; Chen, Jiawei; Li, Dayuan

    2003-12-01

    LOX-1, a novel lectin-like receptor for oxidized LDL (ox-LDL), is expressed in response to ox-LDL, angiotensin II (Ang II), tumor necrosis factor (TNF)-alpha, and other stress stimuli. It is highly expressed in atherosclerotic tissues. Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, such as pioglitazone, exert antiatherosclerotic effects. This study examined the regulation of LOX-1 expression in human coronary artery endothelial cells (HCAECs) by pioglitazone. Fourth generation HCAECs were treated with ox-LDL, Ang II, or TNF-alpha with or without pioglitazone pretreatment. All 3 stimuli upregulated LOX-1 expression (mRNA and protein). Pioglitazone, in a concentration-dependent manner, reduced LOX-1 expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha alone). Ox-LDL, Ang II, and TNF-alpha each enhanced intracellular superoxide radical generation, and pioglitazone pretreatment reduced superoxide generation (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). Furthermore, all 3 stimuli upregulated the expression of the transcription factors nuclear factor-kappaB and activator protein-1 (determined by electrophoretic mobility shift assay), and pioglitazone pretreatment reduced this expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). To determine the biological significance of pioglitazone-mediated downregulation of LOX-1, we studied monocyte adhesion to ox-LDL-treated HCAECs. Pioglitazone reduced the adhesion of monocytes to activated HCAECs in a fashion similar to that produced by antisense to LOX-1 mRNA. These observations suggest that the PPAR-gamma ligand pioglitazone reduces intracellular superoxide radical generation and subsequently reduces the expression of transcription factors, expression of the LOX-1 gene, and monocyte adhesion to activated endothelium. The salutary effect of PPAR-gamma ligands in atherogenesis may involve the inhibition of LOX-1 and the adhesion of monocytes to endothelium.

  2. Pioglitazone inhibits advanced glycation end product-induced matrix metalloproteinases and apoptosis by suppressing the activation of MAPK and NF-κB.

    PubMed

    Zhang, Hai-Bin; Zhang, Ying; Chen, Cheng; Li, Yu-Qing; Ma, Chi; Wang, Zhao-Jun

    2016-10-01

    Apoptosis and degeneration coming mainly from chondrocytes are important mechanisms in the onset and progression of osteoarthritis. Specifically, advanced glycation end products (AGEs) play an important role in the pathogenesis of osteoarthritis. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist has a protective effect on cartilage. This study aims to evaluate the effect of pioglitazone on AGEs-induced chondrocyte apoptosis and degeneration and their underlying mechanism. The in vitro study shows that AGEs induce cleavage of caspase-3 and PARP, up-regulate MMP-13 expression, enhance chondrocyte apoptosis and down-regulate PPARγ expression in human primary chondrocytes, which is reversed by pioglitazone. Furthermore, AGEs activate phosphorylation of Erk, JNK, and p38, and pioglitazone reverses AGEs-induced phosphorylation of Erk and p38. AGEs-induced degradation of IκBα and translocation of nuclear NF-κB p65 is reversed by pioglitazone. Pretreatment of chondrocytes with SB202190 (p38 inhibitor), SP600125 (JNK inhibitor) and BAY-11-7082 (NF-κB inhibitor) inhibit AGEs-induced apoptosis and degeneration. In vivo experiments suggest that pioglitazone reverses AGEs-induced cartilage degeneration and apoptosis in a mouse model, as demonstrated by HE and Safranin O staining, immunohistochemical analyses of Type II collagen (Col II), metalloproteinases (MMPs) and caspase-3. These findings suggest that pioglitazone, a PPARγ agonist, inhibits AGEs-induced chondrocytes apoptosis and degeneration via suppressing the activation of MAPK and NF-κB.

  3. Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway

    PubMed Central

    Wu, Yuanyuan; Li, Pengfen; Zhang, Dan; Sun, Yingpu

    2018-01-01

    Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disorder, which results in health problems such as menstrual disorders, hyperandrogenism and persistent anovulation. Hyperandrogenism and insulin resistance are the basic characteristics of PCOS. To investigate the combined effect of metformin and pioglitazone on POCS and the potential mechanisms, a rat model of PCOS was established by intramuscular injection of estradiol valerate (EV). The effect of metformin and pioglitazone monotherapy or combination therapy in control rats and PCOS rats was evaluated, involving the testosterone level, follicular development and insulin resistance. The potential mechanism for the therapeutic effect of metformin and pioglitazone on POCS was explored through using three inhibitors of the 5′adenosine monophosphate-activated protein kinase (AMPK)/phosphoinositide-3 kinase (PI3K)/c-Jun N-terminal kinase (JNK) pathway (Compound C, Wortmannin and SP600125). The results showed that EV-induced PCOS rats demonstrated hyperandrogenemia, hyperinsulinemia and follicular dysplasia. Metformin or pioglitazone monotherapy significantly suppressed the high level of testosterone, reduced the raised percentage of cystic follicles and primary follicles, promoted the number of early antral follicles, and markedly decreased the high concentration of fasting insulin and homeostatic model assessment for insulin resistance index in PCOS rats. In addition, metformin and pioglitazone combination therapy demonstrated greater efficacy than its individual components. Furthermore, individual or joint treatment with metformin and pioglitazone affected the phosphorylation level of JNK in PCOS rats. Compound C and Wortmannin eliminated the effect of metformin and pioglitazone combination therapy on improving the follicular growth in PCOS rats, whereas SP600125 treatment enhanced this combination therapy effect. These data suggested that metformin and pioglitazone combination therapy demonstrated great efficacy in ameliorating PCOS through regulating the AMPK/PI3K/JNK pathway. PMID:29434814

  4. The increased gastroprotective effect of pioglitazone in cholestatic rats: role of nitric oxide and tumour necrosis factor alpha.

    PubMed

    Moezi, Leila; Janahmadi, Zeinab; Amirghofran, Zahra; Nekooeian, Ali Akbar; Dehpour, Ahmad R

    2014-02-01

    The prevalence of gastric ulcers is high in cholestatic patients, but the exact mechanism of this increased frequency remains uncertain. It has been shown that pioglitazone accelerates the healing of pre-existing gastric ulcers. The present study was designed to investigate the effect of pioglitazone, on the gastric mucosal lesions in cholestatic rats. Cholestasis was induced by surgical ligation of common bile duct and sham-operated rats served as control. Different groups of sham and cholestatic animals received solvent or pioglitazone (5, 15, 30 mg/kg) for 7 days. On the day eight rats were killed after oral ethanol administration and the area of gastric lesions was measured. The serums of rats were also collected to determine serum levels of tumour necrosis factor alpha (TNF-α), IL-1β and bilirubin. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than sham-operated ones. Pretreatment with pioglitazone dose-dependently attenuated gastric lesions induced by ethanol in both sham and cholestatic rats, but this effect was more prominent in cholestatic ones. The effect of pioglitazone was associated with a significant fall in serum levels of TNF-α in cholestatic rats. L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor, and decreased pioglitazone-induced gastroprotective effect in cholestatic rats, while aminoguanidine, a selective inducible NOS inhibitor, potentiated pioglitazone-induced gastroprotective effect in the cholestatic rats. Chronic treatment with pioglitazone exerts an enhanced gastroprotective effect on the stomach ulcers of cholestatic rats compared to sham rats probably due to constitutive NOS induction and/or inducible NOS inhibition and attenuating release of TNF-α. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  5. Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice.

    PubMed

    Shamsi, Bilal Haider; Ma, Chaofeng; Naqvi, Saima; Xiao, Yanfeng

    2014-01-01

    Obesity is a metabolic disorder that can lead to high blood pressure, increased blood cholesterol and triglycerides, insulin resistance, and diabetes mellitus. The aim was to study the effects of pioglitazone mediated sensitization of peroxisome proliferator-activated receptor gamma (PPAR-γ) on the relationship of Cell death-inducing DFFA-like effector C (CIDEC) with obesity related changes in mice. Sixty C57B/L6 mice weighing 10-12g at 3 weeks of age were randomly divided into 3 groups. Mice in Group 1 were fed on normal diet (ND) while Group 2 mice were given high fat diet (HFD), and Group 3 mice were given high fat diet and treated with Pioglitazone (HFD+P). Body weight, length and level of blood sugar were measured weekly. Quantitative real-time PCR, fluorescence microscopy, and ELISA were performed to analyze the expression of CIDEC and PPAR-γ in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Body weight and length of mice increased gradually with time in all groups. Blood sugar in HFD mice started to increase significantly from the mid of late phase of obesity while pioglitazone attenuated blood sugar level in HFD+P mice. The mRNA expressions and protein levels of PPAR-γ and CIDEC genes started to increase in HFD mice as compared to ND mice and decreased gradually during the late phase of obesity in VAT. Pioglitazone enhanced the expression of PPAR-γ and CIDEC genes in HFD+P mice even during the late phase of obesity. It is insinuated that VAT is associated with late phase obesity CIDEC decrease and insulin resistance, while pioglitazone enhances CIDEC through activation of PPAR-γ, increases its expression, and decreases lipolysis, hence preventing an increase of blood sugar in mice exposed to HFD.

  6. Does enhanced insulin sensitivity improve sleep measures in patients with obstructive sleep apnea: A randomized, placebo-controlled pilot study

    PubMed Central

    Liu, Alice; Kim, Sun H.; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Cardell, James; Xu, Shiming; Patel, Shailja; Tomasso, Vanessa; Mojaddidi, Hafasa; Grove, Kaylene; Tsao, Philip S.; Kushida, Clete A.; Reaven, Gerald M.

    2016-01-01

    Background High fasting insulin levels have been reported to predict development of observed apneas, suggesting that insulin resistance may contribute to the pathogenesis of obstructive sleep apnea (OSA). The study aim was to determine whether enhancing insulin sensitivity in individuals with OSA would improve sleep measures. Patients/Methods Insulin-resistant, nondiabetic individuals with untreated OSA were randomized (2:1) to pioglitazone (45mg/day) or placebo for 8 weeks in this single-blind study. All individuals had repeat measurements pertaining to sleep (overnight polysomnography and Functional Outcomes of Sleep Questionnaire) and insulin action (insulin suppression test). Results Forty-five overweight/obese men and women with moderate/severe OSA were randomized to pioglitazone (n=30) or placebo (n=15). Although insulin sensitivity increased 31% among pioglitazone-treated as compared to no change among individuals receiving placebo ((p<0.001 for between-group difference), no improvements in quantitative or qualitative sleep measurements were observed. Conclusions Pioglitazone administration increased insulin sensitivity in otherwise untreated individuals with OSA, without any change in polysomnographic sleep measures over an 8-week period. These findings do not support a causal role for insulin resistance in the pathogenesis of OSA. PMID:27544837

  7. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4more » protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.« less

  8. Baseline adiponectin levels do not influence the response to pioglitazone in ACT NOW.

    PubMed

    Tripathy, Devjit; Clement, Stephen C; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Gastaldelli, Amalia; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Musi, Nicolas; Reaven, Peter D; DeFronzo, Ralph A

    2014-06-01

    Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status. A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years. Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group. Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin. © 2014 by the American Diabetes Association.

  9. Baseline Adiponectin Levels Do Not Influence the Response to Pioglitazone in ACT NOW

    PubMed Central

    Tripathy, Devjit; Clement, Stephen C.; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Gastaldelli, Amalia; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Musi, Nicolas; Reaven, Peter D.

    2014-01-01

    OBJECTIVE Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status. RESEARCH DESIGN AND METHODS A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years. RESULTS Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group. CONCLUSIONS Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin. PMID:24705615

  10. Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype

    PubMed Central

    Yamamoto, Suguru; Zhong, Jiayong; Yancey, Patricia G.; Zuo, Yiqin; Linton, MacRae F.; Fazio, Sergio; Yang, Haichun; Narita, Ichiei; Kon, Valentina

    2016-01-01

    Objective Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model. Methods Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response. Results UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change. Conclusion Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine production, enhanced apoptosis, and a shift toward an anti-inflammatory phenotype. PMID:26184694

  11. Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype.

    PubMed

    Yamamoto, Suguru; Zhong, Jiayong; Yancey, Patricia G; Zuo, Yiqin; Linton, MacRae F; Fazio, Sergio; Yang, Haichun; Narita, Ichiei; Kon, Valentina

    2015-09-01

    Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model. Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response. UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change. Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine production, enhanced apoptosis, and a shift toward an anti-inflammatory phenotype. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure.

    PubMed

    Zaitone, Sawsan A; Barakat, Bassant M; Bilasy, Shymaa E; Fawzy, Manal S; Abdelaziz, Eman Z; Farag, Noha E

    2015-06-01

    Non-alcoholic fatty liver disease (NAFLD) is closely linked to insulin resistance, oxidative stress, and cytokine imbalance. Boswellic acids, a series of pentacyclic triterpene molecules that are produced by plants in the genus Boswellia, has been traditionally used for the treatment of a variety of diseases. This study aimed at evaluating the protective effect of boswellic acids in a model of diet-induced NAFLD in rats in comparison to the standard insulin sensitizer, pioglitazone. Rats were fed with a high-fat diet (HFD) for 12 weeks to induce NAFLD. Starting from week 5, rats received boswellic acids (125 or 250 mg/kg) or pioglitazone parallel to the HFD. Feeding with HFD induced hepatic steatosis and inflammation in rats. In addition, liver index, insulin resistance index, activities of liver enzymes, and serum lipids deviated from normal. Further, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cyclooxygenase 2 were elevated; this was associated with an increase in hepatic expression of inducible nitric oxide synthase (iNOS) and formation of 4-hydroxy-2-nonenal (HNE). Rats treated with boswellic acids (125 or 250 mg/kg) or pioglitazone showed improved insulin sensitivity and a reduction in liver index, activities of liver enzymes, serum TNF-α and IL-6 as well as hepatic iNOS expression and HNE formation compared to HFD group. Furthermore, at the cellular level, boswellic acids (250 mg/kg) ameliorated the expression of thermogenesis-related mitochondrial uncoupling protein-1 and carnitine palmitoyl transferase-1 in white adipose tissues. Data from this study indicated that boswellic acids might be a promising therapy in the clinical management of NAFLD if appropriate safety and efficacy data are available.

  13. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huan; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078; Gao, Zhangfeng

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which includingmore » glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST.« less

  14. Beneficial effects of sarpogrelate hydrochloride, a 5-HT2A receptor antagonist, supplemented with pioglitazone on diabetic model mice.

    PubMed

    Iizuka, Kenji; Hamaue, Naoya; Machida, Takuji; Hirafuji, Masahiko; Tsuji, Masahiro

    2009-01-01

    Feeding behavior control and dietetics with consequent weight reduction can be the most efficacious and fundamental methods to normalize fasting blood glucose. However, pioglitazone treatment has been found to incrementally increase body weight. In this study, we investigated whether the combined application of a 5-HT(2A) receptor antagonist, sarpogrelate, with pioglitazone can provide a clinical benefit. Diabetic male KK-A(y) mice were randomly assigned to four groups: those receiving 10 mg/kg/day pioglitazone treatment for 30 days (pioglitazone group, n = 7), those receiving 30 mg/kg/day sarpogrelate treatment for 30 days (sarpogrelate group, n = 7), those receiving both agents for 30 days (pioglitazone + sarpogrelate group, n = 7) and those receiving no treatment (control group, n = 7). Feed intake was lower in the pioglitazone + sarpogrelate group than in the pioglitazone group. Water intake was also significantly lower in the pioglitazone, sarpogrelate and pioglitazone + sarpogrelate groups than in the control group. Combined application (pioglitazone + sarpogrelate) resulted in a 176% increase in leptin concentration compared with vehicle control. Body weight was significantly higher in the pioglitazone group, and there was a trend toward a smaller increment in body weight in the pioglitazone + sarpogrelate group. Mean values, calculated by multiplying insulin concentration and nonfasting glucose concentration, were significantly lower in the pioglitazone + sarpogrelate group than in the control group. These results suggest that the combined application of sarpogrelate with pioglitazone provides therapeutic benefits not only in preventing adverse effects but also in the treatment of diabetes.

  15. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats.

  16. PPAR-γ agonist ameliorates liver pathology accompanied by increasing regulatory B and T cells in high-fat-diet mice.

    PubMed

    Xu, Zhipeng; Wang, Gang; Zhu, Yuxiao; Liu, Ran; Song, Jingwei; Ni, Yangyue; Sun, Hongzhi; Yang, Bingya; Hou, Min; Chen, Lin; Ji, Minjun; Fu, Zan

    2017-03-01

    Peroxisome proliferator-activated receptor (PPAR)-γ plays critical roles in human metabolic disorders. However, the mechanism remains incompletely understood. Regulatory cells contribute to these metabolic improvements; therefore, whether PPAR-γ agonist regulates regulatory cells was investigated. C57BL/6J mice received a normal or high-fat diet (HFD) with or without pioglitazone treatment. Mice were sacrificed for detecting the metabolic parameters. Lymphocytes from spleen and visceral adipose tissue (VAT) were collected and analyzed for ST2 + Tregs and Bregs by flow cytometry. IL-10 in the liver or VAT was detected by immunofluorescence and ELISA. Correlation analysis between IL-10 and liver weight or serum total cholesterol was made by Pearson correlation analysis. Pioglitazone increased VAT weight but reduced serum total cholesterol, hepatic steatosis, and cholesterol crystallization formation. Pioglitazone treatment enhanced ST2 + Tregs and Bregs in the VAT and spleen of HFD-fed mice (all P < 0.05). Pioglitazone treatment increased IL-10 in the livers or VAT of HFD-fed mice (all P < 0.05). The expression of IL-10 in the liver was significantly negatively correlated with liver weight or serum total cholesterol in pioglitazone-treated HFD-fed mice (r 2  = 0.74, P < 0.05; r 2  = 0.58, P < 0.05). PPAR-γ signaling plays a critical role in the regulation of metabolic disorders through promoting regulatory cell response. © 2017 The Obesity Society.

  17. Treatment of type 2 diabetes with a combination regimen of repaglinide plus pioglitazone.

    PubMed

    Jovanovic, Lois; Hassman, David R; Gooch, Brent; Jain, Rajeev; Greco, Susan; Khutoryansky, Naum; Hale, Paula M

    2004-02-01

    The efficacy and safety of combination therapy (repaglinide plus pioglitazone) was compared to repaglinide or pioglitazone in 24-week treatment of type 2 diabetes. This randomized, multicenter, open-label, parallel-group study enrolled 246 adults (age 24-85) who had shown inadequate response in previous sulfonylurea or metformin monotherapy (HbA(1c) > 7%). Prior therapy was withdrawn for 2 weeks, followed by randomization to repaglinide, pioglitazone, or repaglinide/pioglitazone. In the first 12 weeks of treatment, repaglinide doses were optimized, followed by 12 weeks of maintenance therapy. Pioglitazone dosage was fixed at 30 mg per day. Baseline HbA(1c) values were comparable (9.0% for repaglinide, 9.1% for pioglitazone, 9.3% for combination). Mean changes in HbA(1c) values at the end of treatment were -1.76% for repaglinide/pioglitazone, -0.18% for repaglinide, +0.32% for pioglitazone. Fasting plasma glucose reductions were -82 mg/dl for combination therapy, -34 mg/dl for repaglinide, -18 mg/dl for pioglitazone. Minor hypoglycemia occurred in 5% of patients for the combination, 8% for repaglinide, and 3% for pioglitazone. Weight gains for combination therapy were correlated to individual HbA(1c) reductions. In summary, for patients who had previously failed oral antidiabetic monotherapy, the combination repaglinide/pioglitazone had acceptable safety, with greater reductions of glycemic parameters than therapy using either agent alone.

  18. PPAR{gamma} agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong-Ryong; Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu; Kim, Hahn-Young

    2009-02-27

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation withmore » pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.« less

  19. Decreased incidence of gout in diabetic patients using pioglitazone.

    PubMed

    Niu, Sheng-Wen; Chang, Kai-Ting; Lin, Hugo You-Hsien; Kuo, I-Ching; Chang, Yu-Han; Chen, Yu-Han; Hung, Chi-Chih; Chiu, Yi-Wen; Hwang, Shang-Jyh

    2018-01-01

    The incidence and prevalence of gout are increasing, but the management is poor. Considering the increased prevalence of gout in the diabetic population, this study evaluated the effects of pioglitazone, an insulin resistance inhibitor, on the incidence of gout in the diabetic population. We used data from the National Health Insurance program in Taiwan. The pioglitazone cohort contained 30 100 patients and each patient was age and sex matched with three non-pioglitazone users who were randomly selected from the diabetic population. Cox proportional hazards regression analysis was conducted to estimate the effects of pioglitazone on the incidence of gout in the diabetic population. The incidence of gout was significantly lower in pioglitazone users than in non-pioglitazone users [adjusted hazard ratio (aHR) 0.81 (95% CI 0.78, 0.85)]. The HR for the incidence of gout was lower in both male [aHR 0.80 (95% CI 0.75, 0.85)] and female [aHR 0.83 (95% CI 0.78, 0.88)] pioglitazone users than in non-pioglitazone users. An analysis of three age groups (<40, 40-59 and ⩾60 years) revealed that the HRs of both the 40-59 years [aHR 0.78 (95% CI 0.73, 0.83)] and the ⩾60 years [aHR 0.85 (95% CI 0.80, 0.91)] age groups were significantly lower among pioglitazone users than non-pioglitazone users. Compared with the non-pioglitazone users, the incidence of gout in the diabetic population using pioglitazone was less. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle

    PubMed Central

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats. PMID:26064395

  1. Naringenin interferes with the anti-diabetic actions of pioglitazone via pharmacodynamic interactions.

    PubMed

    Yoshida, Hiroki; Tsuhako, Rika; Atsumi, Toshiyuki; Narumi, Keiko; Watanabe, Wataru; Sugita, Chihiro; Kurokawa, Masahiko

    2017-04-01

    Pioglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) full agonist and useful for the treatment of type 2 diabetes mellitus. Naringenin is a citrus flavonoid with anti-inflammatory actions, which has been shown to prevent obesity-related diseases and to activate PPARγ. The aim of this study was to investigate whether dietary naringenin affects the actions of pioglitazone. We administered naringenin (100 mg/kg) and pioglitazone (10 mg/kg) to Tsumura Suzuki Obese Diabetes (TSOD) mice for 4 weeks and then conducted an oral glucose tolerance test. We found that oral administration of naringenin attenuated the hypoglycemic action of pioglitazone in TSOD mice. However, pioglitazone and naringenin did not affect fasting blood glucose levels, epididymal fat pad weight and body weight changes in this administration period. Pioglitazone suppressed expression of obesity-related adipokines such as tissue inhibitor of metalloproteinases-1 in adipose tissue of TSOD mice, but this effect was attenuated by naringenin. However, naringenin did not affect the pharmacokinetics of pioglitazone after single or repeated administration. Naringenin exhibited weak partial agonist activity in time-resolved fluorescence resonance energy transfer assay, but naringenin interfered with pioglitazone agonism, consistent with partial agonism. Our results suggest that it is advisable to avoid administering a combination of naringenin and pioglitazone.

  2. Pharmacokinetics of Empagliflozin and Pioglitazone After Coadministration in Healthy Volunteers.

    PubMed

    Macha, Sreeraj; Mattheus, Michaela; Pinnetti, Sabine; Broedl, Uli C; Woerle, Hans J

    2015-07-01

    The aim was to investigate the effects of coadministration of the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin with the thiazolidinedione pioglitazone. In study 1, 20 healthy volunteers received 50 mg of empagliflozin alone for 5 days, followed by 50 mg of empagliflozin coadministered with 45 mg of pioglitazone for 7 days and 45 mg of pioglitazone alone for 7 days in 1 of 2 treatment sequences. In study 2, 20 volunteers received 45 mg of pioglitazone alone for 7 days and 10, 25, and 50 mg of empagliflozin for 9 days coadministered with 45 mg of pioglitazone for the first 7 days in 1 of 4 treatment sequences. Pioglitazone exposure (Cmax and AUC) increased when coadministered with empagliflozin versus monotherapy in study 1. The geometric mean ratio (GMR) for pioglitazone Cmax at steady state (Cmax,ss) and for AUC during the dosing interval at steady state (AUCτ,ss) when coadministered with empagliflozin versus administration alone was 187.89% (95% CI, 166.35%-212.23%) and 157.97% (95% CI, 148.02%-168.58%), respectively. Because an increase in pioglitazone exposure was not expected, based on in vitro data, a second study was conducted with the empagliflozin doses tested in Phase III trials. In study 2, pioglitazone exposure decreased marginally when coadministered with empagliflozin. The GMR for pioglitazone Cmax,ss when coadministered with empagliflozin versus administration alone was 87.74% (95% CI, 73.88%-104.21%) with empagliflozin 10 mg, 90.23% (95% CI, 66.84%-121.82%) with empagliflozin 25 mg, and 89.85% (95% CI, 71.03%-113.66%) with empagliflozin 50 mg. The GMR for pioglitazone AUCτ,ss when coadministered with empagliflozin versus administration alone was 90.01% (95% CI, 77.91%-103.99%) with empagliflozin 10 mg, 88.98% (95% CI, 72.69%-108.92%) with empagliflozin 25 mg, and 91.10% (95% CI, 77.40%-107.22%) with empagliflozin 50 mg. The effects of empagliflozin on pioglitazone exposure are not considered to be clinically relevant. Empagliflozin exposure was unaffected by coadministration with pioglitazone. Empagliflozin and pioglitazone were well tolerated when administered alone or in combination. In study 1, adverse events were reported in 1 of 19 participants on empagliflozin 50 mg alone, 4 of 20 on pioglitazone alone, and 5 of 18 on combination treatment. In study 2, adverse events were reported in 8 of 20 participants on pioglitazone alone, 10 of 18 when coadministered with empagliflozin 10 mg, 5 of 17 when coadministered with empagliflozin 25 mg, and 6 of 16 when coadministered with empagliflozin 50 mg. These results indicate that pioglitazone and empagliflozin can be coadministered without dose adjustments. EudraCT identifiers: 2008-006087-11 (study 1) and 2009-018089-36 (study 2). Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  3. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide.

    PubMed

    Kajosaari, Lauri I; Jaakkola, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2006-03-01

    Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. During the pioglitazone phase, the mean peak plasma repaglinide concentration (C(max)) and the total area under the concentration-time curve [AUC(0-infinity)] of repaglinide were 100% (range 53-157%, P=0.99) and 90% (range 63-120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.

  4. Pioglitazone enhances the blood pressure-lowering effect of losartan via synergistic attenuation of angiotensin II-induced vasoconstriction.

    PubMed

    Kong, Xiang; Ma, Ming-Zhe; Qin, Li; Zhang, Yan; Li, Xiao-Yong; Wang, Guo-Dong; Su, Qing; Zhang, Dao-You

    2014-09-01

    This study was designed to investigate the underlying mechanisms of synergistic antihypertensive effect produced by combination therapy of losartan and pioglitazone in metabolic syndrome (MS) rats. An MS model was induced by feeding rats a high-fat, high-sodium diet and 20% sucrose solution. Losartan (20 mg/kg/day), pioglitazone (10 mg/kg/day), and their combination were orally administered for eight consecutive weeks. Systolic blood pressure (SBP) and mean arterial pressure (MAP) were measured using the tail-cuff method and carotid arterial catheterization, respectively. The aortas were isolated and in vitro vascular reactivity studies were performed. The protein expression of angiotensin type 1 receptor (AT1), endothelial nitric oxide synthase (eNOS), phosphorylated eNOS and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox), level of nitrotyrosine as well as activity of eNOS and NADPH oxidase in aortas of MS rats were detected. After eight weeks of treatment, the SBP and MAP in the losartan (115 ± 5 and 106 ± 6 mmHg), pioglitazone (130 ± 6 and 118 ± 6 mmHg), and combination therapy (105 ± 6 and 98 ± 5 mmHg) groups were lower than those in the model group (150 ± 8 and 136 ± 9 mmHg). Combination therapy of losartan and pioglitazone reduced BP more than either monotherapy, and showed additive effects on improving endothelial dysfunction and abolishing the increased vascular responsiveness to angiotensin II. These synergistic effects were associated with further reductions in protein expression of p47(phox) and AT1, NADPH oxidase activity, and nitrotyrosine level. Our data indicate that combined treatment exerts more beneficial effects on lowering BP and improving vascular lesions. © The Author(s) 2013.

  5. Saxagliptin, a potent, selective inhibitor of DPP-4, does not alter the pharmacokinetics of three oral antidiabetic drugs (metformin, glyburide or pioglitazone) in healthy subjects.

    PubMed

    Patel, C G; Kornhauser, D; Vachharajani, N; Komoroski, B; Brenner, E; Handschuh del Corral, M; Li, L; Boulton, D W

    2011-07-01

    To evaluate the pharmacokinetic interactions of the potent, selective, dipeptidyl peptidase-4 inhibitor, saxagliptin, in combination with metformin, glyburide or pioglitazone. To assess the effect of co-administration of saxagliptin with oral antidiabetic drugs (OADs) on the pharmacokinetics and tolerability of saxagliptin, 5-hydroxy saxagliptin, metformin, glyburide, pioglitazone and hydroxy-pioglitazone, analyses of variance were performed on maximum (peak) plasma drug concentration (C(max)), area under the plasma concentration-time curve from time zero to infinity (AUC(∞)) [saxagliptin + metformin (study 1) and saxagliptin + glyburide (study 2)] and area under the concentration-time curve from time 0 to time t (AUC) [saxagliptin + pioglitazone (study 3)] for each analyte in the respective studies. Studies 1 and 2 were open-label, randomized, three-period, three-treatment, crossover studies, and study 3 was an open-label, non-randomized, sequential study in healthy subjects. Co-administration of saxagliptin with metformin, glyburide or pioglitazone did not result in clinically meaningful alterations in the pharmacokinetics of saxagliptin or its metabolite, 5-hydroxy saxagliptin. Following co-administration of saxagliptin, there were no clinically meaningful alterations in the pharmacokinetics of metformin, glyburide, pioglitazone or hydroxy-pioglitazone. Saxagliptin was generally safe and well tolerated when administered alone or in combination with metformin, glyburide or pioglitazone. Saxagliptin can be co-administered with metformin, glyburide or pioglitazone without a need for dose adjustment of either saxagliptin or these OADs. © 2011 Blackwell Publishing Ltd.

  6. Pioglitazone

    MedlinePlus

    ... normally and therefore cannot control the amount of sugar in the blood). Pioglitazone is in a class ... insulin, a natural substance that helps control blood sugar levels. Pioglitazone is not used to treat type ...

  7. Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters

    PubMed Central

    Darash-Yahana, Merav; Pozniak, Yair; Lu, Mingyang; Sohn, Yang-Sung; Karmi, Ola; Tamir, Sagi; Bai, Fang; Song, Luhua; Jennings, Patricia A.; Pikarsky, Eli; Geiger, Tamar; Onuchic, José N.; Mittler, Ron; Nechushtai, Rachel

    2016-01-01

    Iron–sulfur (Fe-S) proteins are thought to play an important role in cancer cells mediating redox reactions, DNA replication, and telomere maintenance. Nutrient-deprivation autophagy factor-1 (NAF-1) is a 2Fe-2S protein associated with the progression of multiple cancer types. It is unique among Fe-S proteins because of its 3Cys-1His cluster coordination structure that allows it to be relatively stable, as well as to transfer its clusters to apo-acceptor proteins. Here, we report that overexpression of NAF-1 in xenograft breast cancer tumors results in a dramatic augmentation in tumor size and aggressiveness and that NAF-1 overexpression enhances the tolerance of cancer cells to oxidative stress. Remarkably, overexpression of a NAF-1 mutant with a single point mutation that stabilizes the NAF-1 cluster, NAF-1(H114C), in xenograft breast cancer tumors results in a dramatic decrease in tumor size that is accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Furthermore, treating breast cancer cells with pioglitazone that stabilizes the 3Cys-1His cluster of NAF-1 results in a similar effect on mitochondrial iron and reactive oxygen species accumulation. Taken together, our findings point to a key role for the unique 3Cys-1His cluster of NAF-1 in promoting rapid tumor growth through cellular resistance to oxidative stress. Cluster transfer reactions mediated by the overexpressed NAF-1 protein are therefore critical for inducing oxidative stress tolerance in cancer cells, leading to rapid tumor growth, and drugs that stabilize the NAF-1 cluster could be used as part of a treatment strategy for cancers that display high NAF-1 expression. PMID:27621439

  8. Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters.

    PubMed

    Darash-Yahana, Merav; Pozniak, Yair; Lu, Mingyang; Sohn, Yang-Sung; Karmi, Ola; Tamir, Sagi; Bai, Fang; Song, Luhua; Jennings, Patricia A; Pikarsky, Eli; Geiger, Tamar; Onuchic, José N; Mittler, Ron; Nechushtai, Rachel

    2016-09-27

    Iron-sulfur (Fe-S) proteins are thought to play an important role in cancer cells mediating redox reactions, DNA replication, and telomere maintenance. Nutrient-deprivation autophagy factor-1 (NAF-1) is a 2Fe-2S protein associated with the progression of multiple cancer types. It is unique among Fe-S proteins because of its 3Cys-1His cluster coordination structure that allows it to be relatively stable, as well as to transfer its clusters to apo-acceptor proteins. Here, we report that overexpression of NAF-1 in xenograft breast cancer tumors results in a dramatic augmentation in tumor size and aggressiveness and that NAF-1 overexpression enhances the tolerance of cancer cells to oxidative stress. Remarkably, overexpression of a NAF-1 mutant with a single point mutation that stabilizes the NAF-1 cluster, NAF-1(H114C), in xenograft breast cancer tumors results in a dramatic decrease in tumor size that is accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Furthermore, treating breast cancer cells with pioglitazone that stabilizes the 3Cys-1His cluster of NAF-1 results in a similar effect on mitochondrial iron and reactive oxygen species accumulation. Taken together, our findings point to a key role for the unique 3Cys-1His cluster of NAF-1 in promoting rapid tumor growth through cellular resistance to oxidative stress. Cluster transfer reactions mediated by the overexpressed NAF-1 protein are therefore critical for inducing oxidative stress tolerance in cancer cells, leading to rapid tumor growth, and drugs that stabilize the NAF-1 cluster could be used as part of a treatment strategy for cancers that display high NAF-1 expression.

  9. A Study of Effects of Pioglitazone and Rosiglitazone on Various Parameters in Patients of Type-2 Diabetes Mellitus with Special Reference to Lipid Profile.

    PubMed

    Sharma, S K; Verma, S H

    2016-09-01

    To study the complete fasting lipid profile and other parameters (weight, body mass index, HbA1c, fasting blood sugar and postprandial blood sugar)in Type 2 diabetes mellitus patients on OHA/insulin, to study the effect of addition of pioglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin, to study the effect of addition of rosiglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin and to compare the effect of pioglitazone and rosiglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin. In the study, 100 Type 2 diabetes cases on oral hypoglycemic agent/insulin with deranged lipid profile were chosen and divided into 2 groups 50 and 50 in group A and group B respectively.Pioglitazone was given initially 15mg/day then if required increasing upto 45mg/day in group A for period of 18 weeks and rosiglitazone was given initially 2 mg/day then if required increasing upto 8 mg/day in group B for period of 18 weeks. Detailed clinical history was obtained and thorough physical examination was done and following parameters were established-Age, Height, Weight, Body mass index, Fasting and Postprandial blood sugar, HbA1c levels and fasting complete lipid profile done at 0 and 18 weeks. Each patient itself served as a control for this study. Maximum no. of patients were in sixth decade (53.30%) and minimum patients were in seventh decade (6.6%). Males were 63.3% and females were 36.8%. Fasting blood sugar levels decreased by 23% with pioglitazone in group A and 14.07% with rosiglitazone in group B. The postprandial blood sugar levels decreased by 29.9% with pioglitazone in group A and 20.17% with rosiglitazone in group B.The mean HbA1c decreased by 2.13 % pioglitazone in group A and 3.8% with rosiglitazone in group B after 18 weeks of therapy. The effects of both drugs on BMI and weight were not significant. In group A the total cholesterol level decreased by 8.62% with pioglitazone but in group B there was no significant decrease in total cholesterol level after 18 weeks of therapy with rosiglitazone. There was no significant reduction in mean LDL cholesterol level in both groups. HDL-c level increased by 17.14% with pioglitazone in group A and decreased by 1.2% with rosiglitazone in group B. Triglycerides levels decreased by 12.33% with pioglitazone in group A and 6.16% with rosiglitazone in group B. Treatment with pioglitazone and rosiglitazone both were associated with reduction in fasting and postprandial blood sugar levels but more with pioglitazone. There was significant reduction in HbA1c with both pioglitazone and rosiglitazone but more with rosiglitazone. The total cholesterol level decreased by pioglitazone significantly but not with rosiglitazone. The LDL levels were not affected much by both drugs, while HDL levels were significantly increased with pioglitazone. Triglycerides levels were decreased with both pioglitazone and rosiglitazone but more with pioglitazone. Both drugs are useful but pioglitazone proved to be more beneficial on deranged lipid profile as compared to rosiglitazone in Type 2 Diabetes mellitus patients on OHA/insulin.

  10. Effects of pioglitazone on bone in postmenopausal women with impaired fasting glucose or impaired glucose tolerance: a randomized, double-blind, placebo-controlled study.

    PubMed

    Bone, Henry G; Lindsay, Robert; McClung, Michael R; Perez, Alfonso T; Raanan, Marsha G; Spanheimer, Robert G

    2013-12-01

    Meta-analyses of clinical studies have suggested an increased incidence of peripheral fractures in postmenopausal women with type 2 diabetes mellitus taking pioglitazone. The mechanism behind this apparent increase is unknown. The objective of the study was to examine the effects of pioglitazone on bone mineral density (BMD) and turnover. Twenty-five sites (in the United States) enrolled participants in this randomized, double-blind, placebo-controlled study. Postmenopausal women (n = 156) with impaired fasting glucose or impaired glucose tolerance participated in the study. The intervention consisted of pioglitazone 30 mg/d (n = 78) or placebo (n = 78), increased to 45 mg/d after 1 month, for 12 months of treatment total, followed by 6 months of washout/follow-up. Percentage changes from baseline to month 12 and from month 12 to month18 in BMD in total proximal femur (primary end point), total body, femoral neck, lumbar spine, and radius were measured. Least squares mean changes from baseline to month 12 in total proximal femur BMD were -0.69% for pioglitazone and -0.14% for placebo (P = .170). No statistically significant between-group differences were observed for any BMD or bone remodeling marker end point. We observed improved glycemic control and insulin sensitivity with pioglitazone treatment. In addition, pioglitazone appeared to increase body fat, which may affect bone density measurements, especially in the lumbar spine. One pioglitazone-treated and three placebo-treated women experienced confirmed fractures. Over 18 months, one pioglitazone-treated (1.3%) and eight placebo-treated women (10.3%) developed overt type 2 diabetes mellitus. The pattern and incidence of adverse events with pioglitazone were consistent with clinical experience with thiazolidinediones. Maximal-dose pioglitazone had no effects on BMD or bone turnover, while improving glycemic control as expected, in postmenopausal women with impaired fasting glucose or impaired glucose tolerance.

  11. Impact of the CYP2C8 *3 polymorphism on the drug–drug interaction between gemfibrozil and pioglitazone

    PubMed Central

    Aquilante, Christina L; Kosmiski, Lisa A; Bourne, David W A; Bushman, Lane R; Daily, Elizabeth B; Hammond, Kyle P; Hopley, Charles W; Kadam, Rajendra S; Kanack, Alexander T; Kompella, Uday B; Le, Merry; Predhomme, Julie A; Rower, Joseph E; Sidhom, Maha S

    2013-01-01

    AIM The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug–drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate). METHODS In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period. RESULTS Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P < 0.001) and there was interindividual variability in the magnitude of this interaction (range, 1.8- to 12.1-fold). When pioglitazone was administered alone, the mean AUC(0,∞) was 29.7% lower (P= 0.01) in CYP2C8*3 carriers compared with CYP2C8*1 homozygotes. The relative change in pioglitazone plasma exposure following gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P= 0.02). CONCLUSION CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil–pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug–drug interactions. PMID:22625877

  12. Impact of the CYP2C8 *3 polymorphism on the drug-drug interaction between gemfibrozil and pioglitazone.

    PubMed

    Aquilante, Christina L; Kosmiski, Lisa A; Bourne, David W A; Bushman, Lane R; Daily, Elizabeth B; Hammond, Kyle P; Hopley, Charles W; Kadam, Rajendra S; Kanack, Alexander T; Kompella, Uday B; Le, Merry; Predhomme, Julie A; Rower, Joseph E; Sidhom, Maha S

    2013-01-01

    The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug-drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate). In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period. Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P < 0.001) and there was interindividual variability in the magnitude of this interaction (range, 1.8- to 12.1-fold). When pioglitazone was administered alone, the mean AUC(0,∞) was 29.7% lower (P = 0.01) in CYP2C8*3 carriers compared with CYP2C8*1 homozygotes. The relative change in pioglitazone plasma exposure following gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P = 0.02). CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil-pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug-drug interactions. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  13. Comparison of Vildagliptin and Pioglitazone in Korean Patients with Type 2 Diabetes Inadequately Controlled with Metformin.

    PubMed

    Kim, Jong Ho; Kim, Sang Soo; Baek, Hong Sun; Lee, In Kyu; Chung, Dong Jin; Sohn, Ho Sang; Bae, Hak Yeon; Kim, Mi Kyung; Park, Jeong Hyun; Choi, Young Sik; Kim, Young Il; Hahm, Jong Ryeal; Lee, Chang Won; Jo, Sung Rae; Park, Mi Kyung; Lee, Kwang Jae; Kim, In Joo

    2016-06-01

    We compared the efficacies of vildagliptin (50 mg twice daily) relative to pioglitazone (15 mg once daily) as an add-on treatment to metformin for reducing glycosylated hemoglobin (HbA1c) levels in Korean patients with type 2 diabetes. The present study was a multicenter, randomized, active-controlled investigation comparing the effects of vildagliptin and pioglitazone in Korean patients receiving a stable dose of metformin but exhibiting inadequate glycemic control. Each patient underwent a 16-week treatment period with either vildagliptin or pioglitazone as an add-on treatment to metformin. The mean changes in HbA1c levels from baseline were -0.94% in the vildagliptin group and -0.6% in the pioglitazone group and the difference between the treatments was below the non-inferiority margin of 0.3%. The mean changes in postprandial plasma glucose (PPG) levels were -60.2 mg/dL in the vildagliptin group and -38.2 mg/dL in the pioglitazone group and these values significantly differed (P=0.040). There were significant decreases in the levels of total, low density lipoprotein, high density lipoprotein (HDL), and non-HDL cholesterol in the vildagliptin group but increases in the pioglitazone group. The mean change in body weight was -0.07 kg in the vildagliptin group and 0.69 kg in the pioglitazone group, which were also significantly different (P=0.002). As an add-on to metformin, the efficacy of vildagliptin for the improvement of glycemic control is not inferior to that of pioglitazone in Korean patients with type 2 diabetes. In addition, add-on treatment with vildagliptin had beneficial effects on PPG levels, lipid profiles, and body weight compared to pioglitazone.

  14. Metabolic and other effects of pioglitazone as an add-on therapy to metformin in the treatment of polycystic ovary syndrome (PCOS).

    PubMed

    Valsamakis, Georgios; Lois, Kostas; Kumar, Sudhesh; Mastorakos, George

    2013-01-01

    Insulin resistance is a key pathogenic defect of the clustered metabolic disturbances seen in polycystic ovary syndrome (PCOS). Metformin is an insulin sensitizer acting in the liver and the peripheral tissues that ameliorates the metabolic and reproductive defects in PCOS. In addition, pioglitazone is an insulin sensitizer used in diabetes mellitus type 2 (T2DM), improving insulin resistance (IR) in adipose tissue and muscles. In T2DM, these drugs are also used as a combined treatment due to their "add-on effect" on insulin resistance. Although the beneficial role of troglitazone (a member of the thiazolidinediones (TZDs) family) in PCOS has been shown in the past, currently only pioglitazone is available in the market. A few small randomized controlled trials have directly compared the effectiveness of pioglitazone in women with PCOS, while there are a limited number of small studies that support the beneficial metabolic add-on effect of pioglitazone on metformin-treated PCOS women as compared to metformin or pioglitazone monotherapy. These findings suggest a potentially promising role for combined pioglitazone/metformin treatment in the management of PCOS in metformin-resistant patients. In view of recent concerns regarding pioglitazone usage and its associated health risk, we aim to compare the pros and cons of each drug regarding their metabolic and other hormonal effects in women with PCOS and to explore the possible beneficial effect of combined therapy in certain cases, taking into consideration the teratogenic effect of pioglitazone. Finally, we discuss the need for a randomized controlled trial that will evaluate the metabolic and other hormonal effects of combined metformin/pioglitazone treatment in PCOS with selective treatment targets.

  15. Effect of Pioglitazone on Cardio-Metabolic Risk in Patients with Obstructive Sleep Apnea

    PubMed Central

    Liu, Alice; Abbasi, Fahim; Kim, Sun H.; Ariel, Danit; Lamendola, Cindy; Cardell, James; Xu, Shiming; Patel, Shailja; Tomasso, Vanessa; Mojaddidi, Hafasa; Grove, Kaylene; Tsao, Philip S.; Kushida, Clete A.; Reaven, Gerald M.

    2017-01-01

    Prevalence of insulin resistance is increased in patients with obstructive sleep apnea (OSA). Since insulin resistance is an independent predictor of cardiovascular disease (CVD), this study was initiated to see if pioglitazone administration would improve insulin sensitivity, and thereby decrease risk of CVD in overweight/obese, nondiabetic, insulin-resistant patients with untreated OSA. Patients (n=30) were administered pioglitazone (45 mg/day) for 8 weeks, and measurements were made before and after intervention of insulin action (insulin-mediated glucose uptake by the insulin suppression test), C-reactive protein, lipid/lipoprotein profile, and gene expression profile of peri-umbilical subcutaneous fat tissue. Insulin sensitivity increased 31% (p<0.001) among pioglitazone-treated individuals, associated with a decrease in C-reactive protein concentration (p≤ 0.001), a decrease in plasma triglyceride and increase in high-density lipoprotein cholesterol concentrations (p≤ 0.001), accompanied by significant changes in apolipoprotein A1 and B concentrations and lipoprotein subclasses known to decrease CVD risk. In addition, subcutaneous adipose tissue gene expression profile showed a 1.6-fold (p<0.01) increase in GLUT4 expression, as well as decreased expression in 5 of 9 inflammatory genes (p<0.05). In conclusion, enhanced insulin sensitivity can significantly decrease multiple cardio-metabolic risk factors in patients with untreated OSA, consistent with the view that coexisting insulin resistance plays an important role in the association between OSA and increased risk of CVD. PMID:28219664

  16. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    PubMed Central

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  17. Renal Outcomes of Pioglitazone Compared with Acarbose in Diabetic Patients: A Randomized Controlled Study

    PubMed Central

    Chen, Yu-Hsin; Tarng, Der-Cherng; Chen, Harn-Shen

    2016-01-01

    Objective To assess the effect of pioglitazone on renal outcome, including urinary albumin excretion and estimated glomerular filtration rate (eGFR), in diabetic patients. Design A prospective, randomized, open-labeled, controlled study. Setting Taipei Veterans General Hospital. Patients Sixty type 2 diabetic patients treated with sulfonylureas and metformin, whose glycated hemoglobin (HbA1c) levels were between 7% and 10% and eGFR was between 45 and 125 mL/min/1.73 m2. Intervention The patients were randomized to receive acarbose or pioglitazone and followed up for 6 months. Thirty patients were randomly assigned to receive acarbose, and 30 patients were assigned to receive pioglitazone. Measurements The primary study endpoint was the changes in the urinary albumin-to-creatinine ratio (UACR). The secondary endpoint was the changes in eGFR and other parameters. Results After 6 months of treatment, the mean changes in UACR were −18 ± 104 and 12 ± 85 (p = 0.25, between groups) for the acarbose and pioglitazone groups, respectively. The mean changes in eGFR were 0 ± 14 and −7 ± 16 mL/min/1.73 m2 (p = 0.09, between groups) for the acarbose and pioglitazone groups, respectively. The reductions in HbA1c were similar in both groups. Fasting blood glucose was lower in the pioglitazone group than in the acarbose group. Significant body weight gain was observed in the pioglitazone group as compared with the acarbose group (1.3 ± 2.8 vs. −0.6 ± 1.5 kg, p = 0.002). Conclusion In type 2 diabetic patients who were treated with sulfonylureas and metformin and possessed HbA1c levels between 7% and 10%, additional acarbose or pioglitazone for 6 months provided similar glycemic control and eGFR and UACR changes. In the pioglitazone group, the patients exhibited significant body weight gain. Trial Registration ClinicalTrials.gov NCT01175486 PMID:27812149

  18. Renal Outcomes of Pioglitazone Compared with Acarbose in Diabetic Patients: A Randomized Controlled Study.

    PubMed

    Chen, Yu-Hsin; Tarng, Der-Cherng; Chen, Harn-Shen

    2016-01-01

    To assess the effect of pioglitazone on renal outcome, including urinary albumin excretion and estimated glomerular filtration rate (eGFR), in diabetic patients. A prospective, randomized, open-labeled, controlled study. Taipei Veterans General Hospital. Sixty type 2 diabetic patients treated with sulfonylureas and metformin, whose glycated hemoglobin (HbA1c) levels were between 7% and 10% and eGFR was between 45 and 125 mL/min/1.73 m2. The patients were randomized to receive acarbose or pioglitazone and followed up for 6 months. Thirty patients were randomly assigned to receive acarbose, and 30 patients were assigned to receive pioglitazone. The primary study endpoint was the changes in the urinary albumin-to-creatinine ratio (UACR). The secondary endpoint was the changes in eGFR and other parameters. After 6 months of treatment, the mean changes in UACR were -18 ± 104 and 12 ± 85 (p = 0.25, between groups) for the acarbose and pioglitazone groups, respectively. The mean changes in eGFR were 0 ± 14 and -7 ± 16 mL/min/1.73 m2 (p = 0.09, between groups) for the acarbose and pioglitazone groups, respectively. The reductions in HbA1c were similar in both groups. Fasting blood glucose was lower in the pioglitazone group than in the acarbose group. Significant body weight gain was observed in the pioglitazone group as compared with the acarbose group (1.3 ± 2.8 vs. -0.6 ± 1.5 kg, p = 0.002). In type 2 diabetic patients who were treated with sulfonylureas and metformin and possessed HbA1c levels between 7% and 10%, additional acarbose or pioglitazone for 6 months provided similar glycemic control and eGFR and UACR changes. In the pioglitazone group, the patients exhibited significant body weight gain. ClinicalTrials.gov NCT01175486.

  19. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08).

    PubMed

    Erdmann, Erland; Charbonnel, Bernard; Wilcox, Robert G; Skene, Allan M; Massi-Benedetti, Massimo; Yates, John; Tan, Meng; Spanheimer, Robert; Standl, Eberhard; Dormandy, John A

    2007-11-01

    PROspective pioglitAzone Clinical Trial In macroVascular Events (PROactive) enrolled patients with type 2 diabetes and preexisting cardiovascular disease. These patients were at high risk for heart failure, so any therapeutic benefit could potentially be offset by risk of associated heart failure mortality. We analyzed the heart failure cases to assess the effects of treatment on morbidity and mortality after reports of serious heart failure. PROactive was an outcome study in 5,238 patients randomized to pioglitazone or placebo. Patients with New York Heart Association Class II-IV heart failure at screening were excluded. A serious adverse event of heart failure was defined as heart failure that required hospitalization or prolonged a hospitalization stay, was fatal or life threatening, or resulted in persistent significant disability or incapacity. Heart failure risk was evaluated by multivariate regression. More pioglitazone (5.7%) than placebo patients (4.1%) had a serious heart failure event during the study (P = 0.007). However, mortality due to heart failure was similar (25 of 2,605 [0.96%] for pioglitazone vs. 22 of 2,633 [0.84%] for placebo; P = 0.639). Among patients with a serious heart failure event, subsequent all-cause mortality was proportionately lower with pioglitazone (40 of 149 [26.8%] vs. 37 of 108 [34.3%] with placebo; P = 0.1338). Proportionately fewer pioglitazone patients with serious heart failure went on to have an event in the primary (47.7% with pioglitazone vs. 57.4% with placebo; P = 0.0593) or main secondary end point (34.9% with pioglitazone vs. 47.2% with placebo; P = 0.025). Although the incidence of serious heart failure was increased with pioglitazone versus placebo in the total PROactive population of patients with type 2 diabetes and macrovascular disease, subsequent mortality or morbidity was not increased in patients with serious heart failure.

  20. Evaluating the effect of insulin sensitizers metformin and pioglitazone alone and in combination on women with polycystic ovary syndrome: An RCT

    PubMed Central

    Sohrevardi, Seyed Mojtaba; Nosouhi, Fahime; Hossein Khalilzade, Saeed; Kafaie, Parichehr; Karimi-Zarchi, Mojgan; Halvaei, Iman; Mohsenzadeh, Mehdi

    2016-01-01

    Background: Insulin resistance and hyperinsulinemia may play a role in pathogenesis of PCOS. One of the common therapeutic methods is using insulin-sensitizing drugs such as metformin and thiazolidinediones. Objective: The purpose was to determine the effect of metformin and pioglitazone on clinical, hormonal and metabolic parameters in women with PCOS. Materials and Methods: Eighty four women randomly received one of the following for 3 months: metformin (n=28) (500 mg three times a day), pioglitazone (30 mg daily) (n=28) and combination of both metformin and pioglitazone (n=28) (30 mg/day pioglitazone plus 500 mg metformin three times a day). Hormonal profile, fasting serum insulin, body weight, body mass index, menstrual status and waist to hip ratio were evaluated before and after treatment. Results: Metformin and pioglitazone and combination therapy induced favorable changes in fasting serum insulin, HOMA-IR index, QUICKI, fasting glucose to insulin ratio in women with PCOS. Body weight, BMI, and waist to hip ratio increased significantly after treatment with pioglitazone but the data were similar after administration of metformin or combination therapy. Total testosterone level decreased significantly only after treatment with metformin. After 3 months in patients who received pioglitazone or combination therapy, menstrual cycles became regular in 71.4% and 73.9% respectively. While menstrual improvement happened only in 36.4% of the patients treated with metformin. Conclusion: These findings suggest that insulin-sensitizing drugs induce beneficial effect in insulin resistance and menstrual cyclicity but only metformin ameliorated hyperandrogenemia in women with PCOS. Treatment with combination of metformin and pioglitazone did not show more benefit than monotherapy with each drug alone. PMID:28331909

  1. Comparison of the effect between pioglitazone and metformin in treating patients with PCOS:a meta-analysis.

    PubMed

    Xu, Yifeng; Wu, Yanxiang; Huang, Qin

    2017-10-01

    Pioglitazone was used to treat patients of PCOS in many researches, but the treatment has not been recognized by public or recommended by all the guidelines. We conducted a meta-analysis of the related literatures to objectively evaluate the clinical effectiveness and safety by comparing pioglitazone with metformin administrated by PCOS patients. Searches were performed in Cochrane Library, EMBASE and PubMed (last updated December 2016). Eleven studies among 486 related articles were identified through searches. Fixed effects and random effects models were used to calculate the overall risk estimates. The results of the meta-analysis suggest that improvement of the menstrual cycle and ovulation in pioglitazone treatment group was better than metformin group [OR = 2.31, 95% CI (1.37, 3.91), P < 0.001, I 2  = 41.8%]. Improvement of the F-G scores in metformin treatment group was better than pioglitazone group [SMD = 0.29, 95% CI (0.0, 0.59), P = 0.048, I 2  = 0.0%]. BMI was more elevated in pioglitazone group than in metformin group [SMD = 0.83, 95% CI (0.24, 1.41), P = 0.006, I 2  = 82.8%]. There were no significant differences of the other data between the two groups. This meta-analysis indicated that pioglitazone ameliorated menstrual cycle and ovulation better than metformin and metformin ameliorated BMI and F-G scores better than pioglitazone in treating patients with PCOS. Pioglitazone might be a good choice for the patients with PCOS who were intolerant or invalid to metformin for the treatment.

  2. Renal function preservation with pioglitazone or with basal insulin as an add-on therapy for patients with type 2 diabetes mellitus.

    PubMed

    Chang, Yu-Hung; Hwu, Der-Wei; Chang, Dao-Ming; An, Ling-Wang; Hsieh, Chang-Hsun; Lee, Yau-Jiunn

    2017-06-01

    Clinical outcome may differ owing to the distinct pharmacological characteristics of insulin sensitizers and insulin. This study was performed to compare the metabolic and renal function changes with add-on pioglitazone treatment versus basal insulin in patients with type 2 diabetes mellitus (DM) in whom sulfonylurea and metformin regimens failed. Patients who were consecutively managed in the diabetes comprehensive program with add-on pioglitazone or detemir/glargine treatment for at least 2 years following sulfonylurea and metformin treatment failure were included. A total of 1002 patients were enrolled (pioglitazone: 559, detemir: 264, glargine: 179). After propensity score matching, there were 105 patients with matchable baseline characteristics in each group. After a mean of 3.5 years of follow-up, the pioglitazone group showed a greater HbA1c reduction than the detemir group and the glargine group. Despite patients in all three groups exhibiting significant body weight gain, those in the pioglitazone group and the glargine group showed greater body weight increases than the patients in the detemir group (2.1, 1.6 and 0.8 kg, respectively, p < 0.05). Interestingly, Cox regression analysis indicated that patients under detemir or glargine treatment had a higher probability of CKD progression as compared with the pioglitazone group, with hazard ratios of 2.63 (95% CI 1.79-3.88) and 3.13 (95% CI 2.01-4.87), respectively. Our study first showed that treatment with both pioglitazone and basal insulin improved glycemic control, while only pioglitazone treatment was observed to be advantageous in terms of preserving renal function when used as an add-on therapy for patients with type 2 DM in whom sulfonylurea and metformin regimens failed.

  3. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    PubMed

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Pioglitazone (Actos) and bladder cancer: Legal system triumphs over the evidence.

    PubMed

    Davidson, Mayer B

    2016-08-01

    In preclinical studies, pioglitazone was associated with bladder cancer in male rats (but not in female rats, mice dogs or monkeys). Because of this association, the Federal Drug Administration requested a large 10year epidemiological study to evaluate whether there was an association between bladder cancer and exposure to pioglitazone in patients. A 5-year interim report published in 2011 showed no significant association between ever vs never exposure to the drug but a significant association in patients exposed to pioglitazone for >2years. Importantly, the final 10year report did not confirm the 5year interim report finding no association between bladder cancer and pioglitazone, even after >4years of exposure to the drug. However, as would be expected, following the 5-year interim report, many epidemiological studies were carried out and civil litigation lawsuits began to be filed. Of the 23 epidemiological studies that have been published to date, 18 showed no association between bladder cancer and pioglitazone (5 with a combination of rosiglitazone and pioglitazone). Of the five that did show a significant association with pioglitazone, three could not be confirmed in the same population and in one of them there were significantly more risk factors for bladder cancer in the patients exposed to pioglitazone. In the fourth one, a significant association became non-significant when patients >79years were included. In the fifth one, detection bias was a major flaw. Currently, >11,000 legal cases have been filed, many of which claim emotional distress due to the fear of bladder cancer. To limit their legal costs, the pharmaceutical company has established a 2.4 billion dollar settlement pool. So much for evidence-based medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk.

    PubMed

    Adil, Mohammad; Mansoori, Mohd Nizam; Singh, Divya; Kandhare, Amit Dattatraya; Sharma, Manju

    2017-10-01

    Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors

    PubMed Central

    Saremi, Aramesh; Schwenke, Dawn C.; Buchanan, Thomas A.; Hodis, Howard N.; Mack, Wendy J.; Banerji, MaryAnn; Bray, George A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Musi, Nicolas; Tripathy, Devjit; DeFronzo, Ralph A.; Reaven, Peter D.

    2013-01-01

    Objective To determine whether changes in standard and novel risk factors during the ACT NOW trial explained the slower rate of CIMT progression with pioglitazone treatment in persons with prediabetes. Methods and Results CIMT was measured in 382 participants at the beginning and up to three additional times during follow-up of the ACT NOW trial. During an average follow-up of 2.3 years, the mean unadjusted annual rate of CIMT progression was significantly (P=0.01) lower with pioglitazone treatment (4.76 × 10−3 mm/year, 95% CI, 2.39 × 10−3 – 7.14 × 10−3 mm/year) compared with placebo (9.69 × 10−3 mm/year, 95% CI, 7.24 × 10−3 – 12.15 × 10−3 mm/year). High-density lipoprotein cholesterol, fasting and 2-hour glucose, HbA1c, fasting insulin, Matsuda insulin sensitivity index, adiponectin and plasminogen activator inhibitor-1 levels improved significantly with pioglitazone treatment compared with placebo (P < 0.001). However, the effect of pioglitazone on CIMT progression was not attenuated by multiple methods of adjustment for traditional, metabolic and inflammatory risk factors and concomitant medications, and was independent of changes in risk factors during pioglitazone treatment. Conclusions Pioglitazone slowed progression of CIMT, independent of improvement in hyperglycemia, insulin resistance, dyslipidemia and systemic inflammation in prediabetes. These results suggest a possible direct vascular benefit of pioglitazone. PMID:23175674

  7. Physiologically based pharmacokinetics model predicts the lack of inhibition by repaglinide on the metabolism of pioglitazone.

    PubMed

    Xiao, Qingqing; Tang, Liling; Xu, Ruijuan; Qian, Wei; Yang, Jin

    2015-12-01

    Repaglinide and pioglitazone are both CYP2C8 and CYP3A4 substrates. This study was to determine whether repaglinide has an inhibitory effect on the metabolism of pioglitazone in vitro, in silico and in vivo. In vitro, the effect of repaglinide on the metabolism of pioglitazone was assessed in pooled human liver microsomes. In silico, an IVIVE-PBPK linked model was built with Simcyp®. Then, a randomized, 2-phase cross-over clinical study was conducted in 12 healthy volunteers. Repaglinide showed a strong inhibitory effect on the metabolism of pioglitazone in vitro (Ki  = 0.0757 µm), [I]/Ki  > 0.1. The Simcyp® prediction ratios of AUC and Cmax between the two treatment groups were both about 1.01. The pharmacokinetics of pioglitazone in clinical trials showed no significant difference between these two treatment groups (p > 0.05). Repaglinide has no significant inhibitory effect on the metabolism of pioglitazone in vivo, which is inconsistent with the in vitro results. The lack of an inhibitory effect was partly due to extensive plasma protein binding and to the high in vivo clearance of repaglinide, for the concentration of repaglinide in vivo was far smaller than in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Pioglitazone decreases coronary artery inflammation in impaired glucose tolerance and diabetes mellitus: evaluation by FDG-PET/CT imaging.

    PubMed

    Nitta, Yoshikazu; Tahara, Nobuhiro; Tahara, Atsuko; Honda, Akihiro; Kodama, Norihiro; Mizoguchi, Minori; Kaida, Hayato; Ishibashi, Masatoshi; Hayabuchi, Naofumi; Ikeda, Hisao; Yamagishi, Sho-ichi; Imaizumi, Tsutomu

    2013-11-01

    The aim of this study was to compare the effect of pioglitazone with glimepiride on coronary arterial inflammation with serial (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) combined with computed tomography (CT) angiography. Recent studies have shown that FDG-PET combined with CT is a reliable tool to visualize and quantify vascular inflammation. Although pioglitazone significantly prevented the progression of coronary atherosclerosis and reduced the recurrence of myocardial infarction in patients with type 2 diabetes mellitus (DM), it remains unclear whether pioglitazone could attenuate coronary artery inflammation. Fifty atherosclerotic patients with impaired glucose tolerance or type 2 DM underwent determination of blood chemistries, anthropometric and inflammatory variables, and FDG-PET/CT angiography, and then were randomized to receive either pioglitazone or glimepiride for 16 weeks. Effects of the treatments on vascular inflammation of the left main trunk were evaluated by FDG-PET/CT angiography at baseline and end of the study. Vascular inflammation of the left main trunk was measured by blood-normalized standardized uptake value, known as a target-to-background ratio. Three patients dropped out of the study during the assessment or treatment. Finally, 25 pioglitazone-treated patients and 22 glimepiride-treated patients (37 men; mean age: 68.1 ± 8.3 years; glycosylated hemoglobin: 6.72 ± 0.70%) completed the study. After 16-week treatments, fasting plasma glucose and glycosylated hemoglobin values were comparably reduced in both groups. Changes in target-to-background ratio values from baseline were significantly greater in the pioglitazone group than in the glimepiride group (-0.12 ± 0.06 vs. 0.09 ± 0.07, p = 0.032), as well as changes in high-sensitivity C-reactive protein (pioglitazone vs. glimepiride group: median: -0.24 [interquartile range (IQR): -1.58 to -0.04] mg/l vs. 0.08 [IQR: -0.07 to 0.79] mg/l, p = 0.031). Our study indicated that pioglitazone attenuated left main trunk inflammation in patients with impaired glucose tolerance or DM in a glucose-lowering independent manner, suggesting that pioglitazone may protect against cardiac events in patients with impaired glucose tolerance or DM by suppressing coronary inflammation. (Anti-Inflammatory Effects of Pioglitazone; NCT00722631). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function.

    PubMed

    Domi, Esi; Uhrig, Stefanie; Soverchia, Laura; Spanagel, Rainer; Hansson, Anita C; Barbier, Estelle; Heilig, Markus; Ciccocioppo, Roberto; Ubaldi, Massimo

    2016-12-14

    PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγ NestinCre ), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγ NestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγ NestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we demonstrate that neuronal PPARγ activation prevented the negative emotional effects of stress and exerted anxiolytic actions without influencing hypothalamic-pituitary-adrenal axis function. Conversely, pharmacological blockade or genetic deletion of PPARγ enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARγ neuronal-mediated mechanisms in the amygdala. Copyright © 2016 the authors 0270-6474/16/3612612-13$15.00/0.

  10. Earlier triple therapy with pioglitazone in patients with type 2 diabetes.

    PubMed

    Charpentier, G; Halimi, S

    2009-09-01

    This study assessed the efficacy of add-on pioglitazone vs. placebo in patients with type 2 diabetes uncontrolled by metformin and a sulphonylurea or a glinide. This multicentre, double-blind, parallel-group study randomized 299 patients with type 2 diabetes to receive 30 mg/day pioglitazone or placebo for 3 months. After this time, patients continued with pioglitazone, either 30 mg [if glycated haemoglobin A1c (HbA(1c)) 6.5%), or placebo for a further 4 months. The primary efficacy end-point was improvement in HbA(1c) (per cent change). Secondary end-points included changes in fasting plasma glucose (FPG), insulin, C-peptide, proinsulin and lipids. The proinsulin/insulin ratio and homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of beta-cell function (HOMA-B) were calculated. Pioglitazone add-on therapy to failing metformin and sulphonylurea or glinide combination therapy showed statistically more significant glycaemic control than placebo addition. The between-group difference after 7 months of triple therapy was 1.18% in HbA(1c) and -2.56 mmol/l for FPG (p < 0.001). Almost half (44.4%) of the patients in the pioglitazone group who had a baseline HbA(1c) level of <8.5% achieved the HbA(1c) target of < 7.0% by final visit compared with 4.9% in the placebo group. When the baseline HbA(1c) level was >or= 8.5%, 13% achieved the HbA(1c) target of < 7.0% in the pioglitazone group and none in the placebo group. HOMA-IR, insulin, proinsulin and C-peptide decreased and HOMA-B increased in the pioglitazone group relative to the placebo group. In patients who were not well controlled with dual combination therapy, the early addition of pioglitazone improved HbA(1c), FPG and surrogate measures of beta-cell function. Patients were more likely to reach target HbA(1c) levels (< 7.0%) with pioglitazone treatment if their baseline HbA(1c) levels were < 8.5%, highlighting the importance of early triple therapy.

  11. The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B.

    PubMed

    Quinn, L P; Crook, B; Hows, M E; Vidgeon-Hart, M; Chapman, H; Upton, N; Medhurst, A D; Virley, D J

    2008-05-01

    The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist pioglitazone has previously been shown to attenuate dopaminergic cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease, an effect attributed to its anti-inflammatory properties. In the present investigation, we provide evidence that pioglitazone is effective in the MPTP mouse model, not via an anti-inflammatory action, but through inhibition of MAO-B, the enzyme required to biotransform MPTP to its active neurotoxic metabolite 1-methyl-4-phenylpyridinium (MPP+). Mice were treated with pioglitazone (20 mg kg(-1) b.i.d. (twice a day), p.o., for 7 days), prior and post or post-MPTP (30 mg kg(-1) s.c.) treatment. Mice were then assessed for motor impairments on a beam-walking apparatus and for reductions in TH immunoreactivity in the substantia nigra and depletions in striatal dopamine. The effects of pioglitazone on striatal MPP+ levels and MAO-B activity were also assessed. Mice treated with MPTP showed deficits in motor performance, marked depletions in striatal dopamine levels and a concomitant reduction in TH immunoreactivity in the substantia nigra. Pretreatment with pioglitazone completely prevented these effects of MPTP. However, pretreatment with pioglitazone also significantly inhibited the MPTP-induced production of striatal MPP+ and the activity of MAO-B in the striatum. The neuroprotection observed with pioglitazone pretreatment in the MPTP mouse model was due to the blockade of the conversion of MPTP to its active toxic metabolite MPP+, via inhibition of MAO-B.

  12. Pioglitazone improves insulin action and normalizes menstrual cycles in a majority of prenatally androgenized female rhesus monkeys

    PubMed Central

    Zhou, Rao; Bruns, Cristin M.; Bird, Ian M.; Kemnitz, Joseph W.; Goodfriend, Theodore L.; Dumesic, Daniel A.; Abbott, David H.

    2009-01-01

    PURPOSE OF THE STUDY To determine whether pioglitazone will improve menstrual cyclicity in a fetal programming model for polycystic ovary syndrome. BASIC PROCEDURES Eight prenatally androgenized (PA) and 5 control female rhesus monkeys of similar age, body weight and body mass index received an oral placebo daily for 6–7 months followed, after at least 90 days, by daily oral dosing with pioglitazone (3mg/kg) for an additional 6–7 months. Blood was sampled thrice weekly to monitor ovulatory function, and a variety of endocrine challenges were performed to quantify changes in ovarian, gonadotropin and glucoregulatory function. MOST IMPORTANT FINDINGS Pioglitazone normalized menstrual cycles in 5 out of 8 (62%) PA females (pioglitazone responsive; PioRESP). Pioglitazone increased serum 17α-hydroxyprogesterone responses to an hCG injection in PioRESP PA females, while diminishing serum progesterone, and increasing DHEA and estradiol responses to hCG in PioRESP PA and all normal females. PRINCIPAL CONCLUSIONS Insulin resistance plays a mechanistic role in maintaining anovulation in a majority of PA female monkeys. PMID:17306503

  13. Quercetin and pioglitazone synergistically reverse endothelial dysfunction in isolated aorta from fructose-streptozotocin (F-STZ)-induced diabetic rats.

    PubMed

    Kunasegaran, Thubasni; Mustafa, Mohd Rais; Achike, Francis I; Murugan, Dharmani Devi

    2017-03-15

    Pioglitazone is an anti-diabetic drug with potential to cause adverse effects following prolonged use. This study, therefore, investigated the effects of combination treatment of a subliminal concentration of pioglitazone and quercetin, a potent antioxidant, on vascular reactivity of aorta isolated from fructose-streptozotocin (F-STZ)-induced diabetic rats. Relaxation to acetylcholine and sodium nitroprusside, and contraction to phenylephrine were tested in organ bath chambers following pre-incubation with vehicle (DMSO; 0.05%), quercetin (10-7 M), pioglitazone (10-7 M), or their combination (P+Q; 10-7 M each drug). Subliminal concentration of quercetin or pioglitazone did not alter the acetylcholine- induced relaxation nor the phenylephrine-induced contraction in both normal rat and diabetic F-STZ induced tissues. However, P+Q combination synergistically improved the impaired acetylcholine-induced relaxation and decreased the elevated phenylephrine-induced contraction in aortic rings from diabetic, but not in the normal rats. Neither mono nor combination treatment altered sodium nitroprusside-induced relaxation. The combination also synergistically decreased superoxide anion and increased nitric oxide production compared to the individual treatments in aorta from diabetic rats. Overall, these data demonstrated a synergistic effect, in which, a combination (P+Q; 10-7 M each drug) caused a significantly greater effect than 10-6 M of either agent in improving endothelial function of isolated diabetic aorta. In conclusion, a combination of subliminal concentrations of pioglitazone and quercetin is able to decrease oxidative stress and provide synergistic vascular protection in type 2 diabetes mellitus and thus the possibility of using quercetin as a supplement to pioglitazone in the treatment of diabetes with the goal of reducing pioglitazone toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Additive Renoprotection by Pioglitazone and Fenofibrate against Inflammatory, Oxidative and Apoptotic Manifestations of Cisplatin Nephrotoxicity: Modulation by PPARs

    PubMed Central

    Helmy, Mai M.; Helmy, Maged W.; El-Mas, Mahmoud M.

    2015-01-01

    Nephrotoxicity is a major side effect for the antineoplastic drug cisplatin. Here, we employed pharmacological, biochemical, and molecular studies to investigate the role of peroxisome proliferator-activated receptors (PPARs) in cisplatin nephrotoxicity. Rats were treated with a single i.p. dose of cisplatin (5 mg/kg) alone or combined with pioglitazone (PPARγ agonist), fenofibrate (PPARα agonist), pioglitazone plus fenofibrate, or thalidomide (Tumor necrosis factor-α inhibitor; TNF-α). Cisplatin nephrotoxicity was evidenced by rises in renal indices of functional (blood urea nitrogen, BUN, and creatinine), inflammatory (TNF-α, interleukin 6, IL-6), oxidative (increased malondialdehyde, MDA, and decreased superoxide dismutase, SOD and nitric oxide metabolites, NOx), apoptotic (caspase 3), and histological (glomerular atrophy, acute tubular necrosis and vacuolation) profiles. Cisplatin effects were partly abolished upon concurrent exposure to pioglitazone, fenofibrate, or thalidomide; more renoprotection was observed in rats treated with pioglitazaone plus fenofibrate. Immunostaining showed that renal expressions of PPARα and PPARγ were reduced by cisplatin and restored to vehicle-treated values after simultaneous treatment with pioglitazone or fenofibrate. Fenofibrate or pioglitazone renoprotection remained unaltered after concurrent blockade of PPARα (GW6471) and PPARγ (GW9662), respectively. To complement the rat studies, we also report that in human embryonic kidney cells (HEK293 cells), increases caused by cisplatin in inflammatory, apoptotic, and oxidative biomarkers were (i) partly improved after exposure to pioglitazone, fenofibrate, or thalidomide, and (ii) completely disappeared in cells treated with a combination of all three drugs. These data establish that the combined use of pioglitazone and fenofibrate additively improved manifestations of cisplatin nephrotoxicity through perhaps GW6471/GW9662-insensitive mechanisms. PMID:26536032

  15. Pioglitazone and Risk for Bone Fracture: Safety Data From a Randomized Clinical Trial

    PubMed Central

    Inzucchi, Silvio E.; Young, Lawrence H.; Insogna, Karl L.; Conwit, Robin; Furie, Karen L.; Gorman, Mark; Kelly, Michael A.; Lovejoy, Anne M.; Kernan, Walter N.

    2017-01-01

    Context: Pioglitazone reduces cardiovascular risk in nondiabetic patients after an ischemic stroke or transient ischemic attack (TIA) but is associated with increased risk for bone fracture. Objective: To characterize fractures associated with pioglitazone by location, mechanism, severity, timing, and sex. Design, Setting, and Patients: Patients were 3876 nondiabetic participants in the Insulin Resistance Intervention after Stroke trial randomized to pioglitazone or placebo and followed for a median of 4.8 years. Fractures were identified through quarterly interviews. Results: At 5 years, the increment in fracture risk between pioglitazone and placebo groups was 4.9% [13.6% vs 8.8%; hazard ratio (HR), 1.53; 95% confidence interval (CI), 1.24 to 1.89). In each group, ∼80% of fractures were low energy (i.e., resulted from fall) and 45% were serious (i.e., required surgery or hospitalization). For serious fractures most likely to be related to pioglitazone (low energy, nonpathological), the risk increment was 1.6% (4.7% vs 3.1%; HR, 1.47; 95% CI, 1.03 to 2.09). Increased risk for any fracture was observed in men (9.4% vs 5.2%; HR, 1.83; 95% CI, 1.36 to 2.48) and women (14.9% vs 11.6%; HR, 1.32; 95% CI, 0.98 to 1.78; interaction P = 0.13). Conclusions: Fractures affected 8.8% of placebo-treated patients within 5 years after an ischemic stroke or TIA. Pioglitazone increased the absolute fracture risk by 1.6% to 4.9% and the relative risk by 47% to 60%, depending on fracture classification. Our analysis suggests that treatments to improve bone health and prevent falls may help optimize the risk/benefit ratio for pioglitazone. PMID:27935736

  16. Pioglitazone Improves Cognitive Function via Increasing Insulin Sensitivity and Strengthening Antioxidant Defense System in Fructose-Drinking Insulin Resistance Rats

    PubMed Central

    Yin, Qing-Qing; Pei, Jin-Jing; Xu, Song; Luo, Ding-Zhen; Dong, Si-Qing; Sun, Meng-Han; You, Li; Sun, Zhi-Jian; Liu, Xue-Ping

    2013-01-01

    Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance. PMID:23527159

  17. Comparison of the efficacy of liraglutide with pioglitazone on dexamethasone induced hepatic steatosis, dyslipidemia and hyperglycaemia in albino rats.

    PubMed

    Vinodraj, K; Nagendra Nayak, I M; Rao, J Vikram; Mathai, Paul; Chandralekha, N; Nitasha, B; Rajesh, D; Chethan, T K

    2015-01-01

    To evaluate the efficacy of liraglutide with pioglitazone for prevention of dexamethasone induced hepatic steatosis, dyslipidemia and hyperglycemia in Albino rats. There were four groups of six rats each. First group received dexamethasone alone in a dose of 8 mg/kg intraperitoneally for 6 days to induce metabolic changes and considered as dexamethasone control. Second group received liraglutide 1.8 mg/kg subcutaneously 6 days before dexamethasone and 6 days during dexamethasone administration. Third group received pioglitazone 45 mg/kg orally 6 days before dexamethasone and 6 days during dexamethasone administration. Fourth group did not receive any medication and was considered as normal control. Fasting blood sugar, lipid profile, blood sugar 2 h after glucose load were measured. Liver weight, liver volume, and histopathological analysis were done. Dexamethasone caused hepatomegaly, dyslipidemia, and hyperglycemia. Both pioglitazone and liraglutide significantly reduced hepatomegaly, dyslipidemia and hyperglycemia (P < 0.01). Reduction of blood sugar levels after glucose load was significant with pioglitazone when compared with liraglutide (P < 0.01). Liraglutide has comparable efficacy to pioglitazone in prevention of dexamethasone induced hepatomegaly, dyslipidemia and fasting hyperglycemia.

  18. Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents.

    PubMed

    de Guglielmo, Giordano; Kallupi, Marsida; Scuppa, Giulia; Demopulos, Gregory; Gaitanaris, George; Ciccocioppo, Roberto

    2017-01-01

    Relapse to opioids is often driven by the avoidance of the aversive states of opioid withdrawal. We recently demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. However, the role of PPARγ in withdrawal and other forms of relapse to heroin is unknown. To further address this issue, we investigated the role of PPARγ on the development and expression of morphine withdrawal in mice and the effect of pioglitazone on several forms of heroin relapse in rats. We induced physical dependence to morphine in mice by injecting morphine twice daily for 6 days. Withdrawal syndrome was precipitated on day 6 with an injection of naloxone. In addition, different groups of rats were trained to self-administer heroin and, after the extinction, the relapse was elicited by cues, priming, or stress. The effect of different doses of pioglitazone was tested on these different paradigms. Data show that chronic and acute administration of pioglitazone attenuates morphine withdrawal symptoms, and these effects are mediated by activation of PPARγ receptors. Activation of PPARγ by pioglitazone also abolishes yohimbine-induced reinstatement of heroin seeking and reduces heroin-induced reinstatement, while it does not affect cue-induced relapse. These findings provide new insights on the role of PPARγ on opioid dependence and suggest that pioglitazone may be useful for the treatment of opioid withdrawal in opioid-addicted individuals.

  19. Pioglitazone Induces a Proadipogenic Antitumor Response in Mice with PAX8-PPARγ Fusion Protein Thyroid Carcinoma

    PubMed Central

    Dobson, Melissa E.; Diallo-Krou, Ericka; Grachtchouk, Vladimir; Yu, Jingcheng; Colby, Lesley A.; Wilkinson, John E.; Giordano, Thomas J.

    2011-01-01

    Approximately 35% of follicular thyroid carcinomas harbor a chromosomal translocation that results in expression of a paired box gene 8-peroxisome proliferator-activated receptor γ gene (PPARγ) fusion protein (PPFP). To better understand the oncogenic role of PPFP and its relationship to endogenous PPARγ, we generated a transgenic mouse model that combines Cre-dependent PPFP expression (PPFP;Cre) with homozygous deletion of floxed Pten (PtenFF;Cre), both thyroid specific. Although neither PPFP;Cre nor PtenFF;Cre mice develop thyroid tumors, the combined PPFP;PtenFF;Cre mice develop metastatic thyroid cancer, consistent with patient data that PPFP is occasionally found in benign thyroid adenomas and that PPFP carcinomas have increased phosphorylated AKT/protein kinase B. We then tested the effects of the PPARγ agonist pioglitazone in our mouse model. Pioglitazone had no effect on PtenFF;Cre mouse thyroids. However, the thyroids in pioglitazone-fed PPFP;PtenFF;Cre mice decreased 7-fold in size, and metastatic disease was prevented. Remarkably, pioglitazone caused an adipogenic response in the PPFP;PtenFF;Cre thyroids characterized by lipid accumulation and the induction of a broad array of adipocyte PPARγ target genes. These data indicate that, in the presence of pioglitazone, PPFP has PPARγ-like activity that results in trans-differentiation of thyroid carcinoma cells into adipocyte-like cells. Furthermore, the data predict that pioglitazone will be therapeutic in patients with PPFP-positive carcinomas. PMID:21952241

  20. Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus: A Randomized Trial.

    PubMed

    Cusi, Kenneth; Orsak, Beverly; Bril, Fernando; Lomonaco, Romina; Hecht, Joan; Ortiz-Lopez, Carolina; Tio, Fermin; Hardies, Jean; Darland, Celia; Musi, Nicolas; Webb, Amy; Portillo-Sanchez, Paola

    2016-09-06

    The metabolic defects of nonalcoholic steatohepatitis (NASH) and prediabetes or type 2 diabetes mellitus (T2DM) seem to be specifically targeted by pioglitazone. However, information about its long-term use in this population is limited. To determine the efficacy and safety of long-term pioglitazone treatment in patients with NASH and prediabetes or T2DM. Randomized, double-blind, placebo-controlled trial. (ClinicalTrials.gov: NCT00994682). University hospital. Patients (n = 101) with prediabetes or T2DM and biopsy-proven NASH were recruited from the general population and outpatient clinics. All patients were prescribed a hypocaloric diet (500-kcal/d deficit from weight-maintaining caloric intake) and then randomly assigned to pioglitazone, 45 mg/d, or placebo for 18 months, followed by an 18-month open-label phase with pioglitazone treatment. The primary outcome was a reduction of at least 2 points in the nonalcoholic fatty liver disease activity score in 2 histologic categories without worsening of fibrosis. Secondary outcomes included other histologic outcomes, hepatic triglyceride content measured by magnetic resonance and proton spectroscopy, and metabolic parameters. Among patients randomly assigned to pioglitazone, 58% achieved the primary outcome (treatment difference, 41 percentage points [95% CI, 23 to 59 percentage points]) and 51% had resolution of NASH (treatment difference, 32 percentage points [CI, 13 to 51 percentage points]) (P < 0.001 for each). Pioglitazone treatment also was associated with improvement in individual histologic scores, including the fibrosis score (treatment difference, -0.5 [CI, -0.9 to 0.0]; P = 0.039); reduced hepatic triglyceride content from 19% to 7% (treatment difference, -7 percentage points [CI, -10 to -4 percentage points]; P < 0.001); and improved adipose tissue, hepatic, and muscle insulin sensitivity (P < 0.001 vs. placebo for all). All 18-month metabolic and histologic improvements persisted over 36 months of therapy. The overall rate of adverse events did not differ between groups, although weight gain was greater with pioglitazone (2.5 kg vs. placebo). Single-center study. Long-term pioglitazone treatment is safe and effective in patients with prediabetes or T2DM and NASH. Burroughs Wellcome Fund and American Diabetes Association.

  1. The effect of pioglitazone and resistance training on body composition in older men and women undergoing hypocaloric weight loss.

    PubMed

    Shea, M Kyla; Nicklas, Barbara J; Marsh, Anthony P; Houston, Denise K; Miller, Gary D; Isom, Scott; Miller, Michael E; Carr, J Jeffrey; Lyles, Mary F; Harris, Tamara B; Kritchevsky, Stephen B

    2011-08-01

    Age-related increases in ectopic fat accumulation are associated with greater risk for metabolic and cardiovascular diseases, and physical disability. Reducing skeletal muscle fat and preserving lean tissue are associated with improved physical function in older adults. PPARγ-agonist treatment decreases abdominal visceral adipose tissue (VAT) and resistance training preserves lean tissue, but their effect on ectopic fat depots in nondiabetic overweight adults is unclear. We examined the influence of pioglitazone and resistance training on body composition in older (65-79 years) nondiabetic overweight/obese men (n = 48, BMI = 32.3 ± 3.8 kg/m(2)) and women (n = 40, BMI = 33.3 ± 4.9 kg/m(2)) during weight loss. All participants underwent a 16-week hypocaloric weight-loss program and were randomized to receive pioglitazone (30 mg/day) or no pioglitazone with or without resistance training, following a 2 × 2 factorial design. Regional body composition was measured at baseline and follow-up using computed tomography (CT). Lean mass was measured using dual X-ray absorptiometry. Men lost 6.6% and women lost 6.5% of initial body mass. The percent of fat loss varied across individual compartments. Men who were given pioglitazone lost more visceral abdominal fat than men who were not given pioglitazone (-1,160 vs. -647 cm(3), P = 0.007). Women who were given pioglitazone lost less thigh subcutaneous fat (-104 vs. -298 cm(3), P = 0.002). Pioglitazone did not affect any other outcomes. Resistance training diminished thigh muscle loss in men and women (resistance training vs. no resistance training men: -43 vs. -88 cm(3), P = 0.005; women: -34 vs. -59 cm(3), P = 0.04). In overweight/obese older men undergoing weight loss, pioglitazone increased visceral fat loss and resistance training reduced skeletal muscle loss. Additional studies are needed to clarify the observed gender differences and evaluate how these changes in body composition influence functional status.

  2. The Effects of Pioglitazone on Biochemical Markers of Bone Turnover in the Patients with Type 2 Diabetes

    PubMed Central

    Xiao, Wen-hua; Wang, Yan-rong; Hou, Wen-fang; Xie, Chao; Wang, Hai-ning; Hong, Tian-pei; Gao, Hong-wei

    2013-01-01

    Aim. To investigate whether pioglitazone had detrimental effects on biochemical markers of bone turnover in patients with type 2 diabetes (T2DM). Methods. Seventy patients with T2DM were included in this study. The patients remained on their previous antihyperglycemic therapies during the trial. Pioglitazone was then added on their regimen for 3 months. Results. After 3 months of treatment with pioglitazone, the levels of fasting blood glucose and HbA1c were significantly decreased (7.9 ± 1.5 mmol/L versus 9.1 ± 1.6 mmol/L and 7.1 ± 1.0% versus 8.2 ± 1.4%, resp., P < 0.01), compared with baseline in the overall patients. Serum concentrations of P1NP and BAP were significantly decreased from baseline (45.0 ± 20.0 μg/L versus 40.6 ± 17.9 μg/L and 13.23 ± 4.7 μg/L versus 12.3 ± 5.0 μg/L, resp., P < 0.01) in female group, but not in male group. The serum levels of OC and CTX were unchanged in both female and male subgroups. In addition, the levels of serum BAP and P1NP were significantly decreased after pioglitazone treatment in postmenopausal subgroup, comparing with baseline. Conclusion. Pioglitazone inhibits bone formation and does not seem to affect bone resorption. Postmenopausal female patients rather than premenopausal or male patients are particularly vulnerable to this side effect of pioglitazone. PMID:23843787

  3. Pharmacodynamic Effects of Low-Dose Pioglitazone in Patients with the Metabolic Syndrome without Diabetes Mellitus.

    PubMed

    Vu, Anh; Kosmiski, Lisa A; Beitelshees, Amber L; Prigeon, Ronald; Sidhom, Maha S; Bredbeck, Brooke; Predhomme, Julie; Deininger, Kimberly M; Aquilante, Christina L

    2016-03-01

    To determine the effects of low-dose pioglitazone on plasma adipocyte-derived cytokines, high-sensitivity C-reactive protein (hs-CRP), and components of the metabolic syndrome in adults with the metabolic syndrome without diabetes mellitus. Prospective, randomized, double-blind, placebo-controlled study. University of Colorado Clinical and Translational Research Center. Thirty-two men and women, aged 30-60 years, without diabetes who had a clinical diagnosis of the metabolic syndrome, as defined by the American Heart Association/National Heart, Lung, and Blood Institute criteria. Patients were randomly assigned to receive oral pioglitazone 7.5 mg daily or matching placebo for 8 weeks. The primary end point was the change in plasma high-molecular-weight (HMW) adiponectin level from baseline to week 8. Other end points were changes in plasma total adiponectin, omentin, and hs-CRP levels, and changes in components of the metabolic syndrome (e.g., insulin sensitivity) from baseline to week 8. Pioglitazone was associated with a significant increase in plasma HMW adiponectin from baseline to week 8 compared with placebo (+47% vs -10%, p<0.001). Insulin sensitivity increased significantly from baseline to week 8 in the pioglitazone group (+88%, p=0.02) but not in the placebo group (+15%, p=0.14). Change in HMW adiponectin was significantly correlated with the change in insulin sensitivity in the pioglitazone group (r = 0.784, p=0.003). No significant differences in mean percentage changes in plasma total adiponectin, omentin, and hs-CRP levels were observed between the pioglitazone and placebo groups. Likewise, changes in body weight, insulin sensitivity, glucose, lipids, and blood pressure did not differ significantly between the groups. Low-dose pioglitazone favorably modulates plasma HMW adiponectin, which was associated with an improvement in insulin sensitivity, in patients with the metabolic syndrome without diabetes. © 2016 Pharmacotherapy Publications, Inc.

  4. Adverse drug effects observed with vildagliptin versus pioglitazone or rosiglitazone in the treatment of patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Bundhun, Pravesh Kumar; Janoo, Girish; Teeluck, Abhishek Rishikesh; Huang, Feng

    2017-10-23

    Vildagliptin and pioglitazone/rosiglitazone are emerging Oral Hypoglycemic Agents (OHAs) which are used to treat patients suffering from Type 2 Diabetes Mellitus (T2DM). In this analysis, we aimed to systematically compare the adverse drug events which were observed with the use of vildagliptin versus pioglitazone or rosiglitazone respectively. Online databases were searched for studies comparing vildagliptin with pioglitazone/rosiglitazone. Adverse drug events were considered as the clinical endpoints in this analysis. We calculated Odds Ratios (OR) with 95% Confidence Intervals (CIs) using the RevMan 5.3 software. All the authors had full access to the data which were used and approved the final version of the manuscript. A total number of 2396 patients were analyzed (1486 and 910 patients were treated with vildagliptin and pioglitazone/rosiglitazone respectively). Vildagliptin and pioglitazone/rosiglitazone were both associated with similar overall adverse drug events (OR: 1.00, 95% CI: 0.81-1.24; P = 1.00). Headache (OR: 0.88, 95% CI: 0.60-1.27; P = 0.49) and upper respiratory tract infection (OR: 0.95, 95% CI: 0.71-1.27; P = 0.75) were similarly observed. However, dizziness was significantly lower with pioglitazone/rosiglitazone (OR: 0.63, 95% CI: 0.43-0.92; P = 0.02). Back pain, diarrhea and nausea were insignificantly lower with pioglitazone/rosiglitazone (OR: 0.81, 95% CI: 0.49-1.33; P = 0.40), (OR: 0.83, 95% CI: 0.48-1.44; P = 0.52) and (OR: 0.52, 95% CI: 0.25-1.05; P = 0.07) respectively, whereas peripheral edema and weight gain were insignificantly higher (OR: 1.21, 95% CI: 0.56-2.62; P = 0.63) and (OR: 2.29, 95% CI: 0.51-10.34; P = 0.28) respectively. Nevertheless, when pioglitazone and rosiglitazone were separately compared with vildagliptin, peripheral edema and weight gain were significantly higher with rosiglitazone (OR: 2.36, 95% CI: 1.40-3.99; P = 0.001) and (OR: 5.20, 95% CI: 2.47-10.92; P = 0.0001) respectively. Both vildagliptin and pioglitazone/rosiglitazone are acceptable for the treatment of patients with T2DM on the basis that they are not significantly different in terms of overall adverse drug events. However, weight gain and peripheral edema would have to be re-assessed in further larger randomized controlled trials.

  5. Pioglitazone use and risk of bladder cancer in patients with type 2 diabetes: retrospective cohort study using datasets from four European countries.

    PubMed

    Korhonen, Pasi; Heintjes, Edith M; Williams, Rachael; Hoti, Fabian; Christopher, Solomon; Majak, Maila; Kool-Houweling, Leanne; Strongman, Helen; Linder, Marie; Dolin, Paul; Bahmanyar, Shahram

    2016-08-16

     To evaluate the association between pioglitazone use and bladder cancer risk in patients with type 2 diabetes.  Retrospective cohort study using propensity score matched cohorts.  Healthcare databases from Finland, the Netherlands, Sweden, and the United Kingdom. Data comprised country specific datasets of linked records on prescriptions, hospitals, general practitioners, cancer, and deaths.  Patients with type 2 diabetes who initiated pioglitazone (n=56 337) matched with patients with type 2 diabetes in the same country exposed to diabetes drug treatments other than pioglitazone (n=317 109). Two matched cohorts were created, using a 1:1 fixed ratio (nearest match cohort) and a 1:10 variable ratio (multiple match cohort). Patients were matched on treatment history and propensity scores accounting for several variables associated with pioglitazone initiation.  Hazard ratios and 95% confidence intervals were estimated by Cox's proportional hazards model with adjustments for relevant confounders. To assess the robustness of the findings, several sensitivity and stratified analyses were performed.  In the cohort exposed to pioglitazone treatment, 130 bladder cancers occurred over a mean follow-up time of 2.9 years. In the nearest match and multiple match cohorts not exposed to pioglitazone treatment, 153 and 970 bladder cancers were recorded, with a mean follow‑up time of 2.8 and 2.9 years, respectively. With regards to bladder cancer risk, the adjusted hazard ratio for patients ever exposed versus never exposed to pioglitazone was 0.99 (95% confidence interval 0.75 to 1.30) and 1.00 (0.83 to 1.21) in the nearest and multiple match cohorts, respectively. Increasing duration of pioglitazone use and increasing cumulative dose were not associated with risk of bladder cancer (>48 months of pioglitazone use, adjusted hazard ratio 0.86 (0.44 to 1.66); >40 000 mg cumulative dose, 0.65 (0.33 to 1.26) in the nearest match cohort).  This study shows no evidence of an association between ever use of pioglitzone and risk of bladder cancer compared with never use, which is consistent with results from other recent studies that also included a long follow-up period.  Registered to the European Union electronic register of post-authorisation studies (EU PAS register no EUPAS3626). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Cardiac Outcomes After Ischemic Stroke or Transient Ischemic Attack: Effects of Pioglitazone in Patients With Insulin Resistance Without Diabetes Mellitus.

    PubMed

    Young, Lawrence H; Viscoli, Catherine M; Curtis, Jeptha P; Inzucchi, Silvio E; Schwartz, Gregory G; Lovejoy, Anne M; Furie, Karen L; Gorman, Mark J; Conwit, Robin; Abbott, J Dawn; Jacoby, Daniel L; Kolansky, Daniel M; Pfau, Steven E; Ling, Frederick S; Kernan, Walter N

    2017-05-16

    Insulin resistance is highly prevalent among patients with atherosclerosis and is associated with an increased risk for myocardial infarction (MI) and stroke. The IRIS trial (Insulin Resistance Intervention after Stroke) demonstrated that pioglitazone decreased the composite risk for fatal or nonfatal stroke and MI in patients with insulin resistance without diabetes mellitus, after a recent ischemic stroke or transient ischemic attack. The type and severity of cardiac events in this population and the impact of pioglitazone on these events have not been described. We performed a secondary analysis of the effects of pioglitazone, in comparison with placebo, on acute coronary syndromes (MI and unstable angina) among IRIS participants. All potential acute coronary syndrome episodes were adjudicated in a blinded fashion by an independent clinical events committee. The study cohort was composed of 3876 IRIS participants, mean age 63 years, 65% male, 89% white race, and 12% with a history of coronary artery disease. Over a median follow-up of 4.8 years, there were 225 acute coronary syndrome events, including 141 MIs and 84 episodes of unstable angina. The MIs included 28 (19%) with ST-segment elevation. The majority of MIs were type 1 (94, 65%), followed by type 2 (45, 32%). Serum troponin was 10× to 100× upper limit of normal in 49 (35%) and >100× upper limit of normal in 39 (28%). Pioglitazone reduced the risk of acute coronary syndrome (hazard ratio, 0.71; 95% confidence interval, 0.54-0.94; P =0.02). Pioglitazone also reduced the risk of type 1 MI (hazard ratio, 0.62; 95% confidence interval, 0.40-0.96; log-rank P =0.03), but not type 2 MI (hazard ratio, 1.05; 95% confidence interval, 0.58-1.91; P =0.87). Similarly, pioglitazone reduced the risk of large MIs with serum troponin >100× upper limit of normal (hazard ratio, 0.44; 95% confidence interval, 0.22-0.87; P =0.02), but not smaller MIs. Among patients with insulin resistance without diabetes mellitus, pioglitazone reduced the risk for acute coronary syndromes after a recent cerebrovascular event. Pioglitazone appeared to have its most prominent effect in preventing spontaneous type 1 MIs. URL: http://clinicaltrials.gov. Unique identifier: NCT00091949. © 2017 American Heart Association, Inc.

  7. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats

    PubMed Central

    Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model. PMID:27997588

  8. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    PubMed

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  9. Pioglitazone and the risk of cardiovascular events in patients with Type 2 diabetes receiving concomitant treatment with nitrates, renin-angiotensin system blockers, or insulin: results from the PROactive study (PROactive 20).

    PubMed

    Erdmann, Erland; Spanheimer, Robert; Charbonnel, Bernard

    2010-09-01

    Patients with Type 2 diabetes mellitus (T2DM) are often treated with multiple glucose-lowering and cardiovascular agents. The concomitant use of nitrates, renin-angiotensin system (RAS) blockers, or insulin has been linked to a potential increase in myocardial ischemic risk with rosiglitazone. The PROactive database provides an opportunity to investigate the effects of these medications on the potential macrovascular benefits reported with pioglitazone. The PROactive study was a randomized double-blind prospective trial that evaluated mortality and cardiovascular morbidity in 5238 patients with T2DM and macrovascular disease. Patients received pioglitazone or placebo in addition to their baseline glucose-lowering and cardiovascular medications. The effect of pioglitazone on composite endpoints was evaluated, including all-cause death, myocardial infarction (MI), and stroke, as well as safety events of edema and serious heart failure, in subgroups using nitrates, RAS blockers, or insulin at baseline. The risk of all-cause death, MI, and stroke for pioglitazone versus placebo was similar regardless of the baseline use of nitrates, RAS blockers, or insulin, with hazard ratios ranging from 0.81 to 0.87. Similar results were obtained for the other composite endpoints analyzed. There were no significant interactions between baseline medication subgroups and treatment. The increased risk of edema and serious heart failure was consistent across the baseline medication subgroups. This post hoc analysis did not reveal an increased risk of macrovascular events with pioglitazone in patients receiving nitrates, RAS blockers, or insulin. Rather, all patients realized the same trend towards benefit with pioglitazone, and adverse events of edema and heart failure were predictable. © 2010 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  10. Combination effects of alogliptin and pioglitazone on steatosis and hepatic fibrosis formation in a mouse model of non-alcoholic steatohepatitis.

    PubMed

    Amano, Yuichiro; Tsuchiya, Shuntarou; Imai, Mayumi; Tohyama, Kimio; Matsukawa, Jun; Isono, Osamu; Yasuno, Hironobu; Enya, Kazuaki; Koumura, Emiko; Nagabukuro, Hiroshi

    2018-02-26

    This study aimed to evaluate the effects of combination therapy with a dipeptidyl peptidase-4 inhibitor, alogliptin, and a peroxisome proliferator-activated receptor-γ agonist, pioglitazone, in a preclinical model of nonalcoholic steatohepatitis using low-density lipoprotein receptor-knockout mice fed a modified choline-deficient l-amino acid-defined diet. Monotherapy with either alogliptin (10-200 mg/kg) or pioglitazone (6-20 mg/kg) significantly decreased hepatic triglyceride content and fibrosis. The concomitant treatment of alogliptin (30 mg/kg), pioglitazone (20 mg/kg) also decreased hepatic triglyceride and hepatic collagen-I mRNA at greater extent compared to monotherapy. Hepatic expression of CD11b mRNA and monocyte chemoattractant protein-1 were also reduced by the concomitant treatment. These results suggest that via an anti-inflammatory potential in addition to anti-metabolic effects, the combination therapy of alogliptin and pioglitazone may provide therapeutic benefits to type 2 diabetes patients with nonalcoholic steatohepatitis, which will be proven in controlled clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Kernan, Walter N; Viscoli, Catherine M; Furie, Karen L; Young, Lawrence H; Inzucchi, Silvio E; Gorman, Mark; Guarino, Peter D; Lovejoy, Anne M; Peduzzi, Peter N; Conwit, Robin; Brass, Lawrence M; Schwartz, Gregory G; Adams, Harold P; Berger, Leo; Carolei, Antonio; Clark, Wayne; Coull, Bruce; Ford, Gary A; Kleindorfer, Dawn; O'Leary, John R; Parsons, Mark W; Ringleb, Peter; Sen, Souvik; Spence, J David; Tanne, David; Wang, David; Winder, Toni R

    2016-04-07

    Patients with ischemic stroke or transient ischemic attack (TIA) are at increased risk for future cardiovascular events despite current preventive therapies. The identification of insulin resistance as a risk factor for stroke and myocardial infarction raised the possibility that pioglitazone, which improves insulin sensitivity, might benefit patients with cerebrovascular disease. In this multicenter, double-blind trial, we randomly assigned 3876 patients who had had a recent ischemic stroke or TIA to receive either pioglitazone (target dose, 45 mg daily) or placebo. Eligible patients did not have diabetes but were found to have insulin resistance on the basis of a score of more than 3.0 on the homeostasis model assessment of insulin resistance (HOMA-IR) index. The primary outcome was fatal or nonfatal stroke or myocardial infarction. By 4.8 years, a primary outcome had occurred in 175 of 1939 patients (9.0%) in the pioglitazone group and in 228 of 1937 (11.8%) in the placebo group (hazard ratio in the pioglitazone group, 0.76; 95% confidence interval [CI], 0.62 to 0.93; P=0.007). Diabetes developed in 73 patients (3.8%) and 149 patients (7.7%), respectively (hazard ratio, 0.48; 95% CI, 0.33 to 0.69; P<0.001). There was no significant between-group difference in all-cause mortality (hazard ratio, 0.93; 95% CI, 0.73 to 1.17; P=0.52). Pioglitazone was associated with a greater frequency of weight gain exceeding 4.5 kg than was placebo (52.2% vs. 33.7%, P<0.001), edema (35.6% vs. 24.9%, P<0.001), and bone fracture requiring surgery or hospitalization (5.1% vs. 3.2%, P=0.003). In this trial involving patients without diabetes who had insulin resistance along with a recent history of ischemic stroke or TIA, the risk of stroke or myocardial infarction was lower among patients who received pioglitazone than among those who received placebo. Pioglitazone was also associated with a lower risk of diabetes but with higher risks of weight gain, edema, and fracture. (Funded by the National Institute of Neurological Disorders and Stroke; ClinicalTrials.gov number, NCT00091949.).

  12. Echocardiographic evidence for valvular toxicity of benfluorex: a double-blind randomised trial in patients with type 2 diabetes mellitus.

    PubMed

    Derumeaux, Geneviève; Ernande, Laura; Serusclat, André; Servan, Evelyne; Bruckert, Eric; Rousset, Hugues; Senn, Stephen; Van Gaal, Luc; Picandet, Brigitte; Gavini, François; Moulin, Philippe

    2012-01-01

    REGULATE trial was designed to compare the efficacy and safety of benfluorex versus pioglitazone in type 2 diabetes mellitus (DM) patients. Double-blind, parallel-group, international, randomised, non-inferiority trial. More than half of the 196 participating centres were primary care centres. Patients eligible had type 2 DM uncontrolled on sulfonylurea. 846 were randomised. They received study treatment for 1 year. 423 patients were allocated to benfluorex (150 to 450 mg/day) and 423 were allocated to pioglitazone (30 to 45 mg/day). Primary efficacy criterion was HbA(1c). Safety assessment included blinded echocardiographic evaluation of cardiac and valvular status. At baseline, patients were 59.1 ± 10.5 years old with HbA1c 8.3 ± 0.8%, and DM duration 7.1 ± 6.0 years. During the study, mean HbA1c significantly decreased in both groups (benfluorex: from 8.30 ± 0.80 to 7.77 ± 1.31 versus pioglitazone: from 8.30 ± 0.80 to 7.45 ± 1.30%). The last HbA1c value was significantly lower with pioglitazone than with benfluorex (p<0.001) and non-inferiority of benfluorex was not confirmed (p = 0.19). Among the 615 patients with assessable paired echocardiography (310 benfluorex, 305 pioglitazone), 314 (51%) had at least one morphological valvular abnormality and 515 (84%) at least one functional valvular abnormality at baseline. Emergent morphological abnormalities occurred in 8 patients with benfluorex versus 4 with pioglitazone (OR 1.99), 95% CI (0.59 to 6.69). Emergent regurgitation (new or increased by one grade or more) occurred more frequently with benfluorex (82 patients, 27%) than with pioglitazone (33 patients, 11%) (OR 2.97), 95% CI (1.91 to 4.63) and were mainly rated grade 1; grade 2 (mild) was detected in 2 patients with benfluorex and 3 with pioglitazone. There was no moderate or severe regurgitation. After 1 year of exposure, our results show a 2.97 fold increase in the incidence of valvular regurgitation with benfluorex and provide evidence for the valvular toxicity of this drug.

  13. Effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in drug-naive subjects with type 2 diabetes.

    PubMed

    Bi, Yan; Zhang, Bing; Xu, Wen; Yang, Huijie; Feng, Wenhuan; Li, Cuiliu; Tong, Guoyu; Li, Ming; Wang, Xin; Shen, Shanmei; Zhu, Bin; Weng, Jianping; Zhu, Dalong

    2014-10-01

    Ectopic accumulation of lipids in nonadipose tissues plays a primary role in the pathogenesis of type 2 diabetes mellitus (T2DM). This study was to examine the effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in T2DM. Thirty-three drug-naive T2DM patients (age 52.7 ± 1.7 years, HbA1c 8.7 ± 0.2 %, body mass index 24.5 ± 0.5 kg/m(2)) were randomized into exenatide, insulin, or pioglitazone for 6 months. Intrahepatic fat (IHF), visceral fat (VF), and subcutaneous fat (SF) were measured using proton nuclear magnetic resonance spectroscopy. Plasma tumor necrosis factor α (TNFα) and adiponectin were assayed by ELISA. HbA1c declined significantly in all three groups. Body weight, waist, and serum triglycerides decreased with exenatide. After interventions, IHF significantly reduced with three treatments (exenatide Δ = -68 %, insulin Δ = -58 %, pioglitazone Δ = -49 %). Exenatide reduced VF (Δ = -36 %) and SF (Δ = -13 %), and pioglitazone decreased VF (Δ = -30 %) with no impact on SF, whereas insulin had no impact on VF or SF. Levels of TNFα (exenatide/insulin/pioglitazone) decreased, and levels of adiponectin (exenatide/pioglitazone) increased. Analysis showed that ΔIHF correlated with ΔHbA1c and Δweight. Besides, ΔIHF correlated with Δtriglycerides and ΔTNFα, but the correlations fell short of significance after BMI adjustment. By linear regression analysis, ΔHbA1c alone explained 41.5 % of the variance of ΔIHF, and ΔHbA1c + Δweight explained 57.6 % of the variance. Liver fat content can be significantly reduced irrespective of using exenatide, insulin, and pioglitazone. Early glycaemic control plays an important role in slowing progression of fatty liver in T2DM.

  14. [Six-month effectiveness and tolerability of pioglitazone in combination with sulfonylureas or metformin for the treatment of type 2 diabetes mellitus].

    PubMed

    Rodríguez, Angel; Reviriego, Jesús; Polavieja, Pepa; Mesa, Jordi

    2008-11-29

    Pioglitazone has been reported to improve common cardiovascular risk factors in addition to glycemic control in patients with type 2 diabetes mellitus (T2DM). The changes in cardiovascular risk profile were evaluated comparatively in large cohorts either treated or not with pioglitazone-containing combinations in the current clinical setting within Spain. A nationwide prospective, controlled, observational cohort clinical study was performed in 2294 patients with T2DM who started, at the criterion of the treating physician, oral antihyperglycemic treatment with either pioglitazone plus a sulfonylurea (Pio+SU; n=851), pioglitazone plus metformin (Pio+Met; n=723) or a sulfonylurea plus metformin (SU+Met; n=720) due to inadequate control with previous therapy. Serum cholesterol, blood glucose, hemoglobin A1C, blood pressure and certain anthropometric parameters were measured at baseline and after 6 months of treatment. Serum high density lipoprotein-cholesterol increased in average (mg/dl) 2.08 with Pio+SU, 2.06 with Pio+Met and 0.67 with SU+Met; while triglycerides decreased (mg/dl) 26.6, 30.6 and 17.6 in the same cohorts. Inter-group differences were significant (p<0.001 in both parameters). Total cholesterol decreased significantly more with SU+Met than in the pioglitazone cohorts. Mean fasting plasma glucose and hemoglobin A1C reductions were significantly greater in the pioglitazone cohorts than in the SU+Met cohort: 27.74, 28.94 and 23.46 mg/dl (p=0.012); and 0.80, 0.87 and 0.71% (p=0.016) with Pio+SU, Pio+Met and SU+Met, respectively. Slight, but significant variations of body weight were also registered in the Pio+SU (+1.4 kg) and SU+Met (-0.7 kg) groups. Treatment with pioglitazone was associated with significant improvements of lipid and glycemic parameters that are linked to insulin resistance and cardiovascular risk in patients with T2DM in their routine clinical care. The non-randomised allocation of patients to treatments, inherent to its observational design, is an important limitation of the present study.

  15. Comparison of effects of pioglitazone and glimepiride on plasma soluble RAGE and RAGE expression in peripheral mononuclear cells in type 2 diabetes: randomized controlled trial (PioRAGE).

    PubMed

    Koyama, Hidenori; Tanaka, Shinji; Monden, Masayo; Shoji, Takuhito; Morioka, Tomoaki; Fukumoto, Shinya; Mori, Katsuhito; Emoto, Masanori; Shoji, Tetsuo; Fukui, Mitsuru; Fujii, Hisako; Nishizawa, Yoshiki; Inaba, Masaaki

    2014-06-01

    The receptor for advanced glycation end-products (RAGE) is involved in vascular complications in diabetic patients. Pioglitazone, in contrast to glimepiride, has been shown to be protective against atherosclerotic disorders. In this study, we directly compared the effects of those drugs on RAGE system. Sixty-three type 2 diabetic patients (age 20-80 years, hemoglobin A1c 6.4-10.3%) being treated with sulfonylurea (glimepiride 0.5-2.0 mg/day, glyclazide 20-80 mg/day, glibenclamide 1.25-5.0 mg/day), or with nateglinide or metiglynide were randomly assigned to receive either pioglitazone (n = 31) or glimepiride (n = 32). Levels in plasma of soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE), and RAGE expression in peripheral mononuclear cells were determined at 0, 12, and 24 weeks. Twenty-seven patients in the pioglitazone group (15-30 mg) and 30 in the glimepiride group (0.5-4 mg) completed the 24-week trial. Increases in plasma esRAGE were significantly greater in the pioglitazone group (12 weeks: 55 ± 15 pg/mL, p = 0.018; 24 weeks: 90 ± 14 pg/mL, p = 0.003) as compared to the glimepiride group (12 weeks: 12 ± 9 pg/mL; 24 weeks: 29 ± 14 pg/mL). Increases in plasma sRAGE were also significantly (p = 0.037) higher in the pioglitazone group at 24 weeks (170 ± 166 vs.74 ± 171 pg/mL). Furthermore, RAGE expression in mononuclear cells was significantly (p = 0.008) decreased to a greater degree in the pioglitazone group at 24 weeks (-7.39 ± 5.18 vs. -3.39 ± 5.72 MFI). Changes in HbA1c, IRI, and insulin resistance index (HOMA) at 24 weeks were not significantly different between the groups. Pioglitazone suppresses RAGE expression and increases circulating sRAGE/esRAGE, and those activities are not necessarily dependent on plasma glucose or insulin resistance levels. UMIN000002055. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing-Min, E-mail: wjm730222@163.com; Wang, Dong, E-mail: 8888dd@163.com; Tan, Yu-Yan, E-mail: tyytyz@sina.com

    Highlights: • Cholesterosis is a metabolic disease characterized by excessive lipid droplets. • Lipid droplet efflux is mediated by the ABCA1 transporter. • 22(R)-hydroxycholesterol can activate LXRα and up-regulate ABCA1. • Pioglitazone up-regulates ABCA1 in a PPARγ–LXRα–ABCA1-dependent manner. • 22(R)-hydroxycholesterol and pioglitazone synergistically decrease lipid droplets. - Abstract: Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis andmore » the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ–LXRα–ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.« less

  17. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    PubMed

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A randomized controlled trial of clomifene citrate, metformin, and pioglitazone versus letrozole, metformin, and pioglitazone for clomifene-citrate-resistant polycystic ovary syndrome.

    PubMed

    El-khayat, Waleed; Abdel Moety, Ghada; Al Mohammady, Maged; Hamed, Dalia

    2016-02-01

    To examine the efficacy of clomifene citrate, metformin, and pioglitazone versus letrozole, metformin, and pioglitazone among women with polycystic ovary syndrome (PCOS) resistant to clomifene citrate. A prospective double-blind randomized controlled trial of women younger than 40 years who had primary/secondary infertility associated with PCOS and had not ovulated in response to clomifene citrate regimens previously was conducted at a center in Cairo, Egypt, between August 1, 2013, and December 31, 2014. Computer-generated random number tables and opaque envelopes were used to assign participants to group A or group B. Participants allocated to group A received 100mg clomifene citrate daily for 5 days from the third day of the menstrual cycle, whereas those in group B received 5mg letrozole daily in the same regimen. All patients received 850 mg metformin and 15 mg pioglitazone for 10 days from the first day of the menstrual cycle. The primary outcome was cumulative ovulation rate. Analyses were by intention to treat. Fifty women were assigned to each group. Ovulation occurred in 108 (92.3%) of 117 cycles in group A and 93 (86.9%) of 107 cycles in Group B (P=0.184). Combined treatment with letrozole, metformin, and pioglitazone was efficacious among women with PCOS resistant to clomifene citrate. ClinicalTrials.gov: NCT01909141. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  19. [Pharmacokinetic interaction of pioglitazone hydrochloride and atorvastatin calcium in Beagle dogs].

    PubMed

    Chen, He-Li; Zhang, Wen-Ping; Yang, Fu-Ying; Wang, Xin-Yu; Yang, Wen-Cheng; Dang, Hong-Wan

    2013-05-01

    The object of this study is to investigate the pharmacokinetic interaction of pioglitazone hydrochloride and atorvastatin calcium in healthy adult Beagle dogs following single and multiple oral dose administration. A randomized, cross-over study was conducted with nine healthy adult Beagle dogs assigned to three groups. Each group was arranged to take atorvastatin calcium (A), pioglitazone hydrochloride (B), atorvastatin calcium and pioglitazone hydrochloride (C) orally in the first period, to take B, C, A in the second period, and to take C, A, B in the third period for 6 days respectively. The blood samples were collected at the first and the sixth day after the administration, plasma drug concentrations were determined by LC-MS/MS, a one-week wash-out period was needed between each period. The pharmacokinetic parameters of drug combination group and the drug alone group were calculated by statistical moment method, calculation of C(max) and AUC(0-t) was done by using 90% confidence interval method of the bioequivalence and bioavailability degree module DAS 3.2.1 software statistics. Compared with the separate administration, the main pharmacokinetic parameters (C(max) and AUC(0-t)) of joint use of pioglitazone hydrochloride and atorvastatin calcium within 90% confidence intervals for bioequivalence statistics were unqualified, the mean t(max) with standard deviation used paired Wilcoxon test resulted P > 0.05. There was no significant difference within t1/2, CL(int), MRT, V/F. Pioglitazone hydrochloride and atorvastatin calcium had pharmacokinetic interaction in healthy adult Beagle dogs.

  20. The beneficial metabolic effects of insulin sensitizers are not attenuated by mitochondrial pyruvate carrier 2 hypomorphism.

    PubMed

    Vigueira, Patrick A; McCommis, Kyle S; Hodges, Wesley T; Schweitzer, George G; Cole, Serena L; Oonthonpan, Lalita; Taylor, Eric B; McDonald, William G; Kletzien, Rolf F; Colca, Jerry R; Finck, Brian N

    2017-08-01

    What is the central question of this study? The antidiabetic effects of thiazolidinedione (TZD) drugs may be mediated in part by a molecular interaction with the constituent proteins of the mitochondrial pyruvate carrier complex (MPC1 and MPC2). We examined the ability of a mutant mouse strain expressing an N-terminal truncation of MPC2 (Mpc2Δ16 mice) to respond to TZD treatment. What is the main finding and its importance? The response of Mpc2Δ16 mice to TZD treatment was not significantly different from that of wild-type C57BL6/J control animals, suggesting that the 16 N-terminal amino acids of MPC2 are dispensable for the effects of TZD treatment. Rosiglitazone and pioglitazone are thiazolidinedione (TZD) compounds that have been used clinically as insulin-sensitizing drugs and are generally believed to mediate their effects via activation of the peroxisome proliferator-activated receptor γ (PPARγ). Recent work has shown that it is possible to synthesize TZD compounds with potent insulin-sensitizing effects and markedly diminished affinity for PPARγ. Both clinically used TZDs and investigational PPARγ-sparing TZDs, such as MSDC-0602, interact with the mitochondrial pyruvate carrier (MPC) and inhibit its activity. The MPC complex is composed of two proteins, MPC1 and MPC2. Herein, we used mice expressing a hypomorphic MPC2 protein missing 16 amino acids in the N-terminus (Mpc2Δ16 mice) to determine the effects of these residues in mediating the insulin-sensitizing effects of TZDs in diet-induced obese mice. We found that both pioglitazone and MSDC-0602 elicited their beneficial metabolic effects, including improvement in glucose tolerance, attenuation of hepatic steatosis, reduction of adipose tissue inflammation and stimulation of adipocyte browning, in both wild-type and Mpc2Δ16 mice after high-fat diet feeding. In addition, truncation of MPC2 failed to attenuate the interaction between TZDs and the MPC in a bioluminescence resonance energy transfer-based assay or to affect the suppression of pyruvate-stimulated respiration in cells. Collectively, these data suggest that the interaction between TZDs and MPC2 is not affected by loss of the N-terminal 16 amino acids nor are these residues required for the insulin-sensitizing effects of these compounds. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  1. [Current options of insulin resistence correction in patients with metabolic syndrome].

    PubMed

    Demidova, T Iu; Ametov, A S; Titova, O I

    2006-01-01

    To study thiasolidindion drug pioglitazone for efficacy in metabolic syndrome (MS). Twenty patients with MS were examined at baseline and after 12 week therapy with pioglitazone. The examination included estimation of fasting and postprandial glycemia, insulin resistance index, HOMA-IR index, HbAlc, lipid profile, microalbuminuria (MAU), blood pressure, endothelium-related vasodilation. Pioglitazone therapy for 12 weeks significantly reduced HbAlc, fasting and postprandial glycemia, insulinemia, HOMA-IR, improved blood lipid spectrum, reduced visceral obesity. Positive effects were also achieved on blood pressure, MAU and endothelium-related vasodilation.

  2. Pioglitazone is equally effective for diabetes prevention in older versus younger adults with impaired glucose tolerance.

    PubMed

    Espinoza, Sara E; Wang, Chen-Pin; Tripathy, Devjit; Clement, Stephen C; Schwenke, Dawn C; Banerji, Mary Ann; Bray, George A; Buchanan, Thomas A; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Stentz, Frankie B; Reaven, Peter D; DeFronzo, Ralph A; Musi, Nicolas

    2016-12-01

    To determine the efficacy of pioglitazone to prevent type 2 diabetes in older compared to younger adults with pre-diabetes. Six hundred two participants with impaired glucose tolerance (IGT) were randomized in double blind fashion to placebo or pioglitazone for diabetes prevention in the ACT NOW study (NEJM 364:1104-1115, 2011). Cox proportional hazard regression was used to compare time to development of diabetes over a mean of 2 years between older (≥61 years) and younger participants. We compared effects of pioglitazone versus placebo on metabolic profiles, inflammatory markers, adipokines, β cell function (disposition index), insulin sensitivity (Matsuda index), and body composition by ANOVA. Diabetes incidence was reduced by 85 % in older and 69 % in younger subjects (p = 0.41). β cell function (disposition index) increased by 35.0 % in the older and 26.7 % in younger subjects (p = 0.83). Insulin sensitivity (Matsuda index) increased by 3.07 (5.2-fold) in older and by 2.54 (3.8-fold) in younger participants (p = 0.58). Pioglitazone more effectively increased adiponectin in older versus younger subjects (22.9 ± 3.2 μg/mL [2.7-fold] vs. 12.7 ± 1.4 μg/mL [2.2-fold], respectively; p = 0.04). Younger subjects tended to have a greater increase in whole body fat mass compared to older subjects (3.6 vs. 3.1 kg; p = 0.061). Younger and older subjects had similar decreases in bone mineral density (0.018 ± 0.0071 vs. 0.0138 ± 0.021 g/cm 2 ). Younger and older pre-diabetic adults taking pioglitazone had similar reductions in conversion to diabetes and older adults had similar or greater improvements in metabolic risk factors, demonstrating that pioglitazone is useful in preventing diabetes in older adults.

  3. Impact of treatment with pioglitazone on stroke outcomes: a real world database analysis.

    PubMed

    Morgan, Christopher Ll; Inzucchi, Silvio E; Puelles, Jorge; Jenkins-Jones, Sara; Currie, Craig J

    2018-05-07

    Randomised controlled trials have reported an association between pioglitazone and reduced incidence of stroke in type 2 diabetic (T2DM) and insulin-resistant populations. We investigated this association within a real-world database. T2DM patients initiating pioglitazone between 2000-2012 were extracted from the Clinical Practice Research Datalink (CPRD); a UK routine. Two non-exposed control cohorts were matched on age, gender, HbA1c, diabetes duration, stroke history, co-morbidities and prior T2DM regimen. Control cohort-1 comprised patients initiating a new T2DM therapy as their respective case initiated pioglitazone. Control cohort-2 remained on the same T2DM regimen as their respective case prior to the case initiating pioglitazone. The primary outcome was incident stroke; other outcomes included mortality, hospital length of stay and stroke recurrence. 4,234 pioglitazone patients matched to controls in cohort-1 and 3,604 in cohort-2. For the primary outcome there were significantly reduced hazard ratios (HRs) for cases:controls. Cohort 1, the HR was 0.627 (95% CI, 0.404-0.972) during the therapy period and 0.640 (0.485-0.843) over the entire observation period; respective HRs were 0.516 (0.336-0.794) and 0.773 (0.611-0.978) for cohort 2. There was no significant difference in 30-day mortality rate or rate of recurrent stroke. For hospitalised stroke events there was a significant difference in length of stay for patients discharged to usual residence (median 3.0 days versus 7.0 days; p=0.008) for control cohort-2 whilst on-treatment. In support of evidence from two large randomized trials, these observational data show that pioglitazone has a potent effect in reducing stroke events in patients with type 2 diabetes. This article is protected by copyright. All rights reserved.

  4. Echocardiographic Evidence for Valvular Toxicity of Benfluorex: A Double-Blind Randomised Trial in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Derumeaux, Geneviève; Ernande, Laura; Serusclat, André; Servan, Evelyne; Bruckert, Eric; Rousset, Hugues; Senn, Stephen; Van Gaal, Luc; Picandet, Brigitte; Gavini, François; Moulin, Philippe

    2012-01-01

    Objectives REGULATE trial was designed to compare the efficacy and safety of benfluorex versus pioglitazone in type 2 diabetes mellitus (DM) patients. Methods Double-blind, parallel-group, international, randomised, non-inferiority trial. More than half of the 196 participating centres were primary care centres. Patients eligible had type 2 DM uncontrolled on sulfonylurea. 846 were randomised. They received study treatment for 1 year. 423 patients were allocated to benfluorex (150 to 450 mg/day) and 423 were allocated to pioglitazone (30 to 45 mg/day). Primary efficacy criterion was HbA1c. Safety assessment included blinded echocardiographic evaluation of cardiac and valvular status. Results At baseline, patients were 59.1±10.5 years old with HbA1c 8.3±0.8%, and DM duration 7.1±6.0 years. During the study, mean HbA1c significantly decreased in both groups (benfluorex: from 8.30±0.80 to 7.77±1.31 versus pioglitazone: from 8.30±0.80 to 7.45±1.30%). The last HbA1c value was significantly lower with pioglitazone than with benfluorex (p<0.001) and non-inferiority of benfluorex was not confirmed (p = 0.19). Among the 615 patients with assessable paired echocardiography (310 benfluorex, 305 pioglitazone), 314 (51%) had at least one morphological valvular abnormality and 515 (84%) at least one functional valvular abnormality at baseline. Emergent morphological abnormalities occurred in 8 patients with benfluorex versus 4 with pioglitazone (OR 1.99), 95% CI (0.59 to 6.69). Emergent regurgitation (new or increased by one grade or more) occurred more frequently with benfluorex (82 patients, 27%) than with pioglitazone (33 patients, 11%) (OR 2.97), 95% CI (1.91 to 4.63) and were mainly rated grade 1; grade 2 (mild) was detected in 2 patients with benfluorex and 3 with pioglitazone. There was no moderate or severe regurgitation. Conclusion After 1 year of exposure, our results show a 2.97 fold increase in the incidence of valvular regurgitation with benfluorex and provide evidence for the valvular toxicity of this drug. Trial registration www.controlled-trials.com ISRCTN 27354239. isrctn27354239 PMID:22723853

  5. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus?

    PubMed

    Consoli, A; Formoso, G

    2013-11-01

    Thiazolidinediones have been introduced in the treatment of type 2 diabetes mellitus (T2DM) since the late 1990s. Although troglitazone was withdrawn from the market a few years later due to liver toxicity, both rosiglitazone and pioglitazone gained widespread use for T2DM treatment. In 2010, however, due to increased risk of cardiovascular events associated with its use, the European Medicines Agency recommended suspension of rosiglitazone use and the Food and Drug Administration severely restricted its use. Thus pioglitazone is the only thiazolidinedione still significantly employed for treating T2DM and it is the only molecule of this class still listed in the American Diabetes Association-European Association for the Study of Diabetes 2012 Position Statement. However, as for the other thiazolidinediones, use of pioglitazone is itself limited by several side effects, some of them potentially dangerous. This, together with the development of novel therapeutic strategies approved in the last couple of years, has made it questionable whether or not thiazolidinediones (namely pioglitazone) should still be used in the treatment of T2DM. This article will attempt to formulate an answer to this question by critically reviewing the available data on the numerous advantages and the potentially worrying shortcomings of pioglitazone treatment in T2DM. © 2013 John Wiley & Sons Ltd.

  6. Oxidative/Nitrosative Stress and Protein Damages in Aqueous Humor of Hyperglycemic Rabbits: Effects of Two Oral Antidiabetics, Pioglitazone and Repaglinide

    PubMed Central

    Gumieniczek, Anna; Owczarek, Beata; Pawlikowska, Bernadeta

    2012-01-01

    The present study was undertaken to determine oxidative/nitrosative stress in aqueous humor of alloxan-induced hyperglycemic rabbits and to investigate the effects of two oral antidiabetic drugs, pioglitazone from peroxisome proliferator-activated receptor gamma (PPARγ) agonists and repaglinide from nonsulfonylurea KATP channel blockers. Ascorbic acid (AA), glutathione (GSH), total antioxidant status (TAS), lipid peroxidation products (LPO), total nitrites (NO2), advanced oxidized protein products (AOPP), and protein carbonyl groups (PCG) were determined using respective colorimetric and ELISA methods. In our hyperglycemic animals, AA decreased by 77%, GSH by 45%, and TAS by 66% as compared to control animals. Simultaneously, LPO increased by 78%, PCG by 60%, AOPP by 84%, and NO2 by 70%. In pioglitazone-treated animals, AA and TAS increased above control values while GSH and PCG were normalized. In turn, LPO was reduced by 54%, AOPP by 84%, and NO2 by 24%, in relation to hyperglycemic rabbits. With repaglinide, AA and TAS were normalized, GSH increased by 20%, while LPO decreased by 45%. Our results show that pioglitazone and repaglinide differ significantly in their ability to ameliorate the parameters like NO2, PCG, and AOPP. In this area, the multimodal action of pioglitazone as PPARγ agonist is probably essential. PMID:22474428

  7. Coadministration of pioglitazone or glyburide and alogliptin: pharmacokinetic drug interaction assessment in healthy participants.

    PubMed

    Karim, Aziz; Laurent, Aziz; Munsaka, Melvin; Wann, Elisabeth; Fleck, Penny; Mekki, Qais

    2009-10-01

    Alogliptin is a dipeptidyl peptidase-4 inhibitor under investigation for treatment of patients with type 2 diabetes mellitus. Potential pharmacokinetic (PK) drug-drug interactions of alogliptin with pioglitazone or glyburide were evaluated in healthy adults. In a randomized, 6-sequence, 3-period crossover study (study I), participants (n = 30 enrolled; n = 27 completed) received monotherapy with pioglitazone 45 mg once daily (qd), alogliptin 25 mg qd, or coadministration of the 2 agents. The 12-day treatment periods were separated by a > or =10-day washout interval. In a nonrandomized, single-sequence study (study II), participants (n = 24 completed) received a single 5-mg dose of the sulfonylurea glyburide, alone and after 8 days of dosing with alogliptin 25 mg qd. Sequential samples of blood (both studies) and urine (first study) were obtained for determination of PK parameters for alogliptin, pioglitazone, their metabolites, and glyburide. Minor changes in PK parameters between combination therapy and monotherapy were obtained but not judged to be clinically relevant. The combination treatments were well tolerated, although glyburide frequently caused hypoglycemia. Most adverse events were of mild intensity and occurred with a frequency similar to that with monotherapy. It is concluded that pioglitazone or glyburide can be administered with alogliptin without dose adjustment to any component of the combination therapy.

  8. Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial

    PubMed Central

    2015-01-01

    Summary Background A systematic assessment of potential disease-modifying compounds for Parkinson's disease concluded that pioglitazone could hold promise for the treatment of patients with this disease. We assessed the effect of pioglitazone on the progression of Parkinson's disease in a multicentre, double-blind, placebo-controlled, futility clinical trial. Methods Participants with the diagnosis of early Parkinson's disease on a stable regimen of 1 mg/day rasagiline or 10 mg/day selegiline were randomly assigned (1:1:1) to 15 mg/day pioglitazone, 45 mg/day pioglitazone, or placebo. Investigators were masked to the treatment assignment. Only the statistical centre and the central pharmacy knew the treatment name associated with the randomisation number. The primary outcome was the change in the total Unified Parkinson's Disease Rating Scale (UPDRS) score between the baseline and 44 weeks, analysed by intention to treat. The primary null hypothesis for each dose group was that the mean change in UPDRS was 3 points less than the mean change in the placebo group. The alternative hypothesis (of futility) was that pioglitazone is not meaningfully different from placebo. We rejected the null if there was significant evidence of futility at the one-sided alpha level of 0.10. The study is registered at ClinicalTrials.gov, number NCT01280123. Findings 210 patients from 35 sites in the USA were enrolled between May 10, 2011, and July 31, 2013. The primary analysis included 72 patients in the 15 mg group, 67 in the 45 mg group, and 71 in the placebo group. The mean total UPDRS change at 44 weeks was 4.42 (95% CI 2.55–6.28) for 15 mg pioglitazone, 5.13 (95% CI 3.17–7.08) for 45 mg pioglitazone, and 6.25 (95% CI 4.35–8.15) for placebo (higher change scores are worse). The mean difference between the 15 mg and placebo groups was −1.83 (80% CI −3.56 to −0.10) and the null hypothesis could not be rejected (p=0.19). The mean difference between the 45 mg and placebo groups was −1.12 (80% CI −2.93 to 0.69) and the null hypothesis was rejected in favour of futility (p=0.09). Planned sensitivity analyses of the primary outcome, using last value carried forward (LVCF) to handle missing data and using the completers' only sample, suggested that the 15 mg dose is also futile (p=0.09 for LVCF, p=0.09 for completers) but failed to reject the null hypothesis for the 45 mg dose (p=0.12 for LVCF, p=0.19 for completers). Six serious adverse events occurred in the 15 mg group, nine in the 45 mg group, and three in the placebo group; none were thought to be definitely or probably related to the study interventions. Interpretation These findings suggest that pioglitazone at the doses studied here is unlikely to modify progression in early Parkinson's disease. Further study of pioglitazone in a larger trial in patients with Parkinson's disease is not recommended. Funding National Institute of Neurological Disorders and Stroke. PMID:26116315

  9. Impact of pioglitazone regulatory withdrawal on antidiabetic drug use and health in diabetic patients.

    PubMed

    Pariente, Antoine; Mansiaux, Yohann; Jarné, Ana; Salvo, Francesco; Pageot, Cécile; Bezin, Julien; Smith, Andy; Bégaud, Bernard

    2017-12-01

    In 2011, pioglitazone was withdrawn from the French market owing to a potential risk of bladder cancer. This study aimed at assessing the impact of this pioglitazone withdrawal (PW) considering (i) trends in antidiabetic uses and (ii) changes in hospitalization/death rates in diabetic patients following PW. We first considered the general population of the Echantillon Généraliste des Bénéficiaires (EGB), a 1/97th representative sample of the French healthcare insurance system beneficiaries, for the 2010-2014 period. In this, for each non-insulinic antidiabetic drug class, changes within the numbers of monthly supplied drug units for 1000 subjects were studied through times series and Unobserved Component Models. Second, we identified from the EGB a cohort of patients who were delivered a non-insulinic antidiabetic between 01 April 2011 and 01 August 2011 (date of PW). In this, post-withdrawal incidences of all-cause hospitalization and death were compared amongst pioglitazone users and non-users using proportional subdistribution hazards models. PW was accompanied by an increase in metformin (+ 11.7; 95% CI 1.1-22.3) and glinide (+ 11.0; 95% CI 1.2-20.8) numbers of monthly supplied units for 1000 subjects. No significant change was found for GLP-1 agonists, DPP-4 inhibitors, sulphonylureas or alpha-glucosidase inhibitors. In the cohort of non-insulinic antidiabetic users at the time of PW (1093 pioglitazone users, 17,900 non-users), being a pioglitazone user at PW was not associated with a subsequently higher rate of hospitalization. If PW was accompanied with significant changes in the use of some antidiabetics, no adverse impact of PW on hospitalization or death rates of diabetic type 2 patients was found.

  10. Metabolic and hormonal changes induced by pioglitazone in polycystic ovary syndrome: a randomized, placebo-controlled clinical trial.

    PubMed

    Aroda, Vanita R; Ciaraldi, Theodore P; Burke, Paivi; Mudaliar, Sunder; Clopton, Paul; Phillips, Susan; Chang, R Jeffrey; Henry, Robert R

    2009-02-01

    Polycystic ovary syndrome (PCOS) is characterized by insulin resistance, compensatory hyperinsulinemia, increased prevalence of impaired glucose tolerance, and increased ovarian androgen biosynthesis. The aim of the study was to evaluate effects of pioglitazone on whole body insulin action and ovarian androgen biosynthesis in PCOS. We performed a randomized placebo-controlled trial. The study was conducted at the Special Diagnostic and Treatment Unit of the Veterans Affairs Medical Center, San Diego, and the University of California, San Diego, General Clinical Research Center. A total of 23 subjects with PCOS were evaluated at baseline and end of treatment. Six age- and body mass index-matched women without PCOS were normal controls for baseline evaluation. Subjects with PCOS were randomized to oral placebo or pioglitazone 45 mg daily for 6 months. The primary outcome measures were whole body insulin action as measured by hyperinsulinemic euglycemic clamp and ovarian androgen biosynthesis as measured by leuprolide-stimulated production of 17-hydroxyprogesterone (17-OHP). Compared with placebo, pioglitazone treatment significantly improved multiple measures of insulin action, including glucose disposal rate (P < 0.01), 2-h glucose during 75-g oral glucose tolerance test (P < 0.01), area under the curve glucose during oral glucose tolerance test (P < 0.01), serum adiponectin (P < 0.01), and fasting hyperinsulinemia (P < 0.01). Compared to placebo, pioglitazone treatment reduced the increment of leuprolide-stimulated 17-OHP (P < 0.02). Improvements in glucose disposal rate correlated with reductions in 17-OHP stimulation (P < 0.02). Compared to placebo, pioglitazone treatment in PCOS was associated with improvements in insulin action and glucose homeostasis and ameliorated the hyperandrogenic ovarian response.

  11. New Pioglitazone Metabolites and Absence of Opened-Ring Metabolites in New N-Substituted Thiazolidinedione.

    PubMed

    Campos, Michel Leandro; Cerqueira, Letícia Bonancio; Silva, Bruna Cristina Ulian; Franchin, Taísa Busaranho; Galdino-Pitta, Marina Rocha; Pitta, Ivan Rocha; Peccinini, Rosângela Gonçalves; Pontarolo, Roberto

    2018-06-01

    Thiazolidinediones (TZDs) are drugs used to treat type 2 diabetes mellitus; however, several safety concerns remain regarding the available drugs in this class. Therefore, the search for new TZD candidates is ongoing; metabolism studies play a crucial step in the development of new candidates. Pioglitazone, one of the most commonly used TZDs, and GQ-11, a new N -substituted TZD, were investigated in terms of their metabolic activity in rat and human liver microsomes to assess their metabolic stability and investigate their metabolites. Methods for preparation of samples were based on liquid-liquid extraction and protein precipitation. Quantitation was performed using liquid chromatography (LC)-tandem mass spectrometry, and the metabolite investigation was performed using ultraperformance LC coupled to a hybrid quadrupole-time of flight mass spectrometer. The predicted intrinsic clearance of GQ-11 was 70.3 and 46.1 ml/kg per minute for rats and humans, respectively. The predicted intrinsic clearance of pioglitazone was 24.1 and 15.9 ml/kg per minute for rats and humans, respectively. The pioglitazone metabolite investigation revealed two unpublished metabolites (M-D and M-A). M-A is a hydration product and may be related to the mechanism of ring opening and the toxicity of pioglitazone. The metabolites of GQ-11 are products of oxidation; no ring-opening metabolite was observed for GQ-11. In conclusion, under the same experimental conditions, a ring-opening metabolite was observed only for pioglitazone. The resistance of GQ-11 to the ring opening is probably related to N -substitution in the TZD ring. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Lipophilicity as a determinant of thiazolidinedione action in vitro: findings from BLX-1002, a novel compound without affinity to PPARs.

    PubMed

    Brunmair, Barbara; Staniek, Katrin; Lehner, Zsuzsanna; Dey, Debendranath; Bolten, Charles W; Stadlbauer, Karin; Luger, Anton; Fürnsinn, Clemens

    2011-06-01

    The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 μmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.

  13. 15-PGDH inhibitors: the antiulcer effects of carbenoxolone, pioglitazone and verapamil in indomethacin induced peptic ulcer rats.

    PubMed

    Moustafa, Y M; El-Azab, M F; Fouda, A

    2013-01-01

    15-hydroxyprostaglandin dehydrogenase (15-PGDH) is the enzyme responsible for prostaglandins (PGs) metabolism. PGs have an important role in the protection of stomach mucosa against destructive stimuli. The aim of the present study is to investigate the inhibitory effect of carbenoxolone, pioglitazone and verapamil on 15-PGDH enzyme. The experiments were carried out in the Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt from May 2011 to August 2011. Adult male albino rats were fasted for 18 hours before administration of high dose of indomethacin (30 mg/kg, p.o.), except for the negative control group which received saline only, followed by pyloric ligation to induce acute gastric ulcers. The rats were pretreated orally with saline, pioglitazone (20 mg/kg), verapamil (25 mg/kg), carbenoxolone (30 mg/kg) or their combinations 30 minutes before indomethacin. The rats were sacrificed after four hours of pyloric ligation. The effects of the previous treatments on the ulcer index (Ui), the microscopic appearance of gastric mucosa, the gastric acid output, the gastric barrier mucus content, and 15-PGDH enzyme activity were determined. Indomethacin resulted in severe ulceration and increased gastric acid output (p < 0.05) compared to negative control. The rats pretreated with carbenoxolone, pioglitazone, verapamil had reduced ulcer index, gastric acid output and 15-PGDH activity (p < 0.05) compared to either indomethacin group or the negative control group. Individual treatments with carbenoxolone, pioglitazone or verapamil increased gastric barrier mucus (p < 0.05) compared to either indomethacin group or the negative control group. The combinations of verapamil with either carbenoxolone or pioglitazone caused further reduction in ulcer index, gastric acid output and 15-PGDH activity (p < 0.05), while causing further increase in gastric barrier mucus (p < 0.05) compared to their respective individual treatment group. The antiulcer properties of pioglitazone and verapamil are, in part, consequences of their inhibitory effect on the enzyme 15-PGDH, responsible for PGs degradation, and the resultant prolongation of PGE2 biological activity in rat stomach mucosa.

  14. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes.

    PubMed

    Zhao, Qiuying; Wu, Xiaohui; Yan, Shuo; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Peng, Cheng; You, Zili

    2016-10-04

    Discoveries that microglia-mediated neuroinflammation is involved in the pathological process of depression provided a new strategy for novel antidepressant therapy. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor regulating inflammation and microglial polarization and, therefore, a potential target for resolving depressive disorders. Our hypothesis was that antidepressant effects could be achieved through anti-inflammatory and neuroprotective activities by PPARγ-dependent microglia-modulating agents. Chronic mild stress (CMS) treatment was performed on C57BL/6 mice for 6 weeks. After 3 weeks with the CMS procedure, depressive-like behaviors were evaluated by sucrose preference (SP), tail suspension test (TST), forced swimming test (FST), and locomotor activity. Pioglitazone was administered intragastrically once per day for 3 weeks at different doses. Neuroinflammatory cytokines were determined by real time-PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. The activated microglial state was confirmed by immunohistochemistry. N9 microglial cells were subjected to lipopolysaccharide, pioglitazone, and GW9662 to discuss the phenotype of activated microglia by RT-PCR, ELISA, and western blot. It was demonstrated that the PPARγ agonist pioglitazone (2.5 mg/kg) ameliorated depression-like behaviors in CMS-treated mice, as indicated by body weight (BW), the SP test, the FST, and the TST. The amelioration of the depression was blocked by the PPARγ antagonist GW9662. The expression of M1 markers (IL-1β, IL-6, TNFα, iNOS, and CCL2) increased, and the gene expression of M2 markers (Ym1, Arg1, IL-4, IL-10, and TGFβ) decreased in the hippocampus of the stress-treated mice. Pioglitazone significantly inhibited the increased numbers and morphological alterations of microglia in the hippocampus, reduced the elevated expression of microglial M1 markers, and increased the downgraded expression of microglial M2 markers in C57BL/6 mice exposed to CMS. In an in vitro experiment, pioglitazone reversed the imbalance of M1 and M2 inflammatory cytokines, which is correlated with the inhibition of nuclear factor kB activation and is expressed in LPS-stimulated N9 microglial cells. We showed that pioglitazone administration induce the neuroprotective phenotype of microglia and ameliorate depression-like behaviors in CMS-treated C57BL/6 mice. These data suggested that the microglia-modulating agent pioglitazone present a beneficial choice for depression.

  15. Effect of pioglitazone on vasopressor responses to adrenergic agonists and angiotensin II in diabetic and non-diabetic spontaneously hypertensive rats.

    PubMed

    Afzal, Sheryar; Sattar, Munavvar Abdul; Akhtar, Safia; Binti Abdullah, Nor Azizan; Eseyin, Olorunfemi A; Abdulla, Mohammed H; Johns, Edward James

    2018-05-01

    Pioglitazone, peroxisome proliferator-activated receptor (PPAR-γ) agonist, is a therapeutic drug for diabetes. Present study investigated the interaction between PPAR-γ and alpha adrenoceptors in modulating vasopressor responses to Angiotensin II (Ang II) and adrenergic agonists, in diabetic & non-diabetic Spontaneously Hypertensive Rats (SHRs). Diabetes was induced with an i.p injection of streptozotocin (40 mg/kg) in two groups (STZ-CON, STZ-PIO), whereas two groups remained non diabetic (ND-CO, ND-PIO). One diabetic and non-diabetic group received Pioglitazone (10mg/kg) orally for 21 days. On day 28, the animals were anaesthetized with sodium pentobarbitone (60mg/kg) and prepared for measurement of systemic haemodynamics. Basal mean arterial pressure of STZ-CON was higher than ND-CON, whereas following pioglitazone treatment, MAP was lower compared to respective controls. MAP responses to i.v administration of NA, PE, ME and ANG II were significantly lower in diabetic SHRs: STZ-CON vs ND-CON (35%). Pioglitazone significantly decreased responses to NA, PE, ME and ANG II in ND-PIO versus ND-CON by 63%. Responses to NA and ANG II were significantly attenuated in STZ-PIO vs. ND-PIO (40%). PPAR-γ regulates systemic hemodynamic in diabetic model and cross-talk relationship exists between PPAR-γ and α1-adrenoceptors, ANG II in systemic vasculature of SHRs.

  16. Combination of Vildagliptin and Pioglitazone in Experimental Type 2 Diabetes in Male Rats.

    PubMed

    Refaat, Rowaida; Sakr, Ahmed; Salama, Mona; El Sarha, Ashgan

    2016-09-01

    Preclinical Research The majority of studies on vildagliptin and pioglitazone have focused on their combination in glycemic control. The aim of the present study was to investigate their effects in combination on (i) hyperglycemia-induced oxidative stress and inflammation and (ii) on organs involved in the pathophysiology of diabetes, pancreas, kidney and liver. Type 2 diabetes was induced using low-dose streptozotocin in male Wistar rats. Diabetic rats were treated for 4 weeks, with vildagliptin (10 mg/kg/day), pioglitazone (10 mg/kg/day) and their combination. Diabetic rats showed elevated fasting serum glucose, fasting serum insulin, serum transaminases together with a deleterious lipid profile and elevated serum creatinine and urea concentrations. Serum levels of the inflammatory markers tumor necrosis factor-α (TNF-α) and nitrite/nitrate were also elevated compared to normal rats. Oxidative stress was manifested by lowered hepatic reduced glutathione (GSH) and increased malondialdehyde (MDA) levels. Pancreatic sections from diabetic rats showed degenerated islets with poorly maintained architecture that was prevented by drug treatment. Pioglitazone was generally more effective than vildagliptin in the studied parameters except for the lipid profile where the effect of both drugs was comparable and for the liver enzymes and renal parameters where vildagliptin was more effective. The combination of vildagliptin and pioglitazone produced superior effects than either drug alone. Drug Dev Res 77 : 251-257, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor

    PubMed Central

    Tak, Hyosun; Eun, Jung Woo; Kim, Jihye; Park, So Jung; Kim, Chongtae; Ji, Eunbyul; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Lee, Kyungbun; Kim, Wook; Nam, Suk Woo; Lee, Eun Kyung

    2017-01-01

    Mitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission. The function of TIA-1 in mitochondrial dynamics was investigated through various biological approaches and expression analysis in human specimen. Downregulation of TIA-1-enhanced mitochondrial elongation, whereas ectopic expression of TIA-1 resulted in mitochondria fragmentation. In addition, TIA-1 increased mitochondrial activity, including the rate of ATP synthesis and oxygen consumption. Further, we identified mitochondrial fission factor (MFF) as a direct target of TIA-1, and showed that TIA-1 promotes mitochondrial fragmentation by enhancing MFF translation. TIA-1 null cells had a decreased level of MFF and less mitochondrial Drp1, a critical factor for mitochondrial fragmentation, thereby enhancing mitochondrial elongation. Taken together, our results indicate that TIA-1 is a novel factor that facilitates mitochondrial dynamics by enhancing MFF expression and contributes to mitochondrial dysfunction. PMID:27612012

  18. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase.

    PubMed

    Dief, Abeer E; Kamha, Eman S; Baraka, Azza M; Elshorbagy, Amany K

    2014-05-01

    Glutamate excitotoxicity and cyclic AMP-activated protein kinase (AMPK) are both recognized as important mediators in neurodegenerative disorders including Alzheimer's disease (AD). To investigate whether oral or subcutaneous monosodium glutamate (MSG) neurotoxicity mimics some features of AD and whether these can be reversed by the AMPK activator Pioglitazone. Male Wistar rats aged 5 weeks were administered oral or subcutaneous MSG for 10 days with or without daily oral Pioglitazone. Two additional groups given only saline orally or subcutaneously acted as controls. At age 10 weeks the rats were subjected to neurobehavioral testing, then sacrificed for measurement of AMPK, β-amyloid and Fas ligand in the hippocampus. Oral and subcutaneous MSG both induced a lowering of hippocampal AMPK by 43% and 31% respectively (P<0.05 for both) and >2-fold increase in hippocampal Fas ligand, a mediator of apoptosis (P<0.001 for both). MSG treatment also induced a significant increase in β-amyloid in the hippocampus by >4-fold and >5-fold in the oral and subcutaneous groups. This was associated with increased latency before crossing to the white half in the black-white alley and before the first rear in the holeboard test, suggesting increased anxiety. Pioglitazone decreased hippocampal β-amyloid accumulation and Fas ligand, but did not ameliorate the neurobehavioural deficits induced by MSG. MSG treatment enhances β-amyloid accumulation in the rat hippocampus. Our results suggest a role for AMPK reduction in mediating the neurotoxic effects of glutamate, including β-amyloid accumulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome: effects of pioglitazone and metformin treatment.

    PubMed

    Ciaraldi, Theodore P; Aroda, Vanita; Mudaliar, Sunder R; Henry, Robert R

    2013-11-01

    Chronic low-grade inflammation is a common feature of insulin resistant states, including obesity and type 2 diabetes. Less is known about inflammation in Polycystic Ovary Syndrome (PCOS). Thus we evaluated the impact of PCOS on circulating cytokine levels and the effects of anti-diabetic therapies on insulin action, cytokine and chemokine levels and inflammatory signaling in skeletal muscle. Twenty subjects with PCOS and 12 healthy normal cycling (NC) subjects of similar body mass index were studied. PCOS subjects received oral placebo or pioglitazone, 45 mg/d, for 6 months. All PCOS subjects then had metformin, 2 g/day, added to their treatment. Circulating levels of cytokines, chemokines, and adiponectin, skeletal muscle markers of inflammation and phosphorylation of signaling proteins, insulin action evaluated by the hyperinsulinemic/euglycemic clamp procedure and Homeostasis Model Assessment of Insulin Resistance were measured. Circulating levels of a number of cytokines and chemokines were generally similar between PCOS and NC subjects. Levels in PCOS subjects were not altered by pioglitazone or metformin treatment, even though whole body insulin action and adiponectin levels increased with pioglitazone. In spite of the lack of change in levels of cytokines and chemokines, several markers of inflammation in skeletal muscle were improved with Pio treatment. PCOS may represent a state of elevated sensitivity of inflammatory cells in skeletal muscle to cytokines and chemokines, a property that could be reversed by pioglitazone treatment together with improved insulin action. © 2013.

  20. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice.

    PubMed

    To, Alvina W M; Ribe, Elena M; Chuang, Tsu Tshen; Schroeder, Joern E; Lovestone, Simon

    2011-02-10

    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment. Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle. All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.

  1. PPARγ agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus.

    PubMed

    Jiang, Li-Ying; Tang, Su-Su; Wang, Xiao-Yun; Liu, Li-Ping; Long, Yan; Hu, Mei; Liao, Ming-Xing; Ding, Qi-Long; Hu, Wei; Li, Jia-Chang; Hong, Hao

    2012-08-01

    Pioglitazone, known as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, is used to treat type 2 diabetes mellitus (T2DM). T2DM has been associated with reduced performance on numerous domains of cognitive function. Here, we investigated the effects of pioglitazone on memory impairment in a mouse model with defects in insulin sensitivity and secretion, namely high-fat diet (HFD) streptozotocin (STZ)-induced diabetic mice. ICR mice were fed with HFD for 4 weeks and then injected with a single low dose of STZ followed by continued HFD feeding for an additional 4 weeks. Pioglitazone (18 mg/kg, 9 mg/kg body weight) was orally administered for 6 weeks once daily. Y-maze test and Morris water maze test (MWM) were employed for testing learning and memory. Serum glucose, serum insulin, serum triglyceride, brain β-amyloid peptide (Aβ), brain β-site amyloid precursor protein cleaving enzyme (BACE1), brain nuclear factor κB (NF-κB), and brain receptor for advanced glycation end products (RAGE) were also tested. The STZ/HFD diabetic mice, characterized by hyperglycemia, hyperlipemia and hypoinsulinemia, performed poorly on Y-maze and MWM hence reflecting impairment of learning and memory behavior with increases of Aβ40/Aβ42, BACE1, NF-κB, and RAGE in brain. Treatment of PPARγ agonist, pioglitazone (18 or 9 mg/kg body weight), significantly reversed diabetes-induced impairment of learning and memory behavior, which is involved in decreases of Aβ40/Aβ42 via inhibition of NF-κB, BACE1 and RAGE in brain as well as attenuation of hyperglycemia, hyperlipemia, and hypoinsulinemia. It is concluded that PPARγ agonist pioglitazone may be considered as potential pharmacological agents for the management of cognitive dysfunction in T2DM. © 2012 Blackwell Publishing Ltd.

  2. The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster.

    PubMed

    Wiley, Sandra E; Paddock, Mark L; Abresch, Edward C; Gross, Larry; van der Geer, Peter; Nechushtai, Rachel; Murphy, Anne N; Jennings, Patricia A; Dixon, Jack E

    2007-08-17

    The outer mitochondrial membrane protein mitoNEET was discovered as a binding target of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class used to treat type 2 diabetes (Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M., Bannow, C. A., Lund, E. T., and Mathews, W. R. (2004) Am. J. Physiol. 286, E252-E260). We have shown that mitoNEET is a member of a small family of proteins containing a 39-amino-acid CDGSH domain. Although the CDGSH domain is annotated as a zinc finger motif, mitoNEET was shown to contain iron (Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P., and Dixon, J. E. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 5318-5323). Optical and electron paramagnetic resonance spectroscopy showed that it contained a redox-active pH-labile Fe-S cluster. Mass spectrometry showed the loss of 2Fe and 2S upon cofactor extrusion. Spectroscopic studies of recombinant proteins showed that the 2Fe-2S cluster was coordinated by Cys-3 and His-1. The His ligand was shown to be involved in the observed pH lability of the cluster, indicating that loss of this ligand via protonation triggered release of the cluster. mitoNEET is the first identified 2Fe-2S-containing protein located in the outer mitochondrial membrane. Based on the biophysical data and domain fusion analysis, mitoNEET may function in Fe-S cluster shuttling and/or in redox reactions.

  3. Endocannabinoid receptor blockade reduces alanine aminotransferase in polycystic ovary syndrome independent of weight loss.

    PubMed

    Dawson, Alison J; Kilpatrick, Eric S; Coady, Anne-Marie; Elshewehy, Abeer M M; Dakroury, Youssra; Ahmed, Lina; Atkin, Stephen L; Sathyapalan, Thozhukat

    2017-07-14

    Evidence suggests that endocannabinoid system activation through the cannabinoid receptor 1 (CB1) is associated with enhanced liver injury, and CB1 antagonism may be beneficial. The aim of this study was to determine the impact of rimonabant (CB1 antagonist) on alanine aminotransferase (ALT), a hepatocellular injury marker, and a hepatic inflammatory cytokine profile. Post hoc review of 2 studies involving 50 obese women with PCOS and well matched for weight, randomised to weight reducing therapy; rimonabant (20 mg od) or orlistat (120 mg tds), or to insulin sensitising therapy metformin, (500 mg tds), or pioglitazone (45 mg od). No subject had non-alcoholic fatty liver disease (NAFLD). Treatment with rimonabant for 12 weeks reduced both ALT and weight (p < 0.01), and there was a negative correlation between Δ ALT and Δ HOMA-IR (p < 0.001), but not between Δ ALT and Δ weight. There was a significant reduction of weight with orlistat (p < 0.01); however, orlistat, metformin and pioglitazone had no effect on ALT. The free androgen index fell in all groups (p < 0.05). The inflammatory marker hs-CRP was reduced by pioglitazone (p < 0.001) alone and did not correlate with changes in ALT. The inflammatory cytokine profile for IL-1β, IL-6, IL-7, IL-10, IL12, TNF-α, MCP-1 and INF-γ did not differ between groups. None of the interventions had an effect on biological variability of ALT. Rimonabant through CB1 receptor blockade decreased serum ALT that was independent of weight loss and hepatic inflammatory markers in obese women with PCOS without NAFLD. ISRCTN58369615 (February 2007; retrospectively registered) ISRCTN75758249 (October 2007; retrospectively registered).

  4. A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes.

    PubMed

    Ren, Rui; Chen, Zhufeng; Zhao, Xia; Sun, Tao; Zhang, Yuchao; Chen, Jie; Lu, Sumei; Ma, Wanshan

    2016-11-08

    Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 μM, 24 h) and down-regulation of Twist 1 under T0070907 (100 μM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.

  5. Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice.

    PubMed

    Matsui, Yukari; Hirasawa, Yasushi; Sugiura, Takahiro; Toyoshi, Tohru; Kyuki, Kohei; Ito, Mikio

    2010-01-01

    In an acute treatment experiment, metformin (150, 300 mg/kg, per os (p.o.)) markedly reduced the consumption of a high-fat diet (HFD) (45 kcal% fat-containing diet) for 2 h after the HFD was given to the fasted male C57BL/6J (B6) mice. In addition, metformin at a higher dose increased plasma active glucagon-like peptide-1 (GLP-1) levels at 1 h after the HFD was given. On the other hand, pioglitazone (12 mg/kg, p.o.) slightly increased the food intake but did not affect active GLP-1 levels when given at 6 and 12 mg/kg, p.o. In a long-team experiment for 9 weeks, metformin treatment (0.25, 0.5% in the HFD) resulted in reduction of body weight gain and HFD intake. When wet weights of various body fat pads of each mouse were measured at 9 weeks after treatment, metformin markedly decreased these weights. However, pioglitazone treatment (0.01, 0.02% in the HFD) did not have obvious effects on these parameters. Oral glucose tolerance test was carried out after 20-h fasting at 4 weeks post-treatment. Whereas metformin treatment (0.25, 0.5%) markedly improved glucose intolerance, pioglitazone treatment (0.02%) slightly improved this parameter. At 9 weeks, both metformin and pioglitazone markedly improved hyperglycemia and hyperinsulinemia. Metformin treatment also improved hyperleptinemia, whereas pioglitazone was ineffective. These results indicate that metformin reduces body weight gain and improves glucose intolerance in HFD-induced obese diabetic B6 mice.

  6. A review of thiazolidinediones and metformin in the treatment of type 2 diabetes with focus on cardiovascular complications

    PubMed Central

    Behzad, Molavi; Negah, Rassouli; Suveer, Bagwe; Neda, Rasouli

    2007-01-01

    The rising incidence of obesity and insulin resistance to epidemic proportions has closely paralleled the surge in the prevalence of diabetes and outpaced therapeutic advances in diabetes prevention and treatment. Current evidence points to obesity induced oxidative stress and chronic inflammation as the common denominators in the evolution of insulin resistance and diabetes. Of all the hypoglycemic agents in the pharmacological arsenal against diabetes, thiazolidinediones, in particular pioglitazone, as well as metformin appear to have additional effects in ameliorating oxidative stress and inflammation; rendering them attractive tools for prevention of insulin resistance and diabetes. In addition to their hypoglycemic and lipid modifying properties, pioglitazone and metformin have been shown to exert anti-oxidative and anti-inflammatory effects in vascular beds, potentially slowing the accelerated atherosclerosis in diabetes, which is the major cause of morbidity and mortality in the affected population. The combination of pioglitazone and metformin would thus appear to be an effective pharmacological intervention in prevention and treatment of diabetes. Finally, this review will address the currently available evidence on diabetic cardiomyopathy and the potential role of combination therapy with pioglitazone and metformin. PMID:18200815

  7. Thiazolidinediones abrogate cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuertz, Beverly R., E-mail: knier003@umn.edu; Darrah, Lindsay, E-mail: ldarrah@obgynmn.com; Wudel, Justin, E-mail: drwudel@drwudel.com

    Peroxisome proliferator-activated receptor gamma (PPAR γ) is activated by thiazolidinedione drugs (TZDs) and can promote anti-cancer properties. We used three TZDs (pioglitazone, rosiglitazone, and ciglitazone) to target cervical cancer cell lines and a nude mouse animal model. Each agent increased activation of PPAR γ, as judged by a luciferase reporter gene assay in three HPV-associated cell lines (CaSki, SiHa, and HeLa cells) while decreasing cellular proliferation in a dose-dependent manner. They also promoted Oil Red O accumulation in treated cell lines and upregulated the lipid differentiation marker adipsin. Interestingly, xenograft HeLa tumors in nude mice treated with 100 mg/kg/day pioglitazonemore » exhibited decreased growth compared to control mice or mice treated with standard cervical chemotherapy. In conclusion, TZDs slow tumor cell growth in vitro and in vivo with decreases in cell proliferation and increases in PPAR γ and adipsin. These agents may be interesting treatments or treatment adjuncts for HPV-associated cancers or perhaps even precancerous conditions. - Highlights: • Thiazolidinediones decreases cervical cancer proliferation. • Pioglitazone increases cervical cancer differentiation. • Pioglitazone decreases tumor growth in mice. • Pioglitazone may be a useful treatment adjunct.« less

  8. Role of Wnt4/β-catenin, Ang II/TGFβ, ACE2, NF-κB, and IL-18 in attenuating renal ischemia/reperfusion-induced injury in rats treated with Vit D and pioglitazone.

    PubMed

    Ali, Rabab M; Al-Shorbagy, Muhammad Y; Helmy, Maged W; El-Abhar, Hanan S

    2018-07-15

    Renal ischemia-reperfusion injury (I/RI) remains a critical clinical situation. Several evidence revealed the potential reno-protective effects of Vitamin D and/or pioglitazone, on renal I/RI. This study addresses the possible involvement of the Wnt4/β-catenin signaling, p-S536NF-κBp65, PPARγ, Ang II/TGF-β, and ACE2 as potential effectors to vitamin D and pioglitazone-mediated renoprotective effects. Two sets of Sprague-Dawley rats (n = 30 rat each), were randomized into sham, I/R, Vit D "alfacalcidol" (5 ng/kg/day), pioglitazone (5 mg/kg/day), and Vit D + pioglitazone groups. In all groups renal biochemical parameters, as well as inflammatory and structural profiles were assessed, besides the expression/contents of Wnt4/β-catenin and pS536-NF-κBp65. All treatments started 7 days before I/RI and animals were killed 24 h after I/RI in the first set, while those in the 2nd set continued their treatments for 14 days. After 24 h, all pre-treatments impeded theI/R effect on neutrophils recruitment, p-S536NF-κBp65, IL-18, NGAL, caspase-3, AngII, ACE-2, PPARγ and TGF-β, besides the expression of Wnt4 and ACE-2 with notable reflection on histological changes. Two weeks after I/RI, except a marked up regulation in Wnt4 expression and a striking elevation in the β-catenin content, the magnitude of the injurious events was relatively less pronounced, an effect that was mostly augmented by the different treatments. The current study pledges a promising and novel reno-protective role of the administration of Vit D and pioglitazone entailing a potential involvement of ICAM-1, MPO, NF-κB, Ang II, ACE2, TGFβ, and a modulation of Wnt4/β-catenin pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes

    PubMed Central

    Gallagher, Emily Jane; Sun, Hui; Kornhauser, Caroline; Tobin-Hess, Aviva; Epstein, Sol; Yakar, Shoshana; LeRoith, Derek

    2017-01-01

    Background Individuals with type 2 diabetes (T2D) are at greater risk of bone fractures than those without diabetes. Certain oral diabetic medications may further increase the risk of fracture. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are incretin-based therapies that are being increasingly used for the management of T2D. It has been hypothesized that these agents may reduce fracture risk in those with T2D. In this study, we used a mouse model of T2D to examine the effects of the DPP-IV inhibitor, MK-0626, on bone. Methods Male wild type (WT) and diabetic muscle-lysine-arginine (MKR) mice were treated with MK-0626, pioglitazone, alendronate or vehicle. The effects of treatment with MK-0626 on bone microarchitecture and turnover were compared with treatment with pioglitazone, alendronate and vehicle. Osteoblast differentiation was determined by alkaline phosphatase staining of bone marrow cells from WT and MKR mice after treatment with pioglitazone, MK-0626 or phosphate buffered saline. Results We found that MK-0626 had neutral effects on cortical and trabecular bone in diabetic mice. Pioglitazone had detrimental effects on the trabecular bone of WT but not of diabetic mice. Alendronate caused improvements in cortical and trabecular bone architecture in diabetic and WT mice. MK-0626 did not alter osteoblast differentiation, but pioglitazone impaired osteoblast differentiation in vitro. Conclusions Overall, the DPP-IV inhibitor, MK-0626, had no adverse effects on bone in an animal model of T2D or directly on osteoblasts in culture. These findings are reassuring as DPP-IV inhibitors are being widely used to treat patients with T2D who are already at an increased risk of fractures. PMID:24023014

  10. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice

    PubMed Central

    Ghaisas, M. M.; Ahire, Y. S.; Dandawate, P. R.; Gandhi, S. P.; Mule, M.

    2011-01-01

    In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia. PMID:23112392

  11. Effects of peroxisome proliferator activated receptors (PPAR)-γ and -α agonists on cochlear protection from oxidative stress

    PubMed Central

    Wright, Matthew B.; Kucharava, Krystsina; Huerzeler, Nathan; Levano, Soledad; Brand, Yves; Leitmeyer, Katharina; Glutz, Andrea; Bausch, Alexander; Bodmer, Daniel

    2017-01-01

    Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss. PMID:29182629

  12. Simultaneous spectrophotometric determination of glimepiride and pioglitazone in binary mixture and combined dosage form using chemometric-assisted techniques

    NASA Astrophysics Data System (ADS)

    El-Zaher, Asmaa A.; Elkady, Ehab F.; Elwy, Hanan M.; Saleh, Mahmoud Abo El Makarim

    2017-07-01

    In the present work, pioglitazone and glimepiride, 2 widely used antidiabetics, were simultaneously determined by a chemometric-assisted UV-spectrophotometric method which was applied to a binary synthetic mixture and a pharmaceutical preparation containing both drugs. Three chemometric techniques - Concentration residual augmented classical least-squares (CRACLS), principal component regression (PCR), and partial least-squares (PLS) were implemented by using the synthetic mixtures containing the two drugs in acetonitrile. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbencies in the range between 215 and 235 nm in the intervals with Δλ = 0.4 nm in their zero-order spectra. Then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of pioglitazone and glimepiride in their mixtures. The described techniques have been validated by analyzing synthetic mixtures containing the two drugs showing good mean recovery values lying between 98 and 100%. In addition, accuracy and precision of the three methods have been assured by recovery values lying between 98 and 102% and R.S.D. % ˂0.6 for intra-day precision and ˂1.2 for inter-day precision. The proposed chemometric techniques were successfully applied to a pharmaceutical preparation containing a combination of pioglitazone and glimepiride in the ratio of 30: 4, showing good recovery values. Finally, statistical analysis was carried out to add a value to the verification of the proposed methods. It was carried out by an intrinsic comparison between the 3 chemometric techniques and by comparing values of present methods with those obtained by implementing reference pharmacopeial methods for each of pioglitazone and glimepiride.

  13. PPARγ agonist pioglitazone improves cerebellar dysfunction at pre-Aβ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toba, Junya; Nikkuni, Miyu; Ishizeki, Masato

    Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. Inmore » the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice. -- Highlights: •Phosphorylation level of CRMP2 increased in the cerebellum of APP/PS1 mice. •p35 protein levels increased in the cerebellum of APP/PS1 mice. •Pioglitazone treatment improved cerebellar dysfunction of APP/PS1 mice.« less

  14. Combination of metformin and pioglitazone and its effect in treatment of comorbid pathology.

    PubMed

    Shaienko, Zlatoslava O; Bobyreva, Lyudmila Ye

    2018-01-01

    Introduction: The early development and high incidence of cardiovascular lesion in patients with type 2 diabetes mellitus is one of the most serious challenges for the diabetology worldwide. The aim: The purpose of the paper is to determine the dynamics of the insulin resistance indices in patients with type 2 diabetes mellitus concomitant with coronary heart disease in the combination therapy with metformin and pioglitazone during 3 and 6 months. Materials and methods: 95 patients with type 2 diabetes mellitus and coronary heart disease have been treated and randomized into two groups: the comparison group (n=37), treated with metformin and sulfonylureas, and the study group (n=58), treated with metformin in combination with pioglitazone. Prior, after 3 and 6 months of treatment C-peptide was assessed and index of the insulin resistance was calculated. Results: The resulting data proved the statistically significant lowering of the markers and level of the insulin resistance under the effect of combination treatment with metformin and pioglitazone. Conclusions: The proposed variant of the combination therapy has a positive effect on the clinical course of the coronary heart disease in patients with type 2 diabetes mellitus, well tolerated by the patients and can be considered as the pathogenetic factor in the treatment of these diseases.

  15. Efficacy and safety of pioglitazone added to alogliptin in Japanese patients with type 2 diabetes mellitus: a multicentre, randomized, double-blind, parallel-group, comparative study.

    PubMed

    Kaku, K; Katou, M; Igeta, M; Ohira, T; Sano, H

    2015-12-01

    A phase IV, multicentre, randomized, double-blind, parallel-group, comparative study was conducted in Japanese subjects with type 2 diabetes mellitus (T2DM) who had inadequate glycaemic control, despite treatment with alogliptin in addition to diet and/or exercise therapy. Subjects with glycated haemoglobin (HbA1c) concentrations of 6.9-10.5% were randomized to receive 16 weeks' double-blind treatment with pioglitazone 15 mg, 30 mg once daily or placebo added to alogliptin 25 mg once daily. The primary endpoint was the change in HbA1c from baseline at the end of treatment period (week 16). Both pioglitazone 15 and 30 mg combination therapy resulted in a significantly greater reduction in HbA1c than alogliptin monotherapy [-0.80 and -0.90% vs 0.00% (the least squares mean using analysis of covariance model); p < 0.0001, respectively]. The overall incidence rates of treatment-emergent adverse events were similar among the treatment groups. Pioglitazone/alogliptin combination therapy was effective and generally well tolerated in Japanese subjects with T2DM and is considered to be useful in clinical settings. © 2015 John Wiley & Sons Ltd.

  16. Pioglitazone treatment enhances the sympathetic nervous system response to oral carbohydrate load in obese individuals with metabolic syndrome.

    PubMed

    Straznicky, Nora E; Grima, Mariee T; Sari, Carolina I; Eikelis, Nina; Lambert, Gavin W; Nestel, Paul J; Richards, Katrina; Dixon, John B; Schlaich, Markus P; Lambert, Elisabeth A

    2015-07-01

    Insulin resistance is associated with blunted sympathetic nervous system (SNS) response to carbohydrate ingestion which may contribute to postprandial hypotension and impaired body weight homeostasis. This study was conducted to examine the effects of pharmacological insulin sensitization on whole-body norepinephrine kinetics during a standard 75-g oral glucose tolerance test (OGTT) in obese, insulin resistant subjects with metabolic syndrome. Un-medicated individuals (n=42, mean age 56±0.8 yrs, body mass index 34±0.6 kg/m(2)) were randomised to 12-weeks pioglitazone (PIO, 15 mg for 6 weeks, then 30 mg daily) or placebo using a double-blind, parallel group design. Whole-body norepinephrine kinetics (arterial norepinephrine concentration, calculated spillover and clearance rates), spontaneous cardiac baroreflex sensitivity, heart rate and blood pressure were measured at times 0, 30, 60, 90 and 120 minutes during OGTT. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp (M) and Matsuda index. PIO increased clamp derived glucose utilisation by 35% (P<0.001) and there were concurrent reductions in inflammatory status and plasma triglycerides (P<0.05). Fasting norepinephrine kinetic parameters were unaltered. PIO treatment was associated with lower plasma insulin incursions, greater reduction in diastolic blood pressure and enhanced baroreflex sensitivity during OGTT (P all <0.05). The overall norepinephrine spillover response (AUC(0-120)) increased significantly in the PIO group (group × time interaction, P=0.04), with greatest increment at 30 minutes post-glucose (101±38 ng/min at baseline versus 241±48 ng/min post treatment, P=0.04) and correlated with percent improvement in M. PIO enhances the early postprandial SNS response to carbohydrate ingestion. Copyright © 2015. Published by Elsevier Inc.

  17. The peroxisome proliferator-activated receptor agonist pioglitazone and 5-lipoxygenase inhibitor zileuton have no effect on lung inflammation in healthy volunteers by positron emission tomography in a single-blind placebo-controlled cohort study.

    PubMed

    Chen, Delphine L; Huang, Howard J; Byers, Derek E; Shifren, Adrian; Belikoff, Bryan; Engle, Jacquelyn T; Arentson, Elizabeth; Kemp, Debra; Phillips, Sharon; Scherrer, David E; Fujiwara, Hideji; Spayd, Katherine J; Brooks, Frank J; Pierce, Richard A; Castro, Mario; Isakow, Warren

    2018-01-01

    Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. ClinicalTrials.gov NCT01174056.

  18. The peroxisome proliferator-activated receptor agonist pioglitazone and 5-lipoxygenase inhibitor zileuton have no effect on lung inflammation in healthy volunteers by positron emission tomography in a single-blind placebo-controlled cohort study

    PubMed Central

    Huang, Howard J.; Byers, Derek E.; Shifren, Adrian; Belikoff, Bryan; Engle, Jacquelyn T.; Arentson, Elizabeth; Kemp, Debra; Phillips, Sharon; Scherrer, David E.; Fujiwara, Hideji; Spayd, Katherine J.; Brooks, Frank J.; Pierce, Richard A.; Castro, Mario; Isakow, Warren

    2018-01-01

    Background Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. Methods For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Results Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Conclusions Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. Trial registration ClinicalTrials.gov NCT01174056. PMID:29414995

  19. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    PubMed

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  20. Underlying mechanism of drug-drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8.

    PubMed

    Takagi, Motoi; Sakamoto, Masaya; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-08-01

    While co-administered gemfibrozil can increase the area under the concentration/time curve (AUC) of pioglitazone more than 3-fold, the underlying mechanism of the drug-drug interaction between gemfibrozil and pioglitazone has not been fully understood. In the present study, gemfibrozil preincubation time-dependently inhibited the metabolism of pioglitazone in the cytochrome P450 (CYP)- and UDP-glucuronosyltransferase (UGT)-activated human liver microsomes. We estimated the kinact and K'app values, which are the maximum inactivation rate constant and the apparent dissociation constant, of gemfibrozil to be 0.071 min(-1) and 57.3 μM, respectively. In this study, the kobs, in vivo value was defined as a parameter that indicates the potency of the mechanism-based inhibitory effect at the blood drug concentration in vivo. The kobs, in vivo values of potent mechanism-based inhibitors, clarithromycin and erythromycin, were estimated to be 0.0096 min(-1) and 0.0051 min(-1), respectively. The kobs, in vivo value of gemfibrozil was 0.0060 min(-1), which was comparable to those of clarithromycin and erythromycin, suggesting that gemfibrozil could be a mechanism-based inhibitor as potent as clarithromycin and erythromycin in vivo. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Formulation and Evaluation of Multilayered Tablets of Pioglitazone Hydrochloride and Metformin Hydrochloride

    PubMed Central

    Chowdary, Y. Ankamma; Raparla, Ramakrishna; Madhuri, Muramshetty

    2014-01-01

    In the treatment of type 2 diabetes mellitus a continuous therapy is required which is a more complex one. As in these patients there may be a defect in both insulin secretion and insulin action exists. Hence, the treatment depends on the pathophysiology and the disease state. In the present study, multilayered tablets of pioglitazone hydrochloride 15 mg and metformin hydrochloride 500 mg were prepared in an attempt for combination therapy for the treatment of type 2 diabetes mellitus. Pioglitazone HCl was formulated as immediate release layer to show immediate action by direct compression method using combination of superdisintegrants, namely, crospovidone and avicel PH 102. Crospovidone at 20% concentration showed good drug release profile at 2 hrs. Metformin HCl was formulated as controlled release layer to prolong the drug action by incorporating hydrophilic polymers such as HPMC K4M by direct compression method and guar gum by wet granulation method in order to sustain the drug release from the tablets and maintain its integrity so as to provide a suitable formulation. The multilayered tablets were prepared after carrying out the optimization of immediate release layer and were evaluated for various precompression and postcompression parameters. Formulation F13 showed 99.97% of pioglitazone release at 2 hrs in 0.1 N HCl and metformin showed 98.81% drug release at 10 hrs of dissolution in 6.8 pH phosphate buffer. The developed formulation is equivalent to innovator product in view of in vitro drug release profile. The results of all these evaluation tests are within the standards. The procedure followed for the formulation of these tablets was found to be reproducible and all the formulations were stable after accelerated stability studies. Hence, multilayered tablets of pioglitazone HCl and metformin HCl can be a better alternative way to conventional dosage forms. PMID:26556204

  2. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity.

    PubMed

    Kemp, David E; Ismail-Beigi, Faramarz; Ganocy, Stephen J; Conroy, Carla; Gao, Keming; Obral, Sarah; Fein, Elizabeth; Findling, Robert L; Calabrese, Joseph R

    2012-02-01

    This study was conducted to examine the safety and efficacy of pioglitazone, a thiazolidinedione insulin sensitizer, in adult outpatients with major depressive disorder. In a 12-week, open-label, flexible-dose study, 23 patients with major depressive disorder received pioglitazone monotherapy or adjunctive therapy initiated at 15 mg daily. Subjects were required to meet criteria for abdominal obesity (waist circumference>35 in. in women and >40 in. in men) or metabolic syndrome. The primary efficacy measure was the change from baseline to Week 12 on the Inventory of Depressive Symptomatology (IDS) total score. Partial responders (≥25% decrease in IDS total score) were eligible to participate in an optional extension phase for an additional three months. Pioglitazone decreased depression symptom severity from a total IDS score of 40.3±1.8 to 19.2±1.8 at Week 12 (p<.001). Among partial responders (≥25% decrease in IDS total score), an improvement in depressive symptoms was maintained during an additional 3-month extension phase (total duration=24 weeks) according to IDS total scores (p<.001). Patients experienced a reduction in insulin resistance from baseline to Week 12 according to the log homeostasis model assessment (-0.8±0.75; p<.001) and a significant reduction in inflammation as measured by log highly- sensitive C-reactive protein (-0.87±0.72; p<.001). During the current episode, the majority of participants (74%, n=17), had already failed at least one antidepressant trial. The most common side effects were headache and dizziness; no patient discontinued due to side effects. These data are limited by a small sample size and an open-label study design with no placebo control. Although preliminary, pioglitazone appears to reduce depression severity and improve several markers of cardiometabolic risk, including insulin resistance and inflammation. Larger, placebo-controlled studies are indicated. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study.

    PubMed

    Tripathy, Devjit; Cobb, Jeff E; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Reaven, Peter D; Musi, Nicolas; Ferrannini, Ele; DeFronzo, Ralph A

    2015-05-01

    The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13-0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose M(Q) increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min(-1)·kgwbm(-1)) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose M(Q) correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose M(Q) outperformed both Matsuda and fasting insulin in predicting incident diabetes. In IGT subjects, Quantose M(Q) parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose M(Q) may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients.

  4. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients. PMID:25603459

  5. Pioglitazone metabolic effect in metformin-intolerant obese patients treated with sibutramine.

    PubMed

    Derosa, Giuseppe; Mereu, Roberto; Salvadeo, Sibilla A T; D'Angelo, Angela; Ciccarelli, Leonardina; Piccinni, Mario N; Ferrari, Ilaria; Gravina, Alessia; Maffioli, Pamela; Cicero, Arrigo F G

    2009-01-01

    Metformin is the drug of choice to treat obese type 2 diabetes patients because it reduces either insulin-resistance and body weight. We aimed to comparatively test the efficacy and tolerability of pioglitazone and sibutramine in metformin-intolerant obese type 2 diabetic patients treated with sibutramine. Five hundred and seventy-six consecutive Caucasian obese type 2 diabetic patients were evaluated during a 12-months period and fifty-two patients were resulted intolerant to metformin at maximum dosage (3,000 mg/day). All intolerant patients to metformin received a treatment with pioglitazone (45 mg/day) and sibutramine (10 mg/day) and they were compared with fifty-three patients treated with metformin (3,000 mg/day) and sibutramine (10 mg/day) for 6 months in a single-blind controlled trial. We assessed body mass index, waist circumference, glycated hemoglobin, Fasting Plasma glucose, postprandial plasma glucose, fasting plasma insulin, postprandial plasma insulin, lipid profile, systolic blood pressure, diastolic blood pressure and heart rate at baseline and after 3, and 6 months. No body mass index change was observed at 3, and 6 months in pioglitazone + sibutramine group, while a significant reduction of body mass index and waist circumference was observed after 6 months in metformin + sibutramine group (p<0.05). A significant decrease of glycated hemoglobin, Fasting Plasma glucose, postprandial plasma glucose, fasting plasma insulin, postprandial plasma insulin and HOMA index was observed after 3, and 6 months in both groups (p<0.05, and p<0.01, respectively). A significant Tg reduction was present after 6 months (p<0.05) in both groups respect to the baseline values. No systolic blood pressure, diastolic blood pressure and heart rate change was obtained after 3, and 6 months in both groups. Pioglitazone and sibutramine combination appears to be a short-term equally efficacious and well-tolerated therapeutic alternative respect to metformin-intolerant obese type 2 diabetic patients treated with sibutramine.

  6. Cost-effectiveness analysis of thiazolidinediones in uncontrolled type 2 diabetic patients receiving sulfonylureas and metformin in Thailand.

    PubMed

    Chirakup, Suphachai; Chaiyakunapruk, Nathorn; Chaikledkeaw, Usa; Pongcharoensuk, Petcharat; Ongphiphadhanakul, Boonsong; Roze, Stephane; Valentine, William J; Palmer, Andrew J

    2008-03-01

    The national essential drug committee in Thailand suggested that only one of thiazolidinediones be included in hospital formulary but little was know about their cost-effectiveness values. This study aims to determine an incremental cost-effectiveness ratio of pioglitazone 45 mg compared with rosiglitazone 8 mg in uncontrolled type 2 diabetic patients receiving sulfonylureas and metformin in Thailand. A Markov diabetes model (Center for Outcome Research model) was used in this study. Baseline characteristics of patients were based on Thai diabetes registry project. Costs of diabetes were calculated mainly from Buddhachinaraj hospital. Nonspecific mortality rate and transition probabilities of death from renal replacement therapy were obtained from Thai sources. Clinical effectiveness of thiazolidinediones was retrieved from a meta-analysis. All analyses were based on the government hospital policymaker perspective. Both cost and outcomes were discounted with the rate of 3%. Base-case analyses were analyzed as incremental cost per quality-adjusted life year (QALY) gained. A series of sensitive analyses were performed. In base-case analysis, the pioglitazone group had a better clinical outcomes and higher lifetime costs. The incremental cost per QALY gained was 186,246 baht (US$ 5389). The acceptability curves showed that the probability of pioglitazone being cost-effective was 29% at the willingness to pay of one time of Thai gross domestic product per capita (GDP per capita). The effect of pioglitazone on %HbA1c decrease was the most sensitive to the final outcomes. Our findings showed that in type 2 diabetic patients who cannot control their blood glucose under the combination of sulfonylurea and metformin, the use of pioglitazone 45 mg fell in the cost-effective range recommended by World Health Organization (one to three times of GDP per capita) on average, compared to rosiglitazone 8 mg. Nevertheless, based on sensitivity analysis, its probability of being cost-effective was quite low. Hospital policymakers may consider our findings as part of information for the decision-making process.

  7. Mitochondrial NADH Fluorescence is Enhanced by Complex I Binding

    PubMed Central

    Blinova, Ksenia; Levine, Rodney L.; Boja, Emily S.; Griffiths, Gary L.; Shi, Zhen-Dan; Ruddy, Brian; Balaban, Robert S.

    2012-01-01

    Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10 fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state. PMID:18702505

  8. Solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, propylene glycol, N-methyl-2-pyrrolidone, and water at 25 degrees C.

    PubMed

    Jouyban, Abolghasem; Soltanpour, Shahla

    2010-09-01

    The solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water at 25 degrees C are reported. The generated data are fitted to the Jouyban-Acree model and the mean relative deviations are 2.6%, 1.5%, 5.8%, and 7.4%, respectively for ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water.

  9. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway

    PubMed Central

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-01-01

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy. PMID:27708226

  11. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.

    PubMed

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-11-08

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.

  12. Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Antidiabetes Drugs

    PubMed Central

    2011-01-01

    The widely employed antidiabetic drug pioglitazone (Actos) is shown to be a specific and reversible inhibitor of human monoamine oxidase B (MAO B). The crystal structure of the enzyme–inhibitor complex shows that the R-enantiomer is bound with the thiazolidinedione ring near the flavin. The molecule occupies both substrate and entrance cavities of the active site, establishing noncovalent interactions with the surrounding amino acids. These binding properties differentiate pioglitazone from the clinically used MAO inhibitors, which act through covalent inhibition mechanisms and do not exhibit a high degree of MAO A versus B selectivity. Rosiglitazone (Avandia) and troglitazone, other members of the glitazone class, are less selective in that they are weaker inhibitors of both MAO A and MAO B. These results suggest that pioglitazone may have utility as a “repurposed” neuroprotectant drug in retarding the progression of disease in Parkinson's patients. They also provide new insights for the development of reversible isoenzyme-specific MAO inhibitors. PMID:22282722

  13. Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress.

    PubMed

    Shokrzadeh, Mohammad; Sadat-Hosseini, Sara; Fallah, Marjan; Shaki, Fatemeh

    2017-05-01

    Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN). In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO) on the prevention of DN in streptozotocin induced-diabetic mice. Forty-two mice were divided into six groups as follows: non-diabetic control group, DMSO group (as solvent), diabetic group and four treatment groups which received U. dioica , pioglitazone, U. dioica plus pioglitazone and vitE. Diabetes was induced by a single dose of streptozotocin (STZ) (200 mg/kg body wt, IP) diluted in citrate buffer (pH= 4.6). After 4 weeks treatment, all animals were anaesthetized and blood was collected for serum urea and creatinine levels assessment in plasma and kidney tissue were excised for evaluation of oxidative stress markers. Treatment with U. dioica significantly inhibited increase in serum urea and creatinine in plasma that were observed in diabetic mice. Furthermore, the elevated level of oxidative stress markers (glutathione oxidation, lipid peroxidation (LPO), protein carbonyl) in renal supernatant of diabetic mice was inhibited by U. dioica treatment. Interestingly, U. dioica promoted beneficial effects of PIO in reducing STZ-induced hyperglycemia, renal damage and oxidative stress markers. Our findings showed that PIO plus U. dioica have synergism protective effects against STZ-induced nephropathy that can be a candidate as a therapeutic approach in order to treatment of DN.

  14. Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress

    PubMed Central

    Shokrzadeh, Mohammad; Sadat-hosseini, Sara; Fallah, Marjan; Shaki, Fatemeh

    2017-01-01

    Objective(s): Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN). In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO) on the prevention of DN in streptozotocin induced-diabetic mice. Materials and Methods: Forty-two mice were divided into six groups as follows: non-diabetic control group, DMSO group (as solvent), diabetic group and four treatment groups which received U. dioica, pioglitazone, U. dioica plus pioglitazone and vitE. Diabetes was induced by a single dose of streptozotocin (STZ) (200 mg/kg body wt, IP) diluted in citrate buffer (pH= 4.6). After 4 weeks treatment, all animals were anaesthetized and blood was collected for serum urea and creatinine levels assessment in plasma and kidney tissue were excised for evaluation of oxidative stress markers. Results: Treatment with U. dioica significantly inhibited increase in serum urea and creatinine in plasma that were observed in diabetic mice. Furthermore, the elevated level of oxidative stress markers (glutathione oxidation, lipid peroxidation (LPO), protein carbonyl) in renal supernatant of diabetic mice was inhibited by U. dioica treatment. Interestingly, U. dioica promoted beneficial effects of PIO in reducing STZ-induced hyperglycemia, renal damage and oxidative stress markers. Conclusion: Our findings showed that PIO plus U. dioica have synergism protective effects against STZ-induced nephropathy that can be a candidate as a therapeutic approach in order to treatment of DN. PMID:28656084

  15. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice.

    PubMed

    Kyle, Kimberly A; Willett, Thomas L; Baggio, Laurie L; Drucker, Daniel J; Grynpas, Marc D

    2011-02-01

    Patients with type 2 diabetes mellitus have an increased risk of fracture that can be further exacerbated by thiazolidinediones. A new class of antidiabetic agents control glucose through reduction of dipeptidyl peptidase-4 (DPP-4) activity; however the importance of DPP-4 for the control of bone quality has not been extensively characterized. We compared the effects of the thiazolidinedione pioglitazone and the DPP-4 inhibitor sitagliptin on bone quality in high-fat diet (HFD)-fed wild-type mice. In complementary studies, we examined bone quality in Dpp4(+/+) vs. Dpp4(-/-) mice. Pioglitazone produced yellow bones with greater bone marrow adiposity and significantly reduced vertebral bone mechanics in male, female, and ovariectomized (OVX) HFD fed female mice. Pioglitazone negatively affected vertebral volumetric bone mineral density, trabecular architecture, and mineral apposition rate in male mice. Sitagliptin treatment of HFD-fed wild-type mice significantly improved vertebral volumetric bone mineral density and trabecular architecture in female mice, but these improvements were lost in females after OVX. Genetic inactivation of Dpp4 did not produce a major bone phenotype in male and female Dpp4(-/-) mice; however, OVX Dpp4(-/-) mice exhibited significantly reduced femoral size and mechanics. These findings delineate the skeletal consequences of pharmacological and genetic reduction of DPP-4 activity and reveal significant differences in the effects of pioglitazone vs. sitagliptin vs. genetic Dpp4 inactivation on bone mechanics in mice.

  16. Pioglitazone does not affect the risk of ovarian cancer: analysis of a nationwide reimbursement database in Taiwan.

    PubMed

    Tseng, Chin-Hsiao

    2013-10-01

    The association between pioglitazone and ovarian cancer has not been studied. The reimbursement databases of all Taiwanese patients with a diagnosis of diabetes and under oral anti-diabetic agents or insulin from 1996 to 2009 were retrieved from the National Health Insurance. An entry date was set at 1 January 2006 and a total of 546,632 female patients with type 2 diabetes were followed up for ovarian cancer incidence until the end of 2009. Incidences for ever-users, never-users and subgroups of pioglitazone exposure [using cutoffs of the Kaiser Permanente Northern California study and tertile cutoffs derived from the databases] were calculated and the hazard ratios were estimated by Cox regression in unadjusted, age-adjusted and fully adjusted models. There were 30,783 ever-users and 515,849 never-users, with respective numbers of incident ovarian cancer of 49 (0.16%) and 946 (0.18%), and respective incidence of 43.08 and 51.47 per 100,000 person-years. The overall hazard ratios (95% confidence intervals) in unadjusted, age-adjusted and fully adjusted models were 0.822 (0.616-1.095), 0.823 (0.617-1.097) and 0.968 (0.718-1.305), respectively. In the dose-response analyses, none of the categories showed a significant hazard ratio, and all P-trends were >0.05 without statistical significance. This study does not support a positive or negative association between pioglitazone use and ovarian cancer in female patients with type 2 diabetes. © 2013.

  17. Combination Therapy With Exenatide Plus Pioglitazone Versus Basal/Bolus Insulin in Patients With Poorly Controlled Type 2 Diabetes on Sulfonylurea Plus Metformin: The Qatar Study

    PubMed Central

    Abdul-Ghani, Muhammad; Migahid, Osama; Megahed, Ayman; Adams, John; Triplitt, Curtis; DeFronzo, Ralph A.; Zirie, Mahmoud; Jayyousi, Amin

    2017-01-01

    OBJECTIVE The Qatar Study was designed to examine the efficacy of combination therapy with exenatide plus pioglitazone versus basal/bolus insulin in patients with long-standing poorly controlled type 2 diabetes mellitus (T2DM) on metformin plus a sulfonylurea. RESEARCH DESIGN AND METHODS The study randomized 231 patients with poorly controlled (HbA1c >7.5%, 58 mmol/mol) T2DM on a sulfonylurea plus metformin to receive 1) pioglitazone plus weekly exenatide (combination therapy) or 2) basal plus prandial insulin (insulin therapy) to maintain HbA1c <7.0% (53 mmol/mol). RESULTS After a mean follow-up of 12 months, combination therapy caused a robust decrease in HbA1c from 10.0 ± 0.6% (86 ± 5.2 mmol/mol) at baseline to 6.1 ± 0.1% (43 ± 0.7 mmol/mol) compared with 7.1 ± 0.1% (54 ± 0.8 mmol/mol) in subjects receiving insulin therapy. Combination therapy was effective in lowering the HbA1c independent of sex, ethnicity, BMI, or baseline HbA1c. Subjects in the insulin therapy group experienced significantly greater weight gain and a threefold higher rate of hypoglycemia than patients in the combination therapy group. CONCLUSIONS Combination exenatide/pioglitazone therapy is a very effective and safe therapeutic option in patients with long-standing poorly controlled T2DM on metformin plus a sulfonylurea. PMID:28096223

  18. Hypoglycaemia with oral antidiabetic drugs: results from prescription-event monitoring cohorts of rosiglitazone, pioglitazone, nateglinide and repaglinide.

    PubMed

    Vlckova, Veronika; Cornelius, Victoria; Kasliwal, Rachna; Wilton, Lynda; Shakir, Saad A W

    2009-01-01

    Hypoglycaemia is an acute complication associated with intensive treatment of patients with diabetes mellitus. This complication poses a major challenge in diabetes management. Furthermore, severe hypoglycaemia may be life threatening. Although hypoglycaemia is more often associated with insulin treatment, oral hypoglycaemic agents have the potential to trigger hypoglycaemia. The aim of this study was to quantify the incidence of hypoglycaemic events and to describe the pattern of these incident events during the first 9 months of treatment with four oral antidiabetic drugs, rosiglitazone, pioglitazone, nateglinide and repaglinide, prescribed in general practice in England. We used data collected for prescription-event monitoring (PEM) studies of rosiglitazone, pioglitazone, nateglinide and repaglinide. PEM is an observational, non-interventional, incept cohort study. Observation time for each patient and incidence rate (IR) per 1000 patient-years of treatment for hypoglycaemia was calculated for each drug cohort. Smoothed hazard estimates were plotted over time. Case/non-case analysis was performed to describe and compare patients who had at least one hypoglycaemic event in the first 9 months of treatment with those who did not. The total number of patients included in the analysis was 14,373, 12,768, 4,549 and 5,727 in rosiglitazone, pioglitazone, nateglinide and repaglinide cohorts, respectively. From these, 276 patients experienced at least one episode of hypoglycaemia. The IR was between 50% and 100% higher in patients receiving treatment with meglitinides compared with those treated with the thiazolidinediones (TZDs) [IR = 9.94, 9.64, 15.71 and 20.32 per 1,000 patient-years for rosiglitazone, pioglitazone, nateglinide and repaglinide, respectively]. The plot of the hazard function and the estimated shape parameter from the Weibull regression model showed that pioglitazone, nateglinide and repaglinide had non-constant (decreasing) hazards over time, whereas the hazard for rosiglitazone-treated patients was approximately constant over time. Nateglinide and repaglinide had similar shape hazard function, indicating a significantly higher number of hypoglycaemic episodes shortly after starting treatment. For women treated with TZDs, hypoglycaemia was reported more frequently than for men. This analysis shows that the frequency of reported hypoglycaemia within the study cohorts was relatively low. The rates of hypoglycaemia were not equal between drug classes. Treatment with nateglinide or repaglinide was characterized by a higher incidence of hypoglycaemia at the beginning of treatment. Further investigation is necessary to assess whether women treated with TZDs are more prone to hypoglycaemia than men. Findings from this study should be taken into account with other clinical and pharmacoepidemiological studies.

  19. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.

    PubMed

    Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D

    2008-10-29

    We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.

  20. Structure-activity relationship and docking studies of thiazolidinedione-type compounds with monoamine oxidase B.

    PubMed

    Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J

    2011-08-15

    The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Structural Modification of (-)-Epigallocatechin Gallate (EGCG) Shows Significant Enhancement in Mitochondrial Biogenesis.

    PubMed

    Ha, Taewoong; Kim, Mi Kyoung; Park, Kwang-Su; Jung, Woong; Choo, Hyunah; Chong, Youhoon

    2018-04-18

    (-)-Epigallocatechin-3-gallate (EGCG) is known as a mitochondria-targeted molecule that can prevent mitochondrial deterioration and induce mitochondrial biogenesis by modulating key regulators of mitochondrial metabolism. In this study, we tackled whether derivatization of EGCG could result in enhancement of its effects on mitochondrial biogenesis. EGCG, EGCG peracetate (AcEGCG), and its 4″- O-alkyl substituted congeners prepared by previously reported procedures were biologically evaluated. Interestingly, EGCG and AcEGCG were only marginally effective in inducing mitochondrial biogenesis, while AcEGCG congeners with an alkyl group at the 4″- O position showed significantly increased biological activity compared to their parent compound. Among these series, 3f with a methyl-branched carbonate chain at the 4″- O position of the AcEGCG scaffold showed the most enhancement in inducing mitochondrial biogenesis. Hepa1-6 cells treated with 3f exhibited increases in both mitochondrial mass (1.5 times) and relative mtDNA content to nDNA (1.5 times). As a mitochondrial biogenesis enhancer, 3f also increased expression levels of regulators for mitochondrial function, including PGC-1α (4.0 fold), p-AMPK (2.5 fold), SIRT1 (4.2 fold), ERRα (1.8 fold), NRF-1 (1.6 fold), NRF-2 (1.7 fold), and mtTFA (1.6 folds). Investigation of oxidative phosphorylation by mitochondria in the presence of 3f revealed that 3f increased the NAD + /NADH ratio, the amount of cytochrome c, ATP synthesis, and oxygen consumption in Hepa1-6 cells by 2.2, 1.4, 1.5, and 2.1 fold, respectively. Taken together, these results warrant an extensive structure-activity relationship study for EGCG derivatives to develop novel mitochondrial biogenesis enhancers.

  2. The effects of thiazolidinediones on human bone marrow stromal cell differentiation in vitro and in thiazolidinedione-treated patients with type 2 diabetes.

    PubMed

    Beck, George R; Khazai, Natasha B; Bouloux, Gary F; Camalier, Corinne E; Lin, Yiming; Garneys, Laura M; Siqueira, Joselita; Peng, Limin; Pasquel, Francisco; Umpierrez, Denise; Smiley, Dawn; Umpierrez, Guillermo E

    2013-03-01

    Thiazolidinedione (TZD) therapy has been associated with an increased risk of bone fractures. Studies in rodents have led to a model in which decreased bone quality in response to TZDs is due to a competition of lineage commitment between osteoblasts (OBs) and adipocytes (ADs) for a common precursor cell, resulting in decreased OB numbers. Our goal was to investigate the effects of TZD exposure on OB-AD lineage determination from primary human bone marrow stromal cells (hBMSCs) both in vitro and in vivo from nondiabetic subjects and patients with type 2 diabetics. Our experimental design included 2 phases. Phase 1 was an in vitro study of TZD effects on the differentiation of hBMSCs into OBs and ADs in nondiabetic subjects. Phase 2 was a randomized, placebo-controlled trial to determine the effects of 6-month pioglitazone treatment in vivo on hBMSC differentiation using AD/OB colony forming unit assays in patients with type 2 diabetes. In vitro, TZDs (pioglitazone and rosiglitazone) enhanced the adipogenesis of hBMSCs, whereas neither altered OB differentiation or function as measured by alkaline phosphatase activity, gene expression, and mineralization. The ability of TZDs to enhance adipogenesis occurred at a specific time/stage of the differentiation process, and pretreating with TZDs did not further enhance adipogenesis. In vivo, 6-month TZD treatment decreased OB precursors, increased AD precursors, and increased total colony number in patients with type 2 diabetes. Our results indicate that TZD exposure in vitro potently stimulates adipogenesis but does not directly alter OB differentiation/mineralization or lineage commitment from hBMSCs. However, TZD treatment in type 2 diabetic patients results in decreased osteoblastogenesis from hBMSCs compared with placebo, indicating an indirect negative effect on OBs and suggesting an alternative model by which TZDs might negatively regulate bone quality. Copyright © 2013 Mosby, Inc. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vikram, Ajit; Jena, Gopabandhu, E-mail: gbjena@gmail.com

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report thatmore » S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.« less

  4. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways.

    PubMed

    Cersosimo, Eugenio; Xu, Xiaojing; Musi, Nicolas

    2012-02-15

    To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.

  5. Rationale, Design, and Baseline Characteristics of Beijing Prediabetes Reversion Program: A Randomized Controlled Clinical Trial to Evaluate the Efficacy of Lifestyle Intervention and/or Pioglitazone in Reversion to Normal Glucose Tolerance in Prediabetes

    PubMed Central

    Luo, Yingying; Paul, Sanjoy K.; Zhou, Xianghai; Chang, Cuiqing; Guo, Xiaohui; Yang, Jinkui

    2017-01-01

    Background. Patients with prediabetes are at high risk for diabetes and cardiovascular disease (CVD). No study has explored whether intervention could revert prediabetes to normal glycemic status as the primary outcome. Beijing Prediabetes Reversion Program (BPRP) would evaluate whether intensive lifestyle modification and/or pioglitazone could revert prediabetic state to normoglycemia and improve the risk factors of CVD as well. Methods. BPRP is a randomized, multicenter, 2 × 2 factorial design study. Participants diagnosed as prediabetes were randomized into four groups (conventional/intensive lifestyle intervention and 30 mg pioglitazone/placebo) with a three-year follow-up. The primary endpoint was conversion into normal glucose tolerance. The trial would recruit 2000 participants (500 in each arm). Results. Between March 2007 and March 2011, 1945 participants were randomized. At baseline, the individuals were 53 ± 10 years old, with median BMI 26.0 (23.9, 28.2) kg/m2 and HbA1c 5.8 (5.6, 6.1)%. 85% of the participants had IGT and 15% had IFG. Parameters relevant to glucose, lipids, blood pressure, lifestyle, and other metabolic markers were similar between conventional and intensive lifestyle intervention group at baseline. Conclusion. BPRP was the first study to determine if lifestyle modification and/or pioglitazone could revert prediabetic state to normoglycemia in Chinese population. Major baseline parameters were balanced between two lifestyle intervention groups. This trial is registered with www.chictr.org.cn: ChiCTR-PRC-06000005. PMID:28168204

  6. Rationale, Design, and Baseline Characteristics of Beijing Prediabetes Reversion Program: A Randomized Controlled Clinical Trial to Evaluate the Efficacy of Lifestyle Intervention and/or Pioglitazone in Reversion to Normal Glucose Tolerance in Prediabetes.

    PubMed

    Luo, Yingying; Paul, Sanjoy K; Zhou, Xianghai; Chang, Cuiqing; Chen, Wei; Guo, Xiaohui; Yang, Jinkui; Ji, Linong; Wang, Hongyuan

    2017-01-01

    Background . Patients with prediabetes are at high risk for diabetes and cardiovascular disease (CVD). No study has explored whether intervention could revert prediabetes to normal glycemic status as the primary outcome. Beijing Prediabetes Reversion Program (BPRP) would evaluate whether intensive lifestyle modification and/or pioglitazone could revert prediabetic state to normoglycemia and improve the risk factors of CVD as well. Methods . BPRP is a randomized, multicenter, 2 × 2 factorial design study. Participants diagnosed as prediabetes were randomized into four groups (conventional/intensive lifestyle intervention and 30 mg pioglitazone/placebo) with a three-year follow-up. The primary endpoint was conversion into normal glucose tolerance. The trial would recruit 2000 participants (500 in each arm). Results . Between March 2007 and March 2011, 1945 participants were randomized. At baseline, the individuals were 53 ± 10 years old, with median BMI 26.0 (23.9, 28.2) kg/m 2 and HbA1c 5.8 (5.6, 6.1)%. 85% of the participants had IGT and 15% had IFG. Parameters relevant to glucose, lipids, blood pressure, lifestyle, and other metabolic markers were similar between conventional and intensive lifestyle intervention group at baseline. Conclusion . BPRP was the first study to determine if lifestyle modification and/or pioglitazone could revert prediabetic state to normoglycemia in Chinese population. Major baseline parameters were balanced between two lifestyle intervention groups. This trial is registered with www.chictr.org.cn: ChiCTR-PRC-06000005.

  7. Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.

    PubMed

    Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon

    2013-01-01

    It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.

  8. Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism

    PubMed Central

    Guidarelli, Andrea; Cerioni, Liana; Fiorani, Mara; Cantoni, Orazio

    2017-01-01

    Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. PMID:28767071

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011; Zhang, Ting

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral arterymore » occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.« less

  10. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone

    PubMed Central

    Pancani, Tristano; Anderson, Katie L.; Porter, Nada M.; Thibault, Olivier

    2011-01-01

    Neuronal Ca2+ dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca2+ sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca2+ signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca2+ dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including FURA-2 and NADH imaging, provides results that are consistent with the idea that Ca2+ levels may rapidly alter glycolytic activity, and that downstream events beyond Ca2+ dysregulation with aging, may alter cellular metabolism in the brain. PMID:21978418

  11. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

    PubMed Central

    Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan

    2014-01-01

    SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482

  12. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis. © 2015 New York Academy of Sciences.

  13. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    PubMed

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  14. Pioglitazone inhibits angiotensin II-induced atrial fibroblasts proliferation via NF-κB/TGF-β1/TRIF/TRAF6 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiao-qing; Liu, Xu, E-mail: xkliuxu@126.com; Wang, Quan-xing, E-mail: wqxejd@126.com

    2015-01-01

    The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transformingmore » growth factor-β1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway. - Highlights: • Angiotensin II increased atrial fibrosis and related gene expressions in mice. • Angiotensin II induced atrial fibroblasts proliferation by activating signaling pathway. • Pioglitazone reversed both aforementioned changes.« less

  15. Effects of pioglitazone on nonalcoholic steatohepatitis in a patient with anorexia nervosa: A case report.

    PubMed

    Ohno, Tomohiko; Nishigaki, Yoichi; Yamada, Tetsuya; Wakahara, Yuko; Sakai, Hiroyasu; Yoshimura, Kotaro; Shimizu, Masahito; Usui, Toshio; Saito, Masaya; Yasuda, Ichiro; Tsurumi, Hisashi; Tomita, Eiichi; Moriwaki, Hisataka

    2014-04-01

    Diseases associated with metabolic syndromes are of major concern in developed countries. Nonalcoholic steatohepatitis (NASH) is one of the manifestations of metabolic syndrome in the liver. Previous studies have shown that NASH is also caused by malnutrition. In the present study, a case of malnutrition-associated NASH in a 66-year-old female with anorexia nervosa is reported. The patient had a body mass index (BMI) of only 11.1 kg/m 2 and serum alanine aminotransferase levels of 1,495 IU/l. Steatohepatitis with fibrosis was confirmed by percutaneous liver needle biopsy. Total parenteral nutrition was conducted at first, followed by the administration of Stronger Neo-Minophagen C (a glycyrrhizin-containing preparation), ursodeoxycholic acid and prednisolone. The abnormal elevation of aminotransferase levels of the patient was prolonged and total bilirubin levels increased. Pioglitazone (15 mg/day), which has been identified to be effective for nonalcoholic steatohepatitis, was then administered. This resulted in marked reductions in aminotransferase and bilirubin levels within three months. Histological improvement of the liver was also confirmed by percutaneous liver needle biopsy after one year. The observations in the present case suggest that pioglitazone may be useful for the treatment of malnutrition-associated NASH.

  16. PPAR-γ agonism as a modulator of mood: proof-of-concept for pioglitazone in bipolar depression.

    PubMed

    Kemp, David E; Schinagle, Martha; Gao, Keming; Conroy, Carla; Ganocy, Stephen J; Ismail-Beigi, Faramarz; Calabrese, Joseph R

    2014-06-01

    Insulin resistance and other cardio-metabolic risk factors predict increased risk of depression and decreased response to antidepressant and mood stabilizer treatments. This proof-of-concept study tested whether administration of an insulin-sensitizing peroxisome proliferator-activated receptor (PPAR)-γ agonist could reduce bipolar depression symptom severity. A secondary objective was to determine whether levels of highly sensitive C-reactive protein and interleukin (IL)-6 predicted treatment outcome. Patients (n = 34) with bipolar disorder (I, II, or not otherwise specified) and metabolic syndrome/insulin resistance who were currently depressed (Quick Inventory of Depressive Symptoms [QIDS] total score ≥11) despite an adequate trial of a mood stabilizer received open-label, adjunctive treatment with the PPAR-γ agonist pioglitazone (15-30 mg/day) for 8 weeks. The majority of participants (76 %, n = 26) were experiencing treatment-resistant bipolar depression, having already failed two mood stabilizers or the combination of a mood stabilizer and a conventional antidepressant. Supporting an association between insulin sensitization and depression severity, pioglitazone treatment was associated with a decrease in the total Inventory of Depressive Symptomatology (IDS-C30) score from 38.7 ± 8.2 at baseline to 21.2 ± 9.2 at week 8 (p < 0.001). Self-reported depressive symptom severity and clinician-rated anxiety symptom severity significantly improved over 8 weeks as measured by the QIDS (p < 0.001) and Structured Interview Guide for the Hamilton Anxiety Scale (p < 0.001), respectively. Functional improvement also occurred as measured by the change in total score on the Sheehan Disability Scale (-17.9 ± 3.6; p < 0.001). Insulin sensitivity increased from baseline to week 8 as measured by the Insulin Sensitivity Index derived from an oral glucose tolerance test (0.98 ± 0.3; p < 0.001). Higher baseline levels of IL-6 were associated with greater decrease in depression severity (parameter estimate β = -3.89, standard error [SE] = 1.47, p = 0.015). A positive correlation was observed between improvement in IDS-C30 score and change in IL-6 (r = 0.44, p < 0.01). Open-label administration of the PPAR-γ agonist pioglitazone was associated with improvement in depressive symptoms and reduced cardio-metabolic risk. Reduction in inflammation may represent a novel mechanism by which pioglitazone modulates mood. (ClinicalTrials.gov Identifier: NCT00835120).

  17. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function.

    PubMed

    Stockburger, Carola; Miano, Davide; Pallas, Thea; Friedland, Kristina; Müller, Walter E

    2016-01-01

    The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function.

  18. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function

    PubMed Central

    Stockburger, Carola; Miano, Davide; Pallas, Thea; Müller, Walter E.

    2016-01-01

    The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function. PMID:27747106

  19. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS), myoclonic epilepsy with ragged-red fibers (MERRF), mitochondrial encephalomyopathy, lactic acidosis and strokelike episodes (MELAS), Leber's hereditary optic neuropathy (LHON), the syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), and Leigh's syndrome. Likewise, other diseases in which mitochondrial dysfunction plays a very important role include neurodegenerative diseases, diabetes or cancer. Generally, in mitochondrial diseases a mutation in the mitochondrial DNA leads to a loss of functionality of the OXPHOS system and thus to a depletion of ATP and overproduction of ROS, which can, in turn, induce further mtDNA mutations. The work by Yu-Ting Wu, Shi-Bei Wu, and Yau-Huei Wei (Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan) [4] focuses on the aforementioned mitochondrial diseases with special attention to the compensatory mechanisms that prompt mitochondria to produce more energy even under mitochondrial defect-conditions. These compensatory mechanisms include the overexpression of antioxidant enzymes, mitochondrial biogenesis and overexpression of respiratory complex subunits, as well as metabolic shift to glycolysis. The pathways observed to be related to mitochondrial biogenesis as a compensatory adaptation to the energetic deficits in mitochondrial diseases are described (PGC- 1, Sirtuins, AMPK). Several pharmacological strategies to trigger these signaling cascades, according to these authors, are the use of bezafibrate to activate the PPAR-PGC-1α axis, the activation of AMPK by resveratrol and the use of Sirt1 agonists such as quercetin or resveratrol. Other strategies currently used include the addition of antioxidant supplements to the diet (dietary supplementation with antioxidants) such as L-carnitine, coenzyme Q10,MitoQ10 and other mitochondria-targeted antioxidants,N-acetylcysteine (NAC), vitamin C, vitamin E vitamin K1, vitamin B, sodium pyruvate or -lipoic acid. As aforementioned, other diseases do not have exclusively a mitochondrial origin but they might have an important mitochondrial component both on their onset and on their development. This is the case of type 2 diabetes or neurodegenerative diseases. Type 2 diabetes is characterized by a peripheral insulin resistance accompanied by an increased secretion of insulin as a compensatory system. Among the explanations about the origin of insulin resistance Mónica Zamora and Josep A. Villena (Department of Experimental and Health Sciences, Universitat Pompeu Fabra / Laboratory of Metabolism and Obesity, Universitat Autònoma de Barcelona, Spain) [5] consider the hypothesis that mitochondrial dysfunction, e.g. impaired (mitochondrial) oxidative capacity of the cell or tissue, is one of the main underlying causes of insulin resistance and type 2 diabetes. Although this hypothesis is not free of controversy due to the uncertainty on the sequence of events during type 2 diabetes onset, e.g. whether mitochondrial dysfunction is the cause or the consequence of insulin resistance, it has been widely observed that improving mitochondrial function also improves insulin sensitivity and prevents type 2 diabetes. Thus restoring oxidative capacity by increasing mitochondrial mass appears as a suitable strategy to treat insulin resistance. The effort made by researchers trying to understand the signaling pathways mediating mitochondrial biogenesis has uncovered new potential pharmacological targets and opens the perspectives for the design of suitable treatments for insulin resistance. In addition some of the current used strategies could be used to treat insulin resistance such as lifestyle interventions (caloric restriction and endurance exercise) and pharmacological interventions (thiazolidinediones and other PPAR agonists, resveratrol and other calorie restriction mimetics, AMPK activators, ERR activators). Mitochondrial biogenesis is of special importance in modern neurochemistry because of the broad spectrum of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and neurodevelopmental disorders. In the context of neural differentiation, Martine Uittenbogaard and Anne Chiaramello (Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, USA) [7] thoroughly describe the implication of mitochondrial biogenesis on neuronal differentiation, its timing, its regulation by specific signaling pathways and new potential therapeutic strategies. The maintenance of mitochondrial homeostasis is crucial for neuronal development. A mitochondrial dynamic balance is necessary between mitochondrial fusion, fission and quality control systems and mitochondrial biogenesis. Concerning the signaling pathways leading to mitochondrial biogenesis this review highlights the implication of different regulators such as AMPK, SIRT1, PGC-1α, NRF1, NRF2, Tfam, etc. on the specific case of neuronal development, providing examples of diseases in which these pathways are altered and transgenic mouse models lacking these regulators. A common hallmark of several neurodegenerative diseases (Huntington´s Disease, Alzheimer´s Disease and Parkinson´s Disease) is the impaired function or expression of PGC-1α, the master regulator of mitochondrial biogenesis. Among the promising strategies to ameliorate mitochondrial-based diseases these authors highlight the induction of PGC-1α via activation of PPAR receptors (rosiglitazone, bezafibrate) or modulating its activity by AMPK (AICAR, metformin, resveratrol) or SIRT1 (SRT1720 and several isoflavone-derived compounds). This article also presents a review of the current animal and cellular models useful to study mitochondriogenesis. Although it is known that many neurodegenerative and neurodevelopmental diseases are originated in mitochondria, the regulation of mitochondrial biogenesis has never been extensively studied. (ABSTRACT TRUNCATED)

  20. Improved Mitochondrial Function in Brain Aging and Alzheimer Disease – the New Mechanism of Action of the Old Metabolic Enhancer Piracetam

    PubMed Central

    Leuner, Kristina; Kurz, Christopher; Guidetti, Giorgio; Orgogozo, Jean-Marc; Müller, Walter E.

    2010-01-01

    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, this new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions. PMID:20877425

  1. Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells

    PubMed Central

    Vo, Mai-Tram; Choi, Seong Hee; Lee, Ji-Heon; Hong, Chung Hwan; Kim, Jong Soo; Lee, Unn Hwa; Chung, Hyung-Min; Lee, Byung Ju; Park, Jeong Woo; Cho, Wha Ja

    2017-01-01

    Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3′-untranslated regions (3′-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3′-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics. PMID:28410208

  2. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.

    PubMed

    Sorrentino, Vincenzo; Romani, Mario; Mouchiroud, Laurent; Beck, John S; Zhang, Hongbo; D'Amico, Davide; Moullan, Norman; Potenza, Francesca; Schmid, Adrien W; Rietsch, Solène; Counts, Scott E; Auwerx, Johan

    2017-12-14

    Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer's disease.

  3. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Non-alcoholic steatohepatitis: review of a growing medical problem.

    PubMed

    Te Sligte, K.; Bourass, I.; Sels, J.P.; Driessen, A.; Stockbrugger, R.W.; Koek, G.H.

    2004-02-01

    Non-alcoholic steatohepatitis (NASH) is a metabolic liver disorder that is seen in 2-6% of the general population. It manifests itself by elevated liver enzymes, frequently without symptoms. The histological findings include steatosis, inflammation, fibrosis, and cirrhosis. Three case reports are presented to illustrate features of NASH. A two-hit model has been proposed in the pathogenesis of NASH. The first hit is hepatic steatosis. A hypercaloric diet with high levels of carbohydrates and saturated fatty acids results in elevated plasma free fatty acids (FFA) and expands the adipose tissue. Insulin resistance develops and augments steatosis. Oxidation of FFA yields toxic free radicals, resulting in lipid peroxidation. They cause the second hits: increased oxidative stress on hepatocytes and induction of pro-inflammatory cytokines. When the antioxidant capacities of the liver are insufficient, mitochondrial dysfunction and tumor necrosis factor alpha (TNF-alpha) cause inflammation and fibrosis. Treatment consists of life style modifications, particularly weight loss and exercise. Many drugs have been tried in the treatment of NASH. The insulin-sensitizing drugs metformin, rosiglitazone, and pioglitazone, and the antioxidant vitamin E show promising results. Further investigation of therapeutic options is needed to direct the choice of therapy in the future.

  5. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.

    PubMed

    Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E

    2013-10-01

    The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.

  6. Bruton's tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia.

    PubMed

    Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S

    2017-10-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.

  7. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia

    PubMed Central

    Deng, Jing; Isik, Elif; Fernandes, Stacey M.; Brown, Jennifer R.; Letai, Anthony; Davids, Matthew S.

    2017-01-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with CLL, it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition. PMID:28111464

  8. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    PubMed

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF V600E ), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF V600E is pharmacologically inhibited by targeted therapies ( e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF V600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G 1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  9. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair

    DOE PAGES

    Qin, Lili; Fan, Ming; Candas, Demet; ...

    2015-12-06

    Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy-consuming process. However, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of the cell-cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is reduced significantly in cells harboring CDK1 phosphorylation-deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair aremore » also compromised severely in cells harboring mitochondrially targeted, kinase-deficient CDK1. These findings demonstrate a mechanism governing the communication between mitochondria and the nucleus by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress conditions.« less

  11. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.

    PubMed

    de Guglielmo, Giordano; Melis, Miriam; De Luca, Maria Antonietta; Kallupi, Marsida; Li, Hong Wu; Niswender, Kevin; Giordano, Antonio; Senzacqua, Martina; Somaini, Lorenzo; Cippitelli, Andrea; Gaitanaris, George; Demopulos, Gregory; Damadzic, Ruslan; Tapocik, Jenica; Heilig, Markus; Ciccocioppo, Roberto

    2015-03-01

    PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.

  12. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion.

    PubMed

    Katona, Dávid; Rajki, Anikó; Di Benedetto, Giulietta; Pozzan, Tullio; Spät, András

    2015-09-05

    Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial.

    PubMed

    Schmitz, Joy M; Green, Charles E; Hasan, Khader M; Vincent, Jessica; Suchting, Robert; Weaver, Michael F; Moeller, F Gerard; Narayana, Ponnada A; Cunningham, Kathryn A; Dineley, Kelly T; Lane, Scott D

    2017-10-01

    Pioglitazone (PIO), a potent agonist of PPAR-gamma, is a promising candidate treatment for cocaine use disorder (CUD). We tested the effects of PIO on targeted mechanisms relevant to CUD: cocaine craving and brain white matter (WM) integrity. Feasibility, medication compliance and tolerability were evaluated. Two-arm double-blind randomized controlled proof-of-concept pilot trial of PIO or placebo (PLC). Single-site out-patient treatment research clinic in Houston, TX, USA. Thirty treatment-seeking adults, 18 to 60 years old, with CUD. Eighteen participants (8 = PIO; 10 = PLC) completed diffusion tensor imaging (DTI) of WM integrity at pre-/post-treatment. Study medication was dispensed at thrice weekly visits along with once-weekly cognitive behavioral therapy for 12 weeks. Measures of target engagement mechanisms of interest included cocaine craving assessed by the Brief Substance Craving Scale (BSCS), the Obsessive Compulsive Drug Use Scale (OCDUS), a visual analog scale (VAS) and change in WM integrity. Feasibility measures included number completing treatment, medication compliance (riboflavin detection) and tolerability (side effects, serious adverse events). Target engagement change in mechanisms of interest, defined as a ≥ 0.75 Bayesian posterior probability of an interaction existing favoring PIO over PLC, was demonstrated on measures of craving (BSCS, VAS) and WM integrity indexed by fractional anisotropy (FA) values. Outcomes indicated greater decrease in craving and greater increase in FA values in the PIO group. Feasibility was demonstrated by high completion rates among those starting treatment (21/26 = 80%) and medication compliance (≥ 80%). There were no reported serious adverse events for PIO. Compared with placebo, patients receiving pioglitazone show a higher likelihood of reduced cocaine craving and improved brain white matter integrity as a function of time in treatment. Pioglitazone shows good feasibility as a treatment for cocaine use disorder. © 2017 Society for the Study of Addiction.

  14. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway.

    PubMed

    Shahsavarian, Arash; Javadi, Shiva; Jahanabadi, Samane; Khoshnoodi, Mina; Shamsaee, Javad; Shafaroodi, Hamed; Mehr, Shahram Ejtemaei; Dehpour, Ahmadreza

    2014-12-15

    Atorvastatin is a synthetic and lipophilic statin which has been reported to have a positive role in reducing depression. The potential antidepressant-like effects of atorvastatin and the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR_γ) and nitric oxide system were determined using forced swimming test (FST) in mice was studied. Atorvastatin (0.01, 0.1 and 1 mg/kg, p.o.) was administered 1 h before FST. To assess the involvement of PPAR_γ in the possible antidepressant effect of atorvastatin, pioglitazone, a PPAR_γ agonist (5 mg/kg), and GW-9662, a specific PPAR_γ antagonist (2 mg/kg), was co-administered with atorvastatin (0.01 mg/kg, p.o.) and then FST was performed. The possible role of nitric oxide pathway was determined by using co-administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.), and a NO precursor, L-arginine (750 mg/kg, i.p.) with sub-effective doses of atorvastatin and pioglitazone. Immobility time was significantly decreased after atorvastatin administration (0.1 and 1 mg/kg, p.o.). Administration of pioglitazone or L-NAME in combination with the sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) reduced the immobility time in the FST compared to drugs alone, showing the participation of these pathways; while co-administration of non-effective doses of atorvastatin and pioglitazone with GW9662 or L-arginine reversed antidepressant-like effect of atorvastatin in FST. Data from concurrent use of GW9662 and atorvastatin also demonstrated that the antidepressant effect of atorvastatin was significantly reversed by GW9662. The antidepressant-like effect of atorvastatin on mice in the FST is mediated at least in part through PPAR_γ receptors and NO pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The disposition index does not reflect β-cell function in IGT subjects treated with pioglitazone.

    PubMed

    DeFronzo, Ralph A; Tripathy, Devjit; Abdul-Ghani, Muhammad; Musi, Nicolas; Gastaldelli, Amalia

    2014-10-01

    The insulin secretion/insulin resistance (IR) (disposition) index (ΔI/ΔG ÷ IR, where Δ is change from baseline, I is insulin, and G is glucose) is commonly used as a measure of β-cell function. This relationship is curvilinear and becomes linear when log transformed. ΔI is determined by 2 variables: insulin secretion rate (ISR) and metabolic clearance of insulin. We postulated that the characteristic curvilinear relationship would be lost if Δ plasma C-peptide (ΔCP) (instead of Δ plasma insulin) was plotted against insulin sensitivity. A total of 441 individuals with impaired glucose tolerance (IGT) from ACT NOW received an oral glucose tolerance test and were randomized to pioglitazone or placebo for 2.4 years. Pioglitazone reduced IGT conversion to diabetes by 72% (P < .0001). ΔI/ΔG vs the Matsuda index of insulin sensitivity showed the characteristic curvilinear relationship. However, when ΔCP/ΔG or ΔISR/ΔG was plotted against the Matsuda index, the curvilinear relationship was completely lost. This discordance was explained by 2 distinct physiologic effects that altered plasma insulin response in opposite directions: 1) increased ISR and 2) augmented metabolic clearance of insulin. The net result was a decline in the plasma insulin response to hyperglycemia during the oral glucose tolerance test. These findings demonstrate a physiologic control mechanism wherein the increase in ISR ensures adequate insulin delivery into the portal circulation to suppress hepatic glucose production while delivering a reduced but sufficient amount of insulin to peripheral tissues to maintain the pioglitazone-mediated improvement in insulin sensitivity without excessive hyperinsulinemia. These results demonstrate the validity of the disposition index when relating the plasma insulin response to insulin sensitivity but underscore the pitfall of this index when drawing conclusions about β-cell function, because insulin secretion declined despite an increase in the plasma insulin response.

  16. Linagliptin improved glycaemic control without weight gain or hypoglycaemia in patients with Type 2 diabetes inadequately controlled by a combination of metformin and pioglitazone: a 24-week randomized, double-blind study

    PubMed Central

    Bajaj, M; Gilman, R; Patel, S; Kempthorne-Rawson, J; Lewis-D'Agostino, D; Woerle, H-J

    2014-01-01

    Aims To investigate the efficacy and safety of the dipeptidyl peptidase-4 inhibitor linagliptin in patients with Type 2 diabetes mellitus inadequately controlled by a combination of metformin and pioglitazone. Methods This was a multi-centre, phase 3, randomized, double-blind, placebo-controlled study comparing linagliptin 5 mg once daily (n = 183) and placebo (n = 89) as add-on to metformin and pioglitazone. The primary endpoint was the change from baseline in glycated haemoglobin (HbA1c) after 24 weeks. Results The placebo-corrected adjusted mean (se) change in HbA1c from baseline to 24 weeks was –6 (1) mmol/mol [–0.57 (0.13)%] (P < 0.0001). In patients with baseline HbA1c ≥ 53 mmol/mol (7.0%), 32.4% of patients in the linagliptin group and 13.8% in the placebo group achieved HbA1c < 53 mmol/mol (7.0%) (odds ratio 2.94; P = 0.0033). The placebo-corrected adjusted mean (se) change from baseline in fasting plasma glucose at week 24 was –0.57 (0.26) mmol/l [–10.4 (4.7) mg/dl] (P = 0.0280). The incidence of serious adverse events was 2.2% with linagliptin and 3.4% with placebo. Investigator-defined hypoglycaemia occurred in 5.5% of the linagliptin group and 5.6% of the placebo group. No meaningful changes in mean body weight were noted for either group. Conclusions Linagliptin as add-on therapy to metformin and pioglitazone produced significant and clinically meaningful improvements in glycaemic control, without an additional risk of hypoglycaemia or weight gain (Clinical Trials Registry No: NCT 00996658). PMID:24824197

  17. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis.

    PubMed

    Vercruysse, Pauline; Sinniger, Jérôme; El Oussini, Hajer; Scekic-Zahirovic, Jelena; Dieterlé, Stéphane; Dengler, Reinhard; Meyer, Thomas; Zierz, Stephan; Kassubek, Jan; Fischer, Wilhelm; Dreyhaupt, Jens; Grehl, Torsten; Hermann, Andreas; Grosskreutz, Julian; Witting, Anke; Van Den Bosch, Ludo; Spreux-Varoquaux, Odile; Ludolph, Albert C; Dupuis, Luc

    2016-04-01

    Amyotrophic lateral sclerosis, the most common adult-onset motor neuron disease, leads to death within 3 to 5 years after onset. Beyond progressive motor impairment, patients with amyotrophic lateral sclerosis suffer from major defects in energy metabolism, such as weight loss, which are well correlated with survival. Indeed, nutritional intervention targeting weight loss might improve survival of patients. However, the neural mechanisms underlying metabolic impairment in patients with amyotrophic lateral sclerosis remain elusive, in particular due to the lack of longitudinal studies. Here we took advantage of samples collected during the clinical trial of pioglitazone (GERP-ALS), and characterized longitudinally energy metabolism of patients with amyotrophic lateral sclerosis in response to pioglitazone, a drug with well-characterized metabolic effects. As expected, pioglitazone decreased glycaemia, decreased liver enzymes and increased circulating adiponectin in patients with amyotrophic lateral sclerosis, showing its efficacy in the periphery. However, pioglitazone did not increase body weight of patients with amyotrophic lateral sclerosis independently of bulbar involvement. As pioglitazone increases body weight through a direct inhibition of the hypothalamic melanocortin system, we studied hypothalamic neurons producing proopiomelanocortin (POMC) and the endogenous melanocortin inhibitor agouti-related peptide (AGRP), in mice expressing amyotrophic lateral sclerosis-linked mutant SOD1(G86R). We observed lower Pomc but higher Agrp mRNA levels in the hypothalamus of presymptomatic SOD1(G86R) mice. Consistently, numbers of POMC-positive neurons were decreased, whereas AGRP fibre density was elevated in the hypothalamic arcuate nucleus of SOD1(G86R) mice. Consistent with a defect in the hypothalamic melanocortin system, food intake after short term fasting was increased in SOD1(G86R) mice. Importantly, these findings were replicated in two other amyotrophic lateral sclerosis mouse models based on TDP-43 (Tardbp) and FUS mutations. Finally, we demonstrate that the melanocortin defect is primarily caused by serotonin loss in mutant SOD1(G86R) mice. Altogether, the current study combined clinical evidence and experimental studies in rodents to provide a mechanistic explanation for abnormalities in food intake and weight control observed in patients with amyotrophic lateral sclerosis. Importantly, these results also show that amyotrophic lateral sclerosis progression impairs responsiveness to classical drugs leading to weight gain. This has important implications for pharmacological management of weight loss in amyotrophic lateral sclerosis. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Metformin reduces hyper-reactivity of platelets from patients with polycystic ovary syndrome by improving mitochondrial integrity.

    PubMed

    Randriamboavonjy, Voahanginirina; Mann, W Alexander; Elgheznawy, Amro; Popp, Rüdiger; Rogowski, Paul; Dornauf, Imke; Dröse, Stefan; Fleming, Ingrid

    2015-08-31

    Polycystic ovary syndrome (PCOS) is associated with decreased fertility, insulin resistance and an increased risk of developing cardiovascular disease. Treating PCOS patients with metformin improves fertility and decreases cardiovascular complications. Given that platelet activation contributes to both infertility and cardiovascular disease development, we assessed platelet reactivity in PCOS patients and the consequences of metformin treatment. Compared to washed platelets from healthy donors, platelets from PCOS patients demonstrated enhanced reactivity and impaired activation of the AMP-activated kinase (AMPK). PCOS platelets also demonstrated enhanced expression of mitochondrial proteins such as the cytochrome c reductase, ATP synthase and the voltage-dependent anion channel-1. However, mitochondrial function was impaired as demonstrated by a decreased respiration rate. In parallel, the phosphorylation of dynamin-related protein-1 (Drp-1) on Ser616 was increased while that on Ser637 decreased. The latter changes were accompanied by decreased mitochondrial size. In insulin-resistant PCOS patients (HOMA-IR> 2) metformin treatment (1.7 g per day for 4 weeks to 6 months) improved insulin sensitivity, restored mitochondrial integrity and function and normalised platelet aggregation. Treatment was without effect in PCOS patients with HOMA-IR< 2. Moreover, treatment of megakaryocytes with metformin enhanced mitochondrial content and in the same cells metformin enhanced the phosphorylation of the Drp-1 on Ser637 via an AMPKα1-dependent mechanism. In conclusion, the improvement of mitochondrial integrity and platelet reactivity may contribute to the beneficial effects of metformin on cardiovascular disease.

  19. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS failed to improve palmitate-induced insulin-resistance. • Mitochondrial dysfunction by lipid metabolites would induce insulin-resistance.« less

  20. OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production.

    PubMed

    Fearon, Ian M

    2006-03-01

    To examine the mechanisms underlying oxidised LDL- (oxLDL)-induced alterations in Ca(2+) currents, an effect which underlies altered vascular contractility and cardiac myocyte function. Ca(2+) currents (I(Ca)) were recorded by whole-cell patch-clamp in HEK293 cells expressing L-type Ca(2+) channel alpha(1C) subunits or isolated rat ventricular myocytes. oxLDL (but not native LDL) significantly enhanced recombinant I(Ca), an effect mimicked by 1 microM lysophosphatidylcholine (LPC). LPC failed to enhance I(Ca) either in mitochondrial electron transport chain-depleted rho(0) cells, or in the presence of rotenone (1 microM), or MPP(+) (10 microM). The LPC response was similarly ablated by ascorbate (200 microM) or TROLOX (500 microM) and by the mitochondria-targeted antioxidant, MitoQ (250 nM). In myocytes, enhancement of I(Ca) due to LPC was similarly abrogated with rotenone and MitoQ. These data suggest that LPC enhanced recombinant Ca(2+) currents due to increased mitochondrial ROS production. In support with this, LPC enhanced fluorescence in HEK293 cells and cardiac myocytes loaded with a ROS-sensitive mitochondrial dye, reduced mitotracker red. LPC up-regulates L-type Ca(2+) currents due to altered mitochondrial ROS production, an effect which mediates the response of the native I(Ca) in cardiac myocytes to oxLDL.

  1. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function.

    PubMed

    Perico, Luca; Morigi, Marina; Rota, Cinzia; Breno, Matteo; Mele, Caterina; Noris, Marina; Introna, Martino; Capelli, Chiara; Longaretti, Lorena; Rottoli, Daniela; Conti, Sara; Corna, Daniela; Remuzzi, Giuseppe; Benigni, Ariela

    2017-10-17

    Mesenchymal stromal cells (MSCs) are renoprotective and drive regeneration following injury, although cellular targets of such an effect are still ill-defined. Here, we show that human umbilical cord (UC)-MSCs transplanted into mice stimulate tubular cells to regain mitochondrial mass and function, associated with enhanced microtubule-rich projections that appear to mediate mitochondrial trafficking to create a reparative dialogue among adjacent tubular cells. Treatment with UC-MSCs in mice with cisplatin-induced acute kidney injury (AKI) regulates mitochondrial biogenesis in proximal tubuli by enhancing PGC1α expression, NAD + biosynthesis and Sirtuin 3 (SIRT3) activity, thus fostering antioxidant defenses and ATP production. The functional role of SIRT3 in tubular recovery is highlighted by data that in SIRT3-deficient mice with AKI, UC-MSC treatment fails to induce renoprotection. These data document a previously unrecognized mechanism through which UC-MSCs facilitate renal repair, so as to induce global metabolic reprogramming of damaged tubular cells to sustain energy supply.Mesenchymal stromal cells drive renal regeneration following injury. Here, the authors show that human mesenchymal stromal cells, when transplanted into mice with acute kidney injury, stimulate renal tubular cell growth and enhance mitochondrial function via SIRT3.

  2. Antibiotic tigecycline enhances cisplatin activity against human hepatocellular carcinoma through inducing mitochondrial dysfunction and oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jun; Song, Meijun; Zhou, Mi

    Targeting mitochondrial metabolism has been recently demonstrated to be a promising therapeutic strategy for the treatment of various cancer. In this work, we demonstrate that antibiotic tigecycline is selectively against hepatocellular carcinoma (HCC) through inducing mitochondrial dysfunction and oxidative damage. Tigecycline is more effective in inhibiting proliferation and inducing apoptosis of HCC than normal liver cells. Importantly, tigecycline significantly enhances the inhibitory effects of chemotherapeutic drug cisplatin in HCC in vitro and in vivo. Mechanistically, tigecycline specifically inhibits mitochondrial translation as shown by the decreased protein levels of Cox-1 and -2 but not Cox-4 or Grp78, and increased mRNA levels of Cox-1more » and -2 but not Cox-4 in HCC cells exposed to tigecycline. In addition, tigecycline significantly induces mitochondrial dysfunction in HCC cells via decreasing mitochondrial membrane potential, complex I and IV activities, mitochondrial respiration and ATP levels. Tigecycline also increases levels of mitochondrial superoxide, hydrogen peroxide and ROS levels. Consistent with oxidative stress, oxidative damage on DNA, protein and lipid are also observed in tigecycline-treated cells. Importantly, antioxidant N-acetyl-L-cysteine (NAC) reverses the effects of tigecycline, suggesting that oxidative stress is required for the action of tigecycline in HCC cells. We further show that HCC cells have higher level of mitochondrial biogenesis than normal liver cells which might explain the different sensitivity to tigecycline between HCC and normal liver cells. Our work is the first to demonstrate that tigecycline is a promising candidate for HCC treatment and highlight the therapeutic value of targeting mitochondrial metabolism in HCC. - Highlights: • Tigecycline selectively targets HCC in vitro and in vivo. • Tigecycline enhances HCC cell response to chemotherapeutic drug. • Tigecycline inhibits mitochondrial translation and functions in HCC cells. • Tigecycline induces oxidative stress and damage in HCC cells. • Mitochondrial biogenesis and respiration is higher in HCC than normal liver cells.« less

  3. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L.

    PubMed

    Wang, Qilong; Wu, Shengnan; Zhu, Huaiping; Ding, Ye; Dai, Xiaoyan; Ouyang, Changhan; Han, Young-Min; Xie, Zhonglin; Zou, Ming-Hui

    2017-02-01

    PRKAA (protein kinase, AMP-activated, α catalytic subunit) regulates mitochondrial biogenesis, function, and turnover. However, the molecular mechanisms by which PRKAA regulates mitochondrial dynamics remain poorly characterized. Here, we report that PRKAA regulated mitochondrial fission via the autophagy-dependent degradation of DNM1L (dynamin 1-like). Deletion of Prkaa1/AMPKα1 or Prkaa2/AMPKα2 resulted in defective autophagy, DNM1L accumulation, and aberrant mitochondrial fragmentation in the mouse aortic endothelium. Furthermore, autophagy inhibition by chloroquine treatment or ATG7 small interfering RNA (siRNA) transfection, upregulated DNM1L expression and triggered DNM1L-mediated mitochondrial fragmentation. In contrast, autophagy activation by overexpression of ATG7 or chronic administration of rapamycin, the MTOR inhibitor, promoted DNM1L degradation and attenuated mitochondrial fragmentation in Prkaa2-deficient (prkaa2 -/- ) mice, suggesting that defective autophagy contributes to enhanced DNM1L expression and mitochondrial fragmentation. Additionally, the autophagic receptor protein SQSTM1/p62, which bound to DNM1L and led to its translocation into the autophagosome, was involved in DNM1L degradation by the autophagy-lysosome pathway. Gene silencing of SQSTM1 markedly reduced the association between SQSTM1 and DNM1L, impaired the degradation of DNM1L, and enhanced mitochondrial fragmentation in PRKAA-deficient endothelial cells. Finally, the genetic (DNM1L siRNA) or pharmacological (mdivi-1) inhibition of DNMA1L ablated mitochondrial fragmentation in the mouse aortic endothelium and prevented the acetylcholine-induced relaxation of isolated mouse aortas. This suggests that aberrant DNM1L is responsible for enhanced mitochondrial fragmentation and endothelial dysfunction in prkaa knockout mice. Overall, our results show that PRKAA deletion promoted mitochondrial fragmentation in vascular endothelial cells by inhibiting the autophagy-dependent degradation of DNM1L.

  4. Effect of CoQ homologues on reactive oxygen generation by mitochondria.

    PubMed

    Imada, Isuke; Sato, Eisuke F; Kira, Yukimi; Inoue, Masayasu

    2008-01-01

    Effect of CoQ compounds (Qs) on reactive oxygen (ROS) generation by mitochondrial complex I was studied using rat liver mitochondria and chemiluminescence probe L012. Kinetic analysis revealed that short chain Qs, such as Q2 and idebenone enhanced ROS generation by mitochondrial NADH oxidase system by a succinate-inhibitable mechanism. Lipid peroxidation in mitochondrial membranes induced by NADH and iron was inhibited by short chain Qs. The inhibitory activity was enhanced by co-oxidation of succinate as determined by chemiluminescence method and by electron spin resonance spectroscopy. These results suggested that the reduced form of short chain Qs inhibited mitochondrial ROS generation and lipid peroxidation.

  5. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle

    PubMed Central

    Cho, Yoshitake; Hazen, Bethany C.; Gandra, Paulo G.; Ward, Samuel R.; Schenk, Simon; Russell, Aaron P.; Kralli, Anastasia

    2016-01-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40–80%). Moreover, AAV1-Perm1–transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.—Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. PMID:26481306

  6. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs.

    PubMed

    Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen

    2015-09-01

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.

  7. Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation

    PubMed Central

    Schütt, Tanja; Kurz, Christopher; Eckert, Schamim H.; Schiller, Carola; Occhipinti, Angelo; Mai, Sören; Jendrach, Marina; Eckert, Gunter P.; Kruse, Shane E.; Palmiter, Richard D.; Brandt, Ulrich; Dröse, Stephan; Wittig, Ilka; Willem, Michael; Haass, Christian; Reichert, Andreas S.; Müller, Walter E.

    2012-01-01

    Abstract Aims: Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. Results: Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. Innovation: We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. Conclusion: Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD. Antioxid. Redox Signal. 16, 1421–1433. PMID:22229260

  8. Potential effects of vildagliptin on biomarkers associated with prothrombosis in diabetes mellitus.

    PubMed

    Khan, Sana; Khan, Saba; Panda, Bibhu Prasad; Akhtar, Mohd; Najmi, Abul Kalam

    2015-01-01

    Diabetes mellitus (DM) is one of the risks linked with susceptibility of thrombosis. We tried to inspect the effect of a novel oral antidiabetic agent, vildagliptin, in preventing prothrombosis associated with DM. DM was produced by a dose of streptozotocin (STZ) or in albino wistar rats. Rats were treated orally with pioglitazone, standard treatment and vildagliptin alone and in combination for 3 weeks. Finally, the varied levels of coagulation biomarkers, including activated partial thromboplastin time (aPTT), prothrombin time (PT) and fibrinogen and inflammatory parameters, nitric oxide (NO), C-reactive protein (CRP) and TNF-α and lipid profile were estimated along with platelet count and total leukocyte count (TLC). In vitro fibrinolytic activity of both the drugs was also determined. Vildagliptin significantly reduced cholesterol, triglycerides, TLC, CRP and TNF-α and increased aPTT and NO levels in STZ diabetic rats. However, pioglitazone was more successful in reducing fibrinogen and platelet count. Nevertheless, combination of the drugs was also effective than pioglitazone or vildagliptin alone in improvising hypercoagulation and inflammatory biomarkers. It is evident from the present study that vildagliptin has an influence on the biomarkers linked to the progression of thrombosis and may delay thrombogenesis linked to DM. Hence, vildagliptin alone and in combination might prove as an encouraging therapy for DM-linked thrombosis marked by inflammation and hypercoagulation.

  9. Effects of the insulin sensitizer pioglitazone on menstrual irregularity, insulin resistance and hyperandrogenism in young women with polycystic ovary syndrome.

    PubMed

    Stabile, Gaspare; Borrielli, Irene; Artenisio, Alfredo Carducci; Bruno, Lucia Maria; Benvenga, Salvatore; Giunta, Loretta; La Marca, Antonio; Volpe, Annibale; Pizzo, Alfonsa

    2014-06-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine cause of menstrual irregularities, hirsutism and acne. Women with PCOS present elevated plasma insulin levels, both fasting and after a glucose load, as an indirect evidence of insulin resistance. PCOS women may also present hypertension, low levels of HDL cholesterol, hypertriglyceridemia, visceral obesity and a higher level of CRP and fibrinogen that can predict an atherosclerotic risk. This study was carried out on 15 young women with PCOS selected according to the 2003 diagnostic criteria of The Rotterdam Consensus Statement and 15 Control women. PCOS women were treated with pioglitazone 30 mg/day and at the beginning and after 6 months of treatment were evaluated: menstrual cycle trend, hirsutism and acne, total cholesterolemia and HDL, triglyceridemia, fibrinogenemia, C-reactive protein, oral glucose tolerance test, glycated hemoglobin, FSH, LH, 17OH-progesterone, 17β-estradiol, free and total testosterone, SHBG, DHEA-S, Δ4-androstenedione and adiponectin. Treatment with pioglitazone improves the irregularities of menses and hirsutism. Six months of treatment modify other parameters linked with a higher risk of type 2 diabetes mellitus and cardiovascular diseases: adiponectin increased with reduction of insulin resistance while fibrinogen and CRP levels decreased. Copyright © 2014 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  10. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage.

    PubMed

    Jiang, Dan; Gao, Fei; Zhang, Yuelin; Wong, David Sai Hung; Li, Qing; Tse, Hung-Fat; Xu, Goufeng; Yu, Zhendong; Lian, Qizhou

    2016-11-10

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) can donate mitochondria to airway epithelial cells and rescue mitochondrial damage in lung injury. We sought to determine whether MSCs could donate mitochondria and protect against oxidative stress-induced mitochondrial dysfunction in the cornea. Co-culturing of MSCs and corneal epithelial cells (CECs) indicated that the efficiency of mitochondrial transfer from MSCs to CECs was enhanced by Rotenone (Rot)-induced oxidative stress. The efficient mitochondrial transfer was associated with increased formation of tunneling nanotubes (TNTs) between MSCs and CECs, tubular connections that allowed direct intercellular communication. Separation of MSCs and CECs by a transwell culture system revealed no mitochiondrial transfer from MSCs to CECs and mitochondrial function was impaired when CECs were exposed to Rot challenge. CECs with or without mitochondrial transfer from MSCs displayed a distinct survival capacity and mitochondrial oxygen consumption rate. Mechanistically, increased filopodia outgrowth in CECs for TNT formation was associated with oxidative inflammation-activated NFκB/TNFαip2 signaling pathways that could be attenuated by reactive oxygen species scavenger N-acetylcysteine (NAC) treatment. Furthermore, MSCs grown on a decellularized porcine corneal scaffold were transplanted onto an alkali-injured eye in a rabbit model. Enhanced corneal wound healing was evident following healthy MSC scaffold transplantation. And transferred mitochondria was detected in corneal epithelium. In conclusion, mitochondrial transfer from MSCs provides novel protection for the cornea against oxidative stress-induced mitochondrial damage. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

  11. Laminar shear stress promotes mitochondrial homeostasis in endothelial cells.

    PubMed

    Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny L

    2018-06-01

    Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm 2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNFα treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. © 2017 Wiley Periodicals, Inc.

  12. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  13. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α.

    PubMed

    Xi, Ye; Feng, Dayun; Tao, Kai; Wang, Ronglin; Shi, Yajun; Qin, Huaizhou; Murphy, Michael P; Yang, Qian; Zhao, Gang

    2018-05-26

    Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Mitochondrial Metabolism in Aging Heart

    PubMed Central

    Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.

    2016-01-01

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  15. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.

    PubMed

    Feng, Juan; Lü, Silin; Ding, Yanhong; Zheng, Ming; Wang, Xian

    2016-06-01

    Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.

  16. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    PubMed

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2015-11-10

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  17. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart.

    PubMed

    Guo, Yongzheng; Wang, Zhen; Qin, Xinghua; Xu, Jie; Hou, Zuoxu; Yang, Hongyan; Mao, Xuechao; Xing, Wenjuan; Li, Xiaoliang; Zhang, Xing; Gao, Feng

    2018-06-01

    Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.

  18. Monoamine Oxidase B Prompts Mitochondrial and Cardiac Dysfunction in Pressure Overloaded Hearts

    PubMed Central

    Kaludercic, Nina; Carpi, Andrea; Nagayama, Takahiro; Sivakumaran, Vidhya; Zhu, Guangshuo; Lai, Edwin W.; Bedja, Djahida; De Mario, Agnese; Chen, Kevin; Gabrielson, Kathleen L.; Lindsey, Merry L.; Pacak, Karel; Takimoto, Eiki; Shih, Jean C.; Kass, David A.; Di Lisa, Fabio

    2014-01-01

    Abstract Aims: Monoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function. Results: In wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B−/−) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics. Innovation: Our study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function. Conclusion: Under conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria. Antioxid. Redox Signal. 20, 267–280. PMID:23581564

  19. GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.

    PubMed

    Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena

    2016-01-15

    Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte mitochondrial dynamics vary with sub-cellular region, and (iii) the physical presence of neurons can affect astrocyte mitochondrial behavior. PMID:21907265

  1. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells.

    PubMed

    Shi, Xiarong; Burkart, Alison; Nicoloro, Sarah M; Czech, Michael P; Straubhaar, Juerg; Corvera, Silvia

    2008-11-07

    Adipocyte function is crucial for the control of whole body energy homeostasis. Pathway analysis of differentiating 3T3-L1 adipocytes reveals that major metabolic pathways induced during differentiation involve mitochondrial function. However, it is not clear why differentiated white adipocytes require enhanced respiratory chain activity relative to pre-adipocytes. To address this question, we used small interference RNA to interfere with the induction of the transcription factor Tfam, which is highly induced between days 2 and 4 of differentiation and is crucial for replication of mitochondrial DNA. Interference with Tfam resulted in cells with decreased respiratory chain capacity, reflected by decreased basal oxygen consumption, and decreased mitochondrial ATP synthesis, but no difference in many other adipocyte functions or expression levels of adipose-specific genes. However, insulin-stimulated GLUT4 translocation to the cell surface and subsequent glucose transport are impaired in Tfam knockdown cells. Paradoxically, insulin-stimulated Akt phosphorylation is significantly enhanced in these cells. These studies reveal independent links between mitochondrial function, insulin signaling, and glucose transport, in which impaired respiratory chain activity enhances insulin signaling to Akt phosphorylation, but impairs GLUT4 translocation. These results indicate that mitochondrial respiratory chain dysfunction in adipocytes can cause impaired insulin responsiveness of GLUT4 translocation by a mechanism downstream of the Akt protein kinase.

  2. Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model.

    PubMed

    Ponce-Lopez, Teresa; Liy-Salmeron, Gustavo; Hong, Enrique; Meneses, Alfredo

    2011-12-02

    Intracerebroventricular (ICV) streptozotocin (STZ) treated rat has been described as a suitable model for sporadic Alzheimer's disease (AD). Central application of STZ has demonstrated behavioral and neurochemical features that resembled those found in human AD. Chronic treatments with antioxidants, acetylcholinesterase (AChE) inhibitors, or improving glucose utilization drugs have reported a beneficial effect in ICV STZ-treated rats. In the present study the post-training administration of a glycogen synthase kinase (GSK3) inhibitor, lithium; antidementia drugs: phenserine and memantine, and insulin sensitizer, pioglitazone on memory function of ICV STZ-rats was assessed. In these same animals the phosphorylated GSK3β (p-GSK3β) and total GSK3β levels were determined, and importantly GSK3β regulates the tau phosphorylation responsible for neurofibrillary tangle formation in AD. Wistar rats received ICV STZ application (3mg/kg twice) and 2 weeks later short- (STM) and long-term memories (LTM) were assessed in an autoshaping learning task. Animals were sacrificed immediately following the last autoshaping session, their brains removed and dissected. The enzymes were measured in the hippocampus and prefrontal cortex (PFC) by western blot. ICV STZ-treated rats showed a memory deficit and significantly decreased p-GSK3β levels, while total GSK3β did not change, in both the hippocampus and PFC. Memory impairment was reversed by lithium (100mg/kg), phenserine (1mg/kg), memantine (5mg/kg) and pioglitazone (30 mg/kg). The p-GSK3β levels were restored by lithium, phenserine and pioglitazone in the hippocampus, and restored by lithium in the PFC. Memantine produced no changes in p-GSK3β levels in neither the hippocampus nor PFC. Total GSK3β levels did not change with either drug. Altogether these results show the beneficial effects of drugs with different mechanisms of actions on memory impairment induced by ICV STZ, and restored p-GSK3β levels, a kinase key of signaling cascade of insulin receptor. 2011 Elsevier B.V. All rights reserved.

  3. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  4. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.

    PubMed

    Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A

    Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.

  5. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    PubMed

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  6. Comparison of twelve single-drug regimens for the treatment of type 2 diabetes mellitus

    PubMed Central

    Wang, Shao-Lian; Dong, Wen-Bin; Dong, Xiao-Lin; Zhu, Wen-Min; Wang, Fang-Fang; Han, Fang; Yan, Xin

    2017-01-01

    We performed a network meta-analysis to compare the efficacy of 12 single-drug regimens (Glibenclamide, Glimepiride, Pioglitazone, Rosiglitazone, Repaglinide, Metformin, Sitaglitin, Exenatide, Liraglutide, Acarbose, Benfluorex, and Glipizide) in the treatment of type 2 diabetes mellitus (T2DM). Fifteen relevant randomized controlled trials (RCTs) were included; direct and indirect evidence from these studies was combined, and weighted mean difference (WMD) and surface under the cumulative ranking curves (SUCRAs) were examined to evaluate the monotherapies. Liraglutide was more effective than Glimepiride, Pioglitazone, Sitaglitin, Exenatide, and Glipizide at reducing glycated hemoglobin (HbA1c) levels. In contrast, Acarbose was less effective than Glibenclamide, Glimepiride, Pioglitazone, Rosiglitazone, Repaglinide, Metformin, and Liraglutide at decreasing HbA1c levels. Reductions in fasting plasma glucose (FPG) levels were similar after all treatments. Rosiglitazone was less effective than Glibenclamide and Repaglinide at reducing total cholesterol (TC) levels. High density lipoprotein (HDL), low density lipoprotein (LDL), and triglyceride levels did not differ after treatment with any of the monotherapies. HbA1c and FPG SUCRA values were highest for Liraglutide, while HbA1c and FPG values were lowest for Acarbose, and TC and LDL values were lowest for Rosiglitazone. These results suggest that Liraglutide may be most effective, and Acarbose least effective, at reducing blood glucose levels, while Glibenclamide, Repaglinide, and Metformin may be most effective, and Rosiglitazone least effective, at reducing lipoidemia, in T2DM patients. PMID:29069819

  7. Betaine is a positive regulator of mitochondrial respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro.more » Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.« less

  8. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C.-W.; Ping, Y.-H.; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan

    2007-05-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive declinemore » in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects.« less

  9. Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altanbyek, Volodya; Cha, Sun-Joo; Kang, Ga-Un

    Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease, characterized by progressive and selective loss of motor neurons in the brain and spinal cord. DNA/RNA-binding proteins such as TDP-43, FUS, and TAF15 have been linked with the sporadic and familial forms of ALS. However, the exact pathogenic mechanism of ALS is still unknown. Recently, we found that ALS-causing genes such as TDP-43, FUS, and TAF15 genetically interact with mitochondrial dynamics regulatory genes. In this study, we show that mitochondrial fission was highly enhanced in muscles and motor neurons of TDP-43, FUS, and TAF15-induced fly models of ALS. Furthermore, themore » mitochondrial fission defects were rescued by co-expression of mitochondrial dynamics regulatory genes such as Marf, Opa1, and the dominant negative mutant form of Drp1. Moreover, we found that the expression level of Marf was decreased in ALS-induced flies. These results indicate that the imbalance of mitochondrial dynamics caused by instability of Marf is linked to the pathogenesis of TDP-43, FUS, and TAF15-associated ALS. - Highlights: • Mitochondrial fission is highly enhanced in TDP-43, FUS, and TAF15-induced fly models of ALS. • Excessive mitochondrial fragmentation in fly models of ALS is restored by mitochondrial dynamics regulatory genes. • Level of Marf protein is decreased in TDP-43, FUS, and TAF15-mediated ALS. • Imbalance of mitochondrial dynamics caused by Marf instability is linked to the pathogenesis of ALS.« less

  10. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats.

    PubMed

    Soares, Rita; Ribeiro, Filipa F; Xapelli, Sara; Genebra, Tânia; Ribeiro, Maria F; Sebastião, Ana M; Rodrigues, Cecília M P; Solá, Susana

    2018-05-01

    Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.

  11. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone

    PubMed Central

    Wilson-Fritch, Leanne; Nicoloro, Sarah; Chouinard, My; Lazar, Mitchell A.; Chui, Patricia C.; Leszyk, John; Straubhaar, Juerg; Czech, Michael P.; Corvera, Silvia

    2004-01-01

    Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms of their actions are unclear. Rosiglitazone changes the morphological features and protein profiles of mitochondria in 3T3-L1 adipocytes. To examine the relevance of these effects in vivo, we studied white adipocytes from ob/ob mice during the development of obesity and after treatment with rosiglitazone. The levels of approximately 50% of gene transcripts encoding mitochondrial proteins were decreased with the onset of obesity. About half of those genes were upregulated after treatment with rosiglitazone, and this was accompanied by an increase in mitochondrial mass and changes in mitochondrial structure. Functionally, adipocytes from rosiglitazone-treated mice displayed markedly enhanced oxygen consumption and significantly increased palmitate oxidation. These data reveal mitochondrial remodeling and increased energy expenditure in white fat in response to rosiglitazone treatment in vivo and suggest that enhanced lipid utilization in this tissue may affect whole-body energy homeostasis and insulin sensitivity. PMID:15520860

  12. Herba Cistanches stimulates cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration in H9c2 cardiomyocytes.

    PubMed

    Wong, Hoi Shan; Ko, Kam Ming

    2013-01-01

    Earlier findings demonstrated that pretreatment of Herba Cistanches [the dried whole plant of Cistanche deserticola Y.C. Ma (Orobanchaceae)], a "Yang-invigorating" Chinese tonic herb, stimulated the ATP-generation capacity (ATP-GC) in mitochondria isolated from rat heart ex vivo. The enhancement of mitochondrial ATP-GC by Herba Cistanches was associated with induction of glutathione antioxidant status and protection against ischemia/reperfusion (I/R) injury in rat hearts. This study investigated the relationship between enhancements in mitochondrial ATP-GC and glutathione antioxidant status in H9c2 cardiomyocytes using a semipurified fraction of Herba Cistanches (HCF1). HCF1 (10-300 ng/mL) was tested for its effects on mitochondrial ATP generation, glutathione antioxidant status and protection against oxidant injury in H9c2 cardiomyocytes and rat hearts. HCF1 at 30 ng/mL increased mitochondrial ATP-GC and ADP-stimulated state 3 respiration (by 50 and 100%, respectively) in H9c2 cardiomyocytes. The stimulation of mitochondrial respiration was associated with the induction of mitochondrial uncoupling (27%) and enhancement of cellular glutathione redox cycling as well as protection against hypoxia/reoxygenation (hypox/reoxy)-induced apoptosis (by 60%). While HCF1 treatment increased reactive oxygen species generation from mitochondrial respiration in H9c2 cardiomyocytes, pretreatment with antioxidants (DMTU) abrogated the HCF1-induced cellular responses and the associated cytoprotective effect. HCF1 pretreatment (1.14 and 3.41 mg/kg × 14) also protected against myocardial I/R injury in rats (by 13 and 32%), presumably mediated by the induction of glutathione antioxidant response. The long-term intake of HCF1 may offer a prospect for the prevention of ischemic heart disease.

  13. Dynamic Adaptation of Liver Mitochondria to Chronic Alcohol Feeding in Mice

    PubMed Central

    Han, Derick; Ybanez, Maria D.; Johnson, Heather S.; McDonald, Jeniece N.; Mesropyan, Lusine; Sancheti, Harsh; Martin, Gary; Martin, Alanna; Lim, Atalie M; Dara, Lily; Cadenas, Enrique; Tsukamoto, Hidekazu; Kaplowitz, Neil

    2012-01-01

    Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD+ and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD+, the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver. PMID:23086958

  14. Din7 and Mhr1 expression levels regulate double-strand-break-induced replication and recombination of mtDNA at ori5 in yeast.

    PubMed

    Ling, Feng; Hori, Akiko; Yoshitani, Ayako; Niu, Rong; Yoshida, Minoru; Shibata, Takehiko

    2013-06-01

    The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5'-exodeoxyribonuclease activity. Using a small ρ(-) mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ(-) cells and increased deletion mutagenesis at the ori5 region in ρ(+) cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5.

  15. Combined effects of cadmium, temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Onukwufor, John O; Stevens, Don; Kamunde, Collins

    2017-01-01

    Although aquatic organisms face multiple environmental stressors that may interact to alter adverse outcomes, our knowledge of stressor-stressor interaction on cellular function is limited. We investigated the combined effects of cadmium (Cd), hypoxia-reoxygenation (H-R) and temperature on mitochondrial function. Liver mitochondria from juvenile rainbow trout were exposed to Cd (0-20μM) and H-R (0 and 5min) at 5, 13 and 25°C followed by measurements of mitochondrial Cd load, volume, complex І active (A)↔deactive (D) transition, membrane potential, ROS release and ultrastructural changes. At high temperature Cd exacerbated H-R-imposed reduction of maximal complex I (CI) respiration whereas at low temperature 5 and 10μM stimulated maximal CI respiration post H-R. The basal respiration showed a biphasic response at high temperatures with low Cd concentrations reducing the stimulatory effect of H-R and high concentrations enhancing this effect. At low temperature Cd monotonically enhanced H-R-induced stimulation of basal respiration. Cd and H-R reduced both the P/O ratio and the RCR at all 3 temperatures. Temperature rise alone increased mitochondrial Cd load and toxicity, but combined H-R and temperature exposure reduced mitochondrial Cd load but surprisingly exacerbated the mitochondrial dysfunction. Mitochondrial dysfunction induced by H-R was associated with swelling of the organelle and blocking of conversion of CІ D to A form. However, low amounts of Cd protected against H-R induced swelling and prevented the inhibition of H-R-induced CI D to A transition. Both H-R and Cd dissipated mitochondrial membrane potential Δψ m and damaged mitochondrial structure. We observed increased reactive oxygen species (H 2 O 2 ) release that together with the protection afforded by EGTA, vitamin E and N-acetylcysteine against the Δψ m dissipation suggested direct involvement of Cd and oxidative stress. Overall, our findings indicate that mitochondrial sensitivity to Cd toxicity was enhanced by the effects of H-R and temperature, and changes in mitochondrial Cd load did not always explain this effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Type 2 Diabetes and TZDs (Thiazolidinediones)

    MedlinePlus

    ... suggest that pioglitazone may increase the risk of bladder cancer, but this has not been proven. Even if ... you have a personal or family history of bladder cancer. If you have type 2 diabetes and want ...

  17. Increases in Intracellular Zinc Enhance Proliferative Signaling as well as Mitochondrial and Endolysosomal Activity in Human Melanocytes.

    PubMed

    Rudolf, Emil; Rudolf, Kamil

    2017-01-01

    Zinc (Zn) is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry), as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry) along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed non-fuorescent substrate). Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells' mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy

    PubMed Central

    Urban, Michael J.; Pan, Pan; Farmer, Kevin L.; Zhao, Huiping; Blagg, Brian S.J.; Dobrowsky, Rick T.

    2012-01-01

    Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20 mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons. PMID:22465570

  19. Suppression of Arrhythmia by Enhancing Mitochondrial Ca2+ Uptake in Catecholaminergic Ventricular Tachycardia Models.

    PubMed

    Schweitzer, Maria K; Wilting, Fabiola; Sedej, Simon; Dreizehnter, Lisa; Dupper, Nathan J; Tian, Qinghai; Moretti, Alessandra; My, Ilaria; Kwon, Ohyun; Priori, Silvia G; Laugwitz, Karl-Ludwig; Storch, Ursula; Lipp, Peter; Breit, Andreas; Mederos Y Schnitzler, Michael; Gudermann, Thomas; Schredelseker, Johann

    2017-12-01

    Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca 2+ handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca 2+ handling. Therefore, intracellular Ca 2+ transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca 2+ transport proteins are important regulators of cardiac Ca 2+ handling. Here we evaluated the potential of pharmacological activation of mitochondrial Ca 2+ uptake for the treatment of cardiac arrhythmia. To this aim,we tested substances that enhance mitochondrial Ca 2+ uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2 R4496C/WT mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca 2+ waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca 2+ uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca 2+ uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2 R4496C/WT mice in vivo and abolished diastolic, arrhythmogenic Ca 2+ events in human iPSC-derived cardiomyocytes.

  20. Pioglitazone treatment increases food intake and decreases energy expenditure partially via hypothalamic adiponectin/adipoR1/AMPK pathway.

    PubMed

    Quaresma, P G F; Reencober, N; Zanotto, T M; Santos, A C; Weissmann, L; de Matos, A H B; Lopes-Cendes, I; Folli, F; Saad, M J A; Prada, P O

    2016-01-01

    Thiazolidinediones (TZDs) enhanced body weight (BW) partially by increased adipogenesis and hyperphagia. Neuronal PPARγ knockout mice on high-fat diet (HFD) are leaner because of enhanced leptin response, although it could be secondary to their leanness. Thus, it still is an open question how TZDs may alter energy balance. Multiple factors regulate food intake (FI) and energy expenditure (EE), including anorexigenic hormones as insulin and leptin. Nonetheless, elevated hypothalamic AMPK activity increases FI and TZDs increase AMPK activity in muscle cells. Thus, the aim of the present study was to investigate whether Pioglitazone (PIO) treatment alters hypothalamic insulin and leptin action/signaling, AMPK phosphorylation, and whether these alterations may be implicated in the regulation of FI and EE. Swiss mice on HFD (2 months) received PIO (25 mg kg(-1) per day-gavage) or vehicle for 14 days. AMPK and AdipoR1 were inhibited via Intracerebroventricular injections using Compound C (CompC) and small interference RNA (siRNA), respectively. Western blot, real-time PCR and CLAMS were done. PIO treatment increased BW, adiposity, FI, NPY mRNA and decreased POMC mRNA expression and EE in HFD mice. Despite higher adiposity, PIO treatment improved insulin sensitivity, glucose tolerance, decreased insulin and increased adiponectin serum levels. This result was associated with, improved insulin and leptin action/signaling, decreased α2AMPK(Ser491) phosphorylation and elevated Acetyl-CoA carboxylase and AMPK(Thr172) phosphorylation in hypothalamus. The inhibition of hypothalamic AMPK with CompC was associated with decreased adiposity, FI, NPY mRNA and EE in PIO-treated mice. The reduced expression of hypothalamic AdipoR1 with siRNA concomitantly with PIO treatment reverted PIO induced obesity development, suggesting that adiponectin may be involved in this effect. These results demonstrated that PIO, despite improving insulin/leptin action in hypothalamus, increases FI and decreases EE, partially, by activating hypothalamic adiponectin/AdipoR1/AMPK axis. Suggesting a novel mechanism in the hypothalamus by which TZDs increase BW.

  1. Alterations in Skeletal Muscle Indicators of Mitochondrial Structure and Biogenesis in Patients with Type 2 Diabetes and Heart Failure: Effects of Epicatechin Rich Cocoa

    PubMed Central

    Taub, Pam R.; Ramirez‐Sanchez, Israel; Ciaraldi, Theodore P.; Perkins, Guy; Murphy, Anne N.; Naviaux, Robert; Hogan, Michael; Maisel, Alan S.; Henry, Robert R.; Ceballos, Guillermo

    2012-01-01

    Abstract (‐)‐Epicatechin (Epi), a flavanol in cacao stimulates mitochondrial volume and cristae density and protein markers of skeletal muscle (SkM) mitochondrial biogenesis in mice. Type 2 diabetes mellitus (DM2) and heart failure (HF) are diseases associated with defects in SkM mitochondrial structure/function. A study was implemented to assess perturbations and to determine the effects of Epi‐rich cocoa in SkM mitochondrial structure and mediators of biogenesis. Five patients with DM2 and stage II/III HF consumed dark chocolate and a beverage containing approximately 100 mg of Epi per day for 3 months. We assessed changes in protein and/or activity levels of oxidative phosphorylation proteins, porin, mitofilin, nNOS, nitric oxide, cGMP, SIRT1, PGC1α, Tfam, and mitochondria volume and cristae abundance by electron microscopy from SkM. Apparent major losses in normal mitochondria structure were observed before treatment. Epi‐rich cocoa increased protein and/or activity of mediators of biogenesis and cristae abundance while not changing mitochondrial volume density. Epi‐rich cocoa treatment improves SkM mitochondrial structure and in an orchestrated manner, increases molecular markers of mitochondrial biogenesis resulting in enhanced cristae density. Future controlled studies are warranted using Epi‐rich cocoa (or pure Epi) to translate improved mitochondrial structure into enhanced cardiac and/or SkM muscle function. Clin Trans Sci 2012; Volume 5: 43–47 PMID:22376256

  2. Iron overload promotes mitochondrial fragmentation in mesenchymal stromal cells from myelodysplastic syndrome patients through activation of the AMPK/MFF/Drp1 pathway.

    PubMed

    Zheng, Qingqing; Zhao, Youshan; Guo, Juan; Zhao, Sida; Fei, Chengming; Xiao, Chao; Wu, Dong; Wu, Lingyun; Li, Xiao; Chang, Chunkang

    2018-05-03

    Iron overload (IO) has been reported to contribute to mesenchymal stromal cell (MSC) damage, but the precise mechanism has yet to be clearly elucidated. In this study, we found that IO increased cell apoptosis and lowered cell viability in MSCs, accompanied by extensive mitochondrial fragmentation and autophagy enhancement. All these effects were reactive oxygen species (ROS) dependent. In MSCs with IO, the ATP concentrations were significantly reduced due to high ROS levels and low electron respiratory chain complex (ETC) II/III activity. Reduced ATP phosphorylated AMP-activated protein kinase (AMPK). Activation of AMPK kinase complexes triggered mitochondrial fission. Moreover, gene knockout of AMPK via CRISPR/Cas9 reduced cell apoptosis, enhanced cell viability and attenuated mitochondrial fragmentation and autophagy caused by IO in MSCs. Further, AMPK-induced mitochondrial fragmentation of MSCs with IO was mediated via phosphorylation of mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for the GTPase dynamin-related protein 1 (Drp1). Gene knockdown of MFF reversed AMPK-induced mitochondrial fragmentation in MSCs with IO. In addition, MSCs from IO patients with myelodysplastic syndrome (MDS) showed increased cell apoptosis, decreased cell viability, higher ROS levels, lower ATP concentrations and increased mitochondrial fragmentation compared with MSCs from non-IO patients. In addition, iron chelation or antioxidant weakened the activity of the AMPK/MFF/Drp1 pathway in MDS-MSCs with IO from several patients, accompanied by attenuation of mitochondrial fragmentation and autophagy. Taken together, the AMPK/MFF/Drp1 pathway has an important role in the damage to MDS-MSCs caused by IO.

  3. Afzelin ameliorates D‐galactosamine and lipopolysaccharide‐induced fulminant hepatic failure by modulating mitochondrial quality control and dynamics

    PubMed Central

    Lee, Sang‐Bin; Kang, Jung‐Woo; Kim, So‐Jin; Ahn, Jongmin; Kim, Jinwoong

    2016-01-01

    Background and Purpose Fulminant hepatic failure (FHF) is a fatal clinical syndrome that results in excessive inflammation and hepatocyte death. Mitochondrial dysfunction is considered to be a possible mechanism of FHF. Afzelin, a flavonol glycoside found in Houttuynia cordata Thunberg, has anti‐inflammatory and antioxidant properties. The present study elucidated the cytoprotective mechanisms of afzelin against D‐galactosamine (GalN)/LPS induced FHF, particularly focusing on mitochondrial quality control and dynamics. Experimental Approach Mice were administered afzelin i.p. 1 h before receiving GalN (800 mg·kg−1)/LPS (40 μg·kg−1), and they were then killed 5 h after GalN/LPS treatment. Key Results Afzelin improved the survival rate and reduced the serum levels of alanine aminotransferase and pro‐inflammatory cytokines in GalN/LPS‐treated mice. Afzelin attenuated the mitochondrial damage, as indicated by diminished mitochondrial swelling and mitochondrial glutamate dehydrogenase activity in GalN/LPS‐treated mice. Afzelin enhanced mitochondrial biogenesis, as indicated by increased levels of PPAR‐γ coactivator 1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. Afzelin also decreased the level of mitophagy‐related proteins, parkin and PTEN‐induced putative kinase 1. Furthermore, while GalN/LPS significantly increased the level of fission‐related protein, dynamin‐related protein 1, and decreased the level of fusion‐related protein, mitofusin 2; these effects were attenuated by afzelin. Conclusions and Implications Our findings demonstrated that afzelin protects against GalN/LPS‐induced liver injury by enhancing mitochondrial biogenesis, suppressing excessive mitophagy and balancing mitochondrial dynamics. PMID:27861739

  4. Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy

    PubMed Central

    Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele; Mojahed, Hamed; Gutierrez, Purification; Pizzorno, Giuseppe; Tanji, Kurenai; Arias-Mendoza, Fernando; Quinzii, Caterina M.

    2014-01-01

    Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches. PMID:24727567

  5. Exercise (and Estrogen) Make Fat Cells “Fit”

    PubMed Central

    Vieira-Potter, Victoria J.; Zidon, Terese M.; Padilla, Jaume

    2016-01-01

    Adipose tissue inflammation links obesity and metabolic disease. Both exercise and estrogen improve metabolic health, enhance mitochondrial function, and have anti-inflammatory effects. We hypothesize that there is an inverse relationship between mitochondrial function and inflammation in adipose tissue and that exercise acts as an estrogen “mimetic”. Explicitly, exercise may improve adipose tissue “immunometabolism” by improving mitochondrial function and reducing inflammation. Summary Exercise improves adipose tissue metabolic health by reducing inflammation and improving mitochondrial function. PMID:25906425

  6. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Suyeun; Jang, Yeogil; Paik, Donggi

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan.more » - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.« less

  7. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cellmore » lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.« less

  8. Din7 and Mhr1 expression levels regulate double-strand-break–induced replication and recombination of mtDNA at ori5 in yeast

    PubMed Central

    Ling, Feng; Hori, Akiko; Yoshitani, Ayako; Niu, Rong; Yoshida, Minoru; Shibata, Takehiko

    2013-01-01

    The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5′-exodeoxyribonuclease activity. Using a small ρ− mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ− cells and increased deletion mutagenesis at the ori5 region in ρ+ cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5. PMID:23598996

  9. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism.

    PubMed

    Wang, Ying; Liu, Zhenzhen; Han, Yi; Xu, Jiping; Huang, Wen; Li, Zhaoshen

    2018-01-01

    Medium Chain Triglycerides (MCT) is a dietary supplement and usually used along with medications for treating food absorption disorders including diarrhea, steatorrhea and liver disease. It has been shown that MCT plays a role in lowering weight, and decreasing metabolic syndrome, abdominal obesity and inflammation. However, it is still unknown whether MCT enhances exercise endurance. Here, we demonstrated that MCT containing diet improves high temperature induced exercise performance impairment. We found that MCT up-regulates the expression and protein levels of genes involved in mitochondrial biogenesis and metabolism. Further investigation demonstrated that the increased mitochondrial biogenesis and metabolism is mediated through the activation of Akt and AMPK signaling pathways and inhibition of TGF-β signaling pathway. Collectively, our findings indicate a beneficial effect of dietary MCT in exercise performance through the increase of mitochondrial biogenesis and metabolism.

  10. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  11. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: a double blind, randomized comparison with pioglitazone.

    PubMed

    Pareek, Anil; Chandurkar, Nitin; Thomas, Nihal; Viswanathan, Vijay; Deshpande, Alaka; Gupta, O P; Shah, Asha; Kakrani, Arjun; Bhandari, Sudhir; Thulasidharan, N K; Saboo, Banshi; Devaramani, Shashidhar; Vijaykumar, N B; Sharma, Shrikant; Agrawal, Navneet; Mahesh, M; Kothari, Kunal

    2014-07-01

    To compare efficacy and safety of hydroxychloroquine with pioglitazone in type 2 diabetes mellitus (T2DM). This double-blind study randomized 267 uncontrolled type 2 diabetes patients (HbA1c ≥7.5% and ≤11.5%), post 3 months' treatment with glimepiride/gliclazide and metformin, to additionally receive hydroxychloroquine 400 mg/day (n = 135) or pioglitazone 15 mg/day (n = 132) for 24 weeks. Efficacy was assessed by changes in HbA1c, fasting (FBG) and post-prandial (PPG) blood glucose at Week 12 and Week 24. At Week 12 and Week 24, HbA1c, FBG and PPG significantly reduced from baseline in both groups. Mean reduction in glycemic parameters at Week 12 (HbA1c: -0.56% vs -0.72%, p = 0.394; FBG: -0.99 mmol/L vs -1.05 mmol/L, p = 0.878; PPG: -1.93 mmol/L vs -1.52 mmol/L, p = 0.423) and Week 24 (HbA1c: -0.87% vs -0.90%, p = 0.909; FBG: -0.79 mmol/L vs -1.02 mmol/L, p = 0.648; PPG: -1.77 mmol/L vs -1.36 mmol/L, p = 0.415) was not significantly different between the hydroxychloroquine and pioglitazone groups. Change in total cholesterol (TC) and LDL-C was significant in favor of hydroxychloroquine (TC: -0.37 mmol/L vs 0.03 mmol/L, p = 0.002; LDL-C: -0.23 mmol/L vs 0.09 mmol/L, p = 0.003). Triglycerides significantly reduced in both groups at Week 24. Mean HDL-C remained unchanged. Study treatments were well tolerated. With favorable effects on glycemic parameters and lipids, hydroxychloroquine may emerge as well tolerated therapeutic option for T2DM. The sample size for this study was small. However, based on the encouraging results of this proof-of-concept study, longer duration studies in larger population can be conducted to further confirm these findings. TRIAL REGISTRATION DETAILS: Clinical Trial Registry-India URL: http://ctri.nic.in, Registration Number: CTRI/2009/091/001036.

  12. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease.

    PubMed

    Goswami, Arvind Vittal; Samaddar, Madhuja; Sinha, Devanjan; Purushotham, Jaya; D'Silva, Patrick

    2012-08-01

    Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.

  13. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2015-02-15

    Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  14. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats.

    PubMed

    Han, Derick; Johnson, Heather S; Rao, Madhuri P; Martin, Gary; Sancheti, Harsh; Silkwood, Kai H; Decker, Carl W; Nguyen, Kim Tho; Casian, Joseph G; Cadenas, Enrique; Kaplowitz, Neil

    2017-01-01

    The feeding of alcohol orally (Lieber-DeCarli diet) to rats has been shown to cause declines in mitochondrial respiration (state III), decreased expression of respiratory complexes, and decreased respiratory control ratios (RCR) in liver mitochondria. These declines and other mitochondrial alterations have led to the hypothesis that alcohol feeding causes "mitochondrial dysfunction" in the liver. If oral alcohol feeding leads to mitochondrial dysfunction, one would predict that increasing alcohol delivery by intragastric (IG) alcohol feeding to rats would cause greater declines in mitochondrial bioenergetics in the liver. In this study, we examined the mitochondrial alterations that occur in rats fed alcohol both orally and intragastrically. Oral alcohol feeding decreased glutamate/malate-, acetaldehyde- and succinate-driven state III respiration, RCR, and expression of respiratory complexes (I, III, IV, V) in liver mitochondria, in agreement with previous results. IG alcohol feeding, on the other hand, caused a slight increase in glutamate/malate-driven respiration, and significantly increased acetaldehyde-driven respiration in liver mitochondria. IG feeding also caused liver mitochondria to experience a decline in succinate-driven respiration, but these decreases were smaller than those observed with oral alcohol feeding. Surprisingly, oral and IG alcohol feeding to rats increased mitochondrial respiration using other substrates, including glycerol-3-phosphate (which delivers electrons from cytoplasmic NADH to mitochondria) and octanoate (a substrate for beta-oxidation). The enhancement of glycerol-3-phosphate- and octanoate-driven respiration suggests that liver mitochondria remodeled in response to alcohol feeding. In support of this notion, we observed that IG alcohol feeding also increased expression of mitochondrial glycerol phosphate dehydrogenase-2 (GPD2), transcription factor A (TFAM), and increased mitochondrial NAD + -NADH and NADP + -NADPH levels in the liver. Our findings suggest that mitochondrial dysfunction represents an incomplete picture of mitochondrial dynamics that occur in the liver following alcohol feeding. While alcohol feeding causes some mitochondrial dysfunction (i.e. succinate-driven respiration), our work suggests that the major consequence of alcohol feeding is mitochondrial remodeling in the liver as an adaptation. This mitochondrial remodeling may play an important role in the enhanced alcohol metabolism and other adaptations in the liver that develop with alcohol intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.

    PubMed

    Chen, Chris Chin Wah; Erlich, Avigail T; Hood, David A

    2018-03-17

    Parkin is a ubiquitin ligase that is involved in the selective removal of dysfunctional mitochondria. This process is termed mitophagy and can assist in mitochondrial quality control. Endurance training can produce adaptations in skeletal muscle toward a more oxidative phenotype, an outcome of enhanced mitochondrial biogenesis. It remains unknown whether Parkin-mediated mitophagy is involved in training-induced increases in mitochondrial content and function. Our purpose was to determine a role for Parkin in maintaining mitochondrial turnover in muscle, and its requirement in mediating mitochondrial biogenesis following endurance exercise training. Wild-type and Parkin knockout (KO) mice were trained for 6 weeks and then treated with colchicine or vehicle to evaluate the role of Parkin in mediating changes in mitochondrial content, function and acute exercise-induced mitophagy flux. Our results indicate that Parkin is required for the basal maintenance of mitochondrial function. The absence of Parkin did not significantly alter mitophagy basally; however, acute exercise produced an elevation in mitophagy flux, a response that was Parkin-dependent. Mitochondrial content was increased following training in both genotypes, but this occurred without an induction of PGC-1α signaling in KO animals. Interestingly, the increased muscle mitochondrial content in response to training did not influence basal mitophagy flux, despite an enhanced expression and localization of Parkin to mitochondria in WT animals. Furthermore, exercise-induced mitophagy flux was attenuated with training in WT animals, suggesting a lower rate of mitochondrial degradation resulting from improved organelle quality with training. In contrast, training led to a higher mitochondrial content, but with persistent dysfunction, in KO animals. Thus, the lack of a rescue of mitochondrial dysfunction with training in the absence of Parkin is the likely reason for the impaired training-induced attenuation of mitophagy flux compared to WT animals. Our study demonstrates that Parkin is required for exercise-induced mitophagy flux. Exercise-induced mitophagy is reduced with training in muscle, likely due to attenuated signaling consequent to increased mitochondrial content and quality. Our data suggest that Parkin is essential for the maintenance of basal mitochondrial function, as well as for the accumulation of normally functioning mitochondria as a result of training adaptations in muscle.

  16. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    PubMed

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  17. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    PubMed Central

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-01-01

    Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. PMID:28282037

  18. MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction.

    PubMed

    Nakashima-Kamimura, Naomi; Asoh, Sadamitsu; Ishibashi, Yoshitomo; Mukai, Yuri; Shidara, Yujiro; Oda, Hideaki; Munakata, Kae; Goto, Yu-Ichi; Ohta, Shigeo

    2005-11-15

    To investigate the regulatory system in mitochondrial biogenesis involving crosstalk between the mitochondria and nucleus, we found a factor named MIDAS (mitochondrial DNA absence sensitive factor) whose expression was enhanced by the absence of mitochondrial DNA (mtDNA). In patients with mitochondrial diseases, MIDAS expression was increased only in dysfunctional muscle fibers. A majority of MIDAS localized to mitochondria with a small fraction in the Golgi apparatus in HeLa cells. To investigate the function of MIDAS, we stably transfected HeLa cells with an expression vector carrying MIDAS cDNA or siRNA. Cells expressing the MIDAS protein and the siRNA constitutively showed an increase and decrease in the total mass of mitochondria, respectively, accompanying the regulation of a mitochondria-specific phospholipid, cardiolipin. In contrast, amounts of the mitochondrial DNA, RNA and proteins did not depend upon MIDAS. Thus, MIDAS is involved in the regulation of mitochondrial lipids, leading to increases of total mitochondrial mass in response to mitochondrial dysfunction.

  19. 17β-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B.

    PubMed

    Galmés-Pascual, Bel M; Nadal-Casellas, Antonia; Bauza-Thorbrügge, Marco; Sbert-Roig, Miquel; García-Palmer, Francisco J; Proenza, Ana M; Gianotti, Magdalena; Lladó, Isabel

    2017-02-01

    Sexual dimorphism in mitochondrial biogenesis and function has been described in many rat tissues, with females showing larger and more functional mitochondria. The family of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) plays a central role in the regulatory network governing mitochondrial biogenesis and function, but little is known about the different contribution of hepatic PGC1A and PGC1B in these processes. The aim of this study was to elucidate the role of 17β-estradiol (E2) in mitochondrial biogenesis and function in liver and assess the contribution of both hepatic PGC1A and PGC1B as mediators of these effects. In ovariectomized (OVX) rats (half of which were treated with E2) estrogen deficiency led to impaired mitochondrial biogenesis and function, increased oxidative stress, and defective lipid metabolism, but was counteracted by E2 treatment. In HepG2 hepatocytes, the role of E2 in enhancing mitochondrial biogenesis and function was confirmed. These effects were unaffected by the knockdown of PGC1A, but were impaired when PGC1B expression was knocked down by specific siRNA. Our results reveal a widespread protective role of E2 in hepatocytes, which is explained by enhanced mitochondrial content and oxidative capacity, lower hepatic lipid accumulation, and a reduction of oxidative stress. We also suggest a novel hepatic protective role of PGC1B as a modulator of E2 effects on mitochondrial biogenesis and function supporting activation of PGC1B as a therapeutic target for hepatic mitochondrial disorders. © 2017 Society for Endocrinology.

  20. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

    PubMed

    Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M

    2010-05-13

    Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

  1. Parkin is required for exercise-induced mitophagy in muscle: impact of aging.

    PubMed

    Chen, Chris Chin Wah; Erlich, Avigail T; Crilly, Matthew J; Hood, David A

    2018-05-29

    The maintenance of muscle health with advancing age is dependent on mitochondrial homeostasis. While reductions in mitochondrial biogenesis have been observed with age, less is known regarding organelle degradation. Parkin is an E3 ubiquitin ligase implicated in mitophagy, but few studies have examined Parkin's contribution to mitochondrial turnover in muscle. Wild type (WT) and Parkin knockout (KO) mice were used to delineate a role for Parkin-mediated mitochondrial degradation in aged muscle, in concurrence with exercise. Aged animals exhibited declines in muscle mass and mitochondrial content, paralleled by a nuclear environment endorsing the transcriptional repression of mitochondrial biogenesis. Mitophagic signaling was enhanced following acute endurance exercise in young WT mice, but was abolished in the absence of Parkin. Basal mitophagy flux of the autophagosomal protein LC3II was augmented in aged animals, but did not increase additionally with exercise when compared to young animals. In the absence of Parkin, exercise increased the nuclear localization of PARIS, corresponding to a decrease in nuclear PGC-1α. Remarkably, exercise enhanced mitochondrial ubiquitination in both young WT and KO animals. This suggested compensation of alternative ubiquitin ligases that were, however, unable to restore the diminished exercise-induced mitophagy in KO mice. Under basal conditions, we demonstrated that Parkin was required for mitochondrial Mfn2 ubiquitination. We also observed an abrogation of exercise-induced mitophagy in aged muscle. Our results demonstrate that acute exercise-induced mitophagy is dependent on Parkin, and attenuated with age, which likely contributes to changes in mitochondrial content and quality in aging muscle.

  2. Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Mengwei; Huang, Chenglin; Wang, Cheng

    Highlights: •Rg3 is an ergogenic aid. •Rg3 improves mitochondrial antioxidant capacity. •Rg3 regulates mitochondria dynamic remodeling. •Rg3 alone matches some the benefits of aerobic exercise. -- Abstract: Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissuemore » of Sprague–Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.« less

  3. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    PubMed

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  4. Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48

    PubMed Central

    Moreno-Beltrán, Blas; Guerra-Castellano, Alejandra; Del Conte, Rebecca; García-Mauriño, Sofía M.; Díaz-Moreno, Sofía; González-Arzola, Katiuska; Santos-Ocaña, Carlos; Velázquez-Campoy, Adrián; De la Rosa, Miguel A.; Turano, Paola; Díaz-Moreno, Irene

    2017-01-01

    Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects. PMID:28348229

  5. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism

    PubMed Central

    Han, Yi; Xu, Jiping; Li, Zhaoshen

    2018-01-01

    Medium Chain Triglycerides (MCT) is a dietary supplement and usually used along with medications for treating food absorption disorders including diarrhea, steatorrhea and liver disease. It has been shown that MCT plays a role in lowering weight, and decreasing metabolic syndrome, abdominal obesity and inflammation. However, it is still unknown whether MCT enhances exercise endurance. Here, we demonstrated that MCT containing diet improves high temperature induced exercise performance impairment. We found that MCT up-regulates the expression and protein levels of genes involved in mitochondrial biogenesis and metabolism. Further investigation demonstrated that the increased mitochondrial biogenesis and metabolism is mediated through the activation of Akt and AMPK signaling pathways and inhibition of TGF-β signaling pathway. Collectively, our findings indicate a beneficial effect of dietary MCT in exercise performance through the increase of mitochondrial biogenesis and metabolism. PMID:29420554

  6. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function

    NASA Astrophysics Data System (ADS)

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Parameswaran, Harikrishnan; Wellman, Tyler J.; Martinez, Nuria; Allen, Philip G.; Frey, Urs; Suki, Béla

    2015-10-01

    Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates--whereas variable stretch maintains--physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.

  7. Microglial activation and the nitric oxide/cGMP/PKG pathway underlie enhanced neuronal vulnerability to mitochondrial dysfunction in experimental multiple sclerosis.

    PubMed

    Mancini, Andrea; Tantucci, Michela; Mazzocchetti, Petra; de Iure, Antonio; Durante, Valentina; Macchioni, Lara; Giampà, Carmela; Alvino, Alessandra; Gaetani, Lorenzo; Costa, Cinzia; Tozzi, Alessandro; Calabresi, Paolo; Di Filippo, Massimiliano

    2018-05-01

    During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moepert, Kristin; Hajek, Petr; Frank, Stephan

    2009-08-01

    RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with 'bulge'-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1)more » variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous 'fusion' and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.« less

  9. Succinyl-CoA Synthetase is a Phosphate Target for the Activation of Mitochondrial Metabolism

    PubMed Central

    Phillips, Darci; Aponte, Angel M.; French, Stephanie A.; Chess, David J.; Balaban, Robert S.

    2009-01-01

    Succinyl-CoA synthetase (SCS) is the only mitochondrial enzyme capable of ATP production via substrate level phosphorylation in the absence of oxygen, but it also plays a key role in the citric acid cycle, ketone metabolism and heme synthesis. Inorganic phosphate (Pi) is a signaling molecule capable of activating oxidative phosphorylation at several sites, including NADH generation and as a substrate for ATP formation. In this study it was shown that Pi-binds porcine heart SCS α-subunit (SCSα) in a non-covalent manner and enhances its enzymatic activity, thereby providing a new target for Pi-activation in mitochondria. Coupling 32P-labeling of intact mitochondria with SDS gel electrophoresis revealed that 32P-labeling of SCSα was enhanced in substrate-depleted mitochondria. Using mitochondrial extracts and purified bacterial SCS (BSCS) it was shown that this enhanced 32P-labeling resulted from a simple binding of 32P, not covalent protein phosphorylation. The ability of SCSα to retain its 32P throughout the SDS denaturing gel process was unique over the entire mitochondrial proteome. In vitro studies also revealed a Pi-induced activation of SCS activity by more than 2-fold when mitochondrial extracts and purified BSCS were incubated with mM concentrations of Pi. Since 32P-binding to SCSα was increased in substrate-depleted mitochondria, where matrix Pi concentration is increased, we conclude that SCS activation by Pi-binding represents another mitochondrial target for the Pi-induced activation of oxidative phosphorylation and anaerobic ATP production in energy-limited mitochondria. PMID:19527071

  10. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS)

    PubMed Central

    De Giusti, V. C.; Caldiz, C. I.; Ennis, I. L.; Pérez, N. G.; Cingolani, H. E.; Aiello, E. A.

    2013-01-01

    Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy. PMID:23755021

  11. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS).

    PubMed

    De Giusti, V C; Caldiz, C I; Ennis, I L; Pérez, N G; Cingolani, H E; Aiello, E A

    2013-01-01

    Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.

  12. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  13. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathione

    PubMed Central

    Wilkins, Heather M.; Marquardt, Kristin; Lash, Lawrence H.; Linseman, Daniel A.

    2011-01-01

    Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS)1 and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 is resident in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH) which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic, HA14-1, induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was co-immunoprecipitated with GSH following chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by pre-incubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. Following co-transfection of CHO cells, Bcl-2 was co-immunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethylester (GSH-MEE). Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC co-transfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS. PMID:22115789

  14. Prospective Postmarketing Surveillance of Acute Myocardial Infarction in New Users of Saxagliptin: A Population-Based Study.

    PubMed

    Toh, Sengwee; Reichman, Marsha E; Graham, David J; Hampp, Christian; Zhang, Rongmei; Butler, Melissa G; Iyer, Aarthi; Rucker, Malcolm; Pimentel, Madelyn; Hamilton, Jack; Lendle, Samuel; Fireman, Bruce H

    2018-01-01

    The cardiovascular safety of saxagliptin, a dipeptidyl-peptidase 4 inhibitor, compared with other antihyperglycemic treatments is not well understood. We prospectively examined the association between saxagliptin use and acute myocardial infarction (AMI). We identified patients aged ≥18 years, starting from the approval date of saxagliptin in 2009 and continuing through August 2014, using data from 18 Mini-Sentinel data partners. We conducted seven sequential assessments comparing saxagliptin separately with sitagliptin, pioglitazone, second-generation sulfonylureas, and long-acting insulin, using disease risk score (DRS) stratification and propensity score (PS) matching to adjust for potential confounders. Sequential testing kept the overall chance of a false-positive signal below 0.05 (one-sided) for each pairwise comparison. We identified 82,264 saxagliptin users and more than 1.5 times as many users of each comparator. At the end of surveillance, the DRS-stratified hazard ratios (HRs) (95% CI) were 1.08 (0.90-1.28) in the comparison with sitagliptin, 1.11 (0.87-1.42) with pioglitazone, 0.79 (0.64-0.98) with sulfonylureas, and 0.57 (0.46-0.70) with long-acting insulin. The corresponding PS-matched HRs were similar. Only one interim analysis of 168 analyses met criteria for a safety signal: the PS-matched saxagliptin-pioglitazone comparison from the fifth sequential analysis, which yielded an HR of 1.63 (1.12-2.37). This association diminished in subsequent analyses. We did not find a higher AMI risk in saxagliptin users compared with users of other selected antihyperglycemic agents during the first 5 years after U.S. Food and Drug Administration approval of the drug. © 2017 by the American Diabetes Association.

  15. The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation.

    PubMed

    Chen, Weiqin; Yechoor, Vijay K; Chang, Benny Hung-Junn; Li, Ming V; March, Keith L; Chan, Lawrence

    2009-10-01

    Mutations in the Berardinelli-Seip congenital lipodystrophy 2 gene (BSCL2) are the underlying defect in patients with congenital generalized lipodystrophy type 2. BSCL2 encodes a protein called seipin, whose function is largely unknown. In this study, we investigated the role of Bscl2 in the regulation of adipocyte differentiation. Bscl2 mRNA is highly up-regulated during standard hormone-induced adipogenesis in 3T3-L1 cells in vitro. However, this up-regulation does not occur during mesenchymal stem cell (C3H10T1/2 cells) commitment to the preadipocyte lineage. Knockdown of Bscl2 by short hairpin RNA in C3H10T1/2 cells has no effect on bone morphogenetic protein-4-induced preadipocyte commitment. However, knockdown in 3T3-L1 cells prevents adipogenesis induced by a standard hormone cocktail, but adipogenesis can be rescued by the addition of peroxisome proliferator-activated receptor-gamma agonist pioglitazone at an early stage of differentiation. Interestingly, pioglitazone-induced differentiation in the absence of standard hormone is not associated with up-regulated Bscl2 expression. On the other hand, short hairpin RNA-knockdown of Bscl2 largely blocks pioglitazone-induced adipose differentiation. These experiments suggest that Bscl2 may be essential for normal adipogenesis; it works upstream or at the level of peroxisome proliferator-activated receptor-gamma, enabling the latter to exert its full activity during adipogenesis. Loss of Bscl2 function thus interferes with the normal transcriptional cascade of adipogenesis during fat cell differentiation, resulting in near total loss of fat or lipodystrophy.

  16. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    PubMed Central

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-01-01

    Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. PMID:19331671

  17. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition.

    PubMed

    Carpéné, Christian; Bizou, Mathilde; Tréguer, Karine; Hasnaoui, Mounia; Grès, Sandra

    2015-09-01

    Glitazones are peroxisome proliferator-activated receptor gamma (PPARγ) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPARγ activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1 mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1 mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones.

  18. Comparative cost-effectiveness of metformin-based dual therapies associated with risk of cardiovascular diseases among Chinese patients with type 2 diabetes: Evidence from a population-based national cohort in Taiwan.

    PubMed

    Ou, Huang-Tz; Chen, Yen-Ting; Liu, Ya-Ming; Wu, Jin-Shang

    2016-06-01

    To assess the cost-effectiveness of metformin-based dual therapies associated with cardiovascular disease (CVD) risk in a Chinese population with type 2 diabetes. We utilized Taiwan's National Health Insurance Research Database (NHIRD) 1997-2011, which is derived from the claims of National Health Insurance, a mandatory-enrollment single-payer system that covers over 99% of Taiwan's population. Four metformin-based dual therapy cohorts were used, namely a reference group of metformin plus sulfonylureas (Metformin-SU) and metformin plus acarbose, metformin plus thiazolidinediones (Metformin-TZD), and metformin plus glinides (Metformin-glinides). Using propensity scores, each subject in a comparison cohort was 1:1 matched to a referent. The effectiveness outcome was CVD risk. Only direct medical costs were included. The Markov chain model was applied to project lifetime outcomes, discounted at 3% per annum. The bootstrapping technique was performed to assess uncertainty in analysis. Metformin-glinides was most cost-effective in the base-case analysis; Metformin-glinides saved $194 USD for one percentage point of reduction in CVD risk, as compared to Metformin-SU. However, for the elderly or those with severe diabetic complications, Metformin-TZD, especially pioglitazone, was more suitable; as compared to Metformin-SU, Metformin-TZD saved $840.1 USD per percentage point of reduction in CVD risk. Among TZDs, Metformin-pioglitazone saved $1831.5 USD per percentage point of associated CVD risk reduction, as compared to Metformin-rosiglitazone. When CVD is considered an important clinical outcome, Metformin-pioglitazone is cost-effective, in particular for the elderly and those with severe diabetic complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells.

    PubMed

    Erlich-Hadad, Tal; Hadad, Rita; Feldman, Anat; Greif, Hagar; Lictenstein, Michal; Lorberboum-Galski, Haya

    2018-03-01

    Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl-CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT-MTS-Protein approach for replacing a number of mitochondrial-mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT-MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear-encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9-engineered HepG2 MUT (-/-) liver cell line. Therefore, we suggest using this TAT-MTS-Protein approach for the treatment of MMA. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Developmental plasticity of mitochondrial function in American alligators, Alligator mississippiensis

    PubMed Central

    Crossley, Janna; Elsey, Ruth M.; Dzialowski, Edward M.; Shiels, Holly A.; Crossley, Dane A.

    2016-01-01

    The effect of hypoxia on cellular metabolism is well documented in adult vertebrates, but information is entirely lacking for embryonic organisms. The effect of hypoxia on embryonic physiology is particularly interesting, as metabolic responses during development may have life-long consequences, due to developmental plasticity. To this end, we investigated the effects of chronic developmental hypoxia on cardiac mitochondrial function in embryonic and juvenile American alligators (Alligator mississippiensis). Alligator eggs were incubated in 21% or 10% oxygen from 20 to 90% of embryonic development. Embryos were either harvested at 90% development or allowed to hatch and then reared in 21% oxygen for 3 yr. Ventricular mitochondria were isolated from embryonic/juvenile alligator hearts. Mitochondrial respiration and enzymatic activities of electron transport chain complexes were measured with a microrespirometer and spectrophotometer, respectively. Developmental hypoxia induced growth restriction and increased relative heart mass, and this phenotype persisted into juvenile life. Embryonic mitochondrial function was not affected by developmental hypoxia, but at the juvenile life stage, animals from hypoxic incubations had lower levels of Leak respiration and higher respiratory control ratios, which is indicative of enhanced mitochondrial efficiency. Our results suggest developmental hypoxia can have life-long consequences for alligator morphology and metabolic function. Further investigations are necessary to reveal the adaptive significance of the enhanced mitochondrial efficiency in the hypoxic phenotype. PMID:27707718

  1. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    PubMed

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  2. Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

    PubMed Central

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2015-01-01

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892

  3. Identification of novel monoamine oxidase B inhibitors by structure-based virtual screening.

    PubMed

    Geldenhuys, Werner J; Darvesh, Altaf S; Funk, Max O; Van der Schyf, Cornelis J; Carroll, Richard T

    2010-09-01

    Parkinson's disease is a severe debilitating neurodegenerative disorder. Recently, it was shown that the peroxisome proliferating-activator receptor-gamma agonist pioglitazone protected mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity due to its ability to inhibit monoamine oxidase B (MAO-B). Docking studies were initiated to investigate pioglitazone's interactions within the substrate cavity of MAO-B. Modeling studies indicated that the thiazolidinedione (TZD) moiety was a likely candidate for its specificity to MAO-B. To explore this potential novel MAO-B scaffold, we performed a structure-based virtual screen to identify additional MAO-B inhibitors. Our search identified eight novel compounds containing the TZD-moiety that allowed for a limited study to identify structural requirements for binding to MAO-B. Inhibition assays identified two TZDs (A6355 and L136662) which were found to inhibit recombinant human MAO-B with IC(50) values of 82 and 195 nM, respectively. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Cisplatin or LA-12 enhance killing effects of TRAIL in prostate cancer cells through Bid-dependent stimulation of mitochondrial apoptotic pathway but not caspase-10

    PubMed Central

    Herůdková, Jarmila; Krkoška, Martin; Tománková, Silvie; Kahounová, Zuzana; Anděra, Ladislav; Bouchal, Jan; Kharaishvili, Gvantsa; Král, Milan; Sova, Petr; Kozubík, Alois

    2017-01-01

    Searching for new strategies for effective elimination of human prostate cancer cells, we investigated the cooperative cytotoxic action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and two platinum-based complexes, cisplatin or LA-12, and related molecular mechanisms. We demonstrated a notable ability of cisplatin or LA-12 to enhance the sensitivity of several human prostate cancer cell lines to TRAIL-induced cell death via an engagement of mitochondrial apoptotic pathway. This was accompanied by augmented Bid cleavage, Bak activation, loss of mitochondrial membrane potential, activation of caspase-8, -10, -9, and -3, and XIAP cleavage. RNAi-mediated silencing of Bid or Bak in Bax-deficient DU 145 cells suppressed the drug combination-induced cytotoxicity, further underscoring the involvement of mitochondrial signaling. The caspase-10 was dispensable for enhancement of cisplatin/LA-12 and TRAIL combination-induced cell death and stimulation of Bid cleavage. Importantly, we newly demonstrated LA-12-mediated enhancement of TRAIL-induced cell death in cancer cells derived from human patient prostate tumor specimens. Our results provide convincing evidence that employing TRAIL combined with cisplatin/LA-12 could contribute to more effective killing of prostate cancer cells compared to the individual action of the drugs, and offer new mechanistic insights into their cooperative anticancer action. PMID:29182622

  5. Mitochondrial modulators in experimental Huntington's disease: reversal of mitochondrial dysfunctions and cognitive deficits.

    PubMed

    Mehrotra, Arpit; Kanwal, Abhinav; Banerjee, Sanjay Kumar; Sandhir, Rajat

    2015-06-01

    Huntington's disease (HD) is a chronic neurodegenerative condition involving impaired mitochondrial functions. The present study evaluates the therapeutic potential of combined administration of mitochondrial modulators: alpha-lipoic acid and acetyl-l-carnitine on mitochondrial dysfunctions in 3-NP-induced HD. Our results reveal 3-NP administration resulted in compromise of mitochondrial functions in terms of: (1) impaired activity of mitochondrial respiratory chain enzymes, altered cytochrome levels, reduced histochemical staining of complex-II and IV, reduced in-gel activity of complex-I to V, and reduced mRNA expression of respiratory chain complexes; (2) enhanced mitochondrial oxidative stress indicated by increased malondialdehyde, protein carbonyls, reactive oxygen species and nitrite levels, along with decreased Mn-superoxide dismutase and catalase activity; (3) mitochondrial structural changes measured by mitochondrial swelling, reduced mitochondrial membrane potential and ultra-structure changes; (4) increased cytosolic cytochrome c levels, caspase-3 and -9 activity along with altered expression of apoptotic proteins (AIF, Bim, Bad, and Bax); and (5) impaired cognitive functions assessed using Morris water maze and Y-maze. Combination of mitochondrial modulators (alpha-lipoic acid + acetyl-l-carnitine) on the other hand ameliorated 3-NP-induced mitochondrial dysfunctions, oxidative stress, histologic alterations, and behavioral deficits, suggesting their therapeutic efficacy in the management of HD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner.

    PubMed

    Halling, Jens Frey; Ringholm, Stine; Olesen, Jesper; Prats, Clara; Pilegaard, Henriette

    2017-10-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effects of aging and exercise training on mitochondrial network structure remain unclear. This study examined the effects of aging and exercise training on mitochondrial network structure using confocal microscopy on mitochondria-specific stains in single muscle fibers from PGC-1α KO and WT mice. Hyperfragmentation of mitochondrial networks was observed in aged relative to young animals while exercise training normalized mitochondrial network structure in WT, but not in PGC-1α KO. Mitochondrial fission protein content (FIS1 and DRP1) relative to mitochondrial content was increased with aging in both WT and PGC-1α KO mice, while exercise training lowered mitochondrial fission protein content relative to mitochondrial content only in WT. Mitochondrial fusion protein content (MFN1/2 and OPA1) was unaffected by aging and lifelong exercise training in both PGC-1α KO and WT mice. The present results provide evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.

    PubMed

    Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo

    2017-11-04

    Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    PubMed

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  9. Exercise and nutritional interventions for improving aging muscle health.

    PubMed

    Forbes, Scott C; Little, Jonathan P; Candow, Darren G

    2012-08-01

    Skeletal muscle mass declines with age (i.e., sarcopenia) resulting in muscle weakness and functional limitations. Sarcopenia has been associated with physiological changes in muscle morphology, protein and hormonal kinetics, insulin resistance, inflammation, and oxidative stress. The purpose of this review is to highlight how exercise and nutritional intervention strategies may benefit aging muscle. It is well known that resistance exercise training increases muscle strength and size and evidence also suggests that resistance training can increase mitochondrial content and decrease oxidative stress in older adults. Recent findings suggest that fast-velocity resistance exercise may be an effective intervention for older adults to enhance muscle power and functional capacity. Aerobic exercise training may also benefit aging skeletal muscle by enhancing mitochondrial bioenergetics, improving insulin sensitivity, and/or decreasing oxidative stress. In addition to exercise, creatine monohydrate, milk-based proteins, and essential fatty acids all have biological effects which could enhance some of the physiological adaptations from exercise training in older adults. Additional research is needed to determine whether skeletal muscle adaptations to increased activity in older adults are further enhanced with effective nutritional interventions and whether this is due to enhanced muscle protein synthesis, improved mitochondrial function, and/or a reduced inflammatory response.

  10. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress.

    PubMed

    Nataraj, Jagatheesan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin; Essa, Musthafa Mohammed

    2016-07-01

    Mitochondrial dysfunction and oxidative stress-mediated apoptosis plays an important role in various neurodegenerative diseases including Huntington's disease, Parkinson's disease (PD) and Alzheimer's disease (AD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the most widely used neurotoxin mimics the symptoms of PD by inhibiting mitochondrial complex I that stimulates excessive intracellular reactive oxygen species (ROS) and finally leads to mitochondrial-dependent apoptosis. Lutein, a carotenoid of xanthophyll family, is found abundantly in leafy green vegetables such as spinach, kale and in egg yolk, animal fat and human eye retinal macula. Increasing evidence indicates that lutein has offers benefits against neuronal damages during diabetic retinopathy, ischemia and AD by virtue of its mitochondrial protective, antioxidant and anti-apoptotic properties. Male C57BL/6 mice (23-26 g) were randomized and grouped in to Control, MPTP, and Lutein treated groups. Lutein significantly reversed the loss of nigral dopaminergic neurons by increasing the striatal dopamine level in mice. Moreover, lutein-ameliorated MPTP induced mitochondrial dysfunction, oxidative stress and motor abnormalities. In addition, lutein repressed the MPTP-induced neuronal damage/apoptosis by inhibiting the activation of pro-apoptotic markers (Bax, caspases-3, 8 and 9) and enhancing anti-apoptotic marker (Bcl-2) expressions. Our current results revealed that lutein possessed protection on dopaminergic neurons by enhancing antioxidant defense and diminishing mitochondrial dysfunction and apoptotic death, suggesting the potential benefits of lutein for PD treatment.

  11. Activating Nrf-2 Signaling Depresses Unilateral Ureteral Obstruction-Evoked Mitochondrial Stress-Related Autophagy, Apoptosis and Pyroptosis in Kidney

    PubMed Central

    Chung, Shue Dong; Lai, Ting Yu; Chien, Chiang Ting; Yu, Hong Jen

    2012-01-01

    Exacerbated oxidative stress and inflammation may induce three types of programmed cell death, autophagy, apoptosis and pyroptosis in unilateral ureteral obstruction (UUO) kidney. Sulforaphane activating NF-E2-related nuclear factor erythroid-2 (Nrf-2) signaling may ameliorate UUO-induced renal damage. UUO was induced in the left kidney of female Wistar rats. The level of renal blood flow, cortical and medullary oxygen tension and reactive oxygen species (ROS) was evaluated. Fibrosis, ED-1 (macrophage/monocyte) infiltration, oxidative stress, autophagy, apoptosis and pyroptosis were evaluated by immunohistochemistry and Western blot in UUO kidneys. Effects of sulforaphane, an Nrf-2 activator, on Nrf-2- and mitochondrial stress-related proteins and renal injury were examined. UUO decreased renal blood flow and oxygen tension and increased renal ROS, 3-nitrotyrosine stain, ED-1 infiltration and fibrosis. Enhanced renal tubular Beclin-1 expression started at 4 h UUO and further enhanced at 3d UUO, whereas increased Atg-5-Atg12 and LC3-II expression were found at 3d UUO. Increased renal Bax/Bcl-2 ratio, caspase 3 and PARP fragments, apoptosis formation associated with increased caspase 1 and IL-1β expression for pyroptosis formation were started from 3d UUO. UUO reduced nuclear Nrf-2 translocation, increased cytosolic and inhibitory Nrf-2 expression, increased cytosolic Bax translocation to mitochondrial and enhanced mitochondrial Cytochrome c release into cytosol of the UUO kidneys. Sulforaphane significantly increased nuclear Nrf-2 translocation and decreased mitochondrial Bax translocation and Cytochrome c release into cytosol resulting in decreased renal injury. In conclusion, sulforaphane via activating Nrf-2 signaling preserved mitochondrial function and suppressed UUO-induced renal oxidative stress, inflammation, fibrosis, autophagy, apoptosis and pyroptosis. PMID:23071780

  12. Enhanced expression of the DNA damage-inducible gene DIN7 results in increased mutagenesis of mitochondrial DNA in Saccharomyces cerevisiae.

    PubMed

    Koprowski, P; Fikus, M U; Dzierzbicki, P; Mieczkowski, P; Lazowska, J; Ciesla, Z

    2003-08-01

    We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.

  13. Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells

    PubMed Central

    Fink, Brian D.; Herlein, Judith A.; Yorek, Mark A.; Fenner, Amanda M.; Kerns, Robert J.

    2012-01-01

    Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCRATP) (IC50 values of 189 ± 13 nM for MitoQ and 181 ± 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidification in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H2O2 production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCRATP. In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H2O2. These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes. PMID:22661629

  14. Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells.

    PubMed

    Fink, Brian D; Herlein, Judith A; Yorek, Mark A; Fenner, Amanda M; Kerns, Robert J; Sivitz, William I

    2012-09-01

    Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCR(ATP)) (IC₅₀ values of 189 ± 13 nM for MitoQ and 181 ± 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidification in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H₂O₂ production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCR(ATP). In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H₂O₂. These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes.

  15. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].

    PubMed

    Cheng, Ying; Ren, Mingming; Niu, Yanyan; Qiao, Jianhua; Aneba, S; Chorvat, D; Chorvatova, A

    2009-12-01

    The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.

  16. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.

    PubMed

    Aguer, Céline; Gambarotta, Daniela; Mailloux, Ryan J; Moffat, Cynthia; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen

    2011-01-01

    Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1) characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2) determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. Oxygen consumption rate (OCR), lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG)), 5 mM glucose (low glucose (LG)) or 10 mM galactose (GAL). Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell culture model elicited an abnormal response in cells from post-diabetic patients, it may be useful in further studies of the molecular mechanisms of mitochondrial dysfunction.

  17. ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiuping; Zheng, Jianheng; Qiu, Jun

    Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is highly expressed in heart and skeletal muscles, and is the major enzyme that metabolizes acetaldehyde and toxic aldehydes. The cardioprotective effects of ALDH2 during cardiac ischemia/reperfusion injury have been recognized. However, less is known about the function of ALDH2 in skeletal muscle. This study was designed to evaluate the effect of ALDH2 on exhaustive exercise-induced skeletal muscle injury. Methods: We created transgenic mice expressing ALDH2 in skeletal muscles. Male wild-type C57/BL6 (WT) and ALDH2 transgenic mice (ALDH2-Tg), 8-weeks old, were challenged with exhaustive exercise for 1 week to induce skeletal muscle injury. Animalsmore » were sacrificed 24 h post-exercise and muscle tissue was excised. Results: ALDH2-Tg mice displayed significantly increased treadmill exercise capacity compared to WT mice. Exhaustive exercise caused an increase in mRNA levels of the muscle atrophy markers, Atrogin-1 and MuRF1, and reduced mitochondrial biogenesis and fusion in WT skeletal muscles; these effects were attenuated in ALDH2-Tg mice. Exhaustive exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of Beclin1 and Bnip3; the effects of which were mitigated by ALDH2 overexpression. In addition, ALDH2-Tg reversed the increase of an oxidative stress biomarker (4-hydroxynonenal) and decreased levels of mitochondrial antioxidant proteins, including manganese superoxide dismutase and NAD(P)H:quinone oxidoreductase 1, in skeletal muscle induced by exhaustive exercise. Conclusion: ALDH2 may reverse skeletal muscle mitochondrial dysfunction due to exhaustive exercise by regulating mitochondria dynamic remodeling and enhancing the quality of mitochondria. - Highlights: • Skeletal muscle ALDH2 expression and activity declines during exhaustive exercise. • ALDH2 overexpression enhances physical performance and restores muscle atrophy. • ALDH2 overexpression attenuates exercise-induced mitochondrial oxidative stress.« less

  18. A resolution designating the week of September 16, 2012, as "Mitochondrial Disease Awareness Week", reaffirming the importance of an enhanced and coordinated research effort on mitochondrial diseases, and commending the National Institutes of Health for its efforts to improve the understanding of mitochondrial diseases.

    THOMAS, 112th Congress

    Sen. Boxer, Barbara [D-CA

    2012-06-12

    Senate - 11/15/2012 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:

  19. Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease.

    PubMed

    Bigelman, Einat; Cohen, Lena; Aharon-Hananel, Genya; Levy, Ran; Rozenbaum, Zach; Saada, Ann; Keren, Gad; Entin-Meer, Michal

    2018-01-01

    Mitochondria hold crucial importance in organs with high energy demand especially the heart. We investigated whether chronic kidney disease (CKD), which eventually culminates in cardiorenal syndrome, could affect cardiac mitochondria and assessed the potential involvement of angiotensin II (AngII) in the process. Male Lewis rats underwent 5/6 nephrectomy allowing CKD development for eight months or for eleven weeks. Short-term CKD rats were administered with AngII receptor blocker (ARB). Cardiac function was assessed by echocardiography and cardiac sections were evaluated for interstitial fibrosis and cardiomyocytes' hypertrophy. Electron microscopy was used to explore the spatial organization of the cardiomyocytes. Expression levels of mitochondrial content and activity markers were tested in order to delineate the underlying mechanisms for mitochondrial pathology in the CKD setting with or without ARB administration. CKD per-se resulted in induced cardiac interstitial fibrosis and cardiomyocytes' hypertrophy combined with a marked disruption of the mitochondrial structure. Moreover, CKD led to enhanced cytochrome C leakage to the cytosol and to enhanced PARP-1 cleavage which are associated with cellular apoptosis. ARB treatment did not improve kidney function but markedly reduced left ventricular mass, cardiomyocytes' hypertrophy and interstitial fibrosis. Interestingly, ARB administration improved the spatial organization of cardiac mitochondria and reduced their increased volume compared to untreated CKD animals. Nevertheless, ARB did not improve mitochondrial content, mitochondrial biogenesis or the respiratory enzyme activity. ARB mildly upregulated protein levels of mitochondrial fusion-related proteins. CKD results in cardiac pathological changes combined with mitochondrial damage and elevated apoptotic markers. We anticipate that the increased mitochondrial volume mainly represents mitochondrial swelling that occurs during the pathological process of cardiac hypertrophy. Chronic administration of ARB may improve the pathological appearance of the heart. Further recognition of the molecular pathways leading to mitochondrial insult and appropriate intervention is of crucial importance.

  20. Human Skin Permeation Studies with PPARγ Agonist to Improve Its Permeability and Efficacy in Inflammatory Processes.

    PubMed

    Silva-Abreu, Marcelle; Espinoza, Lupe Carolina; Rodríguez-Lagunas, María José; Fábrega, María-José; Espina, Marta; García, María Luisa; Calpena, Ana Cristina

    2017-11-28

    Rosacea is the most common inflammatory skin disease. It is characterized by erythema, inflammatory papules and pustules, visible blood vessels, and telangiectasia. The current treatment has limitations and unsatisfactory results. Pioglitazone (PGZ) is an agonist of peroxisome proliferator-activated receptors (PPARs), a nuclear receptor that regulates important cellular functions, including inflammatory responses. The purpose of this study was to evaluate the permeation of PGZ with a selection of penetration enhancers and to analyze its effectiveness for treating rosacea. The high-performance liquid chromatography (HPLC) method was validated for the quantitative determination of PGZ. Ex vivo permeation experiments were realized in Franz diffusion cells using human skin, in which PGZ with different penetration enhancers were assayed. The results showed that the limonene was the most effective penetration enhancer that promotes the permeation of PGZ through the skin. The cytotoxicity studies and the Draize test detected cell viability and the absence of skin irritation, respectively. The determination of the skin color using a skin colorimetric probe and the results of histopathological studies confirmed the ability of PGZ-limonene to reduce erythema and vasodilation. This study suggests new pharmacological indications of PGZ and its possible application in the treatment of skin diseases, namely rosacea.

  1. Insulin sensitizing and alpha-glucoamylase inhibitory action of sennosides, rheins and rhaponticin in Rhei Rhizoma.

    PubMed

    Choi, Soo Bong; Ko, Byoung Seob; Park, Seong Kyu; Jang, Jin Sun; Park, Sunmin

    2006-01-25

    Extracts from Rhei Rhizoma extracts (RR) have been reported to attenuate metabolic disorders such as diabetic nephropathy, hypercholesterolemia and platelet aggregation. With this study we investigated the anti-diabetic action of 70% ethanol RR extract in streptozotocin-induced diabetic mice, and determined the action mechanism of active compounds of RR in vitro. In the diabetic mice, serum glucose levels at fasting and post-prandial states and glucose area under the curve at modified oral glucose tolerance tests were lowered without altering serum insulin levels, indicating that RR contained potential anti-diabetic agents. The fractions fractionated from RR extracts by XAD-4 column revealed that 60%, 80% and 100% methanol fractions enhanced insulin sensitivity and inhibited alpha-glucoamylase activity. The major compounds of these fractions were sennosides, rhein and rhaponticin. Rhaponticin and rhein enhanced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Rhaponticin increased adipocytes with a differentiating effect similar to pioglitazone, but rhein and sennoside B decreased triglyceride accumulation. Sennoside A and B inhibited alpha-glucoamylase activity as much as acarbose. In conclusion, a crude extract of RR improves glucose intolerance by enhancing insulin-stimulated glucose uptake and decreasing carbohydrate digestion via inhibiting alpha-glucoamylase activity. Rhein and rhaponticin are potential candidates for hypoglycemic agents.

  2. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation.

    PubMed

    Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z; Bezprozvannaya, Svetlana; Sharma, Gaurav; Khemtong, Chalermchai; Shah, Akansha M; McAnally, John R; Malloy, Craig R; Szweda, Luke I; Bassel-Duby, Rhonda; Olson, Eric N

    2018-06-26

    Micropeptide regulator of β-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid β-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced β-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Balneotherapy and coenzyme Q10 in clinical and experimental medicine.

    PubMed

    Gvozdjakova, Anna; Kucharska, Jarmila; Sykora, L'ubomir; Singh, Ram B

    2014-01-01

    Balneotherapy or Spa therapy is used in neurological, cardiovascular, musculoskeletal, dermatological and gynecological diseases, in infertility as well as in metabolic disturbances. Beneficial effects of balneotherapy at the metabolic level is not fully understood. Authors have documented enhancement of antioxidants concentrations (coenzyme Q10- CoQ(10-OX) and alpha-tocopherol) of women with gynecological diseases by treatment with natural mineral water (Spa Lucky balneotherapy, Slovakia). In an experiment with rats, drinking of Spa Lucky mineral water decreased oxidative stress and enhanced concentrations of antioxidants CoQ(9-OX), CoQ(10-OX) in the myocardium, and alpha-tocopherol in uterus, ovaries and myocardium. Drinking of Spa Lucky water by rats stimulated myocardial mitochondrial respiration and energy production, and diminished skeletal muscle mitochondrial function. Simultaneous ingestion of coenzyme Q10 with drinking spa water returned mitochondrial parameters to the values of the control group. This pilot study helps explain the role of antioxidants, oxidative stress and mitochondrial energy production in beneficial effects of Spa Lucky balneotherapy.

  4. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities.

    PubMed

    Falk, Marni J; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T; Stassen, Alphons P M; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G; Brilhante, Virginia; Ralph, David; DaRe, Jeana T; Shelton, Robert; Terry, Sharon F; Zhang, Zhe; Copeland, William C; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu

    2015-03-01

    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    PubMed Central

    Falk, Marni J.; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T.; Stassen, Alphons P.M.; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G.; Brilhante, Virginia; Ralph, David; DaRe, Jeana T.; Shelton, Robert; Terry, Sharon; Zhang, Zhe; Copeland, William C.; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C.; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu

    2014-01-01

    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The “Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium” is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1,300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial disease. PMID:25542617

  6. Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation

    PubMed Central

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph; O’Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. PMID:26627937

  7. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.

    PubMed

    Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua

    2018-06-05

    Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles*♦

    PubMed Central

    Arvizo, Rochelle R.; Moyano, Daniel F.; Saha, Sounik; Thompson, Michael A.; Bhattacharya, Resham; Rotello, Vincent M.; Prakash, Y. S.; Mukherjee, Priyabrata

    2013-01-01

    Nanoparticles provide a potent tool for targeting and understanding disease mechanisms. In this regard, cancer cells are surprisingly resistant to the expected toxic effects of positively charged gold nanoparticles (+AuNPs). Our investigations led to the identification of MICU1, regulator of mitochondrial calcium uniporter, as a key molecule conferring cancer cells with resistance to +AuNPs. The increase in cytosolic [Ca2+]cyto in malignant cells induced by +AuNPs is counteracted by MICU1, preventing cell death. Pharmacological or siRNA-mediated inhibition of mitochondrial Ca+2 entry leads to endoplasmic reticulum stress and sensitizes cancer cells to +AuNP-induced cytotoxicity. Silencing MICU1 decreases Bcl-2 expression and increases caspase-3 activity and cytosolic cytochrome c levels, thus initiating the mitochondrial pathway for apoptosis: effects further enhanced by +AuNPs. This study highlights the potential of nanomaterials as a tool to broaden our understanding of cellular processes, establishes MICU1 as a novel regulator of the machinery in cancer cells that prevents apoptosis, and emphasizes the need to synergize nanoparticle design with understanding of mitochondrial machinery for enhancing targeted cellular toxicity. PMID:23615904

  9. Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance

    PubMed Central

    Coen, Paul M.; DiStefano, Giovanna; Chacon, Alexander C.; Helbling, Nicole L.; Desimone, Marisa E.; Stafanovic-Racic, Maja; Hames, Kazanna C.; Despines, Alex A.; Toledo, Frederico G. S.; Goodpaster, Bret H.

    2014-01-01

    We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload. PMID:25352435

  10. Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.

    PubMed

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Stomatin-Like Protein 2 Binds Cardiolipin and Regulates Mitochondrial Biogenesis and Function▿

    PubMed Central

    Christie, Darah A.; Lemke, Caitlin D.; Elias, Isaac M.; Chau, Luan A.; Kirchhof, Mark G.; Li, Bo; Ball, Eric H.; Dunn, Stanley D.; Hatch, Grant M.; Madrenas, Joaquín

    2011-01-01

    Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active mitochondrial membranes and induces mitochondrial biogenesis. In human T lymphocytes, these events correlate with increased complex I and II activities, increased intracellular ATP stores, and increased resistance to apoptosis through the intrinsic pathway, ultimately enhancing cellular responses. We propose that the function of SLP-2 is to recruit prohibitins to cardiolipin to form cardiolipin-enriched microdomains in which electron transport complexes are optimally assembled. Likely through the prohibitin functional interactome, SLP-2 then regulates mitochondrial biogenesis and function. PMID:21746876

  12. A rapid, PPAR-gamma-dependent effect of pioglitazone on the phosphorylation of MYPT.

    PubMed

    Atkins, Kevin B; Irey, Brittany; Xiang, Nan; Brosius, Frank C

    2009-05-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, thiazolidinediones, have been demonstrated to regulate vascular reactivity. We examined the effect of pioglitazone (PIO; 20 muM) in rat primary cultured aortic smooth muscle cells on constitutive phosphorylation of the regulatory subunit of myosin phosphatase (MYPT). PIO decreased the phosphorylation of Thr(697) on MYPT within 15 min, and the inhibition was maintained up to 6 h. The PPAR-gamma antagonist GW-9662 (5 microM) abrogated the inhibition of Thr(697) phosphorylation mediated by PIO. Because longer-term PIO treatment inhibits RhoA/Rho kinase (ROCK) signaling and Thr(697) phosphorylation, we tested the effect of the ROCK inhibitor Y-27632 (10 muM) on the inhibition of Thr(697) phosphorylation by PIO. Y-27632 alone inhibited Thr(697) phosphorylation, and there was an additive effect with PIO. In addition, up to 1 h of PIO treatment did not affect RhoA localization or decrease ROCK-dependent phosphorylation of Thr(855). These results suggest that the effect of PIO is independent of inhibition of RhoA/ROCK. PIO increased the phosphorylation of Ser(696) in the same time course as its effect on Thr(697). Ser(696) has been shown to be phosphorylated by PKA and PKG. PKA inhibitor H-89 (10 microM) and PKG inhibitor KT-5823 (0.5 microM) abrogated the effect of PIO on both Thr(697) and Ser(696) phosphorylation. The constitutive turnover of phosphorylation of Thr(697) is rapid, suggesting that the decreased phosphorylation of Thr(697) by PIO is due to enhanced phosphorylation of Ser(696). This is supported by the finding that PIO blocks ANG II-stimulated phosphorylation of Thr(697) but not ANG II-stimulated RhoA translocation. Therefore, the effect of shorter-term PIO apparently is to increase myosin light chain phosphatase activity, thereby desensitizing the vascular smooth muscle to agonist signaling.

  13. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.

    PubMed

    Rottenberg, Hagai; Hoek, Jan B

    2017-10-01

    Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. StAR Enhances Transcription of Genes Encoding the Mitochondrial Proteases Involved in Its Own Degradation

    PubMed Central

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas

    2014-01-01

    Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629

  15. Ganoderma lucidum ameliorate mitochondrial damage in isoproterenol-induced myocardial infarction in rats by enhancing the activities of TCA cycle enzymes and respiratory chain complexes.

    PubMed

    Sudheesh, N P; Ajith, T A; Janardhanan, K K

    2013-04-30

    Decreased mitochondrial function has been suggested to be one of the important pathological events in isoproterenol (ISO)-induced cardiotoxicity. In this communication, we have evaluated the protective effect of Ganoderma lucidum against ISO induced cardiac toxicity and mitochondrial dysfunction. Cardiac toxicity was assessed by determining the activities of creatine kinase (CK) and lactate dehydrogenases (LDH) after subcutaneous injection of ISO (85 mg/kg) at an interval of 24h for 2 days. The animals were sacrificed 24h after last ISO administration. G. lucidum (100 and 250 mg/kg, p.o.) was given to the rats once daily for 15 days prior to the ISO challenge. Similarly, α-Tocopherol (100mg/kg, p.o) was kept as the standard. To assess the extent of cardiac mitochondrial damage, the activities of Krebs cycle dehydrogenases and mitochondrial complexes I, II, III, and IV as well as the level of ROS and mitochondrial membrane potential (ΔΨmt) were evaluated. Administration of G. lucidum and α-tocopherol significantly protected the elevated activities of CK and LDH. Further, the activities of mitochondrial enzymes and the level of ΔΨmt were significantly enhanced and the level of ROS was significantly declined in the G. lucidum and α-tocopherol treatments. The present study concluded that the cardiac mitochondrial enzymes are markedly declined by the ISO challenge and the administration G. lucidum and α-Tocopherol significantly protected mitochondria by preventing the decline of antioxidant status and ΔΨmt or by directly scavenging the free radicals. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid

    USDA-ARS?s Scientific Manuscript database

    Co-application of certain types of compounds with conventional antimicrobial drugs results in the enhancement of efficacy of drugs through a mechanism termed chemosensitization. We show that kojic acid (KA), a natural product, is a potent chemosensitizer to complex III inhibitors of mitochondrial re...

  17. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival.

    PubMed

    Pfleger, J; He, M; Abdellatif, M

    2015-07-30

    The survival of a cell depends on its ability to meet its energy requirements. We hypothesized that the mitochondrial reserve respiratory capacity (RRC) of a cell is a critical component of its bioenergetics that can be utilized during an increase in energy demand, thereby, enhancing viability. Our goal was to identify the elements that regulate and contribute to the development of RRC and its involvement in cell survival. The results show that activation of metabolic sensors, including pyruvate dehydrogenase and AMP-dependent kinase, increases cardiac myocyte RRC via a Sirt3-dependent mechanism. Notably, we identified mitochondrial complex II (cII) as a target of these metabolic sensors and the main source of RRC. Moreover, we show that RRC, via cII, correlates with enhanced cell survival after hypoxia. Thus, for the first time, we show that metabolic sensors via Sirt3 maximize the cellular RRC through activating cII, which enhances cell survival after hypoxia.

  18. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.

    PubMed

    Lee, Jacinta P W; Foote, Andrew; Fan, Huapeng; Peral de Castro, Celia; Lang, Tali; Jones, Sarah A; Gavrilescu, Nichita; Mills, Kingston H G; Leech, Michelle; Morand, Eric F; Harris, James

    2016-06-02

    MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers.

  19. The Role of Acid Sensing Ion Channels in Spinal Cord Injury

    DTIC Science & Technology

    2012-10-01

    ASIC1a is localized to the cell bodies and dendrites of neurons [4]. Pathological cerebral acidosis activates these channels which, in turn, kill...Tripathi, P. Wei, and A.T. Lash, The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol

  20. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    PubMed

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1 G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1 G93A -mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.

    PubMed

    Kaniak, Aneta; Dzierzbicki, Piotr; Rogowska, Agata T; Malc, Ewa; Fikus, Marta; Ciesla, Zygmunt

    2009-03-01

    The proximity of the mitochondrial genome to the respiratory chain, a major source of ROS (radical oxygen species), makes mtDNA more vulnerable to oxidative damage than nuclear DNA. Mitochondrial BER (base excision repair) is generally considered to be the main pathway involved in the prevention of oxidative lesion-induced mutations in mtDNA. However, we previously demonstrated that the increased frequency of mitochondrial Oli(r) mutants in an ogg1Delta strain, lacking the activity of a crucial mtBER glycosylase, is reduced in the presence of plasmids encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS. This finding suggested that Msh1p might be involved in the prevention of mitochondrial mutagenesis induced by oxidative stress. Here we show that a double mutant carrying the msh1-R813W allele, encoding a variant of the protein defective in the ATP hydrolysis activity, combined with deletion of SOD2, encoding the mitochondrial superoxide dismutase, displays a synergistic effect on the frequency of Oli(r) mutants, indicating that Msh1p prevents generation of oxidative lesion-induced mitochondrial mutations. We also show that double mutants carrying the msh1-R813W allele, combined with deletion of either OGG1 or APN1, the latter resulting in deficiency of the Apn1 endonuclease, exhibit a synergistic effect on the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. This suggests that Msh1p, Ogg1p and Apn1p play overlapping functions in maintaining the stability of mtDNA. In addition, we demonstrate, using a novel ARG8(m) recombination assay, that a surplus of Msh1p results in enhanced mitochondrial recombination. Interestingly, the mutant forms of the protein, msh1p-R813W and msh1p-G776D, fail to stimulate recombination. We postulate that the Msh1p-enhanced homologous recombination may play an important role in the prevention of oxidative lesion-induced rearrangements of the mitochondrial genome.

  2. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    PubMed

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

    PubMed

    Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang

    2014-09-15

    Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.

  4. Targeting the mitochondrial respiratory chain of Cryptococcus through antifungal chemosensitization: a model for control of non-fermentative pathogens

    USDA-ARS?s Scientific Manuscript database

    Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain inhibi...

  5. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity

    USDA-ARS?s Scientific Manuscript database

    Evidences of oxidative stress and mitochondrial dysfunction have been recognized in most of clinical and experimental liver diseases. SIRT3, a member of NAD+-dependent deacetylases, is mainly localized in mitochondria. So far, the role of SIRT3 in protecting hepatocytes against oxidative stress rema...

  6. Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging

    PubMed Central

    Meyer-Hermann, Michael; Osiewacz, Heinz D.

    2012-01-01

    Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span. PMID:22761564

  7. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview.

    PubMed

    Liu, Jiankang

    2008-01-01

    We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them "mitochondrial nutrients". The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis-Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take alpha-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-L: -carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.

  8. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients.

    PubMed

    Rovira-Llopis, Susana; Bañuls, Celia; de Marañon, Aranzazu M; Diaz-Morales, Noelia; Jover, Ana; Garzon, Sandra; Rocha, Milagros; Victor, Victor M; Hernandez-Mijares, Antonio

    2017-07-01

    Low testosterone levels in men are associated with type 2 diabetes and cardiovascular risk. However, the role of testosterone in mitochondrial function and leukocyte-endothelium interactions is unknown. Our aim was to evaluate the relationship between testosterone levels, metabolic parameters, oxidative stress, mitochondrial function, inflammation and leukocyte-endothelium interactions in type 2 diabetic patients. The study was performed in 280 male type 2 diabetic patients and 50 control subjects. Anthropometric and metabolic parameters, testosterone levels, reactive oxygen species (ROS) production, mitochondrial membrane potential, TNFα, adhesion molecules and leukocyte-endothelium cell interactions were evaluated. Testosterone levels were lower in diabetic patients. Total and mitochondrial ROS were increased and mitochondrial membrane potential, SOD and GSR expression levels were reduced in diabetic patients. TNFα, ICAM-1 and VCAM-1 levels, leukocyte rolling flux and adhesion were all enhanced in diabetic patients, while rolling velocity was reduced. Testosterone levels correlated negatively with glucose, HOMA-IR, HbA1c, triglycerides, nonHDL-c, ApoB, hs-CRP and AIP, and positively with HDL-c and ApoA1. The multivariable regression model showed that HDL-c, HOMA-IR and age were independently associated with testosterone. Furthermore, testosterone levels correlated positively with membrane potential and rolling velocity and negatively with ROS production, VCAM-1, rolling flux and adhesion. Our data highlight that low testosterone levels in diabetic men are related to impaired metabolic profile and mitochondrial function and enhanced inflammation and leukocyte-endothelium cell interaction, which leaves said patients at risk of cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Synergistic effects of hydrogen peroxide and ethanol on cell viability loss in PC12 cells by increase in mitochondrial permeability transition.

    PubMed

    Lee, Chung Soo; Kim, Yun Jeong; Ko, Hyun Hee; Han, Eun Sook

    2005-07-15

    The promoting effect of ethanol against the cytotoxicity of hydrogen peroxide (H2O2) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with H2O2 resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. In PC12 cells and dopaminergic neuroblastoma SH-SY5Y cells, the promoting effect of ethanol on the H2O2-induced cell death was increased with exposure time. Ethanol promoted the nuclear damage, change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to H2O2 in PC12 cells. Catalase, carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the H2O2 and ethanol-induced mitochondrial dysfunction and cell injury. The results show that the ethanol treatment promotes the cytotoxicity of H2O2 against PC12 cells. Ethanol may enhance the H2O2-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that ethanol as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by oxidants.

  10. Assays of mitochondrial Ca2+ transport and Ca2+ efflux via the MPTP.

    PubMed

    Ben-Hail, Danya; Shoshan-Barmatz, Varda

    2014-02-01

    Studying Ca(2+) transport in mitochondria in connection with energy production, as well as cell death, is of great importance. Ca(2+) activates several key enzymes in the mitochondrial matrix to enhance ATP production. This provides an important mechanism for synchronizing energy production with the energy demands of Ca(2+)-activated processes, such as contraction, allowing important feedback effects to help shape cytosolic Ca(2+) signals. A rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the mitochondrial permeability transition pore (MPTP). Here, we present a protocol for measuring Ca(2+) transport and release in isolated mitochondria.

  11. Mitochondrial DNA Damage and Diseases.

    PubMed

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  12. Copper Import into the Mitochondrial Matrix in Saccharomyces cerevisiae Is Mediated by Pic2, a Mitochondrial Carrier Family Protein*

    PubMed Central

    Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2013-01-01

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699

  13. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein.

    PubMed

    Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A

    2013-08-16

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.

  14. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging.

    PubMed

    Staunton, Lisa; O'Connell, Kathleen; Ohlendieck, Kay

    2011-03-07

    Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  15. The complete mitochondrial genome of Haliotis laevigata (Gastropoda: Haliotidae) using MiSeq and HiSeq sequencing.

    PubMed

    Robinson, Nick A; Hall, Nathan E; Ross, Elizabeth M; Cooke, Ira R; Shiel, Brett P; Robinson, Andrew J; Strugnell, Jan M

    2016-01-01

    The mitochondrial genome of greenlip abalone, Haliotis laevigata, is reported. MiSeq and HiSeq sequencing of one individual was assembled to yield a single 16,545 bp contig. The sequence shares 92% identity to the H. rubra mitochondrial genome (a closely related species that hybridize with H. laevigata in the wild). The sequence will be useful for determining the maternal contribution to hybrid populations, for investigating population structure and stock-enhancement effectiveness.

  16. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models.

    PubMed

    Kim, Hanna; Perentis, Rylee J; Caldwell, Guy A; Caldwell, Kim A

    2018-05-10

    Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.

  17. Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's disease.

    PubMed

    Tozzi, Alessandro; Tantucci, Michela; Marchi, Saverio; Mazzocchetti, Petra; Morari, Michele; Pinton, Paolo; Mancini, Andrea; Calabresi, Paolo

    2018-02-12

    Parkinson's disease (PD) is a neurodegenerative disorder in which genetic and environmental factors synergistically lead to loss of midbrain dopamine (DA) neurons. Mutation of leucine-rich repeated kinase2 (Lrrk2) genes is responsible for the majority of inherited familial cases of PD and can also be found in sporadic cases. The pathophysiological role of this kinase has to be fully understood yet. Hyperactivation of Lrrk2 kinase domain might represent a predisposing factor for both enhanced striatal glutamatergic release and mitochondrial vulnerability to environmental factors that are observed in PD. To investigate possible alterations of striatal susceptibility to mitochondrial dysfunction, we performed electrophysiological recordings from the nucleus striatum of a G2019S Lrrk2 mouse model of PD, as well as molecular and morphological analyses of G2019S Lrrk2-expressing SH-SY5Y neuroblastoma cells. In G2019S mice, we found reduced striatal DA levels, according to the hypothesis of alteration of dopaminergic transmission, and increased loss of field potential induced by the mitochondrial complex I inhibitor rotenone. This detrimental effect is reversed by the D2 DA receptor agonist quinpirole via the inhibition of the cAMP/PKA intracellular pathway. Analysis of mitochondrial functions in G2019S Lrrk2-expressing SH-SY5Y cells revealed strong rotenone-induced oxidative stress characterized by reduced Ca 2+ buffering capability and ATP synthesis, production of reactive oxygen species, and increased mitochondrial fragmentation. Importantly, quinpirole was able to prevent all these changes. We suggest that the G2019S-Lrrk2 mutation is a predisposing factor for enhanced striatal susceptibility to mitochondrial dysfunction induced by exposure to mitochondrial environmental toxins and that the D2 receptor stimulation is neuroprotective on mitochondrial function, via the inhibition of cAMP/PKA intracellular pathway. We suggest new possible neuroprotective strategies for patients carrying this genetic alteration based on drugs specifically targeting Lrrk2 kinase domain and mitochondrial functionality.

  18. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    PubMed

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective gasotransmitter able to prevent cell death and improve mitochondrial metabolism. Herein CO supplementation improved neuronal differentiation yield, by enhancing mitochondrial population and promoting the classical metabolic change that occurs during neuronal differentiation, from glycolytic to oxidative metabolism. © 2016 International Society for Neurochemistry.

  19. Cyclin D1 Determines Mitochondrial Function In Vivo†

    PubMed Central

    Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

    2006-01-01

    The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779

  20. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Ononitol monohydrate enhances PRDM16 & UCP-1 expression, mitochondrial biogenesis and insulin sensitivity via STAT6 and LTB4R in maturing adipocytes.

    PubMed

    Subash-Babu, P; Alshatwi, Ali A

    2018-03-01

    Ononitol monohydrate (OMH), a glycoside was originally isolated from Cassia tora (Linn.). Glycosides regulate lipid metabolism but scientific validation desired. Hence, we aimed to evaluate the effect of OMH on enhancing mitochondrial potential, mitochondrial biogenesis, upregulate the expression of brown adipogenesis specific genes in maturing adipocytes. In addition, we observed the inter-relation between adipocyte and T-lymphocyte; whether, OMH treated adipocyte-condition medium stimulate T-cell chemokine linked with insulin resistance. In a dose dependent manner OMH treated to preadipocyte significantly inhibited maturation and enhanced mitochondrial biogenesis, it was confirmed by Oil red 'O and Nile red stain without inducing cytotoxicity. The mRNA levels of adipocyte browning related genes such as, PR domain containing 16 (PRDM16), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and uncoupling protein-1 (UCP-1) have been significantly upregulated. In addition, adipogenic transcription factors [such as proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c)] and adipogenic genes were significantly down-regulated by treatment with OMH when compared to control cells. Protein expression levels of adiponectin have been increased; leptin, C/EBPα and leukotriene B4 receptor (LTB4R) were down regulated by OMH in mature adipocytes. In addition, adipocyte condition medium and OMH treated T-lymphocyte, significantly increased insulin signaling pathway related mRNAs, such as interlukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT 6 ) and decreased leukotriene B4 (LTB 4 ). The present findings suggest that OMH increased browning factors in differentiating and maturing preadipocyte also decreased adipose tissue inflammation as well as the enhanced insulin signaling. Copyright © 2018. Published by Elsevier Masson SAS.

  2. N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses.

    PubMed

    Small, David M; Sanchez, Washington Y; Roy, Sandrine F; Morais, Christudas; Brooks, Heddwen L; Coombes, Jeff S; Johnson, David W; Gobe, Glenda C

    2018-05-01

    Oxidative stress and mitochondrial dysfunction exacerbate acute kidney injury (AKI), but their role in any associated progress to chronic kidney disease (CKD) remains unclear. Antioxidant therapies often benefit AKI, but their benefits in CKD are controversial since clinical and preclinical investigations often conflict. Here we examined the influence of the antioxidant N-acetyl-cysteine (NAC) on oxidative stress and mitochondrial function during AKI (20-min bilateral renal ischemia plus reperfusion/IR) and progression to chronic kidney pathologies in mice. NAC (5% in diet) was given to mice 7 days prior and up to 21 days post-IR (21d-IR). NAC treatment resulted in the following: prevented proximal tubular epithelial cell apoptosis at early IR (40-min postischemia), yet enhanced interstitial cell proliferation at 21d-IR; increased transforming growth factor-β1 expression independent of IR time; and significantly dampened nuclear factor-like 2-initiated cytoprotective signaling at early IR. In the long term, NAC enhanced cellular metabolic impairment demonstrated by increased peroxisome proliferator activator-γ serine-112 phosphorylation at 21d-IR. Intravital multiphoton microscopy revealed increased endogenous fluorescence of nicotinamide adenine dinucleotide (NADH) in cortical tubular epithelial cells during ischemia, and at 21d-IR that was not attenuated with NAC. Fluorescence lifetime imaging microscopy demonstrated persistent metabolic impairment by increased free/bound NADH in the cortex at 21d-IR that was enhanced by NAC. Increased mitochondrial dysfunction in remnant tubular cells was demonstrated at 21d-IR by tetramethylrhodamine methyl ester fluorimetry. In summary, NAC enhanced progression to CKD following AKI not only by dampening endogenous cellular antioxidant responses at time of injury but also by enhancing persistent kidney mitochondrial and metabolic dysfunction.

  3. Inhibition of mTOR Prevents ROS Production Initiated by Ethidium Bromide-Induced Mitochondrial DNA Depletion

    PubMed Central

    Nacarelli, Timothy; Azar, Ashley; Sell, Christian

    2014-01-01

    The regulation of mitochondrial mass and DNA content involves a complex interaction between mitochondrial DNA replication machinery, functional components of the electron transport chain, selective clearance of mitochondria, and nuclear gene expression. In order to gain insight into cellular responses to mitochondrial stress, we treated human diploid fibroblasts with ethidium bromide at concentrations that induced loss of mitochondrial DNA over a period of 7 days. The decrease in mitochondrial DNA was accompanied by a reduction in steady state levels of the mitochondrial DNA binding protein, TFAM, a reduction in several electron transport chain protein levels, increased mitochondrial and total cellular ROS, and activation of p38 MAPK. However, there was an increase in mitochondrial mass and voltage dependent anion channel levels. In addition, mechanistic target of rapamycin (mTOR) activity, as judged by p70S6K targets, was decreased while steady state levels of p62/SQSTM1 and Parkin were increased. Treatment of cells with rapamycin created a situation in which cells were better able to adapt to the mitochondrial dysfunction, resulting in decreased ROS and increased cell viability but did not prevent the reduction in mitochondrial DNA. These effects may be due to a more efficient flux through the electron transport chain, increased autophagy, or enhanced AKT signaling, coupled with a reduced growth rate. Together, the results suggest that mTOR activity is affected by mitochondrial stress, which may be part of the retrograde signal system required for normal mitochondrial homeostasis. PMID:25104948

  4. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    PubMed

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Elevated mitochondrial gene expression during rat liver regeneration after portal vein ligation.

    PubMed

    Shimizu, Y; Suzuki, H; Nimura, Y; Onoue, S; Nagino, M; Tanaka, M; Ozawa, T

    1995-10-01

    We explored the molecular basis of mitochondrial energy production during rat liver regeneration after portal vein ligation. Ligation of the left branch of the portal vein induces an increase in the weight of the nonligated lobe, counterbalancing the reduced weight of the ligated lobe. Using this model, we investigated changes in mitochondrial DNA-binding proteins, mitochondrial DNA, and mitochondrial messenger RNA (mRNA) in rat hepatocytes of the nonligated lobes. The amount of mitochondrial DNA-binding protein increased maximally (200% to 300% of the preoperative level) at 12 hours after the operation, before an increase (390%) in mitochondrial DNA content at 24 hours, and parallel to an increase (240%) in mitochondrial mRNA levels at 12 hours. These results suggest that the energy supply for liver regeneration is achieved through enhancement of mitochondrial DNA replication as well as transcription, in which the mitochondrial DNA-binding proteins probably play regulatory roles. We also found that in the nonligated lobes, mRNA levels of hepatocyte growth factor increased to a detectable level only 12 hours after the operation. These molecular biochemical data help explain why preoperative portal vein embolization, which is a modification of portal vein branch ligation, is an effective method to prevent posthepatectomy liver failure.

  6. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  7. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.

    PubMed

    Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S

    2011-08-21

    Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.

  8. Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy

    USDA-ARS?s Scientific Manuscript database

    Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats...

  9. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; College of Food Safety, Guizhou Medical University, Guiyang 550025; Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes thatmore » are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.« less

  10. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.

    PubMed

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-04-11

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  11. Paradoxical Inhibition of Glycolysis by Pioglitazone Opposes the Mitochondriopathy Caused by AIF Deficiency.

    PubMed

    Bénit, Paule; Pelhaître, Alice; Saunier, Elise; Bortoli, Sylvie; Coulibaly, Assetou; Rak, Malgorzata; Schiff, Manuel; Kroemer, Guido; Zeviani, Massimo; Rustin, Pierre

    2017-03-01

    Mice with the hypomorphic AIF-Harlequin mutation exhibit a highly heterogeneous mitochondriopathy that mostly affects respiratory chain complex I, causing a cerebral pathology that resembles that found in patients with AIF loss-of-function mutations. Here we describe that the antidiabetic drug pioglitazone (PIO) can improve the phenotype of a mouse Harlequin (Hq) subgroup, presumably due to an inhibition of glycolysis that causes an increase in blood glucose levels. This glycolysis-inhibitory PIO effect was observed in cultured astrocytes from Hq mice, as well as in human skin fibroblasts from patients with AIF mutation. Glycolysis inhibition by PIO resulted from direct competitive inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, GAPDH protein levels were reduced in the cerebellum and in the muscle from Hq mice that exhibited an improved phenotype upon PIO treatment. Altogether, our results suggest that excessive glycolysis participates to the pathogenesis of mitochondriopathies and that pharmacological inhibition of glycolysis may have beneficial effects in this condition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration ofmore » Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.« less

  13. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models.

    PubMed

    Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S

    2018-02-01

    Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jidong; Xu, Jing; Fei, Yao

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which aremore » required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of mitochondrial ROS which could stimulate cartilage ECM synthesis that offer novel insights for development of therapeutic agent to prevent cartilage degeneration in human disease. - Highlights: • TrxR2 deficiencies enhance chondrogenic differentiation. • TrxR2 deficiencies stimulate chondrocyte proliferation. • TrxR2 deficiencies induce chondrocyte apoptosis. • TrxR2 deficiencies increase emission of mitochondrial ROS. • Mitochondrial ROS regulate chondrocyte proliferation, differentiation, and apoptosis.« less

  15. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex

    PubMed Central

    Morris-Blanco, Kahlilia C; Cohan, Charles H; Neumann, Jake T; Sick, Thomas J; Perez-Pinzon, Miguel A

    2014-01-01

    Preserving mitochondrial pools of nicotinamide adenine dinucleotide (NAD) or nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in NAD production, maintains mitochondrial function and confers neuroprotection after ischemic stress. However, the mechanisms involved in regulating mitochondrial-localized Nampt or NAD have not been defined. In this study, we investigated the roles of protein kinase C epsilon (PKCɛ) and AMP-activated protein kinase (AMPK) in regulating mitochondrial pools of Nampt and NAD after resveratrol or ischemic preconditioning (IPC) in the cortex and in primary neuronal-glial cortical cultures. Using the specific PKCɛ agonist ψɛRACK, we found that PKCɛ induced robust activation of AMPK in vitro and in vivo and that AMPK was required for PKCɛ-mediated ischemic neuroprotection. In purified mitochondrial fractions, PKCɛ enhanced Nampt levels in an AMPK-dependent manner and was required for increased mitochondrial Nampt after IPC or resveratrol treatment. Analysis of intrinsic NAD autofluorescence using two-photon microscopy revealed that PKCɛ modulated NAD in the mitochondrial fraction. Further assessments of mitochondrial NAD concentrations showed that PKCɛ has a key role in regulating the mitochondrial NAD+/nicotinamide adenine dinucleotide reduced (NADH) ratio after IPC and resveratrol treatment in an AMPK- and Nampt-dependent manner. These findings indicate that PKCɛ is critical to increase or maintain mitochondrial Nampt and NAD after pathways of ischemic neuroprotection in the brain. PMID:24667915

  16. Mitochondrial DNA Damage and Diseases

    PubMed Central

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052

  17. Effect of CCS on the Accumulation of FALS SOD1 Mutant-containing Aggregates and on Mitochondrial Translocation of SOD1 Mutants: Implication of a Free Radical Hypothesis

    PubMed Central

    Kim, Ha Kun; Chung, Youn Wook; Chock, P. Boon; Yim, Moon B.

    2011-01-01

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. PMID:21354101

  18. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  19. Blocking mitochondrial cyclophilin D ameliorates TSH-impaired defensive barrier of artery.

    PubMed

    Liu, Xiaojing; Du, Heng; Chai, Qiang; Jia, Qing; Liu, Lu; Zhao, Meng; Li, Jun; Tang, Hui; Chen, Wenbin; Zhao, Lifang; Fang, Li; Gao, Ling; Zhao, Jiajun

    2018-05-01

    Endothelial cells (ECs) constitute the defensive barrier of vasculature, which maintains the vascular homeostasis. Mitochondrial oxidative stress (mitoOS) in ECs significantly affects the initiation and progression of vascular diseases. The higher serum thyroid stimulating hormone (TSH) level is being recognized as a nonconventional risk factor responsible for the increased risk of cardiovascular diseases in subclinical hypothyroidism (SCH). However, effects and underlying mechanisms of elevated TSH on ECs are still ambiguous. We sought to investigate whether cyclophilin D (CypD), emerging as a crucial mediator in mitoOS, regulates effects of TSH on ECs. SCH patients with TSH > = 10mIU/L showed a positive correlation between serum TSH and endothelin-1 levels. When TSH levels declined to normal in these subjects after levothyroxine therapy, serum endothelin-1 levels were significantly reduced. Supplemented with exogenous thyroxine to keep normal thyroid hormones, thyroid-specific TSH receptor (TSHR)-knockout mice with injection of exogenous TSH exhibited elevated serum TSH levels, significant endothelial oxidative injuries and disturbed endothelium-dependent vasodilation. However, Tshr -/- mice resisted to TSH-impaired vasotonia. We further confirmed that elevated TSH triggered excessive mitochondrial permeability transition pore (mPTP) opening and mitochondrial oxidative damages in mouse aorta, as well as in cultured ECs. Genetic or pharmacological inhibition of CypD (the key regulator for mPTP opening) attenuated TSH-induced mitochondrial oxidative damages and further rescued endothelial functions. Finally, we confirmed that elevated TSH could activate CypD by enhancing CypD acetylation via inhibiting adenosine monophosphate-activated protein kinase/sirtuin-3 signaling pathway in ECs. These findings reveal that elevated TSH triggers mitochondrial perturbations in ECs and provide insights that blocking mitochondrial CypD enhances the defensive ability of ECs under TSH exposure. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Regulation of Small Ubiquitin-Like Modifier-1, Nuclear Receptor Coreceptor, Histone Deacetylase 3, and Peroxisome Proliferator-Activated Receptor-γ in Human Adipose Tissue

    PubMed Central

    Bodles-Brakhop, Angela M.; Yao-Borengasser, Aiwei; Zhu, Beibei; Starnes, Catherine P.; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.

    2012-01-01

    Abstract Background This study investigated the regulation of peroxisome proliferator-activated receptor-γ (PPARγ), the histone deacetylase 3 (HDAC3)–nuclear receptor coreceptor (NCoR) complex (a corepressor of transcription used by PPARγ), and small ubiquitin-like modifier-1 (SUMO-1) (a posttranslational modifier of PPARγ) in human adipose tissue and both adipocyte and macrophage cell lines. The objective was to determine whether there were alterations in the human adipose tissue gene expression levels of PPARγ, HDAC3, NCoR, and SUMO-1 associated either with obesity or with treatment of impaired glucose tolerance (IGT) subjects with insulin-sensitizing medications. Methods We obtained subcutaneous adipose tissue biopsies from 86 subjects with a wide range of body mass index (BMI) and insulin sensitivity (SI). Additionally, adipose tissue biopsies were obtained from a randomized subgroup of IGT subjects before and after 10 weeks of treatment with either pioglitazone or metformin. Results The adipose mRNA levels of PPARγ, NCoR, HDAC3, and SUMO-1 correlated strongly with each other (P<0.0001); however, SUMO-1, NCoR, and HDAC3 gene expression were not significantly associated with BMI or SI. Pioglitazone increased SUMO-1 expression by 23% (P<0.002) in adipose tissue and an adipocyte cell line (P<0.05), but not in macrophages. Small interfering RNA (siRNA)-mediated knockdown of SUMO-1 decreased PPARγ, HDAC3, and NCoR in THP-1 cells and increased tumor necrosis factor-α (TNF-α) induction in response to lipopolysaccharide (LPS). Conclusions These results suggest that the coordinate regulation of SUMO-1, PPARγ1/2, HDAC3, and NCoR may be more tightly controlled in macrophages than in adipocytes in human adipose and that these modulators of PPARγ activity may be particularly important in the negative regulation of macrophage-mediated adipose inflammation by pioglitazone. PMID:22651256

  1. The Risk of Fractures Associated with Thiazolidinediones: A Self-controlled Case-Series Study

    PubMed Central

    Douglas, Ian J.; Evans, Stephen J.; Pocock, Stuart; Smeeth, Liam

    2009-01-01

    Background The results of clinical trials have suggested that the thiazolidinedione antidiabetic agents rosiglitazone and pioglitazone are associated with an increased risk of fractures, but such studies had limited power. The increased risk in these trials appeared to be limited to women and mainly involved fractures of the arm, wrist, hand, or foot: risk patterns that could not be readily explained. Our objective was to further investigate the risk of fracture associated with thiazolidinedione use. Methods and Findings The self-controlled case-series design was used to compare rates of fracture during thiazolidinedione exposed and unexposed periods and thus estimate within-person rate ratios. We used anonymised primary care data from the United Kingdom General Practice Research Database (GPRD). All patients aged 40 y or older with a recorded fracture and at least one prescription for a thiazolidinedione were included (n = 1,819). We found a within-person rate ratio of 1.43 (95% confidence interval [CI] 1.25–1.62) for fracture at any site comparing exposed with unexposed periods among patients prescribed any thiazolidinedione. This association was similar in men and women and in patients treated with either rosiglitazone or pioglitazone. The increased risk was also evident at a range of fracture sites, including hip, spine, arm, foot, wrist, or hand. The risk increased with increasing duration of thiazolidinedione exposure: rate ratio 2.00 (95% CI 1.48–2.70) for 4 y or more of exposure. Conclusion Within individuals who experience a fracture, fracture risk is increased during periods of exposure to thiazolidinediones (both rosiglitazone and pioglitazone) compared with unexposed periods. The increased risk is observed in both men and women and at a range of fracture sites. The risk also increases with longer duration of use. Please see later in the article for the Editors' Summary PMID:19787025

  2. Pioglitazone, a PPARγ Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto's Thyroiditis.

    PubMed

    Werion, Alexis; Joris, Virginie; Hepp, Michael; Papasokrati, Lida; Marique, Lancelot; de Ville de Goyet, Christine; Van Regemorter, Victoria; Mourad, Michel; Lengelé, Benoit; Daumerie, Chantal; Marbaix, Etienne; Brichard, Sonia; Many, Marie-Christine; Craps, Julie

    2016-09-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates the expression of multiple target genes involved in several metabolic pathways as well as in inflammation. The expression and cell localization of caveolin-1 (Cav-1), thyroperoxidase (TPO), and dual oxidase (DUOX), involved in extracellular iodination, is modulated by Th1 cytokines in human normal thyroid cells and in Hashimoto's thyroiditis (HT). The objectives of this study were (i) to analyze the PPARγ protein and mRNA expression at the follicular level in HT versus controls in correlation with the one of Cav-1; (ii) to study the effects of Th1 cytokines on PPARγ and catalase expression in human thyrocyte primary cultures; and (iii) to study the effects of pioglitazone, a PPARγ agonist, on thyroxisome components (Cav-1, TPO, DUOX) and on catalase, involved in antioxidant defense. Although the global expression of PPARγ in the whole gland of patients with HT was not modified compared with controls, there was great heterogeneity among glands and among follicles within the same thyroid. Besides normal (type 1) follicles, there were around inflammatory zones, hyperactive (type 2) follicles with high PPARγ and Cav-1 expression, and inactive (type 3) follicles which were unable to form thyroxine and did not express PPARγ or Cav-1. In human thyrocytes in primary culture, Th1 cytokines decreased PPARγ and catalase expression; pioglitazone increased Cav-1, TPO, and catalase expression. PPARγ may play a central role in normal thyroid physiology by upregulating Cav-1, essential for the organization of the thyroxisome and extracellular iodination. By upregulating catalase, PPARγ may also contribute to cell homeostasis. The inhibitory effect of Th1 cytokines on PPARγ expression may be considered as a new pathogenetic mechanism for HT, and the use of PPARγ agonists could open a new therapeutic approach.

  3. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models

    PubMed Central

    Suzuki, M; Takeda, M; Kito, A; Fukazawa, M; Yata, T; Yamamoto, M; Nagata, T; Fukuzawa, T; Yamane, M; Honda, K; Suzuki, Y; Kawabe, Y

    2014-01-01

    Objective: Tofogliflozin, a highly selective inhibitor of sodium/glucose cotransporter 2 (SGLT2), induces urinary glucose excretion (UGE), improves hyperglycemia and reduces body weight in patients with Type 2 diabetes (T2D). The mechanisms of tofogliflozin on body weight reduction were investigated in detail with obese and diabetic animal models. Methods: Diet-induced obese (DIO) rats and KKAy mice (a mouse model of diabetes with obesity) were fed diets containing tofogliflozin. Body weight, body composition, biochemical parameters and metabolic parameters were evaluated. Results: In DIO rats tofogliflozin was administered for 9 weeks, UGE was induced and body weight gain was attenuated. Body fat mass decreased without significant change in bone mass or lean body mass. Food consumption (FC) increased without change in energy expenditure, and deduced total calorie balance (deduced total calorie balance=FC−UGE−energy expenditure) decreased. Respiratory quotient (RQ) and plasma triglyceride (TG) level decreased, and plasma total ketone body (TKB) level increased. Moreover, plasma leptin level, adipocyte cell size and proportion of CD68-positive cells in mesenteric adipose tissue decreased. In KKAy mice, tofogliflozin was administered for 3 or 5 weeks, plasma glucose level and body weight gain decreased together with a reduction in liver weight and TG content without a reduction in body water content. Combination therapy with tofogliflozin and pioglitazone suppressed pioglitazone-induced body weight gain and reduced glycated hemoglobin level more effectively than monotherapy with either pioglitazone or tofogliflozin alone. Conclusion: Body weight reduction with tofogliflozin is mainly due to calorie loss with increased UGE. In addition, tofogliflozin also induces a metabolic shift from carbohydrate oxidation to fatty acid oxidation, which may lead to prevention of fat accumulation and inflammation in adipose tissue and liver. Tofogliflozin may have the potential to prevent obesity, hepatic steatosis and improve insulin resistance as well as hyperglycemia. PMID:25000147

  4. Mitochondrial Transfer from Wharton's Jelly Mesenchymal Stem Cell to MERRF Cybrid Reduces Oxidative Stress and Improves Mitochondrial Bioenergetics

    PubMed Central

    Liou, Chia-Wei; Chen, Shang-Der; Wang, Pei-Wen; Chuang, Jiin-Haur; Tiao, Mao-Meng; Hsu, Te-Yao

    2017-01-01

    Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial disease affecting neuromuscular functions. Mt.8344A>G mutation in mitochondrial DNA (mtDNA) is the most common cause of MERRF syndrome and has been linked to an increase in reactive oxygen species (ROS) level and oxidative stress, as well as impaired mitochondrial bioenergetics. Here, we tested whether WJMSC has therapeutic potential for the treatment of MERRF syndrome through the transfer of mitochondria. The MERRF cybrid cells exhibited a high mt.8344A>G mutation ratio, enhanced ROS level and oxidative damage, impaired mitochondrial bioenergetics, defected mitochondria-dependent viability, exhibited an imbalance of mitochondrial dynamics, and are susceptible to apoptotic stress. Coculture experiments revealed that mitochondria were intercellularly conducted from the WJMSC to the MERRF cybrid. Furthermore, WJMSC transferred mitochondria exclusively to cells with defective mitochondria but not to cells with normal mitochondria. MERRF cybrid following WJMSC coculture (MF+WJ) demonstrated improvement of mt.8344A>G mutation ratio, ROS level, oxidative damage, mitochondrial bioenergetics, mitochondria-dependent viability, balance of mitochondrial dynamics, and resistance against apoptotic stress. WJMSC-derived mitochondrial transfer and its therapeutic effect were noted to be blocked by F-actin depolymerizing agent cytochalasin B. Collectively, the WJMSC ability to rescue cells with defective mitochondrial function through donating healthy mitochondria may lead to new insights into the development of more efficient strategies to treat diseases related to mitochondrial dysfunction. PMID:28607632

  5. The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation

    PubMed Central

    Hom, Jennifer R.; Quintanilla, Rodrigo A.; Hoffman, David L.; Karen L., de Mesy Bentley; Molkentin, Jeffery D.; Sheu, Shey-Shing; Porter, George A.

    2011-01-01

    SUMMARY Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5, when compared to E13.5, displayed fragmented mitochondria with few cristae, a less polarized mitochondrial membrane potential, higher reactive oxygen species (ROS) levels, and an open mPTP. Pharmacologic and genetic closing of the mPTP yielded maturation of mitochondrial structure and function, lowered ROS, and increased myocyte differentiation (measured by counting Z-bands). Furthermore, myocyte differentiation was inhibited and enhanced with oxidant and antioxidant treatment, respectively, suggesting that redox signaling pathways lie downstream of mitochondria to regulate cardiac myocyte differentiation. PMID:21920313

  6. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD. PMID:25828268

  7. miR-125a induces apoptosis, metabolism disorder and migration impairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission

    PubMed Central

    Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong

    2018-01-01

    Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy. PMID:29749475

  8. miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission.

    PubMed

    Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong

    2018-07-01

    Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA‑125a (miR‑125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro‑apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR‑125a enhanced mitochondria‑dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC‑1 cell migration by preserving the F‑actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a‑mediated mitochondrial fission. Low contents of miR‑125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR‑125a and Mfn2 are regulated by hypoxia‑inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR‑125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR‑125a/Mfn2 pathways, acting to restrict PANC‑1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.

  9. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer's disease

    PubMed Central

    Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catharine; Mitchell, Andrew; Kandimalla, Ramesh; Kuruva, Chandra Sekhar

    2016-01-01

    The purpose of our study was to investigate the protective effects of a natural product—‘curcumin’— in Alzheimer's disease (AD)-like neurons. Although much research has been done in AD, very little has been reported on the effects of curcumin on mitochondrial biogenesis, dynamics, function and synaptic activities. Therefore, the present study investigated the protective effects against amyloid β (Aβ) induced mitochondrial and synaptic toxicities. Using human neuroblastoma (SHSY5Y) cells, curcumin and Aβ, we studied the protective effects of curcumin against Aβ. Further, we also studied preventive (curcumin+Aβ) and intervention (Aβ+curcumin) effects of curcumin against Aβ in SHSY5Y cells. Using real time RT-PCR, immunoblotting and immunofluorescence analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis and synaptic genes. We also assessed mitochondrial function by measuring hydrogen peroxide, lipid peroxidation, cytochrome oxidase activity and mitochondrial ATP. Cell viability was studied using the MTT assay. Aβ was found to impair mitochondrial dynamics, reduce mitochondrial biogenesis and decrease synaptic activity and mitochondrial function. In contrast, curcumin enhanced mitochondrial fusion activity and reduced fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in curcumin treated cells. Interestingly, curcumin pre- and post-treated cells incubated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability and mitochondrial dynamics, mitochondrial biogenesis and synaptic activity. Further, the protective effects of curcumin were stronger in pretreated SHSY5Y cells than in post-treated cells, indicating that curcumin works better in prevention than treatment in AD-like neurons. Our findings suggest that curcumin is a promising drug molecule to treat AD patients. PMID:27521081

  10. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer's disease.

    PubMed

    Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catharine; Mitchell, Andrew; Kandimalla, Ramesh; Kuruva, Chandra Sekhar

    2016-12-01

    The purpose of our study was to investigate the protective effects of a natural product-'curcumin'- in Alzheimer's disease (AD)-like neurons. Although much research has been done in AD, very little has been reported on the effects of curcumin on mitochondrial biogenesis, dynamics, function and synaptic activities. Therefore, the present study investigated the protective effects against amyloid β (Aβ) induced mitochondrial and synaptic toxicities. Using human neuroblastoma (SHSY5Y) cells, curcumin and Aβ, we studied the protective effects of curcumin against Aβ. Further, we also studied preventive (curcumin+Aβ) and intervention (Aβ+curcumin) effects of curcumin against Aβ in SHSY5Y cells. Using real time RT-PCR, immunoblotting and immunofluorescence analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis and synaptic genes. We also assessed mitochondrial function by measuring hydrogen peroxide, lipid peroxidation, cytochrome oxidase activity and mitochondrial ATP. Cell viability was studied using the MTT assay. Aβ was found to impair mitochondrial dynamics, reduce mitochondrial biogenesis and decrease synaptic activity and mitochondrial function. In contrast, curcumin enhanced mitochondrial fusion activity and reduced fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in curcumin treated cells. Interestingly, curcumin pre- and post-treated cells incubated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability and mitochondrial dynamics, mitochondrial biogenesis and synaptic activity. Further, the protective effects of curcumin were stronger in pretreated SHSY5Y cells than in post-treated cells, indicating that curcumin works better in prevention than treatment in AD-like neurons. Our findings suggest that curcumin is a promising drug molecule to treat AD patients. Copyright © 2016 American Federation for Medical Research.

  11. Mitochondria-Division Inhibitor 1 Protects Against Amyloid-β induced Mitochondrial Fragmentation and Synaptic Damage in Alzheimer's Disease.

    PubMed

    Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing

    2017-01-01

    The purpose our study was to determine the protective effects of mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Mdivi1 is hypothesized to reduce excessive fragmentation of mitochondria and mitochondrial dysfunction in AD neurons. Very little is known about whether Mdivi1 can confer protective effects in AD. In the present study, we sought to determine the protective effects of Mdivi1 against amyloid-β (Aβ)- and mitochondrial fission protein, dynamin-related protein 1 (Drp1)-induced excessive fragmentation of mitochondria in AD progression. We also studied preventive (Mdivi1+Aβ42) and intervention (Aβ42+Mdivi1) effects against Aβ42 in N2a cells. Using real-time RT-PCR and immunoblotting analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis, and synaptic genes. We also assessed mitochondrial function by measuring H2O2, lipid peroxidation, cytochrome oxidase activity, and mitochondrial ATP. MTT assays were used to assess the cell viability. Aβ42 was found to impair mitochondrial dynamics, lower mitochondrial biogenesis, lower synaptic activity, and lower mitochondrial function. On the contrary, Mdivi1 enhanced mitochondrial fusion activity, lowered fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in Mdivi1-treated cells. Interestingly, Mdivi1 pre- and post-treated cells treated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability, mitochondrial dynamics, mitochondrial biogenesis, and synaptic activity. The protective effects of Mdivi1 were stronger in N2a+Aβ42 pre-treated with Mdivi1, than in N2a+Aβ42 cells than Mdivi1 post-treated cells, indicating that Mdivi1 works better in prevention than treatment in AD like neurons.

  12. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  13. Phellinus rimosus improves mitochondrial energy status and attenuates nephrotoxicity in diabetic rats.

    PubMed

    Rony, K A; Ajith, T A; Kuttikadan, Tony A; Blaze, R; Janardhanan, K K

    2017-09-26

    Mitochondrial dysfunction and increase in reactive oxygen species during diabetes can lead to pathological consequences in kidneys. The present study was aimed to investigate the effect of Phellinus rimosus in the streptozotocin (STZ)-induced diabetic rat renal mitochondria and the possible mechanism of protection. Phellinus rimosus (50 and 250 mg/kg, p.o) was treated after inducing diabetes by STZ (45 mg/kg, i.p) in rats. The serum samples were subjected to creatinine and urea estimation. Mitochondrial antioxidant status such as mitochondrial superoxide dismutase, glutathione peroxidase, and reduced glutathione; adenosine triphosphate level; and lipid peroxidation were measured. The activities of Krebs cycle enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, III, and IV in kidney mitochondria were also determined. Administration of P. rimosus (250 mg/kg b.wt) once daily for 30 days, significantly (p<0.05) enhanced the activities of Krebs cycle dehydrogenases, mitochondrial electron transport chain complexes, and ATP level. Further, P. rimosus had significantly protected the renal mitochondrial antioxidant status and lipid peroxidation. The results of the study concluded that by limiting the extent of renal mitochondrial damage in the hyperglycemic state, P. rimosus alleviated nephrotoxicity.

  14. Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas1[OPEN

    PubMed Central

    Uhmeyer, Andreas

    2017-01-01

    In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished light tolerance. We analyzed the modulation of mitochondrial and chlororespiration during the acclimation of stm6 and the MOC1-complemented strain to excess light. Although light stress stimulated mitochondrial respiration via the energy-conserving cytochrome c pathway in both strains, the mutant was unable to fine-tune the expression and activity of oxidative phosphorylation complex I in excess light, which was accompanied by an increased mitochondrial respiration via the alternative oxidase pathway. Furthermore, stm6 failed to fully activate chlororespiration and cyclic electron flow due to a more oxidized state of the chloroplast stroma, which is caused by an increased mitochondrial electron sink capacity. Increased susceptibility to photoinhibition of PSII in stm6 demonstrates that the MOC1-dependent modulation of mitochondrial respiration helps control the stromal redox poise as a crucial part of high-light acclimation in C. reinhardtii. PMID:28500267

  15. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus.

    PubMed

    Shepherd, Danielle L; Hathaway, Quincy A; Nichols, Cody E; Durr, Andrya J; Pinti, Mark V; Hughes, Kristen M; Kunovac, Amina; Stine, Seth M; Hollander, John M

    2018-06-01

    >99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target

    PubMed Central

    Scholpa, Natalie E.

    2017-01-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. PMID:28935700

  17. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.

    PubMed

    Scholpa, Natalie E; Schnellmann, Rick G

    2017-12-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. U.S. Government work not protected by U.S. copyright.

  18. Temporal manipulation of mitochondrial function by virulent Francisella tularensis to limit inflammation and control cell death.

    PubMed

    Jessop, Forrest; Schwarz, Benjamin; Heitmann, Emily; Buntyn, Robert; Wehrly, Tara; Bosio, Catharine M

    2018-05-14

    Francisella tularensis ssp tularensis (Ftt) is a highly pathogenic intracellular bacterium that suppresses host inflammation by impairing the metabolic shift from oxidative phosphorylation to glycolysis. Decreased mitochondrial metabolism is central to initiating a metabolic shift to glycolysis and regulating inflammation, but Ftt manipulation of host mitochondrial function has not been explored. We demonstrate using extracellular flux analysis that Ftt infection initially improves host macrophage mitochondrial bioenergetics in a capsule dependent manner. Enhancement of mitochondrial function by Ftt allowed for modest replication and inhibition of apoptosis early after infection. However, using live cell imaging we found that Ftt facilitated the loss of mitochondrial function at later time points during infection in a capsule independent fashion. This loss of function was paired with oncosis and rapid bacterial replication. Inhibition of oncosis reduced intracellular bacteria numbers, underscoring the requirement for this process during Ftt infection. These findings establish that temporal mitochondrial manipulation by Ftt is critical for maintenance of a non-inflammatory environment and subsequently aids in optimal replication and dissemination of this pathogenic organism. Copyright © 2018 American Society for Microbiology.

  19. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division.

    PubMed

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-08-25

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

  20. Downregulation of Pink1 influences mitochondrial fusion–fission machinery and sensitizes to neurotoxins in dopaminergic cells

    PubMed Central

    Rojas-Charry, Liliana; Cookson, Mark R.; Niño, Andrea; Arboleda, Humberto; Arboleda, Gonzalo

    2016-01-01

    It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson’s disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission. PMID:24792327

  1. Treatment with geraniol ameliorates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis in rats.

    PubMed

    Chen, Jun; Fan, Xiaoxia; Zhou, Lin; Gao, Xiaogang

    2016-07-01

    Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. The aim of this work was to investigate whether treatment with geraniol (a monoterpene) attenuated NASH induced by methionine-choline-deficient (MCD) diet in rats. Rats were fed with MCD diet to induce NASH and treated with geraniol (200 mg/kg/day) for 10 weeks. Treatment with geraniol reduced histological scores, fibrosis, and apoptosis in livers, lowered activities of alanine aminotransferase and aspartate aminotransferase in serum, and attenuated hepatic fat accumulation in rats fed with MCD diet. Treatment with geraniol preserved hepatic mitochondrial function, evidenced by reduced mitochondrial reactive oxygen species formation, enhanced adenosine triphosphate formation and membrane integrity, restored mitochondrial electron transport chain enzyme activity, and increased mitochondrial DNA content in rats fed with MCD diet. Treatment with geraniol reduced uncoupling protein 2 protein expression, and enhanced protein expression of prohibitin, mRNA expression of peroxisome proliferator-activated receptor α, and activity of mitochondrial carnitine palmitoyl transferase-I in livers of rats fed with MCD diet. Treatment with geraniol abated oxidative stress, evidenced by reduced malondialdehyde and 3-nitrotyrosine formation, enhanced activity of glutathione S-epoxide transferase, and down-regulated expression of inducible nitric oxide synthase and cytochrome P450 2E1 in livers of rats fed with MCD diet. Treatment with geraniol reduced myeloperoxidase activity and protein expression of tumor necrosis factor alpha and IL-6 in livers of rats fed with MCD diet. Treatment with geraniol attenuated MCD-induced NASH in rats. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  2. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.

    PubMed

    Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S

    2017-11-01

    A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    PubMed

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  4. Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats.

    PubMed

    Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng

    2013-01-01

    Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells.

  5. Improved Mitochondrial Function Underlies the Protective Effect of Pirfenidone against Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats

    PubMed Central

    Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng

    2013-01-01

    Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells. PMID:24349535

  6. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.

    PubMed

    Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian

    2014-02-01

    Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    PubMed Central

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j.1476-5381.2010.00663.x PMID:20218980

  8. On the mechanism for PPAR agonists to enhance ABCA1 gene expression

    PubMed Central

    Ogata, Masaki; Tsujita, Maki; Hossain, Mohammad Anwar; Akita, Nobukatsu; Gonzalez, Frank J.; Staels, Bart; Suzuki, Shogo; Fukutomi, Tatsuya; Kimura, Genjiro; Yokoyama, Shinji

    2009-01-01

    Expression of ATP binding cassette transporter A1 (ABCA1), a major regulator of high density lipoprotein (HDL) biogenesis, is known to be up-regulated by the transcription factor liver X receptor (LXR) α, and expression is further enhanced by activation of the peroxisome proliferator activated receptors (PPARs). We investigated this complex regulatory network using specific PPAR agonists: four fibrates (fenofibrate, bezafibrate, gemfibrozil and LY518674), a PPAR δ agonist (GW501516) and a PPAR γ agonist (pioglitazone). All of these compounds increased the expression of LXRs, PPARs and ABCA1 mRNAs, and associated apoA-I-mediated lipid release in THP-1 macrophage, WI38 fibroblast and mouse fibroblast. When mouse fibroblasts lacking expression of PPAR α were examined, the effects of fenofibrate and LY518674 were markedly diminished while induction by other ligands were retained. The PPAR α promoter was activated by all of these compounds in an LXR α-dependent manner, and partially in a PPAR α-dependent manner, in mouse fibroblast. The LXR responsive element (LXRE)-luciferase activity was enhanced by all the compounds in an LXR α-dependent manner in mouse fibroblast. This activation was exclusively PPAR α-dependent by fenofibrate and LY518674, but nonexclusively by the others. We conclude that PPARs and LXRs are involved in the regulation of ABCA1 expression and HDL biogenesis in a cooperative signal transduction pathway. PMID:19201410

  9. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts.

    PubMed

    Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh

    2018-04-01

    The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.

  10. NIR-emitting benzothiazolium cyanines with an enhanced stokes shift for mitochondria imaging in live cells.

    PubMed

    Abeywickrama, Chathura S; Baumann, Hannah J; Alexander, Nicolas; Shriver, Leah P; Konopka, Michael; Pang, Yi

    2018-05-09

    A series of benzothiazolium-based hemicyanines (3a-3f) have been synthesized. Evaluation of their photophysical properties shows that they exhibit improved photophysical characteristics. In comparison with the available commercial MitoTrackers, the new probes revealed an enhanced Stokes shift (Δλ ∼ 80 nm) and minimized aggregation for increased sensitivity. The synthesized probes are found to exhibit excellent selectivity for mitochondrial staining in an oligodendrocyte cell line. Probes show almost no fluorescence in aqueous environments, while the fluorescence is increased by ∼10-fold in organic solvents, making it possible for mitochondrial imaging without the need for post-staining washing. Since the absorption peaks of probes are close to the laser wavelengths of 561 and 640 nm on a commercial confocal microscope, e.g.3a exhibits λabs ∼ 620 nm and λem ∼ 702 nm, they could be useful probes for mitochondrial tracking in live cells.

  11. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance

    PubMed Central

    Liu, Kun; Zhao, Qian; Liu, Pinglei; Cao, Jiani; Gong, Jiaqi; Wang, Chaoqun; Wang, Weixu; Li, Xiaoyan; Sun, Hongyan; Zhang, Chao; Li, Yufei; Jiang, Minggui; Zhu, Shaohua; Sun, Qingyuan; Jiao, Jianwei; Hu, Baoyang; Zhao, Xiaoyang; Li, Wei; Chen, Quan; Zhou, Qi; Zhao, Tongbiao

    2016-01-01

    ABSTRACT Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production.1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance. PMID:27575019

  12. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance.

    PubMed

    Liu, Kun; Zhao, Qian; Liu, Pinglei; Cao, Jiani; Gong, Jiaqi; Wang, Chaoqun; Wang, Weixu; Li, Xiaoyan; Sun, Hongyan; Zhang, Chao; Li, Yufei; Jiang, Minggui; Zhu, Shaohua; Sun, Qingyuan; Jiao, Jianwei; Hu, Baoyang; Zhao, Xiaoyang; Li, Wei; Chen, Quan; Zhou, Qi; Zhao, Tongbiao

    2016-11-01

    Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production. 1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance.

  13. [Anesthetic management for patients with mitochondrial disease].

    PubMed

    Imai, Yousuke; Yamada, Yoshitsugu

    2014-01-01

    Mitochondrial diseases are caused by a decrease in ATP production due to mutations of mitochondrial or mitochondria-related nuclear DNA. Their effects are likely to appear in tissues with a high energy demand, including skeletal muscle, nervous, and cardiovascular systems. Cardiac manifestations of mitochondrial diseases can be divided into cardiomyopathies, which are primarily hypertrophic and dilated cardiomyopathies, and electropathies, which are primarily conduction system disease and ventricular pre-excitation. The first principle of anesthesia for patients with mitochondrial diseases is to avoid any additional burden on the already declined metabolic functions. Appropriate oxygenation, minimization of the oxygen demand, stable cardiovascular management, maintenance of a normal blood glucose level and body temperature, and effective perioperative pain control are of importance. Most anesthetics have been reported to reduce mitochondrial functions, and although enhancement of the sensitivity and prolongation of the duration of action have been reported, they are clinically used with no major problems. Detailed preoperative evaluation of the disease condition and careful intraoperative monitoring are important for the prevention of perioperative complications.

  14. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review.

    PubMed

    Shin, Eun-Joo; Tran, Hai-Quyen; Nguyen, Phuong-Tram; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2018-01-01

    Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.

  15. Evaluation of the efficacy of twelve mitochondrial protein-coding genes as barcodes for mollusk DNA barcoding.

    PubMed

    Yu, Hong; Kong, Lingfeng; Li, Qi

    2016-01-01

    In this study, we evaluated the efficacy of 12 mitochondrial protein-coding genes from 238 mitochondrial genomes of 140 molluscan species as potential DNA barcodes for mollusks. Three barcoding methods (distance, monophyly and character-based methods) were used in species identification. The species recovery rates based on genetic distances for the 12 genes ranged from 70.83 to 83.33%. There were no significant differences in intra- or interspecific variability among the 12 genes. The monophyly and character-based methods provided higher resolution than the distance-based method in species delimitation. Especially in closely related taxa, the character-based method showed some advantages. The results suggested that besides the standard COI barcode, other 11 mitochondrial protein-coding genes could also be potentially used as a molecular diagnostic for molluscan species discrimination. Our results also showed that the combination of mitochondrial genes did not enhance the efficacy for species identification and a single mitochondrial gene would be fully competent.

  16. Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons.

    PubMed

    Drerup, Catherine M; Herbert, Amy L; Monk, Kelly R; Nechiporuk, Alex V

    2017-04-17

    Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10 , a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.

  17. Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria.

    PubMed

    Miyata, Non; Watanabe, Yasunori; Tamura, Yasushi; Endo, Toshiya; Kuge, Osamu

    2016-07-04

    Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2-Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria. UPS2- and MDM35-null mutations greatly attenuated conversion of PS to PE in yeast cells growing logarithmically under nonfermentable conditions, but not fermentable conditions. A recombinant Ups2-Mdm35 fusion protein exhibited phospholipid-transfer activity between liposomes in vitro. Furthermore, UPS2 expression was elevated under nonfermentable conditions and at the diauxic shift, the metabolic transition from glycolysis to oxidative phosphorylation. These results demonstrate that Ups2-Mdm35 functions as a PS transfer protein and enhances mitochondrial PE synthesis in response to the cellular metabolic state. © 2016 Miyata et al.

  18. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    PubMed

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury. Copyright © 2015 the American Physiological Society.

  19. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  20. Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling.

    PubMed

    Ruiz, Asier; Alberdi, Elena; Matute, Carlos

    2018-01-01

    Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulates mitochondrial function and oxidative stress independently of Drp1, and consequently the mechanisms through which it protects against neuronal injury are more complex than previously foreseen. In this study, we have analyzed the effects of mdivi-1 on mitochondrial dynamics, Ca 2+ signaling, mitochondrial bioenergetics and cell viability during neuronal excitotoxicity in vitro . Time-lapse fluorescence microscopy revealed that mdivi-1 blocked NMDA-induced mitochondrial fission but not that triggered by sustained AMPA receptor activation, showing that mdivi-1 inhibits excitotoxic mitochondrial fragmentation in a source specific manner. Similarly, mdivi-1 strongly reduced NMDA-triggered necrotic-like neuronal death and, to a lesser extent, AMPA-induced toxicity. Interestingly, neuroprotection provided by mdivi-1 against NMDA, but not AMPA, correlated with a reduction in cytosolic Ca 2+ ([Ca 2+ ] cyt ) overload and calpain activation indicating additional cytoprotective mechanisms. Indeed, mdivi-1 depolarized mitochondrial membrane and depleted ER Ca 2+ content, leading to attenuation of mitochondrial [Ca 2+ ] increase and enhancement of the integrated stress response (ISR) during NMDA receptor activation. Finally, lentiviral knockdown of Drp1 did not rescue NMDA-induced mitochondrial fission and toxicity, indicating that neuroprotective activity of mdivi-1 is Drp1-independent. Together, these results suggest that mdivi-1 induces a Drp1-independent protective phenotype that prevents predominantly NMDA receptor-mediated excitotoxicity through the modulation of mitochondrial function and intracellular Ca 2+ signaling.

  1. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia

    PubMed Central

    Wang, Li; Yu, Tianzheng; Lee, Hakjoo; O'Brien, Dawn K.; Sesaki, Hiromi; Yoon, Yisang

    2015-01-01

    Aims Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. Methods and results In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. Conclusions Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels. PMID:25587046

  2. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    PubMed

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    PubMed

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  4. Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance.

    PubMed

    Federico, Marilen; Portiansky, Enrique L; Sommese, Leandro; Alvarado, Francisco J; Blanco, Paula G; Zanuzzi, Carolina N; Dedman, John; Kaetzel, Marcia; Wehrens, Xander H T; Mattiazzi, Alicia; Palomeque, Julieta

    2017-06-15

    Spontaneous sarcoplasmic reticulum (SR) Ca 2+ release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca 2+ load. In HEK293 cells, hyperglycaemia significantly enhanced [ 3 H]ryanodine binding and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs. normoglycaemia. These increases were prevented by CaMKII inhibition. FRD significantly augmented cardiac apoptosis in WT vs. CD-WT mice, which was prevented by co-treatment with the reactive oxygen species scavenger Tempol. Oxidative stress was also increased in FRD-SR-autocamide inhibitory peptide (AIP) mice, expressing the SR-targeted CaMKII inhibitor AIP, without any significant enhancement of apoptosis vs. CD-SR-AIP mice. FRD produced mitochondrial swelling and membrane depolarization in FRD-WT mice but not in FRD-S2814A mice, in which the CaMKII site on ryanodine receptor 2 was ablated. FRD decreased mitochondrial area, mean Feret diameter and the mean distance between SR and the outer mitochondrial membrane vs. CD hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. The impact of cardiac apoptosis in pre-diabetic stages of diabetic cardiomyopathy is unknown. We show that myocytes from fructose-rich diet (FRD) animals exhibit arrhythmias produced by exacerbated Ca 2+ /calmodulin-protein kinase (CaMKII) activity, ryanodine receptor 2 (RyR2) phosphorylation and sarcoplasmic reticulum (SR) Ca 2+ leak. We tested the hypothesis that this mechanism also underlies cardiac apoptosis in pre-diabetes. We generated a pre-diabetic model in FRD mice. FRD mice showed an increase in oxidative stress, hypertrophy and systolic dysfunction. FRD myocytes exhibited enhanced SR Ca 2+ spontaneous events in the absence of SR Ca 2+ load alterations vs. control-diet (CD) myocytes. In HEK293 cells, hyperglycaemia significantly enhanced [ 3 H]ryanodine binding and CaMKII phosphorylation of RyR2-S2814 residue vs. normoglycaemia. CaMKII inhibition prevented hyperglycaemia-induced alterations. FRD also evoked cardiac apoptosis in WT mice vs. CD-WT mice. Co-treatment with the reactive oxygen species scavenger Tempol prevented FRD-induced apoptosis in WT mice. In contrast, FRD enhanced oxidative stress but not apoptosis in FRD-SR-AIP mice, in which a CaMKII inhibitor is targeted to the SR. FRD produced mitochondrial membrane depolarization in WT mice but not in S2814A mice, in which the CaMKII phosphorylation site on RyR2 was ablated. Furthermore, FRD decreased mitochondrial area, mean Feret diameter and mean SR-mitochondrial distance vs. CD-WT hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. CaMKII phosphorylation of RyR2, SR Ca 2+ leak and mitochondrial membrane depolarization are critically involved in the apoptotic pathway of the pre-diabetic heart. The FRD-induced decrease in SR-mitochondrial distance is likely to additionally favour Ca 2+ transit between the two organelles. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique

    PubMed Central

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065

  6. Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells*

    PubMed Central

    Baron, J. Allen; Laws, Kaitlin M.; Chen, Janice S.; Culotta, Valeria C.

    2013-01-01

    Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this “acid burst” were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress. PMID:23281478

  7. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  8. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca2+ regulation in airway smooth muscle (ASM)1

    PubMed Central

    Delmotte, Philippe; Sieck, Gary C.

    2015-01-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723

  9. Mild Hypothermia Attenuates Mitochondrial Oxidative Stress by Protecting Respiratory Enzymes and Upregulating MnSOD in a Pig Model of Cardiac Arrest

    PubMed Central

    Gong, Ping; Li, Chun-Sheng; Hua, Rong; Zhao, Hong; Tang, Zi-Ren; Mei, Xue; Zhang, Ming-Yue; Cui, Juan

    2012-01-01

    Mild hypothermia is the only effective treatment confirmed clinically to improve neurological outcomes for comatose patients with cardiac arrest. However, the underlying mechanism is not fully elucidated. In this study, our aim was to determine the effect of mild hypothermia on mitochondrial oxidative stress in the cerebral cortex. We intravascularly induced mild hypothermia (33°C), maintained this temperature for 12 h, and actively rewarmed in the inbred Chinese Wuzhishan minipigs successfully resuscitated after 8 min of untreated ventricular fibrillation. Cerebral samples were collected at 24 and 72 h following return of spontaneous circulation (ROSC). We found that mitochondrial malondialdehyde and protein carbonyl levels were significantly increased in the cerebral cortex in normothermic pigs even at 24 h after ROSC, whereas mild hypothermia attenuated this increase. Moreover, mild hypothermia attenuated the decrease in Complex I and Complex III (i.e., major sites of reactive oxygen species production) activities of the mitochondrial respiratory chain and increased antioxidant enzyme manganese superoxide dismutase (MnSOD) activity. This increase in MnSOD activity was consistent with the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein expressions, and with the increase of Nrf2 nuclear translocation in normothermic pigs at 24 and 72 h following ROSC, whereas mild hypothermia enhanced these tendencies. Thus, our findings indicate that mild hypothermia attenuates mitochondrial oxidative stress in the cerebral cortex, which may be associated with reduced impairment of mitochondrial respiratory chain enzymes, and enhancement of MnSOD activity and expression via Nrf2 activation. PMID:22532848

  10. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    PubMed

    Zoladz, Jerzy A; Koziel, Agnieszka; Broniarek, Izabela; Woyda-Ploszczyca, Andrzej M; Ogrodna, Karolina; Majerczak, Joanna; Celichowski, Jan; Szkutnik, Zbigniew; Jarmuszkiewicz, Wieslawa

    2017-01-01

    We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase (ACADS). We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  11. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity.

    PubMed

    Sun, Dongdong; Li, Shuang; Wu, Hao; Zhang, Mingming; Zhang, Xiaotian; Wei, Liping; Qin, Xing; Gao, Erhe

    2015-06-01

    Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up-regulating Bcl-2 expression and decreasing the ratio of Bax to Bcl-2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC-1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Medroxyprogesterone Acetate Antagonizes Estrogen Up-Regulation of Brain Mitochondrial Function

    PubMed Central

    Irwin, Ronald W.; Yao, Jia; Ahmed, Syeda S.; Hamilton, Ryan T.; Cadenas, Enrique

    2011-01-01

    The impact of clinical progestins used in contraception and hormone therapies on the metabolic capacity of the brain has long-term implications for neurological health in pre- and postmenopausal women. Previous analyses indicated that progesterone and 17β-estradiol (E2) sustain and enhance brain mitochondrial energy-transducing capacity. Herein we determined the impact of the clinical progestin, medroxyprogesterone acetate (MPA), on glycolysis, oxidative stress, and mitochondrial function in brain. Ovariectomized female rats were treated with MPA, E2, E2+MPA, or vehicle with ovary-intact rats serving as a positive control. MPA alone and MPA plus E2 resulted in diminished mitochondrial protein levels for pyruvate dehydrogenase, cytochrome oxidase, ATP synthase, manganese-superoxide dismutase, and peroxiredoxin V. MPA alone did not rescue the ovariectomy-induced decrease in mitochondrial bioenergetic function, whereas the coadministration of E2 and MPA exhibited moderate efficacy. However, the coadministration of MPA was detrimental to antioxidant defense, including manganese-superoxide dismutase activity/expression and peroxiredoxin V expression. Accumulated lipid peroxides were cleared by E2 treatment alone but not in combination with MPA. Furthermore, MPA abolished E2-induced enhancement of mitochondrial respiration in primary cultures of the hippocampal neurons and glia. Collectively these findings indicate that the effects of MPA differ significantly from the bioenergetic profile induced by progesterone and that, overall, MPA induced a decline in glycolytic and oxidative phosphorylation protein and activity. These preclinical findings on the basis of acute exposure to MPA raise concerns regarding neurological health after chronic use of MPA in contraceptive and hormone therapy. PMID:21159850

  13. Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.

    PubMed

    Verma, Manish; Callio, Jason; Otero, P Anthony; Sekler, Israel; Wills, Zachary P; Chu, Charleen T

    2017-11-15

    Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to development of late-onset familial Parkinson's disease (PD), with clinical features of motor and cognitive dysfunction indistinguishable from sporadic PD. Calcium dysregulation plays an important role in PD pathogenesis, but the mechanisms of neurodegeneration remain unclear. Recent reports indicate enhanced excitatory neurotransmission in cortical neurons expressing mutant LRRK2, which occurs before the well-characterized phenotype of dendritic shortening. As mitochondria play a major role in the rapid buffering of cytosolic calcium, we hypothesized that altered mitochondrial calcium handling contributes to dendritic retraction elicited by the LRRK2-G2019S and -R1441C mutations. In primary mouse cortical neurons, we observed increased depolarization-induced mitochondrial calcium uptake. We found that expression of mutant LRRK2 elicited transcriptional upregulation of the mitochondrial calcium uniporter (MCU) and the mitochondrial calcium uptake 1 protein (MICU1) with no change in levels of the mitochondrial calcium antiporter NCLX. Elevated MCU and MICU1 were also observed in LRRK2-mutated patient fibroblasts, along with increased mitochondrial calcium uptake, and in postmortem brains of sporadic PD/PDD patients of both sexes. Transcriptional upregulation of MCU and MICU1 was caused by activation of the ERK1/2 (MAPK3/1) pathway. Inhibiting ERK1/2 conferred protection against mutant LRRK2-induced neurite shortening. Pharmacological inhibitors or RNAi knockdown of MCU attenuated mitochondrial calcium uptake and dendritic/neuritic shortening elicited by mutant LRRK2, whereas expression of a constitutively active mutant of NCLX that enhances calcium export from mitochondria was neuroprotective. These data suggest that an increased susceptibility to mitochondrial calcium dysregulation contributes to dendritic injury in mutant LRRK2 pathogenesis. SIGNIFICANCE STATEMENT Cognitive dysfunction and dementia are common features of Parkinson's disease (PD), causing significant disability. Mutations in LRRK2 represent the most common known genetic cause of PD. We found that PD-linked LRRK2 mutations increased dendritic and mitochondrial calcium uptake in cortical neurons and familial PD patient fibroblasts, accompanied by increased expression of the mitochondrial calcium transporter MCU. Blocking the ERK1/2-dependent upregulation of MCU conferred protection against mutant LRRK2-elicited dendrite shortening, as did inhibiting MCU-mediated calcium import. Conversely, stimulating the export of calcium from mitochondria was also neuroprotective. These results implicate increased susceptibility to mitochondrial calcium overload in LRRK2-driven neurodegeneration, and suggest possible interventions that may slow the progression of cognitive dysfunction in PD. Copyright © 2017 the authors 0270-6474/17/3711152-15$15.00/0.

  14. Selections that isolate recombinant mitochondrial genomes in animals

    PubMed Central

    Ma, Hansong; O'Farrell, Patrick H

    2015-01-01

    Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germline and revealed somatic recombination. When the recombination partner was a diverged Drosophila melanogaster genome or a genome from a different species such as Drosophila yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome. DOI: http://dx.doi.org/10.7554/eLife.07247.001 PMID:26237110

  15. The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration.

    PubMed

    Cartoni, Romain; Norsworthy, Michael W; Bei, Fengfeng; Wang, Chen; Li, Siwei; Zhang, Yiling; Gabel, Christopher V; Schwarz, Thomas L; He, Zhigang

    2016-12-21

    Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome.

    PubMed

    Johnson, Simon C; Yanos, Melana E; Kayser, Ernst-Bernhard; Quintana, Albert; Sangesland, Maya; Castanza, Anthony; Uhde, Lauren; Hui, Jessica; Wall, Valerie Z; Gagnidze, Arni; Oh, Kelly; Wasko, Brian M; Ramos, Fresnida J; Palmiter, Richard D; Rabinovitch, Peter S; Morgan, Philip G; Sedensky, Margaret M; Kaeberlein, Matt

    2013-12-20

    Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. We found that rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, robustly enhances survival and attenuates disease progression in a mouse model of Leigh syndrome. Administration of rapamycin to these mice, which are deficient in the mitochondrial respiratory chain subunit Ndufs4 [NADH dehydrogenase (ubiquinone) Fe-S protein 4], delays onset of neurological symptoms, reduces neuroinflammation, and prevents brain lesions. Although the precise mechanism of rescue remains to be determined, rapamycin induces a metabolic shift toward amino acid catabolism and away from glycolysis, alleviating the buildup of glycolytic intermediates. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

  17. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@facult

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and inmore » hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.« less

  18. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis

    PubMed Central

    Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-01-01

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies. PMID:28455958

  19. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    PubMed

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p < 0.05). These effects were enhanced by spermine and completely negated by ruthenium red, which are known to activate and inhibit mitochondrial calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  20. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    PubMed

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  1. NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein

    PubMed Central

    Jaworska, Joanna; Coulombe, François; Downey, Jeffrey; Tzelepis, Fanny; Shalaby, Karim; Tattoli, Ivan; Berube, Julie; Rousseau, Simon; Martin, James G.; Girardin, Stephen E.; McCullers, Jonathan A.; Divangahi, Maziar

    2014-01-01

    To subvert host immunity, influenza A virus (IAV) induces early apoptosis in innate immune cells by disrupting mitochondria membrane potential via its polymerase basic protein 1-frame 2 (PB1-F2) accessory protein. Whether immune cells have mechanisms to counteract PB1-F2–mediated apoptosis is currently unknown. Herein, we define that the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 binds to viral protein PB1-F2, preventing IAV-induced macrophage apoptosis and promoting both macrophage survival and type I IFN signaling. We initially observed that Nlrx1-deficient mice infected with IAV exhibited increased pulmonary viral replication, as well as enhanced inflammatory-associated pulmonary dysfunction and morbidity. Analysis of the lungs of IAV-infected mice revealed markedly enhanced leukocyte recruitment but impaired production of type I IFN in Nlrx1−/− mice. Impaired type I IFN production and enhanced viral replication was recapitulated in Nlrx1−/− macrophages and was associated with increased mitochondrial mediated apoptosis. Through gain- and loss-of-function strategies for protein interaction, we identified that NLRX1 directly bound PB1-F2 in the mitochondria of macrophages. Using a recombinant virus lacking PB1-F2, we confirmed that deletion of PB1-F2 abrogated NLRX1-dependent macrophage type I IFN production and apoptosis. Thus, our results demonstrate that NLRX1 acts as a mitochondrial sentinel protecting macrophages from PB1-F2–induced apoptosis and preserving their antiviral function. We further propose that NLRX1 is critical for macrophage immunity against IAV infection by sensing the extent of viral replication and maintaining a protective balance between antiviral immunity and excessive inflammation within the lungs. PMID:24799673

  2. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury.

    PubMed

    Llacuna, Laura; Fernández, Anna; Montfort, Claudia Von; Matías, Núria; Martínez, Laura; Caballero, Francisco; Rimola, Antoni; Elena, Montserrat; Morales, Albert; Fernández-Checa, José C; García-Ruiz, Carmen

    2011-05-01

    Liver steatosis enhances ischemia/reperfusion (I/R) injury and is considered a primary factor in graft failure after liver transplantation. Although previous reports have shown a role for qualitative steatosis (macrovesicular vs. microvesicular) in hepatic I/R injury, no studies have compared side by side the specific contribution of individual lipids accumulating in fatty liver to I/R damage. We used nutritional and genetic models of micro and macrovesicular fatty livers exhibiting specific lipid profiles to assess their susceptibility to normothermic I/R injury. Unlike choline-deficient (CD) diet-fed mice, characterized by predominant liver triglycerides/free fatty acids (TG/FFA) accumulation, mice fed a cholesterol-enriched (HC) diet, which exhibited enhanced hepatic cholesterol loading in mitochondria, were highly sensitive to I/R-induced liver injury. In vivo two-photon confocal imaging revealed enhanced mitochondrial depolarization and generation of reactive oxygen species following hepatic I/R in HC-fed but not in CD-fed mice, consistent with decreased mitochondrial GSH (mGSH) observed in HC-fed mice. Moreover, ob/ob mice, characterized by increased hepatic TG, FFA, and cholesterol levels, were as sensitive to I/R-mediated liver injury as mice fed the HC diet. Livers from ob/ob mice displayed increased StAR expression and mitochondrial cholesterol accumulation, resulting in mGSH depletion. Interestingly, atorvastatin therapy or squalene synthase inhibition in vivo attenuated StAR overexpression, mitochondrial cholesterol loading, and mGSH depletion, protecting ob/ob mice from I/R-mediated liver injury. Cholesterol accumulation, particularly in mitochondria, sensitizes to hepatic I/R injury, and thus represents a novel target to prevent the enhanced damage of steatotic livers to I/R-mediated damage. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Calcium-dependent mitochondrial formation of species mediating DNA single strand breakage in U937 cells exposed to sublethal concentrations of tert-butylhydroperoxide.

    PubMed

    Guidarelli, A; Clementi, E; Sciorati, C; Cattabeni, F; Cantoni, O

    1997-10-01

    Treatment of U937 cells with a sublethal albeit DNA-damaging concentration of tert-butylhydroperoxide (tB-OOH) enhanced mitochondrial Ca++ uptake and ruthenium red (RR), a polycation that inhibits the calcium uniporter of mitochondria, significantly reduced the extent of DNA cleavage generated by the hydroperoxide. Release of Ca++ from the ryanodine(Ry)/caffeine(Cf)-sensitive stores further increased mitochondrial Ca++ uptake and elicited a parallel enhancement in DNA strand scission induced by tB-OOH that was prevented by both Ry and RR. DNA damage caused by tB-OOH alone or associated with either Cf or RR was prevented by iron chelators, insensitive to antioxidants and repaired with kinetics superimposable with those observed after treatment with H2O2. Cf enhanced the DNA-damaging effects of tB-OOH in permeabilized cells as well, and similar effects were observed upon addition of CaCl2. Cf did not further increase the formation of DNA lesions elicited by tB-OOH in the presence of CaCl2. The enhancing effects of Cf were prevented by RR and ryanodine, whereas those mediated by exogenous calcium were prevented only by RR. DNA strand scission caused by tB-OOH alone or associated with Cf in the permeabilized cell system was severely inhibited by ethylene glycol-bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid. The mechanism(s) whereby Ca++ promotes the mitochondrial formation of species that will ultimately result in the formation of DNA lesions was subsequently analyzed using intact as well as permeabilized cells. Hydrogen peroxide was identified to be one of these species.

  4. The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential.

    PubMed

    Li, Wei; Wen, Chaowei; Li, Weixing; Wang, Hailing; Guan, Xiaomin; Zhang, Wanlin; Ye, Wei; Lu, Jianxin

    2015-10-01

    Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.

  5. Mitochondrial metabolic reprogramming induced by calorie restriction.

    PubMed

    Martin-Montalvo, Alejandro; de Cabo, Rafael

    2013-07-20

    Calorie restriction (CR) is a known intervention that delays most aging processes. Most of the beneficial effects of CR are mediated by improved maintenance of mitochondrial performance in aged individuals. The control of mitochondrial biogenesis, apoptosis, and protein turnover is required for healthy aging. CR is able to induce molecular mechanisms that preserve oxidative capacity and decrease oxidative damage. Published data indicate that peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is activated in old animals under CR conditions compared to ad libitum counterparts, enhancing mitochondrial biogenesis. Molecular regulation of PGC-1α has recently attracted significant research interest. We discuss the master regulators of energy metabolism such as AMP-activated protein kinase and sirtuin 1 among others that have been demonstrated to activate mitochondrial biogenesis through increased PGC-1α activity at transcriptional and post-translational levels. Additionally, we describe the latest findings that explain how CR promotes mitochondrial efficiency and decreases mitochondrial-derived oxidative damage. Understanding the beneficial mitochondrial changes conferred by CR will aid design of therapies for age-related diseases and help slow the aging process. Given the difficulty for humans to adhere to CR, we also explore new molecules that have been proposed during the last years to mimic the CR phenotype and their potential as future therapeutics.

  6. Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes.

    PubMed

    Ha, Byung Geun; Moon, Deok-Soo; Kim, Hyeon Ju; Shon, Yun Hee

    2016-10-01

    Recent studies showed that deficiencies of essential minerals including Mg, Ca, and K, and trace minerals including Se, Zn, and V, have implications for the development, prevention, and treatment of several chronic diseases including obesity and type 2 diabetes. Our previous studies revealed that balanced deep-sea water (BDSW), which is composed of desalinated water enriched with Mg and Ca, has potential as a treatment for diabetes and obesity. In this study, to determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, expression of key transcription factors and mitochondria-specific genes, phosphorylation of signaling molecules associated with mitochondrial biogenesis, and mitochondrial function in 3T3-L1 preadipocytes. BDSW increased mitochondrial biogenesis in a dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances expression of PGC1-α, NRF1, and TFAM genes. Upregulation of these genes was supported by increased mitochondria staining, CytC oxidase activity, and AMPK phosphorylation. The stimulatory effect of BDSW on mitochondrial biogenesis and function suggests a novel mechanism for BDSW-induced anti-diabetic and anti-obesity action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function.

    PubMed

    Horvath, Tamas L; Erion, Derek M; Elsworth, John D; Roth, Robert H; Shulman, Gerald I; Andrews, Zane B

    2011-07-01

    Guanidinopropionic acid (GPA) increases AMPK activity, mitochondrial function and biogenesis in muscle and improves physiological function, for example during aging. Mitochondrial dysfunction is a major contributor to the pathogenesis of Parkinson's disease. Here we tested whether GPA prevents neurodegeneration of the nigrostriatal dopamine system in MPTP-treated mice. Mice were fed a diet of 1% GPA or normal chow for 4 weeks and then treated with either MPTP or saline. Indices of nigrostriatal function were examined by HPLC, immunohistochemistry, stereology, electron microscopy and mitochondrial respiration. MPTP intoxication decreased TH neurons in the SNpc of normal chow-fed mice; however GPA-fed mice remarkably exhibited no loss of TH neurons in the SNpc. MPTP caused a decrease in striatal dopamine of both normal chow- and GPA-fed mice, although this effect was significantly attenuated in GPA-fed mice. GPA-fed mice showed increased AMPK activity, mitochondrial respiration and mitochondrial number in nigrostriatal TH neurons, suggesting that the neuroprotective effects of GPA involved AMPK-dependent increases in mitochondrial function and biogenesis. MPTP treatment produced a decrease in mitochondrial number and volume in normal chow-fed mice but not GPA-fed mice. Our results show the neuroprotective properties of GPA in a mouse model of Parkinson's disease are partially mediated by AMPK and mitochondrial function. Mitochondrial dysfunction is a common problem in neurodegeneration and thus GPA may slow disease progression in other models of neurodegeneration. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle.

    PubMed

    Leo, Sara; Szabadkai, György; Rizzuto, Rosario

    2008-12-01

    Mitochondrial reactive oxygen species (ROS) production is recognized as a major pathogenic event in a number of human diseases, and mitochondrial scavenging of ROS appears a promising therapeutic approach. Recently, two mitochondrial antioxidants have been developed; conjugating alpha-tocopherol and the ubiquinol moiety of coenzyme Q to the lipophilic triphenylphosphonium cation (TPP+), denominated MitoE(2) and MitoQ(10), respectively. We have investigated the effect of these compounds on mitochondrial Ca(2+) homeostasis, which controls processes as diverse as activation of mitochondrial dehydrogenases and pro-apoptotic morphological changes of the organelle. We demonstrate that treatment of HeLa cells with both MitoE(2) and MitoQ(10) induces (albeit with different efficacy) a major enhancement of the increase in matrix Ca(2+) concentration triggered by cell stimulation with the inositol 1,4,5-trisphosphate-generating agonist histamine. The effect is a result of the inhibition of Ca(2+) efflux from the organelle and depends on the TPP+ moiety of these compounds. Overall, the data identify an effect independent of their antioxidant activity, that on the one hand may be useful in addressing disorders in which mitochondrial Ca(2+) handling is impaired (e.g., mitochondrial diseases) and on the other may favor mitochondrial Ca(2+) overload and thus increase cell sensitivity to apoptosis (thus possibly counteracting the benefits of the antioxidant activity).

  9. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract:more » Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor {alpha} (TNF{alpha}) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.« less

  10. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health

    PubMed Central

    Villamena, Frederick A.

    2018-01-01

    Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations. PMID:29607218

  11. Respiromics - An integrative analysis linking mitochondrial bioenergetics to molecular signatures.

    PubMed

    Walheim, Ellen; Wiśniewski, Jacek R; Jastroch, Martin

    2018-03-01

    Energy metabolism is challenged upon nutrient stress, eventually leading to a variety of metabolic diseases that represent a major global health burden. Here, we combine quantitative mitochondrial respirometry (Seahorse technology) and proteomics (LC-MS/MS-based total protein approach) to understand how molecular changes translate to changes in mitochondrial energy transduction during diet-induced obesity (DIO) in the liver. The integrative analysis reveals that significantly increased palmitoyl-carnitine respiration is supported by an array of proteins enriching lipid metabolism pathways. Upstream of the respiratory chain, the increased capacity for ATP synthesis during DIO associates strongest to mitochondrial uptake of pyruvate, which is routed towards carboxylation. At the respiratory chain, robust increases of complex I are uncovered by cumulative analysis of single subunit concentrations. Specifically, nuclear-encoded accessory subunits, but not mitochondrial-encoded or core units, appear to be permissive for enhanced lipid oxidation. Our integrative analysis, that we dubbed "respiromics", represents an effective tool to link molecular changes to functional mechanisms in liver energy metabolism, and, more generally, can be applied for mitochondrial analysis in a variety of metabolic and mitochondrial disease models. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    PubMed Central

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  13. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    PubMed Central

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  14. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    PubMed

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.

  15. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease.

    PubMed

    Wiegman, Coen H; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J; Russell, Kirsty E; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P; Kirkham, Paul A; Chung, Kian Fan; Adcock, Ian M

    2015-09-01

    Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology. We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β-induced ASM cell proliferation and CXCL8 release. Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    PubMed Central

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  17. Peroxisome Proliferator-Activated Receptor (PPAR) γ and PPARα Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?

    PubMed Central

    Zolezzi, Juan M.; Silva-Alvarez, Carmen; Ordenes, Daniela; Godoy, Juan A.; Carvajal, Francisco J.; Santos, Manuel J.; Inestrosa, Nibaldo C.

    2013-01-01

    Recent studies showed that the activation of the retinoid X receptor, which dimerizes with peroxisome proliferator-activated receptors (PPARs), leads to an enhanced clearance of Aβ from the brain of transgenic mice model of Alzheimer’s disease (AD), because an increased expression of apolipoprotein E and it main transporters. However, the effects observed must involve additional underlying mechanisms that have not been yet explored. Several studies conducted in our laboratory suggest that part of the effects observed for the PPARs agonist might involves mitochondrial function and, particularly, mitochondrial dynamics. In the present study we assessed the effects of oxidative stress challenge on mitochondrial morphology and mitochondrial dynamics-related proteins in hippocampal neurons. Using immunofluorescence, we evaluated the PPARγ co-activator 1α (PGC-1α), dynamin related protein 1 (DRP1), mitochondrial fission protein 1 (FIS1), and mitochondrial length, in order to determine if PPARs agonist pre-treatment is able to protect mitochondrial population from hippocampal neurons through modulation of the mitochondrial fusion-fission events. Our results suggest that both a PPARγ agonist (ciglitazone) and a PPARα agonist (WY 14.643) are able to protect neurons by modulating mitochondrial fusion and fission, leading to a better response of neurons to oxidative stress, suggesting that a PPAR based therapy could acts simultaneously in different cellular components. Additionally, our results suggest that PGC-1α and mitochondrial dynamics should be further studied in future therapy research oriented to ameliorate neurodegenerative disorders, such as AD. PMID:23675519

  18. Dietary Supplementation with Pioglitazone Hydrochloride and Chromium Methionine Improves Growth Performance, Meat Quality, and Antioxidant Ability in Finishing Pigs.

    PubMed

    Jin, Cheng-Long; Wang, Qiang; Zhang, Zong-Ming; Xu, Yin-Long; Yan, Hui-Chao; Li, Hai-Chang; Gao, Chun-Qi; Wang, Xiu-Qi

    2018-05-02

    This work was designed to investigate the synergistic effects of pioglitazone hydrochloride (PGZ) and chromium methionine (CrMet) on meat quality, muscle fatty acid profile, and antioxidant ability of pigs. Pigs in four groups were fed a basic diet or basic diet supplemented with 15 mg/kg of PGZ, 200 μg/kg of CrMet, or 15 mg/kg of PGZ + 200 μg/kg of CrMet. In comparison to the control group, the average daily feed intake, feed/gain ratio, and serum high-density lipoprotein level decreased in the PGZ + CrMet group. Dietary PGZ + CrMet supplementation increased carcass dressing percentage, intramuscular fat, and marbling score. The percentages of C18:1ω-9c, C18:2ω-6c, C18:3ω-3, and polyunsaturated fatty acid (PUFA) in the longissimus thoracis muscle were increased in the PGZ + CrMet group. Greater superoxide dismutase and glutathione peroxidase activities were observed in the PGZ + CrMet group compared to the control group. Collectively, these findings suggested that feed with PGZ and CrMet improved the growth performance and meat quality, especially for PUFA proportions and antioxidant ability.

  19. Altered expression of prohibitin in psoriatic lesions and its cellular implication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soon Young; Kim, Younghwa; Hwang, Ha Young

    2007-08-31

    Psoriasis is characterized by excessive proliferation of keratinocytes accompanying acanthosis and incomplete differentiation. Prohibitin was investigated by examining its function of HaCaT as well as psoriasis. Psoriatic involved skin revealed high level of prohibitin in the basal layer. Prohibitin was analyzed by applying RNAi (PHBi) with HaCaT, which demonstrated increased S-phase. PHBi showed enhanced sensitivity to anthralin-mediated cell death due to enhanced loss of mitochondrial membrane potential, suggesting a protective role of prohibitin against apoptosis. Collectively, prohibitin plays a role both in cell cycle regulation and in maintaining mitochondrial integrity, implying its association with pathogenesis of psoriasis.

  20. Amyloid is essential but insufficient for Alzheimer causation: addition of subcellular cofactors is required for dementia.

    PubMed

    Fessel, Jeffrey

    2018-01-01

    The aim of this study is to examine the hypotheses stating the importance of amyloid or of its oligomers in the pathogenesis of Alzheimer's disease (AD). Published studies were examined. The importance of amyloid in the pathogenesis of AD is well established, yet accepting it as the main cause for AD is problematic, because amyloid-centric treatments have provided no clinical benefit and about one-third of cognitively normal, older persons have cerebral amyloid plaques. Also problematic is the alternative hypothesis that, instead of amyloid plaques, it is oligomers of amyloid precursor protein that cause AD.Evidence is presented suggesting amyloid/oligomers as necessary but insufficient causes of the dementia and that, for dementia to develop, requires the addition of cofactors known to be associated with AD. Those cofactors include several subcellular processes: mitochondrial impairments; the Wnt signaling system; the unfolded protein response; the ubiquitin proteasome system; the Notch signaling system; and tau, calcium, and oxidative damage. A modified amyloid/oligomer hypothesis for the pathogenesis of AD is that activation of one or more of the aforementioned cofactors creates a burden of functional impairments that, in conjunction with amyloid/oligomers, now crosses a threshold of dysfunction that results in clinical dementia. Of considerable importance, several treatments that might reverse the activation of some of the subcellular processes are available, for example, lithium, pioglitazone, erythropoietin, and prazosin; they should be given in combination in a clinical trial to test their safety and efficacy. © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Hepatitis B Virus X protein elevates Parkin-mediated mitophagy through Lon Peptidase in starvation.

    PubMed

    Huang, Xiao-Yun; Li, Dan; Chen, Zhi-Xin; Huang, Yue-Hong; Gao, Wen-Yu; Zheng, Bi-Yun; Wang, Xiao-Zhong

    2018-07-01

    Hepatocellular Carcinoma (HCC) is the fifth most prevalent cancer worldwide. Specially, Hepatitis B viurs X protein (HBx) is a leading factor in the progression of Hepatitis B viurs-related HCC. Nutrient-deprived tumor microenvironment also contributes to tumor development. However, the role of HBx in nutrient-deprived HCC has received little investigation. Here, we show that HBx elevates PINK1-Parkin mediating mitophagy in starvation. HBx not only increases the PINK1/Parkin gene expression but also accelerates Parkin recruitment to partial mitochondria. Further analysis indicates that, HBx either promotes mitochondrial unfolded protein response, with remarkable mitochondrial LONP1 increases, or reduces LONP1 expression in cytosol inducing LONP1-Parkin pathway, both consequently enhancing mitophagy. Moreover, the enhanced mitophagy lowers mitochondrial apoptosis in starved hepatoma cells, and Bax is implied in the machinery. In addition, we define differential centrifuge, 3000 g or 12,000 g to pellet mitochondria, as an effective method to obtain distinct mitochondria. In collect, HBx regulates diverse aspects of LONP1 and Parkin, enhancing mitophagy in starvation. This study may shed new insights into the machinery development of hepatocellular carcinoma. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  3. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    PubMed Central

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  5. DLP1-Dependent Mitochondrial Fragmentation Mediates 1-methyl-4-phenylpyridinium Toxicity in Neurons: Implications for Parkinson's Disease

    PubMed Central

    Wang, Xinglong; Su, Bo; Liu, Wanhong; He, Xiaohua; Gao, Yuan; Castellani, Rudy J.; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2011-01-01

    SUMMARY Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson disease (PD) can be modeled by the administration of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Since abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH-SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+-induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+-induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+-induced toxicity. On the other hand, thiol antioxidant NAC or glutamate receptor antagonist D-AP5 also partially alleviate MPP+-induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+-induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μM MPP+ induced mitochondrial fragmentation only in TH-positive dopaminergic neurons in a similar pattern to that in SH-SY5Y cells but had no effects on these mitochondrial parameters in TH-negative neurons. Overall, these findings suggest that DLP1-dependent mitochondrial fragmentation plays a crucial role in mediating MPP+-induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD. PMID:21615675

  6. Complex IV Deficient Surf1−/− Mice Initiate Mitochondrial Stress Responses

    PubMed Central

    Pulliam, Daniel A.; Deepa, Sathyaseelan S.; Liu, Yuhong; Hill, Shauna; Lin, Ai-Ling; Bhattacharya, Arunabh; Shi, Yun; Sloane, Lauren; Viscomi, Carlo; Zeviani, Massimo; Van Remmen, Holly

    2014-01-01

    Summary Mutations in SURF1 cytochrome c oxidase (COX) assembly protein are associated with Leigh’s syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the Surf1 protein (Surf1−/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in reactive oxygen species (ROS) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared to wild-type. However, blood lactate levels are elevated and Surf1−/− mice have reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo. Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis (PGC-1α and VDAC) in both heart and skeletal muscle. While mitochondrial biogenesis is a common response in the two tissues, skeletal muscle have an up-regulation of the mitochondrial unfolded protein response (UPRMT) and heart exhibits induction of the Nrf2 antioxidant response pathway. These data are the first to report induction of the UPRMT in a mammalian model of diminished COX activity. In addition our results suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homeostasis. Loss of complex IV assembly factor Surf1 in mice results in compensatory responses including mitochondrial biogenesis, the nrf2 pathway and the mitochondrial unfolded protein response. This compensatory response may contribute to the lack of deleterious phenotypes under basal conditions. PMID:24911525

  7. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation*

    PubMed Central

    Agarwal, Swati; Yadav, Anuradha; Tiwari, Shashi Kant; Seth, Brashket; Chauhan, Lalit Kumar Singh; Khare, Puneet; Ray, Ratan Singh

    2016-01-01

    The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and neurodegeneration in the hippocampus. PMID:27252377

  8. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity.

    PubMed

    Tsai, Han-Zen; Lin, Ren-Kuo; Hsieh, Tao-Shih

    2016-04-12

    Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.

  9. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    NASA Astrophysics Data System (ADS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-08-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  10. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} productionmore » by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.« less

  11. Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells.

    PubMed

    Ma, Yan-Mei; Ibeanu, Gordon; Wang, Li-Yao; Zhang, Jian-Zhong; Chang, Yue; Dong, Jian-Da; Li, P Andy; Jing, Li

    2017-01-19

    Previous studies have indicated that selenium supplementation may be beneficial in neuroprotection against glutamate-induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. However, the exact mechanisms by which selenium protects against glutamate-provoked mitochondrial perturbation remain ambiguous. In this study glutamate exposed murine hippocampal neuronal HT22 cell was used as a model to investigate the underlying mechanisms of selenium-dependent protection against mitochondria damage. We find that glutamate-induced cytotoxicity was associated with enhancement of superoxide production, activation of caspase-9 and -3, increases of mitochondrial fission marker and mitochondrial morphological changes. Selenium significantly resolved the glutamate-induced mitochondria structural damage, alleviated oxidative stress, decreased Apaf-1, caspases-9 and -3 contents, and altered the autophagy process as observed by a decline in the ratio of the autophagy markers LC3-I and LC3-II. These findings suggest that the protection of selenium against glutamate stimulated cell damage of HT22 cells is associated with amelioration of mitochondrial dynamic imbalance.

  12. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  13. Control mechanisms in mitochondrial oxidative phosphorylation☆

    PubMed Central

    Hroudová, Jana; Fišar, Zdeněk

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production. PMID:25206677

  14. Control mechanisms in mitochondrial oxidative phosphorylation.

    PubMed

    Hroudová, Jana; Fišar, Zdeněk

    2013-02-05

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism-firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  15. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    PubMed

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    PubMed Central

    Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo

    2018-01-01

    The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708

  17. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-09

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.

  19. Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan

    2011-03-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.

  20. The Cytomegalovirus protein pUL37×1 targets mitochondria to mediate neuroprotection

    PubMed Central

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.

    2016-01-01

    There is substantial evidence that mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson disease (PD). This contribution probably encompasses defects of oxidative phosphorylation, mitochondrial turnover (mitophagy), mitochondrial derived oxidative stress, and apoptotic signalling. Human cytomegalovirus immediate-early protein pUL37 × 1 induces Bax mitochondrial translocation and inactivation to prevent apoptosis. Over-expressing pUL37 × 1 in neuronal cells protects against staurosporin and 6-hydroxydopamine induced apoptosis and cell death. Protection is not enhanced by bax silencing in pUL37 × 1 over-expressing cells, suggesting a bax-dependent mechanism of action. pUL37 × 1 increases glycolysis and induces mitochondrial hyperpolarization, a bax independent anti-apoptotic action. pUL37 × 1 increases glycolysis through activation of phosphofructokinase by a calcium-dependent pathway. The dual anti-apoptotic mechanism of pUL37 × 1 may be considered a novel neuroprotective strategy in diseases where mitochondrial dysfunction and apoptotic pathways are involved. PMID:27562039

  1. RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger.

    PubMed

    Gomaa, Ola M; Selim, Nabila S; Wee, Josephine; Linz, John E

    2017-08-01

    Aspergillus niger was previously demonstrated to decolorize the commercial dye malachite green (MG) and this process was enhanced under calcium chloride (CaCl 2 ) treatment. Previous data also suggested that the decolorization process is related to mitochondrial cytochrome c. In the current work, we analyzed in depth the specific relationship between CaCl 2 treatment and MG decolorization. Gene expression analysis (RNA Seq) using Next Generation Sequencing (NGS) revealed up-regulation of 28 genes that are directly or indirectly associated with stress response functions as early as 30min of CaCl 2 treatment; these data further strengthen our previous findings that CaCl 2 treatment induces a stress response in A. niger which enhances the ability to decolorize MG. A significant increase in fluorescence observed by MitoTracker dye suggests that CaCl 2 treatment also increased mitochondrial membrane potential. Isolated mitochondrial membrane protein fractions obtained from A. niger grown under standard growth conditions decolorized MG in the presence of NADH and decolorization was enhanced in samples isolated from CaCl 2 -treated A. niger cultures. Treatment of whole mitochondrial fraction with KCN which inhibits electron transport by cytochrome c oxidase and Triton-X 100 which disrupts mitochondrial membrane integrity suggests that cyanide sensitive cytochrome c oxidase activity is a key biochemical step in MG decolorization. This suggestion was confirmed by the addition of palladium α-lipoic acid complex (PLAC) which resulted in an initial increase in decolorization. Although the role of cytochrome c and cytochrome c oxidase was confirmed at the biochemical level, changes in levels of transcripts encoding these enzymes after CaCl 2 treatment were not found to be statistically significant in RNA Seq analysis. These data suggest that the regulation of cytochrome c enzymes occur predominantly at the post-transcriptional level under CaCl 2 stress. Thus, using global transcriptomics and biochemical approaches, our study provides a molecular association between fungal mitochondrial electron transfer systems and MG decolorization. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    PubMed Central

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  3. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart

    PubMed Central

    Rasmussen, Tyler P.; Wu, Yuejin; Joiner, Mei-ling A.; Koval, Olha M.; Wilson, Nicholas R.; Luczak, Elizabeth D.; Wang, Qinchuan; Chen, Biyi; Gao, Zhan; Zhu, Zhiyong; Wagner, Brett A.; Soto, Jamie; McCormick, Michael L.; Kutschke, William; Weiss, Robert M.; Yu, Liping; Boudreau, Ryan L.; Abel, E. Dale; Zhan, Fenghuang; Spitz, Douglas R.; Buettner, Garry R.; Song, Long-Sheng; Zingman, Leonid V.; Anderson, Mark E.

    2015-01-01

    Myocardial mitochondrial Ca2+ entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca2+ are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca2+ uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca2+ entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU–permeabilized myocardial fibers or isolated mitochondria in low Ca2+ were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca2+ homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca2+] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca2+ homeostasis. Mitochondrial Ca2+ overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca2+ homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury. PMID:26153425

  4. Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II*

    PubMed Central

    Dong, Lan-Feng; Jameson, Victoria J. A.; Tilly, David; Cerny, Jiri; Mahdavian, Elahe; Marín-Hernández, Alvaro; Hernández-Esquivel, Luz; Rodríguez-Enríquez, Sara; Stursa, Jan; Witting, Paul K.; Stantic, Bela; Rohlena, Jakub; Truksa, Jaroslav; Kluckova, Katarina; Dyason, Jeffrey C.; Ledvina, Miroslav; Salvatore, Brian A.; Moreno-Sánchez, Rafael; Coster, Mark J.; Ralph, Stephen J.; Smith, Robin A. J.; Neuzil, Jiri

    2011-01-01

    Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC50 of 80 μm, whereas the electron transfer from CII to CIII was inhibited with IC50 of 1.5 μm. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser68 within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug. PMID:21059645

  5. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    PubMed

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  6. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells.

    PubMed

    He, Guodong; Feng, Chen; Vinothkumar, Rajamanickam; Chen, Weiqian; Dai, Xuanxuan; Chen, Xi; Ye, Qingqing; Qiu, Chenyu; Zhou, Huiping; Wang, Yi; Liang, Guang; Xie, Yubo; Wu, Wei

    2016-12-01

    Colorectal cancer is the most commonly diagnosed malignancy with high mortality rates worldwide. Improved therapeutic strategies with minimal adverse side effects are urgently needed. In this study, the anti-tumor effects of EF24, a novel analog of the natural compound curcumin, were evaluated in colorectal cancer cells. The anti-tumor activity of EF24 on human colon cancer lines (HCT-116, SW-620, and HT-29) was determined by measures of cell cycle arrest, apoptosis, and mitochondrial function. The contribution of ROS in the EF24-induced anti-tumor activity was evaluated by measures of H 2 O 2 and pretreatment with an ROS scavenger, NAC. The findings indicated that EF24 treatment dose-dependently inhibited cell viability and caused cell cycle arrest at G2/M phase in all the tested colon cancer cell lines. Furthermore, we demonstrated that EF24 treatment induced apoptosis effectively via enhancing intracellular accumulation of ROS in both HCT-116 and SW-620 cells, but with moderate effects in HT-29 cells. We found that EF24 treatment decreased the mitochondrial membrane potential in the colon cancer cells, leading to the release of mitochondrial cytochrome c. Also, EF24 induced activation of caspases 9 and 3, causing decreased Bcl-2 protein expression and Bcl-2/Bax ratio. Pretreatment with NAC, a ROS scavenger, abrogated the EF24-induced cell death, apoptosis, cell cycle arrest, and mitochondrial dysfunction, suggesting an upstream ROS generation which was responsible for the anticancer effects of EF24. Our findings support an anticancer mechanism by which EF24 enhanced ROS accumulation in colon cancer cells, thereby resulting in mitochondrial membrane collapse and activated intrinsic apoptotic signaling. Thus, EF24 could be a potential candidate for therapeutic application of colon cancer.

  7. Geraniol, Alone and in Combination with Pioglitazone, Ameliorates Fructose-Induced Metabolic Syndrome in Rats via the Modulation of Both Inflammatory and Oxidative Stress Status

    PubMed Central

    Ibrahim, Sherehan M.; El- Denshary, Ezzedin S.; Abdallah, Dalaal M.

    2015-01-01

    Geraniol (GO) potent antitumor and chemopreventive effects are attributed to its antioxidant and anti-inflammatory properties. In the current study, the potential efficacy of GO (250 mg/kg) in ameliorating metabolic syndrome (MetS) induced by fructose in drinking water was elucidated. Moreover, the effect of pioglitazone (5 and 10 mg/kg; PIO) and the possible interaction of the co-treatment of GO with PIO5 were studied in the MetS model. After 4 weeks of treatment, GO and/or PIO reduced the fasting blood glucose and the glycemic excursion in the intraperitoneal glucose tolerance test. GO and PIO5/10 restrained visceral adiposity and partly the body weight gain. The decreased level of peroxisome proliferator activated receptor (PPAR)-γ transcriptional activity in the visceral adipose tissue of MetS rats was increased by single treatment regimens. Though GO did not affect MetS-induced hyperinsulinemia, PIO5/10 lowered it. Additionally, GO and PIO5/10 suppressed glycated hemoglobin and the receptor for advanced glycated end products (RAGE). These single regimens also ameliorated hyperuricemia, the disrupted lipid profile, and the elevated systolic blood pressure evoked by MetS. The rise in serum transaminases, interleukin-1β, and tumor necrosis factor-α, as well as hepatic lipid peroxides and nitric oxide (NO) was lowered by the single treatments to different extents. Moreover, hepatic non-protein thiols, as well as serum NO and adiponectin were enhanced by single regimens. Similar effects were reached by the combination of GO with PIO5; however, a potentiative interaction was noted on fasting serum insulin level, while synergistic effects were reflected as improved insulin sensitivity, as well as reduced RAGE and triglycerides. Therefore, GO via the transcriptional activation of PPAR-γ reduces inflammation and free radical injury produced by MetS. Thereby, these effects provide novel mechanistic insights on GO management of MetS associated critical risk factors. Moreover, the co-administration of GO to PIO5 exalted the antidiabetic drug anti-MetS efficacy. PMID:25679220

  8. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis

    PubMed Central

    Matyas, Csaba; Varga, Zoltan V.; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T.; Nan, Mintong; Hasko, Gyorgy; Gao, Bin

    2016-01-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. PMID:27106042

  9. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    PubMed

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. Copyright © 2016 the American Physiological Society.

  10. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-04-01

    Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m 2 ; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes ( PEXs ) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1- 14 C]palmitic acid and [1- 14 C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1 ) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated ( P < 0.05), 2 ) PGC-1α , PMP70 , key PEXs , and peroxisomal β-oxidation mRNA expression levels were significantly upregulated ( P < 0.05), and 3 ) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed ( P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells. Copyright © 2017 the American Physiological Society.

  11. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the midgut is necessary for the maintenance of midgut health as reflected in energy homeostasis and tissue repair and renewal. PMID:23468624

  12. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling

    PubMed Central

    Karpinska, Barbara; Alomrani, Sarah Owdah

    2017-01-01

    Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808105

  13. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal activity leads to the altered transport of mitochondria and their positioning at synapses dependent on a key mitochondrial trafficking protein called Miro1. We also show that, the control of mitochondrial movement and stopping by Miro plays an important role in regulating astrocyte calcium responses. Thus the regulation of intracellular calcium signaling, by Miro-mediated mitochondrial positioning, could have important consequences for astrocyte signaling and neuron–glial interactions. PMID:26631479

  14. Downregulation of a mitochondria associated protein SLP-2 inhibits tumor cell motility, proliferation and enhances cell sensitivity to chemotherapeutic reagents.

    PubMed

    Wang, Yueqi; Cao, Wenfeng; Yu, Zaicheng; Liu, Zhihua

    2009-09-01

    Results from tissue microarray in this study and our previous reports revealed that stomatin-like protein 2 (SLP-2) is notably associated with tumorigenesis and metastasis. Many members of stomatin family are involved in tumor as mitochondrial component, and recent study has revealed that SLP-2 may also function in mitochondria. To further investigate the function of SLP-2, we used siRNA target SLP-2. Data showed that knock-down of SLP-2 potently inhibited cell motility, proliferation and slightly altered cell cycle without any significant change of apoptosis. Moreover, by combined application with different chemotherapeutic reagents, we observed the enhancement of cell chemosensitivity by SLP-2 depletion. We also confirmed that, SLP-2 localizes in mitochondria, affects mitochondrial membrane potential (MMP) and ATP production. We conclude that, SLP-2 is a mitochondrial protein and therefore, functions in energy process by MMP maintenance, and subsequently affecting cell motility, proliferation and chemosensitivity.

  15. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    PubMed

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl{sub 4} intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.« less

  17. Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice

    PubMed Central

    Miwa, Satomi; Jow, Howsun; Baty, Karen; Johnson, Amy; Czapiewski, Rafal; Saretzki, Gabriele; Treumann, Achim; von Zglinicki, Thomas

    2014-01-01

    Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. PMID:24815183

  18. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair

    PubMed Central

    Xu, Suhong; Chisholm, Andrew D.

    2014-01-01

    SUMMARY Reactive oxygen species (ROS) such as hydrogen peroxide are generated at wound sites and act as long-range signals in wound healing. The roles of other ROS in wound repair are little explored. Here we reveal a cytoprotective role for mitochondrial ROS (mtROS) in C. elegans skin wound healing. We show that skin wounding causes local production of mtROS superoxide at the wound site. Inhibition of mtROS levels by mitochondrial superoxide-specific antioxidants blocks actin-based wound closure, whereas elevation of mtROS promotes wound closure and enhances survival of mutant animals defective in wound healing. mtROS act downstream of wound-triggered Ca2+ influx. We find that the Mitochondrial Calcium Uniporter MCU-1 is essential for rapid mitochondrial Ca2+ uptake and mtROS production after wounding. mtROS can promote wound closure by local inhibition of Rho GTPase activity via a redox-sensitive motif. These findings delineate a pathway acting via mtROS that promotes cytoskeletal responses in wound healing. PMID:25313960

  19. α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

    PubMed Central

    Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J

    2014-01-01

    The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809

  20. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  1. Mitochondrial Dysregulation and Protection in Cisplatin Nephrotoxicity

    PubMed Central

    Yang, Yuan; Liu, Hong; Liu, Fuyou; Dong, Zheng

    2014-01-01

    Nephrotoxicity is a major side effect of cisplatin in chemotherapy. Pathologically, cisplatin nephrotoxicity is characterized by cell injury and death in renal tubules. The research in the past decade has gained significant understanding of the cellular and molecular mechanisms of tubular cell death, revealing a central role of mitochondrial dysregulation. The pathological changes of mitochondria in cisplatin nephrotoxicity are mainly triggered by DNA damage response, pro-apoptotic protein attack, disruption of mitochondrial dynamics, and oxidative stress. As such, inhibitory strategies targeting these cytotoxic events may provide renal protection. Nonetheless, ideal approaches for renoprotection should not only protect kidneys but also enhance the anti-cancer efficacy of cisplatin in chemotherapy. PMID:24859930

  2. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  3. Induction of Mitochondrial Dysfunction and Oxidative Damage by Antibiotic Drug Doxycycline Enhances the Responsiveness of Glioblastoma to Chemotherapy

    PubMed Central

    Tan, Qian; Yan, Xiaoqiong; Song, Lin; Yi, Hongxiang; Li, Ping; Sun, Guobin; Yu, Danfang; Li, Le; Zeng, Zheng; Guo, Zhenli

    2017-01-01

    Background Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment. Material/Methods The effects of doxycycline on the growth, survival, and mitochondrial metabolisms of glioblastoma were investigated. The efficacy of a combination of doxycycline with temozolomide was examined using xenograft mouse model in total number of 40 mice. Results Doxycycline targeted glioblastoma cell lines, regardless of their origin, through inhibiting growth and inducing cell death, accompanied by a significant decrease in proliferating cell nuclear antigen (PCNA) and increase in cleaved caspase-3. In addition, doxycycline significantly sensitized glioblastoma cell response to temozolomide in vitro and in vivo. Mechanistically, doxycycline disrupted mitochondrial functions through decreasing mitochondrial membrane potential and mitochondrial respiration. Inducing mitochondrial dysfunctions by using doxycycline led to energy crisis, oxidative stress, and damage as shown by the decreased levels of ATP and the elevated levels of mitochondrial superoxide, intracellular ROS, 8-OHdG, protein carbonylation, and lipid peroxidation. An antioxidant N-acetyl-L-cysteine (NAC) significantly abolished the anti-proliferative and pro-apoptotic effects of doxycycline, demonstrating that doxycycline acts on glioblastoma via inducing oxidative stress. Conclusions In our study, we show that the antibiotic doxycycline is effective in targeting glioblastoma through inducing mitochondrial dysfunctions and oxidative stress. Our work also demonstrated the importance of mitochondrial metabolism in glioblastoma. PMID:28842551

  4. Induction of Mitochondrial Dysfunction and Oxidative Damage by Antibiotic Drug Doxycycline Enhances the Responsiveness of Glioblastoma to Chemotherapy.

    PubMed

    Tan, Qian; Yan, Xiaoqiong; Song, Lin; Yi, Hongxiang; Li, Ping; Sun, Guobin; Yu, Danfang; Li, Le; Zeng, Zheng; Guo, Zhenlin

    2017-08-26

    BACKGROUND Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment. MATERIAL AND METHODS The effects of doxycycline on the growth, survival, and mitochondrial metabolisms of glioblastoma were investigated. The efficacy of a combination of doxycycline with temozolomide was examined using xenograft mouse model in total number of 40 mice. RESULTS Doxycycline targeted glioblastoma cell lines, regardless of their origin, through inhibiting growth and inducing cell death, accompanied by a significant decrease in proliferating cell nuclear antigen (PCNA) and increase in cleaved caspase-3. In addition, doxycycline significantly sensitized glioblastoma cell response to temozolomide in vitro and in vivo. Mechanistically, doxycycline disrupted mitochondrial functions through decreasing mitochondrial membrane potential and mitochondrial respiration. Inducing mitochondrial dysfunctions by using doxycycline led to energy crisis, oxidative stress, and damage as shown by the decreased levels of ATP and the elevated levels of mitochondrial superoxide, intracellular ROS, 8-OHdG, protein carbonylation, and lipid peroxidation. An antioxidant N-acetyl-L-cysteine (NAC) significantly abolished the anti-proliferative and pro-apoptotic effects of doxycycline, demonstrating that doxycycline acts on glioblastoma via inducing oxidative stress. CONCLUSIONS In our study, we show that the antibiotic doxycycline is effective in targeting glioblastoma through inducing mitochondrial dysfunctions and oxidative stress. Our work also demonstrated the importance of mitochondrial metabolism in glioblastoma.

  5. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  6. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke.

    PubMed

    Sood, Abhilasha; Mehrotra, Arpit; Dhawan, Devinder K; Sandhir, Rajat

    2018-04-18

    Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.

  7. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  9. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    PubMed Central

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  10. Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients.

    PubMed

    Suman, Matteo; Sharpe, Jenny A; Bentham, Robert B; Kotiadis, Vassilios N; Menegollo, Michela; Pignataro, Viviana; Molgó, Jordi; Muntoni, Francesco; Duchen, Michael R; Pegoraro, Elena; Szabadkai, Gyorgy

    2018-07-01

    Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.

  11. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    PubMed

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Nitric Oxide and Mitochondrial Function in Neurological Diseases.

    PubMed

    Ghasemi, Mehdi; Mayasi, Yunis; Hannoun, Anas; Eslami, Seyed Majid; Carandang, Raphael

    2018-04-15

    Mitochondria are key cellular organelles that play crucial roles in the energy production and regulation of cellular metabolism. Accumulating evidence suggests that mitochondrial activity can be modulated by nitric oxide (NO). As a key neurotransmitter in biologic systems, NO mediates the majority of its function through activation of the cyclic guanylyl cyclase (cGC) signaling pathway and S-nitrosylation of a variety of proteins involved in cellular functioning including those involved in mitochondrial biology. Moreover, excess NO or the formation of reactive NO species (RNS), e.g., peroxynitrite (ONOO - ), impairs mitochondrial functioning and this, in conjunction with nuclear events, eventually affects neuronal cell metabolism and survival, contributing to the pathogenesis of several neurodegenerative diseases. In this review we highlight the possible mechanisms underlying the noxious effects of excess NO and RNS on mitochondrial function including (i) negative effects on electron transport chain (ETC); (ii) ONOO - -mediated alteration in mitochondrial permeability transition; (iii) enhanced mitochondrial fragmentation and autophagy through S-nitrosylation of key proteins involved in this process such as dynamin-related protein 1 (DRP-1) and Parkin/PINK1 (protein phosphatase and tensin homolog-induced kinase 1) complex; (iv) alterations in the mitochondrial metabolic pathways including Krebs cycle, glycolysis, fatty acid metabolism, and urea cycle; and finally (v) mitochondrial ONOO - -induced nuclear toxicity and subsequent release of apoptosis-inducing factor (AIF) from mitochondria, causing neuronal cell death. These proposed mechanisms highlight the multidimensional nature of NO and its signaling in the mitochondrial function. Understanding the mechanisms by which NO mediates mitochondrial (dys)function can provide new insights into the treatment of neurodegenerative diseases. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity

    PubMed Central

    Pokrzywinski, Kaytee L.; Biel, Thomas G.; Kryndushkin, Dmitry; Rao, V. Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis. PMID:28030582

  14. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    PubMed

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  15. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity.

    PubMed

    Cui, Lan; Guo, Jiabin; Zhang, Qiang; Yin, Jian; Li, Jin; Zhou, Wei; Zhang, Tingfen; Yuan, Haitao; Zhao, Jun; Zhang, Li; Carmichael, Paul L; Peng, Shuangqing

    2017-06-05

    The hormone erythropoietin (EPO) has been demonstrated to protect against chemotherapy drug doxorubicin (DOX)-induced cardiotoxicity, but the underlying mechanism remains obscure. We hypothesized that silent mating type information regulation 2 homolog 1 (SIRT1), an NAD + -dependent protein deacetylase that activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), plays a crucial role in regulating mitochondrial function and mediating the beneficial effect of EPO. Our study in human cardiomyocyte AC16 cells showed that DOX-induced cytotoxicity and mitochondrial dysfunction, as manifested by decreased mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential, and increased mitochondrial superoxide accumulation, can be mitigated by EPO pretreatment. EPO was found to upregulate SIRT1 activity and protein expression to reverse DOX-induced acetylation of PGC-1α and suppression of a suite of PGC-1α-activated genes involved in mitochondrial function and biogenesis, such as nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), citrate synthase (CS), superoxide dismutase 2 (SOD2), cytochrome c oxidase IV (COXIV), and voltage-dependent anion channel (VDAC). Silencing of SIRT1 via small RNA interference sensitized AC16 cells to DOX-induced cytotoxicity and reduction in mtDNA copy number. Although with SIRT1 silenced, EPO could reverse to some extent DOX-induced mitochondrial superoxide accumulation, loss of mitochondrial membrane potential and ATP depletion, it failed to normalize protein expression of PGC-1α and its downstream genes. Taken together, our results indicated that EPO may activate SIRT1 to enhance mitochondrial function and protect against DOX-induced cardiotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Peroxiredoxin 3 Is a Redox-Dependent Target of Thiostrepton in Malignant Mesothelioma Cells

    PubMed Central

    Newick, Kheng; Cunniff, Brian; Preston, Kelsey; Held, Paul; Arbiser, Jack; Pass, Harvey; Mossman, Brooke; Shukla, Arti; Heintz, Nicholas

    2012-01-01

    Thiostrepton (TS) is a thiazole antibiotic that inhibits expression of FOXM1, an oncogenic transcription factor required for cell cycle progression and resistance to oncogene-induced oxidative stress. The mechanism of action of TS is unclear and strategies that enhance TS activity will improve its therapeutic potential. Analysis of human tumor specimens showed FOXM1 is broadly expressed in malignant mesothelioma (MM), an intractable tumor associated with asbestos exposure. The mechanism of action of TS was investigated in a cell culture model of human MM. As for other tumor cell types, TS inhibited expression of FOXM1 in MM cells in a dose-dependent manner. Suppression of FOXM1 expression and coincidental activation of ERK1/2 by TS were abrogated by pre-incubation of cells with the antioxidant N-acetyl-L-cysteine (NAC), indicating its mechanism of action in MM cells is redox-dependent. Examination of the mitochondrial thioredoxin reductase 2 (TR2)-thioredoxin 2 (TRX2)-peroxiredoxin 3 (PRX3) antioxidant network revealed that TS modifies the electrophoretic mobility of PRX3. Incubation of recombinant human PRX3 with TS in vitro also resulted in PRX3 with altered electrophoretic mobility. The cellular and recombinant species of modified PRX3 were resistant to dithiothreitol and SDS and suppressed by NAC, indicating that TS covalently adducts cysteine residues in PRX3. Reduction of endogenous mitochondrial TRX2 levels by the cationic triphenylmethane gentian violet (GV) promoted modification of PRX3 by TS and significantly enhanced its cytotoxic activity. Our results indicate TS covalently adducts PRX3, thereby disabling a major mitochondrial antioxidant network that counters chronic mitochondrial oxidative stress. Redox-active compounds like GV that modify the TR2/TRX2 network may significantly enhance the efficacy of TS, thereby providing a combinatorial approach for exploiting redox-dependent perturbations in mitochondrial function as a therapeutic approach in mesothelioma. PMID:22761781

  17. On the synergistic action of androgen and FSH on progestin secretion of cultured rat granulosa cells. Cellular and mitochondrial cholesterol metabolism.

    PubMed

    Nimrod, A

    1981-01-01

    The effect of FSH and androgen on the conversion of cholesterol into progesterone by cultured rat granulosa cells (GC) was studied in intact cells or mitochondrial preparations. Culture of GC for immature hypophysectomized diethylstilbestrol-treated rats for 48 h in the presence of ovine FSH (5 microgram/ml) alone, or FSH + testosterone (Te; 0.5 microgram/ml) caused a slight increase in the activity of the mitochondrial marker enzyme succinic dehydrogenase, while Te had no effect. Culture with the hormones for 48 h had no significant effect on the levels of free and esterified cellular cholesterol. GC monolayers after 48 h with or without FSH and Te converted [3H]cholesterol into 4 major metabolites, 3 of which were secreted into the medium and, in thin-layer chromatographic behavior, resembled pregnenolone, progesterone and 20 alpha-dihydroprogesterone. The total amount of the 3 C-21 steroids was higher (p less than 0.01) in FSH- or Te-treated than in control cells, and combined treatment had a synergistic effect. The uptake of labeled cholesterol (4--10%) was significantly higher (p less than 0.01) in cells pretreated with FSH or Te, whereas a combined FSH and Te treatment had an additive effect. Mitochondria isolated from GC monolayers took up cholesterol in a temperature-dependent fashion, but this uptake was not affected by hormonal pretreatment. In the presence of cyanoketone, the mitochondrial fractions activity converted cholesterol into pregnenolone. This activity was enhanced by FSH or Te (p less than 0.01), and further enhancement was observed with FSH + Te; the combined effect appeared to be more than additive (p = 0.05). The results suggest that both FSH and Te enhance the activity of cholesterol side-chain cleavage, but do not affect the transport of cholesterol into the mitochondria. A possible hormonal effect on a pre-mitochondrial step is discussed.

  18. Mitochondrial Metabolic Reprogramming Induced by Calorie Restriction

    PubMed Central

    Martin-Montalvo, Alejandro

    2013-01-01

    Abstract Significance: Calorie restriction (CR) is a known intervention that delays most aging processes. Most of the beneficial effects of CR are mediated by improved maintenance of mitochondrial performance in aged individuals. The control of mitochondrial biogenesis, apoptosis, and protein turnover is required for healthy aging. CR is able to induce molecular mechanisms that preserve oxidative capacity and decrease oxidative damage. Recent Advances and Critical Issues: Published data indicate that peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is activated in old animals under CR conditions compared to ad libitum counterparts, enhancing mitochondrial biogenesis. Molecular regulation of PGC-1α has recently attracted significant research interest. We discuss the master regulators of energy metabolism such as AMP-activated protein kinase and sirtuin 1 among others that have been demonstrated to activate mitochondrial biogenesis through increased PGC-1α activity at transcriptional and post-translational levels. Additionally, we describe the latest findings that explain how CR promotes mitochondrial efficiency and decreases mitochondrial-derived oxidative damage. Future Directions: Understanding the beneficial mitochondrial changes conferred by CR will aid design of therapies for age-related diseases and help slow the aging process. Given the difficulty for humans to adhere to CR, we also explore new molecules that have been proposed during the last years to mimic the CR phenotype and their potential as future therapeutics. Antioxid. Redox Signal. 19, 310–320. PMID:22901095

  19. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh) Mice

    PubMed Central

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J.

    2017-01-01

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR)+/−-insulin receptor substrate-1 (IRS-1)+/− double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver. PMID:28556799

  20. Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) Signaling Regulates Mitochondrial Biogenesis and Respiration via Estrogen-related Receptor α (ERRα)*

    PubMed Central

    Li, Yang; He, Lina; Zeng, Ni; Sahu, Divya; Cadenas, Enrique; Shearn, Colin; Li, Wei; Stiles, Bangyan L.

    2013-01-01

    Mitochondrial abnormalities are associated with cancer development, yet how oncogenic signals affect mitochondrial functions has not been fully understood. In this study, we investigate the relationship between mitochondrial alterations and PI3K/protein kinase B (AKT) signaling activation using hepatocytes and liver tissues as our experimental models. We show here that liver-specific deletion of Pten, which leads to activation of PI3K/AKT, is associated with elevated oxidative stress, increased mitochondrial mass, and augmented respiration accompanied by enhanced glycolysis. Consistent with these observations, estrogen-related receptor α (ERRα), an orphan nuclear receptor known for its role in mitochondrial biogenesis, is up-regulated in the absence of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Our pharmacological and genetic studies show that PI3K/AKT activity regulates the expression of ERRα and mitochondrial biogenesis/respiration. Furthermore, cAMP-response element-binding protein, as a downstream target of AKT, plays a role in the regulation of ERRα, independent of PKA signaling. ERRα regulates reactive oxygen species production, and ERRα knockdown attenuates proliferation and colony-forming potential in Pten-null hepatocytes. Finally, analysis of clinical datasets from liver tissues showed a negative correlation between expressions of ERRα and PTEN in patients with liver cancer. Therefore, this study has established a previously unrecognized link between a growth signal and mitochondrial metabolism. PMID:23836899

Top