Science.gov

Sample records for pipe energy transport

  1. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    SciTech Connect

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  2. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  3. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  4. Route Planning and Estimate of Heat Loss of Hot Water Transportation Piping for Fuel Cell Local Energy Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    The method of supplying the electric power and heat energy for the energy demand of buildings by Centralized system type and distributed system type of fuel cell network is studied. The hot-water piping route planning program of fuel cell network was developed by using genetic algorithm based on the view of TSP ( Traveling salesman problem) . In this program, the piping route planning which minimizes the quantity of heat loss in hot-water piping can be performed. The residential section model of Sapporo city of 74 buildings was analyzed, and the quantity of heat loss from the hot-water piping of both systems was estimated. Consequently, the ratio of the quantity of heat loss of a distributed system to a centralized system was about 50% in the full year average. This program is introduced into the route planning of hot- Water piping system of the fuel cell network, and plan to reduce the quantity of heat loss in a distributed system will be made.

  5. Long Heat Pipe Transports 2.6 kW

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.; Dubble, E. H.; Copenhaver, R. L.

    1984-01-01

    High-capacity heat pipe employs slender artery-and-wick structure. Ribbon of stainless steel screen wrapped around copper mandrel in conical copper forming tool. Outside edge of wrapped screen welded to layer on which it rests. Long heat pipe transports thermal energy at rate of 2,600 watts at operating temperature of 923 K.

  6. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    SciTech Connect

    Polansky, G.F.; Gunther, N.A.; Rochow, R.F.; Bixler, C.H.

    1995-05-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

  7. Stratification transients in steam transporting pipes

    SciTech Connect

    Ibrahim, Z.N.

    1996-12-01

    Thermal stratification may occur in horizontal piping segments due to temperature difference and lack of mixing between fluid layers. This results in nonuniform temperature transient profiles across the pipe sections that escalates the low cycle fatigue degradation of the concerned piping system. In the specific case of steam transporting pipes, the incipient warmup after a prolonged cold shutdown would result in steam condensation on the pipe walls. The temperature of accumulated condensate at the bottom of horizontal pipe segments is initially cooler than that of incoming hot steam flowing above it. In addition, the saturated steam high heat flux transfer, as it condenses on the upper portions of the pipe wall, is at least two orders of magnitude higher than the heat flux at the condensate-covered wetted bottom wall of the pipe. This condition generates stratified temperature transient profiles across the horizontal pipe sections. In this paper, the complex phenomenon of the thermal stratification in steam transporting pipes is parametrically investigated. The severity of the thermal stratification transients depends upon parameters such as pressure, steam quality, drainage efficiency, pipe size, material, and routing. The author used simplified finite difference heat transfer models to investigate the influences of these parameters. The resulting maximum linear, nonlinear, and average top to bottom temperature distributions are presented. The associated decay level at 1,000 seconds is also presented. In this paper, basic formulations used in the simplified finite difference heat transfer thermal stratification modeling are introduced. The parametric investigations are intended to provide the piping design engineers with load estimates resulting from the thermal stratification in steam transporting pipes.

  8. Alpha characterization inside pipes using ion-transport technology

    NASA Astrophysics Data System (ADS)

    Rojas, S. P.; Rawool-Sullivan, M. W.; Williams, K. G.; Vaccarella, J. A.

    Many DOE facilities have several miles of waste pipe systems that are internally contaminated with various and often undetermined radio nuclides. Unfortunately, currently acceptable alpha detection technologies are inefficient, time consuming, and do not address the problems presented by small diameter or curved pipes. In general, the problem of detecting alpha contamination on the inside surface of pipes is complicated by the fact that alphas do not penetrate the pipe walls. Unlike their conventional counterparts, alpha detectors based on ion transport technology sense alpha particles by collecting the ions created in ambient air as the particle loses its kinetic energy. The ions inside the pipe are transported by a fan-generated air current to an electrode inside the detector, which is attached to one end of the pipe. The collected charge at the electrode is proportional to the number of ions created inside the pipe, which in turn is proportional to the number of alphas emitted. Typically, monitoring for alpha contamination inside pipes or ductwork involves disrupting the operation to access as much surface area as possible for standard alpha monitoring. The detector based on ion transport technology effectively minimizes such disruption and in many circumstances will allow for in situ monitoring of a system that might otherwise not be practically accessible to standard methods.

  9. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  10. 49 CFR 195.207 - Transportation of pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... thickness ratio of 70 to 1, or more, that is transported by railroad unless the transportation is performed... PIPELINE Construction § 195.207 Transportation of pipe. (a) Railroad. In a pipeline operated at a hoop... pipe having an outer diameter to wall thickness ratio of 70 to 1, or more, that is transported by...

  11. High Energy Vibration for Gas Piping

    NASA Astrophysics Data System (ADS)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  12. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    NASA Technical Reports Server (NTRS)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    Hydrogen and chemical heat pipes were proposed as methods of transporting energy from a primary energy source (nuclear, solar) to the user. In the chemical heat pipe system, primary energy is transformed into the energy of a reversible chemical reaction; the chemical species are then transmitted or stored until the energy is required. Analysis of thermochemical hydrogen schemes and chemical heat pipe systems on a second law efficiency or available work basis show that hydrogen is superior especially if the end use of the chemical heat pipe is electrical power.

  13. Leachate storage transport tanker loadout piping

    SciTech Connect

    Whitlock, R.W.

    1994-11-18

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility.

  14. 49 CFR 195.207 - Transportation of pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  15. 49 CFR 192.65 - Transportation of pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transportation of pipe. 192.65 Section 192.65 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL...

  16. 49 CFR 195.207 - Transportation of pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  17. 49 CFR 192.65 - Transportation of pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transportation of pipe. 192.65 Section 192.65 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL...

  18. 49 CFR 192.65 - Transportation of pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transportation of pipe. 192.65 Section 192.65 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL...

  19. 49 CFR 195.207 - Transportation of pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  20. 49 CFR 192.65 - Transportation of pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transportation of pipe. 192.65 Section 192.65 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...

  1. 49 CFR 192.65 - Transportation of pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transportation of pipe. 192.65 Section 192.65 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...

  2. 49 CFR 195.207 - Transportation of pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  3. Leachate storage transport tanker loadout piping

    SciTech Connect

    Whitlock, R.W.

    1994-10-05

    This report contains schematic drawings for the pipe fittings for the Hanford waste tanks. Included are the modifications to the W-025 trench {number_sign}31 leachate loadout piping, and also the modifications to the tanker trailers. The piping was modified to prevent spillage to the environment. The tankers were modified for loading and unloading purposes.

  4. Visualization of heat transport in heat pipes using thermocamera

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Čaja, Alexander; Lenhard, Richard

    2010-10-01

    Heat pipes, as passive elements show a high level of reliability when taking heat away and they can take away heat flows having a significantly higher density than systems with forced convection. A heat pipe is a hermetically closed duct, filled with working fluid. Transport of heat in heat pipes is procured by the change of state of the working fluid from liquid state to steam and vice versa and depends on the hydrodynamic and heat processes in the pipe. This study have been focused on observing the impact these processes have on the heat process, the transport of heat within the heat pipe with the help of thermovision. The experiment is oriented at scanning the changes in the surface temperatures of the basic structural types of capillary heat pipes in vertical position.

  5. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  6. High thermal-transport capacity heat pipes for space radiators

    NASA Technical Reports Server (NTRS)

    Carlson, Albert W.; Gustafson, Eric; Roukis, Susan L.

    1987-01-01

    This paper presents the results of performance tests of several dual-slot heat pipe test articles. The dual-slot configuration has a very high thermal transport capability and has been identified as a very promising candidate for the radiator system for the NASA Space Station solar dynamic power modules. Two six-foot long aluminum heat pipes were built and tested with ammonia and acetone. A 20-ft long heat pipe was also built and tested with ammonia. The test results have been compared with performance predictions. A thermal transport capacity of 2000 W at an adverse tilt of 1 in. and a 1000 W capacity at an adverse tilt of 2 in. were achieved on the 20-ft long heat pipe. These values are in close agreement with the predicted performance limits.

  7. Transport of large solids in sewer pipes.

    PubMed

    Walski, Thomas; Edwards, Bryce; Helfer, Emil; Whitman, Brian E

    2009-07-01

    This paper presents a method for determining the conditions under which large solids (i.e., solids with a vertical dimension greater than the depth of water) are able to move in a pipe. Depending on the value of a dimensionless number [s(d/y) - 1], where s = specific gravity of the solids, d = water depth, and y = height of solids, motion will occur if a sufficient velocity (also reported as a Froude number or modified "solids" Froude number) is exceeded. Flume experiments were used to determine the coefficients to be used in the design. The velocity required to reach fluid movement was approximately 0.6 to 1.0 m/s (2 to 3 ft/s), which is consistent, although slightly higher than values generally used in conventional sewer design practice. However, it was demonstrated that increasing the pipe slope to achieve a higher velocity does not ensure that the solid will move.

  8. 18. VIEW OF THE CEILING, THE PIPING TRANSPORTED CHEMICALS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF THE CEILING, THE PIPING TRANSPORTED CHEMICALS FROM A CHEMICAL PREPARATION ROOM ON THE SECOND FLOOR TO THE FIRST FLOOR PROCESS AREAS. (6/12/73) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  9. Natural gas transport by plastic pipes. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  10. Random walk approach for dispersive transport in pipe networks

    NASA Astrophysics Data System (ADS)

    Sämann, Robert; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: particle transport, random walk, pipe, network, HYSTEM-EXTAN, OpenGeoSys After heavy pluvial events in urban areas the available drainage system may be undersized at peak flows (Fuchs, 2013). Consequently, rainwater in the pipe network is likely to spill out through manholes. The presence of hazardous contaminants in the pipe drainage system represents a potential risk to humans especially when the contaminated drainage water reaches the land surface. Real-time forecasting of contaminants in the drainage system needs a quick calculation. Numerical models to predict the fate of contaminants are usually based on finite volume methods. Those are not applicable here because of their volume averaging elements. Thus, a more efficient method is preferable, which is independent from spatial discretization. In the present study, a particle-based method is chosen to calculate transport paths and spatial distribution of contaminants within a pipe network. A random walk method for particles in turbulent flow in partially filled pipes has been developed. Different approaches for in-pipe-mixing and node-mixing with respect to the geometry in a drainage network are shown. A comparison of dispersive behavior and calculation time is given to find the fastest model. The HYSTEM-EXTRAN (itwh, 2002) model is used to provide hydrodynamic conditions in the pipe network according to surface runoff scenarios in order to real-time predict contaminant transport in an urban pipe network system. The newly developed particle-based model will later be coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). References: Fuchs, L. (2013). Gefährdungsanalyse zur Überflutungsvorsorge kommunaler Entwässerungssysteme. Sanierung und Anpassung von Entwässerungssystemen-Alternde Infrastruktur und Klimawandel, Österreichischer Wasser-und Abfallwirtschaftsverband, Wien, ISBN, 978-3. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie Gmb

  11. 76 FR 14643 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...: Safety Requirements for External Product Piping on Cargo Tanks Transporting Flammable Liquids AGENCY...) seeking public comment on a proposal to prohibit the transportation of flammable liquids in...

  12. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  13. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  14. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  15. Energy and transport.

    PubMed

    Woodcock, James; Banister, David; Edwards, Phil; Prentice, Andrew M; Roberts, Ian

    2007-09-22

    We examine the links between fossil-fuel-based transportation, greenhouse-gas emissions, and health. Transport-related carbon emissions are rising and there is increasing consensus that the growth in motorised land vehicles and aviation is incompatible with averting serious climate change. The energy intensity of land transport correlates with its adverse health effects. Adverse health effects occur through climate change, road-traffic injuries, physical inactivity, urban air pollution, energy-related conflict, and environmental degradation. For the world's poor people, walking is the main mode of transport, but such populations often experience the most from the harms of energy-intensive transport. New energy sources and improvements in vehicle design and in information technology are necessary but not sufficient to reduce transport-related carbon emissions without accompanying behavioural change. By contrast, active transport has the potential to improve health and equity, and reduce emissions. Cities require safe and pleasant environments for active transport with destinations in easy reach and, for longer journeys, public transport that is powered by renewable energy, thus providing high levels of accessibility without car use. Much investment in major road projects does not meet the transport needs of poor people, especially women whose trips are primarily local and off road. Sustainable development is better promoted through improving walking and cycling infrastructures, increasing access to cycles, and investment in transport services for essential needs. Our model of London shows how increased active transport could help achieve substantial reductions in emissions by 2030 while improving population health. There exists the potential for a global contraction and convergence in use of fossil-fuel energy for transport to benefit health and achieve sustainability.

  16. Granular Matter Transport in Vertical Pipes: The Influence of Pipe Outlet Conditions on Gravity-driven Granular Flow.

    PubMed

    Jaklič, Miha; Kočevar, Klemen; Srčič, Stanko; Dreu, Rok

    2016-01-01

    Gravity transport of granular materials in vertical pipes is one of the most fundamental steps in bulk powder handling and processing. Presented study investigates powder flow characteristics in vertical pipes with open and closed outlets and condition of free powder fall. Powder flow of pharmaceutical grade powders was observed in transparent, vertical pipe model. Description of flow structures was performed. Powder volume flow rate, acceleration, and dilatation were quantified and correlated with powder properties. The results show that in pipes with a closed outlet the escaping air slows down the powder flow, resulting in a much slower flow than in pipes with an open outlet. A dense granular flow was detected in an open outlet condition, whereas in a closed outlet condition two concurrent flow regimes were observed: a slow moving, dense powder bed, and a fast dilute powder flow. Differences in flow regimes may promote segregation, with important implications to industrial processes.

  17. Transportation energy data book

    NASA Astrophysics Data System (ADS)

    Davis, S. C.; Hu, P. S.

    1991-01-01

    The Transportation Energy Data Book: Edition 11 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, Federal standards, fuel economies, and household data. Chapter 4 is a new addition to the data book series, containing information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 5, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  18. Transient behavior of heat pipe with thermal energy storage under pulse heat loads

    NASA Astrophysics Data System (ADS)

    Chang, Ming-, Jr.

    1991-02-01

    Future space missions will require thermal transport devices with the ability to handle transient pulse heat loads. A novel design of a high-temperature axially grooved heat pipe (HP) which incorporates thermal energy storage (TES) to migrate pulse heat loads was presented. A phase-change material (PCM) which is encapsulated in cylindrical containers was used for the thermal energy storage. The transient response of the HP/TES system under two different types of pulse heat loads was studied analytically. The first type is pulse heat loads applied at the heat pipe evaporator, the second type is reversed-pulse heat loads applied at the condenser. In this research, a new three-dimensional alternating-direction-implicit (ADI) method was developed to model the heat conduction through the heat pipe wall and wicks, including the liquid flow in grooves. A very important characteristic of this new ADI method is that it is consistent with physical considerations. Compared with the well-known Brian's and Douglas's ADI methods, this new ADI method had higher accuracy and requires less computer storage. In the numerical solution of heat transfer problems with phase change (Stefan-type problem), a modified Pham's method which includes features from enthalpy and heat capacity methods was used to simulate the melting and solidification processes of the PCG. The vapor flow was assumed quasi-steady and one-dimensional, and was coupled with the evaporation and condensation on the heat pipe inside wall surface and the surfaces of the PCM containers. The transient responses of three different HP/TES configurations were compared: (1) a heat pipe with a large empty cylinder installed in the vapor core, (2) a heat pipe with a large PCM cylinder, and (3) a heat pipe with six small PCM cylinders. From the numerical results, it was found that the PCM is very effective in mitigrating the adverse effect of pulse heat loads. The six small PCM cylinders are more efficient than the large PCM

  19. Heat Transport in the Hadean Mantle: From Heat Pipes to Plates

    NASA Astrophysics Data System (ADS)

    Kankanamge, Duminda G. J.

    Plate tectonics is a unique feature of Earth and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the pre-plate tectonic Earth. Prior to the onset of plate tectonics, the Earth was dominated by volcanic heat transport, called the heat-pipe mode of planetary cooling. Numerical simulations of heat transport were performed in the pre-plate tectonic Earth to understand the transition to plate tectonic behavior and to analyze the boundary layer dynamics which lead to that transition. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. The results show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events. Thus, it is evident that before transition to the plate tectonics, Earth has probably transferred its internal energy through heat pipes. Depending on their mass and internal energy, other planetary bodies transition directly from heat pipes to the stagnant lid or they will eventually transition to plate tectonics after a long period of heat-pipe volcanism. Also, a parameterization was developed using melting and convective parameters to include the effect of melting on planetary heat transport. The heat flux due to melting, the internal temperature of the mantle, the temperature of the lid base, the lid

  20. Storing and transporting energy

    DOEpatents

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  1. Energy dissipation in oscillating flow through straight and coiled pipes

    SciTech Connect

    Olson, J.R.; Swift, G.W.

    1996-10-01

    The energy dissipation is reported for oscillating flow in U-shaped pipes with 180{degree}, 540{degree}, and 900{degree} curves at the base of the U. Analysis permits separation of the dissipation in the straight and curved portions of the pipe. Using water, water/glycerine mixtures, liquid nitrogen, and helium gas, the dissipation was measured for fluid flow regimes (Reynolds number, quality factor, and pipe curvature) which have not previously been reported. Measured loss in the straight portion is compared to numerical solutions using a turbulent quasisteady representation of the wall shear stress. Measured loss in the curved portion is compared to simple theory. The results are applicable to thermoacoustic devices. {copyright} {ital 1996 Acoustical Society of America.}

  2. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    NASA Technical Reports Server (NTRS)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    The paper discusses the production concept and efficiency of two new energy transmission and storage media intended to overcome the disadvantages of electricity as an overall energy carrier. These media are hydrogen produced by water-splitting and the chemical heat pipe. Hydrogen can be transported or stored, and burned as energy is needed, forming only water and thus obviating pollution problems. The chemical heat pipe envisions a system in which heat is stored as the heat of reaction in chemical species. The thermodynamic analysis of these two methods is discussed in terms of first-law and second-law efficiency. It is concluded that chemical heat pipes offer large advantages over thermochemical hydrogen generation schemes on a first-law efficiency basis except for the degradation of thermal energy in temperature thus providing a source of low-temperature (800 K) heat for process heat applications. On a second-law efficiency basis, hydrogen schemes are superior in that the amount of available work is greater as compared to chemical heat pipes.

  3. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    NASA Technical Reports Server (NTRS)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    The paper discusses the production concept and efficiency of two new energy transmission and storage media intended to overcome the disadvantages of electricity as an overall energy carrier. These media are hydrogen produced by water-splitting and the chemical heat pipe. Hydrogen can be transported or stored, and burned as energy is needed, forming only water and thus obviating pollution problems. The chemical heat pipe envisions a system in which heat is stored as the heat of reaction in chemical species. The thermodynamic analysis of these two methods is discussed in terms of first-law and second-law efficiency. It is concluded that chemical heat pipes offer large advantages over thermochemical hydrogen generation schemes on a first-law efficiency basis except for the degradation of thermal energy in temperature thus providing a source of low-temperature (800 K) heat for process heat applications. On a second-law efficiency basis, hydrogen schemes are superior in that the amount of available work is greater as compared to chemical heat pipes.

  4. Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 91 citations and includes a subject term index and title list.)

  5. Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  7. Fully localised nonlinear energy growth optimals in pipe flow

    SciTech Connect

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-15

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  8. Energy transport and dynamics

    NASA Technical Reports Server (NTRS)

    Schmieder, Brigitte; Peres, Giovanni; Enome, Shinzo; Falciani, Roberto; Heinzel, Petr; Henoux, Jean-Claude; Mariska, John T.; Reale, Fabio; Rilee, Mike L.; Rompolt, Bogdan

    1994-01-01

    We report findings concerning energy transport and dynamics in flares during the impulsive and gradual phases based on new ground-based and space observations (notably from Yohkoh). A preheating sometimes occurs during the impulsive phase. Ca XIX line shifts are confirmed to be good tracers of bulk plasma motions, although strong blue shifts are not as frequent as previously claimed. They often appear correlated with hard X-rays but, for some events, the concept that electron beams provide the whole energy input to the thermal component seems not to apply. Theory now yields: new diagnostics of low-energy proton and electric beams; accurate hydrodynamical modeling of pulse beam heating of the atmosphere; possible diagnostics of microflares (based on X-ray line ratio or on loop variability); and simulated images of chromospheric evaporation fronts. For the gradual phase, the continual reorganization of magnetic field lines over active regions determines where and when magnetic reconnection, the mechanism favored for energy release, will occur. Spatial and temporal fragmentation of the energy release, observed at different wavelengths, is considered to be a factor as well in energy transport and plasma dynamics.

  9. Energy transport and dynamics

    NASA Technical Reports Server (NTRS)

    Schmieder, Brigitte; Peres, Giovanni; Enome, Shinzo; Falciani, Roberto; Heinzel, Petr; Henoux, Jean-Claude; Mariska, John T.; Reale, Fabio; Rilee, Mike L.; Rompolt, Bogdan

    1994-01-01

    We report findings concerning energy transport and dynamics in flares during the impulsive and gradual phases based on new ground-based and space observations (notably from Yohkoh). A preheating sometimes occurs during the impulsive phase. Ca XIX line shifts are confirmed to be good tracers of bulk plasma motions, although strong blue shifts are not as frequent as previously claimed. They often appear correlated with hard X-rays but, for some events, the concept that electron beams provide the whole energy input to the thermal component seems not to apply. Theory now yields: new diagnostics of low-energy proton and electric beams; accurate hydrodynamical modeling of pulse beam heating of the atmosphere; possible diagnostics of microflares (based on X-ray line ratio or on loop variability); and simulated images of chromospheric evaporation fronts. For the gradual phase, the continual reorganization of magnetic field lines over active regions determines where and when magnetic reconnection, the mechanism favored for energy release, will occur. Spatial and temporal fragmentation of the energy release, observed at different wavelengths, is considered to be a factor as well in energy transport and plasma dynamics.

  10. Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1992-01-01

    Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.

  11. Energy transfer mechanism and probability analysis of submarine pipe laterally impacted by dropped objects

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui

    2016-06-01

    Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.

  12. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  13. Transportation energy use in Mexico

    SciTech Connect

    Sheinbaum, C.; Meyers, S.; Sathaye, J.

    1994-07-01

    This report presents data on passenger travel and freight transport and analysis of the consequent energy use in Mexico during the 1970--1971 period. We describe changes in modal shares for passenger travel and freight transport, and analyze trends in the energy intensity of different modes. We look in more detail at transportation patterns, energy use, and the related environmental problems in the Mexico City Metropolitan Area, and also discuss policies that have been implemented there to reduce emissions from vehicles.

  14. Tritium transport in the NuMI decay pipe region - modeling and comparison with experimental data

    SciTech Connect

    Hylen, J.; Plunkett, R.; /Fermilab

    2007-03-01

    The NuMI (Neutrinos at Main Injector) beam facility at Fermilab is designed to produce an intense beam of muon neutrinos to be sent to the MINOS underground experiment in Soudan, Minnesota. Neutrinos are created by the decay of heavier particles. In the case of NuMI, the decaying particles are created by interaction of high-energy protons in a target, creating mostly positive pions. These particles can also interact with their environment, resulting in production of a variety of short-lived radionuclides and tritium. In the NuMI beam, neutrinos are produced by 120 GeV protons from the Fermilab Main Injector accelerator which are injected into the NuMI beam line using single turn extraction. The beam line has been designed for 400 kW beam power, roughly a factor of 2 above the initial (2005-06) running conditions. Extracted protons are bent downwards at a 57mr angle towards the Soudan Laboratory. The meson production target is a 94 cm segmented graphite rod, cooled by water in stainless tubes on the top and bottom of the target. The target is followed by two magnetic horns which are pulsed to 200 kA in synchronization with the passage of the beam, producing focusing of the secondary hadron beam and its daughter neutrinos. Downstream of the second horn the meson beam is transported for 675 m in an evacuated 2 m diameter beam (''decay'') pipe. Subsequently, the residual mesons and protons are absorbed in a water cooled aluminum/steel absorber immediately downstream of the decay pipe. Some 200 m of rock further downstream ranges out all of the residual muons. During beam operations, after installation of the chiller condensate system in December 2005, the concentration of tritiated water in the MINOS sump flow of 177 gpm was around 12 pCi/ml, for a total of 0.010 pCi/day. A simple model of tritium transport and deposition via humidity has been constructed to aid in understanding how tritium reaches the sump water. The model deals with tritium transported as HTO, water

  15. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  16. Screening study on high temperature energy transport systems

    SciTech Connect

    Graves, R.L.

    1980-10-01

    The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

  17. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  18. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  19. Ballistic Energy Transport in Oligomers.

    PubMed

    Rubtsova, Natalia I; Qasim, Layla N; Kurnosov, Arkady A; Burin, Alexander L; Rubtsov, Igor V

    2015-09-15

    The development of nanocomposite materials with desired heat management properties, including nanowires, layered semiconductor structures, and self-assembled monolayer (SAM) junctions, attracts broad interest. Such materials often involve polymeric/oligomeric components and can feature high or low thermal conductivity, depending on their design. For example, in SAM junctions made of alkane chains sandwiched between metal layers, the thermal conductivity can be very low, whereas the fibers of ordered polyethylene chains feature high thermal conductivity, exceeding that of many pure metals. The thermal conductivity of nanostructured materials is determined by the energy transport between and within each component of the material, which all need to be understood for optimizing the properties. For example, in the SAM junctions, the energy transport across the metal-chain interface as well as the transport through the chains both determine the overall heat conductivity, however, to separate these contributions is difficult. Recently developed relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy is capable of studying energy transport in individual molecules in the time domain. The transport in a molecule is initiated by exciting an IR-active group (a tag); the method records the influence of the excess energy on another mode in the molecule (a reporter). The energy transport time can be measured for different reporters, and the transport speed through the molecule is evaluated. Various molecules were interrogated by RA 2DIR: in molecules without repeating units (disordered), the transport mechanism was expected and found to be diffusive. The transport via an oligomer backbone can potentially be ballistic, as the chain offers delocalized vibrational states. Indeed, the transport regime via three tested types of oligomers, alkanes, polyethyleneglycols, and perfluoroalkanes was found to be ballistic, whereas the transport within the end groups was diffusive

  20. Natural gas transport by plastic pipes. January 1970-October 1988 (Citations from the Compendex data base). Report for January 1970-October 1988

    SciTech Connect

    Not Available

    1988-11-01

    This bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe-failure analyses are examined. Bending, joining, and repair methods are discussed. Composite-reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas-main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains 77 citations fully indexed and including a title list.)

  1. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  2. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  3. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Chang, Y.; Peng, F.; Wu, J.

    2016-12-01

    Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.

  4. Theoretical analysis of the maximum heat transport in triangular grooves: A study of idealized micro heat pipes

    SciTech Connect

    Peterson, G.P.; Ma, H.B.

    1995-12-31

    A mathematical model for predicting the minimum meniscus radius and the maximum heat transport in micro heat pipes is presented. In this model, a theoretical minimum meniscus radius was found and used to calculate the capillary heat transport limit based on the physical characteristics and geometry. A control volume technique was employed to determine the flow characteristics of wickless micro heat pipes, and incorporate the effects of the frictional vapor-liquid interaction on the liquid flow. Unlike previous models, this model for the first time considers the true characteristics of micro heat pipes to determine the minimum meniscus radius and the maximum heat transport capacity. In order to compare the heat transport and flow characteristics, an effective hydraulic diameter was defined and the resulting model was solved numerically. The results indicate that the heat transport capacity of micro heat pipes is strongly dependent on the apex channel angle of the liquid arteries, the contact angle of the liquid flow, the length of the heat pipe, the vapor flow velocity and characteristics, and the tilt angle. In addition, the analysis presented here provides a mechanism, which for a given set of conditions, allows the geometry to be optimized and a micro heat pipe designed with a maximum heat transport capacity. This investigation will help optimize the design of micro heat pipes, making them capable of operating at increased power levels with greater reliability.

  5. Flexible retractable cold water pipe for an ocean thermal energy conversion system

    SciTech Connect

    Wenzel, J.G.; Trimble, L.C.

    1985-02-05

    A cold water pipe for an ocean thermal energy conversion (OTEC) system comprises a tubular membrane made of a fabric such as a canvas, which is substantially impervious to flowing water. A proximal end of the pipe is secured to a surface structure such as a ship, and a distal end of the pipe is extendible from the surface structure to a selected ocean depth. The pipe functions as a conduit through which cold water from the selected ocean depth can be drawn to the surface structure for use in a thermodynamic process of the OTEC system. The distal end of the pipe can be quickly retracted to the surface structure when it becomes desirable to move the surface structure.

  6. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program. Phase 2: Suspended pipe test

    NASA Astrophysics Data System (ADS)

    McHale, F. A.

    1984-08-01

    An important step in the development of technology for Ocean Thermal Energy Conversion (OTEC) cold water pipes (CWP) is the at-sea testing and subsequent evaluation of a large diameter fiberglass reinforced plastic (FRP) pipe. Focus was on the CWP since it is the most critical element in any OTEC design. The results of the second phase of the CWP At-Sea Test Program are given. During this phase an 8 foot diameter, 400 foot long sandwich wall FRP syntactic foam configuration CWP test article was developed, constructed, deployed and used for data acquisition in the open ocean near Honolulu, Hawaii. This instrumented CWP as suspended from a moored platform for a three week experiment in April-May, 1983. The CWP represented a scaled version of a 40 megawatt size structure, nominally 30 feet in diameter and 3000 feet long.

  7. Transportation economics and energy

    NASA Astrophysics Data System (ADS)

    Soltani Sobh, Ali

    The overall objective of this research is to study the impacts of technology improvement including fuel efficiency increment, extending the use of natural gas vehicle and electric vehicles on key parameters of transportation. In the first chapter, a simple economic analysis is used in order to demonstrate the adoption rate of natural gas vehicles as an alternative fuel vehicle. The effect of different factors on adoption rate of commuters is calculated in sensitivity analysis. In second chapter the VMT is modeled and forecasted under influence of CNG vehicles in different scenarios. The VMT modeling is based on the time series data for Washington State. In order to investigate the effect of population growth on VMT, the per capita model is also developed. In third chapter the effect of fuel efficiency improvement on fuel tax revenue and greenhouse emission is examined. The model is developed based on time series data of Washington State. The rebound effect resulted from fuel efficiency improvement is estimated and is considered in fuel consumption forecasting. The reduction in fuel tax revenue and greenhouse gas (GHG) emissions as two outcomes of lower fuel consumption are computed. In addition, the proper fuel tax rate to restitute the revenue is suggested. In the fourth chapter effective factors on electric vehicles (EV) adoption is discussed. The constructed model is aggregated binomial logit share model that estimates the modal split between EV and conventional vehicles for different states over time. Various factors are incorporated in the utility function as explanatory variables in order to quantify their effect on EV adoption choices. The explanatory variables include income, VMT, electricity price, gasoline price, urban area and number of EV stations.

  8. Thermal energy storage and transport

    NASA Technical Reports Server (NTRS)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  9. Energy transport in cooling device by magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  10. Transportation Energy Pathways LDRD.

    SciTech Connect

    Barter, Garrett.; Reichmuth, David.; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan B.; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas

  11. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    SciTech Connect

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    1997-04-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.

  12. Thermochemical energy storage and transport

    NASA Astrophysics Data System (ADS)

    Nix, R. G.

    1982-08-01

    Thermochemical energy storage and transport (TEST) were studied. Cases studied include a large central receiver heat utility and a small industrial process heat application with distributed parabolic dish solar collectors. The TEST does not appear to be generally cost effective; however, there are special cases of cost effectiveness. It is recommended that research on thermochemical processes emphasize the manufacture of renewable fuels using solar energy and the search for more cost effective TEST systems.

  13. Energy Efficiency: Transportation and Buildings

    NASA Astrophysics Data System (ADS)

    Lubell, Michael S.; Richter, Burton

    2011-11-01

    We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings, we include the report's recommendations for policy makers that we believe are in the best interests of the nation.

  14. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect

    2010-07-01

    Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  15. Experimental investigation of transport of discrete solids with surge flows in a 10.0 cm diameter partially filled pipe

    NASA Astrophysics Data System (ADS)

    Mahajan, B. M.

    1982-01-01

    The transport of discrete solids with surge flows in a partially filled slightly pitched horizontal pipe was investigated. The experimental apparatus, instrumentation, and procedures are described. The experiments were conducted using a cylindrical solid in a 10.0 cm (4 in) diameter pipe. The water surge flows were obtained by discharging different volumes of water into the pipe from a falling head open container which simulated a water closet. Flow induced solid velocities and stream depth histories at various locations along the length of the pipe were measured. The effects of water volume used, pipe slope, and size of the solid on the solid velocities were examined. Solid velocities were compared with the maximum water velocities estimated from the stream depth histories. Also, the distance traversed by the solids in the pipe were measured for those cases in which the solids did not clear the pipe. The solid velocity increased with an increase in water volume used, a decrease in the size of the solid, and an increase in the pipe slope. The solid velocity in the initial reach of the pipe was less than the maximum water velocity; and the solid velocity approaches the maximum water velocity as the solid traveled downstream, except for some experiments with small water volumes.

  16. Basic problems and new potentials in monitoring sediment transport using Japanese pipe type geophone

    NASA Astrophysics Data System (ADS)

    Sakajo, Saiichi

    2016-04-01

    The authors have conducted a lot of series of monitoring of sediment transport by pipe type geophone in a model hydrological channel with various gradients and water discharge, using the various size of particles from 2 to 21 mm in the diameter. In the case of casting soils particle by particle into the water channel, 1,000 test cases were conducted. In the case of casting all soils at a breath into the water channel, 100 test cases were conducted. The all test results were totally analyzed by the conventional method, with visible judgement by video pictures. Then several important basic problems were found in estimating the volume and particle distributions by the conventional method, which was not found in the past similar studies. It was because the past studies did not consider the types of collisions between sediment particle and pipe. Based on these experiments, the authors have firstly implemented this idea into the old formula to estimate the amount of sediment transport. In the formula, two factors of 1) the rate of sensing in a single collision and 2) the rate of collided particles to a cast all soil particles were concretely considered. The parameters of these factors could be determined from the experimental results and it was found that the obtained formula could estimate grain size distribution. In this paper, they explain the prototype formula to estimate a set of volume and distribution of sediment transport. Another finding in this study is to propose a single collision as a river index to recognize its characteristics of sediment transport. This result could characterize the risk ranking of sediment transport in the rivers and mudflow in the mountainous rivers. Furthermore, in this paper the authors explain how the preciseness of the pipe geophone to sense the smaller sediment particles shall be improved, which has never been able to be sensed.

  17. 2D numerical analysis of energy harvesting in oscillating heat pipe using piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Vaidya, Sajiree; Myers, Oliver; Thompson, Scott; Shamsaei, Nima; Monroe, John G.

    2017-04-01

    Energy Harvesting is a powerful process that deals with exploring different possible ways of converting energy dispersed in the environment into more useful form of energy, essentially electrical energy. Piezoelectric materials are known for their ability of transferring mechanical energy into electrical energy or vice versa. Our work takes advantage of piezoelectric material's properties to covert thermal energy into electrical energy in an oscillating heat pipe. Specific interest in an oscillating heat pipe has relevance to energy harvesting for low power generation suitable for remote electronics operation as well as low-power heat reclamation for electronic packaging. The aim of this paper is develop a 2D multi-physics design analysis model that aids in predicting electrical power generation inherent to an oscillating heat pipe. The experimental design shows a piezoelectric patch with fixed configuration, attached inside an oscillating heat pipe and its behavior when subjected to the oscillating fluid pressure was observed. Numerical analysis of the model depicting the similar behavior was done using a multiphysics FEA software. The numerical model consists of a threeway physics interaction that takes into account fluid flow, solid mechanics, and electrical response of the harvester circuit.

  18. Comparison of bedload transport measurements at the Suggadinbach stream with geophones and modified pipe hydrophones

    NASA Astrophysics Data System (ADS)

    Chiari, Michael; Berktold, Maximilian; Jäger, Gerald; Hübl, Johannes

    2016-04-01

    A new bedload transport monitoring station has been designed by the Institute of Mountain Risk engineering at the Suggadinbach in Austria (Vorarlberg). In cooperation with the Austrian Service for Torrent and Avalanche Control the station has been installed in June 2013 in a check dam. Two different types of measuring systems are installed: 13 Swiss type geophone sensors record the vibrations of the transported sediment. Additionally 3 modified Japanese pipe hydrophones are mounted under steel plates in order to record the acoustic signal produced by the sediment transport. Both systems can be compared directly because they are arranged consecutively in flow direction. For calibration of the sensors a series of systematic tests have been carried out during low water conditions. Sediment has been fed by a crane with a concrete container. A flume has been installed in order to obtain controlled flow and transport over the measuring system. Four different grain classes up to 64 mm and a mixture of all classes were tested. A total amount of 4 tons were fed during the experiments. The signal was recorded with 9.6 kHz. Frequency analyses were performed for different grain-classes in order to investigate the influence of the grain-size distribution on the shape of the signal and the influence of neighbouring sensors. The standard evaluation and storage procedure for 1 minute aggregated data show that the modified pipe hydrophone is able to detect finer grain-sizes than the geophone sensor.

  19. Heat transport in the Hadean mantle: From heat pipes to plates

    NASA Astrophysics Data System (ADS)

    Kankanamge, Duminda G. J.; Moore, William B.

    2016-04-01

    Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.

  20. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  1. How partial nitrification could improve reclaimed wastewater transport in long pipes.

    PubMed

    Delgado, S; Alvarez, M; Rodríguez-Gómez, L E; Elmaleh, S; Aguiar, E

    2001-01-01

    Reclaimed wastewater transport is studied in a concrete-lined cast iron pipe, where a nitrification-denitrification process occurs. The pipe is part of the Reuse System of Reclaimed Wastewater of South Tenerife (Spain), 0.6 m in diameter and 61 km long. In order to improve wastewater quality, at 10 km from the inlet there is injection of fresh water saturated in dissolved oxygen (DO), after which a fast nitrification process usually appears (less than two hours of space time). The amount of oxidized nitrogen compounds produced varies between 0.8 and 4.4 mg/l NOx(-)-N. When DO has disappeared, a denitrification process begins. The removal of nitrite is complete at the end of the pipe, whereas the nitrate does not disappear completely, leaving a concentration of about 0.4-0.5 mg/l. For a COD/NOx(-)-N ratio higher than 5, a first order nitrification rate in NOx(-)-N has resulted, with the constant k20 = 0.079 h-1, for a NOx(-)-N concentration range of 0.8-4.4 mg/l. Finally the following temperature dependency for the first order denitrification rate constant has been found: k = k20 x 1 x 15T-20. Although nitrogen could be used as nutrient in the agricultural reuse, its removal from reclaimed wastewater could be useful in order to diminish the chlorine needs for reclaimed wastewater disinfection.

  2. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  3. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-05

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  4. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Sun, Haoyu; Xu, Chunguang; Cao, Xiandong; Cui, Liming; Xiao, Dingguo

    2015-03-01

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of "energy coefficient" in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  5. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    SciTech Connect

    Zhou, Shiyuan Sun, Haoyu Xu, Chunguang Cao, Xiandong Cui, Liming Xiao, Dingguo

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  6. Energy-efficient control of a screw-drive pipe robot with consideration of actuator's characteristics.

    PubMed

    Li, Peng; Ma, Shugen; Lyu, Congyi; Jiang, Xin; Liu, Yunhui

    Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long. In this paper, we use the total input energy as the cost function and a more accurate DC motor model to generate an optimal energy-efficient velocity control for a screw-drive pipe robot to make use of the limited energy in field environment. We also propose a velocity selection strategy that includes the actual velocity capacity of the motor, according to the velocity ratio [Formula: see text], to keep the robot working in safe region and decrease the energy dissipation. This selection strategy considers three situations of the velocity ratio [Formula: see text] and has a wide range of application. Simulations are conducted to compare the proposed method with the sinusoidal control and loss minimization control (minimization of copper losses of the motor), and results are discussed in this paper.

  7. The energy transfer mechanism of a perturbed solid-body rotation flow in a rotating pipe

    NASA Astrophysics Data System (ADS)

    Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao

    2017-04-01

    Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet. The Wang and Rusak (Phys. Fluids 8:1007-1016, 1996. doi: 10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant, three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al. (J. Fluid Mech. 797: 284-321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. The energy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.

  8. The energy transfer mechanism of a perturbed solid-body rotation flow in a rotating pipe

    NASA Astrophysics Data System (ADS)

    Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao

    2017-03-01

    Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet. The Wang and Rusak (Phys. Fluids 8:1007-1016, 1996. doi: 10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant, three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al. (J. Fluid Mech. 797: 284-321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. The energy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.

  9. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    SciTech Connect

    Minard, Kevin R.; Jacob, Rick E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Flow splitting at airway branches is still evident, however, and use of 3D vector flow mapping is shown to provide a quantitative view of pulmonary gas supply that highlights the correlation of airflow dynamics with lung structure.

  10. Modeling energy transport in nanostructures

    NASA Astrophysics Data System (ADS)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  11. Transportation Energy Efficiency Trends, 1972--1992

    SciTech Connect

    Greene, D.L.; Fan, Y.

    1994-12-01

    The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

  12. Qualification of coolants and cooling pipes for future high-energy-particle detectors

    NASA Astrophysics Data System (ADS)

    Ilie, Sorin; Tavlet, Marc

    2001-12-01

    In the next generation of high-energy-particle detectors to be installed at the Large Hadron Collider (LHC) at CERN, materials and components will be exposed to a significant level of ionising radiation. Silicon detectors and related electronics will have to be cooled down to -20 °C and therefore appropriate cooling fluids and cooling pipes have to be selected. Analytical methods such as UV-visible and FT-IR spectrometries, electronic microscopy and gas chromatography were used to characterise the radiation-induced effects on some organic coolants irradiated with both gamma and neutron fields. Some impurities were identified as a major source for radio-induced polymerisation and also for hydrofluoric acid (HF) evolution. Mechanical tests were performed to assess the operability of the rubber hoses and plastic pipes. Possible synergistic effects between the pipe material and the environment had to be considered.

  13. Economic optimization of the energy transport component of a large distributed solar power plant

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  14. Economic optimization of the energy transport component of a large distributed solar power plant

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  15. Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe

    SciTech Connect

    Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.

    2001-03-01

    Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.

  16. Beam Fields and Energy Dissipation Inside the the BE Beam Pipe of the Super-B Detector

    SciTech Connect

    Novokhatski, Alexander; Sullivan, Michael; /SLAC

    2010-09-10

    We study the bunch field diffusion and energy dissipation in the beam pipe of the Super-B detector, which consists of two coaxial Be thin pipes (half a millimeter). Cooling water will run between these two pipes. Gold and nickel will be sputtered (several microns) onto the beryllium pipe at different sides. The Maxwell equations for the beam fields in these thin layers are solved numerically for the case of infinite pipes. We also calculate the amplitude of the electromagnetic fields outside the beam pipe, which may be noticeable as the beam current can reach 4 A in each beam. Results of simulations are used for the design of this central part of the Super-B detector.

  17. Lifetime Prediction of Polyethylene Pipes Transporting Drinking Water in the Presence of Chlorine Dioxide

    NASA Astrophysics Data System (ADS)

    Colin, X.; Audouin, L.; Verdu, J.

    2008-08-01

    A kinetic model for lifetime prediction of polyethylene pipes transporting pressurized water disinfected by chlorine dioxide (DOC) has been elaborated. This model is composed of three sub-models: —A system of differential equations, derived from a realistic mechanistic scheme for radical chain oxidation in the presence of DOC of stabilized polyethylene (PE), giving access to the spatial distribution of structural changes in the pipe wall and its evolution against time of exposure; —The classical Saito's equation to predict the profiles of average molar masses from the spatial distribution of chain scissions and crosslinking events; —An empirical creep equation and an empirical fracture criterion derived from regression curves obtained in pure water. It is assumed that chemical degradation modifies only the time to transition tc between ductile and brittle regimes of failure, and that tc is linked to the weight average molar mass by a power law. By combining these three sub-models, it is possible to predict the time to failure tF under the coupled effects of pressure and chemical degradation. In current use conditions (under 3-12 bars water pressure, at 15 °C, in the presence of 0.15 mg of DOC per liter of water), the model predicts a tF of the order of 15 years against more than 50 years expected lifetime, that agrees well with experimental results.

  18. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  19. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants

    SciTech Connect

    Su-Jong Yoon; Piyush Sabharwall

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

  1. On the calculation of turbulent heat transport downstream from an abrupt pipe expansion

    NASA Technical Reports Server (NTRS)

    Chieng, C. C.; Launder, B. E.

    1980-01-01

    A numerical study of flow and heat transfer in the separated flow region produced by an abrupt pipe explosion is reported, with emphasis on the region in the immediate vicinity of the wall where turbulent transport gives way to molecular conduction and diffusion. The analysis is based on a modified TEACH-2E program with the standard k-epsilon model of turbulence. Predictions of the experimental data of Zemanick and Dougall (1970) for a diameter ratio of 0.54 show generally encouraging agreement with experiment. At a diameter ratio of 0.43 different trends are discernable between measurement and calculation, though this appears to be due to effects unconnected with the wall region studied here.

  2. Estimated United States Transportation Energy Use 2005

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  3. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  4. Energy 101: Sustainable Public Transportation

    SciTech Connect

    2016-09-07

    You may already know that public transportation reduces pollution and eases congestion on the road. However, many transit fleets are switching over to cleaner, alternative fuels and technologies, making this mode of transportation even more sustainable.

  5. Energy 101: Sustainable Public Transportation

    ScienceCinema

    None

    2016-09-20

    You may already know that public transportation reduces pollution and eases congestion on the road. However, many transit fleets are switching over to cleaner, alternative fuels and technologies, making this mode of transportation even more sustainable.

  6. Pipe/tube conveyors a modern method of coal and ash transportation

    SciTech Connect

    Loeffler, F.J.; Gulledge, J.D. Jr.

    1995-12-31

    For more than 100 years the troughed belt conveyor has been used to transport bulk materials. Its success has been attributed to its relatively low capital cost, high degree of reliability and availability, and low operating and maintenance costs. The only significant problems with conventional conveyors have occurred at transfer points when the transported materials were sticky, dusty or there was a need to provide a totally enclosed system to protect the product from the environment or contain dribble from the return belt. The pipe or tube conveyor solves these problems by transporting the product in a circular cross section formed by overlapping the belt edges and using idlers arranged in a hexagonal pattern to form a tubular shape. The belt encloses the product being conveyed and protects the product from the elements and the environment from the product. The return belt is also formed into a circular cross section, rolled with the carrying side of the belt inward to prevent material clinging to the belt from dislodging at the return idlers.

  7. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    SciTech Connect

    Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  8. Numerical study of finned heat pipe-assisted latent heat thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2014-11-01

    In the present study the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers as well as the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. Furthermore, it is showed that the number of fins does not affect the performance of the system considerably.

  9. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  10. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  11. Transportation Energy Data Book, Edition 19

    SciTech Connect

    Davis, S.C.

    1999-09-01

    The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

  12. Transportation Energy Data Book, Edition 18

    SciTech Connect

    Davis, Stacy C.

    1998-09-01

    The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

  13. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  14. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  15. Performance issues in solar thermal energy transport systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, P. W.

    1986-07-01

    Pacific Northwest Laboratory, sponsored by the US Department of Energy through Sandia National Laboratories, is performing an assessment of three solar thermal electricity generating concepts; central receivers, dishes, and troughs. Concepts are being studied over a range of system sizes 0.5 MWe to 100 MWe with solar multiples from 1.0 to 2.8. Central receiver systems using molten salt, sodium, and water-steam working fluids are studied. The dish system selected for study uses a kinematic Stirling engine at the focal point, and the trough system is based on Accurex designed collectors heating a heat transfer oil. Of the three concepts studied, the central receiver and trough systems utilize thermal transport systems. A thermal transport system is the piping and fluid required to transfer thermal energy between receiver, and storage and between storage and steam generator. The literature contains many transport system designs, most of which are optimized with regard to cost and performance. We used the parameters specified from the optimizations to design our systems and scale the designs over the 0.5 MWe to 100 MWe size range. From these designs, thermal losses and pump sizes are derived then combined in a system model to obtain total annual averaged efficiency as a function of plant field size. We found that central receiver transport efficiency improves with field size whereas trough transport efficiency degrades with field size. We found that overnight cooldown accounts for roughly 50% of the total thermal losses for all transport systems. Trough performance is substantially degraded because the receiver tubes are not drained which allows a large overnight heat loss. Trough transport performance was found to be sensitive to fluid velocity.

  16. Transportation energy data book: edition 16

    SciTech Connect

    Davis, S.C.; McFarlin, D.N.

    1996-07-01

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  17. Moving around efficiently: Energy and transportation

    NASA Astrophysics Data System (ADS)

    Hermans, L. J. F.

    2013-06-01

    Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  18. Transportation energy data book: Edition 12

    SciTech Connect

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  19. Transportation energy data book: Edition 13

    SciTech Connect

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  20. Transportation energy data book: Edition 12

    SciTech Connect

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  1. Transportation energy data book: Edition 13

    SciTech Connect

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  2. A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tabassum, Tonny

    Solar energy is an intermittent supply source of energy. To efficiently utilize this free renewable energy source some form of thermal energy storage devices are necessary. Phase change materials (PCMs), because of their high energy density storage capacity and near isothermal phase change characteristics, have proven to be promising candidates for latent heat thermal energy storage (LHTES) devices. Among the various LHTES devices for low temperature residential heating and cooling applications, the shell-and-tube type heat exchanging devices are the most simple to operate and can be easily fabricated. This work numerically investigates the buoyancy driven heat transfer process during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a horizontal double pipe heat exchanger. The heated working fluid (water) is passing through the central tube of the annulus at a sufficiently high flow-rate and thereby maintaining an almost isothermal wall temperature at the inner pipe which is higher than the melting temperature of the PCM. The transient, two-dimensional coupled laminar momentum and energy equations for the model are suitably non-dimensionalized and are solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the flow patterns and temperature distributions are presented through velocity vector fields and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a strategically placed longitudinal finned annulus, are studied. The total energy stored, the total liquid fraction and the energy efficiency at different melting times are evaluated for three different operating conditions and the results are compared between the plain and finned annuli. The present study will provide guidelines for system thermal performance and design optimization of the shell-and-tube LHTES devices. .

  3. Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport

    SciTech Connect

    Banhart, F.; Li, J.X.; Krasheninnikov, A.V.

    2005-06-15

    The production and migration of carbon interstitials in carbon nanotubes under electron irradiation is studied experimentally and theoretically. It is shown that the threshold for displacing carbon atoms and the defect production rate strongly depend on the diameter of the nanotubes. Multiwalled nanotubes shrink by a loss of atoms and by diffusion of interstitials through the inner hollow in the axial direction. Thus, experimental evidence is given that nanotubes can act as nanoscale pipes for the transport of atoms.

  4. The relative cost of biomass energy transport.

    PubMed

    Searcy, Erin; Flynn, Peter; Ghafoori, Emad; Kumar, Amit

    2007-04-01

    Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues).

  5. Analysis of Transient and Start-Up Behavior of Heat Pipes and an Energy Storage Module

    DTIC Science & Technology

    1990-06-01

    4-G - .. JT 77 roqpy AD- A225 659 WRDC-TR-90-2031 ANALYSIS OF TRANSIENT AND START-UP BEHAVIOR OF HEAT PIPES AND AN ENERGY STORAGE MODULE Amir Faghri...po)/PfUo2 (Section III) (p + pgy) H/p a (Section V) P reference pressure for the Clausius-Clapeyron equation, N/m 2 P Cr reference pressure for the...the 90 saturation temperature of the vapor from the pressure as given by Ts=1 1 (4.37) 1 u In P cr fg Pcr The axisymmetric condition along the

  6. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 104, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K . The concept of anomalous dissipation is further supported by a significant modification of the k -ω equation, yielding an accurate prediction of the entire K profile.

  7. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    PubMed

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile.

  8. Transportation energy data book: Edition 15

    SciTech Connect

    Davis, S.C.

    1995-05-01

    The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  9. Transportation energy trends and issues through 2030

    SciTech Connect

    DeCicco, J.M.

    1996-12-31

    Controlling transportation energy use looms as a serious challenge for the United States in the 21st century. Demand for transportation services is steadily growing, driven by increasing population, economic activity, and incomes. Few forces presently constrain growth in travel by the energy-intensive modes of automobile, truck, and air transportation. In contrast to other sectors of the economy, transportation energy efficiency improvements are nearly stagnant. Efficiency increases are now absent in highway modes; aircraft efficiency is improving, but not enough to offset rising air travel. Transportation is also the most oil-dependent sector of the economy as well as the country`s most rapidly growing source of greenhouse gas emissions. A conservative forecast indicates US transportation energy consumption rising from 23 Quads in 1990 to roughly 36 Quads by 2030; less conservative assumptions push the total to 43 Quads by 2030. Yet opportunities exist for efficiency improvements to counter a substantial portion of this growth. The most promising options are technological, with potential long-term efficiency improvements of threefold for light vehicles, twofold for aircraft, and 65 percent for heavy trucks. Combined with system efficiency changes to help limit growth of the energy-intensive modes, transportation energy use might be cut to 19 Quads by 2030. Pursuing cost-effective strategies to move the system toward such reduced energy intensiveness would be clearly valuable for the economy and environment. This paper examines these trends and options, and offers suggestions for policies that could lead to reductions in transportation energy use and its associated problems such as greenhouse gas emissions and oil dependence risks. 24 refs., 6 figs., 3 tabs.

  10. Transportation: Environment, energy and the economy

    SciTech Connect

    Petrakis, L.

    1993-01-11

    In the US, the transportation sector consumes over one quarter of the entire energy used, almost in its entirety as petroleum products, and in quantities greater than the total US domestic oil production. The transportation sector is responsible for a significant fraction of all emissions that either prevent US cities from achieving compliance with EPA air quality standards or have serious global change implications. Finally, the GDP (Gross Domestic Product) and employment due to the sector are low and incommensurate with the high fraction of energy that the transportation sector consumes. We examine below this situation in some detail and make recommendations for improvements.

  11. Energy transport using natural convection boundary layers

    SciTech Connect

    Anderson, R

    1986-04-01

    Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.

  12. Using pipe line GIS tools for regulatory activities

    SciTech Connect

    Not Available

    1994-05-01

    US government regulators in increasing numbers are turning to GIS technology as a tool to help oversee pipe line regulatory activities. In some fashion, the pipe line industry is scrutinized by practically every federal agency responsible for monitoring pipe line safety, integrity, and public welfare, in addition to transportation, defense, environmental protection, health, tax revenue, royalties, energy regulations, parks and wildlife management, Indian affairs, occupational safety and others. This paper discusses the use of GIS to help meet these various regulatory concerns.

  13. Energy pumping analysis of skating motion in a half pipe and on a level surface

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Xin, Ming

    2015-01-01

    In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields.

  14. Improving energy efficiency in the transportation sector

    SciTech Connect

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  15. Energy transport velocity in bidispersed magnetic colloids

    NASA Astrophysics Data System (ADS)

    Bhatt, Hem; Patel, Rajesh; Mehta, R. V.

    2012-07-01

    Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.

  16. Transportation Energy Data Book: Edition 32

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-08-01

    The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  17. Transportation Energy Data Book. Edition 33

    SciTech Connect

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    2014-07-01

    The Transportation Energy Data Book: Edition 33 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  18. Transportation Energy Data Book: Edition 30

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2011-07-01

    The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  19. Transportation Energy Data Book: Edition 31

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2012-08-01

    The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  20. Transportation Energy Data Book: Edition 24

    SciTech Connect

    Davis, S.C.

    2005-03-08

    The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  1. Transportation Energy Data Book: Edition 23

    SciTech Connect

    Davis, S.C.

    2003-10-24

    The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  2. Transportation Energy Data Book: Edition 22

    SciTech Connect

    Davis, Stacy C.; Diegel, Susan W.

    2002-12-04

    The Transportation Energy Data Book: Edition 22 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www.cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - greenhouse gas emissions; Chapter 4 - criteria pollutant emissions; Chapter 5 - transportation and the economy; Chapter 6 - highway vehicles; Chapter 7 - light vehicles; Chapter 8 - heavy vehicles; Chapter 9 - alternative fuel vehicles; Chapter 10 - fleet vehicles; Chapter 11 - household vehicles; and Chapter 12- nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  3. Transportation Energy Data Book: Edition 35

    SciTech Connect

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    2016-10-01

    The Transportation Energy Data Book: Edition 35 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  4. Transportation Energy Data Book: Edition 34

    SciTech Connect

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary

    2015-08-01

    The Transportation Energy Data Book: Edition 34 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  5. Transportation Energy Data Book: Edition 26

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W

    2007-07-01

    The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  6. Transportation Energy Data Book: Edition 29

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2010-07-01

    The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  7. Transportation Energy Data Book: Edition 27

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2008-06-01

    The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  8. Transportation Energy Data Book: Edition 25

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W

    2006-06-01

    The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  9. Transportation Energy Data Book: Edition 28

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  10. Fan cycling strategies and heat pipe heat exchangers provide energy efficient dehumidification

    SciTech Connect

    Shirey, D.B. III

    1995-03-01

    This article describes two methods to reduce energy consumption and peak demand in buildings that require humidity control that were demonstrated at the Salvador Dali Museum in St. Petersburg, Florida. The first method centered on alternative indoor fan cycling strategies and the second method involved the use of heat pipe heat exchangers. Both approaches increased the dehumidification performance of the existing air-conditioning systems and provided substantial savings. Simple, low cost alternative fan cycling strategies were used. When possible, auto fan control replaced constant fan operation to avoid excess fan energy consumption, ventilation load and compressor operation. The alternative fan control strategies reduced indoor humidity fluctuations in all zones, and significantly reduced overall humidity levels in the museum lobby and storage area. An HPHX was installed within one of the two gallery RTUs to improve the unit`s dehumidification performance. The passive HPHX significantly reduced electric reheat and compressor operation while maintaining the precise temperature and humidity requirements within the gallery. The second gallery RTU now operates primarily as a back-up unit to the heat pipe-assisted air-conditioning unit.

  11. Experimental Study of Thermal Energy Storage Characteristics using Heat Pipe with Nano-Enhanced Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Krishna, Jogi; Kishore, P. S.; Brusly Solomon, A.

    2017-08-01

    The paper presents experimental investigations to evaluate thermal performance of heat pipe using Nano Enhanced Phase Change Material (NEPCM) as an energy storage material (ESM) for electronic cooling applications. Water, Tricosane and nano enhanced Tricosane are used as energy storage materials, operating at different heating powers (13W, 18W and 23W) and fan speeds (3.4V and 5V) in the PCM cooling module. Three different volume percentages (0.5%, 1% and 2%) of Nano particles (Al2O3) are mixed with Tricosane which is the primary PCM. This experiment is conducted to study the temperature distributions of evaporator, condenser and PCM during the heating as well as cooling. The cooling module with heat pipe and nano enhanced Tricosane as energy storage material found to save higher fan power consumption compared to the cooling module that utilities only a heat pipe.

  12. Transportation Energy Data Book (Edition 20)

    SciTech Connect

    Davis, S.C.

    2000-10-09

    The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  13. Transportation Energy Data Book: Edition 14

    SciTech Connect

    Davis, S.C.

    1994-05-01

    Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  14. Transportation Energy Data Book: Edition 21

    SciTech Connect

    Davis, S.C.

    2001-09-13

    The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  15. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  16. Heat Pipes

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  17. Analytical and Experimental Investigations of Sodium Heat Pipes and Thermal Energy Storage Systems.

    DTIC Science & Technology

    1982-01-01

    evaporator length was 1.25 in. in length with the condenser 5 in. in length. The heat pipe wick consisted of a double wrap of 60 mesh nickel screen spot welded ...the heat pipes . Four Inconel sheathed Chromel-Alumel thermocouples were attached by resistance spot welding Inconel tabs to the heat pipe outside...accumulated. After this processing the heat pipes were closed using an electrode fusion weld to crimp and weld the filled tubes. The cleaning procedures

  18. Energy coupling mechanisms of MFS transporters

    PubMed Central

    Zhang, Xuejun C; Zhao, Yan; Heng, Jie; Jiang, Daohua

    2015-01-01

    Major facilitator superfamily (MFS) is a large class of secondary active transporters widely expressed across all life kingdoms. Although a common 12-transmembrane helix-bundle architecture is found in most MFS crystal structures available, a common mechanism of energy coupling remains to be elucidated. Here, we discuss several models for energy-coupling in the transport process of the transporters, largely based on currently available structures and the results of their biochemical analyses. Special attention is paid to the interaction between protonation and the negative-inside membrane potential. Also, functional roles of the conserved sequence motifs are discussed in the context of the 3D structures. We anticipate that in the near future, a unified picture of the functions of MFS transporters will emerge from the insights gained from studies of the common architectures and conserved motifs. PMID:26234418

  19. Energy Conservation in School Transportation Systems. Energy Conservation Guidelines 4.

    ERIC Educational Resources Information Center

    Giesguth, John, Ed.; Scheingold, Edward, Ed.

    Fourth in a series of four publications on energy conservation, this booklet offers basic guidelines for sound fuel reduction in school transportation. The pamphlet suggests ways to implement energy-saving practices, guidelines for preventive maintenance of school vehicles, a definition of the drivers' and superintendents' roles, school policies…

  20. Energy Conservation Guidelines - 4: Energy Conservation in School Transportation Systems.

    ERIC Educational Resources Information Center

    Giesguth, John, Ed.; Scheingold, Edward, Ed.

    Recommended are practices for reducing energy consumed in the process of transporting school pupils. Among the areas in which energy conservation measures may be instituted are preventive bus maintenance, field trip coordination, bus driving practices, modified scheduling policies, and training of bus drivers. (WB)

  1. Energy transport in closed quantum systems.

    PubMed

    Levin, G A; Jones, W A; Walczak, K; Yerkes, K L

    2012-03-01

    We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAMs) associated with the off-diagonal elements of the density matrix. These QAMs play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schrödinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a nonzero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.

  2. Energy transport in closed quantum systems

    NASA Astrophysics Data System (ADS)

    Levin, G. A.; Jones, W. A.; Walczak, K.; Yerkes, K. L.

    2012-03-01

    We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAMs) associated with the off-diagonal elements of the density matrix. These QAMs play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schrödinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a nonzero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.

  3. Continuous Energy Photon Transport Implementation in MCATK

    SciTech Connect

    Adams, Terry R.; Trahan, Travis John; Sweezy, Jeremy Ed; Nolen, Steven Douglas; Hughes, Henry Grady; Pritchett-Sheats, Lori A.; Werner, Christopher John

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  4. Interstate waste transport -- Emotions, energy, and environment

    SciTech Connect

    Elcock, D.

    1993-12-31

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  5. Interstate waste transport -- Emotions, energy, and environment

    SciTech Connect

    Elcock, D.

    1993-01-01

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  6. Energy transport in crystalline DNA composites

    SciTech Connect

    Xu, Zaoli; Xu, Shen; Tang, Xiaoduan; Wang, Xinwei

    2014-01-15

    This work reports on the synthesis of crystalline DNA-composited films and microfibers, and details the study of thermal energy transport in them. The transient electro-thermal technique is used to characterize the thermal transport in DNA composite microfibers, and the photothermal technique is used to explore the thermal transport in the thickness direction of DNA films. Compared with microfibers, the DNA films are found to have a higher thermal transport capacity, largely due to the carefully controlled crystallization process in film synthesis. In high NaCl concentration solutions, the bond of the Na{sup +} ion and phosphate group aligns the DNA molecules with the NaCl crystal structure during crystallization. This results in significant enhancement of thermal transport in the DNA films with aligned structure.

  7. Conservation and renewable energy technologies for transportation

    SciTech Connect

    Not Available

    1990-11-01

    The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

  8. Conservation and renewable energy technologies for transportation

    NASA Astrophysics Data System (ADS)

    1990-11-01

    The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the U.S. transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

  9. Large-activation-energy analysis of gaseous reactive flow in pipes

    NASA Astrophysics Data System (ADS)

    Moreno-Boza, Daniel; Iglesias, Immaculada; Sanchez, Antonio L.

    2016-11-01

    Frank-Kamenetskii's analysis of thermal explosions is applied, using also a single-reaction model with an Arrhenius rate having a large activation energy, to describe the evolution of an initially cold gaseous mixture flowing along a circular pipe with constant wall temperature for moderately large values of the relevant Reynolds number. The analysis shows two modes of combustion. There is a flameless slowly reacting mode for low wall temperatures or small pipe radii, when the temperature rise resulting from the heat released by the reaction is kept small by the heat-conduction losses to the wall, so as not to change significantly the order of magnitude of the reaction rate. In the other mode, the slow reaction rates occur only in an initial ignition stage, which ends abruptly when very large reaction rates cause a temperature runaway, or thermal explosion, at a well-defined ignition distance. The analysis determines the slow streamwise evolution for the flameless mode of combustion as well as the ignition distance for the explosive mode.

  10. Energy transport through the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Harvey, K. L.; Harvey, J. W.

    1979-01-01

    The energy transport through the solar atmosphere and the source of energy which heats the chromosphere and the solar corona are studied. Wave propagation in the solar atmosphere and in the heating of the solar atmosphere is discussed as a source and transport medium. The source of the waves is thought to be the photospheric short period oscillations. Simultaneous observations from the photosphere to the corona at the solar disk center are reported. Emphasis is on the possible association of aperiodic brightenings high in the atmosphere with specific events in the photosphere.

  11. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  12. Using probabilistic modeling to evaluate human exposure to organotin in drinking water transported by polyvinyl chloride pipe.

    PubMed

    Fristachi, Anthony; Xu, Ying; Rice, Glenn; Impellitteri, Christopher A; Carlson-Lynch, Heather; Little, John C

    2009-11-01

    The leaching of organotin (OT) heat stabilizers from polyvinyl chloride (PVC) pipes used in residential drinking water systems may affect the quality of drinking water. These OTs, principally mono- and di-substituted species of butyltins and methyltins, are a potential health concern because they belong to a broad class of compounds that may be immune, nervous, and reproductive system toxicants. In this article, we develop probability distributions of U.S. population exposures to mixtures of OTs encountered in drinking water transported by PVC pipes. We employed a family of mathematical models to estimate OT leaching rates from PVC pipe as a function of both surface area and time. We then integrated the distribution of estimated leaching rates into an exposure model that estimated the probability distribution of OT concentrations in tap waters and the resulting potential human OT exposures via tap water consumption. Our study results suggest that human OT exposures through tap water consumption are likely to be considerably lower than the World Health Organization (WHO) "safe" long-term concentration in drinking water (150 microg/L) for dibutyltin (DBT)--the most toxic of the OT considered in this article. The 90th percentile average daily dose (ADD) estimate of 0.034 +/- 2.92 x 10(-4)microg/kg day is approximately 120 times lower than the WHO-based ADD for DBT (4.2 microg/kg day).

  13. Energy conservation and the transportation sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The present status of the energy implications of the transportation systems in the United States was illustrated, with primary emphasis on the technologies and methods for achieving a substantial reduction in the associated energy price (approximately 25% of the nation's energy is consumed directly in the operation of these systems). These technologies may be classified as follows: (1) improvement of system efficiency (system operations or technological), (2) substitution for scarce energy resources (electrification, alternate fuels, use of man power, recycling), (3) curtailment of end use (managed population growth rate, education of citizenry, alternatives to personal transportation, improved urban planning, reduced travel incentives). Examples and illustrations were given. Thirty-four actions were chosen on the basis of a preliminary filtering process with the objective of: (1) demonstrating a methodological approach to arrive at logical and consistent conservation action packages, (2) recommending a viable and supportable specific set of actions.

  14. Energy conservation and the transportation sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The present status of the energy implications of the transportation systems in the United States was illustrated, with primary emphasis on the technologies and methods for achieving a substantial reduction in the associated energy price (approximately 25% of the nation's energy is consumed directly in the operation of these systems). These technologies may be classified as follows: (1) improvement of system efficiency (system operations or technological), (2) substitution for scarce energy resources (electrification, alternate fuels, use of man power, recycling), (3) curtailment of end use (managed population growth rate, education of citizenry, alternatives to personal transportation, improved urban planning, reduced travel incentives). Examples and illustrations were given. Thirty-four actions were chosen on the basis of a preliminary filtering process with the objective of: (1) demonstrating a methodological approach to arrive at logical and consistent conservation action packages, (2) recommending a viable and supportable specific set of actions.

  15. Energy recovery transport design for PKU FEL

    SciTech Connect

    Guimei Wang; Yu-Chiu Chao; KUI Zhao; Xiangyang Lu; Jiejia Zhuang; Chuyu Liu; Zhenchao Liu; Jiaer Chen

    2007-06-25

    A free-electron laser based on superconducting linac is under construction in Peking University(PKU). To increase FEL output power, energy recovery is chosen as one of the most potential and popular way. The design of beam transport system for energy recovery is presented, which is suitable for Peking University construction area. Especially, a chicane structure is chosen to change path length at +/-18 degree and R56 in the arc is adjusted for fully bunch compression.

  16. Three-dimensional shape measurement system applied to superficial inspection of non-metallic pipes for the hydrocarbons transport

    NASA Astrophysics Data System (ADS)

    Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.

  17. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  18. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  19. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  20. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  1. Modeling the quasistatic energy transport between nanoparticles

    NASA Astrophysics Data System (ADS)

    Panasyuk, George Y.; Yerkes, Kirk L.

    2015-12-01

    We consider phononic energy transport between nanoparticles mediated by a quantum particle. The nanoparticles are considered as thermal reservoirs described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma model having, in general, unequal mode spacings Δ1 and Δ2, which amount to different numbers of atoms in the nanoparticles. The quasistatic energy transport between the nanoparticles on the time scale t ˜1 /Δ1 ,2 is investigated using the generalized quantum Langevin equation. We find that double degeneracy of system's eigenfrequencies, which occurs in the case of identical nanoparticles, is removed when the mode spacings become unequal. The equations describing the dynamics of the averaged eigenmode energies are derived and solved, and the resulting expression for the energy current between the nanoparticles is obtained and explored. Unlike the case when the thermodynamic limit is assumed resulting in time-independent energy current, finite-size effects result in temporal behavior of the energy current that evinces reversibility features combined with decay and possesses peculiarities at time moments t =2 π n /Δ1+2 π m /Δ2 for non-negative integers n and m . When Δ1 ,2→0 , an expression for the heat current obtained previously under assumption of the thermodynamic limit is reproduced. The energy current between two platinum nanoparticles mediated by a carbon oxide molecule is considered as an application of the developed model.

  2. Modeling the quasistatic energy transport between nanoparticles.

    PubMed

    Panasyuk, George Y; Yerkes, Kirk L

    2015-12-01

    We consider phononic energy transport between nanoparticles mediated by a quantum particle. The nanoparticles are considered as thermal reservoirs described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma model having, in general, unequal mode spacings Δ(1) and Δ(2), which amount to different numbers of atoms in the nanoparticles. The quasistatic energy transport between the nanoparticles on the time scale t∼1/Δ(1,2) is investigated using the generalized quantum Langevin equation. We find that double degeneracy of system's eigenfrequencies, which occurs in the case of identical nanoparticles, is removed when the mode spacings become unequal. The equations describing the dynamics of the averaged eigenmode energies are derived and solved, and the resulting expression for the energy current between the nanoparticles is obtained and explored. Unlike the case when the thermodynamic limit is assumed resulting in time-independent energy current, finite-size effects result in temporal behavior of the energy current that evinces reversibility features combined with decay and possesses peculiarities at time moments t=2πn/Δ(1)+2πm/Δ(2) for non-negative integers n and m. When Δ(1,2)→0, an expression for the heat current obtained previously under assumption of the thermodynamic limit is reproduced. The energy current between two platinum nanoparticles mediated by a carbon oxide molecule is considered as an application of the developed model.

  3. Relationships between energy balance closure and turbulent transport of energy

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirtha; Zeeman, Matthias; Brugger, Peter; De Roo, Frederik; Mauder, Matthias

    2017-04-01

    The energy balance residual (EBR), defined as the difference between the available energy (sum of net radiation and ground heat flux) and the turbulent fluxes of latent and sensible heat, is often found to have a large positive value. Several land surface experiments and flux networks report an average energy balance closure of approximately 80%. Although different factors can influence the energy balance closure across measurement campaigns, a significant EBR even when sites are horizontally with short canopies indicates of a systematic bias resulting from the general underestimation of the aerodynamic transport of energy, especially horizontal divergence of the mean advective fluxes and transport by low-frequency motions generally called 'secondary circulations'. These low frequency local transports can occur from various processes such as coherent large scale organized motions, convective cells and even significant transient changes. Thus, we decided to study the budget of the turbulent kinetic energy (TKE) in conjunction with the energy balance closure and the turbulent fluxes associated with nonlocal motions, advection and flux divergence. In the current work, this interdependency has been investigated using surface flux (Eddy Covariance) at the TERENO sites Fendt, Graswang and Rottenbuch in Southern Germany (with gentle topography. Statistical methods for dimensional reduction techniques has been used to extract the effects and significance of aforementioned processes towards explaining the observed annual average EBR of about 50 Wm-2. Initial results indicate a high correlation between EBR and the TKE dissipation rate, as well as the skewness of vertical velocity and the turbulent fluxes associated with flux divergence, confirming the role of secondary circulations. Overall, improved understanding of such connections between the fundamental mechanisms of TKE transport and the energy balance likely advances the knowledge towards constraining the modeling

  4. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  5. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  6. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system

    SciTech Connect

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-12-31

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90{degrees} bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer{trademark} system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer{trademark} system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration.

  7. Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes

    NASA Technical Reports Server (NTRS)

    Orlandi, P.

    1995-01-01

    Finite-difference second-order accurate direct simulation of a turbulent pipe has been used to investigate how the turbulence production and dissipation change when a solid body rotation is applied. It is shown that when the helicity increases, the dissipation is reduced. It is asserted that to have a drag reduction the external action should be such as to disrupt the symmetry of right- and left-handed helical structures. In this study the Navier-Stokes equations in rotational form permit the turbulent energy production to be split into a part related to the energy cascade from large to small scales and into a part related to the convection by large scales. The full simulation data have shown the latter is greater than the former in the wall region and that, on the contrary, these two terms balance each other in the central region. From the pdf of the former, it has been shown how the vortical structures are changed in the wall region by the background radiation and how they are related to the changes in the energy production.

  8. Transportation energy use and efficiency in Tunisia

    SciTech Connect

    Greene, D.L.; Hu, P.S.; Rose, A.B.

    1984-08-01

    This document constitutes a final report of research by Oak Ridge National Laboratory in collaboration with staff of the Ministry of National Economy, Government of Tunisia toward a complete evaluation of transportation energy use and efficiency in Tunisia. The report includes chapters on highway passenger, marine, and rail transportation which are substantially complete. Additional data on taxis, louages (intercity taxis) and privately owned large trucks remain to be gathered. Some key tables have been included. Data for an analysis of the air and pipeline modes were not collected. The major achievement of this report is a detailed analysis of the National Survey of Vehicle Energy Use, an extensive survey of automobiles and light trucks under 3.5 tonnes. Though the data have some significant shortcomings they provide valuable insights into the energy use and efficiencies of this most important transport mode. This study by no means exhausts the usefulness of this data base for energy use and conservation analysis. The National Survey will very likely serve as a valuable resource for research studies for years to come.

  9. Solar energy conversion using surface plasmons for broadband energy transport

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    A new strategy for efficient solar energy conversion based on parallel processing with surface plasmons is introduced. The approach is unique in identifying: (1) a broadband carrier with suitable range for energy transport, and (2) a technique to extract more energy from the more energetic photons, without sequential losses or unique materials for each frequency band. The aim is to overcome the fundamental losses associated with the broad solar spectrum and to achieve a higher level of spectrum splitting than has been possible in semiconductor systems.

  10. Pipe selection guide

    SciTech Connect

    Sanders, R.D.

    1982-04-01

    Four parameters are used to define a particular pipe: inside diameter, wall thickness, material, and ends. The factors influencing pipe selection are limited to fluid pressure, temperature, chemistry, flow rate, and cost. Other pipe parameters and factors that influence pipe selection and design are mentioned, and, where appropriate, the user is warned that at some stage in the project these factors must be dealt with. It is assumed that the objective is the direct application of geothermal water at temperatures lower than 200/sup 0/F and with 12-in. or smaller pipe. When considering friction losses for sizing purposes, only straight pipe is considered. A discussion of the characteristics and attributes of readily available pipe is included to aid in making a preliminary selection. Energy loss from buried pipe is considered.

  11. Energy Efficient Transport - Technology in hand

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1984-01-01

    Technologies developed through NASA's Energy Efficient Transport Program are described. The program was charged with research in advanced aerodynamics and active controls, with the goal of increasing the fuel efficiency of transport aircraft by 15 to 20 percent. Research in aerodynamics was directed toward the development of high-aspect-ratio supercritical wings, winglets, computational design methodology, high-lift devices, propulsion airframe integration, and surface coatings. The active control portion of the program investigated Wing Load Alleviation (WLA) through the use of active controls, drag reduction, and the effect of active pitch controls on fuel consumption. It was found that applying active control functions at the beginning of the aircraft design cycle brings the best benefit, and that if active control and advanced aerodynamic airframe configurations are applied to transport aircraft design concurrently with new lightweight materials, fuel consumption can be reduced by as much as 40 percent.

  12. Transporting carbon dioxide recovered from fossil-energy cycles

    SciTech Connect

    Doctor, R. D.; Molburg, J. C.; Brockmeier, J. F.

    2000-07-24

    Transportation of carbon dioxide (CO{sub 2}) for enhanced oil recovery is a mature technology, with operating experience dating from the mid-1980s. Because of this maturity, recent sequestration studies for the US Department of Energy's National Energy Technology Laboratory have been able to incorporate transportation into overall energy-cycle economics with reasonable certainty. For these studies, two different coal-fueled plants are considered; the first collects CO{sub 2} from a 456-MW integrated coal gasification combined-cycle plant, while the second employs a 353-MW pulverized-coal boiler plant retrofitted for flue-gas recycling (Doctor et al. 1999; MacDonald and Palkes 1999). The pulverized-coal plant fires a mixture of coal in a 33% O{sub 2} atmosphere, the bulk of the inert gas being made up to CO{sub 2} to the greatest extent practical. If one power plant with one pipe feeds one sequestration reservoir, projected costs for a 500-km delivery pipeline are problematic, because when supplying one reservoir both plant availability issues and useful pipeline life heavily influence capital recovery costs. The transportation system proposed here refines the sequestration scheme into a network of three distinctive pipelines: (1) 80-km collection pipelines for a 330-MW pulverized-coal power plant with 100% CO{sub 2} recovery; (2) a main CO{sub 2} transportation trunk of 320 km that aggregates the CO{sub 2} from four such plants; and (3) an 80-km distribution network. A 25-year life is assumed for the first two segments, but only half that for the distribution to the reservoir. Projected costs for a 500-km delivery pipeline, assuming an infrastructure, are $7.82/tonne ($17.22/10{sup 3} Nm{sub 3} CO{sub 2} or $0.49/10{sup 3} scf CO{sub 2}), a savings of nearly 60% with respect to base-case estimates with no infrastructure. These costs are consistent only with conditioned CO{sub 2} having low oxygen and sulfur content; they do not include CO{sub 2} recovery, drying

  13. Pipe protection bibliography

    SciTech Connect

    Guy, N.G.

    1987-01-01

    Pipes and pipelines are being used for an ever widening range of materials, for increasing flows and in harsher applications. There is also more legal and social pressure to reduce the hazards associated with handling materials in pipes. All of this increases the demand for improved pipe reliability. Two of the major preventable causes of pipe failure are corrosion and wear. These may result from the pipe surroundings, or from the material which is carried and it is often impossible to prevent failure by the choice of pipe materials and design. However, additional pipe protection measures are available and it is these measures which are considered in this bibliography. The most common pipe protection methods are the application of coatings and the use of cathodic protection. Accordingly, much of this bibliography is devoted to these techniques. Articles dealing with other means of protecting pipes have also been included. The bibliography covers the protection of oil pipes, (both offshore and on land); water supply systems; gas distribution systems; sewer pipes; pipes for hydraulic and pneumatic transport of solids; power plant pipework; process plant pipework.

  14. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  15. Squaring the Circle: Geometric Skewness and Symmetry Breaking for Passive Scalar Transport in Ducts and Pipes

    NASA Astrophysics Data System (ADS)

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; McLaughlin, Richard M.

    2015-10-01

    We study the role geometry plays in the emergence of asymmetries in diffusing passive scalars advected by pressure-driven flows in ducts and pipes of different aspect ratios. We uncover nonintuitive, multi-time-scale behavior gauged by a new statistic, which we term "geometric skewness" SG, which measures instantaneously forming asymmetries at short times due to flow geometry. This signature distinguishes elliptical pipes of any aspect ratio, for which SG=0 , from rectangular ducts whose SG is generically nonzero, and, interestingly, shows that a special duct of aspect ratio ≈0.533 35 behaves like a circular pipe as its geometric skewness vanishes. Using a combination of exact solutions, novel short-time asymptotics, and Monte Carlo simulations, we establish the relevant time scales for plateaus and extrema in the evolution of the skewness and kurtosis for our class of geometries. For ducts limiting to channel geometries, we present new exact, single-series formulas for the first four moments on slices used to benchmark Monte Carlo simulations.

  16. Squaring the Circle: Geometric Skewness and Symmetry Breaking for Passive Scalar Transport in Ducts and Pipes.

    PubMed

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; McLaughlin, Richard M

    2015-10-09

    We study the role geometry plays in the emergence of asymmetries in diffusing passive scalars advected by pressure-driven flows in ducts and pipes of different aspect ratios. We uncover nonintuitive, multi-time-scale behavior gauged by a new statistic, which we term "geometric skewness" S^{G}, which measures instantaneously forming asymmetries at short times due to flow geometry. This signature distinguishes elliptical pipes of any aspect ratio, for which S^{G}=0, from rectangular ducts whose S^{G} is generically nonzero, and, interestingly, shows that a special duct of aspect ratio ≈0.53335 behaves like a circular pipe as its geometric skewness vanishes. Using a combination of exact solutions, novel short-time asymptotics, and Monte Carlo simulations, we establish the relevant time scales for plateaus and extrema in the evolution of the skewness and kurtosis for our class of geometries. For ducts limiting to channel geometries, we present new exact, single-series formulas for the first four moments on slices used to benchmark Monte Carlo simulations.

  17. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  18. Consumer Views on Transportation and Energy

    SciTech Connect

    Steiner, E.

    2003-08-01

    This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. An issue that still needs attention from EERE is the finding that the public tends to lack information about hybrid vehicles, hydrogen, and alternative fuels for passenger vehicles. Also, the public seems to want fuel-efficiency improvements and cleaner fuels, but is not very willing to pay for these benefits. The public also says that it supports initiatives to promote energy conservation over increased production and that it is willing to make changes such as driving less in an effort to reduce oil consumption.

  19. Integrated solar reforming for thermochemical energy transport

    NASA Astrophysics Data System (ADS)

    Rozenman, T.

    1987-12-01

    This report presents a design study of two reforming processes as applied to the concept of solar thermochemical energy transport. Conceptual designs were carried out for steam-methane and CO2-methane reforming plants. A solar central receiver reformer was designed as an integrated reactor with the chemical reaction tubes placed inside the receiver cavity. The two plant designs were compared for their energy efficiency and capital cost. The CO2 reforming plant design results in higher energy efficiency but requires a catalyst which is still in an experimental stage of development. A third design was performed as a modification of the steam reforming plant utilizing a Direct Contact system, in which the process steam is generated by utilizing the heat of condensation. This system resulted in the highest energy efficiency. A comparison of the capital cost of these three plant designs shows them to be equivalent within the estimation accuracy of 25 percent.

  20. 78 FR 62614 - Guttman Energy, Inc., PBF Holding Company LLC v. Buckeye Pipe Line Company, L.P., Laurel Pipe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... transportation of petroleum products from Chelsea Junction, Pennsylvania, to delivery points in Pennsylvania on... market-based rates of Buckeye are no longer justified because, as a result of changed circumstances, Buckeye does not, in fact, lack significant market power, and (4) the Respondents' collection...

  1. Energy Use in Transportation. Selected References

    DTIC Science & Technology

    1980-08-01

    Bernhard J. Abrahamson, ed. Boulder, Colo., Westview Press, 1978. xviii, 151 p. (HE9502.U52R63) HQ Papers presented at the 10th Institute, June 26-29...TOOLS TO MEET THE NATIONAL OBJECTIVE. Sarah J. LaBelle, ed. Summary of meeting, Argonne National Laboratory, Feb. 12, 1976. Argonne, 111., 1976...into the air. 407. Bernard, Martin Joseph and Sarah LaBelle. ENERGY CONSERVATION IN URBAN TRANSIT SYSTEMS. Chicago, uegional Transportation

  2. Thermocapillary transport of energy during water evaporation.

    PubMed

    Duan, Fei; Badam, V K; Durst, F; Ward, C A

    2005-11-01

    When evaporation occurs at a spherical water-vapor interface maintained at the circular mouth of a small funnel, studies of the energy transport have indicated that thermal conduction alone does not provide enough energy to evaporate the liquid at the observed rate. If the Gibbs model of the interface is adopted and the "surface-thermal capacity" is assigned a value of 30.6+/-0.8 kJ/(m2 K), then for evaporation experiments with the interfacial temperature in the range -10 degrees C< or =TLV< or =3.5 degrees C and Marangoni number (Ma) in the range 100energy transport by both thermocapillary convection and thermal conduction were taken into account, conservation of energy was fully satisfied. The question addressed herein is whether the assigned value of the surface-thermal capacity is an ad hoc empirical parameter or a property of the water-vapor interface that can be used in other circumstances. Accordingly, a series of experiments has been conducted in which water evaporated at cylindrical interfaces that were, on average, 4.4 times larger in area than that of the spherical interfaces used to measure the surface-thermal capacity initially. It is shown that using the value of the surface-thermal capacity determined at a spherical interface, the energy transported by thermocapillary convection and thermal conduction at a cylindrical interface is sufficient to evaporate the liquid at the observed rate. Knowing the value of the surface-thermal capacity also allows the local evaporation flux to be calculated from the measured temperature profiles in the liquid and vapor phases. The calculated local evaporation flux can then be used with statistical rate theory to calculate the vapor-phase pressure along the interface. The predicted mean vapor-phase pressure is in close agreement with that measured, and the predicted pressure gradient is consistent with that expected when thermocapillary convection is present.

  3. Solar thermochemical energy conversion and transport

    NASA Astrophysics Data System (ADS)

    McCrary, J. H.; McCrary, G. E.

    1982-11-01

    The high temperature catalytic dissociation of SO3 and the CO2-CH4 reforming-methanation cycle are important chemical processes being considered in the development and application of solar-thermal energy conversion, transport, and storage systems. Separate facilities for evaluating chemical converter-heat exchangers at temperatures to 1000 C with high flow rates of SO3 and of mixtures of CO2 and CH4 feedstocks have been assembled and operated on the NMSU campus. A number of receiver elements (chemical reactors) have been tested in these laboratory facilities in an effort to optimize catalyst parameters and catalyst reactor configurations. These tests led to the design and fabrication of both low power and high power solar energy receivers which were operated successfully at the White Sands solar Furnace. Energy delivery methanation reactor design and parametric studies led to the fabrication and operation of laboratory closed-loop, energy conversion, transport, and delivery system. These latter experiments met with limited but promising success. Carbon deposition, though a problem, is believed to be controllable with the optimization of catalyst parameters and feedstock composition.

  4. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  5. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  6. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  7. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  8. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  9. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  10. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  11. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  12. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  13. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  14. 78 FR 58383 - Renewal of Rail Energy Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF TRANSPORTATION Surface Transportation Board Renewal of Rail Energy Transportation Advisory Committee AGENCY... one state- or municipally-owned utility); 4 representatives from biofuel feedstock growers...

  15. Energy transport in the Anderson insulator

    NASA Astrophysics Data System (ADS)

    Gutman, D. B.; Protopopov, I. V.; Burin, A. L.; Gornyi, I. V.; Santos, R. A.; Mirlin, A. D.

    2016-06-01

    We study the heat conductivity in Anderson insulators in the presence of a power-law interaction. Particle-hole excitations built on localized electron states are viewed as two-level systems randomly distributed in space and energy and coupled due to electron-electron interaction. A small fraction of these states form resonant pairs that in turn build a complex network allowing for energy propagation. We identify the character of energy transport through this network and evaluate the thermal conductivity. For physically relevant cases of two-dimensional and three-dimensional spin systems with 1 /r3 dipole-dipole interaction (originating from the conventional 1 /r Coulomb interaction between electrons), the found thermal conductivity κ scales with temperature as κ ∝T3 and κ ∝T4 /3 , respectively. Our results may be of relevance also to other realizations of random spin Hamiltonians with long-range interactions.

  16. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  17. Integrated energy management study. Energy efficient transport program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Integrated Energy Management (IEM) Study investigated the practicality and feasibility of a closed-loop energy management system for transport aircraft. The study involved: (1) instrumentation and collection of in-flight data for a United Airlines 727-200 flying 80 revenue flights throughout the United Airlines network,(2) analysis of the in-flight data to select representative city pairs and establish operational procedures employed in flying a reference flight profile, (3) simulation of the reference profile in a fast-time model to verify the model and establish performance values against which to measure IEM benefits, (4) development of IEM algorithms, and (5) assessment of the IEM concept.

  18. Energy Department to Host First Sustainable Transportation Summit

    SciTech Connect

    Sarkar, Reuben

    2016-06-29

    On July 11-12, mobility and transportation leaders from across the country are coming to Washington, D.C. for the inaugural Sustainable Transportation Summit hosted by the Office of Energy Efficiency and Renewable Energy (EERE).

  19. Energy Department to Host First Sustainable Transportation Summit

    ScienceCinema

    Sarkar, Reuben

    2016-08-17

    On July 11-12, mobility and transportation leaders from across the country are coming to Washington, D.C. for the inaugural Sustainable Transportation Summit hosted by the Office of Energy Efficiency and Renewable Energy (EERE).

  20. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    SciTech Connect

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  1. Technology development plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Riggins, Michael

    1989-04-01

    An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.

  2. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  3. Low energy electron transport in furfural

    NASA Astrophysics Data System (ADS)

    Lozano, Ana I.; Krupa, Kateryna; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, Darryl B.; Brunger, Michael J.; García, Gustavo

    2017-09-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed.

  4. Mitigating Climate Change with Ocean Pipes: Influencing Land Temperature and Hydrology and Termination Overshoot Risk

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.; Caldeira, K.; Ricke, K.

    2014-12-01

    With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.

  5. Electromagnetic energy transport in RFP magnetic relaxation

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Thuecks, D. J.; Stone, D. R.; Anderson, J. K.; den Hartog, D. J.; Duff, J.; Ko, J.; Kumar, S.; Parke, E.; Lin, L.; Brower, D. L.; Ding, W. X.

    2014-10-01

    In an RFP driven by steady toroidal induction, tearing modes responsible for magnetic relaxation redistribute electromagnetic energy throughout the plasma, generating the net EMF that regulates the equilibrium profile. In MST experiments, insertable edge probes measure local fluctuations in electric and magnetic fields, from which flux-surface-average Poynting flux is derived. This outwardly directed flux is maximum during discrete ``sawtooth'' magnetic relaxation events and is a significant fraction (a few 10s of percent) of the total input inductive power when averaged over time. Spatially, the flux is maximum at the reversal surface and decreases outside, indicating that transported energy is deposited at the plasma edge. These results are similar to expectations from a simple model of an incompressible fluid plasma with a resistive boundary and consistent with estimates of global power balance from time-resolved equilibrium reconstructions. This work was supported by the US DOE and NSF.

  6. Energy-pointwise discrete ordinates transport methods

    SciTech Connect

    Williams, M.L.; Asgari, M.; Tashakorri, R.

    1997-06-01

    A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects.

  7. Salt loaded heat pipes: steady-state operation and related heat and mass transport

    NASA Astrophysics Data System (ADS)

    Simakin, A.; Ghassemi, A.

    2003-10-01

    Fluids in the deep-seated zones (3.5-4.5 km) of active geothermal zones are known to have increased salinity and acidity that can enhance interaction with surrounding porous rocks. A possible mechanism for brine generation is the separation of the rising magmatic fluid into a gas-like and a liquid-like component. This work illustrates the main features of this mechanism by investigating the conditions for heat pipe convection of natural brines in hydrothermal systems. The well-established heat pipe regime for convection of two-phase pure water (vapor-liquid) in a porous column is extended to the case of boiling brines. In particular, the NaCl-H 2O system is used to model the 1-D reactive flow with dissolution-precipitation in geothermal reservoirs. The quasi steady-state equations of the conservation of matter, Darcy's law for the gas and liquid phases, and the heat balance equation have been examined while neglecting the temporal variation of porosity. A semi-analytical procedure is used to solve these equations for a two-phase fluid in equilibrium with a solid salt. The solution is in the form of the dependence of liquid volume fraction as a function of temperature for different heat fluxes. The solution is separated into two isolated regions by the temperature T=596°C, at the maximum fluid pressure for three-phase (H-L-V) equilibrium. In the case of unsaturated two-phase flow at the reference permeability of porous rocks (3·10 -16 m 2), the maximum heat flux that can be transferred through the porous column via convection is analytically estimated to be 4.3 W/m 2. This is close to the corresponding value for the three-phase case that is numerically calculated to be 6 W/m 2. Due to dissolution (partial leaching of oxide components by acid condensates) and precipitation of salt at the boiling front, heat transfer in a heat pipe in soluble media occurs in a direction opposite to the associated mass transfer. This can cause deep hydrothermal karsting that is

  8. M"ossbauer study of corrosion and abrasion products in oil transporting pipes

    NASA Astrophysics Data System (ADS)

    Gomez, Raul W.; Perez Mazariego, Jose Luis; Marquina, Vivianne; Marquina, Ma. Luisa; Ridaura, Rosalia; Martinez, Lorenzo

    2012-02-01

    It is known that one of the main technological problems in carbon steel oleoducts is the corrosion produced by different substances, such as water, carbon dioxide, sulfur, and microorganisms. In addition, if in such mixture there is sand, aggressive sludge can be form that abrasions material from the oleoduct. A room temperature M"ossbauer study of corroded material taken from different sites of oleoducts is presented. Most of the M"ossbauer spectra reveal the presence of nanoparticles, indicating that in these pipes the abrasion problem is severe. A preliminary identification of the oxidized samples suggests the presence of magnetite, and some Iron hydroxides. Further studies are in course in order to identify unambiguously the products present in the corroded materials.

  9. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe

    NASA Astrophysics Data System (ADS)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin

    2017-08-01

    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  10. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  11. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  12. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  13. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  14. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  15. Component Design Report: International Transportation Energy Demand Determinants Model

    EIA Publications

    2017-01-01

    This Component Design Report discusses working design elements for a new model to replace the International Transportation Model (ITran) in the World Energy Projection System Plus (WEPS ) that is maintained by the U.S. Energy Information Administration. The key objective of the new International Transportation Energy Demand Determinants (ITEDD) model is to enable more rigorous, quantitative research related to energy consumption in the international transportation sectors.

  16. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  17. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Astrophysics Data System (ADS)

    Barile, Ronald G.

    1986-11-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  18. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply...

  19. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply...

  20. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply...

  1. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply...

  2. Pipe-to-pipe impact program

    SciTech Connect

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984.

  3. 76 FR 54291 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Meeting AGENCY: Surface Transportation Board. ACTION: Notice of Rail Energy Transportation Advisory Committee meeting. SUMMARY: Notice is hereby given of a meeting of the Rail Energy Transportation Advisory Committee...

  4. 77 FR 8947 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Meeting AGENCY: Surface Transportation Board, DOT. ACTION: Notice of Rail Energy Transportation Advisory Committee meeting. SUMMARY: Notice is hereby given of a meeting of the Rail Energy Transportation Advisory Committee...

  5. 78 FR 13156 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Meeting AGENCY: Surface Transportation Board, Transportation. ACTION: Notice of Rail Energy Transportation...

  6. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  7. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  8. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  9. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  10. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  11. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  12. Analysis of nuclear piping system seismic tests with conventional and energy absorbing supports

    SciTech Connect

    Park, Y.; DeGrassi, G.; Hofmayer, C.; Bezler, P.; Chokshi, N.

    1997-04-01

    Large-scale models of main steam and feedwater piping systems were tested on the shaking table by the Nuclear Power Engineering Cooperation (NUPEC) of Japan, as part of the Seismic Proving Test Program. This paper describes the linear and nonlinear analyses performed by NRC/BNL and compares the results to the test data.

  13. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  14. Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report

    SciTech Connect

    Not Available

    1994-09-01

    Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

  15. 76 FR 4847 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Parts 171-180) to prohibit the transportation of Division 5.1 (oxidizing), 5.2 (organic peroxides), 6.1... considers the values for estimated benefits to be conservative as evidenced through sensitivity analysis... prohibition. The present value benefits and costs for the compliance alternatives are provided below at 3%...

  16. Bedload measurement with a set of vertical and horizontal pipe hydrophones in a mountainous stream

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Daizo; Fujita, Masaharu; Nonaka, Michinobu

    2016-04-01

    The pipe hydrophone has been shown to be an effective means for monitoring bedload transport in mountainous streams. It is commonly installed perpendicular to the flow on a stable river bed such as a check dam. Acoustic pulses caused by bedload collisions on the pipe are detected by a microphone. However, bedload particles saltating over the pipe remain undetected. To overcome this disadvantage we have installed a horizontal as well as a vertical pipe hydrophone in the Ashiarai-dani supercritical flume located in the Hida mountain range, Japan. The vertical pipe was installed on the wall of the flume and the horizontal pipe was installed on the flume bed. The horizontal and vertical pipes respond acoustically; the acoustic energy derived from the horizontal pipe is larger than that for the vertical, but the number of pulses from the vertical pipe is more numerous than that monitored by the horizontal pipe at high amplitudes. We explain this as follows: the volumetric concentration of bedload decreases with increased height above the bed. Therefore, the acoustic response of the horizontal pipe is expected to be larger than that of the vertical pipe. However, at high amplitudes and high bedload discharges the pulses of the horizontal pipe are saturated but those of the vertical pipe are not saturated. We propose a ratio (Rhv) between pulses detected by these sensors, and applied this ratio in calibrating the contemporaneous pulses detected by a hydrophone located immediately upstream of a Reid-type bedload slot sampler. Indeed the Rhv-corrected pulses correlate well with the bedload discharge calculated from the sampler, thereby supporting our explanation. We conclude that bedload monitoring using concomitant vertical and horizontal pipe hydrophones can be used to calibrate centrally-located hydrophones, thereby representing bedload discharges more accurately than those based on a single pipe hydrophone.

  17. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  18. Low energy beam transport for HIDIF

    NASA Astrophysics Data System (ADS)

    Meusel, O.; Pozimski, J.; Jakob, A.; Lakatos, A.

    2001-05-01

    Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Groß, R. Dölling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe + beam are presented and the results of numerical simulations are shown.

  19. Numerical Investigation of the effect of adiabatic section location on thermal performance of a heat pipe network with the application in thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2015-11-01

    Latent heat thermal energy storage systems benefits from high energy density and isothermal storing process. However, the low thermal conductivity of the phase change material leads to prolong the melting or solidification time. Using a passive device such as heat pipes is required to enhance the heat transfer and to improve the efficiency of the system. In the present work, the performance of a heat pipe network specifically designed for a thermal energy storage system is studied numerically. The network includes a primary heat pipe, which transfers heat received from solar receiver to the heat engine. The excess heat is simultaneously delivered to charge the phase change material via secondary heat pipes. The primary heat pipe composed of a disk shape evaporator, an adiabatic section and a disk shape condenser. The adiabatic section can be either located at the center or positioned outward to the surrounding of the container. Here, the effect of adiabatic section position on thermal performance of the system is investigated. It was concluded that displacing the adiabatic section outwards dramatically increases the average temperatures of the condensers and reduces the thermal resistance of heat pipes.

  20. High power densities from high-temperature materials interactions. [thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.

  1. A Reactive-Heat-Pipe for Combined Heat Generation and Transport

    DTIC Science & Technology

    1977-12-01

    Pumping Heights for Different Temperatures. . . 70 22 Effect of Flow Losses on System Thermal Performance with No Argon in the Condenser...73 23 Flow Losses in the Vapor Transport System with Argon in the Condenser ................... 75 24 Temperature Distributions in a Reactive-Heat...shroud flow of inert gas, usually argon. The inert gas is recirculated through a vent system . The outer shroud flow prevents the direct contact

  2. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  3. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  4. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  5. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  6. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  7. Application of 3-dimensional radiation transport codes to the analysis of the CRBR prototypic coolant pipe chaseway neutron streaming experiment

    SciTech Connect

    Chatani, K. )

    1992-08-01

    This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.

  8. Nuclear Energy and Synthetic Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  9. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  10. Pipe and bend erosion by pneumatic transport of solids at high temperature

    NASA Astrophysics Data System (ADS)

    Klinzing, George E.; Borzone, Luis A.; Yang, Wen-Ching

    1989-06-01

    The erosion of various components of a pneumatic transport line was studied through basic experiments, commercial scale test runs and computer simulation. The main objective was to study the effect of the operating variables on the erosion rates of refractory lined straight sections and bends. Temperatures ranging from 22 to 830 C, gas velocities from 12.9 to 34 m/s and solid flow rates from 48 to 225 kg/h were tested in a High Temperature Pneumatic Transport Test Facility. Four kinds of refractory concretes were used as targets. The erodent materials were river sand, coal slag and alumina. The effect of gas velocity and solids slow rate on the erosion rate was correlated in terms of power laws, while temperature effects proved to be more complex, since mechanical properties of both erodent and target materials change with temperature. The erosion of circular bends was evaluated using a computer model that combines computational particle dynamics and experimental data to predict the erosion pattern inside the bend. Experiments on the erosion of wedge samples, performed in the erosion test facility, and data on particle-wall collisions, obtained with the help of high speed photographic techniques, were the basic set of data used in the simulation. As an alternative to circular radius bends, and experimental study of wear and flow patterns in blinded T-bends was performed. The internal geometry in this kind of bends was determined by the solids deposition, and complex erosion patterns appeared as the operating variables were manipulated.

  11. Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2014-01-01

    The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.

  12. Peristaltic transport of a biofluid in a pipe of elliptic cross section.

    PubMed

    Usha, S; Rao, A R

    1995-01-01

    Peristaltic transport of two fluids occupying the peripheral layer and the core in an elliptic tube is investigated in elliptic cylindrical co-ordinate system, under long wavelength and low Reynolds number approximations. The effect of peripheral-layer viscosity on the flow rate and the frictional force for a slightly elliptic tube is discussed. The limiting results for the one-fluid model are obtained for different eccentricities of the undisturbed tube cross sections with the same area. As a result of non-uniformity of the peristaltic wave, two different amplitude ratios are defined and the time-averaged flux and mechanical efficiency are studied for different eccentricities. It is observed that the time-averaged flux is not affected significantly by the pressure drop when the eccentricity is large. For the peristaltic waves with same area variation, the pumping seems to improve with the eccentricity.

  13. Scaling Rules for Vibrational Energy Transport in Globular Proteins.

    PubMed

    Buchenberg, Sebastian; Leitner, David M; Stock, Gerhard

    2016-01-07

    Computational studies of vibrational energy flow in biomolecules have to date mapped out transport pathways on a case-by-case basis. To provide a more general approach, we derive scaling rules for vibrational energy transport in a globular protein, which are identified from extensive nonequilibrium molecular dynamics simulations of vibrational energy flow in the villin headpiece subdomain HP36. We parametrize a master equation based on inter-residue, residue-solvent, and heater-residue energy-transfer rates, which closely reproduces the results of the all-atom simulations. From that fit, two scaling rules emerge, one for energy transport along the protein backbone which relies on a diffusion model and another for energy transport between tertiary contacts, which is based on a harmonic model. Requiring only the calculation of mean and variance of relatively few atomic distances, the approach holds the potential to predict the pathways and time scales of vibrational energy flow in large proteins.

  14. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under...

  15. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under...

  16. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under...

  17. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under...

  18. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under...

  19. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  20. Energy and Transportation Lessons for the Senior High Grades.

    ERIC Educational Resources Information Center

    Parker, Francis; Yoho, Devon

    This guide presents five lessons designed to: create an awareness of the present energy situation and its relation to various aspects of transportation systems; provide knowledge of energy resources, choices, and alternative actions; develop critical thinking skills about energy and individual roles in the energy management process; encourage…

  1. Energy and Transportation Lessons for the Middle Grades.

    ERIC Educational Resources Information Center

    Parker, Francis; Yoho, Devon

    The five lessons presented in this guide are designed to: create an awareness of the present energy situation and its relation to various aspects of transportation systems; provide knowledge of energy resources, choices, and alternative actions; develop critical thinking skills about energy and individual roles in the energy management process;…

  2. 77 FR 30002 - Regency Field Services LLC, v. DCP Black Lake Pipe Holdings, LP; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Energy Regulatory Commission Regency Field Services LLC, v. DCP Black Lake Pipe Holdings, LP; Notice of... a complaint against DCP Black Lake Pipe Holdings, LP (Black Lake or Respondent) alleging that Black... against Regency associated with the transportation of Natural Gas Liquids pursuant to Rule 5 of Black Lake...

  3. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  4. Development of cryogenic thermal control heat pipes. [of stainless steels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.

  5. Electrohydrodynamic heat pipes.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  6. Energy and Environmental Consequences of Transportation: Indicators of Sustainability

    SciTech Connect

    Greene, D.L.

    1997-07-01

    The rapid motorization of world transportation systems puts growing emphasis on controlling transportation`s direct and indirect impacts on the global environment, in other words, on achieving sustainability in transport. In 1950, the world contained 70 million motor vehicles, of which 70% were in the United States. Today the world`s motor vehicle fleet exceeds 600 million,of which less than one-third are in the U.S. Outside of the U.S., motor vehicle stocks are growing twice as fast (Davis & McFarlin, 1996, tables 1.1 & 1.2). With this explosive growth of motorized transport comes a compelling need to control its concomitant pollution, greenhouse gas emissions, and fossil fuel consumption. Large scale indicators of transportation`s performance with respect to sustainability are therefore becoming increasingly important for monitoring trends and evaluating the effectiveness of policies at national and international scales. A recent survey by the Bureau of Transportation Statistics (U. S. DOT/BTS, 1 996) of data on transportation`s environmental consequences in the U.S., found that reasonable indicators exist for energy use and for certain of transportation`s environmental impacts. Statistics on air pollutant emissions, greenhouse gas emissions, and energy use are adequate for developing rigorous indicators of at least emissions and energy use. Much less is known about noise generation, water and groundwater pollution, solid waste,land-use and habitat impacts.

  7. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Materials Project Test Report

    SciTech Connect

    Not Available

    1981-04-01

    Fiberglass sandwich wall structures emerged as leading candidates for the OTEC cold water pipe because of their high strength to weight ratio, their flexibility in selecting directional properties, their resistance to electrochemical interaction, their ease of deployment and their relative low cost. A review of the literature established reasonable confidence that FRP laminates could meet the OTEC requirements; however, little information was available on the performance of core materials suitable for OTEC applications. Syntactic foam cores of various composition and density were developed and tested for mechanical properties and seawater absorption.

  8. Surface excess properties from energy transport measurements during water evaporation.

    PubMed

    Duan, Fei; Ward, C A

    2005-11-01

    When water evaporates at high rates, recent studies indicate thermal conduction to the interface does not provide enough energy to evaporate water at the observed rate and that it is perhaps thermocapillary convection that transports the remaining energy. This possibility is examined by applying the Gibbs dividing-surface approximation to develop an expression for the energy transported along the interface. When this energy transport rate is compared with that required to evaporate the liquid at the observed rate, it is found that a Gibbs excess property, the "surface-thermal capacity," can be evaluated. A series of 19 evaporation experiments has been conducted under conditions for which there was no buoyancy-driven convection and for which the evaporation rate was progressively increased. For Marangoni numbers, (Ma) less than approximately 100, the interface was quiescent and thermal conduction (the Stefan condition) correctly predicted the energy transport rate to the surface. For experiments with 100energy transport. However, if the surface-thermal capacity is assigned a value of 30.6+/-0.8 kJ/(m2K), then energy transport by thermocapillary convection and conduction provides the energy transport required to evaporate the liquid at the observed rate. For experiments with Ma>22,000, the interfacial flow was turbulent and viscous dissipation became important.

  9. High Energy Radiation Transport Codes: Their Development and Application

    NASA Astrophysics Data System (ADS)

    Gabriel, Tony A.

    1996-05-01

    The development of high energy radiation transport codes has been very strongly correlated to the development of higher energy accelerators and more powerful computers. During the early 1960's a Nucleon Transport Code (NTC) was developed to transport neutrons and protons up to energies below the pion threshold. During the middle 1960's this code which was renamed to NMTC was expanded to include multiple pion production and could be used for particle energies up to 3.5 GeV. During the late 1960's and early 1970's with the development of Fermi National Accelerator Laboratory (FNAL) NMTC was again refined by the inclusion of a particle nucleus collision scaling model which could generate reliable collision information at the higher energies necessary for the development of radiation shielding at FNAL. This was HETC. During the 1970's HETC was coupled with the EGS code for electromagnetic particle transport the MORSE code for low-energy (<20MeV) neutron transport, and SPECT, a HETC analysis code for obtaining energy deposition, to produce the CALOR code system, a complete high energy radiation transport code package. For this paper CALOR will be described in detail and some recent applications will be presented. The strength and weakness as well as the applicability of other radiation transport code systems like FLUKA will be briefly discussed.

  10. ECUT energy data reference series: lightweight materials for ground transportation

    SciTech Connect

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01

    This report summarizes information that describes the use of lightweight materials in automobiles. The information on this mode of transportation represents the largest potential energy savings for substitution of lightweight materials in the transportation sector. Included are data on energy conversion efficiency of the engine and its relationship to vehicle weight, the capital stock, the amount of energy used, and the service activity level as measured in ton-miles.

  11. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program Data Analysis Project: Pipe, platform and environmental parameters data reduction and analysis

    NASA Astrophysics Data System (ADS)

    Vega, L. A.; Nilhous, G. C.

    1985-08-01

    An assessment of computer models developed to analyze the structural response of cold water pipes (CWPs) is discussed. The principal aim of the data interpretation phase of the study was to determine the causal relationship between the environment and the barge/CWP response to provide the information required to assess the CWP computer models.

  12. Transport energy consumption achievement based on indicator analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Jian

    2017-06-01

    In order to evaluate the transport sustainability level for regions, the concept of achievement efficiency in transport energy consumption is initially suggested in this paper. The research object is not only for the energy consumption by transport operation but also the whole life of the transport procedure, which is the thought of life cycle assessment. And then, on the quantitative analysis to calculate the transport energy achievement efficiency of the regions, the indicators that can represent the achievement of transport energy consumption are convincingly found out by indicator theory. Next, concentration is focused on the transport related indicators and proper indicators are picked up from the candidate indicators, which were the affecting factors to this issue. After that, using the selected indicators, we introduce the method of data envelopment analysis to do quantitative analysis, which helps to get the achievement efficiency of transport energy among cities all over the world. The analysis result shows the efficient regions and the inefficient regions respectively. Furthermore, the detailed efficiency value of each region is also laid out clearly. For the improvement, the inadequate output or input variables of the inefficient regions were listed compared with the efficient regions so that corresponding transport policy implications can be resulted for the inefficient regions to reach high level sustainability.

  13. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-01-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons

  14. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-02-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore, Inc. has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 316L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650C to 700C for over 115,000 hours without signs of failure. A second 316L stainless steel heat pipe with a specially-designed Inconel 601 rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600C to 650C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41,000 hours at nearly 700C. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and test results are described for each of these sodium heat pipes. Lessons learned and future life

  15. Heat Pipes

    ERIC Educational Resources Information Center

    Lewis, J.

    1975-01-01

    Describes the construction, function, and applications of heat pipes. Suggests using the heat pipe to teach principles related to heat transfer and gives sources for obtaining instructional kits for this purpose. (GS)

  16. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  17. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  18. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    PubMed

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-07

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.

  19. Energy transports by ocean and atmosphere based on an entropy extremum principle. I - Zonal averaged transports

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1993-01-01

    The maximum entropy production principle suggested by Paltridge (1975) is applied to separating the satellite-determined required total transports into atmospheric and oceanic components. Instead of using the excessively restrictive equal energy dissipation hypothesis as a deterministic tool for separating transports between the atmosphere and ocean fluids, the satellite-inferred required 2D energy transports are imposed on Paltridge's energy balance model, which is then solved as a variational problem using the equal energy dissipation hypothesis only to provide an initial guess field. It is suggested that Southern Ocean transports are weaker than previously reported. It is argued that a maximum entropy production principle can serve as a governing rule on macroscale global climate, and, in conjunction with conventional satellite measurements of the net radiation balance, provides a means to decompose atmosphere and ocean transports from the total transport field.

  20. Energy transports by ocean and atmosphere based on an entropy extremum principle. I - Zonal averaged transports

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1993-01-01

    The maximum entropy production principle suggested by Paltridge (1975) is applied to separating the satellite-determined required total transports into atmospheric and oceanic components. Instead of using the excessively restrictive equal energy dissipation hypothesis as a deterministic tool for separating transports between the atmosphere and ocean fluids, the satellite-inferred required 2D energy transports are imposed on Paltridge's energy balance model, which is then solved as a variational problem using the equal energy dissipation hypothesis only to provide an initial guess field. It is suggested that Southern Ocean transports are weaker than previously reported. It is argued that a maximum entropy production principle can serve as a governing rule on macroscale global climate, and, in conjunction with conventional satellite measurements of the net radiation balance, provides a means to decompose atmosphere and ocean transports from the total transport field.

  1. Energy Policy Act Transportation Rate Study: Final Report on Coal Transportation

    EIA Publications

    2000-01-01

    This is the final in a series of reports prepared for the U.S. Congress by the Secretary of Energy on coal distribution and transportation rates as mandated by Title XIII, Section 1340, Establishment of Data Base and Study of Transportation Rates, of the Energy Policy Act of 1992 (P.L. 102-486).

  2. Heat pipe technology for coal-fired power systems

    SciTech Connect

    Uherka, K.L.; Holtz, R.E.; McLennan, G.A.; Koehl, E.R.

    1985-04-01

    This report summarizes the results of heat pipe R and D activities at Argonne National Laboratory (ANL) during the 1977 to 1984 time period. The heat pipe development efforts were associated with a variety of DOE supported projects involving coal-fired prime movers for stationary power generation. The role of heat pipes for these power systems is in their potential application as thermal transport systems for integrating fluidized bed combustors (FBC) with prime movers ranging from Stirling engines in total energy systems (approx.10 MWe) to closed-cycle gas turbines in central power plants (approx.1000 MWe). The results of initial investigations at ANL demonstrated that high-temperature sodium heat pipes provided the best heat exchanger technology for integrating Stirling engines with coal-fired FBC systems. A major accomplishment included the development and validation of a computer code (ANL/HTP) which calculates heat pipe operating limits and other significant characteristics necessary for power plant design. A number of developmental and prototype heat pipes were designed and fabricated through a subcontract effort with Thermacore, Inc., and delivered to ANL for performance testing. Preliminary test results from ANL's Heat Pipe Test Facility, using induction heating and a gas-water calorimeter to establish energy balances, are given in the report. Test data obtained to date are consistent with ANL/HTP code predictions. 47 refs., 53 figs., 22 tabs.

  3. Global energy transports and the influence of clouds on transport requirements - A satellite analysis

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    This report investigates the impact of differential net radiative heating on 2D energy transports within the atmosphere ocean system and the role of clouds on this process. The 2D mean energy transports, in answer to zonal and meridional gradients in the net radiation field, show an east-west coupled dipole structure in which the Pacific acts as the major energy source and North Africa as the major energy sink. It is demonstrated that the dipole is embedded in the secondary energy transports arising mainly from the differential heating between land and oceans in the tropics in which the tropical east-west (zonal) transports are up to 30 percent of the tropical north-south (meridional) transports.

  4. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  5. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  6. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  7. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230...

  8. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230...

  9. Diagnosing ocean energy transports from earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.

  10. Diagnosing ocean energy transports from earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.

  11. ETRANS: an energy transport system optimization code for distributed networks of solar collectors

    SciTech Connect

    Barnhart, J.S.

    1980-09-01

    The optimization code ETRANS was developed at the Pacific Northwest Laboratory to design and estimate the costs associated with energy transport systems for distributed fields of solar collectors. The code uses frequently cited layouts for dish and trough collectors and optimizes them on a section-by-section basis. The optimal section design is that combination of pipe diameter and insulation thickness that yields the minimum annualized system-resultant cost. Among the quantities included in the costing algorithm are (1) labor and materials costs associated with initial plant construction, (2) operating expenses due to daytime and nighttime heat losses, and (3) operating expenses due to pumping power requirements. Two preliminary series of simulations were conducted to exercise the code. The results indicate that transport system costs for both dish and trough collector fields increase with field size and receiver exit temperature. Furthermore, dish collector transport systems were found to be much more expensive to build and operate than trough transport systems. ETRANS itself is stable and fast-running and shows promise of being a highly effective tool for the analysis of distributed solar thermal systems.

  12. 75 FR 39680 - Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-44-000; Docket No. PR10-46-000; Docket No. PR10-48- 000; Docket No. PR10-49-000; Docket No. PR10-50-000] Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid...

  13. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Okuyama, Jun; Nakagomi, Kei; Takahashi, Koichi

    2012-12-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are solid-liquid, two-phase fluids. As a functional thermal fluid, there are high expectations for use of slush fluids in various applications such as fuels for spacecraft engines, clean-energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental flow tests were performed using slush nitrogen to elucidate pressure-drop characteristics of converging-diverging (C-D) pipes and corrugated pipes. In experimental results regarding pressure drop in two different types of C-D Pipes, i.e., a long-throated pipe and a short-throated pipe, each having an inner diameter of 15 mm, pressure drop for slush nitrogen in the long-throated pipe at a flow velocity of over 1.3 m/s increased by a maximum of 50-60% as compared to that for liquid nitrogen, while the increase was about 4 times as compared to slush nitrogen in the short-throated pipe. At a flow velocity of over 1.5 m/s in the short-throated pipe, pressure drop reduction became apparent, and it was confirmed that the decrease in pressure drop compared to liquid nitrogen was a maximum of 40-50%. In the case of two different types of corrugated pipes with an inner diameter of either 12 mm or 15 mm, a pressure-drop reduction was confirmed at a flow velocity of over 2 m/s, and reached a maximum value of 37% at 30 wt.% compared to liquid nitrogen. The greater the solid fractions, the smaller the pipe friction factor became, and the pipe friction factor at the same solid fraction showed a constant value regardless of the Reynolds number. From the observation of the solid particles' behavior using a high-speed video camera and the PIV method, the pressure-drop reduction mechanisms for both C-D and corrugated pipes were demonstrated.

  14. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  15. Band-selective ballistic energy transport in alkane oligomers: toward controlling the transport speed.

    PubMed

    Yue, Yuankai; Qasim, Layla N; Kurnosov, Arkady A; Rubtsova, Natalia I; Mackin, Robert T; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L; Rubtsov, Igor V

    2015-05-28

    Intramolecular transport of vibrational energy in two series of oligomers featuring alkane chains of various length was studied by relaxation-assisted two-dimensional infrared spectroscopy. The transport was initiated by exciting various end-group modes (tags) such as different modes of the azido (ν(N≡N) and ν(N═N)), carboxylic acid (ν(C═O)), and succinimide ester (νas(C═O)) with short mid-IR laser pulses. It is shown that the transport via alkane chains is ballistic and the transport speed is dependent on the type of the tag mode that initiates the transport. The transport speed of 8.0 Å/ps was observed when initiated by either ν(C═O) or νas(C═O). When initiated by ν(N≡N) and ν(N═N), the transport speed of 14.4 ± 2 and 11 ± 4 Å/ps was observed. Analysis of the vibrational relaxation channels of different tags, combined with the results for the group velocity evaluation, permits identification of the chain bands predominantly contributing to the transport for different cases of the transport initiation. For the transport initiated by ν(N≡N) the CH2 twisting and wagging chain bands were identified as the major energy transport channels. For the transport initiated by ν(C═O), the C-C stretching and CH2 rocking chain bands served as major energy transporters. The transport initiated by ν(N═N) results in direct formation of the wave packet within the CH2 twisting and wagging chain bands. These developments can aid in designing molecular systems featuring faster and more controllable energy transport in molecules.

  16. Macroscopic magnetic islands and plasma energy transport

    SciTech Connect

    Cima, G; Porcelli, F; Rossi, E; Wootton, A J

    1998-12-03

    A model is presented, based on the combined effects of m=n=l magnetic island dynamics, localized heat sources, large heat diffusivity along magnetic field lines and plasma rotation, which may explain the multipeaked temperature profiles and transport barriers observed in tokamak plasmas heated by electron cyclotron resonant waves.

  17. Exploring Energy, Power, and Transportation Technology.

    ERIC Educational Resources Information Center

    Bowers, Donovan; Kellum, Mary

    These teacher's materials for a seven-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the communication industries. The seven units include an overview of energy and power, principles of energy and power, power production and conversion, power transmission and…

  18. Global energy transports and the influence of clouds on transport requirements - a satellite analysis

    SciTech Connect

    Sohn, ByungJu; Smith, E.A. )

    1992-07-01

    The impact of differential net radiative heating on two-dimensional energy transports within the atmospheric-ocean system and the role of clouds on this process is examined. Nimbus-7 earth radiation budget data show basic energy surpluses over the tropical oceans and relative or absolute energy deficits over low-latitude continental regions. The two-dimensional mean energy transports exhibit an east-west coupled dipole structure in which the west Pacific acts as a major energy source and North Africa as the major energy sink. The dipole is embedded in the secondary energy transports arising mainly from the differential heating between land and oceans in the tropics in which the tropical east-west (zonal) transports are up to 30% of the tropical north-south (meridonal) transports. Any perturbations to this dipole on an interannual basis give rise to low-latitude energy transport variations. In turn, the tropical variations lead to extratropical responses through alternations of requirements on both zonal and meridional transports at all positions on the globe. Cloud-induced transports indicate that year-to-year cloud amount changes are contributing to fluctuations of the global climate system through these mechanisms. Increased cloudiness increases zonal available potential energy, thus increasing the intensity of the north-south transports while slightly weakening the dipole intensity. The basic role of cloudiness appears to be to diminish the role of differential heating between continents and oceans and force the globe toward a more meridionally distributed energy imbalance. This implies the radiative feedback effects of clouds, regardless of factors determining cloud amount variability, reduce the radiative decoupling of land and ocean.

  19. Securing Our Transportation Future through Changes to the Energy Model

    DTIC Science & Technology

    2012-05-22

    fuel made from coal or natural gas for B52s and C17s Navy’s research on the use of algae as biofuels for their ships. Badenoch vehicle as a lighter...ANSI Std Z39-18 Assistant Secretary of the Army (Installations, Energy, & Environment) Agenda Dependency on Oil as the Primary Transportation Fuel ...Introduction. Dependency on Oil as the Primary Transportation Fuel : Is There Still Enough? Dependency on Oil as the Primary Transportation Fuel

  20. Design and fabrication of polymer-concrete-lined pipe for testing in geothermal-energy processes. Final report

    SciTech Connect

    Kaeding, A.O.

    1981-12-01

    A specific polymer-concrete formulation was applied as a steel pipe liner in response to a need for durable, economical materials for use in contact with high temperature geothermal brine. Processes are described for centrifugally applying the liner to straight pipe, for casting the liner in pipe fittings, and for closure of field joints. Physical properties of the liner materials were measured. Compressive strengths of up to 165.8 MPa (24,045 psi) and splitting tensile strengths of 23.5 MPa (3408 psi) were measured at ambient temperature. Compressive strengths of 24 MPa (3490 psi) and splitting tensile strengths of 2.5 MPa (366 psi) were measured at about 150/sup 0/C (302/sup 0/F). A full-scale production plant is described which would be capable of producing about 950 m (3120 ft) of lined 305-mm-diam (12 in.) pipe per day. Capital cost of the plant is estimated to be about $8.6 million with a calculated return on investment of 15.4%. Cost of piping a geothermal plant with PC and PC-lined steel pipe is calculated to be $1.21 million, which compares favorably with a similar plant piped with alloy steel piping at a cost of $1.33 million. Life-cycle cost analysis indicates that the cost of PC-lined steel pipe would be 82% of that of carbon steel pipe over a 20-year plant operating life.

  1. Forecast of transportation energy demand through the year 2010

    SciTech Connect

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  2. World Energy Projection System Plus Model Documentation: Transportation Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. VIM2/13. Continuous Energy MC Neutron Transport

    SciTech Connect

    Blomquist, R.N.

    1984-04-01

    VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments.

  4. World Energy Projection System Plus Model Documentation: Transportation Module

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. Energy transport in one-dimensional disordered granular solids.

    PubMed

    Achilleos, V; Theocharis, G; Skokos, Ch

    2016-02-01

    We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear case, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: an initial displacement and an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our study on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear, and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shocklike excitations.

  6. Theory of photoelectron production, transport and energy loss

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.

    1974-01-01

    Current understanding of the theory of ionospheric photoelectron production, transport and energy loss is summarized. The various approaches used in the theoretical calculations of photoelectron fluxes appear to be self consistent and sound; improved values for a number of input parameters are needed now in order to achieve significant improvements and more confidence in the results. The major remaining problem in the present day theory of photoelectron transport and energy loss is centered around the calculations of photoelectron transit through the protonosphere.

  7. Energy saving through redistribution of the transport of goods

    SciTech Connect

    Ormhaug, T.; Svegarden, T.

    1980-12-01

    The possibility for reduction of energy consumption is considered. A redistribution from lorries to railway of a quantity representing approximately 25% of todays tonkilometers on road, might give a yearly reduction of energy consumption equivalent to 48 mill liters diesel oil. The quantity represents about 5% of the fuel consumption in the entire transport field. The 25% represents an expected increase in the interregional transport of goods by lorries and railway towards the turn of this century.

  8. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  9. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  11. Consumer Views on Transportation and Energy (Second Edition)

    SciTech Connect

    Kubik, M.

    2005-04-01

    This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. The data presented in this report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation (ORC) for the National Renewable Energy Laboratory (NREL) that are commissioned and funded by EERE, Gallup polls, and other sources.

  12. Interfacial Area Transport Equation Models and Validation against High Resolution Experimental Data for Small and Large Diameter Vertical Pipes

    NASA Astrophysics Data System (ADS)

    Dave, Akshay J.

    For analyses of Nuclear Power Plants, the current state-of-the-art model for predicting the behavior of two-phase flows is the two-fluid model. In the two-fluid model, balance equations are coupled together through transfer terms that depend on the area of the interface between liquid and gas. Efforts in the past have been focused on the development of an interfacial area transport equation model (IATE) in order to eliminate the drawbacks of static flow regime maps currently used in best-estimate thermal-hydraulic system codes. The IATE attempts to model the dynamic evolution of the gas/liquid interface by accounting for the different interaction mechanisms (i.e. bubble break-up and coalescence). The further development and validation of IATE models has been hindered by the lack of adequate experimental databases in regions beyond the bubbly flow regime. At the TOPFLOW test facility, experiments utilizing wire-mesh sensors have been performed over a wide range of flow conditions, establishing a database of high resolution (in space and time) data. The objective of the dissertation is to evaluate and improve current IATE models using the TOPFLOW database and to assess the uncertainty in the reconstructed interfacial area measured using wire-mesh sensors. The small-diameter Fu-Ishii model was assessed against the TOPFLOW 52 mm data. The model was found to perform well (within the experimental uncertainty of +/-10%) for low void fractions. At high void fractions, the bubble interaction mechanism responsible for poor performance of the model was identified. A genetic algorithm was then used to quantify the correct incidence of this mechanism on the overall evolution of the interfacial area concentration along the pipe vertical axis. The large-diameter Smith-Schlegel model was assessed against the TOPFLOW 198 mm data. This model was also found to perform well at low void fractions. At high void fractions, the good agreement between the model predictions and the

  13. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  14. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  15. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  16. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The development, fabrication, and evaluation of heat pipe thermal conditioning panels are discussed. The panels were designed and fabricated to be compatible with several planned NASA space vehicles, in terms of panel size, capacity, temperature gradients, and integration with various heat exchangers and electronic components. It was satisfactorily demonstrated that the heat pipe thermal conditioning panel meets the thermal efficiency and heat transport requirements.

  17. ECUT energy data reference series: Otto cycle engines in transportation

    SciTech Connect

    Hane, G.J.; Johnson, D.R.

    1984-07-01

    Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

  18. Enhanced energy transport in genetically engineered excitonic networks

    NASA Astrophysics Data System (ADS)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  19. Volumetric Fraction Dynamic Measurement in Oil-Water-Gas Multiphase Horizontal Pipe Flow with Dual Energy Gamma-Ray

    NASA Astrophysics Data System (ADS)

    Li, Donghui; Wu, Yingxiang; Wang, Keren; Zhong, Xingfu

    2007-06-01

    The problems of how to measuring the volumetric fractions of oil-water-gas multiphase flow are still a problem remaining to be solved in oil industry. With the technological development of nuclear radioactive inspection, dual-energy γ-ray techniques make it possible to investigate the concentration of the different components on the cross-section of oil-water-gas multiphase pipe-flow. The dual-energy Gamma-ray technique is based on the materials attenuation coefficients measurement. It is comprised of two radioactive isotopes of 241Am and 137Cs with emission energies of 59.5keV and 662keV. In order to measuring the material's attenuation dose rate, some nuclear instruments and data acquisition system were designed; a number of static and dynamic tests were carried out in the Multiphase Laboratory, Institute of Mechanics, Chinese Academy of Sciences. The oil-water-gas three phases of medium have been investigated to simulate different media volumetric fraction distributions on the experimental flow loop. The measurement results of attenuation intensities were obtained; the linear attenuation coefficients and the volumetric fractions were studied and measurement error was discussed in this paper as well.

  20. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  1. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  2. Transportation Energy Data Book: Edition 32, from the Center for Transportation Analysis (CTA)

    DOE Data Explorer

    Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. [Roltek, Inc.

    The Transportation Energy Data Book: Edition 32 is a statistical compendium designed for use as a reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions.

  3. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  4. The efficiency of convective energy transport in the sun

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  5. The efficiency of convective energy transport in the sun

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  6. 49 CFR 195.424 - Pipe movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipe movement. 195.424 Section 195.424... PIPELINE Operation and Maintenance § 195.424 Pipe movement. (a) No operator may move any line pipe, unless... in the line section involved are joined by welding unless— (1) Movement when the pipeline does not...

  7. Invisible transportation infrastructure technology to mitigate energy and environment.

    PubMed

    Hossain, Md Faruque

    2017-01-01

    Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO2, ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.

  8. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  9. Transportation and operations aspects of space energy systems

    NASA Astrophysics Data System (ADS)

    Woodcock, Gordon R.

    1989-07-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  10. Consumer representation for transportation energy conservation. Final report

    SciTech Connect

    Not Available

    1981-07-01

    Programs for conserving energy in the transportation sector have been designed and, in some cases, implemented by various levels of government and in the private sector. Important considerations in the ultimate success of such programs are obtaining consumer support for the programs themselves and encouraging consumers to make energy efficient choices. Since these considerations are similar to factors leading to successful introduction of consumer products and services, consumer research approaches in the two areas should be similar. This report develops and tests various approaches for obtaining consumer input into transportation energy conservation programs.

  11. Transportation and operations aspects of space energy systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1989-01-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  12. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  13. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  14. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  16. Consumer Views on Transportation and Energy (Third Edition)

    SciTech Connect

    Kubik, M.

    2006-01-01

    This report has been assembled to provide the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. The data presented in this report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation (ORC) for the National Renewable Energy Laboratory (NREL) that are commissioned and funded by EERE, Gallup polls, news organization polls, surveys conducted by independent groups and academic institutions, and other sources.

  17. Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Marquis, Fernand D. S.

    2012-03-01

    The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.

  18. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  19. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-08-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  20. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-03-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  1. Discrete energy transport in collagen molecules

    NASA Astrophysics Data System (ADS)

    Alain, Mvogo; Germain, H. Ben-Bolie; Timoléon, C. Kofané

    2014-09-01

    The modulational instability in the three coupled α-polypeptide chains of a collagen molecule is investigated. Choosing symmetric and asymmetric solutions, and applying the so-called rotating-wave approximation, we describe the dynamics of the system by the discrete nonlinear Schrödinger (DNLS) equation. The linear stability analysis of the continuous wave solution is performed. The numerical simulations show the generation of trains of solitonic structures in the lattice with increasing amplitude as time progresses. The effect of damping and noise forces of the physiological temperature (T = 300 K) introduces an erratic behavior to the formed patterns, reinforcing the idea that the energy used in metabolic processes is confined to specific regions for efficiency.

  2. Classical convective energy transport in large gradient regions

    SciTech Connect

    Hinton, F.L.

    1996-12-31

    Large gradients in density and temperature occur near the edge in H-mode plasmas and in the core of tokamak plasmas with negative central shear. Transport in these regions may be comparable to neoclassical. Standard neoclassical theory does not apply when the gradient lengths are comparable to an ion orbit excursion, or banana width. A basic question for neoclassical transport in large gradient regions is: do ion-ion collisions drive particle transport? Near the plasma edge in H-mode, where ion orbit loss requires that the ion energy transport be convective, neoclassical particle transport due to ion-ion collisions may play an important role. In negative central shear plasmas, where transport is inferred to be near neoclassical, it is important to have accurate predictions for the neoclassical rate of energy and particle transport. A simple 2-D slab model has been used, with a momentum-conserving collision operator, to show that ion-ion collisions do drive particle transport. When the gradients are large, the {open_quotes}field particle{close_quotes} contribution to the particle flux is non-local, and does not cancel the {open_quotes}test particle{close_quotes} contribution, which is local. Solutions of the kinetic equation are found which show that the steepness of the density profile, for increasing particle flux, is limited by orbit averaging. The gradient length is limited by the thermal gyroradius, and the convective energy flux is independent of ion temperature. This will allow an ion thermal runaway to occur, if there are no other ion energy loss mechanisms.

  3. Transportation and energy efficiency: Promised potentials, serious roadblocks

    SciTech Connect

    Kraft-Oliver, T.V.

    1995-12-31

    Transportation is both a critical element of achieving national economic development goals and a major consumer of scarce and expensive energy resources. Improvements in access and mobility from reduced congestion, higher speeds, additional non motorized and pedestrian options, and better mass transit will result in reductions in energy use in most cases. Additional improvements in vehicle efficiency are possible but will not meet the needs of the region for transportation and energy efficiency improvements in the absence of these other improvements. The barriers to success in the transport sector are obvious on a superficial level. They include lack of road space, inadequate or incomplete road networks, insufficient mass transit capacity, predation of pedestrian and nonmotorized vehicle space by motor vehicles, and financing. The lack of progress in solving many of these problems over the past ten to twenty years indicates that there are underlying issues not yet addressed. Perceptions of these problems have changed since the middle 1970s and early 1980s as international lending and technical assistance began to focus on transportation. In those early years the problems were described as financial, and `meeting demand` challenges. The World Bank is now conducting a review of their Transport Sector Policy. While the review has not progressed to a final document and certainly not to articulation or transformation of Bank policy, early drafts reflect a view that past failures to improve transportation circumstances are human resource and institutional problems.

  4. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  5. The role of mitochondrial transport in energy metabolism.

    PubMed

    Passarella, Salvatore; Atlante, Anna; Valenti, Daniela; de Bari, Lidia

    2003-04-01

    Since mitochondria are closed spaces in the cell, metabolite traffic across the mitochondrial membrane is needed to accomplish energy metabolism. The mitochondrial carriers play this function by uniport, symport and antiport processes. We give here a survey of about 50 transport processes catalysed by more than 30 carriers with a survey of the methods used to investigate metabolite transport in isolated mammalian mitochondria. The role of mitochondria in metabolic pathways including ammoniogenesis, amino acid metabolism, mitochondrial shuttles etc. is also reported in more detail, mainly in the light of the existence of new transport processes.

  6. LDRD project 151362 : low energy electron-photon transport.

    SciTech Connect

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  7. Analysis of the theory of high energy ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Procedures for the approximation of the transport of high-energy ions are discussed on the basis of available data on ion nuclear reactions. A straightahead approximation appears appropriate for space applications. The assumption that the secondary-ion-fragment velocity is equal to that of the fragmenting nucleus is inferior to straightahead theory but is of sufficient accuracy if the primary ions display a broad energy spectrum. An iterative scheme for the solution of the inhomogenous integral transport equations holds promise for practical calculation. A model calculation shows that multiple charged ion fragments penetrate to greater depths in comparison with the free path of a primary heavy ion.

  8. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  9. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  10. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  11. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  12. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  13. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  14. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  15. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  16. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  17. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  18. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  19. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  20. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  1. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  2. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  3. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  4. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  5. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  6. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  7. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  8. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  9. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  10. Environment-assisted quantum walks in excitonic energy transport

    NASA Astrophysics Data System (ADS)

    Mohseni, Masoud; Rebentrost, Patrick; Lloyd, Seth; Aspuru-Guzik, Alan

    2010-03-01

    Long-lived quantum coherence has recently been observed experimentally via ultrafast nonlinear spectroscopy in excitonic energy transfer within light-harvesting photosynthetic complexes, conjugated polymers, and marine alga even at room temperature. Here, we demonstrate that directed quantum walks lead to an enhancement of energy transfer efficiency in such systems. We introduce two complementary theoretical approaches, based on a Green's function method and energy transfer susceptibilities, to partition open quantum dynamics. We quantify the role of fundamental physical processes involved in energy transport. In particular, we examine the contributions of classical hopping, coherent excitonic Hamiltonian, and phonon-induced decoherence effects for pure dephasing, Markovian, and non-Markovian limits.

  11. Solar energy in the context of energy use, energy transportation and energy storage.

    PubMed

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low

  12. Environmental Impact of a Tritium Extraction System Small Pipe Break by the Atmospheric Modelling of Elemental Tritium Gas transport with Flexpart

    NASA Astrophysics Data System (ADS)

    Castro, Paloma; Ardao, Jose; Velarde, Marta; Xiberta, Jorge; Sedano, Luis

    2014-05-01

    In the case of a little Tritium-Extraction-System (TES) pipe break (with critical failure of a fuelling line), the tritium source term has not yet been determined in the frame of European Test Blanket Systems, as Design Basis Accident (DBA) but it is expected to be in the order of a few grams. In this critical scenario acute modeling of environmental tritium transport forms (HT and HTO) for the assessment of fusion facilities dosimetric impact appears as of major interest. This paper considers different term releases of tritium-forms to the atmosphere from ITER which has experienced a frequent failure of a fueling line, due the little TES pipe break affecting a Helium-Cooled-Lithium-Lead Test-Blanket-Module. In case of 24.3 g of tritium were released from the broken fuelling-line directly into the gallery found only 0.5 g was released to the environment, assuming a little rupture in the TES piping located in the Port Cell. In this paper we assume a hypothetical daily release of one gram of tritium in HT and HTO forms. The daily failure is taken just in order to evaluate different meteorological scenarios or weather conditions. The FLEXPART working model simulates the tritium forms dispersion and environmental impact out of the complex ITER-tokamak (and its safeguards) of selected environmental patterns both inland and in-sea using ECMWF/FLEXPART model. We explore specific values of this ratio at different levels. We examine the influence of meteorological conditions of the tritium behavior during 48 hours after the release. For this purpose we have FLEXPART version 9.2 numerical weather model which is useful to follow real-time releases of tritium at low levels of the boundary layer to provide an approximation of tritium cloud behavior ranging from 3 to 48 hours.

  13. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  14. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  15. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  16. Energy Transport in Quantum Systems with Discrete Spectrum

    NASA Astrophysics Data System (ADS)

    Levin, George; Jones, Wesley; Walczak, Kamil; Yerkes, Kirk

    2012-02-01

    Energy transport in quantum system driven by stochastic perturbations is examined. One of the goals of this study is to determine how the Landauer channels can be defined in a system with discrete energy spectrum. A model describes a particle trapped in a confining potential and subjected to a stochastic perturbation localized off-center of the potential well. The perturbation pumps energy into the system which results in non-zero average energy flux between different regions of the confining potential. The energy flux can be defined in terms of quantum advection modes, where each mode is associated with an off-diagonal element of the density matrix and carries a finite, quantized amount of energy per unit of the probability flux. Statistical correlations between different modes and the net energy flux will be discussed.

  17. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations.

    PubMed

    Ullmann, R Thomas; Andrade, Susana L A; Ullmann, G Matthias

    2012-08-16

    Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.

  18. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  19. US Department of Energy Automated Transportation Management System

    SciTech Connect

    Portsmouth, J.H.

    1994-01-01

    The U.S. Department of Energy (DOE) Transportation Management Division (TMD) is responsible for managing its various programs via a diverse combination of Government-Owned/Contractor-Operated facilities. TMD is seeking to update it automation capabilities in capturing and processing DOE transportation information. TMD`s Transportation Information Network (TIN) is an attempt to bring together transportation management, shipment tracking, research activities and software products in various stages of development. The TMD`s Automated Transportation Management System (ATMS) proposes to assist the DOE and its contractors in performing their daily transportation management activities and to assist the DOE Environmental Management Division in its waste management responsibilities throughout the DOE complex. The ATMS system will center about the storage, handling and documentation involved in the environmental clean-up of DOE sites. Waste shipments will be moved to approved Treatment, Storage and Disposal (TSD) facilities and/or nuclear material repositories. An additional investment in shipping samples to analytical laboratories also involves packaging and documentation according to all applicable U.S. Department of Transportation (DOT) or International Air Transport Association (IATA) regulations. The most immediate goal of effectively managing DOE transportation management functions during the 1990`s is an increase in automation capabilities of the DOE and its contractors. Subject-matter experts from various DOE site locations will be brought together to develop and refine these capabilities through the maximum use of computer applications. A major part of this effort will be the identification of the most economical modes of transportation and enhanced management reporting capabilities for transportation analysis. The ATMS system will also provide for increased strategic and shipment analysis during the 1990`s and beyond in support of the DOE environmental mission.

  20. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  1. Decision Analysis Tool to Compare Energy Pathways for Transportation

    SciTech Connect

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). A prototype model, Analytica Transportation Energy Analysis Model (ATEAM), has been developed using the Analytica decision modeling environment, visualizing the structure as a hierarchy of influence diagrams. The report summarized the FY2010 ATEAM accomplishments.

  2. Energy Recovery Transport Design for Peking University FEL

    SciTech Connect

    G. M. Wang; Y.-C. Chao; J.-E. Chen; C. Liu; Z. C. Liu; X. Y. Lu; K. Zhao; J. Zhuang

    2007-08-01

    A free-electron laser based on a superconducting linac is under construction in Peking University. To increase FEL output power, energy recovery is chosen as one of the most potential and popular ways. The design of a beam transport system for energy recovery is presented, which is suitable for the Peking University construction area. Especially, a chicane structure is chosen to change path length at ±20 degree and M56 in the arc is adjusted for fully bunch compression.

  3. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation☆

    PubMed Central

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K.

    2010-01-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations (~1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 106–7 K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 × 105 W/m2·K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 × 106 W/m2·K, which is approximately 103 times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 106–7 K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA. PMID:18430413

  4. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.

    PubMed

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K

    2008-06-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.

  5. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  6. The High-Energy Transport Code HETC88

    SciTech Connect

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Barnes, J.M.

    1989-01-01

    An upgraded version, HETC88, of the previously available High-Energy Transport Code HETC is briefly described. In the upgraded code, the particle production model from hadron-nucleus nonelastic collisions at energies greater than 5 GeV has been revised. At nucleon and ion energies below 5 GeV, HETC88 is not different from the code previously available. In particular, provision is still made to allow neutrons with energies less than or equal to20 MeV to be transported by none of the available codes designed for low-energy neutron transport. Calculated results for the longitudinal distribution of the flux of neutrons with energy greater than or equal to40 KeV in the Tevatron tunnel when 900 GeV protons interact with N/sub 2/ in a warm section are presented and compared with experimental data. Some disagreements between the calculated and measured neutron flux are found. For 20 TeV protons incident on a large cylindrical iron target, calculated ''star'' density results from HETC88, FLUKA87, CASIM, and MARS10 are also compared. 22 refs., 3 figs.

  7. Continuous energy adjoint transport for photons in PHITS

    NASA Astrophysics Data System (ADS)

    Malins, Alex; Machida, Masahiko; Niita, Koji

    2017-09-01

    Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS). An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  8. Piping Analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Burns & McDonnell provide architectural and engineering services in planning, design and construction of a wide range of projects all over the world. In design analysis, company regularly uses COSMIC computer programs. In computer testing piping design of a power plant, company uses Pipe Flexibility Analysis Program (MEL-21) to analyze stresses due to weight, temperature, and pressure found in proposed piping systems. Individual flow rates are put into the computer, then computer calculates the pressure drop existing across each component; if needed, design corrections or adjustments can be made and rechecked.

  9. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  10. Origin and transport of high energy particles in the galaxy

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1987-01-01

    The origin, confinement, and transport of cosmic ray nuclei in the galaxy was studied. The work involves interpretations of the existing cosmic ray physics database derived from both balloon and satellite measurements, combined with an effort directed towards defining the next generation of instruments for the study of cosmic radiation. The shape and the energy dependence of the cosmic ray pathlength distribution in the galaxy was studied, demonstrating that the leaky box model is not a good representation of the detailed particle transport over the energy range covered by the database. Alternative confinement methods were investigated, analyzing the confinement lifetime in these models based upon the available data for radioactive secondary isotopes. The source abundances of several isotopes were studied using compiled nuclear physics data and the detailed transport calculations. The effects of distributed particle acceleration on the secondary to primary ratios were investigated.

  11. Energy Models for One-Carrier Transport in Semiconductor Devices

    DTIC Science & Technology

    1991-10-01

    nonstandard high order Runge-Kutta methods exist [24] which preserve nonlinear stability of the first order Euler forward version under suitable CFL time...REPORT TYPE AND DATES COVERED I October 1991 Contrato Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS ENERGY MODELS FOR ONE-CARRIER TRANSPORT IN

  12. Supersonic transport vis-a-vis energy savings

    NASA Technical Reports Server (NTRS)

    Cormery, G.

    1979-01-01

    The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.

  13. Transportation. Teacher's Guide and Student Guide. Net Energy Unit. Draft.

    ERIC Educational Resources Information Center

    Treagust, David F.

    This module is intended to increase the students' comprehension of costs, in terms of money and in energy, involved in various modes of transportation. Four main inquiries are covered in the module: (1) money saved by car pooling to school; (2) reductions in fuel consumption possible without car pooling; (3) comparisons of inter-city and urban…

  14. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  15. Loop heat pipe radiator

    SciTech Connect

    Sarraf, D.B.; Gernert, N.J.

    1996-03-01

    This paper describes the design and testing of a Loop Heat Pipe Radiator (LHPR) which was developed as an alternative to state-of-the-art axially-grooved heat pipes for space-based heat rejection which would be usable with tubing made of aluminum foil covered with a carbon-epoxy composite. The LHPR had an aluminum envelope and a polymer wick, and used ammonia as a working fluid. It was 4 meters long with a mass of 1.4 kg. The LHPR transported 500 watts at a 2.3 meter adverse inclination and 1500 watts when horizontal. This non-optimized LHPR had a 3000 watt-meter capability, which is four times greater than an axially-grooved heat pipe of similar power-handling capability and mass. In addition to a higher power handling capability, the LHPR has a much higher capillary margin than axially-grooved pipes. That high capillary margin simplifies ground testing in a 1-g environment by reducing the need for the careful levelling and vibration reduction required by axially-grooved pipes. {copyright} {ital 1996 American Institute of Physics.}

  16. Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection.

    PubMed

    Jeffrey Yang, Y; Goodrich, James A; Clark, Robert M; Li, Sylvana Y

    2008-03-01

    A modified one-dimensional Danckwerts convection-dispersion-reaction (CDR) model is numerically simulated to explain the observed chlorine residual loss for a "slug" of reactive contaminants instantaneously introduced into a drinking water pipe of assumed no or negligible wall demand. In response to longitudinal dispersion, a contaminant propagates into the bulk phase where it reacts with disinfectants in the water. This process generates a U-shaped pattern of chlorine residual loss in a time-series concentration plot. Numerical modeling indicates that the residual loss curve geometry (i.e., slope, depth, and width) is a function of several variables such as axial Péclet number, reaction rate constants, molar fraction of the fast- and slow-reacting contaminants, and the quasi-steady-state chlorine decay inside the "slug" which serves as a boundary condition of the CDR model. Longitudinal dispersion becomes dominant for less reactive contaminants. Pilot-scale pipe flow experiments for a non-reactive sodium fluoride tracer and the fast-reacting aldicarb, a pesticide, were conducted under turbulent flow conditions (Re=9020 and 25,000). Both the experimental results and the CDR modeling are in agreement showing a close relationship among the aldicarb contaminant "slug", chlorine residual loss and its variations, and a concentration increase of chloride as the final reaction product. Based on these findings, the residual loss curve and its geometry are useful tools to identify the presence of a contaminant "slug" and infer its reactive properties in adaptive contaminant detections.

  17. Engineering Synergy: Energy and Mass Transport in Hybrid Nanomaterials.

    PubMed

    Cho, Eun Seon; Coates, Nelson E; Forster, Jason D; Ruminski, Anne M; Russ, Boris; Sahu, Ayaskanta; Su, Norman C; Yang, Fan; Urban, Jeffrey J

    2015-10-14

    An emerging class of materials that are hybrid in nature is propelling a technological revolution in energy, touching many fundamental aspects of energy-generation, storage, and conservation. Hybrid materials combine classical inorganic and organic components to yield materials that manifest new functionalities unattainable in traditional composites or other related multicomponent materials, which have additive function only. This Research News article highlights the exciting materials design innovations that hybrid materials enable, with an eye toward energy-relevant applications involving charge, heat, and mass transport. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  19. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  20. Cross-scale energy transport in space plasmas

    NASA Astrophysics Data System (ADS)

    Moore, T. W.; Nykyri, K.; Dimmock, A. P.

    2016-12-01

    The solar wind is a supersonic magnetized plasma streaming far into the heliosphere. Although cooling as it flows, it is rapidly heated upon encountering planetary obstacles. At Earth, this interaction forms the magnetosphere and its sub-regions. The present paper focuses on particle heating across the boundary separating the shocked solar wind and magnetospheric plasma, which is driven by mechanisms operating on fluid, ion and electron scales. The cross-scale energy transport between these scales is a compelling and fundamental problem of plasma physics. Here, we present evidence of the energy transport between fluid and ion scales: free energy is provided in terms of a velocity shear generating fluid-scale Kelvin-Helmholtz instability. We show the unambiguous observation of an ion-scale magnetosonic wave packet, inside a Kelvin-Helmholtz vortex, with sufficient energy to account for observed ion heating. The present finding has universal consequences in understanding cross-scale energy transport, applicable to environments experiencing velocity shears during comparable plasma regimes.

  1. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  2. Assessing energy, environmental, and economic tradeoffs in intermodal freight transportation.

    PubMed

    Winebrake, James J; Corbett, James J; Falzarano, Aaron; Hawker, J Scott; Korfmacher, Karl; Ketha, Sai; Zilora, Steve

    2008-08-01

    This paper presents an energy and environmental network analysis model to explore tradeoffs associated with freight transport. The geospatial model uses an intermodal network built by the authors to connect various modes (rail, road, water) via intermodal terminals. Routes along the network are characterized not only by temporal and distance attributes, but also by cost, energy, and emissions attributes (including emissions of carbon dioxide, particulate matter, sulfur oxides, volatile organic compounds, and oxides of nitrogen). Decision-makers can use the model to explore tradeoffs among alternative route selection across different modal combinations, and to identify optimal routes for objectives that feature energy and environmental parameters (e.g., minimize carbon dioxide emissions). The model is demonstrated with three case studies of freight transport along the U.S. eastern seaboard.

  3. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  4. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  5. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  6. Paracellular epithelial sodium transport maximizes energy efficiency in the kidney

    PubMed Central

    Pei, Lei; Nguyen, Mien T.X.; Kamat, Nikhil; Magenheimer, Lynn; Zhuo, Min; Li, Jiahua; McDonough, Alicia A.; Fields, Timothy A.; Welch, William J.; Yu, Alan S.L.

    2016-01-01

    Efficient oxygen utilization in the kidney may be supported by paracellular epithelial transport, a form of passive diffusion that is driven by preexisting transepithelial electrochemical gradients. Claudins are tight-junction transmembrane proteins that act as paracellular ion channels in epithelial cells. In the proximal tubule (PT) of the kidney, claudin-2 mediates paracellular sodium reabsorption. Here, we used murine models to investigate the role of claudin-2 in maintaining energy efficiency in the kidney. We found that claudin-2–null mice conserve sodium to the same extent as WT mice, even during profound dietary sodium depletion, as a result of the upregulation of transcellular Na-K-2Cl transport activity in the thick ascending limb of Henle. We hypothesized that shifting sodium transport to transcellular pathways would lead to increased whole-kidney oxygen consumption. Indeed, compared with control animals, oxygen consumption in the kidneys of claudin-2–null mice was markedly increased, resulting in medullary hypoxia. Furthermore, tubular injury in kidneys subjected to bilateral renal ischemia-reperfusion injury was more severe in the absence of claudin-2. Our results indicate that paracellular transport in the PT is required for efficient utilization of oxygen in the service of sodium transport. We speculate that paracellular permeability may have evolved as a general strategy in epithelial tissues to maximize energy efficiency. PMID:27214555

  7. Mechanism of active transport: free energy dissipation and free energy transduction.

    PubMed Central

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic state of each substrate through the reaction cycle. These procedures clarify the mechanism of free energy transduction, even without step-by-step analysis. The results show that free energy exchange must occur in its entirety among protein-bound species. Imposition of conditions for an adequate rate of physiological function further indicates (i) that the standard free energy of hydrolysis of protein-bound ATP (to yield protein-bound products) needs to differ substantially from the standard free energy of hydrolysis in solution and (ii) that binding sites for the transported ions must have different affinities when facing opposite sides of the membrane. The results also demonstrate that step-by-step "basic" free energy changes (often used in the form of free energy level diagrams) are inherently unsuited for analysis of the mechanism of free energy transduction. PMID:6216483

  8. Mineralization associated with scale and altered rock and pipe fragments from the Berlín geothermal field, El Salvador; implications for metal transport in natural systems

    NASA Astrophysics Data System (ADS)

    Raymond, Jasmin; Williams-Jones, Anthony E.; Clark, James R.

    2005-07-01

    Composite fragments sampled at solid collectors and drains of two-phase, re-injection, and vapour pipelines of the Berlín geothermal field, El Salvador, consist mainly of sulphide- and electrum-bearing aluminium-rich amorphous silica scale, sulphide- and electrum-bearing saponitic/vermiculitic clay from the reservoir, and altered metallic pipe linings containing As-S-bearing iron oxide-oxyhydroxide grains. Siliceous and clay-rich precipitates contain concentrations of gold and silver in excess of 180 and 8000 ppm, respectively, and appreciable concentrations of copper, lead, zinc, and antimony. Altered iron fragments contain substantial arsenic. Copper, lead, and zinc occur mainly as chalcopyrite, galena, and sphalerite, respectively, in amorphous silica and clay; near the surface, chalcopyrite transported from depth alters to bornite. Gold and silver occur mainly as electrum, which deposited with base metal sulphides in the clay precipitates, and amorphous silica at higher levels in the well. Electrum precipitates in the wells due to the rapid drop in temperature and loss of H 2S associated with boiling. The concentration of gold in vapour is ˜4 times greater than that in water from associated wellheads. This suggests that gold can be transported efficiently by vapour, and implies that such transport may be important in the formation of some hydrothermal ore deposits.

  9. Space resources. Volume 2: Energy, power, and transport

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    This volume of the Space Resources report covers a number of technical and policy issues concerning the energy and power to carry out advanced space missions and the means of transportation to get to the sites of those missions. Discussed in the first half of this volume are the technologies which might be used to provide power and a variety of ways to convert power from one form to another, store it, move it wherever it is needed, and use it. In the second half of this volume, various kinds of transportation, including both interplanetary and surface systems, are discussed.

  10. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  11. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  12. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  13. Transport weighted temperature and internal energy transport of the Indonesian throughflow

    NASA Astrophysics Data System (ADS)

    Tillinger, D.; Gordon, A. L.

    2010-08-01

    A 50-year record of the Indonesian throughflow (ITF) was obtained using the Simple Ocean Data Assimilation (SODA) dataset to calculate a timeseries of Pacific-to-Indian Ocean pressure differences, which were calibrated to transport profiles using ARLINDO (1997) and INSTANT (2004-2006) observational data. The 50 year SODA based ITF transport average is 10.4 Sv; the transport weighted temperature (TWT) is 14.6 °C and the internal energy transport (IET) is 0.53 PW. The different configurations of the ITF transport and temperature profiles result in a dissimilarity in the variability of the IET and the TWT, with the IET more closely correlated with both the depth of the 18 °C isotherm in the western equatorial Pacific and the NINO3.4 index. As with the transport, the IET increases during La Niña and decreases during El Niño. The TWT is only weakly correlated with NINO3.4, suggesting that the El Niño-Southern Oscillation signal is transmitted from the Pacific to the Indian Ocean via changes in pressure and thus in transport rather than by changes in temperature.

  14. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  15. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Plastic pipe at road crossings

    SciTech Connect

    Not Available

    1988-12-01

    This article reports how a North Carolina company is using high-density polyethylene pipe at state road crossings as an insulator to keep the outer casing pipe from touching the inner gas carrier pipeline. This prevents static charges that can cause corrosion, gas leaks and other problems on the pipeline. It enables the company to meet requirements of the North Carolina Department of Transportation that large-diameter steel gas pipelines crossing beneath state highways be enclosed in another steel pipe for protection against damage.

  17. Transport and installation of the Dark Energy Survey CCD imager

    NASA Astrophysics Data System (ADS)

    Derylo, Greg; Chi, Edward; Diehl, H. Thomas; Estrada, Juan; Flaugher, Brenna; Schultz, Ken

    2012-09-01

    The Dark Energy Survey CCD imager was constructed at the Fermi National Accelerator Laboratory and delivered to the Cerro Tololo Inter-American Observatory in Chile for installation onto the Blanco 4m telescope. Several efforts are described relating to preparation of the instrument for transport, development and testing of a shipping crate designed to minimize transportation loads transmitted to the camera, and inspection of the imager upon arrival at the observatory. Transportation loads were monitored and are described. For installation of the imager at the telescope prime focus, where it mates with its previously-installed optical corrector, specialized tooling was developed to safely lift, support, and position the vessel. The installation and removal processes were tested on the Telescope Simulator mockup at FNAL, thus minimizing technical and schedule risk for the work performed at CTIO. Final installation of the imager is scheduled for August 2012.

  18. Greater transportation energy and GHG offsets from bioelectricity than ethanol.

    PubMed

    Campbell, J E; Lobell, D B; Field, C B

    2009-05-22

    The quantity of land available to grow biofuel crops without affecting food prices or greenhouse gas (GHG) emissions from land conversion is limited. Therefore, bioenergy should maximize land-use efficiency when addressing transportation and climate change goals. Biomass could power either internal combustion or electric vehicles, but the relative land-use efficiency of these two energy pathways is not well quantified. Here, we show that bioelectricity outperforms ethanol across a range of feedstocks, conversion technologies, and vehicle classes. Bioelectricity produces an average of 81% more transportation kilometers and 108% more emissions offsets per unit area of cropland than does cellulosic ethanol. These results suggest that alternative bioenergy pathways have large differences in how efficiently they use the available land to achieve transportation and climate goals.

  19. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  20. Teaching the role of mitochondrial transport in energy metabolism.

    PubMed

    Passarella, Salvatore; Atlante, Anna

    2007-03-01

    Studies from our laboratories over recent years have uncovered the existence, and established the properties of a variety of mitochondrial transporters. The properties of these transporters throw light on a variety of biochemical phenomena that were previously poorly understood. In particular the role of mitochondrial transport in energy metabolism has been investigated under a variety of physio-pathological conditions. Consistently we describe the procedure to investigate mitochondrial traffic in isolated mitochondria as a model system for students to learn. Here we report some observations that contribute to novel knowledge of the role of mitochondria in glycolysis, urea and purine nucleotide cycle, and nitrogen metabolism with particular reference to the malate/oxaloacetate shuttle and fumarate, glutamine, and lactate metabolism. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.

  1. Baseline projections of transportation energy consumption by mode: 1981 update

    SciTech Connect

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  2. Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    PubMed Central

    Brambila, D. S.; Fratalocchi, A.

    2013-01-01

    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter. PMID:23912934

  3. US Department of Energy fuel cell program for transportation applications

    NASA Astrophysics Data System (ADS)

    Patil, Pandit G.

    1992-01-01

    Fuel cells of offer promise as the best future replacement for internal combustion engines in transportation applications. Fuel cells operate more efficiently than internal combustion engines, and are capable of running on non-petroleum fuels such as methanol, ethanol, natural gas or hydrogen. Fuel cells can also have a major impact on improving air quality. They virtually eliminate particulates, NO(x) and sulfur oxide emissions, and significantly reduce hydrocarbons and carbon monoxide. The U.S. Department of Energy program on fuel cells for transportation applications is structured to advance fuel cells technologies from the R&D phase, through engineering design and scale-tip, to demonstration in cars, trucks, buses and locomotives, in order to provide energy savings, fuel flexibility and air quality improvements. This paper describes the present status of the U.S. program.

  4. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    SciTech Connect

    Melaina, M.; Eichman, J.

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  5. Resolving Rapid Variation in Energy for Particle Transport

    SciTech Connect

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra; Till, Andrew Thomas; Lowrie, Robert Byron

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  6. Energy Dissipation and Transport in Carbon Nanotube Devices

    NASA Astrophysics Data System (ADS)

    Pop, Eric

    2011-03-01

    Power consumption is a significant challenge in electronics, often limiting the performance of integrated circuits from mobile devices to massive data centers. Carbon nanotubes have emerged as potentially energy-efficient future devices and interconnects, with both large mobility and thermal conductivity. This talk will focus on understanding and controlling energy dissipation [1-3] and transport [4-6] in carbon nanotubes, with applications to low-energy devices, interconnects, heat sinks, and memory elements. Experiments have been used to gain new insight into the fundamental behavior of such devices, and to better inform practical device models. The results suggest much room for energy optimization in nanoelectronics through the design of geometry, interfaces, and materials..

  7. A coupled energy transport and hydrological model for urban canopies

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Bou-Zeid, E.; Smith, J. A.

    2011-12-01

    Urban land-atmosphere interaction has been attracting more research efforts in order to understand the complex physics of flow and mass and heat transport in urban surfaces and the lower urban atmosphere. In this work, we developed and implemented a new physically-based single-layer urban canopy model, coupling the surface exchange of energy and the subsurface transport of water/soil moisture. The new model incorporates sub-facet heterogeneity for each urban surface (roof, wall or ground). This better simulates the energy transport in urban canopy layers, especially over low-intensity built (suburban type) terrains that include a significant fraction of vegetated surfaces. We implemented detailed urban hydrological models for both natural terrains (bare soil and vegetation) and porous engineered materials with water-holding capacity (concrete, gravel, etc). The skill of the new scheme was tested against experimental data collected through a wireless sensor network deployed over the campus of Princeton University. The model performance was found to be robust and insensitive to changes in weather conditions or seasonal variability. Predictions of the volumetric soil water content were also in good agreement with field measurements, highlighting the model capability of capturing subsurface water transport for urban lawns. The new model was also applied to a case study assessing different strategies, i.e. white versus green roofs, in the mitigation of urban heat island effect.

  8. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  9. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    ScienceCinema

    Lewis, Nate

    2016-07-12

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  10. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    SciTech Connect

    Lewis, Nate

    2008-05-12

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  11. Estimating transportation energy consumption of residential land types. Final report

    SciTech Connect

    Not Available

    1983-02-01

    To estimate the transportation energy implications of residential development, the vehicle miles traveled (VMT) from that development was calculated for each individual unit of government in Dane County. The VMT incorporates the trip frequency and the associated trip length for vehicular trips made by occupants of single and multi-family dwelling units for any given location in the county. The methodology involved ten basic steps which included: defining the overall study area, defining subareas, determining the average number of household trips by dwelling unit type in each subarea, determining the average trip length for each household type, calculating the resulting VMT, applying the VMT factors to the existing fleet of vehicles and the estimated miles per gallon (MPG) rating, estimating the gallons of fuel consumed, converting gallons to Btu's, determining density and transportation energy relationships, and developing a system for tracking transportation energy consumption trends from residential development. The results available include trip frequency rates, average trip length, annual vehicle miles traveled, the resulting gallons of fuel consumed and costs of that fuel. These factors are provided for single-family and multi-family units. The data are presented in two different categories: community class and geographic area.

  12. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  13. A reverse energy cascade for crustal magma transport

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Paterson, Scott R.; Jellinek, A. Mark

    2017-08-01

    Direct constraints on the ascent, storage and eruption of mantle melts come primarily from exhumed, long-frozen intrusions. These structures, relics of a dynamic magma transport network, encode how Earth's crust grows and differentiates over time. Furthermore, they connect mantle melting to an evolving distribution of surface volcanism. Disentangling magma transport processes from the plutonic record is consequently a seminal but unsolved problem. Here we use field data analyses, scaling theory and numerical simulations to show that the size distribution of intrusions preserved as plutonic complexes in the North American Cordillera suggests a transition in the mechanical response of crustal rocks to protracted episodes of magmatism. Intrusion sizes larger than about 100 m follow a power-law scaling expected if energy delivered from the mantle to open very thin dykes and sills is transferred to intrusions of increasing size. Merging, assimilation and mixing of small intrusions into larger ones occurs until irreversible deformation and solidification dissipate available energy. Mantle magma supply over tens to hundreds of thousands of years will trigger this regime, a type of reverse energy cascade, depending on the influx rate and efficiency of crustal heating by intrusions. Identifying regimes of magma transport provides a framework for inferring subsurface magmatic processes from surface patterns of volcanism, information preservation in the plutonic record, and related effects including climate.

  14. Energy-filtered cold electron transport at room temperature

    PubMed Central

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-01-01

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839

  15. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  16. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  17. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  18. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS...

  19. 49 CFR 195.128 - Station piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS...

  20. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS...

  1. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Used pipe. 195.114 Section 195.114 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.114...

  2. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  3. 49 CFR 195.424 - Pipe movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pipe movement. 195.424 Section 195.424 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance §...

  4. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Used pipe. 195.114 Section 195.114 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.114...

  5. 49 CFR 195.424 - Pipe movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pipe movement. 195.424 Section 195.424 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance §...

  6. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  7. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Used pipe. 195.114 Section 195.114 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.114...

  8. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Used pipe. 195.114 Section 195.114 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.114...

  9. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Used pipe. 195.114 Section 195.114 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.114...

  10. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  11. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  12. 49 CFR 195.424 - Pipe movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pipe movement. 195.424 Section 195.424 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance §...

  13. Transportation Energy Futures: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect

    Brogan, J. J.; Aeppli, A. E.; Brown, D. F.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  14. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  15. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  16. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  17. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  18. Organic Semiconductors: A Molecular Picture of the Charge-Transport and Energy-Transport Processes.

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc

    2007-03-01

    Conjugated organic oligomer and polymer materials are being increasingly considered for their incorporation as the active semiconductor elements in devices such as photo-voltaic cells, light-emitting diodes, or field-effects transistors. In the operation of these devices, electron-transfer and energy-transfer processes play a key role, for instance in the form of charge transport (in the bulk or across interfaces), energy transport, charge separation, or charge recombination [1]. Here, we provide a theoretical description of electron-transfer phenomena based on electron-transfer theory, which allows us to provide a molecular, chemically-oriented understanding. In this presentation, we focus on the parameters that impact the mobility of charge carriers [2], that is the electronic coupling within chains and between adjacent chains and the reorganization energy of the chains upon ionization. Materials under study include conjugated oligomers such as oligoacenes, oligothiophene-acenes, oligothiophenes, and oligothienacenes. [1] J.L. Br'edas, D. Beljonne, V. Coropceanu, and J. Cornil, ``Charge-Transfer and Energy-Transfer Processes in pi-Conjugated Oligomers and Polymers'', Chemical Reviews, 104, 4971-5004 (2004). [2] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Br'edas, ``Charge Transport in Organic Semiconductors'', Chemical Reviews, 107, xxx (2007).

  19. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  20. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  1. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  2. On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows

    NASA Astrophysics Data System (ADS)

    Chung, D.; Marusic, I.; Monty, J. P.; Vallikivi, M.; Smits, A. J.

    2015-07-01

    Recent experiments in high Reynolds number pipe flow have shown the apparent obfuscation of the behaviour in spectra of streamwise velocity fluctuations (Rosenberg et al. in J Fluid Mech 731:46-63, 2013). These data are further analysed here from the perspective of the behaviour in second-order structure functions, which have been suggested as a more robust diagnostic to assess scaling behaviour. A detailed comparison between pipe flows and boundary layers at friction Reynolds numbers of 5000-20,000 reveals subtle differences. In particular, the slope of the pipe flow structure function decreases with increasing wall distance, departing from the expected slope in a manner that is different to boundary layers. Here, , the slope of the log law in the streamwise turbulence intensity profile at high Reynolds numbers. Nevertheless, the structure functions for both flows recover the slope in the log layer sufficiently close to the wall, provided the Reynolds number is also high enough to remain in the log layer. This universality is further confirmed in very high Reynolds number data from measurements in the neutrally stratified atmospheric surface layer. A simple model that accounts for the `crowding' effect near the pipe axis is proposed in order to interpret the aforementioned differences.

  3. Fatique testing of OTEC (ocean thermal energy conversion) cold water pipe glass-reinforced plastic materials. Technical report

    SciTech Connect

    Sirian, C.R.; Conn, A.F.

    1983-09-01

    Specimens of a GFRP (glass fiber reinforced plastic) composite laminate - a candidate material for use in an OTEC cold water pipe (CWP) - were subjected to cyclic bending while immersed in a synthetic sea water solution. The loss of stiffness, i.e., decrease in bending modulus, for this GFRP was determined as a function of cycles of loading.

  4. Post-Test Analysis of a 10-Year Sodium Heat Pipe Life Test

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Locci, Ivan E.; Sanzi, James L.; Hull, David R.; Geng, Steven M.

    2011-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 years) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described. Lessons learned and future life test plans are also discussed.

  5. Interpreting the implied meridional oceanic energy transport in AMIP

    SciTech Connect

    Randall, D.A.; Gleckler, P.J.

    1993-09-01

    The Atmospheric Model Intercomparison Project (AMIP) was outlined in Paper No. CLIM VAR 2.3 (entitled {open_quote}The validation of ocean surface heat fluxes in AMIP`) of these proceedings. Preliminary results of AMIP subproject No. 5 were also summarized. In particular, zonally averaged ocean surface heat fluxes resulting from various AMIP simulations were intercompared, and to the extent possible they were validated with uncertainties in observationally-based estimates of surface heat fluxes. The intercomparison is continued in this paper by examining the Oceanic Meridional Energy Transport (OMET) implied by the net surface heat fluxes of the AMIP simulations. As with the surface heat fluxes of the AMIP simulations. As with the surface heat fluxes, the perspective here will be very cursory. The annual mean implied ocean heat transport can be estimated by integrating the zonally averaged net ocean surface heat flux, N{sub sfc}, from one pole to the other. In AGCM simulations (and perhaps reality), the global mean N{sub sfc} is typically not in exact balance when averaged over one or more years. Because of this, an important assumption must be made about changes in the distribution of energy in the oceans. Otherwise, the integration will yield a non-zero transport at the endpoint of integration (pole) which is not physically realistic. Here the authors will only look at 10-year means of the AMIP runs, and for simplicity they assume that any long term imbalance in the global averaged N{sub sfc} will be sequestered (or released) over the global ocean. Tests have demonstrated that the treatment of how the global average energy imbalance is assumed to be distributed is important, especially when the long term imbalances are in excess of 10 W m{sup {minus}2}. However, this has not had a substantial impact on the qualitative features of the implied heat transport of the AMIP simulations examined thus far.

  6. Energy consumption in road transport: data-collection requirements

    SciTech Connect

    Millar, M.; Bernard, M.J.

    1983-06-03

    Despite recent softening in world oil prices, oil imports continue to represent a serious drain on the foreign-exchange reserves of many countries. As a result, governments throughout the world are pursuing a variety of policies - from increased exploitation of indigenous resources to conservation and other improvements in energy-conversion efficiency - in an effort to reduce their reliance on imported oil. Road transport, representing upwards of 30% of petroleum-product consumption in many countries, represents a logical target for such efforts. However, beyond the gross statistics available from oil company records on fuel sales, oftimes little is known about precisely how this sizeable quantity of fuel is consumed. Without more specific data on the modal composition of road-transport demand, the energy-conversion characteristics of the vehicles serving that demand, the operational features of those vehicles, etc., governments cannot hope to develop the conservation programs so urgently needed. Data on road freight are particularly sparse and, given the developing supply/demand imbalance for middle-distillate fuels, current data gaps may well develop into future supply shortages or cross-subsidization issues. Since the mid-1970s, most of the nations of North and South America have mounted programs to collect data on the energy-consumption characteristics of road transport. This paper reports on one such effort now underway in Jamaica. While certain of the transportation and data-collection issues which influenced methodology selection may be unique to that country, others are common to many countries at similar levels of urbanization, motorization, and income. With appropriate modification to account for distinctive local conditions, the Jamaican data-collection procedure has broad applicability, in whole or in part, to a variety of national and regional contexts.

  7. Adjustable pipes and adaptive passive damping

    NASA Astrophysics Data System (ADS)

    Bhagwat, Siddharth; Creasy, M. Austin

    2017-05-01

    Pipe natural frequencies are dependent on the geometry of the pipe where the pipe length is the main contributor in regulating the natural frequencies. The boundary conditions are another major contributor because the acoustic waves in the pipe will produce standing waves because of the reflections at the boundary conditions. Making one of the boundary conditions location in the pipe adjustable will allow for the length of the pipe to be modified and therefore change the natural frequencies of the pipe. This adjustable pipe provides a means for introducing undergraduate students to an inexpensive setup to test pipe length in changing the natural frequencies of pipes and the associated sound pressure level within the pipe. Helmholtz resonators are passive devices that can absorb acoustic energy from an acoustic enclosure. These resonators have three major variables that are used to determine the resonant frequency of the resonator and therefore the frequency at which the resonator will absorb acoustic energy. Designing a resonator where one of the variables can be altered allows the resonator to be tuned to a specific frequency. The adaptive Helmholtz resonator provides undergraduate students an inexpensive setup to tune a resonator and test how acoustic pressure is dampened by the energy absorption of the resonator.

  8. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program Data Analysis Project: Users guide for the NOAA/ROTECF and NOAA/TRW computer models

    NASA Astrophysics Data System (ADS)

    Vega, L. A.; Nihous, G. C.

    1985-06-01

    Additional guidelines for the use of the Cold-Water-Pipe computer models NOAA/TRW and NOAA/ROTECF are provided. The primary intent is to correct and upgrade the user manuals with errata sheets and to provide an updated listing of the source codes. It is recommended that users be familiar with the hydrodynamic and structural aspects of floating vessels and the representation of ocean thermal energy conversion pipes as beams of equivalent structural properties.

  9. Transport of hydrogen in metals with occupancy dependent trap energies

    SciTech Connect

    Schmid, K. Toussaint, U. von; Schwarz-Selinger, T.

    2014-10-07

    Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12 H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment.

  10. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  11. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  12. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  13. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes...

  14. Transportation Energy Survey Data Book 1.1

    SciTech Connect

    Gurikova, T

    2002-06-18

    vehicles. There are three ways to achieve this goal: efficiency, substitution, or less travel. A reduction in oil usage will result in a reduction of carbon emissions. Successful transition to alternative types of fuel and advanced technology vehicles may depend on awareness of U.S. dependence on imported oil and the U.S. energy situation. Successful transition may also depend on knowledge of alternative types of fuels and advanced technologies. The ''Transportation Energy Survey Data Book 1.1'' examines the public's knowledge, beliefs and expectations of the energy situation in the United States and transportation energy-related issues. The data presented in the report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation International (ORCI) for National Renewable Energy Laboratory (NREL) that are commissioned and funded by OTT, Gallup polls, ABC News/Washington Post polls, NBC News/Wall Street Journal polls, polls conducted by the Ipsos-Reid Corporation, as well articles from The Washington Post (2001) and other sources. All surveys are telephone interviews conducted with randomly selected national samples of adults 18 years of age and older. Almost all surveys were conducted before the September 11, 2001 terrorist attacks, with the only exceptions being the November 2001 ORCI survey and the November 2001 survey conducted by the Ipsos-Reid Corporation.

  15. Alpha detection in pipes using an inverting membrane scintillator

    SciTech Connect

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  16. Energy transport in ultra-fast eated solid targets

    NASA Astrophysics Data System (ADS)

    Sentoku, Yasuhiko; Johzaki, Tomoyuki; Kemp, Andreas

    2008-11-01

    We discuss hot electron generation in ultra intense laser interaction with initially non-ionized matter. Hot electron energy and the transport inside the target are strongly affected by collisional effects and ionization processes, especially in high-Z material. We have introduced an ionization model into our collisional particle-in-cell code, PICLS, to study hot electron transport in ultra-fast heated matter. Our description of collisional ionization is based on the Thomas-Fermi model, where a local average charge state is calculated from the bulk electron temperature and density. Field ionization is taken into account for ionization of low density plasmas. We have studied laser matter interaction under an irradiation of a laser with 10^20W/cm^2. A strong heat inhibition within a micron distance was observed in a gold target because of the large number of lower energy hot electrons produced at the steepened interface by the laser photon pressure. We will discuss the generation of hot electrons and their transport in ultra-fast heated solid targets of various materials.

  17. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  18. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  19. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  20. Energy and water vapor transport in a turbulent stratified environment

    NASA Astrophysics Data System (ADS)

    Gallana, Luca; de Santi, Francesca; Iovieno, Michele; Richiardone, Renzo; Tordella, Daniela

    2015-11-01

    We present direct numerical simulations about the transport of kinetic energy and unsaturated water vapor across a thin layer which separates two decaying turbulent flows with different energy. This interface lies in a shearless stratified environment modeled by means of Boussinesq's approximation. Water vapor is treated as a passive scalar (Kumar et al. 2014). Initial conditions have Fr2 between 0.64 and 64 (stable case) and between -3.2 and -19 (unstable case) and Reλ = 250 . Dry air is in the lower half of the domain and has a higher turbulent energy, seven times higher than the energy of moist air in the upper half. In the early stage of evolution, as long as | F r2 | > 1 , stratification plays a minor role and the flows follows closely neutral stratification mixing. As the buoyancy terms grows, Fr2 ~ O (1) , the mixing process deeply changes. A stable stratification generates a separation layer which blocks the entrainment of dry air into the moist one, characterized by a relative increment of the turbulent dissipation rate compared to the local turbulent energy. On the contrary, an unstable stratification sligthy enhances the entrainment. Growth-decay of energy and mixing layer thichness are discussed and compared with laboratory and numerical experiments.