Systematics of the low-energy pionic double charge exchange in nuclei
NASA Astrophysics Data System (ADS)
Draeger, J.; Bilger, R.; Clement, H.; Cröni, M.; Denz, H.; Gräter, J.; Meier, R.; Pätzold, J.; Schapler, D.; Wagner, G. J.; Wilhelm, O.; Föhl, K.; Schepkin, M.
2000-12-01
The experimental results for the (π+,π-) reaction on nuclei obtained in recent years reveal clear systematic features of this reaction. New data on 7Li, 12C, 16O, and 56Fe supplementing the existing data base are presented. The data on 12C are partly at variance with previous results. The dependence of the cross sections on incident energy, scattering angle, and on the target mass is discussed for transitions leading to the ground state of the final nucleus or to the double isobaric analog state.
Production of DOUBLE-Λ Hypernuclei:. Bnl-Ags E906
NASA Astrophysics Data System (ADS)
Fukuda, T.; Nagae, T.; Outa, H.; Sekimoto, M.; Hotchi, H.; Miyachi, T.; Nakano, J.; Tamagawa, T.; Tanida, K.; Chrien, R. E.; May, M.; Meyer, E.; Pile, P.; Rusek, A.; Sutter, R.; Berdoz, A.; Carman, D.; Eugenio, P.; Franklin, G. B.; Khaustov, P.; Koran, P.; Meyer, C.; Paschke, K.; Quinn, B. P.; Schumacher, R. A.; Gan, L.; Tang, L.; Yuan, L.; Kurepin, A.; Rasin, V.; Prokhavatilov, M.; Shileev, K.; Ahn, J. K.; Akikawa, H.; Imai, K.; Ichikawa, A.; Yamamoto, K.; Yosoi, M.; Ajimura, S.; Kishimoto, T.; Kori, H.; Minami, S.; Shimizu, Y.; Meziani, Z.; Fischer, H.; Franz, J.; Schmitt, H.; Davis, C. A.; Landry, M.; Bassalleck, B.
2000-09-01
We have carried out an experiment at BNL-AGS (E906) to search for double-Λ hypernuclei by observing sequential pionic decays. We will describe the principle of the experiment and report the present status.
IR properties of chiral effects in pionic matter
NASA Astrophysics Data System (ADS)
Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.
2018-04-01
Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects. We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the 't Hooft matching condition in pionic media at finite densities.
NASA Astrophysics Data System (ADS)
Zarrella, Andrew; Yennello, Sherry
2017-09-01
Pionic fusion is the process by which two nuclei fuse and then deexcite by the exclusive emission of a pion. These reactions represent the most extreme examples of deep subthreshold pion production and provide evidence for an unknown, collective mechanism for pion production. An experiment was performed at the Texas A&M University Cyclotron Institute to measure the cross section of the 4He +12 C -> 16N +π+ reaction. The Momentum Achromat Recoil Spectrometer (MARS) was used to separate and identify the 16N fusion residues and the newly constructed Partial Truncated Icosahedron (ParTI) phoswich array was used to identify charged pions. The detector responses for each phoswich unit were recorded using fast-sampling ADCs which allow all light charged particles in the ParTI phoswiches to be identified using ``fast vs. slow'' pulse shape discrimination. By writing the waveform responses, pions can also be identified by the presence of a characteristic muon decay pulse. The combination of the residue-pion coincidence and the two independent pion identification techniques represent a highly sensitive experimental design for studying pionic fusion reactions.
IR properties of chiral effects in pionic matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.
Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects.more » We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in pionic media at finite densities.« less
IR properties of chiral effects in pionic matter
Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.
2018-04-27
Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects.more » We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in pionic media at finite densities.« less
a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).
The pion nucleon scattering lengths from pionic hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.
2001-07-01
This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.
ABC effect and resonance d*(2380)
NASA Astrophysics Data System (ADS)
Bashkanov, M.; Clement, H.; Doroshkevich, E.; Skorodko, T.
2017-11-01
A new state in the two-baryon system with mass 2380 MeV and width 80 MeV has been detected in the experiments at the Juelich Cooler Synchrotron (COSY). The new particle denoted now d*(2380) has quantum numbers I( J p ) = 0(3+). The total cross sections for the d and 4He fusion reactions show similar to each other resonance-like energy dependence. The resonance-like structure is sensed in the double-pionic fusion channels and polarized np scattering.
QCD at finite isospin chemical potential
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian
2018-03-01
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
Determination of the pion-nucleon coupling constant and scattering lengths
NASA Astrophysics Data System (ADS)
Ericson, T. E.; Loiseau, B.; Thomas, A. W.
2002-07-01
We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
NASA Astrophysics Data System (ADS)
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
A phenomenological π-p scattering length from pionic hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
2004-07-01
We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α2logα using an extended charge distribution. A hadronic πN scattering length ahπ-p=0.0870(5)mπ-1 is deduced leading to a πNN coupling constant from the GMO relation gc2/(4π)=14.04(17).
NASA Astrophysics Data System (ADS)
Nishi, T.; Itahashi, K.; Berg, G. P. A.; Fujioka, H.; Fukuda, N.; Fukunishi, N.; Geissel, H.; Hayano, R. S.; Hirenzaki, S.; Ichikawa, K.; Ikeno, N.; Inabe, N.; Itoh, S.; Iwasaki, M.; Kameda, D.; Kawase, S.; Kubo, T.; Kusaka, K.; Matsubara, H.; Michimasa, S.; Miki, K.; Mishima, G.; Miya, H.; Nagahiro, H.; Nakamura, M.; Noji, S.; Okochi, K.; Ota, S.; Sakamoto, N.; Suzuki, K.; Takeda, H.; Tanaka, Y. K.; Todoroki, K.; Tsukada, K.; Uesaka, T.; Watanabe, Y. N.; Weick, H.; Yamakami, H.; Yoshida, K.; piAF Collaboration
2018-04-01
We observed the atomic 1 s and 2 p states of π- bound to 121Sn nuclei as distinct peak structures in the missing mass spectra of the 122Sn(d ,3He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2 p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1 s state.
Pionic retardation effects in two-pion-exchange three-nucleon forces
NASA Astrophysics Data System (ADS)
Coon, S. A.; Friar, J. L.
1986-09-01
Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v/c)2 relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and in the specification of the choice of ambiguity parameters in the latter potential.
Extracting the σ-term from low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.
2018-02-01
We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.
Spontaneous pion emission as a new natural radioactivity
NASA Astrophysics Data System (ADS)
Ion, D. B.; Ivascu, M.; Ion-Mihai, R.
1986-10-01
In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Qπ-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F π/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.
Thermal conductivity of hot pionic medium due to pion self-energy for πσ and πρ loops
NASA Astrophysics Data System (ADS)
Ghosh, Sabyasachi
2015-07-01
The thermal conductivity of pionic medium has been evaluated with the help of its standard expression from the relaxation time approximation, where inverse of pion relaxation time or pion thermal width has been obtained from the imaginary part of pion self-energy. In the real-time formalism of thermal field theory, the finite temperature calculations of pion self-energy for πσ and πρ loops have been done. The numerical value of our thermal conductivity increases with temperature very softly, though at particular temperature, our estimation has to consider a large band of phenomenological uncertainty.
Pionic retardation effects in two-pion-exchange three-nucleon forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coon, S.A.; Friar, J.L.
1986-09-01
Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v-italic/c-italic)/sup 2/ relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and inmore » the specification of the choice of ambiguity parameters in the latter potential.« less
Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system
NASA Astrophysics Data System (ADS)
Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello
2018-01-01
An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.
Vorticity and Λ polarization in baryon rich matter
NASA Astrophysics Data System (ADS)
Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin
2018-02-01
The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of
Polarization in heavy-ion collisions: magnetic field and vorticity
NASA Astrophysics Data System (ADS)
Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.
2017-12-01
The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.
Spontaneous pion emission as a new natural radioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ion, D.B.; Ivascu, M.; Ion-Mihai, R.
In this paper the pionic nuclear radioactivity or spontaneous pion emission by a nucleus from its ground state is investigated. The Q/sub ..pi../-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z>80. This new type of natural radioactivity is statistically favored especially for Z = 92-106 for which F/sub ..pi..//F/sub S//sub F/ = 40-200 (MeV)/sup 2/. Experimental detection of the neutral pion and also some possible emission mechanismsmore » are discussed.« less
Hadron-rich cosmic-ray families detected by emulsion chamber.
NASA Astrophysics Data System (ADS)
Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.
1995-11-01
Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.
The GMO Sumrule and the πNN Coupling Constant
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.
The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).
From CELSIUS to COSY: on the observation of a dibaryon resonance
NASA Astrophysics Data System (ADS)
Clement, H.; Bashkanov, M.; Skorodko, T.
2015-11-01
Using a high-quality beam of storage rings in combination with a pellet target and a hermetic WASA detector covering practically the full solid angle, two-pion production in nucleon-nucleon collisions has been systematically studied by exclusive and kinematically complete measurements—first at CELSIUS and subsequently at COSY. These measurements resulted in a detailed understanding of the two-pion production mechanism by t-channel meson exchange. The investigation of the ABC effect, which denotes an unusual low-mass enhancement in the ππ-invariant mass spectrum, in double-pionic fusion reactions led the trace to the observation of a narrow dibaryon resonance with I({J}P)=0({3}+) about 80 MeV below the nominal mass of the conventional Δ Δ system. New neutron-proton scattering data, taken with a polarized beam at COSY, produced a pole in the coupled {}3{D}3-3{G}3 partial waves at (2380+/- 10\\-\\i\\40+/- 5) MeV, establishing thus the first observation of a genuine s-channel dibaryon resonance.
Influence of the charge double layer on solid oxide fuel cell stack behavior
NASA Astrophysics Data System (ADS)
Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.
2015-10-01
While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Teodorescu, L; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Hertzbach, S S; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Biesiada, J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L
2008-08-22
We report measurements of branching fractions for the decays B-->Plnu_{l}, where P are the pseudoscalar charmless mesons pi;{-}, pi;{0}, eta and eta;{'}, based on 348 fb;{-1} of data collected with the BABAR detector, using B0 and B+ mesons found in the recoil of a second B meson decaying as B-->D;{(*)}lnu_{l}. Assuming isospin symmetry, we combine pionic branching fractions to obtain B(B;{0}-->pi;{-}l;{+}nu_{l})=(1.54+/-0.17_{(stat)}+/-0.09_{(syst)})x10;{-4}; we find 3.2sigma evidence of the decay B;{+}-->etal;{+}nu_{l} and measure its branching fraction to be (0.64+/-0.20_{(stat)}+/-0.03_{(syst)})x10;{-4}, and determine B(B;{+}-->eta;{'}l;{+}nu_{l})<0.47x10;{-4} to 90% confidence level. Using partial branching fractions for the pionic decays in ranges of the momentum transfer and a variety of form factor calculation, we obtain values of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |V_{ub}| in ranging from 3.6x10;{-3} to 4.1x10;{-3}.
Roy-Steiner-equation analysis of pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-04-01
We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.
Pion single and double charge exchange in the resonance region: Dynamical corrections
NASA Astrophysics Data System (ADS)
Johnson, Mikkel B.; Siciliano, E. R.
1983-04-01
We consider pion-nucleus elastic scattering and single- and double-charge-exchange scattering to isobaric analog states near the (3,3) resonance within an isospin invariant framework. We extend previous theories by introducing terms into the optical potential U that are quadratic in density and consistent with isospin invariance of the strong interaction. We study the sensitivity of single and double charge exchange angular distributions to parameters of the second-order potential both numerically, by integrating the Klein-Gordon equation, and analytically, by using semiclassical approximations that explicate the dependence of the exact numerical results to the parameters of U. The magnitude and shape of double charge exchange angular distributions are more sensitive to the isotensor term in U than has been hitherto appreciated. An examination of recent experimental data shows that puzzles in the shape of the 18O(π+, π-)18Ne angular distribution at 164 MeV and in the A dependence of the forward double charge exchange scattering on 18O, 26Mg, 42Ca, and 48Ca at the same energy may be resolved by adding an isotensor term in U. NUCLEAR REACTIONS Scattering theory for elastic, single-, and double-charge-exchange scattering to IAS in the region of the P33 resonance. Second-order effects on charge-exchange calculations of σ(A, θ).
NASA Astrophysics Data System (ADS)
Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing
2018-04-01
We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
Pionic transitions from X(3872) to {chi}{sub cJ}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubynskiy, S.; Voloshin, M.B.; William, I.
2008-01-01
We consider transitions from the resonance X(3872) to the {chi}{sub cJ} states of charmonium with emission of one or two pions as a means of studying the structure of the X resonance. We find that the relative rates for these transitions to the final states with different J significantly depend on whether the initial state is a pure charmonium state or a four-quark/molecular state.
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-21
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
NASA Astrophysics Data System (ADS)
Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi; Nakamura, Shin; Katsufuji, Takuro; Sawa, Hiroshi
2018-05-01
The physical properties of the mixed-valent iron oxide β -NaFe2O3 were investigated by means of synchrotron radiation x-ray diffraction, magnetization, electrical resistivity, differential scanning calorimetry, 23Na NMR, and 57FeM o ̈ssbauer measurements. This compound has double triangular layers consisting of almost perfect regular Fe4 tetrahedra, which suggests geometrical frustration. We found that this compound exhibits an electrostatically unstable double-stripe-type charge ordering, which is stabilized by the cooperative compression of Fe3 +O6 octahedra, owing to a valence change and Fe2 +O6 octahedra due to Jahn-Teller distortion. Our results indicate the importance of electron-phonon coupling for charge ordering in the region of strong charge frustration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp
2015-10-07
We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less
NASA Astrophysics Data System (ADS)
Bashkanov, M.; Skorodko, T.; Clement, H.; Watts, D. P.
Several new findings in the four, five and six quark systems reheat the interest in the field of multiquark states (beyond the trivial qq¯ and qqq). A lot of progress has recently been made in the 6q sector, on both the theoretical and experimental side. A resonance like structure observed in double-pionic fusion to the deuteron, at M = 2.38 GeV with Γ = 70 MeV and I(JP) = 0(3+) has been consistently observed in a wealth of reaction channels, supporting the existence of a resonant dibaryon state - the d∗(2380). These studies include measurement of all the principle strong decay channels in pn collisions in the quasifree mode by the WASA-at-COSY and HADES collaborations. The internal structure of the d∗(2380) is largely unknown. It can contain various ”hidden color” 6q configurations, ΔΔ molecular states with angular momentum L = 0,2,4,6 as well as meson-assisted dressed dibaryon structures. The large set of experimental data obtained to date gives some constraints on the internal structure of the d∗(2380) dibaryon, but does not settle the issue. The d∗ is the only multiquark state which can be produced copiously at current facilities, offering unique access to information beyond its basic quantum numbers, particularly its physical size and internal structure.
Oh, Yunjung; Yang, Wooseok; Tan, Jeiwan; Lee, Hyungsoo; Park, Jaemin; Moon, Jooho
2018-02-22
Although a unique light-harvesting property was recently demonstrated in a photocathode based on 2-dimensional (2D) opals of CuFeO 2 -shelled SiO 2 microspheres, the performance of a monolayer of ultra-thin CuFeO 2 -shelled microspheres is limited by ineffective charge separation. Herein, we propose an innovative design rule, in which an inner CuFeO 2 /outer CuAlO 2 double-shelled heterojunction is formed on each partially etched microsphere to obtain a hexagonally assembled 2D opal photoelectrode. Our Cu-delafossite double-shelled photocathode shows a dramatically improved charge separation capability, with a 9-fold increase in the photocurrent compared to that of the single-shelled counterpart. Electrochemical impedance spectroscopy clearly confirms the reduced charge transport/transfer resistance associated with the Cu-delafossite double-shelled photocathode, while surface photovoltage spectra reveal enhanced polarization of the photogenerated carrier, indicating improved charge separation capability with the aid of the heterojunction. Our finding sheds light on the importance of heterojunction interfaces in achieving optimal charge separation in opal architectures as well as the inner-shell/electrolyte interface to expedite charge separation/transport.
Remarks on the pion-nucleon σ-term
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-09-01
The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.
NASA Technical Reports Server (NTRS)
Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.
1992-01-01
Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.
Double Charge Exchange Reactions and Double Beta Decay
NASA Astrophysics Data System (ADS)
Auerbach, N.
2018-05-01
The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
NASA Astrophysics Data System (ADS)
Grewe, E.-W.; Frekers, D.
2006-07-01
We have used the (d,He2) charge-exchange reaction to obtain GT +-strength distributions in the nuclei 64Cu, 76As and 96Nb. These nuclei are the intermediate nuclei in the second-order perturbative description of the 64Zn double-beta plus ( β+β+) and the 76Ge and 96Zr double-beta minus ( β-β-) decays. By means of charge-exchange reactions on parent and daughter nucleus the double-beta decay matrix element can be deduced. In this contribution the measured excitation energy spectra are presented.
NASA Astrophysics Data System (ADS)
Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng
2013-03-01
At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.
NASA Astrophysics Data System (ADS)
Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael
2018-01-01
In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.
NASA Astrophysics Data System (ADS)
Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar
2018-03-01
The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław
2017-12-20
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
NASA Astrophysics Data System (ADS)
Carbone, D.; Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Acosta, L.; Bonanno, D.; Bongiovanni, D.; Borello, T.; Boztosun, I.; Calabrese, S.; Calvo, D.; Chávez Lomelí, E. R.; Deshmukh, N.; de Faria, P. N.; Finocchiaro, P.; Fisichella, M.; Foti, A.; Gallo, G.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Linares, R.; Longhitano, F.; Lo Presti, D.; Medina, N.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Pinna, F.; Reito, S.; Russo, G.; Santagati, G.; Sgouros, O.; Solakcı, S. O.; Soukeras, V.; Souliotis, G.; Spatafora, A.; Torresi, D.; Tudisco, S.; Yildirim, A.; Zagatto, V. A. B.; 2018-05-01 The knowledge of the nuclear matrix elements (NME) entering in the expression of the half-life of the neutrinoless double beta decay is fundamental for neutrino physics. Information on the nuclear matrix elements can be obtained by measuring the absolute cross section of double charge exchange nuclear reactions. The two processes present some similarities, the initial and final-state wave functions are the same and the transition operators are similar. The experimental measurements of double charge exchange reactions induced by heavy ions present a number of challenging aspects, since such reactions are characterized by very low cross sections. Such difficulties are discussed for the measurement of the 116Cd(20Ne,20O)116Sn reaction at 15 AMeV.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basset, J.; Stockklauser, A.; Jarausch, D.-D.
2014-08-11
We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope ofmore » the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.« less
Are starburst galaxies proton calorimeters?
NASA Astrophysics Data System (ADS)
Wang, Xilu; Fields, Brian D.
2018-03-01
Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.
2005-01-01
Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.
The double-layer of penetrable ions: an alternative route to charge reversal.
Frydel, Derek; Levin, Yan
2013-05-07
We investigate a double-layer of penetrable ions near a charged wall. We find a new mechanism for charge reversal that occurs in the weak-coupling regime and, accordingly, the system is suitable for the mean-field analysis. The penetrability is achieved by smearing-out the ionic charge inside a sphere, so there is no need to introduce non-electrostatic forces and the system in the low coupling limit can be described by a modified version of the Poisson-Boltzmann equation. The predictions of the theory are compared with the Monte Carlo simulations.
Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi
2014-05-28
The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.
Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Chan, Derek Y C
2015-09-15
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.
NASA Astrophysics Data System (ADS)
Xie, Dexuan; Jiang, Yi
2018-05-01
This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...
2016-11-29
Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less
Namdeo, Anil; Mitchell, Gordon
2008-01-01
This paper presents the impact of road user charging (RUC) on vehicle emissions through application of traffic assignment and pollutant emission models. It presents results of an analysis of five RUC schemes on vehicle emissions in Leeds, UK for 2005. The schemes were: a 3 pound sterling inner ring road cordon charge; a double cordon with a 2 pound sterling inner ring road and a 1 pound sterling outer ring road charge; and distance charges of 2, 10 and 20 p/km levied for travel within the outer cordon. Schemes were compared to a no charge option and results presented here. Emissions are significantly reduced within the inner cordon, whilst beyond the cordon, localised increases and decreases occur. The double cordon exhibits a similar but less marked pattern. Distance charging reduces city-wide emissions by 10% under a 2 p/km charge, 42-49% under a 10 p/km charge and 52-59% under a 20 p/km charge. The higher distance charges reduce emissions within the charge zone, and are also associated with elevated emissions outside the zone, but to a lesser extent than that observed for cordon charging.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
NASA Astrophysics Data System (ADS)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.
2016-10-01
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.
Multi-layered nanocomposite dielectrics for high density organic memory devices
NASA Astrophysics Data System (ADS)
Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik
2015-01-01
We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
Simulation of diffuse-charge capacitance in electric double layer capacitors
NASA Astrophysics Data System (ADS)
Sun, Ning; Gersappe, Dilip
2017-01-01
We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson-Nernst-Planck (MPNP) equations and compared with regular Poisson-Nernst-Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.
Streaming potential generated by a pressure-driven flow over a super-hydrophobic surface
NASA Astrophysics Data System (ADS)
Zhao, Hui
2010-11-01
The streaming potential generated by a pressured-driven flow over a weakly charged striped slip-stick surface (the zeta potential of the surface is smaller than the thermal potential (25 mV) with an arbitrary double layer thickness is theoretically studied by solving the Poisson-Boltzmann equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also presented, in excellent agreement with the full solution. The streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced when the liquid-gas interface is charged. In addition, as the double layer thickness increases, the advantage of the super-hydrophobic surface diminishes. The impact of a slip-stick surface on the streaming potential might provide guidance for designing novel and efficient microfludic energy conversion devices using a super-hydrophobic surface.
Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises
NASA Astrophysics Data System (ADS)
Ferraro, E.; Fanciulli, M.; De Michielis, M.
2018-06-01
The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.
Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu
2015-05-20
A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.
Diffuse-charge dynamics of ionic liquids in electrochemical systems.
Zhao, Hui
2011-11-01
We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.
A fluid description of plasma double-layers
NASA Technical Reports Server (NTRS)
Levine, J. S.; Crawford, F. W.
1979-01-01
The space-charge double-layer that forms between two plasmas with different densities and thermal energies was investigated using three progressively realistic models which are treated by fluid theory, and take into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. The two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. The effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one dimensional fluid description, rather than plasma kinetic theory, is discussed. Theoretical predictions are compared with double layer potentials and lengths deduced from laboratory and space plasma experiments.
Effect of Induced Charge Electroosmosis on the Dielectrophoretic Motion of Particles
NASA Astrophysics Data System (ADS)
Swaminathan, T.; Hu, Howard
2006-11-01
Most suspensions involve the formation of ionic double layers next to the surface of particles due to the induced-charge on the surface. These double layers affect the motion of the particle even under AC electric fields. They modify the net dipole moment of the particle and at the same time produce slip velocities on the surfaces of these particles. A method to numerically evaluate the effect of the double layer on the dielectrophoretic motion of particles has been previously developed to study these two effects. The technique involves a matched asymptotic expansion of the electric field near the particle surface, where the double layer is formed, and is written as a jump-boundary-condition for the electric potential when the thickness of the double layer is small compared to the size of the particle. The developed jump-boundary-condition is then used to calculate an effective zeta potential on the particle surface. Unlike classical electroosmosis, this zeta potential is no longer constant on every part of the surface and is dependent on the applied electric field. The effect of the induced-charge electroosmotic slip velocity on the dielectrophoretic motion of particles has been observed using this technique.
Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway
NASA Astrophysics Data System (ADS)
Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.
NASA Astrophysics Data System (ADS)
Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István
2017-07-01
The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).
Charge Transport and Thermoelectric Properties of (Nd1- z Yb z ) y Fe4- x Co x Sb12 Skutterudites
NASA Astrophysics Data System (ADS)
Shin, Dong-Kil; Jang, Kyung-Wook; Choi, Soon-Mok; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho
2018-06-01
Partially double-filled (Nd1- z Yb z ) y Fe4- x Co x Sb12 ( z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by encapsulated melting, annealing, and hot pressing, and the effects of Nd/Yb partial double filling and Co charge compensation on the microstructure, charge transport, and thermoelectric properties were investigated. All the specimens were transformed to the skutterudite phase together with a few secondary phases such as FeSb2, but FeSb2 formation was suppressed on increasing Co content. Nd and Yb were successfully double-filled in the voids of the skutterudite lattice and Co was well substituted at Fe sites, as indicated by changes in the lattice constant with Nd/Yb filling and Fe/Co substitution. All the specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at temperatures from 323 K to 823 K, and the charge transport properties depended on the filling ratio of Nd and Yb because of the difference between the valencies of Nd and Yb. The electrical conductivity decreased and the Seebeck coefficient increased owing to a decrease in the carrier concentration with increasing Co content. The lattice thermal conductivity decreased because phonon scattering was enhanced by Nd and Yb partial double filling, but partially double-filled specimens did not exhibit a further significant reduction in the lattice thermal conductivity compared with the completely double-filled specimens. A maximum ZT of 0.83 was obtained for (Nd0.75Yb0.25)0.8Fe3CoSb12 at 723 K.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Double heterojunction nanowire photocatalysts for hydrogen generation.
Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M
2014-04-21
Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.
Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.
Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T
2016-01-19
Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.
Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout
NASA Astrophysics Data System (ADS)
House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.
2011-03-01
Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.
Electrostatic Structure and Double-Probe Performance in Tenuous Plasmas
NASA Astrophysics Data System (ADS)
Cully, C. M.; Ergun, R. E.
2006-12-01
Many in-situ plasma instruments are affected by the local electrostatic structure surrounding the spacecraft. In order to better understand this structure, we have developed a fully 3-dimensional self-consistent model that uses realistic spacecraft geometry, including thin (<1 mm) wires and long (>100m) booms, with open boundary conditions. One of the more surprising results is that in tenuous plasmas, the charge on the booms can dominate over the charge on the spacecraft body. For instruments such as electric field double probes and boom-mounted low-energy particle detectors, this challenges the existing paradigm: long booms do not allow the probes to escape the spacecraft potential. Instead, the potential structure simply expands as the boom is deployed. We then apply our model to the double-probe Electric Field and Waves (EFW) instruments on Cluster, and predict the magnitudes of the main error sources. The overall error budget is consistent with experiment, and the model yields some additional interesting insights. We show that the charge in the photoelectron cloud is relatively unimportant, and that the spacecraft potential is typically underestimated by about 20% by double-probe experiments.
Interface reconstruction with emerging charge ordering in hexagonal manganite
Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent
2018-01-01
Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782
Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA
NASA Astrophysics Data System (ADS)
Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan
2018-05-01
Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.
Katsir, Yael; Marmur, Abraham
2014-01-01
Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528
Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.
Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik
2009-06-01
For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.
NASA Astrophysics Data System (ADS)
Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui
2015-02-01
Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Aidala, C.; Ajitanand, N. N.
2015-02-02
We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less
Simulation of electric double-layer capacitors: evaluation of constant potential method
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark
2014-03-01
Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oka, M.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration
2015-02-01
We present midrapidity charged-pion invariant cross sections, the ratio of the π- to π+ cross sections and the charge-separated double-spin asymmetries in polarized p +p collisions at √{s }=200 GeV . While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of ˜0.03 - 0.16 and provide unique information on the sign of the gluon-helicity distribution.
NASA Astrophysics Data System (ADS)
López, S. D.; Otranto, S.; Garibotti, C. R.
2015-01-01
In this work, a theoretical study of the double ionization of He by ion impact at the fully differential level is presented. Emphasis is made in the role played by the projectile in the double emission process depending on its charge and the amount of momentum transferred to the target. A Born-CDW model including a second-order term in the projectile charge is introduced and evaluated within an on-shell treatment. We find that emission geometries for which the second-order term dominates lead to asymmetric structures around the momentum transfer direction, a typical characteristic of higher order transitions.
Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita
2011-07-15
The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged. Copyright © 2011 Elsevier Inc. All rights reserved.
Polysulfide intercalated layered double hydroxides for metal capture applications
Kanatzidis, Mercouri G.; Ma, Shulan
2017-04-04
Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.
Riedy, L W; Walter, J S
1996-06-01
The safe charge injection density for pulsing of 316LVM electrodes has been reported to be 40 microC/cm2. However, only 20 microC/cm2 is available for nonfaradic charge transfer and double layer charge injection. Therefore, we evaluated long term pulsing at 20 microC/cm2 with capacitor coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmeide, Matthias; Kondratenko, Serguei
2011-01-07
Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.
2007-06-01
We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.
Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.
2007-03-01
Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.
A Double-Pole High Voltage High Current Switch
2005-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A DOUBLE- POLE HIGH...December 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: A Double- Pole High Voltage High Current Switch 6. AUTHOR(S...to divert heavy charged particles, e.g. Cu+. 15. NUMBER OF PAGES 68 14. SUBJECT TERMS Double- Pole , Pulse Forming Inductive Network, PFIN
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.
2010-10-01
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.
Layering and Ordering in Electrochemical Double Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yihua; Kawaguchi, Tomoya; Pierce, Michael S.
Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.
A reconfigurable gate architecture for Si/SiGe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajac, D. M.; Hazard, T. M.; Mi, X.
2015-06-01
We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.
NASA Astrophysics Data System (ADS)
Vangara, R.; van Swol, F.; Petsev, D. N.
2018-01-01
The properties of electric double layers are governed by the interface between the substrate and the adjacent electrolyte solution. This interface is involved in chemical, Coulombic, and non-Coulombic (e.g., van der Waals or Lennard-Jones) interactions with all components of the fluid phase. We present a detailed study of these interactions using a classical density functional approach. A particular focus is placed on the non-Coulombic interactions and their effect on the surface chemistry and charge regulation. The solution structure near the charged interface is also analyzed and used to offer a thorough interpretation of established concepts such as the Stern and diffuse ionic layers.
Jet Formation and Penetration Study of Double-Layer Shaped Charge
NASA Astrophysics Data System (ADS)
Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han
2018-04-01
A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.
Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Wei, Fei
2012-05-22
Inorganic materials with double-helix structure have attracted intensive attention due to not only their elegant morphology but also their amazing morphology-related potential applications. The investigation on the formation mechanism of the inorganic double-helix nanostructure is the first step for the fundamental studies of their materials or physical properties. Herein, we demonstrated the space confinement and rotation stress induced self-organization mechanism of the carbon nanotube (CNT)-array double helices under scanning electron microscopy by directly observing their formation process from individual layered double hydroxide flakes, which is a kind of hydrotalcite-like material composed of positively charged layers and charge-balancing interlayer anions. Space confinement is considered to be the most important extrinsic factor for the formation of CNT-array double helices. Synchronous growth of the CNT arrays oppositely from LDH flakes with space confinement on both sides at the same time is essential for the growth of CNT-array double helices. Coiling of the as-grown CNT arrays into double helices will proceed by self-organization, tending to the most stable morphology in order to release their internal rotation stress. Based on the demonstrated mechanism, effective routes were carried out to improve the selectivity for CNT-array double helices. The work provides a promising method for the fabrication of double-helix nanostructures with their two helices connected at the end by self-assembly.
Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions.
Pavlovic, Marko; Rouster, Paul; Bourgeat-Lami, Elodie; Prevot, Vanessa; Szilagyi, Istvan
2017-01-25
Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...
2016-10-18
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan
2016-12-01
In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
A novel radiation hard pixel design for space applications
NASA Astrophysics Data System (ADS)
Aurora, A. M.; Marochkin, V. V.; Tuuva, T.
2017-11-01
We have developed a novel radiation hard photon detector concept based on Modified Internal Gate Field Effect Transistor (MIGFET) wherein a buried Modified Internal Gate (MIG) is implanted underneath a channel of a FET. In between the MIG and the channel of the FET there is depleted semiconductor material forming a potential barrier between charges in the channel and similar type signal charges located in the MIG. The signal charges in the MIG have a measurable effect on the conductance of the channel. In this paper a radiation hard double MIGFET pixel is investigated comprising two MIGFETs. By transferring the signal charges between the two MIGs Non-Destructive Correlated Double Sampling Readout (NDCDSR) is enabled. The radiation hardness of the proposed double MIGFET structure stems from the fact that interface related issues can be considerably mitigated. The reason for this is, first of all, that interface generated dark noise can be completely avoided and secondly, that interface generated 1/f noise can be considerably reduced due to a deep buried channel readout configuration. Electrical parameters of the double MIGFET pixel have been evaluated by 3D TCAD simulation study. Simulation results show the absence of interface generated dark noise, significantly reduced interface generated 1/f noise, well performing NDCDSR operation, and blooming protection due to an inherent vertical anti-blooming structure. In addition, the backside illuminated thick fully depleted pixel design results in low crosstalk due to lack of diffusion and good quantum efficiency from visible to Near Infra-Red (NIR) light. These facts result in excellent Signal-to-Noise Ratio (SNR) and very low crosstalk enabling thus excellent image quality. The simulation demonstrates the charge to current conversion gain for source current read-out to be 1.4 nA/e.
Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors
NASA Astrophysics Data System (ADS)
Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.
2013-11-01
This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.
NASA Astrophysics Data System (ADS)
Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn
2014-02-01
This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite
2018-01-01
Double perovskites, comprising two different cations, are potential nontoxic alternatives to lead halide perovskites. Here, we characterized thin films and crystals of Cs2AgBiBr6 by time-resolved microwave conductance (TRMC), which probes formation and decay of mobile charges upon pulsed irradiation. Optical excitation of films results in the formation of charges with a yield times mobility product, φΣμ > 1 cm2/Vs. On excitation of millimeter-sized crystals, the TRMC signals show, apart from a fast decay, a long-lived tail. Interestingly, this tail is dominant when exciting close to the bandgap, implying the presence of mobile charges with microsecond lifetimes. From the temperature and intensity dependence of the TRMC signals, we deduce a shallow trap state density of around 1016/cm3 in the bulk of the crystal. Despite this high concentration, trap-assisted recombination of charges in the bulk appears to be slow, which is promising for photovoltaic applications. PMID:29545908
Khair, Aditya S
2018-01-23
The deformation of the electric double layer around a charged colloidal particle during sedimentation or electrophoresis in a binary, symmetric electrolyte is studied. The surface potential of the particle is assumed to be small compared to the thermal voltage scale. Additionally, the Debye length is assumed to be large compared to the particle size. These assumptions enable a linearization of the electrokinetic equations. The particle appears as a point charge in this thick-double-layer limit; the distribution of charge in the diffuse cloud surrounding it is determined by a balance of advection due to the particle motion, Brownian diffusion of ions, and electrostatic screening of the particle by the cloud. The ability of advection to deform the charge cloud from its equilibrium state is parametrized by a Péclet number, Pe. For weak advection (Pe ≪ 1), the cloud is only slightly deformed. In contrast, the cloud can be completely stripped from the particle at Pe ≫ 1; consequently, electrokinetic effects on the particle motion vanish in this regime. Therefore, in sedimentation the drag limits to Stokes' law for an uncharged particle as Pe → ∞. Likewise, the particle velocity for electrophoresis approaches Huckel's result. The strongly deformed cloud at large Pe is predicted to generate a concomitant increase in the sedimentation field in a dilute settling suspension.
Current-voltage characteristics of double stranded versus single stranded DNA molecules
NASA Astrophysics Data System (ADS)
Hartzell, B.; Chen, Hong; Heremans, J. J.; McCord, B.; Soghomonian, V.
2004-03-01
Investigation of DNA conductivity has focused on the native, duplex structure, with controversial results. Here, we present the influence of the double-helical structure on charge transport through lambda DNA molecules. The current-voltage (I-V) characteristics of both disulfide-labeled double stranded DNA (dsDNA) and disulfide-labeled single stranded DNA (ssDNA) were measured. The ssDNA was formed from the dsDNA using two different methods for comparison purposes: a thermal/chemical denaturation and enzymatic digestion utilizing lambda exonuclease. Resulting I-V characteristics of both the double stranded and single stranded samples were close-to-linear when measured at room temperature. However, the ssDNA samples consistently gave conductivity values about two orders of magnitude smaller in amplitude. Our results suggest an integral relationship between the native structure of DNA with its stacked base pairs and the molecule's ability to support charge transport.(NSF NIRT 0103034)
Slocum, Joshua D; Webb, Lauren J
2017-07-06
A photoactivatable variant of superfolder green fluorescent protein (GFP) was created by replacing the threonine at position 203 with aspartic acid. Photoactivation by exposure of this mutant to UV light resulted in conversion of the fluorophore from the neutral to the negatively charged form, accompanied by a ∼95-fold increase in fluorescence under 488 nm excitation. Mass spectrometry before and after exposure to UV light revealed a change in mass of 88 Da, attributed to the double decarboxylation of Glu 222 and Asp 203. Kinetics studies and nonlinear power-dependence of the initial rate of photoconversion indicated that the double decarboxylation occurred via a multiphoton absorption process at 254 nm. In addition to providing a photoactivatable GFP with robust folding properties, a detailed mechanistic understanding of this double decarboxylation in GFP will lead to a better understanding of charge transfer in fluorescent proteins.
Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Zhenyi; Wu, X.; Ward, D. R.
Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit
Qi, Zhenyi; Wu, X.; Ward, D. R.; ...
2017-09-11
Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A. H.; Kadhane, U.; Misra, D.
2010-10-15
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less
NASA Astrophysics Data System (ADS)
Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.
2018-02-01
Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.
Reversible Heating in Electric Double Layer Capacitors
NASA Astrophysics Data System (ADS)
Janssen, Mathijs; van Roij, René
2017-03-01
A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014), 10.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014), 10.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006), 10.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.
Radiation and the classical double copy for color charges
NASA Astrophysics Data System (ADS)
Goldberger, Walter D.; Ridgway, Alexander K.
2017-06-01
We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical point particles carrying color charge. By applying a set of color to kinematics replacement rules first introduced by Bern, Carrasco and Johansson, these are shown to generate solutions of d -dimensional dilaton gravity, which we also explicitly construct. Agreement between the gravity result and the gauge theory double copy implies a correspondence between non-Abelian particles and gravitating sources with dilaton charge. When the color sources are highly relativistic, dilaton exchange decouples, and the solutions we obtain match those of pure gravity. We comment on possible implications of our findings to the calculation of gravitational waveforms in astrophysical black hole collisions, directly from computationally simpler gluon radiation in Yang-Mills theory.
Sol-gel-derived double-layered nanocrystal memory
NASA Astrophysics Data System (ADS)
Ko, Fu-Hsiang; You, Hsin-Chiang; Lei, Tan-Fu
2006-12-01
The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900°C for 1min. When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior Vth shifting because of the higher probability for trapping the charge carrier.
NASA Astrophysics Data System (ADS)
Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G.; Qiao, Rui
2014-07-01
We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.
Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui
2014-07-16
We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.
Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio
2015-10-27
In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.
Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, K. B.; Boota, M.; Kumbur, E. C.
2015-01-01
This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Flowable conducting particle networks in redox-active electrolytes for grid energy storage
Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...
2015-01-09
This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1986-01-01
After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.
EDDIX--a database of ionisation double differential cross sections.
MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H
2011-02-01
The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure.
Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions.
Daly, Steven; Girod, Marion; Vojkovic, Marin; Giuliani, Alexandre; Antoine, Rodolphe; Nahon, Laurent; O'Hair, Richard A J; Dugourd, Philippe
2016-07-07
Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons.
Mechanical and Electrochemical Performance of Graphene-Based Flexible Supercapacitors
2014-08-01
Charge/ discharge testing of a packaged, flexible, graphene-based supercapacitor using 0.5 M K2SO4 electrolyte...the use of electrochemical double-layer capacitors (commonly referred to as “supercapacitors”) for high power charging/ discharging and long cyclic...exhibit rapid charging/ discharging and good performance over a wide temperature range. 1 Supercapacitors may prove useful as a standalone power
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie
2018-04-01
We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.
Canonical formulation and conserved charges of double field theory
Naseer, Usman
2015-10-26
We provide the canonical formulation of double field theory. It is shown that this dynamics is subject to primary and secondary constraints. The Poisson bracket algebra of secondary constraints is shown to close on-shell according to the C-bracket. We also give a systematic way of writing boundary integrals in doubled geometry. Finally, by including appropriate boundary terms in the double field theory Hamiltonian, expressions for conserved energy and momentum of an asymptotically flat doubled space-time are obtained and applied to a number of solutions.
Reversible Heating in Electric Double Layer Capacitors.
Janssen, Mathijs; van Roij, René
2017-03-03
A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014)JPSODZ0378-775310.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006)JPSODZ0378-775310.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.
Discharging dynamics in an electrolytic cell
NASA Astrophysics Data System (ADS)
Feicht, Sarah E.; Frankel, Alexandra E.; Khair, Aditya S.
2016-07-01
We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards the electrodes, forming electrical double layers. After the system reaches steady state and the external current decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to a uniform spatial concentration. At voltages on the order of the thermal voltage VT=kBT /q ≃25 mV, where kB is Boltzmann's constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979), 10.1149/1.2129195; P. Kornilovitch and Y. Jeon, J. Appl. Phys. 109, 064509 (2011), 10.1063/1.3554445]. In fact, at sufficiently large voltages (several VT), the current during discharging is no longer monotonic: it displays a "reverse peak" before decaying in magnitude to zero. We analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical techniques in three regimes. First, in the "linear regime" when the applied voltage V is formally much less than VT, the charging and discharging currents are antisymmetric in time; however, the potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on the R C timescale of the cell, λDL /D , where L is the width of the cell, D is the diffusivity of ions, and λD is the Debye length. Second, in the (experimentally relevant) thin-double-layer limit ɛ =λD/L ≪1 , there is a "weakly nonlinear" regime defined by VT≲V ≲VTln(1 /ɛ ) , where the bulk salt concentration is uniform; thus the R C timescale of the evolution of the current magnitude persists. However, nonlinear, voltage-dependent, capacitance of the double layer is responsible for a break in temporal antisymmetry of the charging and discharging currents. Third, the reverse peak in the discharging current develops in a "strongly nonlinear" regime V ≳VTln(1 /ɛ ) , driven by neutral salt adsorption into the double layers and consequent bulk depletion during charging. The strongly nonlinear regime features current evolution over three timescales. The current decays in magnitude on the double layer relaxation timescale, λD2/D ; then grows exponentially in time towards the reverse peak on the diffusion timescale, L2/D , indicating that the reverse peak is the results of fast diffusion of ions from the double layer layer to the bulk. Following the reverse peak, the current decays exponentially to zero on the R C timescale. Notably, the current at the reverse peak and the time of the reverse peak saturate at large voltages V ≫VTln(1 /ɛ ) . We provide semi-analytic expressions for the saturated reverse peak time and current, which can be used to infer charge carrier diffusivity and concentration from experiments.
Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions
NASA Astrophysics Data System (ADS)
Ejiri, Hiroyasu
2014-09-01
Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
Electron kinetics at the plasma interface
NASA Astrophysics Data System (ADS)
Bronold, Franz Xaver; Fehske, Holger; Pamperin, Mathias; Thiessen, Elena
2018-05-01
The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the object's negative charge arising from the accumulation of electrons from the plasma. The plasma sheath is thus the positively charged part of an electric double layer whose negatively charged part is inside the wall. In the course of the Transregional Collaborative Research Center SFB/TRR24 we investigated, from a microscopic point of view, the elementary charge transfer processes responsible for the electric double layer at a floating plasma-wall interface and made first steps towards a description of the negative part of the layer inside the wall. Below we review our work in a colloquial manner, describe possible extensions, and identify key issues which need to be resolved to make further progress in the understanding of the electron kinetics across plasma-wall interfaces. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
Haskins, Justin B; Lawson, John W
2016-05-14
We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Classical gluon and graviton radiation from the bi-adjoint scalar double copy
NASA Astrophysics Data System (ADS)
Goldberger, Walter D.; Prabhu, Siddharth G.; Thompson, Jedidiah O.
2017-09-01
We find double-copy relations between classical radiating solutions in Yang-Mills theory coupled to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics replacements we employ are motivated by the Bern-Carrasco-Johansson double-copy correspondence for on-shell amplitudes in gauge and gravity theories. They are identical to those recently used to establish relations between classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions are constructed to second order in a perturbative expansion, and map under the double copy onto gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence is found to persist to higher orders in perturbation theory, our results suggest the possibility of calculating gravitational radiation from colliding compact objects, directly from a scalar field with vastly simpler (purely cubic) Feynman vertices.
The electric double layer at a metal electrode in pure water
NASA Astrophysics Data System (ADS)
Brüesch, Peter; Christen, Thomas
2004-03-01
Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.
Modeling the double charge exchange response function for a tetraneutron system
NASA Astrophysics Data System (ADS)
Lazauskas, R.; Carbonell, J.; Hiyama, E.
2017-07-01
This work is an attempt to model the 4 n response function of a recent RIKEN experimental study of the double charge exchange 4 He( 8 He, 8 Be) 4n reaction in order to put in evidence an eventual enhancement mechanism of the zero-energy cross section, including a near-threshold resonance. This resonance can indeed be reproduced only by adding to the standard nuclear Hamiltonian an unphysically large T =3/2 attractive 3 n -force that destroys the neighboring nuclear chart. No other mechanisms, like cusps or related structures, were found.
López-Alonso, Jorge P; Diez-García, Fernando; Font, Josep; Ribó, Marc; Vilanova, Maria; Scholtz, J Martin; González, Carlos; Vottariello, Francesca; Gotte, Giovanni; Libonati, Massimo; Laurents, Douglas V
2009-08-19
RNase A self-associates under certain conditions to form a series of domain-swapped oligomers. These oligomers show high catalytic activity against double-stranded RNA and striking antitumor actions that are lacking in the monomer. However, the dissociation of these metastable oligomers limits their therapeutic potential. Here, a widely used conjugating agent, 1-ethyl-3-(3-dimethylaminoisopropyl) carbodiimide (EDC), has been used to induce the formation of amide bonds between carboxylate and amine groups of different subunits of the RNase A C-dimer. A cross-linked C-dimer which does not dissociate was isolated and was found have augmented enzymatic activity toward double-stranded RNA relative to the unmodified C-dimer. Characterization using chromatography, electrophoresis, mass spectrometry, and NMR spectroscopy revealed that the EDC-treated C-dimer retains its structure and contains one to three novel amide bonds. Moreover, both the EDC-treated C-dimer and EDC-treated RNase A monomer were found to carry an increased number of positive charges (about 6 ± 2 charges per subunit). These additional positive charges are presumably due to adduct formation with EDC, which neutralizes a negatively charged carboxylate group and couples it to a positively charged tertiary amine. The increased net positive charge endowed by EDC adducts likely contributes to the heightened cleavage of double-stranded RNA of the EDC-treated monomer and EDC-treated C-dimer. Further evidence for EDC adduct formation is provided by the reaction of EDC with a dipeptide Ac-Asp-Ala-NH(2) monitored by NMR spectroscopy and mass spectrometry. To determine if EDC adduct formation with proteins is common and how this affects protein net charge, conformation, and activity, four well-characterized proteins, ribonuclease Sa, hen lysozyme, carbonic anhydrase, and hemoglobin, were incubated with EDC and the products were characterized. EDC formed adducts with all these proteins, as judged by mass spectrometry and electrophoresis. Moreover, all suffered conformational changes ranging from slight structural modifications in the case of lysozyme, to denaturation for hemoglobin as measured by NMR spectroscopy and enzyme assays. We conclude that EDC adduct formation with proteins can affect their net charge, conformation, and enzymatic activity.
NASA Astrophysics Data System (ADS)
Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.
2015-08-01
Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
Signature of charge migration in modulations of double ionization
NASA Astrophysics Data System (ADS)
Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.
2018-04-01
We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.
Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; ...
2018-06-04
Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenikin, S. A.; Gaudreau, L.; Kataoka, K.
Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less
Organic electrical double layer transistors gated with ionic liquids
NASA Astrophysics Data System (ADS)
Xie, Wei; Frisbie, C. Daniel
2011-03-01
Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.
NASA Astrophysics Data System (ADS)
Singh, N.
2014-12-01
It is now widely recognized that superthermal electrons commonly exist with the thermal population in most space plasmas. When plasmas consisting of such electron population expand, double layers (DLs) naturally forma due to charge separation; the more mobile superthermal electrons march ahead of the thermal population, leaving a positive charge behind and generating electric fields. Under certain conditions such fields evolve into thin double layers or shocks. The double layers accelerate ions. Such double-layer formation was first invoked to explain expansion of laser produced plasmas. Since then it has been studied in laboratory experiments, and applied to (i) polar wind acceleration,(ii) the existence of low-altitude double layers in the auroral acceleration, (iii) a possible mechanism for the origination of the solar wind, (iv) the helicon double layer thrusters, and (v) the deceleration of electrons after their acceleration in solar flare events. The role of superthermal-electron driven double layers, also known as the low-altitude auroral double layers in the upward current region, in the upward acceleration of ionospheric ions is well-known. In the auroral application the upward moving superthermal electrons consist of backscattered downgoing primary energetic electrons as well as the secondary electrons. Similarly we suggest that such double layers might play roles in the acceleration of ions in the solar wind across the coronal transition region, where the superthermal electrons are supplied by magnetic reconnection events. We will present a unified theoretical view of the superthermal electron-driven double layers and their applications. We will summarize theoretical, experimental, simulation and observational results highlighting the common threads running through the various existing studies.
Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru
2018-05-08
We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.
Moya, A A
2015-02-21
This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.
NASA Astrophysics Data System (ADS)
Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung
2018-02-01
The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.
Double-Resonance Facilitated Decomposion of Emission Spectra
NASA Astrophysics Data System (ADS)
Kato, Ryota; Ishikawa, Haruki
2016-06-01
Emission spectra provide us with rich information about the excited-state processes such as proton-transfer, charge-transfer and so on. In the cases that more than one excited states are involved, emission spectra from different excited states sometimes overlap and a decomposition of the overlapped spectra is desired. One of the methods to perform a decomposition is a time-resolved fluorescence technique. It uses a difference in time evolutions of components involved. However, in the gas-phase, a concentration of the sample is frequently too small to carry out this method. On the other hand, double-resonance technique is a very powerful tool to discriminate or identify a common species in the spectra in the gas-phase. Thus, in the present study, we applied the double-resonance technique to resolve the overlapped emission spectra. When transient IR absorption spectra of the excited state are available, we can label the population of the certain species by the IR excitation with a proper selection of the IR wavenumbers. Thus, we can obtain the emission spectra of labeled species by subtracting the emission spectra with IR labeling from that without IR. In the present study, we chose the charge-transfer emission spectra of cyanophenyldisilane (CPDS) as a test system. One of us reported that two charge-transfer (CT) states are involved in the intramolecular charge-transfer (ICT) process of CPDS-water cluster and recorded the transient IR spectra. As expected, we have succeeded in resolving the CT emission spectra of CPDS-water cluster by the double resonance facilitated decomposion technique. In the present paper, we will report the details of the experimental scheme and the results of the decomposition of the emission spectra. H. Ishikawa, et al., Chem. Phys. Phys. Chem., 9, 117 (2007).
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
NASA Astrophysics Data System (ADS)
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Surface transport processes in charged porous media
Gabitto, Jorge; Tsouris, Costas
2017-03-03
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Surface transport processes in charged porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Hadronic vacuum polarization in true muonium
NASA Astrophysics Data System (ADS)
Lamm, Henry
2017-01-01
In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.
Exactly solvable model of the two-dimensional electrical double layer.
Samaj, L; Bajnok, Z
2005-12-01
We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< or = beta < 2. If there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.
NASA Astrophysics Data System (ADS)
Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső
2018-02-01
The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).
Charge and spin correlations in the monopole liquid
NASA Astrophysics Data System (ADS)
Slobinsky, D.; Baglietto, G.; Borzi, R. A.
2018-05-01
A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.
Energy storage device including a redox-enhanced electrolyte
Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash
2017-08-08
An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.
Double Charge Ordering States and Spin Ordering State Observed in a RFe2O4 System
Sun, Fei; Wang, Rui; Aku-Leh, C.; Yang, H. X.; He, Rui; Zhao, Jimin
2014-01-01
Charge, spin, and lattice degrees of orderings are of great interest in the layered quantum material RFe2O4 (R = Y, Er, Yb, Tm, and Lu) system. Recently many unique properties have been found using various experimental methods. However so far the nature of the two-dimensional (2D) charge ordering (CO) state is not clear and no observation of its fine structure in energy has been reported. Here we report unambiguous observation of double 2D CO states at relatively high temperature in a polycrystalline Er0.1Yb0.9Fe2O4 using Raman scattering. The energy gaps between the 3D and the double 2D states are 170 meV (41.2 THz) and 193 meV (46.6 THz), respectively. We also observed a spin ordering (SO) state at below 210 K with characteristic energy of 45 meV (10.7 THz). Our investigation experimentally identified new fine structures of quantum orders in the system, which also extends the capability of optical methods in investigating other layered quantum materials. PMID:25234133
NASA Astrophysics Data System (ADS)
Bansal, Monika; Kaur, Harsupreet
2018-05-01
In this work, a comprehensive drain current model has been developed for long channel Negative Capacitance Germanium Double Gate p-type Field Effect Transistor (NCGe-DG-pFET) by using 1-D Poisson's equation and Landau-Khalatnikov equation. The model takes into account interface trap charges and by using the derived model various parameters such as surface potential, gain, gate capacitance, subthreshold swing, drain current, transconductance, output conductance and Ion/Ioff ratio have been obtained and it is demonstrated that by incorporating ferroelectric material as gate insulator with Ge-channel, subthreshold swing values less than 60 mV/dec can be achieved along with improved gate controllability and current drivability. Further, to critically analyze the advantages offered by NCGe-DG-pFET, a detailed comparison has been done with Germanium Double Gate p-type Field Effect Transistor (Ge-DG-pFET) and it is shown that NCGe-DG-pFET exhibits high gain, enhanced transport efficiency in channel, very less or negligible degradation in device characteristics due to interface trap charges as compared to Ge-DG-pFET. The analytical results so obtained show good agreement with simulated results obtained from Silvaco ATLAS TCAD tool.
ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Simakov, Andrei
2013-10-01
The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.
Fabiano, Simone; Crispin, Xavier; Berggren, Magnus
2014-01-08
The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semiconductor interfaces. This combination of materials allows for introducing hysteresis effects in the capacitance of an electric double layer capacitor. The latter is advantageously used to control the charge accumulation in the semiconductor channel of an organic field-effect transistor. The resulting memory transistors can be written at a gate voltage of around 7 V and read out at a drain voltage as low as 50 mV. The technological implication of this large difference between write and read-out voltages lies in the non-destructive reading of this ferroelectric memory.
Wiberg, Kenneth B
2017-11-02
To allow a comparison with the specific rotations of R-(+)-5-methylenenorbornene (1) and R-(+)-norbornenone (2) we performed calculations at the LC-wPBE/aug-cc-pVTZ level for the imines (5a and 5b) derived from norbornenone and also for their protonated derivative (6). In accord with our results for simpler systems, the specific rotations increase in the order of 1 < 5 < 2 ≈ 6. In addition, the specific rotation of the protonated ketone was calculated and found to be considerably larger than that for 2 or 6. These rotations were found to be linearly dependent on the Hirshfeld charges at the carbon of the exocyclic double bond. This leads to the conclusion that charge transfer from the endocyclic double bond to the π* MO of the exocyclic double bond is an important component of the process that leads to the optical activity of these compounds.
NASA Astrophysics Data System (ADS)
Li, Cang; Wang, Ge; Evans, David G.; Duan, Xue
2004-12-01
Reaction of an aqueous slurry of an Mg 2Al-NO 3 layered double hydroxide with a four-fold excess of Na[Eu(EDTA)] gives a material which analyses for Mg 0.68Al 0.32(OH) 2[Eu(EDTA)] 0.10(CO 3) 0.11·0.66H 2O. The interlayer spacing of the material is 13.8 Å, corresponding to a gallery height of 9.0 Å, which accords with the maximal dimensions (9-10 Å) of the anion in metal-EDTA complex salts as determined by single crystal X-ray diffraction. Geometrical considerations show that the charge density on the layered double hydroxide layers is too high to be balanced by intercalation of [Eu(EDTA)] - alone, necessitating the co-intercalation of carbonate ions which have a much higher charge density.
NASA Technical Reports Server (NTRS)
Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.
1985-01-01
A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.
Simulations of induced-charge electro-osmosis in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
2005-03-01
Theories of nonlinear electrokinetic phenomena generally assume a uniform, neutral bulk electroylte in contact with a polarizable thin double layer near a metal or dielectric surface, which acts as a "capacitor skin". Induced-charge electro-osmosis (ICEO) is the general effect of nonlinear electro-osmotic slip, when an applied electric field acts on its own induced (diffuse) double-layer charge. In most theoretical and experimental work, ICEO has been studied in very simple geometries, such as colloidal spheres and planar, periodic micro-electrode arrays. Here we use finite-element simulations to predict how more complicated geometries of polarizable surfaces and/or electrodes yield flow profiles with subtle dependence on the amplitude and frequency of the applied voltage. We also consider how the simple model equations break down, due to surface conduction, bulk diffusion, and concentration polarization, for large applied voltages (as in most experiments).
Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors
NASA Astrophysics Data System (ADS)
Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto
2011-03-01
Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2010-05-01
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ((d2σ)/(dTμdcosθμ)) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (σ[Eν]) and the single differential cross section ((dσ)/(dQ2)) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.
Indirect double photoionization of water
NASA Astrophysics Data System (ADS)
Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.
2011-05-01
The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.
In-medium Chiral Perturbation Theory beyond the Mean-Field Approximation
NASA Astrophysics Data System (ADS)
Meißner, Ulf-G.; Oller, José A.; Wirzba, Andreas
2002-04-01
An explicit expression for the generating functional of two-flavor low-energy QCD with external sources in the presence of nonvanishing nucleon densities was derived recently (J. A. Oller, Phys. Rev. C65 (2002) 025204). Within this approach we derive power counting rules for the calculation of in-medium pion properties. We develop the so-called standard rules for residual nucleon energies of the order of the pion mass and a modified scheme (nonstandard counting) for vanishing residual nucleon energies. We also establish the different scales for the range of applicability of this perturbative expansion, which are 6πfπ≃0.7 GeV for standard and 6π2fπ2/2mN≃0.27 GeV for nonstandard counting, respectively. We have performed a systematic analysis of n-point in-medium Green functions up to and including next-to-leading order when the standard rules apply. These include the in-medium contributions to quark condensates, pion propagators, pion masses, and couplings of the axial-vector, vector, and pseudoscalar currents to pions. In particular, we find a mass shift for negatively charged pions in heavy nuclei, ΔMπ-=(18±m 5) MeV, that agrees with recent determinations from deeply bound pionic 207Pb. We have also established the absence of in-medium renormalization in the π0→γγ decay amplitude up to the same order. The study of ππ scattering requires the use of the nonstandard counting and the calculation is done at leading order. Even at that order we establish new contributions not considered so far. We also point toward further possible improvements of this scheme and touch upon its relation to more conventional many-body approaches.
Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; ...
2015-08-07
Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less
Charged systems in bulk and at interfaces
NASA Astrophysics Data System (ADS)
Moreira, André Guérin
2001-05-01
One of the rules-of-thumb of colloid and surface physics is that most surfaces are charged when in contact with a solvent, usually water. This is the case, for instance, in charge-stabilized colloidal suspensions, where the surface of the colloidal particles are charged (usually with a charge of hundreds to thousands of e, the elementary charge), monolayers of ionic surfactants sitting at an air-water interface (where the water-loving head groups become charged by releasing counterions), or bilayers containing charged phospholipids (as cell membranes). In this work, we look at some model-systems that, although being a simplified version of reality, are expected to capture some of the physical properties of real charged systems (colloids and electrolytes). We initially study the simple double layer, composed by a charged wall in the presence of its counterions. The charges at the wall are smeared out and the dielectric constant is the same everywhere. The Poisson-Boltzmann (PB) approach gives asymptotically exact counterion density profiles around charged objects in the weak-coupling limit of systems with low-valent counterions, surfaces with low charge density and high temperature (or small Bjerrum length). Using Monte Carlo simulations, we obtain the profiles around the charged wall and compare it with both Poisson-Boltzmann (in the low coupling limit) and the novel strong coupling (SC) theory in the opposite limit of high couplings. In the latter limit, the simulations show that the SC leads in fact to asymptotically correct density profiles. We also compare the Monte Carlo data with previously calculated corrections to the Poisson-Boltzmann theory. We also discuss in detail the methods used to perform the computer simulations. After studying the simple double layer in detail, we introduce a dielectric jump at the charged wall and investigate its effect on the counterion density distribution. As we will show, the Poisson-Boltzmann description of the double layer remains a good approximation at low coupling values, while the strong coupling theory is shown to lead to the correct density profiles close to the wall (and at all couplings). For very large couplings, only systems where the difference between the dielectric constants of the wall and of the solvent is small are shown to be well described by SC. Another experimentally relevant modification to the simple double layer is to make the charges at the plane discrete. The counterions are still assumed to be point-like, but we constraint the distance of approach between ions in the plane and counterions to a minimum distance D. The ratio between D and the distance between neighboring ions in the plane is, as we will see, one of the important quantities in determining the influence of the discrete nature of the charges at the wall over the density profiles. Another parameter that plays an important role, as in the previous case, is the coupling as we will demonstrate, systems with higher coupling are more subject to discretization effects than systems with low coupling parameter. After studying the isolated double layer, we look at the interaction between two double layers. The system is composed by two equally charged walls at distance d, with the counterions confined between them. The charge at the walls is smeared out and the dielectric constant is the same everywhere. Using Monte-Carlo simulations we obtain the inter-plate pressure in the global parameter space, and the pressure is shown to be negative (attraction) at certain conditions. The simulations also show that the equilibrium plate separation (where the pressure changes from attractive to repulsive) exhibits a novel unbinding transition. We compare the Monte Carlo results with the strong-coupling theory, which is shown to describe well the bound states of systems with moderate and high couplings. The regime where the two walls are very close to each other is also shown to be well described by the SC theory. Finally, Using a field-theoretic approach, we derive the exact low-density ("virial") expansion of a binary mixture of positively and negatively charged hard spheres (two-component hard-core plasma, TCPHC). The free energy obtained is valid for systems where the diameters d_+ and d_- and the charge valences q_+ and q_- of positive and negative ions are unconstrained, i.e., the same expression can be used to treat dilute salt solutions (where typically d_+ ~ d_- and q_+ ~ q_-) as well as colloidal suspensions (where the difference in size and valence between macroions and counterions can be very large). We also discuss some applications of our results. Eine der Faustregeln der Kolloid- und Oberflächenphysik ist, dass die meisten Oberflächen geladen sind, wenn sie mit einem Lösungsmittel, normalerweise Wasser, in Kontakt treten. Dies ist zum Beispiel bei ladungsstabilisierten Kolloidalen Suspensionen der Fall, bei denen die Oberfläche der Kolloidteilchen geladen ist (gewöhnlich mit einer Ladung von mehreren Hunderttausend Elementarladungen), oder bei Monoschichten ionischer Tenside, die auf einer Luft-Wasser Grenzfläche sitzen (wobei die wasserliebenden Kopfgruppen durch die Freisetzung von Gegenionen geladen werden), sowie bei Doppelschichten, die geladene phospholipide enthalten (wie Zellmembranen). In dieser Arbeit betrachten wir einige Modellsysteme, die zwar eine vereinfachte Fassung der Realität darstellen, von denen wir aber dennoch erwarten koennen, dass wir mit ihrer Hilfe einige physikalische Eigenschaften realer geladener Systeme (Kolloide und Elektrolyte) einfangen können.
Complex fluids with mobile charge-regulating macro-ions
NASA Astrophysics Data System (ADS)
Markovich, Tomer; Andelman, David; Podgornik, Rudi
2017-10-01
We generalize the concept of charge regulation of ionic solutions, and apply it to complex fluids with mobile macro-ions having internal non-electrostatic degrees of freedom. The suggested framework provides a convenient tool for investigating systems where mobile macro-ions can self-regulate their charge (e.g., proteins). We show that even within a simplified charge-regulation model, the charge dissociation equilibrium results in different and notable properties. Consequences of the charge regulation include a positional dependence of the effective charge of the macro-ions, a non-monotonic dependence of the effective Debye screening length on the concentration of the monovalent salt, a modification of the electric double-layer structure, and buffering by the macro-ions of the background electrolyte.
42 CFR 124.516 - Charitable facility compliance alternative.
Code of Federal Regulations, 2013 CFR
2013-10-01
... received no monies directly from patients with incomes up to triple the current poverty line issued by the... with incomes up to double the current poverty line issued by the Secretary pursuant to 42 U.S.C. 9902... without charge or at a substantially reduced rate (exclusive of amounts charged or received for purposes...
42 CFR 124.516 - Charitable facility compliance alternative.
Code of Federal Regulations, 2011 CFR
2011-10-01
... received no monies directly from patients with incomes up to triple the current poverty line issued by the... with incomes up to double the current poverty line issued by the Secretary pursuant to 42 U.S.C. 9902... without charge or at a substantially reduced rate (exclusive of amounts charged or received for purposes...
NASA Astrophysics Data System (ADS)
Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique
2018-04-01
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
NASA Astrophysics Data System (ADS)
Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.
2017-02-01
The effects of self-discharge on the performance of symmetric electric double-layer capacitors (EDLCs) and active electrolyte-enhanced supercapacitors were examined by incorporating self-discharge into electrochemical capacitor models during charging and discharging. The sources of self-discharge in capacitors were side reactions or redox reactions and several impurities and electric double-layer (EDL) instability. The effects of self-discharge during capacitor storage was negligible since it took a fully charged capacitor a minimum of 14.0 days to be entirely discharged by self-discharge in all conditions studied, hence self-discharge in storage condition can be ignored. The first and second charge-discharge cycle energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a capacitor of electrode effective conductivity α1 = 0.05 S/cm with only EDL instability self-discharge with current density J_{{VR}} = 1.25 × 10-3 A/cm2 were 72.33% and 72.34%, respectively. Also, energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a similar capacitor with both side reactions and redox reactions and EDL instability self-discharges with current densities J_{{VR}} = 0.00125 A/cm2 and J_{{{{VR}}1}} = 0.0032 A/cm2 were 38.13% and 38.14% respectively, compared with 84.24% and 84.25% in a similar capacitor without self-discharge. A capacitor with only EDL instability self-discharge and that with both side reactions and redox reactions and EDL instability self-discharge lost 9.73 Wh and 28.38 Wh of energy, respectively, through self-discharge during charging and discharging. Hence, EDLCs charging and discharging time is significantly dependent on the self-discharge rate which are too large to be ignored.
Baek, Ji Hyun; Kim, Byeong Jo; Han, Gill Sang; Hwang, Sung Won; Kim, Dong Rip; Cho, In Sun; Jung, Hyun Suk
2017-01-18
Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO 4 /WO 3 /SnO 2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO 2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO 3 deposition, leading to the formation of a double layer of dense WO 3 and a WO 3 /SnO 2 mixture at the bottom. Subsequently, a BiVO 4 nanoparticle film was deposited by spin coating. Importantly, the WO 3 /(WO 3 +SnO 2 ) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO 4 /WO 3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm 2 at 1.23 V vs RHE) compared to the previously reported BiVO 4 /WO 3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoO x electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).
Radio frequency charge parity meter.
Schroer, M D; Jung, M; Petersson, K D; Petta, J R
2012-10-19
We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped-element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensitive to a magnetic field. The measured response agrees well with cavity input-output theory, allowing accurate measurements of the interdot tunnel coupling and the resonator-charge coupling rate g(c)/2π~17 MHz.
Quan, Quan; Xie, Shunji; Weng, Bo; Wang, Ye; Xu, Yi-Jun
2018-05-01
Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS 2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO 2 nanotube arrays (TNTAs@RGO/MoS 2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H 2 than binary TNTAs@RGO and TNTAs/MoS 2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H 2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability.
Missana; Adell
2000-10-01
The stability behavior of Na-montmorillonite colloids has been studied by combining the analysis of their surface charge properties and time-resolved dynamic light scattering experiments. The chemical surface model for several types of clays, including montmorillonite, has to take into account the double surface charge contribution due to their permanent structural charge and to their pH-dependent charge, which is developed at the edge sites, therefore, these stability studies were carried out as a function of both ionic strength and pH. DLVO theory is largely applied for the prediction of the stability of many colloidal systems, including the natural ones. This work shows that the stability behavior of Na-montmorillonite colloids cannot be satisfactorily reproduced by DLVO theory, using the surface parameters experimentally obtained. Particularly, this theory is unable to explain their pH-dependent stability behavior caused by the small charge at the edge sites. Based on these results, a literature review of DLVO stability prediction of clay colloids was performed. It confirmed that this theory is not capable of taking into account the double contribution to the total surface charge and, at the same time, pointed out the main uncertainties related to the appropriate use of the input parameters for the calculation as, for example, the Hamaker constant or the surface potential. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grange, Joseph M.
2013-01-01
This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current andmore » future neutrino experiments.« less
Single chip camera device having double sampling operation
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)
2002-01-01
A single chip camera device is formed on a single substrate including an image acquisition portion for control portion and the timing circuit formed on the substrate. The timing circuit also controls the photoreceptors in a double sampling mode in which are reset level is first read and then after an integration time a charged level is read.
High-rate lithium/manganese dioxide batteries; the double cell concept
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland
An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Evaluation of the constant potential method in simulating electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Yang, Yang; Olmsted, David L.; Asta, Mark; Laird, Brian B.
2014-11-01
A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li+ ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li+ ions to the electrode surface.
Design and experiment of vehicular charger AC/DC system based on predictive control algorithm
NASA Astrophysics Data System (ADS)
He, Guangbi; Quan, Shuhai; Lu, Yuzhang
2018-06-01
For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.
Application of Organic Solid Electrolytes
NASA Technical Reports Server (NTRS)
Sekido, S.
1982-01-01
If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.
NASA Astrophysics Data System (ADS)
Rowe, Jeffrey D.; Baird, James K.
2007-06-01
A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.
Appelo, C A J; Vinsot, A; Mettler, S; Wechner, S
2008-10-23
A borehole in the Callovo-Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.
Nanoengineered field induced charge separation membranes manufacture thereof
O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary
2016-08-02
A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.
Translocation of double strand DNA into a biological nanopore
NASA Astrophysics Data System (ADS)
Chatkaew, Sunita; Mlayeh, Lamia; Leonetti, Marc; Homble, Fabrice
2009-03-01
Translocation of double strand DNA across a unique mitochondrial biological nanopore (VDAC) is observed by an electrophysiological method. Characteristics of opened and sub-conductance states of VDAC are studied. When the applied electric potential is beyond ± 20 mV, VDAC transits to a sub-conductance state. Plasmids (circular double strand DNA) with a diameter greater than that of the channel shows the current reduction into the channel during the interaction but the state with zero-current is not observed. On the contrary, the interaction of linear double strand DNA with the channel shows the current reduction along with the zero-current state. These show the passages of linear double strand DNA across the channel and the electrostatic effect due to the surface charges of double strand DNA and channel for circular and linear double strand DNA.
On the theoretical description of weakly charged surfaces.
Wang, Rui; Wang, Zhen-Gang
2015-03-14
It is widely accepted that the Poisson-Boltzmann (PB) theory provides a valid description for charged surfaces in the so-called weak coupling limit. Here, we show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. In the presence of dielectric discontinuity, there is no limiting condition for which the PB theory is valid.
Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei
2017-12-27
A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
Particle Identification in Nuclear Emulsion by Measuring Multiple Coulomb Scattering
NASA Astrophysics Data System (ADS)
Than Tint, Khin; Nakazawa, Kazuma; Yoshida, Junya; Kyaw Soe, Myint; Mishina, Akihiro; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; E07 Collaboration
2014-09-01
We are developing particle identification techniques for single charged particles such as Xi, proton, K and π by measuring multiple Coulomb scattering in nuclear emulsion. Nuclear emulsion is the best three dimensional detector for double strangeness (S = -2) nuclear system. We expect to accumulate about 10000 Xi-minus stop events which produce double lambda hypernucleus in J-PARC E07 emulsion counter hybrid experiment. The purpose of this particle identification (PID) in nuclear emulsion is to purify Xi-minus stop events which gives information about production probability of double hypernucleus and branching ratio of decay mode. Amount of scattering parameterized as angular distribution and second difference is inversely proportional to the momentum of particle. We produced several thousands of various charged particle tracks in nuclear emulsion stack via Geant4 simulation. In this talk, PID with some measuring methods for multiple scattering will be discussed by comparing with simulation data and real Xi-minus stop events in KEK-E373 experiment.
ESI-MS of Cucurbituril Complexes Under Negative Polarity.
Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P
2017-11-01
Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Guang; Jiang, Deen; Cummings, Peter T
Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulationsmore » reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.« less
Ponderomotive ion acceleration in dense magnetized laser-irradiated thick target plasmas
NASA Astrophysics Data System (ADS)
Sinha, Ujjwal; Kaw, Predhiman
2012-03-01
When a circularly polarized laser pulse falls on an overdense plasma, it displaces the electrons via ponderomotive force creating a double layer. The double layer constitutes of an ion and electron sheath with in which the electrostatic field present is responsible for ion acceleration. In this paper, we have analyzed the effect a static longitudinal magnetic field has over the ion acceleration mechanism. The longitudinal magnetic field changes the plasma dielectric constant due to cyclotron effects which in turn enhances or reduces the ponderomotive force exerted by the laser depending on whether the laser is left or right circularly polarized. Also, the analysis of the ion space charge region present behind the ion sheath of the laser piston that undergoes coulomb explosion has been explored for the first time. We have studied the interaction of an incoming ion beam with the laser piston and the ion space charge. It has been found that the exploding ion space charge has the ability to act as an energy amplifier for incoming ion beams.
Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Chen, Xia; Shuai, Xiaorui; Kong, Jing; Yan, Jianhua; Cen, Kefa
2017-08-03
The chemical nature of electrolytes has been demonstrated to play a pivotal role in the charge storage of electric double-layer capacitors (EDLCs), whereas primary mechanisms are still partially resolved but controversial. In this work, a systematic exploration into EDL structures and kinetics of representative aqueous electrolytes is performed with numerical simulation and experimental research. Unusually, a novel charging mechanism exclusively predominated by kinetics is recognized, going beyond traditional views of manipulating capacitances preferentially via interfacial structural variations. Specifically, strikingly distinctive EDL structures stimulated by diverse ion sizes, valences, and mixtures manifest a virtually identical EDL capacitance, where the dielectric nature of solvents attenuates ionic effects on electrolyte redistributions, in stark contradiction with solvent-free counterpart and traditional Helmholtz theory. Meanwhile, corresponding kinetics evolve conspicuously with ionic species, intimately correlated with ion-solvent interactions. The achieved mechanisms are subsequently illuminated by electrochemical measurements, highlighting the crucial interplay between ions and solvents in regulating EDLC performances.
Electric potential calculation in molecular simulation of electric double layer capacitors
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.
2016-11-01
For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.
Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics
NASA Astrophysics Data System (ADS)
Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha
2015-11-01
Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.
NASA Astrophysics Data System (ADS)
Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team
Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.
Double soft graviton theorems and Bondi-Metzner-Sachs symmetries
NASA Astrophysics Data System (ADS)
Anupam, A. H.; Kundu, Arpan; Ray, Krishnendu
2018-05-01
It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the subleading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated with BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.
Carbon Redox-Polymer-Gel Hybrid Supercapacitors.
Vlad, A; Singh, N; Melinte, S; Gohy, J-F; Ajayan, P M
2016-02-26
Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Khoi T.; Lilly, Michael P.; Nielsen, Erik
We report Pauli blockade in a multielectron silicon metal–oxide–semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet–triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing andmore » shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.« less
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H-SiC.
Igumbor, E; Olaniyan, O; Mapasha, R E; Danga, H T; Omotoso, E; Meyer, W E
2018-05-10
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H-SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H-SiC are presented. We explore complexes where substitutional N[Formula: see text]/N[Formula: see text] or B[Formula: see text]/B[Formula: see text] sits near a Si (V[Formula: see text]) or C (V[Formula: see text]) vacancy to form vacancy-complexes (N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text]). The energies of formation of the N related vacancy-complexes showed the N[Formula: see text]V[Formula: see text] to be energetically stable close to the valence band maximum in its double positive charge state. The N[Formula: see text]V[Formula: see text] is more energetically stable in the double negative charge state close to the conduction band minimum. The N[Formula: see text]V[Formula: see text] on the other hand, induced double donor level and the N[Formula: see text]V[Formula: see text] induced a double acceptor level. For B related complexes, the B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text] were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the B[Formula: see text]V[Formula: see text] become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. H.; Cheng, Y. H.; Ko, C. W.
2015-10-12
This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed tomore » the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.« less
Deionization and desalination using electrostatic ion pumping
Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O& #x27; Brien, Kevin C.; Cussler, Edward
2013-06-11
The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.
Deionization and desalination using electrostatic ion pumping
Bourcier, William L [Livermore, CA; Aines, Roger D [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Schaldach, Charlene M [Pleasanton, CA; O'Brien, Kevin C [San Ramon, CA; Cussler, Edward [Edina, MN
2011-07-19
The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.
Investigation of charged-hadron production in proton–nucleus interactions at the energy of 50 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.
2016-07-15
Cross sections for the production of high-transverse-momentum charged hadrons in proton–nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.
Progress of the Charged Pion Semi-Inclusive Neutrino Charged Current Cross Section in NOvA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsaris, Aristeidis
2017-10-09
The NOvA experiment is a long-baseline neutrino oscillation experiment designed to measure the rates of electron neutrino appearance and muon neutrino disappearance. The NOvA near detector is located at Fermilab, 800 m from the primary target and provides an excellent platform to measure and study neutrino-nucleus interactions. We present the status of the measurement of the double differential cross section with respect to muon kinematics for interactions involving charged pions in the final state,more » $$\
Challa, Chandrasekhar; Varughese, Sunil; Suresh, Cherumuttathu H; Lankalapalli, Ravi S
2017-08-18
A transformation of the unstrained phenol substituted 3,3'-diindolylmethanes (DIPMs) to 2,3'-diindolylketones (DIKs) by double C-C single bond cleavage with associated rearrangements, triggered by phenyliodine(III) diacetate (PIDA), is reported. Density functional theory studies reveal a mechanism involving multiple "charge-switching" steps by synergistic involvement of the two indole units with overall low activation energy. The indole 'charge-switching' mechanism in DIPMs was further extended toward synthesis of a natural product motif cyclohepta[b]indole from biaryl appended DIBM.
Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study
NASA Astrophysics Data System (ADS)
Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin
2018-04-01
A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
Biesheuvel, P M; Bazant, M Z
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Bazant, M. Z.
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djalali, Chaden; Paolone, Michael; Weygand, Dennis
2014-09-01
Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- feringmore » relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.« less
Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F
1999-03-09
The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.
NASA Astrophysics Data System (ADS)
King, Simon J.; Price, Stephen D.
2011-02-01
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
King, Simon J; Price, Stephen D
2011-02-21
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
Destruction of PAHs by X-Rays in circumnuclear regions of AGNs
NASA Astrophysics Data System (ADS)
Monfredini, T.; Wolff, W.; Boechat-Roberty, H. M.; Sales, D. A.; Pastoriza, M. G.
2017-07-01
Emission bands associated with PAH molecules are observed in the direction of some classes of AGNs like Seyfert 2, LINERs and obscured quasars (e.g. Kaneda et al., 2008, Sansigre et al., 2008 and Sales et al. 2013). The molecular stability in these environments suggest the presence of very dense gas (˜ 1023-24 cm-2) to shield the cloud of PAHs against X-ray radiation (Voit, 1992, Tielens, 2011, Sales et al., 2013). We examined the photochemistry of simple PAHs: naphtalene (C10H8), anthracene (C14H10), methyl-anthracene (C15H12) and pyrene (C16H10) at the photon energies of 275 eV, 310 eV, 1900 eV and 2500 eV in order to apply the findings at the AGN scenario. The absolute single and double photoionization and photodissociation cross sections were determined for each molecule at each energy. Their ionization and destruction induced by X-rays were examined in the conditions of the circumnuclear region of NGC 1808, a Seyfert 2 galaxy, where PAH emission was detected at 26 pc from the central object (Sales et al., 2013). It was verified the higher photostability of PAHs without functional groups attached. At higher photon energies, the results suggest a higher production yield of double charged PAHs in comparision with the single charged ones (e.g., 2 × higher for double ionized naphtalene at 2500 eV). The production of double charged molecules increase with the size of the molecules. We also discuss a minimum formation rate of PAH to balance the photodestruction rate and maintain a minimum density for their detection (e.g. 4,0× 10-7 M⊙ year-1 for a column density NH of 1023 cm-2 at 26 pc).
CCD Astrometric Measurements of Double Stars BAL 746, BPM 342, KU 92, and STF 897
NASA Astrophysics Data System (ADS)
Smith, Schuyler
2017-07-01
Double stars WDS 06589-0106 (BAL 746), WDS 06579+1430 (BPM 342), WDS 07006+0921 (KU 92), and WDS 06224+2640 (STF 897) were measured as part of a science fair project for the 2016 Greater San Diego Science and Engineering Fair. The goal was to measure the separation and position angles of stars by using a telescope with a charge-coupled device (CCD) on the iTelescope network. Five images were taken of each of the stars. These images were plate solved with Visual PinPoint and measured using Aladin Sky Atlas. Measurements for all five doubles compare well to the more recent values in the Washington Double Star Catalog.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871
It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.
Testing the Concept of Hypervalency: Charge Density Analysis of K[subscript 2]SO[subscript 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmøkel, Mette S.; Cenedese, Simone; Overgaard, Jacob
2012-10-25
One of the most basic concepts in chemical bonding theory is the octet rule, which was introduced by Lewis in 1916, but later challenged by Pauling to explain the bonding of third-row elements. In the third row, the central atom was assumed to exceed the octet by employing d orbitals in double bonding leading to hypervalency. Ever since, polyoxoanions such as SO{sub 4}{sup 2-}, PO{sub 4}{sup 3-}, and ClO{sub 4}{sup -} have been paradigmatic examples for the concept of hypervalency in which the double bonds resonate among the oxygen atoms. Here, we examine S-O bonding by investigating the charge densitymore » of the sulfate group, SO{sub 4}{sup 2-}, within a crystalline environment based both on experimental and theoretical methods. K{sub 2}SO{sup 4} is a high symmetry inorganic solid, where the crystals are strongly affected by extinction effects. Therefore, high quality, very low temperature single crystal X-ray diffraction data were collected using a small crystal (30 {micro}m) and a high-energy (30 keV) synchrotron beam. The experimental charge density was determined by multipole modeling, whereas a theoretical density was obtained from periodic ab initio DFT calculations. The chemical bonding was jointly analyzed within the framework of the Quantum Theory of Atoms In Molecules only using quantities derived from an experimental observable (the charge density). The combined evidence suggests a bonding situation where the S-O interactions can be characterized as highly polarized, covalent bonds, with the 'single bond' description significantly prevailing over the 'double bond' picture. Thus, the study rules out the hypervalent description of the sulfur atom in the sulfate group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The laboratory impacts at Idaho National Lab consist of neutron radiography reactor doubles throughput; electric vehicle wireless charging; assessing chemical weapons in Panama; hot cell window replacement; developing better batteries and other impacts.
Double heterojunction nanowire photocatalysts for hydrogen generation
NASA Astrophysics Data System (ADS)
Tongying, P.; Vietmeyer, F.; Aleksiuk, D.; Ferraudi, G. J.; Krylova, G.; Kuno, M.
2014-03-01
Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities. Electronic supplementary information (ESI) available: Details of NW syntheses, processing and characterization. Additional TEM images of CdS, CdSe and CdSe/CdS core/shell NWs. NW concentration and cross section estimates. Details of the Pt NP decoration. Additional TEM images of Pt NP decorated CdS, CdSe and CdSe/CdS core/shell NWs. Size distribution of Pt NPs for CdSe/Pt NP and CdSe/CdS/Pt NP NWs. Xe arc lamp spectrum. Details of H2 generation experiments. Estimated photon absorption rate. Details of TDA measurements. TDA spectra and kinetics of CdS and CdS/Pt NP NWs. Plot illustrating CdSe NW band edge bleach kinetics. Comparison of CdSe band edge bleach kinetics in CdSe/CdS core/shell NWs when excited at λexc = 387 nm and λexc = 560 nm. Comparison of CdSe band edge bleach kinetics in CdSe/Pt NP NWs when excited at λexc = 387 nm and λexc = 560 nm. Bar graph showing H2 generation efficiencies of CdS and CdS/Pt NP NWs. Bleach kinetics of CdSe/CdS/Pt NP NWs at λexc = 387 nm and λexc = 560 nm. Comparison of CdS band edge bleach kinetics in CdS/Pt NP, and CdSe/CdS core/shell NWs when excited at λexc = 387 nm. See DOI: 10.1039/c4nr00298a
Capacitance of the Double Layer Formed at the Metal/Ionic-Conductor Interface: How Large Can It Be?
NASA Astrophysics Data System (ADS)
Skinner, Brian; Loth, M. S.; Shklovskii, B. I.
2010-03-01
The capacitance of the double layer formed at a metal/ionic-conductor interface can be remarkably large, so that the apparent width of the double layer is as small as 0.3 Å. Mean-field theories fail to explain such large capacitance. We propose an alternate theory of the ionic double layer which allows for the binding of discrete ions to their image charges in the metal. We show that at small voltages the capacitance of the double layer is limited only by the weak dipole-dipole repulsion between bound ions, and is therefore very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the mean-field value.
Double-black-hole solutions of the Einstein-Maxwell-dilaton theory in five dimensions
NASA Astrophysics Data System (ADS)
Stelea, Cristian
2018-01-01
We describe a solution-generating technique that maps a static charged solution of the Einstein-Maxwell theory in four (or five) dimensions to a five-dimensional solution of the Einstein-Maxwell-Dilaton theory. As examples of this technique first we show how to construct the dilatonic version of the Reissner-Nordström solution in five dimensions and then we consider the more general case of the double black hole solutions and describe some of their properties. We found that in the general case the value of the conical singularities in between the black holes is affected by the dilaton's coupling constant to the gauge field and only in the particular case when all charges are proportional to the masses this dependence cancels out.
Charge Transfer in Saturation Doping of Double-Wall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Tchernatinsky, Alexander; Jayanthi, Chakram; Sumanasekera, Gamini; Wu, Shi-Yu
2004-03-01
Recent experimental evidences suggest that the outer tube of a double-wall carbon nanotube (DWCNT) may serve as a 'Faraday' cage (G. Chen, et al., Phys. Rev. Lett., 90, 257403 (2003)). In this presentation, we report the result of our systematic study of the effect of saturation doping of a (10,10) single-wall carbon nanotube, a (5,5)@(10,10) DWCNT, and a C_60@(10,10) peapod using DFT-based VASP computational package (G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993)). By comparing the resulting charge transfer of the above mentioned cases we shall provide the physics underlying the Faraday cage behavior of DWCNTs. Acknowledgments: This work was supported by the NSF (DMR-0112824) and the U.S.DOE (DE-FG02-00ER45832).
Carbon Redox-Polymer-Gel Hybrid Supercapacitors
Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.
2016-01-01
Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470
Effective charges and virial pressure of concentrated macroion solutions
Boon, Niels; Guerrero-García, Guillermo Ivan; van Roij, René; ...
2015-07-13
The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin-Landau-Verwey-Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arisemore » in concentrated suspensions. In this paper, we show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion-macroion spatial correlation and the virial pressure obtained with the EPC model. Finally, our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements.« less
Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda
2006-08-24
The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.
Bromine-doped DWNTs: A Molecular Faraday Cage
NASA Astrophysics Data System (ADS)
Chen, Gugang; Margine, Roxana; Gupta, Rajeev; Crespi, Vincent; Eklund, Peter; Sumanasekera, Gamini; Bandow, Shunji; Iijima, S.
2003-03-01
Raman scattering is used to probe the charge transfer distribution in Bromine-doped double-walled carbon nanotubes (DWNT). Using 1064 nm and 514.5 nm laser excitation we are able to study the charge-transfer sensitive phonons in the inner ( (5,5)) and outer ( (10,10)) tubes of the double-walled pair. The experimental results are compared to our tight binding band structure calculations that include a self-consistent electrostatic term sensitive to the average net charge density on each tube. Upon doping, the nanotube tangential and radial Raman bands from the outer (primary) tubes were observed to shift dramatically to higher frequencies, consistent with a C-C bond contraction driven by the acceptor-doping. The peak intensities of these bands significantly decreased with increasing doping exposure, and they eventually vanished, consistent with a deep depression in the Fermi energy that extinguishes the resonant Raman effect. Interestingly, at the same time, we observed little or no change for the tangential and radial Raman features identified with the inner (secondary) tubes during the bromine doping. Our electronic structure calculations show that the charge distribution between the outer and inner tubes depends on doping level and also, to some extent, on specific tube chirality combinations. In general, in agreement with experiment, the calculations find a very small net charge on the inner tube, consistent with a "Molecular Faraday Effect", e.g., a DWNT of (10, 10)/ (5, 5) configuration that exhibits 0.5 holes/Å total charge transfer, has only 0.04 holes/Å on the inner (secondary) tube.
Local Gate Control of a Carbon Nanotube Double Quantum Dot
2016-04-04
Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube
Spinning particles, axion radiation, and the classical double copy
NASA Astrophysics Data System (ADS)
Goldberger, Walter D.; Li, Jingping; Prabhu, Siddharth G.
2018-05-01
We extend the perturbative double copy between radiating classical sources in gauge theory and gravity to the case of spinning particles. We construct, to linear order in spins, perturbative radiating solutions to the classical Yang-Mills equations sourced by a set of interacting color charges with chromomagnetic dipole spin couplings. Using a color-to-kinematics replacement rule proposed earlier by one of the authors, these solutions map onto radiation in a theory of interacting particles coupled to massless fields that include the graviton, a scalar (dilaton) ϕ and the Kalb-Ramond axion field Bμ ν. Consistency of the double copy imposes constraints on the parameters of the theory on both the gauge and gravity sides of the correspondence. In particular, the color charges carry a chromomagnetic interaction which, in d =4 , corresponds to a gyromagnetic ratio equal to Dirac's value g =2 . The color-to-kinematics map implies that on the gravity side, the bulk theory of the fields (ϕ ,gμ ν,Bμ ν) has interactions which match those of d -dimensional "string gravity," as is the case both in the BCJ double copy of pure gauge theory scattering amplitudes and the KLT relations between the tree-level S -matrix elements of open and closed string theory.
Harańczyk, M.; Amsler, C.; Badertscher, A.; ...
2010-08-24
The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.
Characterizing SRAM Single Event Upset in Terms of Single and Double Node Charge Collection
NASA Technical Reports Server (NTRS)
Black, J. D.; Ball, D. R., II; Robinson, W. H.; Fleetwood, D. M.; Schrimpf, R. D.; Reed, R. A.; Black, D. A.; Warren, K. M.; Tipton, A. D.; Dodd, P. E.;
2008-01-01
A well-collapse source-injection mode for SRAM SEU is demonstrated through TCAD modeling. The recovery of the SRAM s state is shown to be based upon the resistive path from the p+-sources in the SRAM to the well. Multiple cell upset patterns for direct charge collection and the well-collapse source-injection mechanisms are then predicted and compared to recent SRAM test data.
NASA Astrophysics Data System (ADS)
Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela
2017-05-01
We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Klein, M.; Levine, R. D.
2016-07-14
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states correspondsmore » to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.« less
NASA Astrophysics Data System (ADS)
Liu, Donghui; Yong, Huadong; Zhou, Youhe
2017-11-01
No-insulation (NI) high-temperature superconducting (HTS) REBCO coil has been a promising candidate for manufacturing high-field superconducting magnets with high thermal stability and self-protecting features. When NI coil is operated at the external field, it is necessary to analyze charging and sudden-discharging characteristics of NI coil by considering the effect of magnetic field. In addition, the self-field effect has an obvious influence on the critical current for large-scale coil. Thus, an electromagnetic coupling model in which an equivalent circuit axisymmetric model considers the effect of magnetic field is proposed. The results show that when the radial current exists, the coil voltage and central field will tend to be stable faster. In a high field, the decrease of the critical current leads to the increase of radial current and this effect is more obvious for a larger field. And the charging time with the increase of the external field reduces significantly, while the sudden-discharging time is almost unchanged. For NI coils composed of many double-pancake coils, the charging time and sudden-discharging time proportionally increase with the increase of the number of double-pancake coil and turn number of single-pancake coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenikin, S. A.; Gaudreau, L.; Kataoka, K.
We demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication [T. M. Lu et al., Appl. Phys. Lett. 109, 093102 (2016)]. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triplemore » dot in a triangular configuration is induced leading to regions in the charge stability diagram where three addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart the single dot charge-senses the double dot with relative change of ~2% in the sensor current. We also highlight temporal drifting and metastability of the Coulomb oscillations. These effects are induced if the temperature environment of the device is not kept constant and arise from non-equilibrium charge redistribution and subsequent slow recovery.« less
Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.
2011-01-01
Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738
Anomalous mobility of highly charged particles in pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yinghua; Yang, Crystal; Hinkle, Preston
2015-07-16
Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments alsomore » indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.« less
NASA Astrophysics Data System (ADS)
Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh
2017-08-01
We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.
Detection of internal fields in double-metal terahertz resonators
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...
2017-02-06
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milnes, J. S., E-mail: james.milnes@photek.co.uk; Conneely, T. M.; Horsfield, C. J.
Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 10{sup 3} to 10{sup 4}more » for the single and 10{sup 4} to 10{sup 6} for the double. We have shown that the saturation level of ∼1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.« less
NASA Astrophysics Data System (ADS)
Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Müller, K.; Vučković, J.
2017-01-01
Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system.
Double layers and double wells in arbitrary degenerate plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less
Measurements of Induced-Charge Electroosmotic Flow Around a Metallic Rod
NASA Astrophysics Data System (ADS)
Beskok, Ali; Canpolat, Cetin
2012-11-01
A cylindrical gold-coated stainless steel rod was positioned at the center of a straight microchannel connecting two fluid reservoirs on either end. The microchannel was filled with 1 mM KCl containing 0.5 micron diameter carboxylate-modified spherical particles. Induced-charge electro-osmotic (ICEO) flow occurred around the metallic rod under a sinusoidal AC electric field applied using two platinum electrodes. The ICEO flows around the metallic rod were measured using micro particle image velocimetry (micro-PIV) technique as functions of the AC electric field strength and frequency. The present study provides experimental data about ICEO flow in the weakly nonlinear limit of thin double layers, in which, the charging dynamics of the double layer cannot be presented analytically. Flow around the rod is quadrupolar, driving liquid towards the rod along the electric field and forcing it away from the rod in the direction perpendicular to the imposed electric field. The measured ICEO flow velocity is proportional to the square of the electric field strength, and depends on the applied AC frequency.
NASA Astrophysics Data System (ADS)
Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.
A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.
DNA - peptide polyelectrolyte complexes: Phase control by hybridization
NASA Astrophysics Data System (ADS)
Vieregg, Jeffrey; Lueckheide, Michael; Marciel, Amanda; Leon, Lorraine; Tirrell, Matthew
DNA is one of the most highly-charged molecules known, and interacts strongly with charged molecules in the cell. Condensation of long double-stranded DNA is one of the classic problems of biophysics, but the polyelectrolyte behavior of short and/or single-stranded nucleic acids has attracted far less study despite its importance for both biological and engineered systems. We report here studies of DNA oligonucleotides complexed with cationic peptides and polyamines. As seen previously for longer sequences, double-stranded oligonucleotides form solid precipitates, but single-stranded oligonucleotides instead undergo liquid-liquid phase separation to form coacervate droplets. Complexed oligonucleotides remain competent for hybridization, and display sequence-dependent environmental response. We observe similar behavior for RNA oligonucleotides, and methylphosphonate substitution of the DNA backbone indicates that nucleic acid charge density controls whether liquid or solid complexes are formed. Liquid-liquid phase separations of this type have been implicated in formation of membraneless organelles in vivo, and have been suggested as protocells in early life scenarios; oligonucleotides offer an excellent method to probe the physics controlling these phenomena.
Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge
2012-10-04
Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.
Ha, Phuc Thi; Moon, Hyunsoo; Kim, Byung Hong; Ng, How Yong; Chang, In Seop
2010-03-15
An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict the current generation with respect to activation overvoltage. This model was then used to fit the transient cell voltage response to the current step change during the continuous operation of a flat-plate type MFC fed with acetate. Variations of the charge transfer resistance and the capacitance value with respect to the MFC design conditions (biocatalyst existence and electrode area) and operating parameters (acetate concentration and buffer strength in the catholyte) were then determined to elucidate the validity of the proposed method. This model was able to describe the dynamic behavior of the MFC during current change in the activation loss region; having an R(2) value of over 0.99 in most tests. Variations of the charge transfer resistance value (thousands of Omega) according to the change of the design factors and operational factors were well-correlated with the corresponding MFC performances. However, though the capacitance values (approximately 0.02 F) reflected the expected trend according to the electrode area change and catalyst property, they did not show significant variation with changes in either the acetate concentration or buffer strength. (c) 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zouros, T.J.M.; Wong, K.L.; Hidmi, H.I.
We have measured binary encounter electron production in collisions of 30 MeV O{sup q+} projectiles (q=4-8) and O{sub 2} targets. Measured double differential BEe cross-sections are found to increase with decreasing charge-state q, in agreement with similar previously reported zero-degree investigations for H{sub 2} and He targets. However, measurements for the same system but at 25{degrees} shows the opposite trend, that BEe cross sections decrease slightly with decreasing charge state.
Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig; ...
2016-11-01
Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig
Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.
78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... Office's The 2013 ONP Comparative Research Review Presentation of the Charge on Neutrino-less Double Beta... priorities within the field of basic nuclear science research. Tentative Agenda: Agenda will include...
Charge reversal at a planar boundary between two dielectrics.
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Charge reversal at a planar boundary between two dielectrics
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Double Electron Processes in Collisions of Partially Stripped Ions Cq+(q = 1-4) with Helium
NASA Astrophysics Data System (ADS)
Ding, Bao-Wei; Chen, Xi-Meng; Yu, De-Yang; Fu, Hong-Bin; Liu, Zhao-Yuan; Sun, Guang-Zhi; Liu, Yu-Wen; Lu, Yan-Xia; Xie, Jiang-Shan; Du, Juan; Gao, Zhi-Min; Chen, Lin; Cui, Ying; Shao, Jian-Xiong; He, Zi-Feng; Cai, Xiao-Hong
2007-01-01
The multi-electron processes are investigated for 17.9-120 keV/u C1+, 30-323 keV/u C2+, 120-438 keV/u C3+, 287-480 keV/u C4+ incident on a helium target. The cross-section ratios of double electron (DE) process to the total of the single electron (SE) and the double electron process (i.e. SE+DE), the direct double electron (DDI) to the direct single ionization (DSI) as well as the contributions of DDI to DE and of TI to DE are measured using coincidence techniques. The energy and charge state dependences of the measured cross-section ratios are studied and discussed.
Watson-Crick base pairing controls excited-state decay in natural DNA.
Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang
2014-10-13
Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soft pair excitations and double-log divergences due to carrier interactions in graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, L. S.
2018-03-01
Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.
Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P
2012-02-01
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.
High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey
2015-01-19
We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridizationmore » gap.« less
Three-Triplet Model with Double SU(3) Symmetry
DOE R&D Accomplishments Database
Han, M. Y.; Nambu, Y.
1965-01-01
With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regenerative power lapse and so on, have been important issues in DC railway feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. Electric double-layer capacitors (EDLC) can be charged and discharged rapidly in a short time with large power. On the other hand, a battery has a high energy density so that it is proper to be charged and discharged for a long time. Therefore, from a viewpoint of load pattern for electric railway, hybrid energy storage system combining both energy storage media may be effective. This paper introduces two methods for hybrid energy system theoretically, and describes the results of the fundamental tests.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
Application of a sodium sulfur cell with dynamic sulfur electrode to a battery system
NASA Astrophysics Data System (ADS)
Tokoi, H.; Takahashi, K.; Shimoyashiki, S.
1992-01-01
The construction and performance of a sodium sulfur battery system with dynamic sulfur electrodes are described. Three cells were first connected in parallel, then two such groups were connected in series. Each cell included a liquid sodium-filled beta-double-prime-alumina tube and a system to feed liquid sulfur into the annular cathode. Low-resistance graphite felt was tightly packed around the beta-double-prime-alumina tube. Sodium pentasulfide was removed from the sulfur electrode. The battery was operated automatically and stably charged and discharged in the two-phase region. The discharged energy was 4372 Wh (capacity 1170 Ah) during a continuous operation of 19.5 h. The discharge/charge energy efficiency of the battery was 82 percent at an averaged current density of 100 mA/sq cm and operating temperature of 350 C. The deviation of the cell current in a parallel chain was less than 7 percent, and this was induced by the difference in internal resistance. In the daily charge/discharge cycle, cell capacity with the dynamic sulfur electrode was 1.5 times higher than that with the static sulfur electrode using the same active surface of beta-double-prime-alumina, because the internal resistance of the former cell was constant regardless of cell capacity. This battery system with a dynamic sulfur electrode can be applied to energy storage systems,such as large scale load leveling systems, electric vehicle batteries, and solar energy systems.
Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group
NASA Astrophysics Data System (ADS)
Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.
2016-11-01
We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V., E-mail: krashevskaya-gv@mail.ru; Gogoleva, M. A., E-mail: masha-g@list.ru
2016-01-15
Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.
Overcharging and charge reversal in the electrical double layer around the point of zero charge.
Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo
2010-02-07
The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the energy-entropy balance. In the field of electrophoresis, it has been generally agreed that the charge of a colloid in motion is partially decreased by counterion adsorption. Depending on the location of the macroion's slipping surface, the OC results of this paper could imply an increase in the expected electrophoretic mobility. These observations aware about the interpretation of electrokinetic measurements using the standard Poisson-Boltzmann approximation beyond its validity region.
Atomistic and molecular effects in electric double layers at high surface charges
Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali
2015-06-16
Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less
Charge-Dissipative Electrical Cables
NASA Technical Reports Server (NTRS)
Kolasinski, John R.; Wollack, Edward J.
2004-01-01
Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.
Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A
2011-06-03
Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Latisov, Eduard; Kleesmaa, Juri; Siirde, Andres
2010-01-01
The goal of this paper is to estimate the effects of pollution charges, ash handling and of the carbon dioxide quota trade on the competitiveness of natural gas, oil shale, peat and wood chips in Estonia for 2010 and 2015. The pollution charges and levels are calculated based on the
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations.
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G
2015-08-28
We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0) MeV=(59.1±3.5) MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-08-01
We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
NASA Astrophysics Data System (ADS)
Ando, Yasunobu; Otani, Minoru
MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2014-12-01
It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.
NASA Astrophysics Data System (ADS)
Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke
2017-11-01
Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi
2007-10-01
We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.
A Van der Waals-like theory of plasma double layers
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, V. A.
1989-01-01
A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.
Non-mean-field theory of anomalously large double layer capacitance
NASA Astrophysics Data System (ADS)
Loth, M. S.; Skinner, Brian; Shklovskii, B. I.
2010-07-01
Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.
Capacitance of carbon-based electrical double-layer capacitors.
Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S
2014-01-01
Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.
Unravelling the electrochemical double layer by direct probing of the solid/liquid interface
Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.
2016-01-01
The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762
Macroscopic acoustoelectric charge transport in graphene
NASA Astrophysics Data System (ADS)
Bandhu, L.; Lawton, L. M.; Nash, G. R.
2013-09-01
We demonstrate macroscopic acoustoelectric transport in graphene, transferred onto piezoelectric lithium niobate substrates, between electrodes up to 500 μm apart. Using double finger interdigital transducers we have characterised the acoustoelectric current as a function of both surface acoustic wave intensity and frequency. The results are consistent with a relatively simple classical relaxation model, in which the acoustoelectric current is proportional to both the surface acoustic wave intensity and the attenuation of the wave caused by the charge transport.
Lepton mixing and the charged-lepton mass ratios
NASA Astrophysics Data System (ADS)
Jurčiukonis, Darius; Lavoura, Luís
2018-03-01
We construct a class of renormalizable models for lepton mixing that generate predictions given in terms of the charged-lepton mass ratios. We show that one of those models leads, when one takes into account the known experimental values, to almost maximal CP -breaking phases and to almost maximal neutrinoless double-beta decay. We study in detail the scalar potential of the models, especially the bounds imposed by unitarity on the values of the quartic couplings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragone, A; /SLAC; Pratte, J.F.
An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a goodmore » position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.« less
Full dyon excitation spectrum in extended Levin-Wen models
NASA Astrophysics Data System (ADS)
Hu, Yuting; Geer, Nathan; Wu, Yong-Shi
2018-05-01
In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.
NASA Astrophysics Data System (ADS)
Kato, Riku; Frusawa, Hiroshi
2015-07-01
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Kato, Riku; Frusawa, Hiroshi
2015-07-08
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Electrosorption capacitance of nanostructured carbon-based materials.
Hou, Chia-Hung; Liang, Chengdu; Yiacoumi, Sotira; Dai, Sheng; Tsouris, Costas
2006-10-01
The fundamental mechanism of electrosorption of ions developing a double layer inside nanopores was studied via a combination of experimental and theoretical studies. A novel graphitized-carbon monolithic material has proven to be a good electrical double-layer capacitor that can be applied in the separation of ions from aqueous solutions. An extended electrical double-layer model indicated that the pore size distribution plays a key role in determining the double-layer capacitance in an electrosorption process. Because of the occurrence of double-layer overlapping in narrow pores, mesopores and micropores make significantly different contributions to the double-layer capacitance. Mesopores show good electrochemical accessibility. Micropores present a slow mass transfer of ions and a considerable loss of double-layer capacitance, associated with a shallow potential distribution inside pores. The formation of the diffuse layer inside the micropores determines the magnitude of the double-layer capacitance at low electrolyte concentrations and at conditions close to the point of zero charge of the material. The effect of the double-layer overlapping on the electrosorption capacitance can be reduced by increasing the pore size, electrolyte concentration, and applied potential. The results are relevant to water deionization.
Electrochemical force microscopy
Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.
2017-01-10
A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.
NASA Astrophysics Data System (ADS)
Kar, J. K.; Panda, Saswati; Rout, G. C.
2017-05-01
We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.
Laboratory observation of multiple double layer resembling space plasma double layer
NASA Astrophysics Data System (ADS)
Alex, Prince; Arumugam, Saravanan; Sinha, Suraj
2017-10-01
Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.
Conductance of graphene-based double-barrier nanostructures.
Setare, M R; Jahani, D
2010-12-22
The effect of a mass gap on the conductance of graphene double-barrier heterojunctions is studied. By obtaining the 2D expression for the electronic transport of the low energy excitations of pure graphene through double-barrier systems, it is found that the conductivity of these structures does not depend on the type of charge carriers in the zones of the electric field. However, a finite induced gap in the graphene spectrum makes conductivity dependent on the energy band index. We also discuss a few controversies concerning double-barrier systems stemming from an improper choice of the scattering angle. Then it is observed that, for some special values of the incident energy and potential's height, graphene junctions behave like left-handed materials, resulting in a maximum value for the conductivity.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok
2008-03-01
Oxygen molecule adsorption on (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method. The most stable configuration corresponded to molecular dissociation with the oxygen atoms occupying neighboring three-fold hollow h3 sites. Chemisorption energies and adsorption geometries for the adsorbed species, and change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the oxygen molecule will be discussed. The effects of chemisorption on Am 5f electron localization-delocalization in the vicinity of the Fermi level and the reaction barrier calculation for the dissociation of oxygen molecule to the most stable h3 sites will be discussed.
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok
2008-03-01
Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorptions on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals (FLAPW+lo) method. The three-fold hollow hcp site was found to be the most stable site for H adsorption, while the two-fold bridge adsorption site was found to be the most stable site for O adsorption. Chemisorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the adatom will be discussed. The implications of chemisorption on Am 5f electron localization-delocalization will also be discussed.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2016-01-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
A molecular theory for optimal blue energy extraction by electrical double layer expansion
Kong, Xian; Gallegos, Alejandro; Lu, Diannan; ...
2015-08-19
We proposed the electrical double layer expansion (CDLE) as a promising alternative to reverse electrodialysis (RED) and pressure retarded osmosis (PRO) processes for extracting osmotic power generated by the salinity difference between freshwater and seawater. The performance of the CDLE process is sensitive to the configuration of porous electrodes and operation parameters for ion extraction and release cycles. In our work, we use a classical density functional theory (CDFT) to examine how the electrode pore size and charging/discharging potentials influence the thermodynamic efficiency of the CDLE cycle. The existence of an optimal charging potential that maximizes the energy output formore » a given pore configuration is predicted, which varies substantially with the pore size, especially when it is smaller than 2 nm. Finally, the thermodynamic efficiency is maximized when the electrode has a pore size about twice the ion diameter.« less
Heo, Jino; Hong, Chang-Ho; Kang, Min-Sung; Yang, Hyeon; Yang, Hyung-Jin; Hong, Jong-Phil; Choi, Seong-Gon
2017-11-02
We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.
Charge instability in double quantum dots in Ge/Si core/shell nanowires
NASA Astrophysics Data System (ADS)
Zarassi, Azarin; Su, Zhaoen; Schwenderling, Jens; Frolov, Sergey M.; Hocevar, Moïra; Nguyen, Binh-Minh; Yoo, Jinkyoung; Dayeh, Shadi A.
Controlling dephasing times are of great challenge in the studies of spin qubit. Reported long spin coherence time and predicted strong spin-orbit interaction of holes in Ge/Si core/shell nanowires, as well as their weak coupling to very few nuclear spins of these group IV semiconductors, persuade electrical spin control. We have established Pauli spin blockade in gate-tunable quantum dots formed in these nanowires. The g-factor has been measured and evidence of spin-orbit interaction has been observed in the presence of magnetic field. However, electrical control of spins requires considerable stability in the double dot configuration, and imperfectly these dots suffer from poor stability. We report on fabrication modifications on Ge/Si core/shell nanowires, as well as measurement techniques to suppress the charge instabilities and ease the way to study spin-orbit coupling and resolve electric dipole spin resonance.
Nuclear structure properties of the double-charge-exchange transition amplitudes
NASA Astrophysics Data System (ADS)
Auerbach, N.; Zheng, D. C.
1992-03-01
Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other nonanalog J π=0+ states. In particular, the question of the spin dependence and of the range of the DCX transition operators is explored and the behavior of the transition amplitudes as a function of the valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auerbach, Gibbs, and Piasetzky for a single j n configuration holds also in some cases when configuration mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from 56Fe to 56Ni are the subject of this study.
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less
A precision device needs precise simulation: Software description of the CBM Silicon Tracking System
NASA Astrophysics Data System (ADS)
Malygina, Hanna; Friese, Volker;
2017-10-01
Precise modelling of detectors in simulations is the key to the understanding of their performance, which, in turn, is a prerequisite for the proper design choice and, later, for the achievement of valid physics results. In this report, we describe the implementation of the Silicon Tracking System (STS), the main tracking device of the CBM experiment, in the CBM software environment. The STS makes uses of double-sided silicon micro-strip sensors with double metal layers. We present a description of transport and detector response simulation, including all relevant physical effects like charge creation and drift, charge collection, cross-talk and digitization. Of particular importance and novelty is the description of the time behaviour of the detector, since its readout will not be externally triggered but continuous. We also cover some aspects of local reconstruction, which in the CBM case has to be performed in real-time and thus requires high-speed algorithms.
NASA Astrophysics Data System (ADS)
Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat
2014-03-01
We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.
Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies
NASA Astrophysics Data System (ADS)
Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.
Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.
Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production
NASA Astrophysics Data System (ADS)
Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin
2018-02-01
In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.
Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful
2017-07-01
The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Yablonsky, A. N.; Morozov, S. V.
2014-11-28
In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2 μm) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiativemore » recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.« less
Experimental and Theoretical Investigations of Charged Phospholipid Bilayers.
NASA Astrophysics Data System (ADS)
Graham, Ian Stanley
1987-09-01
Lipid systems containing charged species are examined by both experiment and theory. Experimental studies of the mixing of phosphatidylcholine or phosphatidylethanolamine with phosphatidic acid show that calcium induces fast ( <=q1s) phase separation of these otherwise miscible systems, and that this can occur in an isolated bilayer. Ionogenic behaviour is theoretically investigated using a new electrolyte model which explicitly includes both the solvent and particle sizes, and a binding model which uses Guggenheim combinatorics to treat non 1-1 binding stoichiometries. This work predicts a reduced dielectric constant near charged surfaces and strong repulsive forces between closely spaced (<15A) surfaces. A reanalysis of data from charged monolayers experiments indicates (1) that the new electrolyte model describes double layer behaviour at high surface charge densities better than the traditional Derjaguin - Landau - Verwey - Overbeek (DLVO) theory, (2) that calcium and magnesium bind to phosphatidylserine monolayers with a 1-1 stoichiometry.
NASA Astrophysics Data System (ADS)
Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.
2018-05-01
We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.
NASA Astrophysics Data System (ADS)
Vargas-Barbosa, Nella M.; Roling, Bernhard
2018-05-01
The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.
Thermally driven spin-Seebeck transport in chiral dsDNA-based molecular devices
NASA Astrophysics Data System (ADS)
Nian, L. L.; Zhang, Rong; Tang, F. R.; Tang, Jun; Bai, Long
2018-03-01
By employing the nonequilibrium Green's function technique, we study the thermal-induced spin-Seebeck transport through a chiral double-stranded DNA (dsDNA) connected to a normal-metal and a ferromagnetic lead. How the main parameters of the dsDNA-based system influence the spin-Seebeck transport is analyzed at length, and the thermally created charge (spin-related) current displays the rectification effect and the negative differential thermal conductance feature. More importantly, the spin current exhibits the rectification behavior of the spin-Seebeck effect; even the perfect spin-Seebeck effect can be obtained with the null charge current. Thus, the chiral dsDNA-based system can act as a spin(charge)-Seebeck diode, spin(charge)-Seebeck switch, and spin(charge)-Seebeck transistor. Our results provide new ways to design spin caloritronic devices based on dsDNA or other organic molecules.
Fukuhara, Mikio; Sugawara, Kazuyuki
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC. PMID:24959106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear couplingmore » between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.« less
2012-01-01
Comparisons are made among Molecular Dynamics (MD), Classical Density Functional Theory (c-DFT), and Poisson–Boltzmann (PB) modeling of the electric double layer (EDL) for the nonprimitive three component model (3CM) in which the two ion species and solvent molecules are all of finite size. Unlike previous comparisons between c-DFT and Monte Carlo (MC), the present 3CM incorporates Lennard-Jones interactions rather than hard-sphere and hard-wall repulsions. c-DFT and MD results are compared over normalized surface charges ranging from 0.2 to 1.75 and bulk ion concentrations from 10 mM to 1 M. Agreement between the two, assessed by electric surface potential and ion density profiles, is found to be quite good. Wall potentials predicted by PB begin to depart significantly from c-DFT and MD for charge densities exceeding 0.3. Successive layers are observed to charge in a sequential manner such that the solvent becomes fully excluded from each layer before the onset of the next layer. Ultimately, this layer filling phenomenon results in fluid structures, Debye lengths, and electric surface potentials vastly different from the classical PB predictions. PMID:23316120
Zhu, Yuqi; Zhou, Ruiping; Wang, Lei; ...
2017-03-02
To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less
Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S
2015-01-01
The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond–microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called “reactive” intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. PMID:25488797
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuqi; Zhou, Ruiping; Wang, Lei
To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman
2017-06-01
Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.
NASA Astrophysics Data System (ADS)
Cho, Inhee; Huh, Keon; Kwak, Rhokyun; Lee, Hyomin; Kim, Sung Jae
2016-11-01
The first direct chronopotentiometric measurement was provided to distinguish the potential difference through the extended space charge (ESC) layer which is formed with the electrical double layer (EDL) near a perm-selective membrane. From this experimental result, the linear relationship was obtained between the resistance of ESC and the applied current density. Furthermore, we observed the step-wise distributions of relaxation time at the limiting current regime, confirming the existence of ESC capacitance other than EDL's. In addition, we proposed the equivalent electrokinetic circuit model inside ion concentration polarization (ICP) layer under rigorous consideration of EDL, ESC and electro-convection (EC). In order to elucidate the voltage configuration in chronopotentiometric measurement, the EC component was considered as the "dependent voltage source" which is serially connected to the ESC layer. This model successfully described the charging behavior of the ESC layer with or without EC, where both cases determined each relaxation time, respectively. Finally, we quantitatively verified their values utilizing the Poisson-Nernst-Planck equations. Therefore, this unified circuit model would provide a key insight of ICP system and potential energy-efficient applications.
Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S
2015-01-26
The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond-microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called "reactive" intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
NASA Astrophysics Data System (ADS)
Gruszko, J.; Majorana Collaboration
2017-09-01
The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.
Pivovarov, Sergey
2009-04-01
This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model.
On Practical Charge Injection at the Metal/Organic Semiconductor Interface
Kumatani, Akichika; Li, Yun; Darmawan, Peter; Minari, Takeo; Tsukagoshi, Kazuhito
2013-01-01
We have revealed practical charge injection at metal and organic semiconductor interface in organic field effect transistor configurations. We have developed a facile interface structure that consisted of double-layer electrodes in order to investigate the efficiency through contact metal dependence. The metal interlayer with few nanometers thickness between electrode and organic semiconductor drastically reduces the contact resistance at the interface. The improvement has clearly obtained when the interlayer is a metal with lower standard electrode potential of contact metals than large work function of the contact metals. The electrode potential also implies that the most dominant effect on the mechanism at the contact interface is induced by charge transfer. This mechanism represents a step forward towards understanding the fundamental physics of intrinsic charge injection in all organic devices. PMID:23293741
1983-03-08
Engineering Research Center in Xian Xian City, People’s Republic of China received June 9, 1981 Abstract This paper describes a process by which the screw... research , it is not only possible to satisfy a full range of design requirements, but also to produce double base propellant grains with continuous...arranged in a radial configuration by the application of an electrical charge. In recent years3 researches on the embedding of wires in propellant
Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.
Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H
1994-10-01
Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.
An impedance analysis of double-stream interaction in semiconductors
NASA Technical Reports Server (NTRS)
Chen, P. W.; Durney, C. H.
1972-01-01
The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.
On the modulation of the Jovian decametric radiation by Io. I - Acceleration of charged particles
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goertz, C. K.
1978-01-01
A steady-state analysis of the current circuit between Io and the Jovian ionosphere is performed, assuming that the current is carried by electrons accelerated through potential double layers in the Io flux tube. The circuit analysis indicates that electrons may be accelerated up to energies of several hundred keV. Several problems associated with the formation of double layers are also discussed. The parallel potential drops decouple the flux tube from the satellite's orbital motion.
Leinweber, Felix C; Tallarek, Ulrich
2005-11-24
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.
Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface
Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.
2009-01-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599
Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.
Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A
2009-05-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Quantum memory on a charge qubit in an optical microresonator
NASA Astrophysics Data System (ADS)
Tsukanov, A. V.
2017-10-01
A quantum-memory unit scheme on the base of a semiconductor structure with quantum dots is proposed. The unit includes a microresonator with single and double quantum dots performing frequencyconverter and charge-qubit functions, respectively. The writing process is carried out in several stages and it is controlled by optical fields of the resonator and laser. It is shown that, to achieve high writing probability, it is necessary to use high-Q resonators and to be able to suppress relaxation processes in quantum dots.
Inelastic black hole scattering from charged scalar amplitudes
NASA Astrophysics Data System (ADS)
Luna, Andrés; Nicholson, Isobel; O'Connell, Donal; White, Chris D.
2018-03-01
We explain how the lowest-order classical gravitational radiation produced during the inelastic scattering of two Schwarzschild black holes in General Relativity can be obtained from a tree scattering amplitude in gauge theory coupled to scalar fields. The gauge calculation is related to gravity through the double copy. We remove unwanted scalar forces which can occur in the double copy by introducing a massless scalar in the gauge theory, which is treated as a ghost in the link to gravity. We hope these methods are a step towards a direct application of the double copy at higher orders in classical perturbation theory, with the potential to greatly streamline gravity calculations for phenomenological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.
Wang, Xuanye; Christopher, Jason W; Swan, Anna K
2017-10-19
Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology
NASA Astrophysics Data System (ADS)
Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Nplqcd Collaboration
2017-08-01
The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the n n →p p transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology.
Shanahan, Phiala E; Tiburzi, Brian C; Wagman, Michael L; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J
2017-08-11
The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the nn→pp transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
Influence of nonelectrostatic ion-ion interactions on double-layer capacitance
NASA Astrophysics Data System (ADS)
Zhao, Hui
2012-11-01
Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse-charge dynamics of the double layer with ion specificity and steric effects.
Strongly nonlinear dynamics of electrolytes in large ac voltages.
Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik
2010-07-01
We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.
Why double-stranded RNA resists condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.
2014-09-15
The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexesmore » with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.« less
Theory of nanotube faraday cage
NASA Astrophysics Data System (ADS)
Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.
2003-03-01
Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.
Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors
NASA Astrophysics Data System (ADS)
Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu
2012-02-01
Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.
Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
NASA Astrophysics Data System (ADS)
Mi, X.; Cady, J. V.; Zajac, D. M.; Stehlik, J.; Edge, L. F.; Petta, J. R.
2017-01-01
We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g c / 2 π = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
Brummer, S B; Robblee, L S; Hambrecht, F T
1983-01-01
Smaller, more charge-intensive electrodes are needed for "safe" stimulation of the nervous system. In this paper we review critical concepts and the state of the art in electrodes. Control of charge density and charge balance are essential to avoid tissue electrolysis. Chemical criteria for "safe" stimulation are reviewed ("safe" is equated with "chemically reversible"). An example of a safe, but generally impractical, charge-injection process is double-layer charging. The limit here is the onset of irreversible faradaic processes. More charge can be safely injected with so-called "capacitor" electrodes, such as porous intermixtures of Ta/Ta2O5. BaTiO3 has excellent dielectric properties and may provide a new generation of capacitor electrodes. Faradaic charge injection is usually partially irreversible since some of the products escape into the solution. With Pt, up to 400 muc/cm2 real area can be absorbed by faradaic reactions of surface-adsorbed species, but a small part is lost due to metal dissolution. The surface of "activated" Ir is covered with a multilayer hydrated oxide. Charge injection occurs via rapid valence change within this oxide. Little or no metal dissolution is observed, and gassing limits are not exceeded even under stringent conditions.
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...
2017-06-21
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
A multiscale model for charge inversion in electric double layers
NASA Astrophysics Data System (ADS)
Mashayak, S. Y.; Aluru, N. R.
2018-06-01
Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.
Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.
Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk
2017-10-11
We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.
Mesoporous nanocrystalline film architecture for capacitive storage devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John
A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoesmore » a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).« less
“Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards
Paillat, Thierry; Touchard, Gerard; Bertrand, Yves
2012-01-01
At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2011-03-01
Using a high-statistics, high-purity sample of νμ-induced charged current, charged pion events in mineral oil (CH2), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CCπ+ cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities have been measured on a nuclear target and in the 1 GeV energy range.
NASA Astrophysics Data System (ADS)
Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian
2018-05-01
Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.
Carbon Dioxide Removal by Salty Aerosols
NASA Astrophysics Data System (ADS)
Gokturk, H.
2016-12-01
Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.
The Electrical Double Layer and Its Structure
NASA Astrophysics Data System (ADS)
Stojek, Zbigniew
At any electrode immersed in an electrolyte solution, a specific interfacial region is formed. This region is called the double layer. The electrical properties of such a layer are important, since they significantly affect the electrochemical measurements. In an electrical circuit used to measure the current that flows at a particular working electrode, the double layer can be viewed as a capacitor. Figure I.1.1 depicts this situation where the electrochemical cell is represented by an electrical circuit and capacitor C d corresponds to the differential capacity of the double layer. To obtain a desired potential at the working electrodes, the double-layer capacitor must be first appropriately charged, which means that a capacitive current, not related to the reduction or oxidation of the substrates, flows in the electrical circuit. While this capacitive current carries some information concerning the double layer and its structure, and in some cases can be used for analytical purposes, in general, it interferes with electrochemical investigations. A variety of methods are used in electrochemistry to depress, isolate, or filter the capacitive current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen
2013-06-15
Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of themore » frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.« less
NASA Astrophysics Data System (ADS)
Chaisantikulwat, W.; Mouis, M.; Ghibaudo, G.; Cristoloveanu, S.; Widiez, J.; Vinet, M.; Deleonibus, S.
2007-11-01
Double-gate transistor with ultra-thin body (UTB) has proved to offer advantages over bulk device for high-speed, low-power applications. There is thus a strong need to obtain an accurate understanding of carrier transport and mobility in such device. In this work, we report for the first time an experimental evidence of mobility enhancement in UTB double-gate (DG) MOSFETs using magnetoresistance mobility extraction technique. Mobility in planar DG transistor operating in single- and double-gate mode is compared. The influence of different scattering mechanisms in the channel is also investigated by obtaining mobility values at low temperatures. The results show a clear mobility improvement in double-gate mode compared to single-gate mode mobility at the same inversion charge density. This is explained by the role of volume inversion in ultra-thin body transistor operating in DG mode. Volume inversion is found to be especially beneficial in terms of mobility gain at low-inversion densities.
Unravelling the electrochemical double layer by direct probing of the solid/liquid interface
Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; ...
2016-08-31
The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzingmore » the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.« less
Period-doubling reconstructions of semiconductor partial dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ji -Sang; Huang, Bing; Wei, Su -Huai
2015-09-18
Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90 degrees partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantlymore » reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. In conclusion, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less
Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou
2017-10-01
The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.
Electromechanical Properties of Bone Tissue.
NASA Astrophysics Data System (ADS)
Regimbal, Raymond L.
Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus demonstrated that the major inorganic and organic phases of bone are electromechanically coupled, a thermodynamic consideration of the data suggests that the nature of the bond is to preserve mineral and organic phase electroneutralities by participating in electrical double layer interactions. The results are discussed in terms of bone mechanical modeling, electrokinetic properties, aging, tissue-implant compatibility and the etiologies of bone pathologic conditions.
Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase
NASA Astrophysics Data System (ADS)
Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis
2011-06-01
Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay of long-range electrostatic forces and local structural fluctuations in the control of proton movement and provide a physical explanation for the restoration of proton pumping activity in the double mutant.
QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †
Ni, Yang
2018-01-01
In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903
QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.
Ni, Yang
2018-02-14
In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.
NASA Astrophysics Data System (ADS)
Esmail, A. A.; Ferguson, A. J.; Lambert, N. J.
2017-12-01
We increase the isolation of a superconducting double dot from its environment by galvanically isolating it from any electrodes. We probe it using high frequency reflectometry techniques, find 2e-periodic behaviour, and characterise the energy structure of its charge states. By modelling the response of the device, we determine the time averaged probability that the device is poisoned by quasiparticles, and by comparing this with previous work, we conclude that quasiparticle exchange between the dots and the leads is an important relaxation mechanism.
Effects of ion concentration on thermally-chargeable double-layer supercapacitors
NASA Astrophysics Data System (ADS)
Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu
2013-11-01
The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.
Effects of ion concentration on thermally-chargeable double-layer supercapacitors.
Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu
2013-11-22
The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.
Tunable Kondo physics in a carbon nanotube double quantum dot.
Chorley, S J; Galpin, M R; Jayatilaka, F W; Smith, C G; Logan, D E; Buitelaar, M R
2012-10-12
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Evolution of structural and transport properties in Y-doped double perovskite Sr2FeIrO6
NASA Astrophysics Data System (ADS)
Kharkwal, K. C.; Pramanik, A. K.
2018-05-01
The structural and transport properties of Yttrium doped double perovskite Sr2FeIrO6 have been investigated. Structural properties have been investigated by means of x-ray diffraction measurement and Rietveld analysis. Structural transition has not been observed although lattice parameters evolve with the Yttrium doping. All samples have been found to be insulating over the whole temperature range where the resistivity increases with doping. This increase in resistivity with doping may be due to the change in charge state of transition metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.
The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.
Resonant pair tunneling in double quantum dots.
Sela, Eran; Affleck, Ian
2009-08-21
We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.
Impedance of an intense plasma-cathode electron source for tokamak startup
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.
2016-05-01
An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion
NASA Astrophysics Data System (ADS)
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-01
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-02
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Kuś, Tomasz; Krylov, Anna I
2011-08-28
The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Härtel, Andreas
2017-10-01
Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.
Edge effects in vertically-oriented graphene based electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa
2016-08-01
Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.
NASA Astrophysics Data System (ADS)
Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Mueller, K. M.; Vuckovic, J.
Although individual spins in quantum dots have been extensively used as qubits, their investigation under strong resonant driving in view of accessing Mollow physics is still an open question. We have grown high quality positively charged quantum dots (QD) embedded in a planar microcavity that enable enhanced light matter interactions. Applying a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above band and resonant excitation, we observe the formation of Mollow triplets. We investigate the regime where the Mollow sideband splittings are equal to the Zeeman splitting; we observe strong interactions between the Mollow sidebands of the inner transitions and the outer transitions in the form of very clear anticrossings. We investigated these anticrossings and we were able to modify the observed anticrossing splittings on demand by rotating the polarization of the resonant laser. We also developed a quantum-optical model of our system that fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of our positively charged quantum dot. The authors acknowledge financial support from the Army Research Office (Grant No. W911NF1310309) and support from the National Science Foundation, Division of Materials Research (Grant No. 1503759).
Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xingfei; Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn
2014-04-21
We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, whenmore » the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.« less
NASA Astrophysics Data System (ADS)
Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh
2018-05-01
Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.
Strategy for improved frequency response of electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi
2015-10-01
We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double- β Decay Phenomenology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.
The potential importance of short-distance nuclear effects in double-more » $$\\beta$$ decay is assessed using a lattice QCD calculation of the $$nn\\rightarrow pp$$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$$\\beta$$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$$\\beta$$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.« less
Cursory examination of the zeta potential behaviors of two optical materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.; Oja, T.
1992-01-02
When an oxide surface is placed in water, a difference in potential across the interface occurs due to dipole orientation. Hydroxyl groups or bound oxygen atoms on the oxide surface will orient adjacent water molecules which balance the dipole charge. This occurs over some small distance called the electrical double layer. Trace amounts of high field strength ions present in the vicinity of the double layer can have significant effects on the double layer. When there is movement of the oxide surface with respect to the water, a shearing of the double layer occurs. The electrical potential at this surfacemore » of shear is termed the zeta potential. The impetus for this study was to document the zeta potential behavior in water of two optical materials. (1) a multicomponent phosphate glass; and (2) Zerodur, a silicate glass-ceramic.« less
Smart membranes for nitrate removal, water purification, and selective ion transportation
Wilson, William D [Pleasanton, CA; Schaldach, Charlene M [Pleasanton, CA; Bourcier, William L [Livermore, CA; Paul, Phillip H [Livermore, CA
2009-12-15
A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.
Fragmentation network of doubly charged methionine: Interpretation using graph theory
NASA Astrophysics Data System (ADS)
Ha, D. T.; Yamazaki, K.; Wang, Y.; Alcamí, M.; Maeda, S.; Kono, H.; Martín, F.; Kukk, E.
2016-09-01
The fragmentation of doubly charged gas-phase methionine (HO2CCH(NH2)CH2CH2SCH3) is systematically studied using the self-consistent charge density functional tight-binding molecular dynamics (MD) simulation method. We applied graph theory to analyze the large number of the calculated MD trajectories, which appears to be a highly effective and convenient means of extracting versatile information from the large data. The present theoretical results strongly concur with the earlier studied experimental ones. Essentially, the dication dissociates into acidic group CO2H and basic group C4NSH10. The former may carry a single or no charge and stays intact in most cases, whereas the latter may hold either a single or a double charge and tends to dissociate into smaller fragments. The decay of the basic group is observed to follow the Arrhenius law. The dissociation pathways to CO2H and C4NSH10 and subsequent fragmentations are also supported by ab initio calculations.
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp
2015-02-23
Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less
Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7
NASA Astrophysics Data System (ADS)
Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo
2017-10-01
We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.
Villanova, John W; Barnes, Edwin; Park, Kyungwha
2017-02-08
Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.
An Ab Initio Exciton Model Including Charge-Transfer Excited States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Parrish, Robert M.; Liu, Fang
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao
2014-01-01
In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710
An Ab Initio Exciton Model Including Charge-Transfer Excited States
Li, Xin; Parrish, Robert M.; Liu, Fang; ...
2017-06-15
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; ...
2017-02-20
From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less
Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries
NASA Astrophysics Data System (ADS)
Le, Xuan Que; Nguyen, Phu Thuy
2002-12-01
As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.
An Ab Initio Exciton Model Including Charge-Transfer Excited States.
Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J
2017-08-08
The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.
Insight into the split and asymmetry of charge distribution in biased M-structure superlattice
NASA Astrophysics Data System (ADS)
Liu, Lu; Bi, Han; Zhao, Yunhao; Zhao, Xuebing; Han, Xi; Wang, Guowei; Xu, Yingqiang; Li, Yuesheng; Che, Renchao
2017-07-01
The charge distribution in real space of an insertion variant based on an InAs/GaSb superlattice for an infrared detector is illustrated by in situ electron microscopy. The localization split of positive charge can be directly observed in the InAs/GaSb/AlSb/GaSb superlattice (M-structure) rather than in the InAs/GaSb superlattice. With the applied bias increasing from 0 to 4.5 V, the double peaks of positive charge density become asymmetrical gradually, with the peak integral ratio ranging from 1.13 to 2.54. Simultaneously, the negative charges move along the direction of the negative electric field. Without inserting the AlSb layer, the charge inversion occurs in both the hole wells and the electron wells of the InAs/GaSb superlattice under high bias. Such a discrepancy between the M-structure superlattice and the traditional superlattice suggests an effective reduction of tunneling probability of the M-structure design. Our result is of great help to understand the carrier immigration mechanism of the superlattice-based infrared detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.
From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less
1976-06-01
clay coo candy chance clean(er) cook(ed) cane change clear cook(ing) cannon chap clerk cooky (ie)(s) cannot charge clever cool(er) canoe charm...deck donkey deed don’t deep door deer doorbell defeat doorknob defend doorstep defense dope delight dot den double dough dove down
CdS-pillared CoAl-layered double hydroxide nanosheets with superior photocatalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yanqiang; Lin, Bizhou, E-mail: bzlin@hqu.edu.cn; Jia, Fangcao
Graphical abstract: - Highlights: • CdS nanocrystals were intercalated into CoAl-LDH interlayer. • The nanohybrid display superior visible-light photocatalytic activity. • A photoexcitation model for the pillared heterostructured system was proposed. - Abstract: A new nanohybrid was synthesized by mixing the positively charged 2D nanosheets of CoAl-layered double hydroxide (CoAl-LDH) and the negatively charged CdS nanosol suspensions. It was revealed that the CdS nanoparticles were intercalated into the interlayer region of CoAl-LDH with a spacing of 2.62 nm. The obtained nanohybrid exhibited a mesoporous texture with an expanded specific surface area of 62 m{sup 2} g{sup −1} and a superiormore » photocatalytic activity in the degradation of acid red with a reaction constant of 1.26 × 10{sup −2} min{sup −1} under visible-light radiation, which is more than 2 times those of his parents CoAl-LDH and CdS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderschans, G.P.; Vanrijn, C.J.S.; Bleichrodt, J.F.
1975-11-01
When an aqueous solution of double-stranded deoxyribonucleic acid (DNA) of bacteriophage PM2 containing phenylalanine and saturated with N2O is irradiated with gamma rays, radiation induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA most of the phenylalanine radicals bound are nonlethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. Theremore » are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules. (Author) (GRA)« less
Bimodal behaviour of charge carriers in graphene induced by electric double layer
Tsai, Sing-Jyun; Yang, Ruey-Jen
2016-01-01
A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid. PMID:27464986
Al-zubaidi, Ayar; Ishii, Yosuke; Yamada, Saki; Matsushita, Tomohiro; Kawasaki, Shinji
2013-12-21
We investigated the changes in charge carrier density responsible for the dumbbell-like cyclic voltammogram of single-walled carbon nanotubes (SWCNTs) used as electric double layer capacitor electrodes. We utilized in situ Raman spectroscopy of SWCNTs in the potential range where the dumbbell voltammogram is observed and electric double layer charging would be the dominant mechanism. The study revealed that, unexpectedly, the spectroscopic changes coinciding with the dumbbell steps on the voltammogram occur more sharply in metallic tubes, as seen from (1) the sudden enhancement in the intensity of the BWF Breit-Wigner-Fano (BWF) feature, (2) a considerably more significant frequency upshift of G(+) and G' bands, and (3) a drop in radial breathing mode intensity, compared to those in the spectra of semiconducting tubes. In addition, the spectroscopic changes observed with open-end SWCNT samples were more defined and correlated more accurately with the electronic structure of the tubes compared to those observed with closed-end SWCNTs.
Boosted output performance of triboelectric nanogenerator via electric double layer effect
Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min
2016-01-01
For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm−2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed. PMID:27703165
Low-Temperature Supercapacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.
2008-01-01
An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.
2013-08-01
The largest sample ever recorded of ν¯μ charged-current quasielastic (CCQE, ν¯μ+p→μ++n) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section (d2σ)/(dTμdcosθμ) for ν¯μ CCQE for a mineral oil target. This measurement exploits the large statistics of the MiniBooNE antineutrino mode sample and provides the most complete information of this process to date. In order to facilitate historical comparisons, the flux-unfolded total cross section σ(Eν) and single-differential cross section (dσ)/(dQ2) on both mineral oil and on carbon are also reported. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intranuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.
NASA Astrophysics Data System (ADS)
Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup
2017-09-01
In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.
How to construct self/anti-self charge conjugate states for higher spins
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2012-10-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Diraclike and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
How to construct self/anti-self charge conjugate states?
NASA Astrophysics Data System (ADS)
Dvoeglazov, V. V.
2014-03-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G. J. Ni et al. on meson lifetimes.
How to Construct the Anti-Self Charge Conjugate States?
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2015-01-01
We construct self/anti-self charge conjugate (Majorana-like) states in the (1/2, 0) ⊕ (0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M.Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apollonio, M.; Chimenti, P.; Giannini, G.
2010-10-15
Measurements of the double-differential proton production cross-section d{sup 2{sigma}}/dpd{Omega} in the range of momentum 0.5 GeV/c{<=}p<8.0 GeV/c and angle 0.05 rad{<=}{theta}<0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum, and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARPmore » experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3,5,8, and 12 GeV/c). Measurements are compared with predictions of the geant4 and mars Monte Carlo generators.« less
Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)
NASA Astrophysics Data System (ADS)
Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal
2004-03-01
In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.
Plasmons in spatially separated double-layer graphene nanoribbons
NASA Astrophysics Data System (ADS)
Bagheri, Mehran; Bahrami, Mousa
2014-05-01
Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.
NASA Astrophysics Data System (ADS)
Béléké, Alexis Bienvenu; Higuchi, Eiji; Inoue, Hiroshi; Mizuhata, Minoru
2014-02-01
We report the durability of the optimized nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite prepared by liquid phase deposition (LPD) as cathode active materials in nickel metal hydride (Ni-MH) secondary battery. The positive electrode was used for charge-discharge measurements under two different current: 5 mA for 300 cycles in half-cell conditions, and 5.8 mA for 569 cycles in battery regime, respectively. The optimized Ni-Al LDH/C composite exhibits a good lifespan and stability with the capacity retention above 380 mA h gcomp-1 over 869 cycles. Cyclic voltammetry shows that the α-Ni(OH)2/γ-NiOOH redox reaction is maintained even after 869 cycles, and the higher current regime is beneficial in terms of materials utilization. X-ray diffraction (XRD) patterns of the cathode after charge and discharge confirms that the α-Ni(OH)2/γ-NiOOH redox reaction occurs without any intermediate phase.
Electron capture rates in stars studied with heavy ion charge exchange reactions
NASA Astrophysics Data System (ADS)
Bertulani, C. A.
2018-01-01
Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.
Induced-charge electroosmotic trapping of particles.
Ren, Yukun; Liu, Weiyu; Jia, Yankai; Tao, Ye; Shao, Jinyou; Ding, Yucheng; Jiang, Hongyuan
2015-05-21
Position-controllable trapping of particles on the surface of a bipolar metal strip by induced-charge electroosmotic (ICEO) flow is presented herein. We demonstrate a nonlinear ICEO slip profile on the electrode surface accounting for stable particle trapping behaviors above the double-layer relaxation frequency, while no trapping occurs in the DC limit as a result of a strong upward fluidic drag induced by a linear ICEO slip profile. By extending an AC-flow field effect transistor from the DC limit to the AC field, we reveal that fixed-potential ICEO exceeding RC charging frequency can adjust the particle trapping position flexibly by generating controllable symmetry breaking in a vortex flow pattern. Our results open up new opportunities to manipulate microscopic objects in modern microfluidic systems by using ICEO.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2010-12-01
A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.
Double gauge invariance and covariantly-constant vector fields in Weyl geometry
NASA Astrophysics Data System (ADS)
Kassandrov, Vladimir V.; Rizcallah, Joseph A.
2014-08-01
The wave equation and equations of covariantly-constant vector fields (CCVF) in spaces with Weyl nonmetricity turn out to possess, in addition to the canonical conformal-gauge, a gauge invariance of another type. On a Minkowski metric background, the CCVF system alone allows us to pin down the Weyl 4-metricity vector, identified herein with the electromagnetic potential. The fundamental solution is given by the ordinary Lienard-Wiechert field, in particular, by the Coulomb distribution for a charge at rest. Unlike the latter, however, the magnitude of charge is necessarily unity, "elementary", and charges of opposite signs correspond to retarded and advanced potentials respectively, thus establishing a direct connection between the particle/antiparticle asymmetry and the "arrow of time".
Modeling of electrochemical flow capacitors using Stokesian dynamics
NASA Astrophysics Data System (ADS)
Karzar Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter; Hatzell, Kelsey
2017-11-01
Electrochemical flow capacitors (EFCs) are supercapacitors designed to store electrical energy in the form of electrical double layer (EDL) near the surface of porous carbon particles. During its operation, a slurry of activated carbon beads and smaller carbon black particles is pumped between two flat and parallel electrodes. In the charging phase, ions in the electrolyte diffuse to the EDL, and electrical charges percolate through the dynamic network of particles from the flat electrodes; during the discharging phase, the process is reversed with the ions released to the bulk fluid and electrical charges percolating back through the network. In these processes, the relative motion and contact of particle of different sizes affect not only the rheology of the slurry but also charge transfer of the percolation network. In this study, we use Stoekesian dynamics simulation to investigate the role of hydrodynamic interactions of packed carbon particles in the charging/discharging behaviors of EFCs. We derived mobility functions for polydisperse spheres near a no-slip wall. A code is implemented and validated, and a simple charging model has been incorporated to represent charge transfer. Theoretical formulation and results demonstration will be presented in this talk.
Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
Wang, Yonggang; Song, Yanfang; Xia, Yongyao
2016-10-24
Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.
NASA Astrophysics Data System (ADS)
Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo
2018-04-01
We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.
Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene
NASA Astrophysics Data System (ADS)
Gonçalves, Norberto S.; Noda, Lúcia. K.
2017-10-01
In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.
Space charge enhanced plasma gradient effects on satellite electric field measurements
NASA Technical Reports Server (NTRS)
Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.
1991-01-01
It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.
Sancho-García, J C
2012-05-07
A set of N-heteroquinones, deriving from oligoacenes, have been recently proposed as n-type organic semiconductors with high electron mobilities in thin-film transistors. Generally speaking, this class of compounds self-assembles in neighboring π-stacks linked by weak hydrogen bonds. We aim at theoretically characterizing here the sequential charge transport (hopping) process expected to take place across these arrays of molecules. To do so, we need to accurately address the preferred packing of these materials simultaneously to single-molecule properties related to charge-transfer events, carefully employing dispersion-corrected density functional theory methods to accurately extract the key molecular parameters governing this phenomenon at the nanoscale. This study confirms the great deal of interest around these compounds, since controlled functionalization of model molecules (i.e., pentacene) allows to efficiently tune the corresponding charge mobilities, and the capacity of modern quantum-chemical methods to predict it after rationalizing the underlying structure-property relationships.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Misra, D.; Tribedi, L. C.
2007-09-01
We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Xuguang; Rischke, Dirk H.; Institut fuer Theoretische Physik, J.W. Goethe-Universitaet, D-60438 Frankfurt am Main
2011-02-15
The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predictedmore » {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.« less
Liu, Jie; Zhou, Jian
2016-08-01
Understanding the mechanism of the antimicrobial and antifouling properties of mixed charged materials is of great significance. The interactions between human gamma fibrinogen (γFg) and mixed carboxylic methyl ether-terminated (COOCH3-) and trimethylamino-terminated (N(CH3)3(+)-) SAMs and the influence of hydrolysis were studied by molecular simulations. After hydrolysis, the mixed SAMs exhibit behaviors from antimicrobial to antifouling, since the COOCH3-thiols were translated into carboxylic acid (COO(-)-) terminated thiols, which carried a net charge of -1 e. Simulation results showed that the main differences between COOCH3-/N(CH3)3(+)-SAM and COO(-)-/N(CH3)3(+)-SAM are the charged property and the hydration layer above the surface. γFg could stably adsorb on the positively-charged COOCH3-/N(CH3)3(+)-SAM. The adsorption behavior is mainly induced by the strong electrostatic attraction. There is a single hydration layer bound to the surface, which is related to the N(CH3)3(+) groups. The van der Waals repulsion between γFg and the single hydration layer are not strong enough to compensate the strong electrostatic attraction. After hydrolysis, the positively-charged SAM was transferred to a neutral mixed charged surface, the electrostatic attraction between γFg and the surface disappears. Meanwhile, the SAM surface is covered by double hydration layers, which is induced by the N(CH3)3(+) and COO(-) groups; water molecules around COO(-) groups are obviously denser than that around N(CH3)3(+) groups. With the combined contribution from double hydration layers and the vanishment of electrostatic attraction, γFg is forced to desorb from the surface. After hydrolysis, the internal structure of mixed SAM appears more ordered due to the electrostatic interactions between charged groups on the top of SAMs. The antimicrobial and antifouling materials are of great importance in many biological applications. The strong hydration property of surfaces and the interactions between proteins and surfaces play a key role in resisting protein adsorption. The mixed SAMs, constructed from a 1:1 combination of COOCH3- and N(CH3)3(+)-terminated thiols, can induce protein adsorption mainly through the electrostatic interaction. When the COOCH3-terminated thiols were hydrolyzed to negatively charged COO(-)-terminated thiols, the mixed-charged SAMs switched from antimicrobial to antifouling. Due to the strong hydration property of the mixed charged SAMs, the adsorbed γFg moved away from the surface. Understanding the interactions between protein and mixed-charged SAMs in the atomistic level is important for the practical design and development of new antimicrobial and antifouling materials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ionic liquids behave as dilute electrolyte solutions
Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.
2013-01-01
We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690
Explosive Joining for Nuclear-Reactor Repair
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bailey, J. W.
1983-01-01
In explosive joining technique, adapter flange from fuel channel machined to incorporate a V-notch interface. Ribbon explosive, 1/2 inch (1.3 cm) in width, drives V-notched wall of adapter into bellows assembly, producing atomic-level metallurgical bond. Ribbon charge yields joint with double parent metal strength.
Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Moosavi, Ali; Sadeghi, Arman
2017-12-01
Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any arbitrary cross section, nine nanogeometries including polygonal, trapezoidal, double-trapezoidal, rectangular, elliptical, semi-elliptical, isosceles triangular, rhombic, and isotropically etched profiles are selected for presentation. For the special case of an elliptic cross section, full analytical solutions are also obtained utilizing the Mathieu functions. We show that the geometrical configuration plays a key role in determination of the ionic conductance, surface charge density, electrical potential and velocity fields, and proton enhancement. In this respect, the net electric charge and convective ionic conductance are higher for channels of larger perimeter to area ratio, whereas the opposite is true for the average surface charge density and mean velocity; the geometry impact on the two latest ones, however, vanishes if the background salt concentration is high enough. Moreover, we demonstrate that considering a constant surface potential equal to the average charge-regulated potential provides sufficiently accurate results for smooth geometries such as an ellipse at medium-high aspect ratios but leads to significant errors for geometries having narrow corners such as a triangle.
NASA Astrophysics Data System (ADS)
Patrick, C. E.; Aliaga, L.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Han, J. Y.; Harris, D. A.; Henry, S.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nowak, G. M.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Peters, E.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Teklu, A. M.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Zhang, D.; Miner ν A Collaboration
2018-03-01
We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We include in our signal definition zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data that incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.
Structural and electronic properties of double-walled boron nitride nanocones
NASA Astrophysics Data System (ADS)
Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.
2018-01-01
First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.
Magnetoelectric effect in concentric quantum rings induced by shallow donor
NASA Astrophysics Data System (ADS)
Escorcia, R.; García, L. F.; Mikhailov, I. D.
2018-05-01
We study the alteration of the magnetic and electric properties induced by the off-axis donor in a double InAs/GaAs concentric quantum ring. To this end we consider a model of an axially symmetrical ring-like nanostructure with double rim, in which the thickness of the InAs thin layer is varied smoothly in the radial direction. The energies and of contour plots of the density of charge for low-lying levels we find by using the adiabatic approximation and the double Fourier-Bessel series expansion method and the Kane model. Our results reveal a possibility of the formation of a giant dipole momentum induced by the in-plane electric field, which in addition can be altered by of the external magnetic field applied along the symmetry axis.
Double-slit experiment in momentum space
NASA Astrophysics Data System (ADS)
Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.
2016-08-01
Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.
NASA Astrophysics Data System (ADS)
Chen, Xue; Wang, Zhi-Gang; Wang, Xi; Kuo, James B.
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61404110) and the National Higher-education Institution General Research and Development Project, China (Grant No. 2682014CX097).
Thermodynamics of rough colloidal surfaces
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Halsey, Thomas C.; Leibig, Michael
1991-03-01
In Debye-Hückel theory, the free energy of an electric double layer near a colloidal (or any other) surface can be related to the statistics of random walks near that surface. We present a numerical method based on this correspondence for the calculation of the double-layer free energy for an arbitrary charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of the free energy as a function of the screening length and the surface dimension. This scaling law is verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can test these predictions.
Validation of double Langmuir probe in-orbit performance onboard a nano-satellite
NASA Astrophysics Data System (ADS)
Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu
2018-03-01
Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.
NASA Astrophysics Data System (ADS)
Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.
2013-06-01
Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.
Magic angle for barrier-controlled double quantum dots
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
2018-01-01
We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.
NASA Astrophysics Data System (ADS)
Su, Ling-Hao; Zhang, Xiao-Gang
Co-Al layered double hydroxides (LDH) were synthesized from nitrates and sodium benzoate by direct coprecipitation, and heated at 600 °C for 3 h in argon gas flow to obtain Co-Al double oxides. The effect of carbon, created during the pyrolysis of benzoate and inserted in resulting double oxides, on structural reconstruction was investigated by X-ray diffraction, scanning electron microscope, Raman spectroscopy, and infrared spectroscopy techniques. It is horizontal arrangement rather than vertical dilayer orientation in the interlayer spacing that was adopted by benzoate. An abnormal phenomenon was found that when immersed in aqueous 6 M KOH solution in air, the double oxides restacked to Co-Al layered double hydroxides with more regular crystal than before. The reason is believed that carbon was confined in the matrix of resulting double oxides, which prevented further collapse of the layered structure. Cyclic voltammetries (CV) and constant current charge/discharge measurements reveal that the restacked Co-Al layered double hydroxide has good long-life capacitive performance with a capacitance up to 145 F g -1 even at a large current of 2 A g -1. In addition, two clear slopes in chronoampermetric test demonstrated two different diffusion coefficients, explaining the slope of about 118.4 mV in the plot of formal potential E f versus pOH.
Independent Manipulation of Topological Charges and Polarization Patterns of Optical Vortices
Yang, Ching-Han; Chen, Yuan-Di; Wu, Shing-Trong; Fuh, Andy Ying-Guey
2016-01-01
We present a simple and flexible method to generate various vectorial vortex beams (VVBs) with a Pancharatnam phase based on the scheme of double reflections from a single liquid crystal spatial light modulator (SLM). In this configuration, VVBs are constructed by the superposition of two orthogonally polarized orbital angular momentum (OAM) eigenstates. To verify the optical properties of the generated beams, Stokes polarimetry is developed to measure the states of polarization (SOP) over the transverse plane, while a Shack–Hartmann wavefront sensor is used to measure the OAM charge of beams. It is shown that both the simulated and the experimental results are in good qualitative agreement. In addition, polarization patterns and OAM charges of generated beams can be controlled independently using the proposed method. PMID:27526858
Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors
NASA Technical Reports Server (NTRS)
Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.
1993-01-01
Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.
Burch, J L; Cravens, T E; Llera, K; Goldstein, R; Mokashi, P; Tzou, C-Y; Broiles, T
2015-07-16
As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H - ions in the solar wind by double charge exchange with molecules in the coma.
Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite
NASA Astrophysics Data System (ADS)
Liu, Qiang; Nayfeh, Munir H.; Yau, Siu-Tung
A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg -1) and energy-storage (30 Wh kg -1) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles.
Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors
NASA Astrophysics Data System (ADS)
Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.
2017-12-01
Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.
Stress-Induced Resistive Switching in Pt/HfO2/Ti Devices
NASA Astrophysics Data System (ADS)
Zeevi, Gilad; Katsman, Alexander; Yaish, Yuval E.
2018-02-01
In the present work, we study the initial SET mechanism of resistive switching (RS) in Pt/HfO2/Ti devices under a static electrical stress and the RS mechanism under a bias sweeping mode with rates of 100 mV/s-300 mV/s. We characterize the thin HfO2 dielectric layer by x-ray photoelectron spectroscopy and x-ray diffraction. These findings show that the layer structure is stoichiometric and nanocrystalline with a crystal diameter of ˜ 14 Å. We measure the temporal dependence of the conductive filament growth at different temperatures and for various biases. Furthermore, these devices present stable bipolar resistive switching with a high-to-low resistive state (HRS/LRS) ratio of more than three orders of magnitude. Activation energy E RS ≈ 0.56 eV and drift current parameter V 0 ≈ 0.07 V were determined from the temporal dependence of the initial `SET' process, first HRS to LRS transition [for static electrical stress of V DS = (4.7-5.0 V)]. We analyze the results according to our model suggesting generation of double-charge oxygen vacancies at the anode and their diffusion across the dielectric layer. The double-charge vacancies transform to a single charge and then to neutral vacancies by capturing hot electrons, and form a conductive filament as soon as a critical neutral-vacancy cluster is formed across the dielectric layer.
Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha
2018-01-30
Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.
NASA Astrophysics Data System (ADS)
Gokhshtein, Aleksandr Ya
2000-07-01
The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.
"Squishy capacitor" model for electrical double layers and the stability of charged interfaces.
Partenskii, Michael B; Jordan, Peter C
2009-07-01
Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.
Repulsion Between Finite Charged Plates with Strongly Overlapped Electric Double Layers.
Ghosal, Sandip; Sherwood, John D
2016-09-20
Screened Coulomb interactions between uniformly charged flat plates are considered at very small plate separations for which the Debye layers are strongly overlapped, in the limit of small electrical potentials. If the plates are of infinite length, the disjoining pressure between the plates decays as an inverse power of the plate separation. If the plates are of finite length, we show that screening Debye layer charges close to the edge of the plates are no longer constrained to stay between the plates, but instead spill out into the surrounding electrolyte. The resulting change in the disjoining pressure is calculated analytically: the force between the plates is reduced by this edge correction when the charge density is uniform over the surface of the plates, and is increased when the surface is at constant potential. A similar change in disjoining pressure due to loss of lateral confinement of the Debye layer charges should occur whenever the sizes of the interacting charged objects become small enough to approach the Debye scale. We investigate the effect here in the context of a two-dimensional model problem that is sufficiently simple to yield analytical results.
Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less
Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...
2017-01-27
Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less
Spectrally resolved single-molecule electrometry
NASA Astrophysics Data System (ADS)
Ruggeri, F.; Krishnan, M.
2018-03-01
Escape-time electrometry is a recently developed experimental technique that offers the ability to measure the effective electrical charge of a single biomolecule in solution with sub-elementary charge precision. The approach relies on measuring the average escape-time of a single charged macromolecule or molecular species transiently confined in an electrostatic fluidic trap. Comparing the experiments with the predictions of a mean-field model of molecular electrostatics, we have found that the measured effective charge even reports on molecular conformation, e.g., folded or disordered state, and non-uniform charge distribution in disordered proteins or polyelectrolytes. Here we demonstrate the ability to use the spectral dimension to distinguish minute differences in electrical charge between individual molecules or molecular species in a single simultaneous measurement, under identical experimental conditions. Using one spectral channel for referenced measurement, this kind of photophysical distinguishability essentially eliminates the need for accurate knowledge of key experimental parameters, otherwise obtained through intensive characterization of the experimental setup. As examples, we demonstrate the ability to detect small differences (˜5%) in the length of double-stranded DNA fragments as well as single amino acid exchange in an intrinsically disordered protein, prothymosin α.
Topological charges in SL(2,R) covariant massive 11-dimensional and type IIB supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callister, Andrew K.; Smith, Douglas J.
2009-12-15
In this paper we construct closed expressions that correspond to the topological charges of the various 1/2-BPS states of the maximal 10- and 11-dimensional supergravity theories. These expressions are related to the structure of the supersymmetry algebras in curved spacetimes. We mainly focus on IIB supergravity and 11-dimensional supergravity in a double M9-brane background, with an emphasis on the SL(2,R) multiplet structure of the charges and how these map between theories. This includes the charges corresponding to the multiplets of 7- and 9-branes in IIB. We find that examining the possible multiplet structures of the charges provides another tool formore » exploring the spectrum of BPS states that appear in these theories. As a prerequisite to constructing the charges we determine the field equations and multiplet structure of the 11-dimensional gauge potentials, extending previous results on the subject. The massive gauge transformations of the fields are also discussed. We also demonstrate how these massive gauge transformations are compatible with the construction of an SL(2,R) covariant kinetic term in the 11-dimensional Kaluza-Klein monopole worldvolume action.« less
Electrostatic effects on the folding stability of FKBP
NASA Astrophysics Data System (ADS)
Batra, Jyotica; Zhou, Huan-Xiang
2006-11-01
Charged residues play important roles in the folding of proteins and their interactions with biological targets. We have developed computational models for predicting electrostatic contributions to protein folding and binding stability. To rigorously test and further refine these models, we carried out experimental studies on the effects of charge mutations on the folding stability of FKBP. Two close homologues of FKBP, FKBP12 and FKBP12.6, differ in 18 of 107 positions, and 8 of which involve substitutions of charged residues. These 8 substitutions were introduced on FKBP12 and their effects on the folding stability were measured. The changes in unfolding free energy varied from -0.34 to 0.65 kcal/mol. A double and a triple mutation were introduced to accumulate the stabilization effect of individual substitutions, resulting an increase in stability of about 0.84 kcal/mol. On the other hand, neutralizing one or both partners of a conserved salt bridge reduced the stability by as much as 0.64 kcal/mol. These results suggest that charged residues can modulate the folding stability significantly. To further exploit stabilization effects of charged residues, experiments are now underway to introduce charge mutations that are modeled after a thermophilic FKBP.
Monte Carlo simulations of polyelectrolytes inside viral capsids.
Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per
2006-04-01
Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.
Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.
Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A
2018-06-01
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.
2008-01-01
Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.
Double ion production in mercury thrusters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Peters, R. R.
1976-01-01
The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.
Positive zeta potential of a negatively charged semi-permeable plasma membrane
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha
2017-08-01
The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.
Determination of A FB b at the Z pole using inclusive charge reconstruction and lifetime tagging
NASA Astrophysics Data System (ADS)
DELPHI Collaboration
2005-03-01
A novel high precision method measures the b-quark forward-backward asymmetry at the Z pole on a sample of 3,560,890 hadronic events collected with the DELPHI detector in 1992 to 2000. An enhanced impact parameter tag provides a high purity b sample. For event hemispheres with a reconstructed secondary vertex the charge of the corresponding quark or anti-quark is determined using a neural network which combines in an optimal way the full available charge information from the vertex charge, the jet charge and from identified leptons and hadrons. The probability of correctly identifying b-quarks and anti-quarks is measured on the data themselves comparing the rates of double hemisphere tagged like-sign and unlike-sign events. The b-quark forward-backward asymmetry is determined from the differential asymmetry, taking small corrections due to hemisphere correlations and background contributions into account. The results for different centre-of-mass energies are: A_{FB}^{{b}} (89.449 GeV) = 0.0637 ± 0.0143(stat.) ± 0.0017(syst.)
Uskoković, Vuk; Odsinada, Roselyn; Djordjevic, Sonia; Habelitz, Stefan
2011-01-01
The concept of zeta-potential has been used for more than a century as a basic parameter in controlling the stability of colloidal suspensions, irrespective of the nature of their particulate ingredients – organic or inorganic. There are prospects that self-assembly of peptide species and the protein-mineral interactions related to biomineralization may be controlled using this fundamental physicochemical parameter. In this study, we have analyzed the particle size and zeta-potential of the full-length recombinant human amelogenin (rH174), the main protein of the developing enamel matrix, in the presence of calcium and phosphate ions and hydroxyapatite (HAP) particles. As calcium and phosphate salts are introduced to rH174 sols in increments, zeta-potential of the rH174 nanospheres is more affected by negatively charged ions, suggesting their tendency to locate within the double charge layer. Phosphate ions have a more pronounced effect on both the zeta-potential and aggregation propensity of rH174 nanospheres compared to calcium ions. The isoelectric point of amelogenin was independent on the ionic strength of the solution and the concentration of calcium and/or phosphate ions. Whereas rH174 shows a higher affinity for phosphate than for calcium, HAP attracts both of these ions to the shear plane of the double layer. The parallel size and zeta-potential analysis of HAP and rH174 colloidal mixtures indicated that at pH 7.4, despite both HAP and rH174 particles being negatively charged, rH174 adsorbs well onto HAP particles. The process is slower at pH 7.4 than at pH 4.5 when the HAP surface is negatively charged and the rH174 nanosphere carries an overall positive charge. The results presented hereby demonstrate that electrostatic interactions can affect the kinetics of the adsorption of rH174 onto HAP. PMID:21146151
An, Ran; Massa, Katherine
2014-01-01
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position. PMID:25553200
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb
2012-01-01
Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp
We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less
The study on a gas-coupled two-stage stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.
2017-12-01
A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.
Wang, Shuzheng; Cai, Jin; Ding, Wande; Xu, Zhinan; Wang, Zhining
2015-01-01
We demonstrated a novel AquaporinZ (AqpZ)-incorporated double-skinned forward osmosis (FO) membrane by layer-by-layer (LbL) assembly strategy. Positively charged poly(ethyleneimine) (PEI) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were alternately deposited on both the top and bottom surfaces of a hydrolyzed polyacrylonitrile (H-PAN) substrate. Subsequently, an AqpZ-embedded 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium- propane (chloride salt) (DOTAP) supported lipid bilayer (SLB) was formed on PSS-terminated (T-PSS) membrane via vesicle rupture method. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), scanning electron microscope (SEM), Fourier transform infrared spectrometer using the attenuated total reflection technique (ATR-FTIR), and contact angle. Moreover, the FO performance of the resultant membrane was measured by using 2 M MgCl2 solution as draw solution and deionized (DI) water as feed solution, respectively. The membrane with a protein-to-lipid weight ratio (P/L) of 1/50 exhibits 13.2 L/m2h water flux and 3.2 g/m2h reversed flux by using FO mode, as well as 15.6 L/m2h water flux and 3.4 L/m2h reversed flux for PRO mode (the draw solution is placed against the active layer). It was also shown that the SLB layer of the double-skinned FO membrane can increase the surface hydrophilicity and reduce the surface roughness, which leads to an improved anti-fouling performance against humic acid foulant. The current work introduced a new method of fabricating high performance biomimetic FO membrane by combining AqpZ and a double-skinned structure based on LbL assembly. PMID:26266426
A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies.
Helmich, Benjamin; Hättig, Christof
2013-08-28
We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N(5)) scaling of the PNO construction is reduced by using orbital-specific virtuals (OSVs) as an intermediate step without spoiling the initial accuracy of the PNO method. Furthermore, a slower error convergence for charge-transfer states is analyzed and resolved by a numerical Laplace transformation during the PNO construction, so that an equally accurate treatment of local and charge-transfer excitations is achieved. With state-specific truncated PNO expansions, the eigenvalue problem is solved by combining the Davidson algorithm with deflation to project out roots that have already been determined and an automated refresh with a generation of new PNOs to achieve self-consistency of the PNO space. For a large test set, we found that truncation errors for PNO-CC2 excitation energies are only slightly larger than for PNO-CIS(D). The computational efficiency of PNO-CC2 is demonstrated for a large organic dye, where a reduction of the doubles space by a factor of more than 1000 is obtained compared to the canonical calculation. A compression of the doubles space by a factor 30 is achieved by a unified OSV space only. Moreover, calculations with the still preliminary PNO-CC2 implementation on a series of glycine oligomers revealed an early break even point with a canonical RI-CC2 implementation between 100 and 300 basis functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Qiao, Weiye; Li, Yuliang
The structure stabilities and electronic properties are investigated by using ab initio self-consistent-field crystal orbital method based on density functional theory for the one-dimensional (1D) double-wall nanotubes made of n-gon SiO{sub 2} nanotubes encapsulated inside zigzag carbon nanotubes. It is found that formation of the combined systems is energetically favorable when the distance between the two constituents is around the Van der Waals scope. The obtained band structures show that all the combined systems are semiconductors with nonzero energy gaps. The frontier energy bands (the highest occupied band and the lowest unoccupied band) of double-wall nanotubes are mainly derived frommore » the corresponding carbon nanotubes. The mobilities of charge carriers are calculated to be within the range of 10{sup 2}–10{sup 4} cm{sup 2} V{sup −1} s{sup −1} for the hybrid double-wall nanotubes. Young’s moduli are also calculated for the combined systems. For the comparison, geometrical and electronic properties of n-gon SiO{sub 2} nanotubes are also calculated and discussed. - Graphical abstract: Structures and band structures of the optimum 1D Double walls nanotubes. The optimized structures are 3-gon SiO2@(15,0), 5-gon SiO2@(17,0), 6-gon SiO2@(18,0) and 7-gon SiO2@(19,0). - Highlights: • The structure and electronic properties of the 1D n-gon SiO{sub 2}@(m,0)s are studied using SCF-CO method. • The encapsulation of 1D n-gon SiO{sub 2} tubes inside zigzag carbon nanotubes can be energetically favorable. • The 1D n-gon SiO{sub 2}@(m,0)s are all semiconductors. • The mobility of charge carriers and Young’s moduli are calculated.« less
Simulation of bipolar charge transport in nanocomposite polymer films
NASA Astrophysics Data System (ADS)
Lean, Meng H.; Chu, Wei-Ping L.
2015-03-01
This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.
Moderate temperature rechargeable NaNiS2 cells
NASA Technical Reports Server (NTRS)
Abraham, K. M.
1983-01-01
A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.
Control of excitons in multi-layer van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.
2016-03-07
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
On the cos ϕh asymmetry in electroproduction of pions in double longitudinally polarized process
NASA Astrophysics Data System (ADS)
Mao, Wenjuan; Wang, Xiaoyu; Du, Xiaozhen; Lu, Zhun; Ma, Bo-Qiang
2016-01-01
We study the cos ϕh azimuthal asymmetry in double polarized semi-inclusive pion production by considering the twist-3 effects directly from a quark-quark correlator. In particular, we evaluate the role of the transverse momentum dependent distributions eL (x, k T2) and gL⊥ (x, kT2) on the asymmetry. Using two different sets of spectator model results for these distributions, we predict the cos ϕh asymmetry of π+, π-, and π0 at the kinematic configuration available at CLAS, HERMES. Our estimate shows that the asymmetries for charged and neutral pions are sizable and could be accessed by CLAS and HERMES. We also calculate the asymmetries for charged hadrons at the kinematics of COMPASS and compare them with the experimental data. We find that the asymmetry at COMPASS in our model is small which is consistent with the COMPASS data. We also find that gL⊥ gives the dominant contribution to the cos ϕh asymmetry, while the contribution of eL is almost negligible.
DNA fragmentation by charged particle tracks.
Stenerlow, B; Hoglund, E; Carlsson, J
2002-01-01
High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons (60Co) or 125 keV/micrometers nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos
A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.
Electrohydrodynamic channeling effects in narrow fractures and pores
NASA Astrophysics Data System (ADS)
Bolet, Asger; Linga, Gaute; Mathiesen, Joachim
2018-04-01
In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.
Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin
2014-07-15
A facile simple hydrothermal method combined with a post-solution reaction is developed to grow interconnected three dimensional (3D) hierarchical Co-Al layered double hydroxides (LDHs) on reduced graphene oxide (rGO). The obtained 3D hierarchical rGO-LDHs are characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photo-electron spectroscopy. As LDHs nanosheets directly grow on the surface of rGO via chemical covalent bonding, the rGO could provide facile electron transport paths in the electrode for the fast Faradaic reaction. Moreover, benefiting from the rational 3D hierarchical structural, the rGO-LDHs demonstrate excellent electrochemical properties with a combination of high charge storage capacitance, fast rate capability and stable cycling performance. Remarkably, the 3D hierarchical rGO-LDHs exhibit specific capacitance values of 599 F g(-1) at a constant current density of 4 A g(-1). The rGO-LDHs also show high charge-discharge reversibility with an efficiency of 92.4% after 5000 cycles. Copyright © 2014 Elsevier Inc. All rights reserved.
Ultrafast electronic dynamics driven by nuclear motion
NASA Astrophysics Data System (ADS)
Vendrell, Oriol
2016-05-01
The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.
X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonov,A.
The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less
Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells
Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang
2016-01-01
Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055