[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
NASA Astrophysics Data System (ADS)
Wang, Haibo; Swee Poo, Gee
2004-08-01
We study the provisioning of virtual private network (VPN) service over WDM optical networks. For this purpose, we investigate the blocking performance of the hose model versus the pipe model for the provisioning. Two techniques are presented: an analytical queuing model and a discrete event simulation. The queuing model is developed from the multirate reduced-load approximation technique. The simulation is done with the OPNET simulator. Several experimental situations were used. The blocking probabilities calculated from the two approaches show a close match, indicating that the multirate reduced-load approximation technique is capable of predicting the blocking performance for the pipe model and the hose model in WDM networks. A comparison of the blocking behavior of the two models shows that the hose model has superior blocking performance as compared with pipe model. By and large, the blocking probability of the hose model is better than that of the pipe model by a few orders of magnitude, particularly at low load regions. The flexibility of the hose model allowing for the sharing of resources on a link among all connections accounts for its superior performance.
The stationary flow in a heterogeneous compliant vessel network
NASA Astrophysics Data System (ADS)
Filoche, Marcel; Florens, Magali
2011-09-01
We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.
Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results
Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...
NASA Astrophysics Data System (ADS)
Hooda, Nikhil; Damani, Om
2017-06-01
The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.
Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.
Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng
2014-06-01
Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.
Unified pipe network method for simulation of water flow in fractured porous rock
NASA Astrophysics Data System (ADS)
Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua
2017-04-01
Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.
Optimization of municipal pressure pumping station layout and sewage pipe network design
NASA Astrophysics Data System (ADS)
Tian, Jiandong; Cheng, Jilin; Gong, Yi
2018-03-01
Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.
How does network design constrain optimal operation of intermittent water supply?
NASA Astrophysics Data System (ADS)
Lieb, Anna; Wilkening, Jon; Rycroft, Chris
2015-11-01
Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. A.
In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an activemore » component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].« less
NASA Technical Reports Server (NTRS)
Polzien, R. E.; Rodriguez, D.
1981-01-01
Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.
Estimating dynamic permeability in fractal pore network saturated by Maxwellian fluid
NASA Astrophysics Data System (ADS)
Sun, W.
2017-12-01
The frequency dependent flow of fluid in porous media is an important issue in geophysical prospecting. Oscillating flow in pipe leads to frequency dependent dynamic permeability and has been studied in pore network containing Newtonian fluid. But there is little work on oscillating complex fluid in pipe network, especially in irregular network. Here we formulated frequency dependent permeability for Maxwellian fluid and estimated the permeability in three-dimensional fractal network model. We consider an infinitely long cylindrical pipe with rigid solid wall. The pipe is filled with Maxwellian fluids. Based on the mass conservation equation, the equilibrium equation of force and Maxwell constitutive relationship, we formulated the flux by integration of axial velocity component over the pipe's cross section. Then we extend single pipe formulation to a 3D irregular network. Flux balance condition yields a set of linear equations whose unknowns are the fluid pressure at each node. By evaluating the total flow flux through the network, the dynamic permeability can be calculated.We investigated the dynamic permeability of brine and CPyCl/NaSal in a 3D porous sample with a cubic side length 1 cm. The pore network is created by a Voronoi cell filling method. The porosity, i.e., volume ratio between pore/pipe network and the overall cubic, is set as 0.1. The irregular pore network has a fractal structure. The dimension d of the pore network is defined by the relation between node number M within a sphere and the radius r of the sphere,M=rd.The results show that both brine and Maxwellian fluid's permeability maintain a stable value at low frequency, then decreases with fluctuating peaks. The dynamic permeability in pore networks saturated by Maxwellian fluid (CPyCl/NaSal (60 mM)) show larger peaks during the decline process at high frequency, which represents the typical resonance behavior. Dynamic permeability shows clear dependence on the dimension of the fractal network. Small-scale network has higher dimension than large-scale networks. The reason is that in larger networks pore and inter-pore connections are so dense that the probability P(r) to have a neighboring pore at distance r decays faster. The proposed model may be used to explain velocity dispersion in unconventional reservoir rocks observed in laboratory.
Joint physical and numerical modeling of water distribution networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.
2009-01-01
This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in somemore » cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.« less
NASA Astrophysics Data System (ADS)
Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi
2015-11-01
Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.
Dealing with uncertainty in modeling intermittent water supply
NASA Astrophysics Data System (ADS)
Lieb, A. M.; Rycroft, C.; Wilkening, J.
2015-12-01
Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.
Acoustic system for communication in pipelines
Martin, II, Louis Peter; Cooper, John F [Oakland, CA
2008-09-09
A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.
Analysis of Municipal Pipe Network Franchise Institution
NASA Astrophysics Data System (ADS)
Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou
Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.
System-level Analysis of Chilled Water Systems Aboard Naval Ships
2015-06-24
developed one-dimensional partial differen- tial equation models that simulate time-dependent hy- drodynamics and heat transport in a piping network...Thermal zone extents. 2) Piping path and diameter. 3) Specifications and locations of chillers, heat ex- changers, pumps and valves. The framework of the... pipes and provides boundary conditions for the end of the connecting pipes . Pumps, valves, bends and heat exchangers are such components. These
Comparison and validation of acoustic response models for wind noise reduction pipe arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marty, Julien; Denis, Stéphane; Gabrielson, Thomas
The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less
Comparison and validation of acoustic response models for wind noise reduction pipe arrays
Marty, Julien; Denis, Stéphane; Gabrielson, Thomas; ...
2017-02-13
The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less
Hamm, V; Collon-Drouaillet, P; Fabriol, R
2008-02-19
The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more detailed information on flow and chemical behaviour (dissolved sulphate concentrations, remaining mass of solid sulphate) in the network. Nevertheless, both modelling methods require hydrological and chemical parameters (recharge flow rate, outflows, volume of mine voids, mass of solids, kinetic constants of the dissolution-precipitation reactions), which are commonly not available for a mine and therefore call for calibration data.
Fluid Transient Analysis during Priming of Evacuated Line
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley
2017-01-01
Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
THE EPANET WATER DISTRIBUTION SYSTEM MODEL
EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. It tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of a chemica...
DISCRETE VOLUME-ELEMENT METHOD FOR NETWORK WATER- QUALITY MODELS
An explicit dynamic water-quality modeling algorithm is developed for tracking dissolved substances in water-distribution networks. The algorithm is based on a mass-balance relation within pipes that considers both advective transport and reaction kinetics. Complete mixing of m...
Impervious surfaces and sewer pipe effects on stormwater runoff temperature
NASA Astrophysics Data System (ADS)
Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.
2013-10-01
The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.
A catchment-scale groundwater model including sewer pipe leakage in an urban system
NASA Astrophysics Data System (ADS)
Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa
2016-04-01
Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195-202. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie GmbH, Hannover. Karpf, C. & Krebs, P. (2013). Modelling of groundwater infiltration into sewer systems. Urban Water Journal, 10:4, 221-229, DOI: 10.1080/1573062X.2012.724077. Kolditz, O., Bauer, S. et al. (2012). OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67(2):589-599. Wolf, L., Held, I., Eiswirth, M., & Hötzl, H. (2004). Impact of leaky sewers on groundwater quality. Acta Hydrochimica et Hydrobiologica, 32(4-5), 361-373. doi:10.1002/aheh.200400538. Wolf, L. (2006). Influence of leaky sewer systems on groundwater resources beneath the city of Rastatt, Germany. Dissertation, University of Karlsruhe.
Identification of sewer pipes to be cleaned for reduction of CSO pollutant load.
Nagaiwa, Akihiro; Settsu, Katsushi; Nakajima, Fumiyuki; Furumai, Hiroaki
2007-01-01
To reduce the CSO (Combined Sewer Overflow) pollutant discharge, one of the effective options is cleaning of sewer pipes before rainfall events. To maximize the efficiency, identification of pipes to be cleaned is necessary. In this study, we discussed the location of pipe deposit in dry weather in a combined sewer system using a distributed model and investigated the effect of pipe cleaning to reduce the pollutant load from the CSO. First we simulated the dry weather flow in a combined sewer system. The pipe deposit distribution in the network was estimated after 3 days of dry weather period. Several specific pipes with structural defect and upper end pipes tend to have an accumulation of deposit. Wet weather simulations were conducted with and without pipe cleaning in rainfall events with different patterns. The SS loads in CSO with and without the pipe cleaning were compared. The difference in the estimated loads was interpreted as the contribution of wash-off in the cleaned pipe. The effect of pipe cleaning on reduction of the CSO pollutant load was quantitatively evaluated (e.g. the cleaning of one specific pipe could reduce 22% of total CSO load). The CSO simulations containing pipe cleaning options revealed that identification of pipes with accumulated deposit using the distributed model is very useful and informative to evaluate the applicability of pipe cleaning option for CSO pollutant reduction.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
NASA Astrophysics Data System (ADS)
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
Using WNTR to Model Water Distribution System Resilience ...
The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of disruptive events, including earthquakes, contamination incidents, floods, climate change, and fires. The software includes the EPANET solver as well as a WNTR solver with the ability to model pressure-driven demand hydraulics, pipe breaks, component degradation and failure, changes to supply and demand, and cascading failure. Damage to individual components in the network (i.e. pipes, tanks) can be selected probabilistically using fragility curves. WNTR can also simulate different types of resilience-enhancing actions, including scheduled pipe repair or replacement, water conservation efforts, addition of back-up power, and use of contamination warning systems. The software can be used to estimate potential damage in a network, evaluate preparedness, prioritize repair strategies, and identify worse case scenarios. As a Python package, WNTR takes advantage of many existing python capabilities, including parallel processing of scenarios and graphics capabilities. This presentation will outline the modeling components in WNTR, demonstrate their use, give the audience information on how to get started using the code, and invite others to participate in this open source project. This pres
NASA Astrophysics Data System (ADS)
Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.
2017-07-01
We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.
WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY
NASA Astrophysics Data System (ADS)
Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori
Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.
EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks. A network consists of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in e...
EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. A network can consist of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in...
2011-05-02
researchers define only two distinct methods. In a conserved spread network, the quantity of information that enters a network remains constant at...any given time. In such a network, information can only be in one place at any given time. A classic example is that ofa pitcher of water poured into...serious of pipes and joints; once the water passes through one pipe, that pipe empties while others in the network are filled with water as it passes
NASA Astrophysics Data System (ADS)
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-11-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozinoski, Radoslav; Winters, William
2016-01-01
The purpose of this report is to document the theoretical models utilized by the computer code NETFLOW. This report will focus on the theoretical models used to analyze high Mach number fully compressible transonic flows in piping networks.
Ho, Cheng-I; Lin, Min-Der; Lo, Shang-Lien
2010-07-01
A methodology based on the integration of a seismic-based artificial neural network (ANN) model and a geographic information system (GIS) to assess water leakage and to prioritize pipeline replacement is developed in this work. Qualified pipeline break-event data derived from the Taiwan Water Corporation Pipeline Leakage Repair Management System were analyzed. "Pipe diameter," "pipe material," and "the number of magnitude-3( + ) earthquakes" were employed as the input factors of ANN, while "the number of monthly breaks" was used for the prediction output. This study is the first attempt to manipulate earthquake data in the break-event ANN prediction model. Spatial distribution of the pipeline break-event data was analyzed and visualized by GIS. Through this, the users can swiftly figure out the hotspots of the leakage areas. A northeastern township in Taiwan, frequently affected by earthquakes, is chosen as the case study. Compared to the traditional processes for determining the priorities of pipeline replacement, the methodology developed is more effective and efficient. Likewise, the methodology can overcome the difficulty of prioritizing pipeline replacement even in situations where the break-event records are unavailable.
Percolation Network Study on the Gas Apparent Permeability of Rock
NASA Astrophysics Data System (ADS)
Wang, Y.; Tang, Y. B.; Li, M.
2017-12-01
We modeled the gas single phase transport behaviors of monomodal porous media using percolation networks. Different from the liquid absolute permeability, which is only related to topology and morphology of pore space, the gas permeability depends on pore pressure as well. A published gas flow conductance model, included usual viscous flow, slip flow and Knudsen diffusion in cylinder pipe, was used to simulated gas flow in 3D, simple cubic, body-center cubic and face-center cubic networks with different hydraulic radius, different coordination number, and different pipe radius distributions under different average pore pressure. The simulation results showed that the gas apparent permeability kapp obey the `universal' scaling law (independence of network lattices), kapp (z-zc)β, where exponent β is related to pore radius distribution, z is coordination number and zc=1.5. Following up on Bernabé et al.'s (2010) study of the effects of pore connectivity and pore size heterogeneity on liquid absolute permeability, gas apparent permeability kapp model and a new joint gas-liquid permeability (i.e., kapp/k∞) model, which could explain the Klinkenberg phenomenon, were proposed. We satisfactorily tested the models by comparison with published experimental data on glass beads and other datasets.
NASA Astrophysics Data System (ADS)
Kim, Shin-Hyung; Ruy, Won-Sun; Jang, Beom Seon
2013-09-01
An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system
NASA Astrophysics Data System (ADS)
Jadhao, Ramrao D.; Gupta, Rajesh
2018-03-01
Calibration of hydraulic model of a water distribution network is required to match the model results of flows and pressures with those obtained in the field. This is a challenging task considering the involvement of a large number of parameters. Having more precise data helps in reducing time and results in better calibration as shown herein with a case study of one hydraulic zone served from the Ramnagar Ground Service Reservoir in Nagpur City. Flow and pressure values for the entire day were obtained through data loggers. Network details regarding pipe lengths, diameters, installation year and material were obtained with the largest possible accuracy. Locations of consumers on the network were noted and average nodal consumptions were obtained from the billing records. The non-revenue water losses were uniformly allocated to all junctions. Valve positions and their operating status were noted from the field and used. The pipe roughness coefficients were adjusted to match the model values with field values of pressures at observation nodes by minimizing the sum of square of difference between them. This paper aims at describing the entire process from collection of the required data to the calibration of the network.
Modeling a network of turloughs in lowland karst
NASA Astrophysics Data System (ADS)
Gill, L. W.; Naughton, O.; Johnston, P. M.
2013-06-01
In lowland karst areas of Ireland topographic depressions which get intermittently flooded on an annual cycle via groundwater sources are termed turloughs. These are sites of high ecological interest as they have communities and substrate characteristic of wetlands. The flooding in many turlough basins is due to insufficient capacity of the underground karst system to take increased flows following excessive precipitation events, causing the conduit-type network to surcharge. Continuous water level measurements have been taken in five linked turloughs in the lowland karst area of south Galway over a 3 year period. These water level fluctuations, in conjunction with river inputs and precipitation, were then used to elucidate the hydrogeological controls forming the hydraulic system beneath the ground. A model of the karst network has been developed using a pipe network model with the turloughs represented as ponds. The contribution to the karst network from diffuse flow through the epikarst via the matrix and fracture flow has also been modeled using a combination of an infiltration module and network of permeable pipes. The final model was calibrated against two separate hydrological years and in general provided a good simulation for all of the turloughs water levels particularly for the year with one main filling event. The model also accurately picked up the tidal response observed in these turloughs at shallow depths. The model has been used to predict the groundwater discharge to the coast via the main spring which had not heretofore been possible to measure, being below the sea level.
Prediction of contaminant fate and transport in potable water systems using H2OFate
NASA Astrophysics Data System (ADS)
Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark
2009-05-01
BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.
Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun
2008-07-01
To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.
NASA Astrophysics Data System (ADS)
Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.
2017-12-01
Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.
Yoo, Do Guen; Lee, Ho Min; Sadollah, Ali; Kim, Joong Hoon
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.
Lee, Ho Min; Sadollah, Ali
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252
NASA Astrophysics Data System (ADS)
Clark, Robert M.
2011-12-01
It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall. The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination. Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material. Free chlorine loss in corroded metal and PVC pipes, subject to changes in velocity, was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati, Ohio (USA). These studies demonstrated that in older unlined metal pipes, the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.
MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS
A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...
MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS
A mass transfer-based model is developed for predicting chlorine decay in drinking water distribution networks. he model considers first order reactions of chlorine to occur both in the bulk flow and at the pipe wall. he overall rate of the wall reaction is a function of the rate...
Rehan, R; Knight, M A; Unger, A J A; Haas, C T
2013-12-15
This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Assessment of water pipes durability under pressure surge
NASA Astrophysics Data System (ADS)
Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia
2017-10-01
Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.
Water Network Tool for Resilience v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-09
WNTR is a python package designed to simulate and analyze resilience of water distribution networks. The software includes: - Pressure driven and demand driven hydraulic simulation - Water quality simulation to track concentration, trace, and water age - Conditional controls to simulate power outages - Models to simulate pipe breaks - A wide range of resilience metrics - Analysis and visualization tools
Evaluating the risk of water distribution system failure: A shared frailty model
NASA Astrophysics Data System (ADS)
Clark, Robert M.; Thurnau, Robert C.
2011-12-01
Condition assessment (CA) Modeling is drawing increasing interest as a technique that can assist in managing drinking water infrastructure. This paper develops a model based on the application of a Cox proportional hazard (PH)/shared frailty model and applies it to evaluating the risk of failure in drinking water networks using data from the Laramie Water Utility (located in Laramie, Wyoming, USA). Using the risk model a cost/ benefit analysis incorporating the inspection value method (IVM), is used to assist in making improved repair, replacement and rehabilitation decisions for selected drinking water distribution system pipes. A separate model is developed to predict failures in prestressed concrete cylinder pipe (PCCP). Various currently available inspection technologies are presented and discussed.
Experimental and analytical study of water pipe's rupture for damage identification purposes
NASA Astrophysics Data System (ADS)
Papakonstantinou, Konstantinos G.; Shinozuka, Masanobu; Beikae, Mohsen
2011-04-01
A malfunction, local damage or sudden pipe break of a pipeline system can trigger significant flow variations. As shown in the paper, pressure variations and pipe vibrations are two strongly correlated parameters. A sudden change in the flow velocity and pressure of a pipeline system can induce pipe vibrations. Thus, based on acceleration data, a rapid detection and localization of a possible damage may be carried out by inexpensive, nonintrusive monitoring techniques. To illustrate this approach, an experiment on a single pipe was conducted in the laboratory. Pressure gauges and accelerometers were installed and their correlation was checked during an artificially created transient flow. The experimental findings validated the correlation between the parameters. The interaction between pressure variations and pipe vibrations was also theoretically justified. The developed analytical model explains the connection among flow pressure, velocity, pressure wave propagation and pipe vibration. The proposed method provides a rapid, efficient and practical way to identify and locate sudden failures of a pipeline system and sets firm foundations for the development and implementation of an advanced, new generation Supervisory Control and Data Acquisition (SCADA) system for continuous health monitoring of pipe networks.
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
Currently the actual problem is a precise definition of the normative and actual heat loss. Existing methods - experimental, on metering devices, on the basis of mathematical modeling methods are not without drawbacks. Heat losses establishing during the heat carrier transport has an impact on the tariff structure of heat supply organizations. This quantity determination also promotes proper choice of main and auxiliary equipment power, temperature chart of heat supply networks, as well as the heating system structure choice with the decentralization. Calculation of actual heat loss and their comparison with standard values justifies the performance of works on improvement of the heat networks with the replacement of piping or its insulation. To determine the cause of discrepancies between normative and actual heat losses thermal tests on the magnitude of the actual heat losses in the 124 sections of heat networks in Kazan. As were carried out the result mathematical model of the regulatory definition of heat losses is developed and tested. This model differ from differs the existing according the piping insulation type. The application of this factor will bring the value of calculative normative losses heat energy to their actual value. It is of great importance for enterprises operating distribution networks and because of the conditions of their configuration and extensions do not have the technical ability to produce thermal testing.
Connectivist Communication Networks
ERIC Educational Resources Information Center
Waßmann, Ingolf; Nicolay, Robin; Martens, Alke
2016-01-01
Facing the challenges of the digital age concerning lifelong learning, this contribution presents an approach to dynamically establish Connectivist communication networks. According the statement "the pipe is more important than the content within the pipe" by Georg Siemens, learning in digital age includes the connection of people to…
Pipe network flow analysis was among the first civil engineering applications programmed for solution on the early commercial mainframe computers in the 1960s. Since that time, advancements in analytical techniques and computing power have enabled us to solve systems with tens o...
Karpf, Christian; Krebs, Peter
2011-05-01
The management of sewer systems requires information about discharge and variability of typical wastewater sources in urban catchments. Especially the infiltration of groundwater and the inflow of surface water (I/I) are important for making decisions about the rehabilitation and operation of sewer networks. This paper presents a methodology to identify I/I and estimate its quantity. For each flow fraction in sewer networks, an individual model approach is formulated whose parameters are optimised by the method of least squares. This method was applied to estimate the contributions to the wastewater flow in the sewer system of the City of Dresden (Germany), where data availability is good. Absolute flows of I/I and their temporal variations are estimated. Further information on the characteristics of infiltration is gained by clustering and grouping sewer pipes according to the attributes construction year and groundwater influence and relating these resulting classes to infiltration behaviour. Further, it is shown that condition classes based on CCTV-data can be used to estimate the infiltration potential of sewer pipes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hydraulics of sprinkler and microirrigation systems
USDA-ARS?s Scientific Manuscript database
The fluid dynamics of sprinkler and microirrigation systems are complex. Water moves dynamically from the water source through the pump into the pipe network. Water often goes through a series of screens and filters depending on the source and type of irrigation system. From the pipe network, water ...
Resilience-based optimal design of water distribution network
NASA Astrophysics Data System (ADS)
Suribabu, C. R.
2017-11-01
Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.
The hydraulic capacity of deteriorating sewer systems.
Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V
2005-01-01
Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.
Assessment of flood hazard in a combined sewer system in Reykjavik city centre.
Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe
2015-01-01
Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang
To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circularmore » pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.« less
Evaluation of thermal network correction program using test temperature data
NASA Technical Reports Server (NTRS)
Ishimoto, T.; Fink, L. C.
1972-01-01
An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.
Coliform non-compliance nightmares in water-supply distribution systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geldreich, E.E.
1988-01-01
Coliform occurrences in distribution systems have created a great concern for both utilities and water authorities because of the implied public-health implications and failure to meet Federal regulations. Many of the known cases involve systems in the east and midwest. The common denominator being systems that have significant amounts of pipe networks over 75 years old and all are treating surface waters. Origins for these contamination events can be found in source-water fluctuations, failures in treatment-barrier protection, or loss of pipe-network integrity. Once passage into the distribution network has been achieved, some of the coliforms (Klebsiella, Enterobacter, Citrobacter) and othermore » heterotrophic bacteria adapt to the pipe environment, finding protection and nutrient support in pipe sediments. Under conditions of seasonal warm waters (10 degC) and availability of assimilable organics in the pipe sediments and tubercles, colonization grows into biofilms that may slough-off into the water supply, creating a coliform non-compliance problem. Significance of these occurrences and control measures are part of a realistic action plan presented for guidance.« less
Stability and effectiveness of chlorine disinfectants in water distribution systems.
Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K
1986-11-01
A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.
Stability and effectiveness of chlorine disinfectants in water distribution systems.
Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K
1986-01-01
A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767
Gas Main Sensor and Communications Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen Schempf
Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less
Algorithms for optimization of branching gravity-driven water networks
NASA Astrophysics Data System (ADS)
Dardani, Ian; Jones, Gerard F.
2018-05-01
The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.
Water quality modeling in the dead end sections of drinking water (Supplement)
Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used tocalibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variation
Water Quality Modeling in the Dead End Sections of Drinking ...
Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of a distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations
Small, Untethered, Mobile Robots for Inspecting Gas Pipes
NASA Technical Reports Server (NTRS)
Wilcox, Brian
2003-01-01
Small, untethered mobile robots denoted gas-pipe explorers (GPEXs) have been proposed for inspecting the interiors of pipes used in the local distribution natural gas. The United States has network of gas-distribution pipes with a total length of approximately 109 m. These pipes are often made of iron and steel and some are more than 100 years old. As this network ages, there is a need to locate weaknesses that necessitate repair and/or preventive maintenance. The most common weaknesses are leaks and reductions in thickness, which are caused mostly by chemical reactions between the iron in the pipes and various substances in soil and groundwater. At present, mobile robots called pigs are used to inspect and clean the interiors of gas-transmission pipelines. Some carry magnetic-flux-leakage (MFL) sensors for measuring average wall thicknesses, some capture images, and some measure sizes and physical conditions. The operating ranges of pigs are limited to fairly straight sections of wide transmission- type (as distinguished from distribution- type) pipes: pigs are too large to negotiate such obstacles as bends with radii comparable to or smaller than pipe diameters, intrusions of other pipes at branch connections, and reductions in diameter at valves and meters. The GPEXs would be smaller and would be able to negotiate sharp bends and other obstacles that typically occur in gas-distribution pipes.
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.
Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.
Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit
2014-02-01
To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modifications to the Conduit Flow Process Mode 2 for MODFLOW-2005
Reimann, T.; Birk, S.; Rehrl, C.; Shoemaker, W.B.
2012-01-01
As a result of rock dissolution processes, karst aquifers exhibit highly conductive features such as caves and conduits. Within these structures, groundwater flow can become turbulent and therefore be described by nonlinear gradient functions. Some numerical groundwater flow models explicitly account for pipe hydraulics by coupling the continuum model with a pipe network that represents the conduit system. In contrast, the Conduit Flow Process Mode 2 (CFPM2) for MODFLOW-2005 approximates turbulent flow by reducing the hydraulic conductivity within the existing linear head gradient of the MODFLOW continuum model. This approach reduces the practical as well as numerical efforts for simulating turbulence. The original formulation was for large pore aquifers where the onset of turbulence is at low Reynolds numbers (1 to 100) and not for conduits or pipes. In addition, the existing code requires multiple time steps for convergence due to iterative adjustment of the hydraulic conductivity. Modifications to the existing CFPM2 were made by implementing a generalized power function with a user-defined exponent. This allows for matching turbulence in porous media or pipes and eliminates the time steps required for iterative adjustment of hydraulic conductivity. The modified CFPM2 successfully replicated simple benchmark test problems. ?? 2011 The Author(s). Ground Water ?? 2011, National Ground Water Association.
Robotic platform for traveling on vertical piping network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel
This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.
Modeling and Optimization for Management of Intermittent Water Supply
NASA Astrophysics Data System (ADS)
Lieb, A. M.; Wilkening, J.; Rycroft, C.
2014-12-01
In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.
NASA Astrophysics Data System (ADS)
Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin
2014-07-01
Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.
Real-time hydraulic interval state estimation for water transport networks: a case study
NASA Astrophysics Data System (ADS)
Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.
2018-03-01
Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.
Ebtehaj, Isa; Bonakdari, Hossein
2016-01-01
Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.
Reduction of water losses by rehabilitation of water distribution network.
Güngör, Mahmud; Yarar, Ufuk; Firat, Mahmut
2017-09-11
Physical or real losses may be indicated as the most important component of the water losses occurring in a water distribution network (WDN). The objective of this study is to examine the effects of piping material management and network rehabilitation on the physical water losses and water losses management in a WDN. For this aim, the Denizli WDN consisting of very old pipes that have exhausted their economic life is selected as the study area. The fact that the current network is old results in the decrease of pressure strength, increase of failure intensity, and inefficient use of water resources thus leading to the application of the rehabilitation program. In Denizli, network renewal works have been carried out since the year 2009 under the rehabilitation program. It was determined that the failure rate at regions where network renewal constructions have been completed decreased down to zero level. Renewal of piping material enables the minimization of leakage losses as well as the failure rate. On the other hand, the system rehabilitation has the potential to amortize itself in a very short amount of time if the initial investment cost of network renewal is considered along with the operating costs of the old and new systems, as well as water loss costs. As a result, it can be stated that renewal of piping material in water distribution systems, enhancement of the physical properties of the system, provide significant contributions such as increase of water and energy efficiency and more effective use of resources.
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
Flood impacts on a water distribution network
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio
2017-12-01
Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.
NASA Astrophysics Data System (ADS)
Koch, Caleb; Winfrey, Leigh
2014-10-01
Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.
NASA Astrophysics Data System (ADS)
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
Assessment of domestic water quality: case study, Beirut, Lebanon.
Korfali, Samira Ibrahim; Jurdi, Mey
2007-12-01
In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.
NASA Astrophysics Data System (ADS)
Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Gatiyatov, I. Z.; Kuznetsov, I. L.
2017-09-01
The feature of the stress state of the supports of the contact networks is the presence of a joint of pipes of different diameters, the ultimate state of which is determined, as a rule, the strength of the weld. The proposed unit allows to increase the reliability and strength of the connection and also exclude the presence of a weld bead on the outer surface of the pipe of smaller diameter in the place of its attachment to the upper end of the support ring.
Modelling the viability of heat recovery from combined sewers.
Abdel-Aal, M; Smits, R; Mohamed, M; De Gussem, K; Schellart, A; Tait, S
2014-01-01
Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
MaxEnt analysis of a water distribution network in Canberra, ACT, Australia
NASA Astrophysics Data System (ADS)
Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.
2015-01-01
A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.
Hopkins, Kristina G.; Bain, Daniel J.
2018-01-01
Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-06-01
The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.
Water System Resiliency: Lessons from Boston's 2010 Water Emergency
NASA Astrophysics Data System (ADS)
Phillips, N.; Boston Urban Metabolism Ultra-Ex Team
2010-12-01
On May 1, 2010, a ten foot diameter water pipe, the sole pipe supplying potable water to 2.2 million residents of Greater Boston, burst. Categorized as a "catastrophic" leak by the Massachusetts Water Resources Authority, Governor Deval Patrick declared a State of Emergency, mobilizing local, state and federal disaster responses. By May 4, 2010, a boil-water order was lifted after the leak was fixed. This event has provided many lessons about the resiliency of municipal water system infrastructure, the level of human understanding of reliability and vulnerability of resource distribution systems, and the human capacity to adapt in short and longer terms to disturbances in resource distribution systems, and to learn. This talk will use a narrative of the events during May 2010 in Boston to explore the broader question of the nature of resilient resource distribution networks, and describe a heuristic, semi-quantitative model for resilient urban resource distribution networks, including water.
Vulnerability of water supply systems to cyber-physical attacks
NASA Astrophysics Data System (ADS)
Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi
2016-04-01
The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.
Corrosion potential analysis system
NASA Astrophysics Data System (ADS)
Kiefer, Karl F.
1998-03-01
Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately determine the corrosion risk in a local area. The system has virtually no installation costs and can operate on battery power for at least two years.
Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System
NASA Astrophysics Data System (ADS)
Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang
2016-11-01
In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.
Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT)
2006-05-17
water /steam/ oil piping networks, refinery systems, gas-turbine secondary flow -path and cooling networks...friction factor, f, which is a function of the local Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the...3.5 4 4.5 Time ( s ) V el oc ity (m / s ) Line 2 Inlet 25% 50% 75% Exit Velocity Figure 4. Water transient viscous pipe flow using
Optimal Dynamics of Intermittent Water Supply
NASA Astrophysics Data System (ADS)
Lieb, Anna; Wilkening, Jon; Rycroft, Chris
2014-11-01
In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.
Best practices for quality management of stormwater pipe construction : [summary].
DOT National Transportation Integrated Search
2014-02-01
Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...
Spacecraft Crew Cabin Condensation Control
NASA Technical Reports Server (NTRS)
Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.
2013-01-01
A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.
NASA Astrophysics Data System (ADS)
Dudar, O. I.; Dudar, E. S.
2017-11-01
The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
Estimation procedure of the efficiency of the heat network segment
NASA Astrophysics Data System (ADS)
Polivoda, F. A.; Sokolovskii, R. I.; Vladimirov, M. A.; Shcherbakov, V. P.; Shatrov, L. A.
2017-07-01
An extensive city heat network contains many segments, and each segment operates with different efficiency of heat energy transfer. This work proposes an original technical approach; it involves the evaluation of the energy efficiency function of the heat network segment and interpreting of two hyperbolic functions in the form of the transcendental equation. In point of fact, the problem of the efficiency change of the heat network depending on the ambient temperature was studied. Criteria dependences used for evaluation of the set segment efficiency of the heat network and finding of the parameters for the most optimal control of the heat supply process of the remote users were inferred with the help of the functional analysis methods. Generally, the efficiency function of the heat network segment is interpreted by the multidimensional surface, which allows illustrating it graphically. It was shown that the solution of the inverse problem is possible as well. Required consumption of the heating agent and its temperature may be found by the set segment efficient and ambient temperature; requirements to heat insulation and pipe diameters may be formulated as well. Calculation results were received in a strict analytical form, which allows investigating the found functional dependences for availability of the extremums (maximums) under the set external parameters. A conclusion was made that it is expedient to apply this calculation procedure in two practically important cases: for the already made (built) network, when the change of the heat agent consumption and temperatures in the pipe is only possible, and for the projecting (under construction) network, when introduction of changes into the material parameters of the network is possible. This procedure allows clarifying diameter and length of the pipes, types of insulation, etc. Length of the pipes may be considered as the independent parameter for calculations; optimization of this parameter is made in accordance with other, economical, criteria for the specific project.
NASA Astrophysics Data System (ADS)
Petrus, Karine; Szymczak, Piotr
2016-04-01
Karst formation is controlled by the processes of the fluid flow and reactant transport coupled to the chemical erosion of the limestone rock [1]. The coupling between these processes can lead to a number of different instabilities, resulting in the formation of dissolutional voids, caverns and conduits. Arguably the simplest systems of this kind are solution pipes, in which gravitationally driven water movement carves vertical conduits in limestone rocks. In the homogeneous rocks these conduits are often cylindrical, with almost a constant diameter along their length. However, in a stratified medium, the morphology of the pipes changes. For example, if a number of less porous layers is introduced in an otherwise homogeneous medium, then the pipes are observed to narrow as they cross the layers and then widen up to form bulbous caverns as they emerge from the layer [1]. In this communication, we investigate these effects more closely, considering different kind of lithographic discontinuities to be present in the system: the layers of increased/decreased porosity and/or permeability as well as the solubility which is different from the rest of the system. Using a Darcy-scale numerical model we analyze the effects these layers have on the shape and growth of solution pipes and compare the results on the piping morphologies observed in nature. Finally we comment on the possible relevance of these results to the cave-formation phenomena and the inception horizon concept [3]. References: 1.Howard A. D., The development of karst features, Bull. Natl. Spel. Soc. 25, 45-65 (1963) 2. Petrus, K. and Szymczak, P., Influence of layering on the formation and growth of solution pipes. Frontiers in Physics (submitted) 3.Filipponi , M., Jeannin, P. and Tacher, L., Evidence of inception horizons in karst conduit networks, Geomorphology, 106, 86-99 (2009)
Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota
Hayes, Timothy Scott
1999-01-01
Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage
Limitations of demand- and pressure-driven modeling for large deficient networks
NASA Astrophysics Data System (ADS)
Braun, Mathias; Piller, Olivier; Deuerlein, Jochen; Mortazavi, Iraj
2017-10-01
The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.
Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network
NASA Astrophysics Data System (ADS)
Obara, Shinya; Kudo, Kazuhiko
Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method
Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.
Chen, Shaoqing; Chen, Bin; Su, Meirong
2015-10-06
The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.
Gieder, Katherina D.; Karpanty, Sarah M.; Fraser, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert
2014-01-01
Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human-related habitat change on barrier islands. We recommend that potential users of this method utilize multiple years of data that represent a wide range of physical conditions in model development, because the model performed less well when constructed using a narrow range of physical conditions. Further, given that there will always be some uncertainty in predictions of future physical habitat conditions related to sea-level rise and/or human development, predictive models will perform best when developed using multiple, varied years of data input.
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
Spatial optimization for decentralized non-potable water reuse
NASA Astrophysics Data System (ADS)
Kavvada, Olga; Nelson, Kara L.; Horvath, Arpad
2018-06-01
Decentralization has the potential to reduce the scale of the piped distribution network needed to enable non-potable water reuse (NPR) in urban areas by producing recycled water closer to its point of use. However, tradeoffs exist between the economies of scale of treatment facilities and the size of the conveyance infrastructure, including energy for upgradient distribution of recycled water. To adequately capture the impacts from distribution pipes and pumping requirements, site-specific conditions must be accounted for. In this study, a generalized framework (a heuristic modeling approach using geospatial algorithms) is developed that estimates the financial cost, the energy use, and the greenhouse gas emissions associated with NPR (for toilet flushing) as a function of scale of treatment and conveyance networks with the goal of determining the optimal degree of decentralization. A decision-support platform is developed to assess and visualize NPR system designs considering topography, economies of scale, and building size. The platform can be used for scenario development to explore the optimal system size based on the layout of current or new buildings. The model also promotes technology innovation by facilitating the systems-level comparison of options to lower costs, improve energy efficiency, and lower greenhouse gas emissions.
A Corrosion Risk Assessment Model for Underground Piping
NASA Technical Reports Server (NTRS)
Datta, Koushik; Fraser, Douglas R.
2009-01-01
The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.
NASA Astrophysics Data System (ADS)
Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin
2018-04-01
Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.
Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven
2010-05-01
Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.
Efficient prediction of human protein-protein interactions at a global scale.
Schoenrock, Andrew; Samanfar, Bahram; Pitre, Sylvain; Hooshyar, Mohsen; Jin, Ke; Phillips, Charles A; Wang, Hui; Phanse, Sadhna; Omidi, Katayoun; Gui, Yuan; Alamgir, Md; Wong, Alex; Barrenäs, Fredrik; Babu, Mohan; Benson, Mikael; Langston, Michael A; Green, James R; Dehne, Frank; Golshani, Ashkan
2014-12-10
Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.
Long-term monitoring of a cable stayed bridge using a SCADA system
NASA Astrophysics Data System (ADS)
Torbol, Marco; Kim, Sehwan; Shinozuka, Masanobu
2012-04-01
DuraMote is a MEMS-based remote sensing system, which is developed for the NIST TIP project, Next Generation SCADA for Prevention and Mitigation of Water System Infrastructure Disaster. It is designed for supervisory control and data acquisition (SCADA) of pipe ruptures in water distribution systems. In this project, a method is developed to detect the pipe ruptures by analyzing the acceleration data gathered by DuraMote which consists of two primary components; the first, "Gopher" contains the accelerometers and are attached to the water pipe surface noninvasively, and the second, "Roocas" is placed above ground supplying the power to, and retrieving the data from the multiple Gophers, and then transmit the data through Wi-Fi to a base station. The relays support the Wi-Fi network to facilitate the transmission. A large scale bridge provides an ideal test-bet to validate the performance of such a complex monitoring system as DuraMote for its accuracy, reliability, robustness, and user friendliness. This is because a large bridge is most of the time subjected to susceptible level of ambient vibration due to passing loads, wind, etc. DuraMote can record the acceleration time history arising from the vibration making it possible to estimate the frequency values of various bridge vibration modes. These estimated frequency values are then compared with the values computed from analytical model of the bridge for the verification of the accuracy of DuraMote. It is noted that such a verification method cannot be used practically by deploying DuraMote on a water distribution network since the dynamic behavior of a pipe network, either above or underground, is too complex to model analytically for this purpose, and in addition, the network generally lacks conveniently recordable ambient vibration. In this experiment, the performance of DuraMote system was tested being installed on the Hwamyung Bridge, a 500 m long RC cable stayed bridge in Korea for long term monitoring. In total, the system consisted of 24 accelerometers, 13 Gophers, 10 Roocas, 5 relays, and 1 base station. As it happened, the bridge was subjected to heavy rain, winds, and a typhoon during the experiment allowing the DuraMote to demonstrate extra ordinary robustness and durability. Indeed, in spite of the rough weather, acceleration data was continuously recorded from which natural frequencies, mode shapes, and other structural parameters were calculated. This opportunity would not have happened if the experiment was planned for a shorter duration.
Teaching Structured Design of Network Algorithms in Enhanced Versions of SQL
ERIC Educational Resources Information Center
de Brock, Bert
2004-01-01
From time to time developers of (database) applications will encounter, explicitly or implicitly, structures such as trees, graphs, and networks. Such applications can, for instance, relate to bills of material, organization charts, networks of (rail)roads, networks of conduit pipes (e.g., plumbing, electricity), telecom networks, and data…
PREDICTING CHLORINE RESIDUAL LOSSES IN UNLINED METALIC PIPES
There is substantial evidence that as water moves through a water distribution system its quality can deteriorate through interactions between the bulk phase and the pipe wall. One of the most serious aspects of water quality deterioration, in a network, is the loss of disinfect...
Water quality modeling in the dead end sections of drinking water distribution networks.
Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim
2016-02-01
Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated concentration profiles showed significant dependence on the spatial distribution of the flow demands compared to temporal variation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integrated modelling for the evaluation of infiltration effects.
Schulz, N; Baur, R; Krebs, P
2005-01-01
The objective of the present study is the estimation of the potential benefits of sewer pipe rehabilitation for the performance of the drainage system and the wastewater treatment plant (WWTP) as well as for the receiving water quality. The relation of sewer system status and the infiltration rate is assessed based on statistical analysis of 470 km of CCTV (Closed Circuit Television) inspected sewers of the city of Dresden. The potential reduction of infiltration rates and the consequent performance improvements of the urban wastewater system are simulated as a function of rehabilitation activities in the network. The integrated model is applied to an artificial system with input from a real sewer network. In this paper, the general design of the integrated model and its data requirements are presented. For an exemplary study, the consequences of the simulations are discussed with respect to the prioritisation of rehabilitation activities in the network.
NASA Astrophysics Data System (ADS)
Bailly, J. S.; Delenne, C.; Chahinian, N.; Bringay, S.; Commandré, B.; Chaumont, M.; Derras, M.; Deruelle, L.; Roche, M.; Rodriguez, F.; Subsol, G.; Teisseire, M.
2017-12-01
In France, local government institutions must establish a detailed description of wastewater networks. The information should be available, but it remains fragmented (different formats held by different stakeholders) and incomplete. In the "Cart'Eaux" project, a multidisciplinary team, including an industrial partner, develops a global methodology using Machine Learning and Data Mining approaches applied to various types of large data to recover information in the aim of mapping urban sewage systems for hydraulic modelling. Deep-learning is first applied using a Convolution Neural Network to localize manhole covers on 5 cm resolution aerial RGB images. The detected manhole covers are then automatically connected using a tree-shaped graph constrained by industry rules. Based on a Delaunay triangulation, connections are chosen to minimize a cost function depending on pipe length, slope and possible intersection with roads or buildings. A stochastic version of this algorithm is currently being developed to account for positional uncertainty and detection errors, and generate sets of probable networks. As more information is required for hydraulic modeling (slopes, diameters, materials, etc.), text data mining is used to extract network characteristics from data posted on the Web or available through governmental or specific databases. Using an appropriate list of keywords, the web is scoured for documents which are saved in text format. The thematic entities are identified and linked to the surrounding spatial and temporal entities. The methodology is developed and tested on two towns in southern France. The primary results are encouraging: 54% of manhole covers are detected with few false detections, enabling the reconstruction of probable networks. The data mining results are still being investigated. It is clear at this stage that getting numerical values on specific pipes will be challenging. Thus, when no information is found, decision rules will be used to assign admissible numerical values to enable the final hydraulic modelling. Consequently, sensitivity analysis of the hydraulic model will be performed to take into account the uncertainty associated with each piece of information. Project funded by the European Regional Development Fund and the Occitanie Region.
Bringing simulation to engineers in the field: a Web 2.0 approach.
Haines, Robert; Khan, Kashif; Brooke, John
2009-07-13
Field engineers working on water distribution systems have to implement day-to-day operational decisions. Since pipe networks are highly interconnected, the effects of such decisions are correlated with hydraulic and water quality conditions elsewhere in the network. This makes the provision of predictive decision support tools (DSTs) for field engineers critical to optimizing the engineering work on the network. We describe how we created DSTs to run on lightweight mobile devices by using the Web 2.0 technique known as Software as a Service. We designed our system following the architectural style of representational state transfer. The system not only displays static geographical information system data for pipe networks, but also dynamic information and prediction of network state, by invoking and displaying the results of simulations running on more powerful remote resources.
PREDICTING CHLORINE RESIDUAL LOSSES IN UNLINED METALLIC PIPES (PRESENTATION)
There is substantial evidence that as water moves through a water distribution system its quality can deteriorate through interactions between the bulk phase and the pipe wall. One of the most serious aspects of water quality deterioration, in a network, is the loss of disinfecta...
PREDICTING CHLORINE RESIDUAL LOSSES IN UNLINED METALLIC PIPES (POSTER)
There is substantial evidence that as water moves through a water distribution system its quality can deteriorate through interactions between the bulk phase and the pipe wall. One of the most serious aspects of water quality deterioration, in a network, is the loss of disinfect...
EPANET Multi-Species Extension Software and User's Manual ...
Software and User's Manual EPANET is used in homeland security research to model contamination threats to water systems. Historically, EPANET has been limited to tracking the dynamics of a single chemical transported through a network of pipes and storage tanks, such as a fluoride used in a tracer study or free chlorine used in a disinfection decay study. Recently, the NHSRC released a new extension to EPANET called EPANET-MSX (Multi-Species eXtension) that allows for the consideration of multiple interacting species in the bulk flow and on the pipe walls. This capability has been incorporated into both a stand-alone executable program as well as a toolkit library of functions that programmers can use to build customized applications.
Features of a SINDA/FLUINT model of a liquid oxygen supply line
NASA Astrophysics Data System (ADS)
Simmonds, Boris G.
1993-11-01
The modeling features used in a steady-state heat transfer problem using SINDA/FLUINT are described. The problem modeled is a 125 feet long, 3 inch diameter pipe, filled with liquid oxygen flow driven by a given pressure gradient. The pipe is fully insulated in five sections. Three sections of 1 inch thick spray-on foam and two sections of vacuum jacket. The model evaluates friction, turns losses and convection heat transfer between the fluid and the pipe wall. There is conduction through the foam insulation with temperature dependent thermal conductivity. The vacuum space is modeled with radiation and gas molecular conduction, if present, in the annular gap. Heat is transferred between the outer surface and surrounding ambient by natural convection and radiation; and, by axial conduction along the pipe and through the vacuum jacket spacers and welded seal flanges. The model makes extensive use of SINDA/FLUINT basic capabilities such as the GEN option for nodes and conductors (to generate groups of nodes or conductors), the SIV option (to generate single, temperature varying conductors), the SIM option (for multiple, temperature varying conductors) and the M HX macros for fluids (to generate strings of lumps, paths, and ties representing a diabatic duct). It calls subroutine CONTRN (returns the relative location in the G-array of a network conductor, given an actual conductor number) enabling an extensive manipulation of conductor (calculates an assignment of their values) with DO loops. Models like this illustrate to the new and even to the old SINDA/FLUINT user, features of the program that are not so obvious or known, and that are extremely handy when trying to take advantage of both, the automation of the DATA headers and make surgical modifications to specific parameters of the thermal or fluid elements in the OPERATIONS portion of the model.
Features of a SINDA/FLUINT model of a liquid oxygen supply line
NASA Technical Reports Server (NTRS)
Simmonds, Boris G.
1993-01-01
The modeling features used in a steady-state heat transfer problem using SINDA/FLUINT are described. The problem modeled is a 125 feet long, 3 inch diameter pipe, filled with liquid oxygen flow driven by a given pressure gradient. The pipe is fully insulated in five sections. Three sections of 1 inch thick spray-on foam and two sections of vacuum jacket. The model evaluates friction, turns losses and convection heat transfer between the fluid and the pipe wall. There is conduction through the foam insulation with temperature dependent thermal conductivity. The vacuum space is modeled with radiation and gas molecular conduction, if present, in the annular gap. Heat is transferred between the outer surface and surrounding ambient by natural convection and radiation; and, by axial conduction along the pipe and through the vacuum jacket spacers and welded seal flanges. The model makes extensive use of SINDA/FLUINT basic capabilities such as the GEN option for nodes and conductors (to generate groups of nodes or conductors), the SIV option (to generate single, temperature varying conductors), the SIM option (for multiple, temperature varying conductors) and the M HX macros for fluids (to generate strings of lumps, paths, and ties representing a diabatic duct). It calls subroutine CONTRN (returns the relative location in the G-array of a network conductor, given an actual conductor number) enabling an extensive manipulation of conductor (calculates an assignment of their values) with DO loops. Models like this illustrate to the new and even to the old SINDA/FLUINT user, features of the program that are not so obvious or known, and that are extremely handy when trying to take advantage of both, the automation of the DATA headers and make surgical modifications to specific parameters of the thermal or fluid elements in the OPERATIONS portion of the model.
An integrated modeling approach to predict flooding on urban basin.
Dey, Ashis Kumar; Kamioka, Seiji
2007-01-01
Correct prediction of flood extents in urban catchments has become a challenging issue. The traditional urban drainage models that consider only the sewerage-network are able to simulate the drainage system correctly until there is no overflow from the network inlet or manhole. When such overflows exist due to insufficient drainage capacity of downstream pipes or channels, it becomes difficult to reproduce the actual flood extents using these traditional one-phase simulation techniques. On the other hand, the traditional 2D models that simulate the surface flooding resulting from rainfall and/or levee break do not consider the sewerage network. As a result, the correct flooding situation is rarely addressed from those available traditional 1D and 2D models. This paper presents an integrated model that simultaneously simulates the sewerage network, river network and 2D mesh network to get correct flood extents. The model has been successfully applied into the Tenpaku basin (Nagoya, Japan), which experienced severe flooding with a maximum flood depth more than 1.5 m on September 11, 2000 when heavy rainfall, 580 mm in 28 hrs (return period > 100 yr), occurred over the catchments. Close agreements between the simulated flood depths and observed data ensure that the present integrated modeling approach is able to reproduce the urban flooding situation accurately, which rarely can be obtained through the traditional 1D and 2D modeling approaches.
Dual Arm Work Package performance estimates and telerobot task network simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Blair, L.M.
1997-02-01
This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less
All-in-one model for designing optimal water distribution pipe networks
NASA Astrophysics Data System (ADS)
Aklog, Dagnachew; Hosoi, Yoshihiko
2017-05-01
This paper discusses the development of an easy-to-use, all-in-one model for designing optimal water distribution networks. The model combines different optimization techniques into a single package in which a user can easily choose what optimizer to use and compare the results of different optimizers to gain confidence in the performances of the models. At present, three optimization techniques are included in the model: linear programming (LP), genetic algorithm (GA) and a heuristic one-by-one reduction method (OBORM) that was previously developed by the authors. The optimizers were tested on a number of benchmark problems and performed very well in terms of finding optimal or near-optimal solutions with a reasonable computation effort. The results indicate that the model effectively addresses the issues of complexity and limited performance trust associated with previous models and can thus be used for practical purposes.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Martin, J. J.; Bragg-Sitton, S. M.; Reid, R. S.; Stewart, E. T.; Davis, J. D.
2011-01-01
A series of 16 Mo-44.5%Re alloy/sodium heat pipes will be experimentally tested to examine heat pipe aging. To support this evaluation, an environmental test chamber and a number of auxiliary subsystems are required. These subsystems include radio frequency (RF) power supplies/inductive coils, recirculation water coolant loops, and chamber gas conditioning. The heat pipes will be grouped, based on like power and gas mixture requirements, into three clusters of five units each, configured in a pentagonal arrangement. The highest powered heat pipe will be tested separately. Test chamber atmospheric purity is targeted at <0.3 ppb oxygen at an approximate operating pressure of 76 torr (.1.5 psia), maintained by active purification (oxygen level is comparable to a 10(exp -6) torr environment). Treated water will be used in two independent cooling circuits to remove .85 kW. One circuit will service the RF hardware while the other will maintain the heat pipe calorimetry. Initial procedures for the startup and operation of support systems have been identified. Each of these subsystems is outfitted with a variety of instrumentation, integrated with distributed real-time controllers and computers. A local area network provides communication between all devices. This data and control network continuously monitors the health of the test hardware, providing warning indicators followed by automatic shutdown should potentially damaging conditions develop. During hardware construction, a number of checkout tests.many making use of stainless steel prototype heat pipes that are already fabricated.will be required to verify operation.
Study on hydraulic characteristics of mine dust-proof water supply network
NASA Astrophysics Data System (ADS)
Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi
2018-01-01
In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.
Multimedia Networks: Mission Impossible?
ERIC Educational Resources Information Center
Weiss, Andrew M.
1996-01-01
Running multimedia on a network, often difficult because of the memory and processing power required, is becoming easier thanks to new protocols and products. Those developing network design criteria may wish to consider making use of Fast Ethernet, Asynchronous Transfer Method (ATM), switches, "fat pipes", additional network…
Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio
2009-01-01
Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate. EPR allowed identifying the relation between attitude to block and pipe's attributes in order to understand what affects the possibility to have a blockage in the pipe. EPR provides formulae to compute the accumulated number of blockages for a pipe class at the end of a given period of time. Those formulae do not represent simply regression models but highlight those variables which affect the physical phenomenon in question.
GPM Avionics Module Heat Pipes Design and Performance Test Results
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; DeChristopher, Mike
2011-01-01
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating temperatures of the electronics boxes.
Dynamic least-cost optimisation of wastewater system remedial works requirements.
Vojinovic, Z; Solomatine, D; Price, R K
2006-01-01
In recent years, there has been increasing concern for wastewater system failure and identification of optimal set of remedial works requirements. So far, several methodologies have been developed and applied in asset management activities by various water companies worldwide, but often with limited success. In order to fill the gap, there are several research projects that have been undertaken in exploring various algorithms to optimise remedial works requirements, but mostly for drinking water supply systems, and very limited work has been carried out for the wastewater assets. Some of the major deficiencies of commonly used methods can be found in either one or more of the following aspects: inadequate representation of systems complexity, incorporation of a dynamic model into the decision-making loop, the choice of an appropriate optimisation technique and experience in applying that technique. This paper is oriented towards resolving these issues and discusses a new approach for the optimisation of wastewater systems remedial works requirements. It is proposed that the optimal problem search is performed by a global optimisation tool (with various random search algorithms) and the system performance is simulated by the hydrodynamic pipe network model. The work on assembling all required elements and the development of an appropriate interface protocols between the two tools, aimed to decode the potential remedial solutions into the pipe network model and to calculate the corresponding scenario costs, is currently underway.
Refined pipe theory for mechanistic modeling of wood development.
Deckmyn, Gaby; Evans, Sam P; Randle, Tim J
2006-06-01
We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).
Thermal Interface Comparisons Under Flight Like Conditions
NASA Technical Reports Server (NTRS)
Rodriquez-Ruiz, Juan
2008-01-01
Thermal interface materials are used in bolted interfaces to promote good thermal conduction between the two. The mounting surface can include panels, heat pipes, electronics boxes, etc.. . On Lunar Reconnaissance Orbiter (LRO) project the results are directly applicable: a) Several high power avionics boxes b) Several interfaces from RWA to radiator through heat pipe network
Identifying and quantifying urban recharge: a review
NASA Astrophysics Data System (ADS)
Lerner, David N.
2002-02-01
The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.
NASA Astrophysics Data System (ADS)
Santos, Vinicius Rafael N.; Teixeira, Fernando L.
2017-04-01
Ground penetrating radar (GPR) is a useful sensing modality for mapping and identification of underground infrastructure networks, such as metal and concrete pipes (gas, water or sewer), phone conduits or cables, and other buried objects. Due to the polarization-dependent response of typical targets, it is of interest to investigate the optimum antenna arrangement and/or combination of arrangements that maximize the detection and classification capabilities of polarimetric GPR imaging systems. Here, we provide a preliminary study of time-reversal-based techniques applied to target detection by GPR utilizing different relative orientations of linear-polarized antenna elements (with respect to each other, as well as to the targets). We modeled three different pipe materials (metallic, plastic and concrete) and GPR systems operating at center frequencies of 100 MHz and 200 MHz. Full-wave numerical simulations are adopted to account for mutual coupling between targets. This type of assessment study may contribute to the improvement of GPR data interpretation of infrastructure networks in urban area surveys and in other engineering studies.
Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005
Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.
2007-01-01
This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by modifying horizontal conductances assembled by the Block-Centered Flow (BCF), Layer-Property Flow (LPF), or Hydrogeologic-Unit Flow Packages (HUF) of MODFLOW-2005. For both conduit flow pipes (CFPM1) and preferential flow layers (CFPM2), critical Reynolds numbers are used to determine if flow is laminar or turbulent. Due to conservation of momentum, flow in a laminar state tends to remain laminar and flow in a turbulent state tends to remain turbulent. This delayed transition between laminar and turbulent flow is introduced in the CFP, which provides an additional benefit of facilitating convergence of the computer algorithm during iterations of transient simulations. Specifically, the user can specify a higher critical Reynolds number to determine when laminar flow within a pipe converts to turbulent flow, and a lower critical Reynolds number for determining when a pipe with turbulent flow switches to laminar flow. With CFPM1, the Hagen-Poiseuille equation is used for laminar flow conditions and the Darcy-Weisbach equation is applied to turbulent flow conditions. With CFPM2, turbulent flow is approximated by reducing the laminar hydraulic conductivity by a nonlinear function of the Reynolds number, once the critical head difference is exceeded. This adjustment approximates the reductions in mean velocity under turbulent ground-water flow conditions.
Integration of sewer system maps in topographically based sub-basin delineation in suburban areas
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Branger, Flora; Braud, Isabelle; Rodriguez, Fabrice
2010-05-01
Due to the increase of urbanization, suburban areas experience a fast change in land use. The impact of such modifications on the watershed hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the possibility to take into account land use change, and more particularly to consider urbanized areas and anthropogenic features such as roads or ditches and their impact on the hydrological cycle. A detailed definition of the hydrographical drainage network and a corresponding delineation of sub-basins is therefore necessary as input to distributed models. Sub-basins in natural catchments are usually delineated using standard GIS based terrain analysis. The drainage network in urbanised watersheds is often modified, due to sewer systems, ditches, retention basins, etc.. Therefore, its delineation is not only determined by topography. The simple application of terrain analysis algorithms to delineate sub-basins in suburban areas can consequently lead to erroneous sub-basin borders. This study presents an improved approach for sub-basin delineation in suburban areas. It applies to small catchments connected to a sewage plant, located outside the catchment boundary. The approach assumes that subsurface flow follows topography. The method requires a digital elevation model (DEM), maps of land use, cadastre, sewer system and the location of measurement stations and retention basins. Firstly, the topographic catchment border must be defined for the concerning flow measurement station. Standard GIS based algorithms, like the d8-flow direction algorithm (O'Callaghan and Mark, 1984) can be applied using a high resolution DEM. Secondly, the artificial catchment outlets have to be determined. Each catchment has one natural outlet - the measurement station on the river- but it can have several artificial outlets towards a sewage station. Once the outlets are determined, a first approximation of the "theoretical maximal contributing area" can be made. It encompasses the whole connected sewer system and the topographic catchment boundary. The area of interest is therefore defined. The next step is the determination of the extended drainage network, consisting of the natural river, ditches, combined and separated sewer systems and retention basins. This requires a detailed analysis of sewer system data, field work (mapping of ditches and inlets into the natural river). Contacts with local authorities are also required to keep up-to-date about recent changes. Pure wastewater and drinking water pipes are not integrated in the drainage network. In order to have a unique drainage network for the model, choices might have to be made in case of several coexisting drainage pipes. The urban sub-basins are then delineated with the help of a cadastral map (Rodriguez et al., 2003) or an aerial photography. Each cadastral unit is connected to the closest drainage pipe, following the principle of proximity and gravity. The assembly of all cadastral units connected to one network reach represents one urban sub-basin. The sub-basins in the rural part are calculated using the d8 flow direction and watershed delineation algorithm with "stream burning" (Hutchinson, 1989). One sub-basin is delineated for each reach of the extended drainage network. Some manual corrections of the calculated sub-basins are necessary. Finally, the urban and rural sub-basins are merged by subtraction of the urban area from the rural area and subsequent union of both maps. This method was applied to the Chaudanne catchment, a sub-basin of the Yzeron catchment (ca. 4 km2) in the suburban region of Lyon city, France. The method leads to a 30 % extended catchment area, as compared to the topographic catchment area. For each river inlet the sub-basin area could be determined, as well as for each retention basin. This information can be directly used for the dimensioning of retention basins, pipe diameters, etc.
Replacement predictions for drinking water networks through historical data.
Malm, Annika; Ljunggren, Olle; Bergstedt, Olof; Pettersson, Thomas J R; Morrison, Gregory M
2012-05-01
Lifetime distribution functions and current network age data can be combined to provide an assessment of the future replacement needs for drinking water distribution networks. Reliable lifetime predictions are limited by a lack of understanding of deterioration processes for different pipe materials under varied conditions. An alternative approach is the use of real historical data for replacement over an extended time series. In this paper, future replacement needs are predicted through historical data representing more than one hundred years of drinking water pipe replacement in Gothenburg, Sweden. The verified data fits well with commonly used lifetime distribution curves. Predictions for the future are discussed in the context of path dependence theory. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reliability of a Parallel Pipe Network
NASA Technical Reports Server (NTRS)
Herrera, Edgar; Chamis, Christopher (Technical Monitor)
2001-01-01
The goal of this NASA-funded research is to advance research and education objectives in theoretical and computational probabilistic structural analysis, reliability, and life prediction methods for improved aerospace and aircraft propulsion system components. Reliability methods are used to quantify response uncertainties due to inherent uncertainties in design variables. In this report, several reliability methods are applied to a parallel pipe network. The observed responses are the head delivered by a main pump and the head values of two parallel lines at certain flow rates. The probability that the flow rates in the lines will be less than their specified minimums will be discussed.
Development of an optical fiber flow velocity sensor.
Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki
2009-01-01
A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.
Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N
2014-02-15
Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting <6 μg AsL(-1) in finished water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (p<0.001) increased dissolved and total As concentrations to levels up to 16 and 95 μg L(-1), respectively. Similar treatments in the presence of biofilm (SBC) resulted in significant (p<0.001) increase in dissolved and total recoverable As up to 20 and 47 μg L(-1), respectively, exceeding the regulatory As limit. Whether or not, our laboratory-based results truly represent mechanisms operating in disinfected finished water in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.
Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...
Characterisation of Network Objects in Natural and Anthropic Environments
NASA Astrophysics Data System (ADS)
Harris, B.; McDougall, K.; Barry, M.
2014-11-01
Networks are structures that organise component objects, and they are extensive and recognisable across a range of environments. Estimating lengths of networks objects and their relationships to areas contiguous to them could assist provide owners with additional knowledge of their assets. There is currently some understanding of the way in which networks (such as waterways) relate and respond to their natural and anthropogenic environments. Despite this knowledge, there is no straight forward formula, method or model that can be applied to assess these relationships to a sufficient level of detail. Whilst waterway networks and their structures are well understood from the work of Horton and Strahler, relatively little attention has been paid to how (or if) these properties and behaviours can inform the understanding of other, unrelated, networks. Analysis of existing natural and built network objects exhibited how relationships derived from waterway networks can be applied in new areas of interest. We create a predictive approach to associate dissimilar objects such as pipe networks to assess if using the model established for waterway networks and their relationships can be functional in other areas. Using diversity of inputs we create data to assist with the creation of a predictive model. This work provides a clean theoretical connection between a formula applied to evaluate waterways and their environments, and other natural and anthropogenic network objects. It fills a key knowledge gap in the assessment and application of approaches used to measure natural and built networks.
FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Noh, Y. H.; Um, J. G.; Choi, Y.
2014-12-01
A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
Heat pipe life and processing study
NASA Technical Reports Server (NTRS)
Antoniuk, D.; Luedke, E. E.
1979-01-01
The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.
Development of a new software for analyzing 3-D fracture network
NASA Astrophysics Data System (ADS)
Um, Jeong-Gi; Noh, Young-Hwan; Choi, Yosoon
2014-05-01
A new software is presented to analyze fracture network in 3-D. Recently, we completed the software package based on information given in EGU2013. The software consists of several modules that play roles in management of borehole data, stochastic modelling of fracture network, construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes and production of cross-section diagrams. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. A case study was performed to analyze 3-D fracture network system at the Upper Devonian Grosmont Formation in Alberta, Canada. The results have suggested that the developed software is effective in modelling and visualizing 3-D fracture network system, and can provide useful information to tackle the geomechanical problems related to strength, deformability and hydraulic behaviours of the fractured rock masses. This presentation describes the concept and details of the development and implementation of the software.
Water supply pipe dimensioning using hydraulic power dissipation
NASA Astrophysics Data System (ADS)
Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.
2017-07-01
Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.
Solution of weakly compressible isothermal flow in landfill gas collection networks
NASA Astrophysics Data System (ADS)
Nec, Y.; Huculak, G.
2017-12-01
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
Study of a risk-based piping inspection guideline system.
Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung
2007-02-01
A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y.J.; Sohn, G.H.; Kim, Y.J.
Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to accountmore » for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.« less
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.
Smart pipeline network : pipe and repair sensor system.
DOT National Transportation Integrated Search
2013-07-26
Leak detection within the national pipeline network has long been recognized as a much-needed : capability to reduce the loss of high value product, improve public safety, and to reduce the : emissions of environmentally damaging substances. : In rec...
A poroelastic model coupled to a fluid network with applications in lung modelling.
Berger, Lorenz; Bordas, Rafel; Burrowes, Kelly; Grau, Vicente; Tavener, Simon; Kay, David
2016-01-01
We develop a lung ventilation model based on a continuum poroelastic representation of lung parenchyma that is strongly coupled to a pipe network representation of the airway tree. The continuous system of equations is discretized using a low-order stabilised finite element method. The framework is applied to a realistic lung anatomical model derived from computed tomography data and an artificially generated airway tree to model the conducting airway region. Numerical simulations produce physiologically realistic solutions and demonstrate the effect of airway constriction and reduced tissue elasticity on ventilation, tissue stress and alveolar pressure distribution. The key advantage of the model is the ability to provide insight into the mutual dependence between ventilation and deformation. This is essential when studying lung diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis. Thus the model can be used to form a better understanding of integrated lung mechanics in both the healthy and diseased states. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Giménez, Rafael Barrionuevo
2016-06-01
TSM is escape pipe in case of collapse of terrain. The TSM is a passive security tool placed underground to connect the work area with secure area (mining gallery mainly). TSM is light and hand able pipe made with aramid (Kevlar), carbon fibre, or other kind of new material. The TSM will be placed as a pipe line network with many in/out entrances/exits to rich and connect problem work areas with another parts in a safe mode. Different levels of instrumentation could be added inside such as micro-led escape way suggested, temperature, humidity, level of oxygen, etc.). The open hardware and software like Arduino will be the heart of control and automation system.
NASA Astrophysics Data System (ADS)
Hall, Michael L.; Doster, J. Michael
1990-03-01
The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.
Chung, W S; Yu, M J; Lee, H D
2004-01-01
The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
Sto Domingo, N D; Refsgaard, A; Mark, O; Paludan, B
2010-01-01
The potential devastating effects of urban flooding have given high importance to thorough understanding and management of water movement within catchments, and computer modelling tools have found widespread use for this purpose. The state-of-the-art in urban flood modelling is the use of a coupled 1D pipe and 2D overland flow model to simultaneously represent pipe and surface flows. This method has been found to be accurate for highly paved areas, but inappropriate when land hydrology is important. The objectives of this study are to introduce a new urban flood modelling procedure that is able to reflect system interactions with hydrology, verify that the new procedure operates well, and underline the importance of considering the complete water cycle in urban flood analysis. A physically-based and distributed hydrological model was linked to a drainage network model for urban flood analysis, and the essential components and concepts used were described in this study. The procedure was then applied to a catchment previously modelled with the traditional 1D-2D procedure to determine if the new method performs similarly well. Then, results from applying the new method in a mixed-urban area were analyzed to determine how important hydrologic contributions are to flooding in the area.
Preparation and testing of nickel-based superalloy/sodium heat pipes
NASA Astrophysics Data System (ADS)
Lu, Qin; Han, Haitao; Hu, Longfei; Chen, Siyuan; Yu, Jijun; Ai, Bangcheng
2017-11-01
In this work, a kind of uni-piece nickel-based superalloy/sodium heat pipe is proposed. Five models of high temperature heat pipe were prepared using GH3044 and GH4099 nickel-based superalloys. And their startup performance and ablation resistance were investigated by quartz lamp calorifier radiation and wind tunnel tests, respectively. It is found that the amount of charging sodium affects the startup performance of heat pipes apparently. No startup phenomenon was found for insufficient sodium charged model. In contrast, the models charged with sufficient sodium startup successfully, displaying a uniform temperature distribution. During wind tunnel test, the corresponding models experienced a shorter startup time than that during quartz lamp heating. GH4099/sodium heat pipe shows excellent ablation resistance, being better than that of GH3044/sodium heat pipe. Therefore, it is proposed that this kind of heat pipe has a potential application in thermal protection system of hypersonic cruise vehicles.
Plant-mimetic Heat Pipes for Operation with Large Inertial and Gravitational Stresses
2015-08-07
Pipes (SHLHP), we developed a set of mathematical models and experimental approaches. Our models provide design rules for heat transfer systems that could...number of fronts: 1) Design concepts and modeling tools: We have proposed a new design for loop heat pipes that operates with superheated liquid...and completed a mathematical model of steady state operation of such superheated loop heat pipes (SHLHP). We have also developed a transport theories
Savage, V. M.; Bentley, L. P.; Enquist, B. J.; Sperry, J. S.; Smith, D. D.; Reich, P. B.; von Allmen, E. I.
2010-01-01
Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species. PMID:21149696
Savage, V M; Bentley, L P; Enquist, B J; Sperry, J S; Smith, D D; Reich, P B; von Allmen, E I
2010-12-28
Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species.
Recent evaluations of crack-opening-area in circumferentially cracked pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, S.; Brust, F.; Ghadiali, N.
1997-04-01
Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessingmore » temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.« less
NASA Astrophysics Data System (ADS)
Vuilleumier, C.; Borghi, A.; Renard, P.; Ottowitz, D.; Schiller, A.; Supper, R.; Cornaton, F.
2013-05-01
The eastern coast of the Yucatan Peninsula, Mexico, contains one of the most developed karst systems in the world. This natural wonder is undergoing increasing pollution threat due to rapid economic development in the region of Tulum, together with a lack of wastewater treatment facilities. A preliminary numerical model has been developed to assess the vulnerability of the resource. Maps of explored caves have been completed using data from two airborne geophysical campaigns. These electromagnetic measurements allow for the mapping of unexplored karstic conduits. The completion of the network map is achieved through a stochastic pseudo-genetic karst simulator, previously developed but adapted as part of this study to account for the geophysical data. Together with the cave mapping by speleologists, the simulated networks are integrated into the finite-element flow-model mesh as pipe networks where turbulent flow is modeled. The calibration of the karstic network parameters (density, radius of the conduits) is conducted through a comparison with measured piezometric levels. Although the proposed model shows great uncertainty, it reproduces realistically the heterogeneous flow of the aquifer. Simulated velocities in conduits are greater than 1 cm s-1, suggesting that the reinjection of Tulum wastewater constitutes a pollution risk for the nearby ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.
Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less
Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters
NASA Astrophysics Data System (ADS)
Chaudhary, Kuldeep; Cardenas, M. Bayani; Deng, Wen; Bennett, Philip C.
2013-02-01
In this article, the effects of different diverging-converging pore geometries were investigated, and the microscale fluid flow and effective hydraulic properties from these pores were compared with that of a pipe from viscous to inertial laminar flow regimes. The flow fields are obtained using computational fluid dynamics, and the comparative analysis is based on a new dimensionless hydraulic shape factor β, which is the "specific surface" scaled by the length of pores. Results from all diverging-converging pores show an inverse pattern in velocity and vorticity distributions relative to the pipe flow. The hydraulic conductivity K of all pores is dependent on and can be predicted from β with a power function with an exponent of 3/2. The differences in K are due to the differences in distribution of local friction drag on the pore walls. At Reynolds number (Re) ˜ 0 flows, viscous eddies are found to exist almost in all pores in different sizes, but not in the pipe. Eddies grow when Re → 1 and leads to the failure of Darcy's law. During non-Darcy or Forchheimer flows, the apparent hydraulic conductivity Ka decreases due to the growth of eddies, which constricts the bulk flow region. At Re > 1, the rate of decrease in Ka increases, and at Re >> 1, it decreases to where the change in Ka ≈ 0, and flows once again exhibits a Darcy-type relationship. The degree of nonlinearity during non-Darcy flow decreases for pores with increasing β. The nonlinear flow behavior becomes weaker as β increases to its maximum value in the pipe, which shows no nonlinearity in the flow; in essence, Darcy's law stays valid in the pipe at all laminar flow conditions. The diverging-converging geometry in pores plays a critical role in modifying the intrapore fluid flow, implying that this property should be incorporated in effective larger-scale models, e.g., pore-network models.
Data center networks and network architecture
NASA Astrophysics Data System (ADS)
Esaki, Hiroshi
2014-02-01
This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).
Application of heat pipe technology in permanent mold casting of nonferrous alloys
NASA Astrophysics Data System (ADS)
Elalem, Kaled
The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The results show a promising future for heat pipe technology in cooling permanent molds for the casting of nonferrous alloys.
Research on the ITOC based scheduling system for ship piping production
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro
2010-12-01
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
Time Reversal Method for Pipe Inspection with Guided Wave
NASA Astrophysics Data System (ADS)
Deng, Fei; He, Cunfu; Wu, Bin
2008-02-01
The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.
NASA Astrophysics Data System (ADS)
Maddah, Heydar; Ghasemi, Nahid
2017-12-01
In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.
THE EPANET PROGRAMMER'S TOOLKIT FOR ANALYSIS OF WATER DISTRIBUTION SYSTEMS
The EPANET Programmer's Toolkit is a collection of functions that helps simplify computer programming of water distribution network analyses. the functions can be used to read in a pipe network description file, modify selected component properties, run multiple hydraulic and wa...
NASA Astrophysics Data System (ADS)
1981-01-01
The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.
Assessing the efficiency of different CSO positions based on network graph characteristics.
Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W
2013-01-01
The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.
High-performance heat pipes for heat recovery applications
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hartl, J. H.
1980-01-01
Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.
NASA Astrophysics Data System (ADS)
Amanowicz, Łukasz; Wojtkowiak, Janusz
2017-11-01
In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.
NASA Astrophysics Data System (ADS)
Dawson, Phillip B.; Chouet, Bernard A.; Power, John
2011-02-01
Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.
Neural network computer simulation of medical aerosols.
Richardson, C J; Barlow, D J
1996-06-01
Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.
Operator splitting method for simulation of dynamic flows in natural gas pipeline networks
Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...
2017-09-19
Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less
The locating ways of laying pipe manipulator
NASA Astrophysics Data System (ADS)
Wang, Dan; Li, Bin; Lei, DongLiang
2010-01-01
The laying pipe manipulator is a new equipment to lay concrete pipe. This kind of manipulator makes the work of laying pipes mechanized and automated. We report here a new laying pipe manipulator. The manipulator has 5 free degrees, and is driven by the hydraulic system. In the paper, one critical question of manipulator is studied: the locating ways of the manipulator to lay concrete pipe. During the process of laying concrete pipe, how to locate the manipulator is realized by the locating system of manipulator. The locating system consists of photoelectric target, laser producer, and computer. According to different construction condition, one or two or three photoelectric targets can be used. During the process of laying concrete pipe, if the interface of pipes are jointed together, and the other segment of pipe deviates from the pipe way, one target can be used, if the angle that the manipulator rotates around the holding pipe's axes is 0°, two targets can be used, three targets can be used at any site. In the paper, according to each locating way, the theory analysis is done. And the mathematical models of the manipulator moving from original position to goal position are obtained by different locating way. And the locating experiment was done. According to the experiment result, the work principle and mathematical models of different locating way was turned out to be well adopted for requirement, the mathematical model of different locating way supplies the basic control theory for the manipulator to lay and joint concrete pipe automatically.
Automatic Target Recognition Using Nonlinear Autoregressive Neural Networks
2014-03-27
Lee and Chang (2009) employed a NARXNet for studying the thermodynamics in a pulsating heat pipe (PHP), a type of cooling device which contains...in Thermal Dynamics Identifcation of a Pulsating Heat Pipe . Energy Consversion and Management, 1069-1078. Lisboa, P. J. (2002). A review of...function by adjusting the values of the connections between elements. This flexibility allows ANNs to perform complex functions in fields to include
A software framework for assessing the resilience of drinking ...
Journal article This paper introduces a new software tool called the Water Network Tool for Resilience (WNTR) that water utilities can use to assess their resilience to disasters. A case study of an earthquake is included that results in damage to pipes and tanks, fires, and power outages. The utility uses several response strategies including fixing damaged pipes and tanks, restoring power, fighting fires, and implementing conservation.
Quasi-2D Unsteady Flow Procedure for Real Fluids
2006-05-17
Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the Churchill correlation7 was used to determine single...methods is discussed to aid in selection for specific applications. Results for the transient flows of gaseous nitrogen and water in a simple pipe ...gaseous nitrogen and water in a simple pipe network are presented to demonstrate the capability of the current techniques and the unsteady flow
Mathematical model of polyethylene pipe bending stress state
NASA Astrophysics Data System (ADS)
Serebrennikov, Anatoly; Serebrennikov, Daniil
2018-03-01
Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.
Chill Down Process of Hydrogen Transport Pipelines
NASA Technical Reports Server (NTRS)
Mei, Renwei; Klausner, James
2006-01-01
A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Split and sealing of dislocated pipes at the front of a growing crystal
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Sheinerman, A. G.
2004-07-01
A model is suggested for the split of dislocated pipes at the front a growing crystal. Within the model, the pipe split occurs through the generation of a dislocation semi-loop at the pipe and crystal surfaces and its subsequent expansion into the crystal interior. The strain energy of such a dislocation semi-loop as well as the stress field of a dislocated pipe perpendicular to a flat crystal surface are calculated. The parameter regions are determined at which the expansion of the dislocation semi-loop is energetically favorable and, thus, the pipe split becomes irreversible. A mechanism is proposed for the formation of a stable semi-loop resulting in the split and possible subsequent overgrowth of the dislocated pipe.
Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sanzi, James L.; Jaworske, Donald A.
2012-01-01
Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, Gene T.
1989-01-01
Mathematical models and an associated computer program for heat pipe startup from the frozen state have been developed. Finite element formulations of the governing equations are written for each heat pipe region for each operating condition during startup from the frozen state. The various models were checked against analytical and experimental data available in the literature for three specific types of operation. Computations using the methods developed were made for a space shuttle reentry mission where a heat pipe cooled leading edge was used on the wing.
Modeling of High Capacity Passive Cooling System
2009-03-01
Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat
Consistent maximum entropy representations of pipe flow networks
NASA Astrophysics Data System (ADS)
Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael
2017-06-01
The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.
NASA Technical Reports Server (NTRS)
Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.
1988-01-01
The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.
NASA Astrophysics Data System (ADS)
Liu, Feifei; Lan, Fengchong; Chen, Jiqing
2016-07-01
Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.
Finite elements analysis of an underground collector installed by pipe-jacking method
NASA Astrophysics Data System (ADS)
María Díaz-Díaz, Luis; Omer, Joshua; Arias, Daniel; Pando, Luis
2016-04-01
This study presents a useful analysis method for estimating simultaneously the stability, stress distribution and groundwater seepage as micro - tunnel is being advanced into the ground. The research is mainly concerned with the results of a case study conducted on a project to create a long industrial collector of effluent network in the east bank of the river Avilés (north coast of Spain). This coastal city has significant port and industrial installations in its environs. The geology of the location comprises Quaternary deposits on both flanks of the estuary and includes different highly variable geotechnical behavior. The industrial effluent network, constructed in the year 2010, has a length of 13.087 km and consists of 1.5 m diameter pipes, reaching a maximum depth of 5.8 m below the surface. Only the first 7.0 km of the collector (south area) were formed using pipe-jacking method whilst the rest were formed in open excavations or surface laid. Using the commercial software RS2, a 2D finite element program for soil and rock application, the ground response to pipe jacking in pipeline installation in Avilés was analyzed. Both axi-symmetric and plane strain analyses were carried out in RS2 to simulate in 3D the ground response to pipe advancement. The results demonstrate how much of deformation there is at ground surface in the immediate vicinity of the pipeline. The main objective is to show the possible patterns of ground subsidence and tunnel stresses to inform designers as to whether the tunnel will be stable and safe.
NASA Technical Reports Server (NTRS)
Evans, Austin Lewis
1988-01-01
The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.
NASA Technical Reports Server (NTRS)
Ernst, D. M.
1981-01-01
The critical evaluation and subsequent redesign of the power conversion subsystem of the spacecraft are covered. As part of that evaluation and redesign, prototype heat pipe components for the heat rejection system were designed fabricated and tested. Based on the results of these tests in conjunction with changing mission requirements and changing energy conversion devices, new system designs were investigated. The initial evaluation and redesign was based on state-of-the-art fabrication and assembly techniques for high temperature liquid metal heat pipes and energy conversion devices. The hardware evaluation demonstrated the validity of several complicated heat pipe geometries and wick structures, including an annular-to-circular transition, bends in the heat pipe, long heat pipe condensers and arterial wicks. Additionally, a heat pipe computer model was developed which describes the end point temperature profile of long radiator heat pipes to within several degrees celsius.
Maccarini, Alessandro; Wetter, Michael; Afshari, Alireza; ...
2016-10-31
This paper analyzes the performance of a novel two-pipe system that operates one water loop to simultaneously provide space heating and cooling with a water supply temperature of around 22 °C. To analyze the energy performance of the system, a simulation-based research was conducted. The two-pipe system was modelled using the equation-based Modelica modeling language in Dymola. A typical office building model was considered as the case study. Simulations were run for two construction sets of the building envelope and two conditions related to inter-zone air flows. To calculate energy savings, a conventional four-pipe system was modelled and used formore » comparison. The conventional system presented two separated water loops for heating and cooling with supply temperatures of 45 °C and 14 °C, respectively. Simulation results showed that the two-pipe system was able to use less energy than the four-pipe system thanks to three effects: useful heat transfer from warm to cold zones, higher free cooling potential and higher efficiency of the heat pump. In particular, the two-pipe system used approximately between 12% and 18% less total annual primary energy than the four-pipe system, depending on the simulation case considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maccarini, Alessandro; Wetter, Michael; Afshari, Alireza
This paper analyzes the performance of a novel two-pipe system that operates one water loop to simultaneously provide space heating and cooling with a water supply temperature of around 22 °C. To analyze the energy performance of the system, a simulation-based research was conducted. The two-pipe system was modelled using the equation-based Modelica modeling language in Dymola. A typical office building model was considered as the case study. Simulations were run for two construction sets of the building envelope and two conditions related to inter-zone air flows. To calculate energy savings, a conventional four-pipe system was modelled and used formore » comparison. The conventional system presented two separated water loops for heating and cooling with supply temperatures of 45 °C and 14 °C, respectively. Simulation results showed that the two-pipe system was able to use less energy than the four-pipe system thanks to three effects: useful heat transfer from warm to cold zones, higher free cooling potential and higher efficiency of the heat pump. In particular, the two-pipe system used approximately between 12% and 18% less total annual primary energy than the four-pipe system, depending on the simulation case considered.« less
Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling
NASA Astrophysics Data System (ADS)
Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei
2018-05-01
In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.
Stochastic simulation of karst conduit networks
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José
2012-01-01
Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when implemented in a hydraulic inverse modeling procedure. Several synthetic examples are given to illustrate the methodology and real conduit network data are used to generate simulated networks that mimic real geometries and topology.
Transient Simulation of Accumulating Particle Deposition in Pipe Flow
NASA Astrophysics Data System (ADS)
Hewett, James; Sellier, Mathieu
2015-11-01
Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).
Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.
Transient thermohydraulic heat pipe modeling
NASA Astrophysics Data System (ADS)
Hall, Michael L.; Doster, Joseph M.
Many space based reactor designs employ heat pipes as a means of conveying heat. In these designs, thermal radiation is the principle means for rejecting waste heat from the reactor system, making it desirable to operate at high temperatures. Lithium is generally the working fluid of choice as it undergoes a liquid-vapor transformation at the preferred operating temperature. The nature of remote startup, restart, and reaction to threats necessitates an accurate, detailed transient model of the heat pipe operation. A model is outlined of the vapor core region of the heat pipe which is part of a large model of the entire heat pipe thermal response. The vapor core is modeled using the area averaged Navier-Stokes equations in one dimension, which take into account the effects of mass, energy and momentum transfer. The core model is single phase (gaseous), but contains two components: lithium gas and a noncondensible vapor. The vapor core model consists of the continuity equations for the mixture and noncondensible, as well as mixture equations for internal energy and momentum.
1978-08-01
21- accepts piping geometry as one of its basic inputs; whether this geometry comes from arrangement drawings or models is of no real consequence. c ... computer . Geometric data is taken from the catalogue and automatically merged with the piping geometry data. Also, fitting orientation is automatically...systems require a number of data manipulation routines to convert raw digitized data into logical pipe geometry acceptable to a computer -aided piping design
Physical Model Study of Flowerpot Discharge Outlet, Western Closure Complex, New Orleans, Louisiana
2013-05-01
FPDO ........................................................................................ 12 3 Flowerpot Model with Straight Pipe Immediately...used at downstream end of 90-degree elbow. .................... 23 Figure 18. 1:20.377-scale preliminary FPDO model showing 7-ft-long PVC pipe ...27 Figure 23. 1:20.377-scale preliminary model with 1.3 in. lip. The black material at base of pipe was a sealant used to
Automatic welding detection by an intelligent tool pipe inspection
NASA Astrophysics Data System (ADS)
Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.
2015-07-01
This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
NASA Astrophysics Data System (ADS)
Lim, Theodore C.; Welty, Claire
2017-09-01
Green infrastructure (GI) is an approach to stormwater management that promotes natural processes of infiltration and evapotranspiration, reducing surface runoff to conventional stormwater drainage infrastructure. As more urban areas incorporate GI into their stormwater management plans, greater understanding is needed on the effects of spatial configuration of GI networks on hydrological performance, especially in the context of potential subsurface and lateral interactions between distributed facilities. In this research, we apply a three-dimensional, coupled surface-subsurface, land-atmosphere model, ParFlow.CLM, to a residential urban sewershed in Washington DC that was retrofitted with a network of GI installations between 2009 and 2015. The model was used to test nine additional GI and imperviousness spatial network configurations for the site and was compared with monitored pipe-flow data. Results from the simulations show that GI located in higher flow-accumulation areas of the site intercepted more surface runoff, even during wetter and multiday events. However, a comparison of the differences between scenarios and levels of variation and noise in monitored data suggests that the differences would only be detectable between the most and least optimal GI/imperviousness configurations.
CHIPS. Volume 29, Issue 1, January - March 2011
2011-03-01
services, like electricity, heating or cable television. Bank/Finance Fraud: • They may create counterfeit checks using their victim’s name or...consolidating disparate, stove- piped networks into a single, modern, cost-effective enterprise network with a high level of service that meets...Holland, NGEN program manager. “If NMCI is not the most secure network in the world, it is certainly close. There is no shortfall flexibility
Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming
2015-10-01
In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.
Shirai, Atsushi; Fujita, Ryo; Hayase, Toshiyuki
2007-01-01
The concentration of neutrophils in the pulmonary microvasculature is higher than in large systemic vessels. It is thought that the high concentration of neutrophils facilitates their effective recruitment to sites of inflammation. Thus, in order to understand the role of neutrophils in the immune system, it is important to clarify their flow characteristics in the pulmonary microvasculature. In a previous study, we developed a model to simulate the flow of neutrophils in a capillary network, in which the cells were modeled as spheres of a Maxwell material with a cortical tension and the capillary segments were modeled as arc-shaped constrictions in straight pipes. In the present paper, the flow of neutrophils in a simplified alveolar capillary network model is investigated for various constriction shapes and cell stiffnesses. Finally, it is shown that both the coefficient of variation of the transit time of the cells, which is the standard deviation divided by the mean transit time, and the mean transit time increase as the capillary segments become steep or tight, or when the cells become hard. The mean value of the transit time exceeds the median for all of the conditions that occur in real lungs, although the difference between them is small.
A permanently installed guided wave system for pipe monitoring
NASA Astrophysics Data System (ADS)
Galvagni, Andrea; Cawley, Peter
2012-04-01
Ultrasonic guided waves are routinely used to inspect pipes. The advantage of this technique is that it enables a fullyvolumetric screening of several metres of pipe from a single transducer location, resulting in substantial time and cost savings. However, it suffers from limitations such as relatively low damage sensitivity and difficulties in dealing with intricate pipe networks; furthermore, for a pipe that is buried, submerged or high up in a plant, access to even a single point can be prohibitively expensive. The use of permanently attached sensors can overcome these limitations since access needs to be obtained only once during installation and they enable the use of baseline subtraction, so that any reading from a sensor can be compared to previous readings. This paper discusses the advantages of baseline subtraction and the challenge of compensating for signal changes due to effects other than the growth of damage. It is shown that the use of baseline subtraction allows significant damage sensitivity improvements, particularly in the vicinity of large reflectors. Data from four years of field experience is backed up by accelerated laboratory testing.
Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei
2012-04-01
Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).
Gruber, Joshua S.; Colford, John M.
2014-01-01
Background: Water distribution systems are vulnerable to performance deficiencies that can cause (re)contamination of treated water and plausibly lead to increased risk of gastrointestinal illness (GII) in consumers. Objectives: It is well established that large system disruptions in piped water networks can cause GII outbreaks. We hypothesized that routine network problems can also contribute to background levels of waterborne illness and conducted a systematic review and meta-analysis to assess the impact of distribution system deficiencies on endemic GII. Methods: We reviewed published studies that compared direct tap water consumption to consumption of tap water re-treated at the point of use (POU) and studies of specific system deficiencies such as breach of physical or hydraulic pipe integrity and lack of disinfectant residual. Results: In settings with network malfunction, consumers of tap water versus POU-treated water had increased GII [incidence density ratio (IDR) = 1.34; 95% CI: 1.00, 1.79]. The subset of nonblinded studies showed a significant association between GII and tap water versus POU-treated water consumption (IDR = 1.52; 95% CI: 1.05, 2.20), but there was no association based on studies that blinded participants to their POU water treatment status (IDR = 0.98; 95% CI: 0.90, 1.08). Among studies focusing on specific network deficiencies, GII was associated with temporary water outages (relative risk = 3.26; 95% CI: 1.48, 7.19) as well as chronic outages in intermittently operated distribution systems (odds ratio = 1.61; 95% CI: 1.26, 2.07). Conclusions: Tap water consumption is associated with GII in malfunctioning distribution networks. System deficiencies such as water outages also are associated with increased GII, suggesting a potential health risk for consumers served by piped water networks. Citation: Ercumen A, Gruber JS, Colford JM Jr. 2014. Water distribution system deficiencies and gastrointestinal illness: a systematic review and meta-analysis. Environ Health Perspect 122:651–660; http://dx.doi.org/10.1289/ehp.1306912 PMID:24659576
Haghighatafshar, Salar; Nordlöf, Beatrice; Roldin, Maria; Gustafsson, Lars-Göran; la Cour Jansen, Jes; Jönsson, Karin
2018-02-01
Coupled one-dimensional (1D) sewer and two-dimensional (2D) overland flow hydrodynamic models were constructed to evaluate the flood mitigation efficiency of a renowned blue-green stormwater retrofit, i.e. Augustenborg, in Malmö, Sweden. Simulation results showed that the blue-green stormwater systems were effective in controlling local surface flooding in inner-city catchments, having reduced the total flooded surfaces by about 70%. However, basement flooding could still be a potential problem depending on the magnitude of the inflows through combined sewer from upstream areas. Moreover, interactions between blue-green retrofits and the surrounding pipe-system were studied. It was observed that the blue-green retrofits reduced the peak flows by approximately 80% and levelled out the runoff. This is a substantial advantage for downstream pipe-bound catchments, as they do not receive a cloudburst-equivalent runoff from the retrofitted catchment, but a reduced flow corresponding to a much milder rainfall. Blue-green retrofits are more effective if primarily implemented in the upstream areas of a pipe-bound catchment since the resulting reduced runoff and levelled out discharge would benefit the entire network lying downstream. Implementing blue-green retrofits from upstream towards downstream can be considered as a sustainable approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions
Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...
NASA Astrophysics Data System (ADS)
Dokumaci, E.
1995-05-01
The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.
NASA Astrophysics Data System (ADS)
Gao, Yan; Liu, Yuyou; Ma, Yifan; Cheng, Xiaobin; Yang, Jun
2018-11-01
One major challenge currently facing pipeline networks across the world is the improvement of leak detection technologies in urban environments. There is an imperative to locate accurately leaks in buried water pipes to avoid serious environmental, social and economic consequences. Much attention has been paid to time delay estimation (TDE) in determining the position of a leak by utilising cross-correlation, which has been proven to be effective with varying degrees of success over the past half century. Previous research in published literature has demonstrated the effectiveness of the pre-whitening process for accentuating the peak in the cross-correlation associated with the time delay. This paper is concerned with the implementation of the differentiation process for TDE, with particular focus on the problem of determining a leak in pipelines by means of pipe pressure measurements. Rather than the pre-whitening operation, the proposed cross-correlation via the differentiation process, termed here DIF, changes the characteristics of the pipe system so that the pipe effectively acts as a band-pass filter. This method has the potential to eliminate some ambiguity caused by the interference at low frequencies and to allow more high frequency information to pass. Given an appropriate differentiation order, a more pronounced and reliable peak is obtained in the cross-correlation result. The use of differentiation process may provide a viable cross-correlation method suited to water leak detection. Its performance in relation to leak detection is further compared to the basic cross-correlation and pre-whitening methods for TDE in detecting a leak from actual PVC water pipes. Experimental results are presented to show an additional property of the DIF compensating for the resonance effects that may exist in cross-spectral density measurements, and hence better performance for TDE.
Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)
NASA Astrophysics Data System (ADS)
Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.
2015-09-30
experiment was conducted in Broad Sound of Massachusetts Bay using the AUV Unicorn, a 147dB omnidirectional Lubell source, and an open-ended steel pipe... steel pipe target (Figure C) was dropped at an approximate local coordinate position of (x,y)=(170,155). The location was estimated using ship...position when the target was dropped, but was only accurate within 10-15m. The orientation of the target was unknown. Figure C: Open-ended steel
Safety assessment for In-service Pressure Bending Pipe Containing Incomplete Penetration Defects
NASA Astrophysics Data System (ADS)
Wang, M.; Tang, P.; Xia, J. F.; Ling, Z. W.; Cai, G. Y.
2017-12-01
Incomplete penetration defect is a common defect in the welded joint of pressure pipes. While the safety classification of pressure pipe containing incomplete penetration defects, according to periodical inspection regulations in present, is more conservative. For reducing the repair of incomplete penetration defect, a scientific and applicable safety assessment method for pressure pipe is needed. In this paper, the stress analysis model of the pipe system was established for the in-service pressure bending pipe containing incomplete penetration defects. The local finite element model was set up to analyze the stress distribution of defect location and the stress linearization. And then, the applicability of two assessment methods, simplified assessment and U factor assessment method, to the assessment of incomplete penetration defects located at pressure bending pipe were analyzed. The results can provide some technical supports for the safety assessment of complex pipelines in the future.
Development of a jet pump-assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1977-01-01
The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1974-01-01
The effect of noncondensable gases on high-performance arterial heat pipes was investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate, and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, were used to postulate stability criteria for arterial heat pipes under isothermal and non-isothermal condensate flow conditions. A rigorous second-order gas-loaded heat pipe model, incorporating axial conduction and one-dimensional vapor transport, was produced and used for thermal and gas studies. A Freon-22 (CHCIF2) heat pipe was used with helium and xenon to validate modeling. With helium, experimental data compared well with theory. Unusual gas-control effects with xenon were attributed to high solubility.
NASA Astrophysics Data System (ADS)
Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong
2014-07-01
A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-12
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-19
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression
NASA Astrophysics Data System (ADS)
Li, Yong; He, Ting; Zeng, Zhixin
2012-11-01
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 °C for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130 °C. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
Review on water leakage control in distribution networks and the associated environmental benefits.
Xu, Qiang; Liu, Ruiping; Chen, Qiuwen; Li, Ruonan
2014-05-01
Water supply is the primary element of an urban system. Due to rapid urbanization and water scarcity, maintaining a stable and safe water supply has become a challenge to many cities, whereas a large amount of water is lost from the pipes of distribution systems. Water leakage is not only a waste of water resources, but also incurs great socio-economic costs. This article presents a comprehensive review on the potential water leakage control approaches and specifically discusses the benefits of each to environmental conservation. It is concluded that water leakage could be further reduced by improving leakage detection capability through a combination of predictive modeling and monitoring instruments, optimizing pipe maintenance strategy, and developing an instant pressure regulation system. The environment could benefit from these actions because of water savings and the reduction of energy consumption as well as greenhouse gas emissions. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Transient flow analysis linked to fast pressure disturbance monitored in pipe systems
NASA Astrophysics Data System (ADS)
Kueny, J. L.; Lourenco, M.; Ballester, J. L.
2012-11-01
EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.
Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion
NASA Astrophysics Data System (ADS)
Moriarty, Michael P.
1993-11-01
NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.
Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Moriarty, Michael P.
1993-01-01
NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.
The cost of simplifying air travel when modeling disease spread.
Lessler, Justin; Kaufman, James H; Ford, Daniel A; Douglas, Judith V
2009-01-01
Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.
Zhang, Ling; Liu, Shuming; Liu, Wenjun
2014-02-01
Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC were released under the continuous migration tests.
Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?
Metje, Nicole; Chapman, David N.; Cheneler, David; Ward, Michael; Thomas, Andrew M.
2011-01-01
Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to) the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods. PMID:22164027
A numerical analysis of high-temperature heat pipe startup from the frozen state
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
Continuum and rarefied vapor flows co-exist along the heat pipe length for most of the startup period. A two-region model is proposed in which the vapor flow in the continuum region is modeled by the compressible Navier-Stokes equations, and the vapor flow in the rarefied region is simulated by a self-diffusion model. The two vapor regions are linked with appropriate boundary conditions, and heat pipe wail, wick, and vapor flow are solved as a conjugate problem. The numerical solutions for the entire heat pipe startup process from the frozen state are compared with the corresponding experimental data with good agreement.
Sound radiation from a water-filled pipe, radiation into light fluid.
Liu, Bilong; Pan, Jie; Li, Xiaodong; Tian, Jing
2002-12-01
This paper is concerned with the sound radiation from a water-filled exhaust pipe. The pipe opening and a plate attached to it form a vibrating surface for this radiation. Fluid-structural coupling between the pipe and enclosed fluid is included in the system modeling, but light fluid assumption is used for sound radiation into the space above the vibrating surface. In this paper, a numerical study on the n = 0 mode in the pipe shows that the wave types associated with this mode have different characteristics in two regions of the nondimensional frequency omega. In the first region of 0
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
Identification and characterization of natural pipe systems in forested tropical soils
NASA Astrophysics Data System (ADS)
Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel
2017-04-01
Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.
Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe
2017-11-01
Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2 S·h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.
NASA Astrophysics Data System (ADS)
Faghri, Amir; Chen, Ming-Ming
1989-10-01
The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.
Validating Stormwater system simulations in Edmonton Using MIKE URBAN
NASA Astrophysics Data System (ADS)
Gaafar, M.
2016-12-01
Many municipalities use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and the consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers and thus freshwater sources. This study was intended to investigate decay of NH2Cl in stormwater networks starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers. The presented work here is only the first stage of this study. The 30th Avenue basin in Edmonton was chosen as a case study, because it has various land-use types including commercial, industrial, residential and parks. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. However, this model was built to the trunk level where only the main drainage features were presented. Also, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating the real stormwater network. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. To calibrate and validate this model, data of two temporary pipe flow monitoring stations was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.
NASA Astrophysics Data System (ADS)
Nœtinger, B.
2015-02-01
Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.
Generic patterns in the evolution of urban water networks: Evidence from a large Asian city
NASA Astrophysics Data System (ADS)
Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.
2017-03-01
We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.
Gonzalez, Dennis; Tjandraatmadja, Grace; Barry, Karen; Vanderzalm, Joanne; Kaksonen, Anna H; Dillon, Peter; Puzon, Geoff J; Sidhu, Jatinder; Wylie, Jason; Goodman, Nigel; Low, Jason
2016-11-15
The injection of stormwater into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. Limited information exists regarding the potential impact of aquifer treated stormwater in distribution system infrastructure. This study describes a one year pilot distribution pipe network trial to determine the biofouling potential for cement, copper and polyvinyl chloride pipe materials exposed to stormwater stored in a limestone aquifer compared to an identical drinking water rig. Median alkalinity (123 mg/L) and colour (12 HU) in stormwater was significantly higher than in drinking water (82 mg/L and 1 HU) and pipe discolouration was more evident for stormwater samples. X-ray Diffraction and Fluorescence analyses confirmed this was driven by the presence of iron rich amorphous compounds in more thickly deposited sediments also consistent with significantly higher median levels of iron (∼0.56 mg/L) in stormwater compared to drinking water (∼0.17 mg/L). Water type did not influence biofilm development as determined by microbial density but faecal indicators were significantly higher for polyvinyl chloride and cement exposed to stormwater. Treatment to remove iron through aeration and filtration would reduce the potential for sediment accumulation. Operational and verification monitoring parameters to manage scaling, corrosion, colour, turbidity and microbial growth in recycled stormwater distribution networks are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sanzi, James L.
2007-01-01
Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.
NASA Technical Reports Server (NTRS)
Sanzi, James L.
2007-01-01
Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.
Modeling MIC copper release from drinking water pipes.
Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R
2014-06-01
Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lépine, Isabelle; Farrow, Darrell
2018-04-01
The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.
Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness
ERIC Educational Resources Information Center
Donoso, G.; Ladera, C. L.; Martin, P.
2009-01-01
Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…
Unexpected trapping of particles at a T junction.
Vigolo, Daniele; Radl, Stefan; Stone, Howard A
2014-04-01
A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology.
Unexpected trapping of particles at a T junction
Vigolo, Daniele; Radl, Stefan; Stone, Howard A.
2014-01-01
A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology. PMID:24639547
Using steady-state equations for transient flow calculation in natural gas pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, R.N.; Zhou, P.
1984-04-02
Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
Analysis of the thermal performance of heat pipe radiators
NASA Technical Reports Server (NTRS)
Boo, J. H.; Hartley, J. G.
1990-01-01
A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.
Modeling the GPR response of leaking, buried pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, M.H.; Olhoeft, G.R.
1996-11-01
Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectablemore » when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.« less
Investigation of transient cavitating flow in viscoelastic pipes
NASA Astrophysics Data System (ADS)
Keramat, A.; Tijsseling, A. S.; Ahmadi, A.
2010-08-01
A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.
1980-05-16
packsd ir scil . In the tarritoriss ci industrial and ccuzunal general enterprises one should aFply the iredcmirantly abcve-grcund packing of gas pipes...gas j~pes can he reduced to 0.6 a. 4.35. Gas pipes, bbihac txamsicrt humid gas, must be laid lower than zcne of freezing cf scil vita draft/gradient...soils sbculd be Frcvided for device under gas Eipe of basis/kase of sandy scil (Dot containing crushed store and ctker large/coarse hard spcts) in
Underground pipeline laying using the pipe-in-pipe system
NASA Astrophysics Data System (ADS)
Antropova, N.; Krets, V.; Pavlov, M.
2016-09-01
The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.
Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.
Mao, Feng; Ong, Say Kee; Gaunt, James A
2015-09-01
Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.
NASA Astrophysics Data System (ADS)
Delistoian, Dmitri; Chirchor, Mihael
2017-12-01
Fluid transportation from production areas to final customer is effectuated by pipelines. For oil and gas industry, pipeline safety and reliability represents a priority. From this reason, pipe quality guarantee directly influence pipeline designed life, but first of all protects environment. A significant number of longitudinally welded pipes, for onshore/offshore pipelines, are manufactured by UOE method. This method is based on cold forming. In present study, using finite element method is modeled UOE pipe manufacturing process and is obtained von Mises stresses for each step. Numerical simulation is performed for L415 MB (X60) steel plate with 7,9 mm thickness, length 30 mm and width 1250mm, as result it is obtained a DN 400 pipe.
Prioritising sewerage maintenance using inferred sewer age: a case study for Edinburgh.
Arthur, S; Burkhard, R
2010-01-01
The reported research project focuses on using a database which contains details of customer contacts and CCTV data for a key Scottish catchment to construct a GIS based sewer condition model. Given the nature of the asset registry, a key research challenge was estimating the age of individual lengths of pipe. Within this context, asset age was inferred using the estimated age of surface developments-this involved overlaying the network in a GIS with historical digital maps. The paper illustrates that inferred asset age can reliably be used to highlight assets which are more likely to fail.
Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels
NASA Astrophysics Data System (ADS)
Sikora, Małgorzata; Bohdal, Tadeusz
2017-12-01
Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.
Photogrammetry and computer-aided piping design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keneflick, J.F.; Chirillo, R.D.
1985-02-18
Three-dimensional measurements taken from photographs of a plant model can be digitized and linked with computer-aided piping design. This can short-cut the design and construction of new plants and expedite repair and retrofitting projects. Some designers bridge the gap between model and computer by digitizing from orthographic prints obtained via orthography or the laser scanning of model sections. Such valve or fitting then processed is described in this paper. The marriage of photogrammetry and computer-aided piping design can economically produce such numerical drawings.
Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model
NASA Technical Reports Server (NTRS)
Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael
2000-01-01
This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.
Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes
NASA Astrophysics Data System (ADS)
Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong
2016-09-01
A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.
Turbulence model sensitivity and scour gap effect of unsteady flow around pipe: a CFD study.
Ali, Abbod; Sharma, R K; Ganesan, P; Akib, Shatirah
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
Transient Approximation of SAFE-100 Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Reid, Robert S.
2005-01-01
Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.
Guided wave attenuation in coated pipes buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.
2016-02-01
Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.
Development of the monitoring system to detect the piping thickness reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, N. Y.; Ryu, K. H.; Oh, Y. J.
2006-07-01
As nuclear piping becomes aging, secondary piping which was considered safe, undergo thickness reduction problem these days. After some accidents caused by Flow Accelerated Corrosion (FAC), guidelines and recommendations for the thinned pipe management were issued, and thus need for monitoring increases. Through thinned pipe management program, monitoring activities based on the various analyses and the case study of other plants also increases. As the monitoring points increase, time needs to cover the recommended inspection area becomes increasing, while the time given to inspect the piping during overhaul becomes shortened. Existing Ultrasonic Technique (UT) can cover small area in amore » given time. Moreover, it cannot be applied to a complex geometry piping or a certain location like welded part. In this paper, we suggested Switching Direct Current Potential Drop (S-DCPD) method by which we can narrow down the FAC-susceptible area. To apply DCPD, we developed both resistance model and Finite Element Method (FEM) model to predict the DCPD feasibility. We tested elbow specimen to compare DCPD monitoring results with UT results to identify consistency. For the validation test, we designed simulation loop. To determine the text condition, we analyzed environmental parameters and introduced applicable wearing rate model. To obtain the model parameters, we developed electrodes and analyzed velocity profile in the test loop using CFX code. Based on the prediction model and prototype testing results, we are planning to perform validation test to identify applicability of S-DCPD in the NPP environment. Validation text plan will be described as a future work. (authors)« less
1983-08-25
currently available Westinghouse CAE capabilities include plant layout, piping design, piping analysis , support/hanger design, and drawing preparation. The...considerations involved with the design and analysis of piping and support systems and space management in nuclear power plants are very similar to...piping analysis system can obtain input defini- tion data either from the plant modeling system or from piping drawings (for systems not designed using
Branch-pipe-routing approach for ships using improved genetic algorithm
NASA Astrophysics Data System (ADS)
Sui, Haiteng; Niu, Wentie
2016-09-01
Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.
EXCITATION OF A BURIED MAGMATIC PIPE: A SEISMIC SOURCE MODEL FOR VOLCANIC TREMOR.
Chouet, Bernard
1985-01-01
A model of volcanic tremor is presented in which the modes of vibration of a volcanic pipe are excited by the motion of the fluid within the pipe in response to a short-term perturbation in pressure. The model shows the relative importance of the various parts constituting this composite source in the radiated elastic field at near and intermediate distances. The paper starts with the presentation of the elastic field radiated by the source, and proceeds with an analysis of the energy balance between hydraulic and elastic motions. Next, the hydraulic excitation of the source is addressed and, finally, the ground response to this excitation is analyzed in the simple case of a pipe buried in a homogeneous half space.
OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, Robert; Halkyard, John; Johnson, Peter
A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to finalmore » design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.« less
NASA Astrophysics Data System (ADS)
Fujisawa, Ikuhide; Kitamura, Yuji; Kato, Ryo; Murayama, Kazutaka; Aoki, Katsuyuki
2014-01-01
Resorcin[4]arene (resorcinol cyclic tetramer, abbreviated as RCT) or pyrogallol[4]arene (pyrogallol cyclic tetramer, PCT) form host-guest 1:1 complexes with DL-pipecolinic acid (DL-pipeH), RCT·DL-pipeH·EtOH·8H2O (1), PCT DL-pipeH·EtOH·4H2O (2), and PCT·DL-pipeH·3H2O (3), whose crystal structures have been determined. In each complex, the pipeH ligand is incorporated into the bowl-shaped cavity of the RCT or PCT host molecules through C-H⋯π interactions between alkyl protons of the piperidine ring of pipeH and π-rings of RCT or PCT, forming an [(RCT/PCT)·pipeH] structural fragment. In 1 and 3, two [(RCT/PCT) pipeH] fragments self-associate across an inversion center to form a guest-mediated, obliquely declined dimeric structure [(RCT/PCT)·L-pipeH·D-pipeH (RCT/PCT)]. In 2, each PCT-capped pipeH ligand bridges to two adjacent PCT molecules to form guest-mediated, optically-discrete helical polymers [PCT·L-pipeH]n or [PCT·D-pipeH]n. An 1H NMR experiment shows that the complexation through C-H⋯π interaction between the piperidine ring of pipeH and π-rings of RCT or PCT occurs also in solution, with the binding constants of 9.7 ± 0.6 M-1 for RCT and 26.5 ± 1.5 M-1 for PCT. These complexes provide a synthetic model for the recognition of the pipecolinyl-ring moiety, a key constituent of immunosuppressant drugs such as FK506, FK520 or rapamycin, by their binding proteins through C-H⋯π interaction.
On the roles of solid wall in the thermal analysis of micro heat pipes
NASA Astrophysics Data System (ADS)
Hung, Yew Mun
Micro heat pipe is a small-scale passive heat transfer device of very high thermal conductance that uses phase change and circulation of its working fluid to transfer thermal energy. Different from conventional heat pipe, a micro heat pipe does not contain any wick structure. In this thesis, a one-dimensional, steady-state mathematical model of a single triangular micro heat pipe is developed, with the main purpose of establishing a series of analytical studies on the roles of the solid wall of micro heat pipes in conjunction with the characterization of the thermal performance under the effects of various design and operational parameters. The energy equation of the solid wall is solved analytically to obtain the temperature distribution. The liquid phase is coupled with the solid wall through the continuity of heat flux at their interface, and the continuity, momentum and energy equations of the liquid and vapour phases, together with the Young-Laplace equation for capillary pressure, are solve numerically to yield the heat and fluid flow characteristics of the micro heat pipe. By coupling this mathematical model with the phase-change interfacial resistance model, the relationships for the axial temperature distributions of the liquid and vapour phases throughout the longitudinal direction of a micro heat pipe are also formulated. Four major aspects associated with the operational performance of micro heat pipes are discussed. Firstly, the investigation of the effects of axial conduction in the solid wall reveals that the presence of the solid wall induces change in the phase-change heat transport of the working fluid besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on the axial temperature distribution of solid wall, in the wake of the effects of the axial heat conduction induced on the phase-change heat transport of the working fluid. Secondly, analysis on thermal performance and physical phenomena of an overloaded micro heat pipes incorporating the effects of axial conduction in the solid wall is carried out. The thermal effects of the solid material are investigated and it is observed that the behaviour of the solid wall temperature distribution varies drastically as the applied heat load exceeds the heat transport capacity. The abrupt change in the temperature profile of an overloaded micro heat pipe is of considerable practical significance in which the occurrence of dryout can be identified by physically measuring the solid wall temperatures along the axial direction. Thirdly, by taking into account the axial conduction in the solid wall, the effect of gravity on the thermal performance of an inclined micro heat pipe is explored. Attributed to the occurrence of dryout, an abrupt temperature rise is observed at the evaporator end when the micro heat pipe is negatively inclined. Therefore, the orientation of a micro heat pipe can be determined by physically measuring the solid wall temperature. Lastly, by coupling the heat transfer model of phase-change phenomena at the liquid-vapour interface, the model with axial conduction in the solid wall of the micro heat pipe is extended to predict the axial liquid and vapour temperature distributions of the working fluid, which is useful for the verification of certain assumptions made in the derivation of the mathematical model besides for analyzing the heat transfer characteristics of the evaporation process.
Drag reduction of nata de coco suspensions in circular pipe flow
NASA Astrophysics Data System (ADS)
Warashina, J.; Ogata, S.
2015-04-01
Reducing pipe friction by adding a drag-reducing agent has attracted interest as a means to reduce energy consumption. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. However, no drag-reducing agent currently satisfies both these conditions. We focused on nata de coco and found that the nata de coco fiber reduced drag by up to 25%. With respect to the mechanism of drag reduction by nata de coco fiber, the relationship between drag-reduction phenomena and the fiber form of nata de coco was investigated by visualization. We also found that the drag-reduction effect appeared to be due to the formation of networks of tangled fibers of nata de coco. However, drag reduction did not occur in the case in which fibers of nata de coco did not form networks.
Spence, Lisa A; Aschengrau, Ann; Gallagher, Lisa E; Webster, Thomas F; Heeren, Timothy C; Ozonoff, David M
2008-01-01
Background From May 1968 through March 1980, vinyl-lined asbestos-cement (VL/AC) water distribution pipes were installed in New England to avoid taste and odor problems associated with asbestos-cement pipes. The vinyl resin was applied to the inner pipe surface in a solution of tetrachloroethylene (perchloroethylene, PCE). Substantial amounts of PCE remained in the liner and subsequently leached into public drinking water supplies. Methods Once aware of the leaching problem and prior to remediation (April-November 1980), Massachusetts regulators collected drinking water samples from VL/AC pipes to determine the extent and severity of the PCE contamination. This study compares newly obtained historical records of PCE concentrations in water samples (n = 88) with concentrations estimated using an exposure model employed in epidemiologic studies on the cancer risk associated with PCE-contaminated drinking water. The exposure model was developed by Webler and Brown to estimate the mass of PCE delivered to subjects' residences. Results The mean and median measured PCE concentrations in the water samples were 66 and 0.5 μg/L, respectively, and the range extended from non-detectable to 2432 μg/L. The model-generated concentration estimates and water sample concentrations were moderately correlated (Spearman rank correlation coefficient = 0.48, p < 0.0001). Correlations were higher in samples taken at taps and spigots vs. hydrants (ρ = 0.84 vs. 0.34), in areas with simple vs. complex geometry (ρ = 0.51 vs. 0.38), and near pipes installed in 1973–1976 vs. other years (ρ = 0.56 vs. 0.42 for 1968–1972 and 0.37 for 1977–1980). Overall, 24% of the variance in measured PCE concentrations was explained by the model-generated concentration estimates (p < 0.0001). Almost half of the water samples had undetectable concentrations of PCE. Undetectable levels were more common in areas with the earliest installed VL/AC pipes, at the beginning and middle of VL/AC pipes, at hydrants, and in complex pipe configurations. Conclusion PCE concentration estimates generated using the Webler-Brown model were moderately correlated with measured water concentrations. The present analysis suggests that the exposure assessment process used in prior epidemiological studies could be improved with more accurate characterization of water flow. This study illustrates one method of validating an exposure model in an epidemiological study when historical measurements are not available. PMID:18518975
Spence, Lisa A; Aschengrau, Ann; Gallagher, Lisa E; Webster, Thomas F; Heeren, Timothy C; Ozonoff, David M
2008-06-02
From May 1968 through March 1980, vinyl-lined asbestos-cement (VL/AC) water distribution pipes were installed in New England to avoid taste and odor problems associated with asbestos-cement pipes. The vinyl resin was applied to the inner pipe surface in a solution of tetrachloroethylene (perchloroethylene, PCE). Substantial amounts of PCE remained in the liner and subsequently leached into public drinking water supplies. Once aware of the leaching problem and prior to remediation (April-November 1980), Massachusetts regulators collected drinking water samples from VL/AC pipes to determine the extent and severity of the PCE contamination. This study compares newly obtained historical records of PCE concentrations in water samples (n = 88) with concentrations estimated using an exposure model employed in epidemiologic studies on the cancer risk associated with PCE-contaminated drinking water. The exposure model was developed by Webler and Brown to estimate the mass of PCE delivered to subjects' residences. The mean and median measured PCE concentrations in the water samples were 66 and 0.5 microg/L, respectively, and the range extended from non-detectable to 2432 microg/L. The model-generated concentration estimates and water sample concentrations were moderately correlated (Spearman rank correlation coefficient = 0.48, p < 0.0001). Correlations were higher in samples taken at taps and spigots vs. hydrants (rho = 0.84 vs. 0.34), in areas with simple vs. complex geometry (rho = 0.51 vs. 0.38), and near pipes installed in 1973-1976 vs. other years (rho = 0.56 vs. 0.42 for 1968-1972 and 0.37 for 1977-1980). Overall, 24% of the variance in measured PCE concentrations was explained by the model-generated concentration estimates (p < 0.0001). Almost half of the water samples had undetectable concentrations of PCE. Undetectable levels were more common in areas with the earliest installed VL/AC pipes, at the beginning and middle of VL/AC pipes, at hydrants, and in complex pipe configurations. PCE concentration estimates generated using the Webler-Brown model were moderately correlated with measured water concentrations. The present analysis suggests that the exposure assessment process used in prior epidemiological studies could be improved with more accurate characterization of water flow. This study illustrates one method of validating an exposure model in an epidemiological study when historical measurements are not available.
NASA Astrophysics Data System (ADS)
Liu, Shuyong; Jiang, J.; Parr, Nicola
2016-09-01
Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.
Wireless Monitoring of the Height of Condensed Water in Steam Pipes
NASA Technical Reports Server (NTRS)
Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.
2014-01-01
A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.
Wireless Integrated Microelectronic Vacuum Sensor System
NASA Technical Reports Server (NTRS)
Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun
2013-01-01
NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.
Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.
2012-01-01
Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.
Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K
2017-12-01
To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.
Inkinen, Jenni; Kaunisto, Tuija; Pursiainen, Anna; Miettinen, Ilkka T; Kusnetsov, Jaana; Riihinen, Kalle; Keinänen-Toivola, Minna M
2014-02-01
Complex interactions existing between water distribution systems' materials and water can cause a reduction in water quality and unwanted changes in materials, aging or corrosion of materials and formation of biofilms on surfaces. Substances leaching from pipe materials and water fittings, as well as the microbiological quality of water and formation of biofilms were evaluated by applying a Living Lab theme i.e. a research in a real life setting using a full scale system during its first year of operation. The study site was a real office building with one part of the building lined with copper pipes, the other with cross-linked polyethylene (PEX) pipes thus enabling material comparison; also differences within the cold and hot water systems were analysed. It was found that operational conditions, such as flow conditions and temperature affected the amounts of metals leaching from the pipe network. In particular, brass components were considered to be a source of leaching; e. g. the lead concentration was highest during the first few weeks after the commissioning of the pipe network when the water was allowed to stagnate. Assimilable organic carbon (AOC) and microbially available phosphorus (MAP) were found to leach from PEX pipelines with minor effects on biomass of the biofilm. Cultivable and viable biomass (heterotrophic plate count (HPC), and adenosine triphosphate (ATP)) levels in biofilms were higher in the cold than in the hot water system whereas total microbial biomass (total cell count (DAPI)) was similar with both systems. The type of pipeline material was not found to greatly affect the microbial biomass or Alpha-, Beta- and Gammaproteobacteria profiles (16s rRNA gene copies) after the first one year of operation. Also microbiological quality of water was found to deteriorate due to stagnation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computer modeling of heat pipe performance
NASA Technical Reports Server (NTRS)
Peterson, G. P.
1983-01-01
A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.
Sewer deterioration modeling with condition data lacking historical records.
Egger, C; Scheidegger, A; Reichert, P; Maurer, M
2013-11-01
Accurate predictions of future conditions of sewer systems are needed for efficient rehabilitation planning. For this purpose, a range of sewer deterioration models has been proposed which can be improved by calibration with observed sewer condition data. However, if datasets lack historical records, calibration requires a combination of deterioration and sewer rehabilitation models, as the current state of the sewer network reflects the combined effect of both processes. Otherwise, physical sewer lifespans are overestimated as pipes in poor condition that were rehabilitated are no longer represented in the dataset. We therefore propose the combination of a sewer deterioration model with a simple rehabilitation model which can be calibrated with datasets lacking historical information. We use Bayesian inference for parameter estimation due to the limited information content of the data and limited identifiability of the model parameters. A sensitivity analysis gives an insight into the model's robustness against the uncertainty of the prior. The analysis reveals that the model results are principally sensitive to the means of the priors of specific model parameters, which should therefore be elicited with care. The importance sampling technique applied for the sensitivity analysis permitted efficient implementation for regional sensitivity analysis with reasonable computational outlay. Application of the combined model with both simulated and real data shows that it effectively compensates for the bias induced by a lack of historical data. Thus, the novel approach makes it possible to calibrate sewer pipe deterioration models even when historical condition records are lacking. Since at least some prior knowledge of the model parameters is available, the strength of Bayesian inference is particularly evident in the case of small datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun
2015-06-01
Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.
xPIPE--Reception of DICOM Data from any Sender via the Internet.
Czwoydzinski, J; Eßeling, R; Meier, N; Heindel, W; Lenzen, H
2015-05-01
Various technologies have been established for DICOM data exchange in radiology. In addition to the patient CD, online transfers via VPN (virtual private network) or DICOM email are common practice. However, dedicated network solutions are generally not appropriate for data exchange with occasional and spontaneous partners due to missing infrastructure at the partner institutions and/or complex setup procedures. The purpose was to develop a practical solution to complement the established technologies to allow users worldwide to transfer images without registration. The development of the xPIPE system is based on Java and various software libraries. A client hosted on a website enables sending DICOM data to a receiving system of the hospital. The new xPIPE system creates a gateway to a receiving hospital which is accessible from any point worldwide, giving other hospitals, clinics and patients a simple and secure method to transmit DICOM data without intermediate storage on external servers. The system was deployed at the University Hospital Münster and subsequently widely used even without information events and training. Data protection during transfer is ensured by the use of signatures and encryption. From the user's perspective the system has only minor technical requirements and can be used with minimal setup effort. © Georg Thieme Verlag KG Stuttgart · New York.
Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo
2014-01-01
As a mean of supplying water, Water distribution system (WDS) is one of the most important complex infrastructures. The stability and reliability are critical for urban activities. WDSs can be characterized by networks of multiple nodes (e.g. reservoirs and junctions) and interconnected by physical links (e.g. pipes). Instead of analyzing highest failure rate or highest betweenness, reliability of WDS is evaluated by introducing hydraulic analysis and cascading failures (conductive failure pattern) from complex network. The crucial pipes are identified eventually. The proposed methodology is illustrated by an example. The results show that the demand multiplier has a great influence on the peak of reliability and the persistent time of the cascading failures in its propagation in WDS. The time period when the system has the highest reliability is when the demand multiplier is less than 1. There is a threshold of tolerance parameter exists. When the tolerance parameter is less than the threshold, the time period with the highest system reliability does not meet minimum value of demand multiplier. The results indicate that the system reliability should be evaluated with the properties of WDS and the characteristics of cascading failures, so as to improve its ability of resisting disasters. PMID:24551102
Gabrielson, Thomas B
2011-09-01
A worldwide network of more than 40 infrasound monitoring stations has been established as part of the effort to ensure compliance with the Comprehensive Nuclear Test Ban Treaty. Each station has four to eight individual infrasound elements in a kilometer-scale array for detection and bearing determination of acoustic events. The frequency range of interest covers a three-decade range-roughly from 0.01 to 10 Hz. A typical infrasound array element consists of a receiving transducer connected to a multiple-inlet pipe network to average spatially over the short-wavelength turbulence-associated "wind noise." Although the frequency response of the transducer itself may be known, the wind-noise reduction system modifies that response. In order to understand the system's impact on detection and identification of acoustical events, the overall frequency response must be determined. This paper describes a technique for measuring the absolute magnitude and phase of the frequency response of an infrasound element including the wind-noise-reduction piping by comparison calibration using ambient noise and a reference-microphone system. Measured coherence between the reference and the infrasound element and the consistency between the magnitude and the phase provide quality checks on the process. © 2011 Acoustical Society of America
Experimental operation of a sodium heat pipe
NASA Astrophysics Data System (ADS)
Holtz, R. E.; McLennan, G. A.; Koehl, E. R.
1985-05-01
This report documents the operation of a 28 in. long sodium heat pipe in the Heat Pipe Test Facility (HPTF) installed at Argonne National Laboratory. Experimental data were collected to simulate conditions prototypic of both a fluidized bed coal combustor application and a space environment application. Both sets of experiment data show good agreement with the heat pipe analytical model. The heat transfer performance of the heat pipe proved reliable over a substantial period of operation and over much thermal cycling. Additional testing of longer heat pipes under controlled laboratory conditions will be necessary to determine performance limitations and to complete the design code validation.
Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study
Ali, Abbod; Sharma, R. K.; Ganesan, P.
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed. PMID:25136666
NASA Technical Reports Server (NTRS)
Hall, Michael L.; Doster, Joseph M.
1986-01-01
Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.
NASA Astrophysics Data System (ADS)
Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing
2018-03-01
In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.
The design and analysis of mooring system
NASA Astrophysics Data System (ADS)
Li, Yixuan
2017-05-01
In this paper, the force status and a design method of single chain mooring system for shallow sea observation network are studied. With treating the link of a chain, steel drum and steel pipe as a rigid body, the recurrence model is established by using Newton's first law and the law of Moment equilibrium theorem. Via the simplified calculation of dichotomy searching, we determine the design parameters of mooring system, such as anchor model, anchor chain length, heavy ball quality under different water flow and wind conditions. We apply MATLAB to simulate the internal steady state of the system in the fixed scheme, water depth of buoy and swimming area to meet the decision-making needs, providing an idea for the actual scheme design of mooring system.
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.
Boomwhackers and End-Pipe Corrections
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.
2014-02-01
End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.
Performance Analysis of TCP Enhancements in Satellite Data Networks
NASA Technical Reports Server (NTRS)
Broyles, Ren H.
1999-01-01
This research examines two proposed enhancements to the well-known Transport Control Protocol (TCP) in the presence of noisy communication links. The Multiple Pipes protocol is an application-level adaptation of the standard TCP protocol, where several TCP links cooperate to transfer data. The Space Communication Protocol Standard - Transport Protocol (SCPS-TP) modifies TCP to optimize performance in a satellite environment. While SCPS-TP has inherent advantages that allow it to deliver data more rapidly than Multiple Pipes, the protocol, when optimized for operation in a high-error environment, is not compatible with legacy TCP systems, and requires changes to the TCP specification. This investigation determines the level of improvement offered by SCPS-TP's Corruption Mode, which will help determine if migration to the protocol is appropriate in different environments. As the percentage of corrupted packets approaches 5 %, Multiple Pipes can take over five times longer than SCPS-TP to deliver data. At high error rates, SCPS-TP's advantage is primarily caused by Multiple Pipes' use of congestion control algorithms. The lack of congestion control, however, limits the systems in which SCPS-TP can be effectively used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, A.; Bakhtiari, S.; Huang, X.
The objective of this project is to develop and demonstrate methods for transmission of information in nuclear facilities by acoustic means along existing in-place metal piping infrastructure. Pipes are omnipresent in a nuclear facility, and penetrate enclosures and partitions, such as the containment building wall. In the envisioned acoustic communication (AC) system, packets of information will be transmitted as guided acoustic waves along pipes. Performance of AC hardware and network protocols for efficient and secure communications under development in this project will be eventually evaluated in a representative nuclear power plant environment. Research efforts in the first year of thismore » project have been focused on identification of appropriate transducers, and evaluation of their performance for information transmission along nuclear-grade metallic pipes. COMSOL computer simulations were performed to study acoustic wave generation, propagation, and attenuation on pipes. An experimental benchtop system was used to evaluate signal attenuation and spectral dispersion using piezo-electric transducers (PZTs) and electromagnetic acoustic transducers (EMATs). Communication protocols under evaluation consisted on-off keying (OOK) signal modulation, in particular amplitude shift keying (ASK) and phase shift keying (PSK). Tradeoffs between signal power and communication data rate were considered for ASK and PSK coding schemes.« less
Moore, William B; Webb, A Alexander G
2013-09-26
The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.
Energy efficient cooperation in underlay RFID cognitive networks for a water smart home.
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-09-30
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model's (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes.
NASA Astrophysics Data System (ADS)
Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai
2014-07-01
In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.
NASA Technical Reports Server (NTRS)
Chien, Steve; Kandt, R. Kirk; Roden, Joseph; Burleigh, Scott; King, Todd; Joy, Steve
1992-01-01
Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings.
Alcoverro, Benoit; Le Pichon, Alexis
2005-04-01
The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.; Olson, R.; Wilkowski, O.G.
1997-06-01
This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less
Communication networks, soap films and vectors
NASA Astrophysics Data System (ADS)
Clark, R. C.
1981-01-01
The problem of constructing the least-cost network of connections between arbitrarily placed points is one that is common and which can be very important financially. The network may consist of motorways between towns, a grid of electric power lines, buried gas or oil pipe lines or telephone cables. Soap films trapped between parallel planes with vertical pins between them provide a 'shortest path' network and Isenberg (1975) has suggested that soap films of this sort be used to model communication networks. However soap films are unable to simulate the different costs of laying, say, a three-lane motorway instead of a two-lane one or of using a larger pipeline to take the flow from two smaller ones. Soap films, however, have considerable intrinsic interest. In the article the emphasis is on the use of soap films and communication networks as a practical means of illustrating the importance of vector and matrix methods in geometry. The power of vector methods is illustrated by the fact that given any soap film network the total length of the film can be written down by inspection if the vector positions of the pins are known. It is also possible to predict the boundaries at which 'catastrophes' occur and to decide which network has the least total length. In the field of communication networks a method is given of designing the minimum cost network linking, say, a number of oilwells, which produce at different rates to an outlet terminal.
Li, Yong; Cai, Rui; Yan, Bei; Zainal Abidin, Ilham Mukriz; Jing, Haoqing; Wang, Yi
2018-05-28
For fuel transmission and structural strengthening, small-diameter pipes of nonmagnetic materials are extensively adopted in engineering fields including aerospace, energy, transportation, etc. However, the hostile and corrosive environment leaves them vulnerable to external corrosion which poses a severe threat to structural integrity of pipes. Therefore, it is imperative to nondestructively detect and evaluate the external corrosion in nonmagnetic pipes. In light of this, a capsule-type Electromagnetic Acoustic Transducer (EMAT) for in-situ nondestructive evaluation of nonmagnetic pipes and fast screening of external corrosion is proposed in this paper. A 3D hybrid model for efficient prediction of responses from the proposed transducer to external corrosion is established. Closed-form expressions of field quantities of electromagnetics and EMAT signals are formulated. Simulations based on the hybrid model indicate feasibility of the proposed transducer in detection and evaluation of external corrosion in nonmagnetic pipes. In parallel, experiments with the fabricated transducer have been carried out. Experimental results are supportive of the conclusion drawn from simulations. The investigation via simulations and experiments implies that the proposed capsule-type EMAT is capable of fast screening of external corrosion, which is beneficial to the in-situ nondestructive evaluation of small-diameter nonmagnetic pipes.
Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods
NASA Astrophysics Data System (ADS)
Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric
2018-03-01
Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.
Ultrasonic isolation of buried pipes
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2016-02-01
Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, G. T.; Hartley, J. G.
1986-01-01
Mathematical models and associated solution procedures which can be used to design heat pipe cooled structures for use on hypersonic vehicles are being developed. The models should also have the capability to predict off-design performance for a variety of operating conditions. It is expected that the resulting models can be used to predict startup behavior of liquid metal heat pipes to be used in reentry vehicles, hypersonic aircraft, and space nuclear reactors. Work to date related to numerical solutions of governing differential equations for the outer shell and the combination capillary structure and working fluid is summarized. Finite element numerical equations using both implicit, explicit, and combination methods were examined.
NASA Astrophysics Data System (ADS)
Matoušek, Václav; Kesely, Mikoláš; Vlasák, Pavel
2018-06-01
The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature.
Nuclear traffic and peloton formation in fungal networks
NASA Astrophysics Data System (ADS)
Roper, Marcus; Hickey, Patrick; Lewkiewicz, Stephanie; Dressaire, Emilie; Read, Nick
2013-11-01
Hyphae, the network of microfluidic pipes that make up a growing fungal cell, must balance their function as conduits for the transport of nuclei with other cellular functions including secretion and growth. Constant flow of nuclei may interfere with the protein traffic that enables other functions to be performed. Live-cell imaging reveals that nuclear flows are anti-congestive; that groups of nuclei flow faster than single nuclei, and that nuclei sweep through the colony in dense clumps. We call these clumps pelotons, after the term used to describe groups of cycle racers slip-streaming off each other. Because of the pelotons, individual hyphae transport nuclei only intermittently, producing long intervals in which hyphae can perform their other functions. Modeling reveals how pelotons are created by interactions between nuclei and the hyphal cytoskeleton, and reveal the control that the fungus enjoys over peloton assembly and timing.
NASA Astrophysics Data System (ADS)
Goyal, Roopali V.; Patel, H. M.
2015-09-01
Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.
Effects of Sulfate, Chloride, and Bicarbonate on Iron Stability in a PVC-U Drinking Pipe
Wang, Jiaying; Tao, Tao; Yan, Hexiang
2017-01-01
In order to describe iron stability in plastic pipes and to ensure the drinking water security, the influence factors and rules for iron adsorption and release were studied, dependent on the Unplasticized poly (vinyl chloride) (PVC-U) drinking pipes employed in this research. In this paper, sulfate, chloride, and bicarbonate, as well as synthesized models, were chosen to investigate the iron stability on the inner wall of PVC-U drinking pipes. The existence of the three kinds of anions could significantly affect the process of iron adsorption, and a positive association was found between the level of anion concentration and the adsorption rate. However, the scaling formed on the inner surface of the pipes would be released into the water under certain conditions. The Larson Index (LI), used for a synthetic consideration of anion effects on iron stability, was selected to investigate the iron release under multi-factor conditions. Moreover, a well fitted linear model was established to gain a better understanding of iron release under multi-factor conditions. The simulation results demonstrated that the linear model was better fitted than the LI model for the prediction of iron release. PMID:28629192
NASA Astrophysics Data System (ADS)
Henclik, S.
2014-08-01
Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.
Flows in a tube structure: Equation on the graph
NASA Astrophysics Data System (ADS)
Panasenko, Grigory; Pileckas, Konstantin
2014-08-01
The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
NASA Astrophysics Data System (ADS)
Tiari, Saeed
A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.
Startup analysis for a high temperature gas loaded heat pipe
NASA Technical Reports Server (NTRS)
Sockol, P. M.
1973-01-01
A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.
NASA Technical Reports Server (NTRS)
Bienart, W. B.
1973-01-01
The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.
NASA Astrophysics Data System (ADS)
Wei, Xin; Sun, Bing
2011-10-01
The fluid-structure interaction may occur in space launch vehicles, which would lead to bad performance of vehicles, damage equipments on vehicles, or even affect astronauts' health. In this paper, analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed, with the effect of fluid-structure interaction (FSI) taken into consideration. The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling. Numerical tests on pipes between the tank and the pump are solved by the finite volume method. Results show that restrictions weaken the interaction between axial and lateral vibrations. The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis, and thus highlight the usefulness of the proposed model. This study would provide a reference to the pipe test, as well as facilitate further studies on oscillation suppression.
Network harness: bundles of routes in public transport networks
NASA Astrophysics Data System (ADS)
Berche, B.; von Ferber, C.; Holovatch, T.
2009-12-01
Public transport routes sharing the same grid of streets and tracks are often found to proceed in parallel along shorter or longer sequences of stations. Similar phenomena are observed in other networks built with space consuming links such as cables, vessels, pipes, neurons, etc. In the case of public transport networks (PTNs) this behavior may be easily worked out on the basis of sequences of stations serviced by each route. To quantify this behavior we use the recently introduced notion of network harness. It is described by the harness distribution P(r, s): the number of sequences of s consecutive stations that are serviced by r parallel routes. For certain PTNs that we have analyzed we observe that the harness distribution may be described by power laws. These power laws indicate a certain level of organization and planning which may be driven by the need to minimize the costs of infrastructure and secondly by the fact that points of interest tend to be clustered in certain locations of a city. This effect may be seen as a result of the strong interdependence of the evolutions of both the city and its PTN. To further investigate the significance of the empirical results we have studied one- and two-dimensional models of randomly placed routes modeled by different types of walks. While in one dimension an analytic treatment was successful, the two dimensional case was studied by simulations showing that the empirical results for real PTNs deviate significantly from those expected for randomly placed routes.
Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes
2016-06-01
by the Hydrologic Systems Branch of the Flood and Storm Protection Division (CEERD-HF), U.S. Army Engineer Research and Development Center, Coastal ...ER D C/ CH L TR -1 6- 6 Flood & Coastal Storm Damage Reduction Program Seepage and Piping through Levees and Dikes Using 2D and 3D...Flood & Coastal Storm Damage Reduction Program ERDC/CHL TR-16-6 June 2016 Seepage and Piping through Levees and Dikes Using 2D and 3D Modeling Codes
Smartphone technologies and Bayesian networks to assess shorebird habitat selection
Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.
2017-01-01
Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection from many locations and sources, which can be used in management and decision-making applications.
Li, Mengmeng; Feng, Qiang; Yang, Dezhen
2018-01-01
In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion. PMID:29584695
Thermal design and TDM test of the ETS-VI
NASA Astrophysics Data System (ADS)
Yoshinaka, T.; Kanamori, K.; Takenaka, N.; Kawashima, J.; Ido, Y.; Kuriyama, Y.
The Engineering Test Satellite-VI (ETS-VI) thermal design, thermal development model (TDM) test, and evaluation results are described. The allocation of the thermal control materials on the spacecraft is illustrated. The principal design approach is to minimize the interactions between the antenna tower module and the main body, and between the main body and the liquid apogee propulsion system by means of multilayer insulation blankets and low conductance graphite epoxy support structures. The TDM test shows that the thermal control subsystem is capable of maintaining the on-board components within specified temperature limits. The heat pipe network is confirmed to operate properly, and a uniform panel temperature distribution is accomplished. The thermal analytical model is experimentally verified. The validity of the thermal control subsystem design is confirmed by the modified on-orbit analytical model.
Dynamic simulation of relief line during loss of insulation vacuum of the ITER cryoline
NASA Astrophysics Data System (ADS)
Badgujar, S.; Kosek, J.; Grillot, D.; Forgeas, A.; Sarkar, B.; Shah, N.; Choukekar, K.; Chang, H.-S.
2017-12-01
The ITER cryoline (CL) system consists of 37 types of vacuum jacketed transfer lines which forms a complex structured network with a total length of about 5 km, spread inside the Tokamak building, on a dedicated plant bridge and in the Cryoplant building/area. One of them, the low pressure relief line (RL) recovers helium discharged from process safety relief valves of the different cryogenic users and is sent it back to the Cryoplant via heater and recovery system. The process pipe diameters of the RL vary from DN 50 to DN 200 and the length is more than 1500 m. Loss of insulation vacuum (LIV) of a CL is one of the worst scenarios apart from LIV in Auxiliary Cold Boxes (ACBs). The Torus and Cryostat CL is chosen to simulate the virtual LIV and to study the anticipated behavior of the RL. Both helium LIV (LIV due to leak in helium pipe) and air LIV (LIV due to air ingress in outer vacuum jacket of the cryoline) with and without fire) have been simulated during this study. After the brief description of the CL system, the paper will describe the EcosimPro® model prepared for the dynamic study. The paper will also describe the results like minimum temperature of RL, mass flow and maximum pressure in the RL which are essentially used to choose the type and location of safety relief devices to protect the CL process pipes.
NASA Astrophysics Data System (ADS)
Galindo-Rosales, F. J.; Rubio-Hernández, F. J.
2008-07-01
Process engineering deals with the processing of large quantities of materials and they must be transported from one unit operation to another within the processing environment. This is commonly made through pipelines, where occurs a dissipation of energy due essentially to frictional losses against the inside wall of the pipe and changes in the internal energy. Then it is needed an energy source to keep the fluid moving, commonly a pump. Due to differences in the internal structure, dissipations of energy must be different from Newtonian fluids to shear thickening fluids. Moreover, because of the inherent structure that is exhibited by shear thickening fluids, laminar motion of these fluids is encountered far more commonly than with Newtonian fluids. Rheological experiments confirm that suspensions of Aerosil®R816 in Polypropylene glycol (PPG) of low molecular weights (400 and 2000 g/mol) exhibit reversible shear thickening behaviour. Cross model fits properly their viscosity curve in the region of shear thickening behaviour. Thus the constitutive equations obtained experimentally have been incorporated into the momentum conservation equation in order to study the reference case of the steady laminar flow in a pipe of circular cross-section, providing us with relevant information including the fully-developed velocity profiles, the friction factor and the entrance length, depending on the rheological properties of each suspension. Our results could be applied to the optimal design and layout of flow networks, which may represent a significant fraction of the total plant cost.
Investigation on size tolerance of pore defect of girth weld pipe.
Li, Yan; Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects.
Investigation on size tolerance of pore defect of girth weld pipe
Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986
Boomwhackers and End-Pipe Corrections
ERIC Educational Resources Information Center
Ruiz, Michael J.
2014-01-01
End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meter-stick. This article describes a lab activity in which students model data from…
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Quagliato, Luca; Lee, Wontaek; Kim, Naksoo
2017-09-01
In the ERW (electric resistance welding) pipe manufacturing, material properties, process conditions and settings strongly influences the mechanical performances of the final product, as well as they can make them to be not uniform and to change from point to point in the pipe. The present research work proposes an integrated numerical model for the study of the whole ERW process, considering roll forming, welding and sizing stations, allowing to infer the influence of the process parameters on the final quality of the pipe, in terms of final shape and residual stress. The developed numerical model has been initially validated comparing the dimensions of the pipe derived from the simulation results with those of industrial production, proving the reliability of the approach. Afterwards, by varying the process parameters in the numerical simulation, namely the roll speed, the sizing ratio and the friction factor, the influence on the residual stress in the pipe, at the end of the process and after each station, is studied and discussed along the paper.
A proposal was made at the 2009 EWRI Congress in Kansas City, MO to establish an Open Source Project (OSP) for the widely used EPANET pipe network analysis program. This would be an ongoing collaborative effort among a group of geographically dispersed advisors and developers, wo...
Modeling to Support the Development of Habitat Targets for Piping Plovers on the Missouri River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buenau, Kate E.
2015-05-05
Report on modeling and analyses done in support of developing quantative sandbar habitat targets for piping plovers, including assessment of reference, historical, dams present but not operated, and habitat construction calibrated to meet population viability targets.
Kim, Minyoung; Choi, Christopher Y; Gerba, Charles P
2013-09-01
Assuming a scenario of a hypothetical pathogenic outbreak, we aimed this study at developing a decision-support model for identifying the location of the pathogenic intrusion as a means of facilitating rapid detection and efficient containment. The developed model was applied to a real sewer system (the Campbell wash basin in Tucson, AZ) in order to validate its feasibility. The basin under investigation was divided into 14 sub-basins. The geometric information associated with the sewer network was digitized using GIS (Geological Information System) and imported into an urban sewer network simulation model to generate microbial breakthrough curves at the outlet. A pre-defined amount of Escherichia coli (E. coli), which is an indicator of fecal coliform bacteria, was hypothetically introduced into 56 manholes (four in each sub-basin, chosen at random), and a total of 56 breakthrough curves of E. coli were generated using the simulation model at the outlet. Transport patterns were classified depending upon the location of the injection site (manhole), various known characteristics (peak concentration and time, pipe length, travel time, etc.) extracted from each E. coli breakthrough curve and the layout of sewer network. Using this information, we back-predicted the injection location once an E. coli intrusion was detected at a monitoring site using Artificial Neural Networks (ANNs). The results showed that ANNs identified the location of the injection sites with 57% accuracy; ANNs correctly recognized eight out of fourteen expressions with relying on data from a single detection sensor. Increasing the available sensors within the basin significantly improved the accuracy of the simulation results (from 57% to 100%). Copyright © 2013 Elsevier Ltd. All rights reserved.
Heat pipe radiator technology for space power systems
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Gustafson, E.; Ercegovic, B. A.
1986-01-01
High-reliability high-performance deployable monogroove and dual-slot heat pipe radiator systems to meet the requirements for electric power in future space missions, such as the 300-kW(e) electric powder demand projected for NASA's Space Station, are discussed. Analytical model trade studies of various configurations show the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight reduction potential over the 50-350 F temperature range. The ammonia-aluminum monogroove heat pipe, limited to below-180 F operating temperatures, is under development, and can employ methanol-stainless steel heat pipes to achieve operating temperatures in excess of 300 F. Dual-slot heat pipe configuration proof-of-concept testing was begun in 1985.
Guided wave radiation from a point source in the proximity of a pipe bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brath, A. J.; Nagy, P. B.; Simonetti, F.
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-Dmore » elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.« less
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Glass, David E.
1992-01-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
NASA Astrophysics Data System (ADS)
Camarda, Charles J.; Glass, David E.
1992-10-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
Ultrasonic guided wave tomography for wall thickness mapping in pipes
NASA Astrophysics Data System (ADS)
Willey, Carson L.
Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe. An inversion method that iteratively uses the forward model is then developed to form a map of wall thickness for the entire pipe section comprised between two ring arrays of ultrasonic transducers that encircle the pipe. It is shown that time independent parametric uncertainties relative to the pipe manufacturing tolerances, transducers position, and ultrasonic properties of the material of the pipe can be minimized through a differential approach that is aimed at determining the change in state of the pipe relative to a reference condition. On the other hand, time dependent parametric uncertainties, such as those caused by temperature variations, can be addressed by exploiting the spatial diversity of array measurements and the non-contact nature of electromagnetic acoustic transducers (EMATs). The range of possible applications of GWT to pipes is investigated through theoretical and numerical studies aimed at developing an understanding of how the performance of GWT varies depending on damage morphology, pipe geometry, and array configuration.
NASA Astrophysics Data System (ADS)
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.
A MODEL FOR CHLORINE CONCENTRATION DECAY IN PIPES
A model that accounts for transport in the axial direction by convection and in the radial direction by diffusion and that incorporates first order decay kinetics has been developed to predict the chlorine concentration in a pipe in a distribution system. A generalized expressio...
Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik
2010-09-01
Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.
Analytical and numerical modeling for flexible pipes
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Geng
2011-12-01
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
Dynamic model including piping acoustics of a centrifugal compression system
NASA Astrophysics Data System (ADS)
van Helvoirt, Jan; de Jager, Bram
2007-04-01
This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.
Residential water usage: A case study of the major cities of the western region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Abu Rizaiza, Omar S.
1991-05-01
Socioeconomic and climatological data of the major cities of the western region of Saudi Arabia have been used to develop several models to estimate the residential water usage for different kinds of houses. The developed models correlate the residential water usages with temperature, income, family size, price of water, and availability of a garden within the house. The study shows that the residential water uses in houses supplied by a public pipe network are 1.4-2 times greater than the residential water uses in houses supplied by tankers. It also shows that the price elasticities are very similar to those estimated in the United States. Income elasticities, on the other hand, are lower than those typically found in more industrialized countries.
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
NASA Astrophysics Data System (ADS)
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik
2011-12-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Díaz-Bouza, Manuel A
2018-06-17
Pipes are one of the key elements in the construction of ships, which usually contain between 15,000 and 40,000 of them. This huge number, as well as the variety of processes that may be performed on a pipe, require rigorous identification, quality assessment and traceability. Traditionally, such tasks have been carried out by using manual procedures and following documentation on paper, which slows down the production processes and reduces the output of a pipe workshop. This article presents a system that allows for identifying and tracking the pipes of a ship through their construction cycle. For such a purpose, a fog computing architecture is proposed to extend cloud computing to the edge of the shipyard network. The system has been developed jointly by Navantia, one of the largest shipbuilders in the world, and the University of A Coruña (Spain), through a project that makes use of some of the latest Industry 4.0 technologies. Specifically, a Cyber-Physical System (CPS) is described, which uses active Radio Frequency Identification (RFID) tags to track pipes and detect relevant events. Furthermore, the CPS has been integrated and tested in conjunction with Siemens’ Manufacturing Execution System (MES) (Simatic IT). The experiments performed on the CPS show that, in the selected real-world scenarios, fog gateways respond faster than the tested cloud server, being such gateways are also able to process successfully more samples under high-load situations. In addition, under regular loads, fog gateways react between five and 481 times faster than the alternative cloud approach.
NASA Astrophysics Data System (ADS)
Venkata, Santhosh Krishnan; Roy, Binoy Krishna
2016-03-01
Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.
A smartphone app and analysis framework for rapidly characterizing and predicting shorebird habitat
NASA Astrophysics Data System (ADS)
Thieler, E. R.; Zeigler, S. L.; Plant, N. G.; Gutierrez, B.; Winslow, L. A.; Hines, M. K.; Read, J. S.; Walker, J. I.
2016-12-01
We developed a smartphone application called iPlover as a distributed data collection system to gather synoptic observations of shorebird habitat selection preferences, and a Bayesian network that exploits the data to predict habitat suitability. We tested this approach to modeling habitat suitability for the federally listed piping plover (Charadrius melodus) on coastal beaches and barrier islands along 1500 km of coast from North Carolina to Maine, USA. Using agile software development approaches, the iPlover application was conceived, developed and deployed in just a few months following Hurricane Sandy in 2012. This application supported collaborative efforts of nearly 100 stakeholders, resulting in over 2000 data points describing piping plover habitat selection patterns. The data were analyzed in a Bayesian network to evaluate the probability that a specific combination of habitat variables is associated with a nesting site. Subsequent testing shows that iPlover data are robust to variability in user classification and that the Bayesian network has a high level of predictive accuracy. Our work addresses a variety of scientific problems in understanding and managing dynamic coastal landscapes for beach-dependent species that require biological and geological data that (1) span the range of relevant environments and habitats, (2) can be updated seasonally to interannually, and (3) capture spatial detail. It is difficult to acquire such data; the data often have limited focus due to resource constraints, can be challenging to coordinate between different regions, are collected by non-specialists, or lack observational uniformity. Furthermore, associated data analysis techniques are often limited in their ability to consider new information as data are collected from additional study sites and updated. We present examples of how this approach can be used to map past, present, and future habitat suitability for sites of interest. We also describe lessons learned and identify several elements of scientific mobile applications that increase the likelihood for success during development, implementation, and maintenance. Methods used here to develop and exploit a distributed data collection system have broad applicability to interdisciplinary environmental monitoring, modeling and management.
Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-01-01
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes. PMID:25271565
Study on finned pipe performance as a ground heat exchanger
NASA Astrophysics Data System (ADS)
Lin, Qinglong; Ma, Jinghui; Shi, Lei
2017-08-01
The GHEs (ground heat exchangers) is an important element that determines the thermal efficiency of the entire ground-source heat-pump system. The aim of the present study is to clarify thermal performance of a new type GHE pipe, which consists straight fins of uniform cross sectional area. In this paper, GHE model is introduced and an analytical model of new type GHE pipe is developed. The heat exchange rate of BHEs utilizing finned pips is 40.42 W/m, which is 16.3% higher than normal BHEs, based on simulation analyses.
A proposal of optimal sampling design using a modularity strategy
NASA Astrophysics Data System (ADS)
Simone, A.; Giustolisi, O.; Laucelli, D. B.
2016-08-01
In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Modeling of surface roughness effects on Stokes flow in circular pipes
NASA Astrophysics Data System (ADS)
Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian
2018-02-01
Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.
Yang, Cui; Latkin, Carl; Muth, Stephen Q.; Rudolph, Abby
2014-01-01
The purpose of this analysis was to examine the effect of social network cohesiveness on drug economy involvement, and to test whether this relationship is mediated by drug support network size in a sample of active injection drug users. Involvement in the drug economy was defined by self-report of participation in at least one of the following activities: selling drugs, holding drugs or money for drugs, providing street security for drug sellers, cutting/packaging/cooking drugs, selling or renting drug paraphernalia (e.g., pipes, tools, rigs), and injecting drugs in others’ veins. The sample consists of 273 active injection drug users in Baltimore, Maryland who reported having injected drugs in the last 6 months and were recruited through either street outreach or by their network members. Egocentric drug support networks were assessed through a social network inventory at baseline. Sociometric networks were built upon the linkages by selected matching characteristics, and k-plex rank was used to characterize the level of cohesiveness of the individual to others in the social network. Although no direct effect was observed, structural equation modeling indicated k-plex rank was indirectly associated with drug economy involvement through drug support network size. These findings suggest the effects of large-scale sociometric networks on injectors’ drug economy involvement may occur through their immediate egocentric networks. Future harm reduction programs for injection drug users (IDUs) should consider providing programs coupled with economic opportunities to those drug users within a cohesive network subgroup. Moreover, individuals with a high connectivity to others in their network may be optimal individuals to train for diffusing HIV prevention messages. PMID:25309015
Modeling lead concentration in drinking water of residential plumbing pipes and hot water tanks.
Chowdhury, Shakhawat; Kabir, Fayzul; Mazumder, Mohammad Abu Jafar; Zahir, Md Hasan
2018-09-01
Drinking water is a potential source of exposure to lead (Pb), which can pose risk to humans. The regulatory agencies often monitor Pb in water treatment plants (WTP) and/or water distribution systems (WDS). However, people are exposed to tap water inside the house while water may stay in the plumbing premise for several hours prior to reaching the tap. Depending on stagnation period and plumbing premise, concentrations of Pb in tap water can be significantly higher than the WDS leading to higher intake of Pb than the values from WDS or WTP. In this study, concentrations of Pb and water quality parameters were investigated in WDS, plumbing pipe (PP) and hot water tanks (HWT) for 7months. The samples were collected and analyzed on bi-weekly basis for 7 times a day. Several linear, non-linear and neural network models were developed for predicting Pb in PP and HWT. The models were validated using the additional data, which were not used for model development. The concentrations of Pb in PP and HWT were 1-1.17 and 1-1.21 times the Pb in WDS respectively. Concentrations of Pb were higher in summer than winter. The models showed moderate to excellent performance (R 2 =0.85-0.99) in predicting Pb in PP and HWT. The correlation coefficients (r) with the validation data were in the ranges of 0.76-0.90 and 0.97-0.99 for PP and HWT respectively. The models can be used for predicting Pb in tap water, which can assist to better protect the humans. Copyright © 2018. Published by Elsevier B.V.
Eren, Beytullah; Karadagli, Fatih
2012-03-06
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
Investigation of bubbles in arterial heat pipes
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1972-01-01
The behavior of gas occlusions in arterial heat pipes has been studied experimentally and theoretically. Specifically, the gas-liquid system properties, solubility and diffusivity, have been measured from -50 to 100 C for helium and argon in ammonia, Freon-21 (CHC12F), and methanol. Properties values obtained were then used to experimentally test models for gas venting from a heat pipe artery under isothermal conditions (i.e., no-heat flow), although the models, as developed, are also applicable to heat pipes operated at power, with some minor modifications. Preliminary calculations indicated arterial bubbles in a stagnant pipe require from minutes to days to collapse and vent. It has been found experimentally that a gas bubble entrapped within an artery structure has a very long lifetime in many credible situations. This lifetime has an approximately inverse exponential dependence on temperature, and is generally considerably longer for helium than for argon. The models postulated for venting under static conditions were in general quantitative agreement with experimental data. Factors of primary importance in governing bubble stability are artery diameter, artery wall thickness, noncondensible gas partial pressure, and the property group (the Ostwald solubility coefficient multiplied by the gas/liquid diffusivity).
One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.
Lhomme, J; Bouvier, C; Mignot, E; Paquier, A
2006-01-01
A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.
Epidemiology of urban water distribution systems
NASA Astrophysics Data System (ADS)
Bardet, Jean-Pierre; Little, Richard
2014-08-01
Urban water distribution systems worldwide contain numerous old and fragile pipes that inevitably break, flood streets and damage property, and disrupt economic and social activities. Such breaks often present dramatically in temporal clusters as occurred in Los Angeles during 2009. These clustered pipe breaks share many characteristics with human mortality observed during extreme climatological events such as heat waves or air pollution. Drawing from research and empirical studies in human epidemiology, a framework is introduced to analyze the time variations of disruptive pipe breaks that can help water agencies better understand clustered pipe failures and institute measures to minimize the disruptions caused by them. It is posited that at any time, a cohort of the pipes comprising the water distribution system will be in a weakened state due to fatigue and corrosion. This frail cohort becomes vulnerable during normal operations and ultimately breaks due to rapid increase in crack lengths induced by abnormal stressors. The epidemiological harvesting model developed in this paper simulates an observed time series of monthly pipe breaks and has both explanatory and predictive power. It also demonstrates that models from nonengineering disciplines such as medicine can provide improved insights into the performance of infrastructure systems.
NASA Astrophysics Data System (ADS)
Osterhoudt, Curtis F.; Marston, Philip L.
2003-04-01
A simple target for simulating narrow low-frequency resonances of cylinders is an open metal pipe completely filled with water. We have previously described how the high-Q organ-pipe modes having a pressure node near each end are easily observed in backscattering experiments with small cylinders [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. The resonance occurs because of the strong reflection of internal acoustic waves from the open ends of the pipe [H. Levine and J. Schwinger, Phys. Rev. 73, 383-406 (1948)]. In the present research, the dependence of the backscattering amplitude on the orientation of the cylinder is measured and modeled. The tilt angle dependence is affected by the symmetry of the organ pipe mode. An approximation was also developed for the backscattering amplitude at high Q resonances based on energy conservation, reciprocity, and the optical theorem. While this analysis applies to cylinders suspended in water away from boundaries, the organ-pipe modes studied may be useful for investigating scattering processes for buried or partially buried cylinders. [Research supported in part by ONR.
Single High Fidelity Geometric Data Sets for LCM - Model Requirements
2006-11-01
are extensive single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems, which make...single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems. During this same period...be sufficiently flexible to accommodate the diverse requirements of various types of structural analyses. Section Properties & Material Data
Almeida, Fabrício; Brennan, Michael; Joseph, Phillip; Whitfield, Stuart; Dray, Simon; Paschoalini, Amarildo
2014-03-20
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.
Almeida, Fabrício; Brennan, Michael; Joseph, Phillip; Whitfield, Stuart; Dray, Simon; Paschoalini, Amarildo
2014-01-01
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors. PMID:24658622
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, Gene T.
1987-01-01
The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.
NQS - NETWORK QUEUING SYSTEM, VERSION 2.0 (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Walter, H.
1994-01-01
The Network Queuing System, NQS, is a versatile batch and device queuing facility for a single Unix computer or a group of networked computers. With the Unix operating system as a common interface, the user can invoke the NQS collection of user-space programs to move batch and device jobs freely around the different computer hardware tied into the network. NQS provides facilities for remote queuing, request routing, remote status, queue status controls, batch request resource quota limits, and remote output return. This program was developed as part of an effort aimed at tying together diverse UNIX based machines into NASA's Numerical Aerodynamic Simulator Processing System Network. This revision of NQS allows for creating, deleting, adding and setting of complexes that aid in limiting the number of requests to be handled at one time. It also has improved device-oriented queues along with some revision of the displays. NQS was designed to meet the following goals: 1) Provide for the full support of both batch and device requests. 2) Support all of the resource quotas enforceable by the underlying UNIX kernel implementation that are relevant to any particular batch request and its corresponding batch queue. 3) Support remote queuing and routing of batch and device requests throughout the NQS network. 4) Support queue access restrictions through user and group access lists for all queues. 5) Enable networked output return of both output and error files to possibly remote machines. 6) Allow mapping of accounts across machine boundaries. 7) Provide friendly configuration and modification mechanisms for each installation. 8) Support status operations across the network, without requiring a user to log in on remote target machines. 9) Provide for file staging or copying of files for movement to the actual execution machine. To support batch and device requests, NQS v.2 implements three queue types--batch, device and pipe. Batch queues hold and prioritize batch requests; device queues hold and prioritize device requests; pipe queues transport both batch and device requests to other batch, device, or pipe queues at local or remote machines. Unique to batch queues are resource quota limits that restrict the amounts of different resources that a batch request can consume during execution. Unique to each device queue is a set of one or more devices, such as a line printer, to which requests can be sent for execution. Pipe queues have associated destinations to which they route and deliver requests. If the proper destination machine is down or unreachable, pipe queues are able to requeue the request and deliver it later when the destination is available. All NQS network conversations are performed using the Berkeley socket mechanism as ported into the respective vendor kernels. NQS is written in C language. The generic UNIX version (ARC-13179) has been successfully implemented on a variety of UNIX platforms, including Sun3 and Sun4 series computers, SGI IRIS computers running IRIX 3.3, DEC computers running ULTRIX 4.1, AMDAHL computers running UTS 1.3 and 2.1, platforms running BSD 4.3 UNIX. The IBM RS/6000 AIX version (COS-10042) is a vendor port. NQS 2.0 will also communicate with the Cray Research, Inc. and Convex, Inc. versions of NQS. The standard distribution medium for either machine version of NQS 2.0 is a 60Mb, QIC-24, .25 inch streaming magnetic tape cartridge in UNIX tar format. Upon request the generic UNIX version (ARC-13179) can be provided in UNIX tar format on alternate media. Please contact COSMIC to discuss the availability and cost of media to meet your specific needs. An electronic copy of the NQS 2.0 documentation is included on the program media. NQS 2.0 was released in 1991. The IBM RS/6000 port of NQS was developed in 1992. IRIX is a trademark of Silicon Graphics Inc. IRIS is a registered trademark of Silicon Graphics Inc. UNIX is a registered trademark of UNIX System Laboratories Inc. Sun3 and Sun4 are trademarks of Sun Microsystems Inc. DEC and ULTRIX are trademarks of Digital Equipment Corporation.
NASA Astrophysics Data System (ADS)
Aksenov, Andrey; Malysheva, Anna
2018-03-01
An exact calculation of the heat exchange of evaporative surfaces is possible only if the physical processes of hydrodynamics of two-phase flows are considered in detail. Especially this task is relevant for the design of refrigeration supply systems for high-rise buildings, where powerful refrigeration equipment and branched networks of refrigerants are used. On the basis of experimental studies and developed mathematical model of asymmetric dispersed-annular flow of steam-water flow in horizontal steam-generating pipes, a calculation formula has been obtained for determining the boundaries of the zone of improved heat transfer and the critical value of the heat flux density. A new theoretical approach to the solution of the problem of the flow structure of a two-phase flow is proposed. The applied method of dissipative characteristics of a two-phase flow in pipes and the principle of a minimum rate of entropy increase in stabilized flows made it possible to obtain formulas that directly reflect the influence of the viscous characteristics of the gas and liquid media on their distribution in the flow. The study showed a significant effect of gravitational forces on the nature of the phase distribution in the cross section of the evaporative tubes. At a mass velocity of a two-phase flow less than 700 kg / m2s, the volume content of the liquid phase near the upper outer generating lines of the tube is almost an order of magnitude lower than the lower one. The calculation of the heat transfer crisis in horizontal evaporative tubes is obtained. The calculated dependence is in good agreement with the experimental data of the author and a number of foreign researchers. The formula generalizes the experimental data for pipes with the diameter of 6-40 mm in the pressure of 2-7 MPa.
Fuchs, L; Beeneken, T
2005-01-01
The paper describes the realization of a real-time control for the Vienna sewer system. The project is scheduled for completion for 2004. The 3.5 year project comprises all planning stages starting with the recording of data up to the planning of measuring and controlling units. The concrete steps of the planning stages are explained. A measuring system including 25 rainfall measurements, 40 flow measurements and 20 water level measurements is implemented as an online system. This measuring system is designed to achieve two objectives, on the one hand the real-time control and on the other hand the calibration of the model that is used for the hydrodynamic sewer system simulation. The approx. 53,000 pipes have served to generate a coarse network of no more than approx. 2600 pipes. The area data were derived with high accuracy from available aerial photograph interpretations. With simulation runs of a rule-based control software the system operation was examined. A self-learning system will improve the rule basis. A forecasting model that uses weather observation radar will additionally influence the controlling decisions. The findings from the investigations are immediately considered in the planning of measuring and control units. The simulated results for the first phase of implementation, which demonstrate the benefit of RTC for the Vienna sewer system, are explained.
Heat pipes in solar collectors
NASA Astrophysics Data System (ADS)
Bairamov, R.; Toiliev, K.
The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed
Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1992-01-01
Previous numerical and experimental studies indicate that the high-temperature heat pipe startup process is characterized by a moving hot zone with relatively sharp fronts. Based on the above observation, a flat-front model for an approximate analytical solution is proposed. A closed-form solution related to the temperature distribution in the hot zone and the hot zone length as a function of time are obtained. The analytical results agree well with the corresponding experimental data, and provide a quick prediction method for the heat pipe startup performance. Finally, a heat pipe limitation related to the frozen startup process is identified, and an explicit criterion for the high-temperature heat pipe startup is derived. The frozen startup limit identified in this paper provides a fundamental guidance for high-temperature heat pipe design.
NASA Astrophysics Data System (ADS)
Moore, W. B.; Simon, J. I.
2018-05-01
We propose that cooling via volcanic heat pipes may provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases.
Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation
NASA Astrophysics Data System (ADS)
Doru, Zdrenghea
2017-10-01
The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater than that obtained in the experimental tests. Experimental and numerical studies are used to establish the residual characteristic flexural tensile strength minimum guaranteed and limits of applicability of concrete pipes reinforced with steel fibres used in various field and loading situations.
NASA Astrophysics Data System (ADS)
Kumpel, E.; Nelson, K. L.
2012-12-01
An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real-time measurements document variability in water quality throughout the 2-8 hour supply period. Our results show that piped water is not always safe water, but that safe water can be achieved in an intermittent supply under certain physical and operational conditions. Intermittent piped water supply is an important constraint on access to safe water in towns and cities in low-income countries, and strategies that improve these existing systems can help urban residents gain access to safe water. References van den Berg, C., and Danilenko, A. (2010). "The IBNET Water Supply and Sanitation Performance Blue Book: The International Benchmarking Network for Water and Sanitation Utilities Databook." World Bank Washington, DC.
NASA Astrophysics Data System (ADS)
Korovin, Iakov S.; Tkachenko, Maxim G.
2018-03-01
In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.
ERIC Educational Resources Information Center
Roman, Harry T.
2013-01-01
The ability to remotely inspect equipment of an aging infrastructure is becoming of major interest to many industries. Often the ability to just get a look at a piece of critical equipment can yield very important information. With millions of miles of piping installed throughout the United States, this vast network is critical to oil, natural…
Hydrologic connectivity and threshold behavior of hillslopes with fragipans and soil pipe networks
USDA-ARS?s Scientific Manuscript database
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage of the connection of water flow ...
Asset deterioration and discolouration in water distribution systems.
Husband, P S; Boxall, J B
2011-01-01
Water Distribution Systems function to supply treated water safe for human consumption and complying with increasingly stringent quality regulations. Considered primarily an aesthetic issue, discolouration is the largest cause of customer dissatisfaction associated with distribution system water quality. Pro-active measures to prevent discolouration are sought yet network processes remain insufficiently understood to fully justify and optimise capital or operational strategies to manage discolouration risk. Results are presented from a comprehensive fieldwork programme in UK water distribution networks that have determined asset deterioration with respect to discolouration. This is achieved by quantification of material accumulating as cohesive layers on pipe surfaces that when mobilised are acknowledged as the primary cause of discolouration. It is shown that these material layers develop ubiquitously with defined layer strength characteristics and at a consistent and repeatable rate dependant on water quality. For UK networks iron concentration in the bulk water is shown as a potential indicator of deterioration rate. With material layer development rates determined, management decisions that balance discolouration risk and expenditure to maintain water quality integrity can be justified. In particular the balance between capital investment such as improving water treatment output or pipe renewal and operational expenditure such as the frequency of network maintenance through flushing may be judged. While the rate of development is shown to be a function of water quality, the magnitude (peak or average turbidity) of discolouration incidents is shown to be dominated by hydraulic conditions. From this it can be proposed that network hydraulic management, such as regular periodic 'stressing', is a potential strategy in reducing discolouration risk. The ultimate application of this is the hydraulic design of self-cleaning networks to maintain discolouration risk below acceptable levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sinha, S K; Karray, F
2002-01-01
Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
NASA Astrophysics Data System (ADS)
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
Cryogenic thermal diode heat pipes
NASA Technical Reports Server (NTRS)
Alario, J.
1979-01-01
The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.
Alani, Amir M.; Faramarzi, Asaad
2015-01-01
In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092
Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array
NASA Astrophysics Data System (ADS)
Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie
2017-11-01
Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.
Mathematical modeling and analysis of heat pipe start-up from the frozen state
NASA Technical Reports Server (NTRS)
Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.
1989-01-01
The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.
Mathematical modeling and analysis of heat pipe start-up from the frozen state
NASA Technical Reports Server (NTRS)
Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.
1990-01-01
The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.
NASA Astrophysics Data System (ADS)
Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.
SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.
Effect of inlet cone pipe angle in catalytic converter
NASA Astrophysics Data System (ADS)
Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd
2018-03-01
The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.
NASA Astrophysics Data System (ADS)
Modlin, James Michael
An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.
Experimental Validation of a Fast Forward Model for Guided Wave Tomography of Pipe Elbows.
Brath, Alex J; Simonetti, Francesco; Nagy, Peter B; Instanes, Geir
2017-05-01
Ultrasonic guided wave tomography (GWT) methods for the detection of corrosion and erosion damage in straight pipe sections are now well advanced. However, successful application of GWT to pipe bends has not yet been demonstrated due to the computational burden associated with the complex forward model required to simulate guided wave propagation through the bend. In a previous paper [Brath et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 61, pp. 815-829, 2014], we have shown that the speed of the forward model can be increased by replacing the 3-D pipe bend with a 2-D rectangular domain in which guided wave propagation is formulated based on an artificially inhomogeneous and elliptically anisotropic (INELAN) acoustic model. This paper provides further experimental validation of the INLEAN model by studying the traveltime shifts caused by the introduction of shallow defects on the elbow of a pipe bend. Comparison between experiments and simulations confirms that a defect can be modeled as a phase velocity perturbation to the INLEAN velocity field with accuracy that is within the experimental error of the measurements. In addition, it is found that the sensitivity of traveltime measurements to the presence of damage decreases as the damage position moves from the interior side of the bend (intrados) to the exterior one (extrados). This effect is due to the nonuniform ray coverage obtainable when transmitting the guided wave signals with one ring array of sources on one side of the elbow and receiving with a second array on the other side.
Athamneh, Liqa; Essien, E James; Sansgiry, Sujit S; Abughosh, Susan
2017-01-01
In this study, we examined the effect of theory of planned behavior (TPB) constructs on the intention to quit water pipe smoking by using an observational, survey-based, cross-sectional study design with a convenient sample of Arab American adults in Houston, Texas. Multivariate logistic regression models were used to determine predictors of intention to quit water pipe smoking in the next year. A total of 340 participants completed the survey. Behavioral evaluation, normative beliefs, and motivation to comply were significant predictors of an intention to quit water pipe smoking adjusting for age, gender, income, marital status, and education. Interventions and strategies that include these constructs will assist water pipe smokers in quitting.
Determination of optimal tool parameters for hot mandrel bending of pipe elbows
NASA Astrophysics Data System (ADS)
Tabakajew, Dmitri; Homberg, Werner
2018-05-01
Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.
[Cytotoxicity and genotoxicity of drinking water of two networks supplied by surface water].
Pellacani, Claudia; Branchi, Elisa; Buschini, Annamaria; Furlini, Mariangela; Poli, Paola; Rossi, Carlo
2005-01-01
Evaluation of cytotoxic and genotoxic load of drinking water in relationship to the source of supplies, the disinfection process, and the piping system. Two treatment/distribution networks of drinking water, the first (#1) located near the source, the second (#2) located near the mouth of a river supplying the plants. Water samples were collected before (F) and after (A) the disinfection process and in two points (R1 and R2) of the piping system. The samples, concentrated on C18, were tested for DNA damage in human leukocytes by the Comet assay and for gene conversion, reversion and mitochondrial mutability in Saccharomyces cerevisiae D7 strain. The approach used in this study is able to identify genotoxic compounds at low concentration and evaluate their antagonism/synergism in complex mixtures. Comet assay results show that the raw water quality depends on the sampling point, suggesting that a high input of environmental pollutants occurred during river flowing; they also show that the disinfection process can both detoxify or enhance biological activity of raw water according to its quality and that the piping systems do not affect tap water cytotoxic/genotoxic load. The yeast tests indicate the presence of some disinfection by-products effective on mitochondrial DNA. The biological assays used in this study are proven to be able to detect the presence of low concentrations of toxic/genotoxic compounds and assess the sources of their origin/production.
Dynamical constraints on kimberlite volcanism
NASA Astrophysics Data System (ADS)
Sparks, R. S. J.; Baker, L.; Brown, R. J.; Field, M.; Schumacher, J.; Stripp, G.; Walters, A.
2006-07-01
Kimberlite volcanism involves the ascent of low viscosity (0.1 to 1 Pa s) and volatile-rich (CO 2 and H 2O) ultrabasic magmas from depths of 150 km or greater. Theoretical models and empirical evidence suggest ascent along narrow (˜1 m) dykes at speeds in the range > 4 to 20 m/s. With typical dyke breadths of 1 to 10 km, magma supply rates are estimated in the range 10 2 to 10 5 m 3/s with eruption durations of many hours to months. Based on observations, theory and experiments we propose a four-stage model for kimberlite eruptions to explain the main geological relationships of kimberlites. In stage I magma reaches the Earth's surface along fissures and erupts explosively due to their high volatile content. The early flow exit conditions are overpressured with choked flow conditions; an exit velocity of ˜200 m/s is estimated as representative. Explosive expansion and near surface overpressures initiate crater and pipe formation from the top downwards. In stage II under-pressures (the difference between the lithostatic pressure and pressure of the erupting mixture) develop within the evolving pipe causing rock bursting at depth, undermining overlying rocks and causing down-faulting and crater rim slumping. Rocks falling into the pipe interior are ejected by the strong explosive flows. Stage II is the erosive stage of pipe formation. As the pipe widens and deepens larger under-pressures develop enhancing pipe wall instability. A critical threshold is reached when the exit pressure falls to one atmosphere. As the pipe widens and deepens further the gas exit velocity declines and ejecta becomes trapped within the pipe, initiating stage III. A fluidised bed of pyroclasts develops within the pipe as the eruption wanes to form typical massive volcaniclastic kimberlite. Marginal breccias represent the transition between stages II and III. After the eruption stage IV is a period of hydrothermal metamorphism (principally serpentinisation) and alteration as the pipe cools and meteoric waters infiltrate the hot pipe fill. Following an eruption an open crater can be filled by kimberlite- and country-rock derived sediments, forming the crater-facies.
NASA Technical Reports Server (NTRS)
Mahefkey, E. T.; Richter, R.
1981-01-01
The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.
Design and development of integral heat pipe/thermal energy storage devices
NASA Astrophysics Data System (ADS)
Mahefkey, E. T.; Richter, R.
1981-06-01
The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.
Study and Control of Scour below Pipelines under unidirectional flow
NASA Astrophysics Data System (ADS)
Kabiri, Shima; Hoseinzadeh Dalir, Ali
2016-04-01
Water and other fluids pipelines laid on sandy rivers and sea bed change flow pattern around pipelines. These changes increase the bed shear stress and the degree of confusion around the pipes and cause to create scour hole below the pipes. In this situation, the occurrence of scour below the pipelines may lead to instability, fracture and bending and even breakage where cause very severe economic and environmental harms eventually. In this research as well as studying of scour under the pipelines, the bed sill had been used as a new mechanism in order to reduce and control of scour. For this purpose, 3 pipes (smooth) with different diameters (D) were modelled in flow condition of PIC U/Uc=0.8-0.9 in the channel with 11m length, 25cm width and depth of 50 cm. Experiment has been performed in below 2 modes: 1) Scour below a smooth pipe without bed sill 2) Scour below a smooth pipe with bed sill. In the 2nd modes bed sill was located at 4 different distances (L=0,D/4,D/2,D) of downstream Of the pipe central axis. In the experiments bed sill was a barrier for spreading wake vortices and it controlled erosions of downstream. Results of this research indicated that whatever the distance of bed sill from central axis of pipe is less, there is the most influence in reducing the scour depth below pipe. In the case that bed sill had been located exactly under central axis of pipe, scour depth under pipe decreased about 100% Also in this situation with passing a long time from the beginning of examination, the pipe self-burial process occurred due to vortex creation in pipe downstream and relocation of particles toward pipe.
Cold Start of a Radiator Equipped with Titanium-Water Heat Pipes
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Sanzi, James L.; Siamidis, John
2008-01-01
Radiator panels utilizing titanium-water heat pipes are being considered for lunar applications. A traditional sandwich structure is envisioned where heat pipes are embedded between two high thermal conductivity face sheets. The heat pipe evaporators are to be thermally connected to the heat source through one or more manifolds containing coolant. Initial radiator operation on the lunar surface would likely follow a cold soak where the water in the heat pipes is purposely frozen. To achieve heat pipe operation, it will be necessary to thaw the heat pipes. One option is to allow the sunlight impinging on the surface at sunrise to achieve this goal. Testing was conducted in a thermal vacuum chamber to simulate the lunar sunrise and additional modeling was conducted to identify steady-state and transient response. It was found that sunlight impinging on the radiator surface at sunrise was insufficient to solely achieve the goal of thawing the water in the heat pipes. However, starting from a frozen condition was accomplished successfully by applying power to the evaporators. Start up in this fashion was demonstrated without evaporator dryout. Concern is raised over thawing thermosyphons, vertical heat pipes operating in a gravity field, with no wick in the condenser section. This paper presents the results of the simulated cold start study and identifies future work to support radiator panels equipped with titanium-water heat pipes.
Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe
NASA Astrophysics Data System (ADS)
Obeid, Obeid; Alfano, Giulio; Bahai, Hamid
2017-08-01
The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.
Infrasound-array-element frequency response: in-situ measurement and modeling
NASA Astrophysics Data System (ADS)
Gabrielson, T.
2011-12-01
Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command
NASA Astrophysics Data System (ADS)
Mustapha, S.; Braytee, A.; Ye, L.
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
Predoi, Mihai Valentin
2014-09-01
The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ivankovic, A.; Muzaferija, S.; Demirdzic, I.
1997-07-01
Rapid Crack Propagation (RCP) along pressurised plastic pipes is by far the most dangerous pipe failure mode. Despite the economic benefits offered by increasing pipe size and operating pressure, both strategies increase the risk and the potential consequences of RCP. It is therefore extremely important to account for RCP in establishing the safe operational conditions. Combined experimental-numerical study is the only reliable approach of addressing the problem, and extensive research is undertaken by various fracture groups (e.g. Southwest Research Institute - USA, Imperial College - UK). This paper presents numerical results from finite volume modelling of full-scale test on medium density polyethylene gas pressurised pipes. The crack speed and pressure profile are prescribed in the analysis. Both steady-state and transient RCPs are considered, and the comparison between the two shown. The steady-state results are efficiently achieved employing a full multigrid acceleration technique, where sets of progressively finer grids are used in V-cycles. Also, the effect of inelastic behaviour of polyethylene on RCP results is demonstrated.
Modelling and simulation of heat pipes with TAIThermIR (Conference Presentation)
NASA Astrophysics Data System (ADS)
Winkelmann, Max E.
2016-10-01
Regarding thermal camouflage usually one has to reduce the surface temperature of an object. All vehicles and installations having a combustion engine usually produce a lot of heat with results on hot spots on the surface which are highly conspicuous. Using heat pipes to transfer this heat to another place on the surface more efficiently might be a way to reduce those hotspots and the overall conspicuity. In a first approach, a model for the Software TAIThermIR was developed to test which parameters of the heat pipes are relevant and what effects can be achieved. It will be shown, that the thermal resistivity of contact zones are quite relevant and the thermal coupling of the engine (source of heat) defines if the alteration of the thermal signature is large or not. Furthermore the impact of the use of heat pipes in relation to surface material is discussed. The influence of different weather scenarios on the change of signatures due to the use of heat pipes is of minor relevance and depends on the choice of the surface material. Finally application issues for real systems are discussed.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.; Caldeira, K.; Ricke, K.
2014-12-01
With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.
NASA Astrophysics Data System (ADS)
Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro
2017-06-01
In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).
Reconstruction of gas distribution pipelines in MOZG in Poland using PE and PA pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowicz, W.; Podziemski, T.; Kramek, E.
1996-12-31
MOZG--Warsaw Regional Gas Distribution Company was established in 1856. Now it is one of six gas distribution companies in Poland. Due to steadily increasing safety demands, some of the pipelines will need reconstruction. The majority of the substandard piping is located in urban areas. The company wanted to gain experiences in applying reconstruction technologies using two different plastic materials polyethylene and polyamide. They also wanted to assess the technical and economic practicalities of performing relining processes. A PE project--large diameter polyethylene relining (450 mm) conducted in Warsaw in 1994/95 and PA projects--relining using polyamide pipes, projects conducted in Radom andmore » in Warsaw during 1993 and 1994 are the most interesting and representative for this kind of works. Thanks to the experience obtained whilst carrying out these projects, reconstruction of old gas pipelines has become routine. Now they often use polyethylene relining of smaller diameters and they continue both construction and reconstruction of gas network using PA pipes. This paper presents the accumulated knowledge showing the advantages and disadvantages of applied methods. It describes project design and implementation with details and reports on the necessary preparation work, on site job organization and the most common problems arising during the construction works.« less
Potential impacts of changing supply-water quality on drinking water distribution: A review.
Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter
2017-06-01
Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Satellite Radar Interferometry For Risk Management Of Gas Pipeline Networks
NASA Astrophysics Data System (ADS)
Ianoschi, Raluca; Schouten, Mathijs; Bas Leezenberg, Pieter; Dheenathayalan, Prabu; Hanssen, Ramon
2013-12-01
InSAR time series analyses can be fine-tuned for specific applications, yielding a potential increase in benchmark density, precision and reliability. Here we demonstrate the algorithms developed for gas pipeline monitoring, enabling operators to precisely pinpoint unstable locations. This helps asset management in planning, prioritizing and focusing in-situ inspections, thus reducing maintenance costs. In unconsolidated Quaternary soils, ground settlement contributes to possible failure of brittle cast iron gas pipes and their connections to houses. Other risk factors include the age and material of the pipe. The soil dynamics have led to a catastrophic explosion in the city of Amsterdam, which triggered an increased awareness for the significance of this problem. As the extent of the networks can be very wide, InSAR is shown to be a valuable source of information for identifying the hazard regions. We monitor subsidence affecting an urban gas transportation network in the Netherlands using both medium and high resolution SAR data. Results for the 2003-2010 period provide clear insights on the differential subsidence rates in the area. This enables characterization of underground motion that affects the integrity of the pipeline. High resolution SAR data add extra detail of door-to-door pipeline connections, which are vulnerable due to different settlements between house connections and main pipelines. The rates which we measure represent important input in planning of maintenance works. Managers can decide the priority and timing for inspecting the pipelines. The service helps manage the risk and reduce operational cost in gas transportation networks.
Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey
2015-04-01
MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge financial support by a Grant from the president of the Russian Federation (SP-2222.2012.5) and by Russian foundation for basic research (RFBR 15-31-20585).
Flow cytometry for immediate follow-up of drinking water networks after maintenance.
Van Nevel, Sam; Buysschaert, Benjamin; De Roy, Karen; De Gusseme, Bart; Clement, Lieven; Boon, Nico
2017-03-15
Drinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation. However, this takes at least 21 h of waiting time, which can be crucial when dealing with major supply pipes. A combination of flow cytometric (FCM) bacterial cell counts with FCM fingerprinting techniques is proposed in this study as a fast and sensitive additional technique. In three full scale situations, major supply pipes with 400-1050 mm diameter were emptied for maintenance, shock-chlorinated and flushed with large amounts of clean drinking water before taking back in operation. FCM measurements of the discharged flushing water revealed fast lowering and stabilizing bacterial concentrations once flushing is initiated. Immediate comparison with clean reference drinking water used for flushing was done, and the moment when both waters had similar bacterial concentrations was considered as the endpoint of the necessary flushing works. This was usually after 2-4 h of flushing. FCM fingerprinting, based on both bacteria and FCM background, was used as additional method to verify how similar flushing and reference samples were and yielded similar results. The FCM approved samples were several hours later approved as well by the drinking water supplier after plating and incubation for total Coliforms and Enterococci. These were used as decisive control to set the pipes back in operation. FCM proved to be a more conservative test than plating, yet it yielded immediate results. Application of these FCM methods can therefore avoid long unnecessary waiting times and large drinking water losses. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Water distribution system and diarrheal disease transmission: a case study in Uzbekistan.
Semenza, J C; Roberts, L; Henderson, A; Bogan, J; Rubin, C H
1998-12-01
Deteriorating water treatment facilities and distribution systems pose a significant public health threat, particularly in republics of the former Soviet Union. Interventions to decrease the disease burden associated with these water systems range from upgrading distribution networks to installing reverse osmosis technology. To provide insight into this decision process, we conducted a randomized intervention study to provide epidemiologic data for water policy decisions in Nukus, Uzbekistan, where drinking water quality is suboptimal. We interviewed residents of 240 households, 120 with and 120 without access to municipal piped water. Residents of 62 households without piped water were trained to chlorinate their drinking water at home in a narrow-necked water container with a spout. All study subjects (1583 individuals) were monitored biweekly for self-reported diarrheal illness over a period of 9.5 weeks. The home chlorination intervention group had the lowest diarrheal rate (28.8/1,000 subjects/month) despite lack of access to piped water in their homes. Compared with the two groups that did not receive the intervention this rate was one-sixth that of the group with no piped water (179.2/1,000 subjects/month) and one-third that of the households with piped water (75.5/1,000 subjects/month). More than 30% of the households with piped water lacked detectable levels of chlorine residues in their drinking water, despite two-stage chlorination of the source water, and were at increased risk of diarrhea. Forty-two percent of these municipal users reported that water pressure had been intermittent within the previous two days. The dramatic reduction in diarrheal rates in the home-chlorination intervention group indicates that a large proportion of diarrheal diseases in Nukus are water-borne. The home-chlorination group had less diarrhea than the group with piped water, implicating the distribution system as a source of disease transmission. Taken together, these epidemiologic data would support the hypothesis that diarrhea in the piped water group could be attributed to cross-contamination between the municipal water supply and sewer, due to leaky pipes and lack of water pressure. Relatively inexpensive steps, including chlorination, maintaining water pressure, and properly maintaining the distribution system, rather than reverse osmosis technology, should reduce diarrheal rates.
Hydrothermal alteration of kimberlite by convective flows of external water.
Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.
Bottom's Semiology: The Duck-Rabbit and Magritte's Pipe.
ERIC Educational Resources Information Center
Berthoff, Ann E.
1993-01-01
Explores how a dyadic understanding of perception cancels the validity it might have as a model for the linguistic process. Discusses commonly misunderstood exhibits in the gallery of perception studies--the duck-rabbit and Magritte's pipe. (RS)
NASA Astrophysics Data System (ADS)
Szarf, Krzysztof; Combe, Gael; Villard, Pascal
2015-02-01
The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.
Finite Element Modeling of the World Federation's Second MFL Benchmark Problem
NASA Astrophysics Data System (ADS)
Zeng, Zhiwei; Tian, Yong; Udpa, Satish; Udpa, Lalita
2004-02-01
This paper presents results obtained by simulating the second magnetic flux leakage benchmark problem proposed by the World Federation of NDE Centers. The geometry consists of notches machined on the internal and external surfaces of a rotating steel pipe that is placed between two yokes that are part of a magnetic circuit energized by an electromagnet. The model calculates the radial component of the leaked field at specific positions. The nonlinear material property of the ferromagnetic pipe is taken into account in simulating the problem. The velocity effect caused by the rotation of the pipe is, however, ignored for reasons of simplicity.
Vapor Flow Patterns During a Start-Up Transient in Heat Pipes
NASA Technical Reports Server (NTRS)
Issacci, F.; Ghoniem, N, M.; Catton, I.
1996-01-01
The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.
Cloud Network Helps Stretch IT Dollars
ERIC Educational Resources Information Center
Collins, Hilton
2012-01-01
No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…
Mobile telephony through LEO satellites: To OBP or not
NASA Technical Reports Server (NTRS)
Monte, Paul A.; Louie, Ming; Wiedeman, R.
1991-01-01
GLOBALSTAR is a satellite-based mobile communications system that is interoperable with the current and future Public Land Mobile Network (PLMN) and Public Switched Telephone Network (PSTN). The selection of the transponder type, bent-pipe, or onboard processing (OBP), for GLOBALSTAR is based on many criteria, each of which is essential to the commercial and technological feasibility of GLOBALSTAR. The trade study that was done to determine the pros and cons of a bent-pipe transponder or an onboard processing transponder is described. The design of GLOBALSTAR's telecommunications system is a multi-variable cost optimization between the cost and complexity of individual satellites, the number of satellites required to provide coverage to the service areas, the cost of launching the satellites into their selected orbits, the ground segment cost, user equipment cost, satellite voice channel capacity, and other issues. Emphasis is on the cost and complexity of the individual satellites, specifically the transponder type and the impact of the transponder type on satellite and ground segment cost, satellite power and weight, and satellite voice channel capacity.
Mobile telephony through LEO satellites: To OBP or not
NASA Astrophysics Data System (ADS)
Monte, Paul A.; Louie, Ming; Wiedeman, R.
1991-11-01
GLOBALSTAR is a satellite-based mobile communications system that is interoperable with the current and future Public Land Mobile Network (PLMN) and Public Switched Telephone Network (PSTN). The selection of the transponder type, bent-pipe, or onboard processing (OBP), for GLOBALSTAR is based on many criteria, each of which is essential to the commercial and technological feasibility of GLOBALSTAR. The trade study that was done to determine the pros and cons of a bent-pipe transponder or an onboard processing transponder is described. The design of GLOBALSTAR's telecommunications system is a multi-variable cost optimization between the cost and complexity of individual satellites, the number of satellites required to provide coverage to the service areas, the cost of launching the satellites into their selected orbits, the ground segment cost, user equipment cost, satellite voice channel capacity, and other issues. Emphasis is on the cost and complexity of the individual satellites, specifically the transponder type and the impact of the transponder type on satellite and ground segment cost, satellite power and weight, and satellite voice channel capacity.
NASA Astrophysics Data System (ADS)
Ebtehaj, Isa; Bonakdari, Hossein; Khoshbin, Fatemeh
2016-10-01
To determine the minimum velocity required to prevent sedimentation, six different models were proposed to estimate the densimetric Froude number (Fr). The dimensionless parameters of the models were applied along with a combination of the group method of data handling (GMDH) and the multi-target genetic algorithm. Therefore, an evolutionary design of the generalized GMDH was developed using a genetic algorithm with a specific coding scheme so as not to restrict connectivity configurations to abutting layers only. In addition, a new preserving mechanism by the multi-target genetic algorithm was utilized for the Pareto optimization of GMDH. The results indicated that the most accurate model was the one that used the volumetric concentration of sediment (CV), relative hydraulic radius (d/R), dimensionless particle number (Dgr) and overall sediment friction factor (λs) in estimating Fr. Furthermore, the comparison between the proposed method and traditional equations indicated that GMDH is more accurate than existing equations.
NASA Astrophysics Data System (ADS)
Wilson, Jeffrey M.
This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results indicate a large amount of scatter is associated with this test method. Due to the large amount of scatter present in the leaking pipe evaluations (energy release rate tests), a new laboratory specimen was created to evaluate mixed mode debonding of composite over-wrapped piping. The laboratory specimen results are much more conservative than the leaking pipe evaluations. The laboratory specimen results, however, agree quite favorably to a closed form solution developed in this Dissertation, as well as to energy release rate calculations performed by two different finite element analysis methods, the Modified Crack Closure Integral and the change in compliance method.
NASA Lewis steady-state heat pipe code users manual
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-01-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
Experimental Verification of Steel Pipe Collapse under Vacuum Pressure Conditions
NASA Astrophysics Data System (ADS)
Autrique, R.; Rodal, E.
2016-11-01
Steel pipes are used widely in hydroelectric systems and in pumping systems. Both systems are subject to hydraulic transient effects caused by changes in boundary conditions, such as sudden valve closures, pump failures, or accidents. Water column separation, and its associated vaporization pressure inside the pipe, can cause the collapse of thin walled steel pipes subject to atmospheric pressure, as happened during the well known Oigawa Power Plant accident in Japan, in 1950. The conditions under which thin walled pipes subject to external pressure can collapse have been studied mathematically since the second half of the XIX century, with classical authors Southwell and Von Mises obtaining definitive equations for long and short pipes in the second decade of the XX century, in which the fundamental variables are the diameter to thickness ratio D/t and the length to diameter ratio L/D. In this paper, the predicted critical D/t ratio for steel pipe collapse is verified experimentally, in a physical model able to reproduce hydraulic transients, generating vacuum pressures through rapid upstream valve closures.
NASA Lewis steady-state heat pipe code users manual
NASA Astrophysics Data System (ADS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-06-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.
Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime
2017-09-26
Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.
Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes
NASA Astrophysics Data System (ADS)
Meniconi, S.; Brunone, B.; Ferrante, M.
2012-08-01
In view of scarcity of both experimental data and numerical models concerning transient behavior of cross-section area changes in pressurized liquid flow, the paper presents laboratory data and numerical simulation of the interaction of a surge wave with a partial blockage by a valve, a single pipe contraction or expansion and a series of pipe contraction/expansion in close proximity.With regard to a single change of cross-section area, laboratory data point out the completely different behavior with respect to one of the partially closed in-line valves with the same area ratio. In fact, for the former the pressure wave interaction is not regulated by the steady-state local head loss. With regard to partial blockages, transient tests have shown that the smaller the length, the more intense the overlapping of pressure waves due to the expansion and contraction in series.Numerically, the need for taking into account both the viscoelasticity and unsteady friction is demonstrated, since the classical water-hammer theory does not simulate the relevant damping of pressure peaks and gives rise to a time shifting between numerical and laboratory data. The transient behavior of a single local head loss has been checked by considering tests carried out in a system with a partially closed in-line valve. As a result, the reliability of the quasi steady-state approach for local head loss simulation has been demonstrated in viscoelastic pipes. The model parameters obtained on the basis of transients carried out in single pipe systems have then been used to simulate transients in the more complex pipe systems. These numerical experiments show the great importance of the length of the small-bore pipe with respect to one of the large-bore pipes. Precisely, until a gradually flow establishes in the small-bore pipe, the smaller such a length, the better the quality of the numerical simulation.
The effects of resonances on time delay estimation for water leak detection in plastic pipes
NASA Astrophysics Data System (ADS)
Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.
2018-04-01
In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.
A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight
NASA Astrophysics Data System (ADS)
Haustein, Herman D.; Harnik, Ron S.; Rohlfs, Wilko
2017-08-01
A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet's impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity's viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction's gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5-8, Re = 350-520, We = 2.8-6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200-1800, short pipes (Z = L/d . Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.
2014-12-01
Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.
A study of buried pipeline response to fault movement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiou, Y.J.; Chi, S.Y.; Chang, H.Y.
1994-02-01
This study investigates the buried pipeline response to strike slip fault movement. The large deflection pipe crossing the fault zone is modeled as an elastica, while the remaining portion of small deflection pipe is modeled as a semi-infinite beam on elastic foundation. The finite difference method is applied for the numerical solution and the results agree qualitatively with the earlier works.
Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems.
NASA Technical Reports Server (NTRS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
NASA Technical Reports Server (NTRS)
Evans, Austin Lewis
1987-01-01
A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.
NASA Technical Reports Server (NTRS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.
Mixing at double-Tee junctions with unequal pipe sizes in ...
Pipe flow mixing with various solute concentrations and flow rates at pipe junctions is investigated. The degree of mixing affects the spread of contaminants in a water distribution system. Many studies have been conducted on the mixing at the cross junctions. Yet a few have focused on double-Tee junctions of unequal pipe sizes. To investigate the solute mixing at double-Tee junctions with unequal pipe sizes, a series of experiments were conducted in a turbulent regime (Re=12500–50000) with different Reynolds number ratios and connecting pipe lengths. It is shown that dimensionless outlet concentrations depended on mixing mechanism at the impinging interface of junctions. Junction with a larger pipe size ratio is associated with more complete mixing. The inlet Reynolds number ratio affects mixing more strongly than the outlet Reynolds number ratio. Furthermore, the dimensionless connecting pipe length in a double-Tee played an important and complicated role in the flow mixing. Based on these results, two-dimensional isopleth maps were developed for the calculation of normalized north outlet concentration. This journal article is to communicate the research results on pipe juncture mixing, a widespread and important phenomena in distribution system water quality analysis. The research outcome improves EPANET modeling capability for safe water supplies. In addition, the research is one of the outputs from the EPA-MOST bilateral cooperative research Project #1
Achieving quality of service in IP networks
NASA Astrophysics Data System (ADS)
Hays, Tim
2001-07-01
The Internet Protocol (IP) has served global networks well, providing a standardized method to transmit data among many disparate systems. But IP is designed for simplicity, and only enables a `best effort' service that can be subject to delays and loss of data. For data networks, this is an acceptable trade-off. In the emerging world of convergence, driven by new applications such as video streaming and IP telephony, minimizing latency and packet loss as well as jitter can be critical. Simply increasing the size of the IP network `pipe' to meet those demands is not always sufficient. In this environment, vendors and standards bodies are endeavoring to create technologies and techniques to enable IP to improve the quality of service it can provide, while retaining the characteristics that has enabled it to become the dominant networking protocol.
Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron
2014-01-01
Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.
NASA Astrophysics Data System (ADS)
Boyd, Joshua; Buick, James M.; Green, Simon
2007-09-01
The lattice Boltzmann method is modified to allow the simulation of non-Newtonian shear-dependent viscosity models. Casson and Carreau-Yasuda non-Newtonian blood viscosity models are implemented and are used to compare two-dimensional Newtonian and non-Newtonian flows in the context of simple steady flow and oscillatory flow in straight and curved pipe geometries. It is found that compared to analogous Newtonian flows, both the Casson and Carreau-Yasuda flows exhibit significant differences in the steady flow situation. In the straight pipe oscillatory flows, both models exhibit differences in velocity and shear, with the largest differences occurring at low Reynolds and Womersley numbers. Larger differences occur for the Casson model. In the curved pipe Carreau-Yasuda model, moderate differences are observed in the velocities in the central regions of the geometries, and the largest shear rate differences are observed near the geometry walls. These differences may be important for the study of atherosclerotic progression.
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Waters, C. L.; Sciffer, M. D.
2010-05-01
Long, steel pipelines used to transport essential resources such as gas and oil are potentially vulnerable to space weather. In order to inhibit corrosion, the pipelines are usually coated in an insulating material and maintained at a negative electric potential with respect to Earth using cathodic protection units. During periods of enhanced geomagnetic activity, potential differences between the pipeline and surrounding soil (referred to as pipe-to-soil potentials (PSPs)) may exhibit large voltage swings which place the pipeline outside the recommended "safe range" and at an increased risk of corrosion. The PSP variations result from the "geoelectric" field at the Earth's surface and associated geomagnetic field variations. Previous research investigating the relationship between the surface geoelectric field and geomagnetic source fields has focused on the high-latitude regions where line currents in the ionosphere E region are often the assumed source of the geomagnetic field variations. For the Australian region Sq currents also contribute to the geomagnetic field variations and provide the major contribution during geomagnetic quiet times. This paper presents the results of a spectral analysis of PSP measurements from four pipeline networks from the Australian region with geomagnetic field variations from nearby magnetometers. The pipeline networks extend from Queensland in the north of Australia to Tasmania in the south and provide PSP variations during both active and quiet geomagnetic conditions. The spectral analyses show both consistent phase and amplitude relationships across all pipelines, even for large separations between magnetometer and PSP sites and for small-amplitude signals. Comparison between the observational relationships and model predictions suggests a method for deriving a geoelectric field proxy suitable for indicating PSP-related space weather conditions.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Hainley, Donald C.
1989-01-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Astrophysics Data System (ADS)
Tower, Leonard K.; Hainley, Donald C.
1989-12-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
Stirling engine external heat system design with heat pipe heater
NASA Technical Reports Server (NTRS)
Godett, Ted M.; Ziph, Benjamin
1986-01-01
This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.
Investigation of guided waves propagation in pipe buried in sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less
Numerical simulation of X90 UOE pipe forming process
NASA Astrophysics Data System (ADS)
Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu
2013-12-01
The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.
NASA Astrophysics Data System (ADS)
Hayashi, I.; Kaneko, S.
2014-02-01
Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.
A new model for early Earth: heat-pipe cooling
NASA Astrophysics Data System (ADS)
Webb, A. G.; Moore, W. B.
2013-12-01
In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the surface rocks were forced radially inward, resulting in uplift, exhumation, and shortening. Declining heat sources over time led to an abrupt, dynamically spontaneous transition to plate tectonics. The model predicts a geological record with rapid, semi-continuous volcanic resurfacing; contractional deformation; a low geothermal gradient across the bulk of the lithosphere; and a rapid decrease in heat-pipe volcanism after the initiation of plate tectonics. Review of data from ancient cratons and the detrital zircon record is consistent with these predictions. In this presentation, we review these findings with a focus on comparison of the model predictions with the geologic record. This comparison suggests that Earth cooled via heat pipes until a ~3.2 Ga subduction initiation episode. The Isua record reflects long-lived contractional deformation, and the Barberton and Pilbara records preserve heat-pipe lithospheric development in regions without significant contraction. In summary, the heat-pipe model provides a view of early Earth that is more globally applicable than existing plate and vertical tectonic models.
NASA Astrophysics Data System (ADS)
Rotaru, Ionela Magdalena
2015-09-01
Knowledge management is a powerful instrument. Areas where knowledge - based modelling can be applied are different from business, industry, government to education area. Companies engage in efforts to restructure the database held based on knowledge management principles as they recognize in it a guarantee of models characterized by the fact that they consist only from relevant and sustainable knowledge that can bring value to the companies. The proposed paper presents a theoretical model of what it means optimizing polyethylene pipes, thus bringing to attention two important engineering fields, the one of the metal cutting process and gas industry, who meet in order to optimize the butt fusion welding process - the polyethylene cutting part - of the polyethylene pipes. All approach is shaped on the principles of knowledge management. The study was made in collaboration with companies operating in the field.
Ultrasonic multi-skip tomography for pipe inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno; Zon, Tim van
The inspection of wall loss corrosion is difficult at pipe supports due to limited accessibility. The recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, butmore » it is difficult to quantify both the extent and depth of the loss. Multi-skip tomography has been developed to reconstruct the wall thickness profile along the axial direction of the pipe. The method uses model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). Experimental results are very encouraging. Various defects (slot and flat bottom hole) are reconstructed using the tomographic inversion. The general shape and width are well recovered. The current sizing accuracy is in the order of 1 mm.« less
NASA Astrophysics Data System (ADS)
Sridhara, Basavapatna Sitaramaiah
In an internal combustion engine, the engine is the noise source and the exhaust pipe is the main transmitter of noise. Mufflers are often used to reduce engine noise level in the exhaust pipe. To optimize a muffler design, a series of experiments could be conducted using various mufflers installed in the exhaust pipe. For each configuration, the radiated sound pressure could be measured. However, this is not a very efficient method. A second approach would be to develop a scheme involving only a few measurements which can predict the radiated sound pressure at a specified distance from the open end of the exhaust pipe. In this work, the engine exhaust system was modelled as a lumped source-muffler-termination system. An expression for the predicted sound pressure level was derived in terms of the source and termination impedances, and the muffler geometry. The pressure source and monopole radiation models were used for the source and the open end of the exhaust pipe. The four pole parameters were used to relate the acoustic properties at two different cross sections of the muffler and the pipe. The developed formulation was verified through a series of experiments. Two loudspeakers and a reciprocating type vacuum pump were used as sound sources during the tests. The source impedance was measured using the direct, two-load and four-load methods. A simple expansion chamber and a side-branch resonator were used as mufflers. Sound pressure level measurements for the prediction scheme were made for several source-muffler and source-straight pipe combinations. The predicted and measured sound pressure levels were compared for all cases considered. In all cases, correlation of the experimental results and those predicted by the developed expressions was good. Predicted and measured values of the insertion loss of the mufflers were compared. The agreement between the two was good. Also, an error analysis of the four-load method was done.
2002-10-01
proximity to this aluminum bar, then the aluminum element would serve as a heat pipe to rapidly distribute heat to the center sensor and the floor...for a Bent Square Pipe ......................................................... 86 7.3 One-Cell Model for Free Surface Flows...90 7.4.2 Filament Application for Fluid Heating in Microreactor...................................... 91 7.4.3 Model
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Jansen, Ronald; Schoebel, Joerg
2014-12-01
In civil engineering Ground Penetrating Radar becomes more and more a considerable tool for nondestructive testing and exploration of the underground. For example, the detection of existence of utilization pipe networks prior to construction works or detection of damaged spot beneath a paved street is a highly advantageous application. However, different surface conditions as well as ground bounce reflection and antenna cross-talk may seriously affect the detection capability of the entire radar system. Therefore, proper antenna design is an essential part in order to obtain radar data of high quality. In this paper we redesign a given loaded bowtie antenna in order to reduce strong and unwanted signal contributions such as ground bounce reflection and antenna cross-talk. During the optimization process we also review all parameters of our existing antenna in order to maximize energy transfer into ground. The entire process incorporating appropriate simulations along with running measurements on our GPR test site where we buried different types of pipes and cables for testing and developing radar hardware and software algorithms under quasi-real conditions is described in this paper.
NASA Astrophysics Data System (ADS)
Muggleton, J. M.; Kalkowski, M.; Gao, Y.; Rustighi, E.
2016-07-01
Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Whilst there has been considerable research and commercial attention on the accurate location of pipe leakage for many years, the various causes of pipe failures and their identification, have not been well documented; moreover, there are still a number of gaps in the existing knowledge. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s=1, fluid-dominated wave; and the s=2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s=0 torsional wave, is investigated. The effects of the surrounding soil on the characteristics of wave propagation and attenuation are analysed for a compact pipe/soil interface for which there is no relative motion between the pipe wall and the surrounding soil. An analytical dispersion relationship is derived for the torsional wavenumber from which both the wavespeed and wave attenuation can be obtained. How torsional waves can subsequently radiate to the ground surface is then investigated. Analytical expressions are derived for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. A numerical model is also included, primarily in order to validate some of the assumptions made whilst developing the analytical solutions, but also so that some comparison in the results may be made. Example results are presented for both a cast iron pipe and an MDPE pipe buried in two typical soil types.
NASA Astrophysics Data System (ADS)
Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James
2017-09-01
The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.
Nematollahi, Shahrzad; Mansournia, Mohammad Ali; Foroushani, Abbas Rahimi; Mahmoodi, Mahmood; Alavi, Azin; Shekari, Mohammad; Holakouie-Naieni, Kourosh
2018-01-01
Consecutive community health assessments revealed that water-pipe smoking in women and impaired growth in children were among the main health concerns in suburban communities in southern Iran. The aim of the present study was to identify the effects of water-pipe smoking during pregnancy on birth weight. Data from a population-based prospective cohort study of 714 singleton live pregnancies in the suburbs of Bandar Abbas in southern Iran in 2016-2018 were used in this study. Data about water-pipe smoking patterns and birth weight were collected by questionnaires during and after the pregnancy. Low birth weight (LBW) was defined as a birth weight below 2,500 g. Statistical analyses were performed using generalized linear models, and the results were presented in terms of relative risk (RR) and 95% confidence intervals (CI). Fifty (8.2%) of the study subjects smoked water-pipe. The adjusted risk of LBW increased 2-fold in water-pipe smokers (adjusted RR [aRR], 2.09; 95% CI, 1.18 to 3.71), and by 2.0% for each 1-year increase in the duration of water-pipe smoking (aRR, 1.02; 95% CI, 0.99 to 1.05). Our results showed that water-pipe smoking during pregnancy was an important risk factor for LBW in this population sample from southern Iran. The introduction of regulations onto prevent water-pipe smoking and the implementation of community health action plans aiming at empowering women and increasing women's knowledge and awareness regarding the health consequences of water-pipe smoking are proposed.
Liquid metal micro heat pipes for space radiator applications
NASA Technical Reports Server (NTRS)
Gerner, F. M.; Henderson, H. T.
1995-01-01
Micromachining is a chemical means of etching three-dimensional structures, typically in single-crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (micro electro mechanical systems), where in addition to the ordinary two dimensional (planar) microelectronics, it is possible to build three-dimensional micromotors, electrically-actuated microvalves, hydraulic systems, and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor microfabrication. The University of Cincinnati group in collaboration with NASA Lewis formed micro heat pipes in silicon by the above techniques. Work is ongoing at a modest level, but several essential bonding and packaging techniques have been recently developed. Currently, we have constructed and filled water/silicon micro heat pipes. Preliminary thermal tests of arrays of 125 micro heat pipes etched in a 1 inch x 1 inch x 250 micron silicon wafer have been completed. These pipes are instrumented with extremely small P-N junctions to measure their effective conductivity and their maximum operating power. A relatively simple one-dimensional model has been developed in order to predict micro heat pipes' operating characteristics. This information can be used to optimize micro heat pipe design with respect to length, hydraulic diameter, and number of pipes. Work is progressing on the fabrication of liquid-metal micro heat pipes. In order to be compatible with liquid metal (sodium or potassium), the inside of the micro heat pipes will be coated with a refractory metal (such as tungsten, molybdenum, or titanium).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isozaki, Toshikuni; Shibata, Katsuyuki
1997-04-01
Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.
Formation of Sclerotic Hydrate Deposits in a Pipe for Extraction of a Gas from a Dome Separator
NASA Astrophysics Data System (ADS)
Urazov, R. R.; Chiglinstev, I. A.; Nasyrov, A. A.
2017-09-01
The theory of formation of hydrate deposits on the walls of a pipe for extraction of a gas from a dome separator designed for the accident-related collection of hydrocarbons on the ocean floor is considered. A mathematical model has been constructed for definition of a steady movement of a gas in such a pipe with gas-hydrate deposition under the conditions of changes in the velocity, temperature, pressure, and moisture content of the gas flow.
Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment
2017-01-01
Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392
Design, development and test of a capillary pump loop heat pipe
NASA Technical Reports Server (NTRS)
Kroliczek, E. J.; Ku, J.; Ollendorf, S.
1984-01-01
The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.
Advanced thermal energy management: A thermal test bed and heat pipe simulation
NASA Technical Reports Server (NTRS)
Barile, Ronald G.
1986-01-01
Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.
NASA Technical Reports Server (NTRS)
Condit, C. D.; Elston, W. E.
1984-01-01
On Mars, the association of gullied escarpments and chaotic terrain is evidence for failure and scarp retreat of poorly consolidated materials. Some martian gullies have no surface outlets and may have drained through subterranean channels. Similar features, though on a much smaller scale, can be seen in alluvium along terrestrial river banks in semiarid regions, such as the Rio Puerco Valley of central New Mexico. Many of the escarpments along the Rio Puerco are developing through formation of collapse gullies, which drain through soil pipes. Gully development can be monitored on aerial photographs taken in 1935, 1962, and 1980. A regression model was developed to quantify gully evolution over a known time span. Soil pipes and their associated collapse gullies make recognizable signatures on the air photos. The areal extent of this signature can be normalized to the scarp length of each pipe-gully system, which makes comparisons between systems possible.
A three-dimensional turbulent compressible flow model for ejector and fluted mixers
NASA Technical Reports Server (NTRS)
Rushmore, W. L.; Zelazny, S. W.
1978-01-01
A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
NASA Technical Reports Server (NTRS)
Sellers, J. P.
1976-01-01
Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.
Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe
NASA Astrophysics Data System (ADS)
Li, Y. J.; Wu, S. Q.; Jin, T.
2017-12-01
Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.
Long-term predictions of minewater geothermal systems heat resources
NASA Astrophysics Data System (ADS)
Harcout-Menou, Virginie; de ridder, fjo; laenen, ben; ferket, helga
2014-05-01
Abandoned underground mines usually flood due to the natural rise of the water table. In most cases the process is relatively slow giving the mine water time to equilibrate thermally with the the surrounding rock massif. Typical mine water temperature is too low to be used for direct heating, but is well suited to be combined with heat pumps. For example, heat extracted from the mine can be used during winter for space heating, while the process could be reversed during summer to provide space cooling. Altough not yet widely spread, the use of low temperature geothermal energy from abandoned mines has already been implemented in the Netherlands, Spain, USA, Germany and the UK. Reliable reservoir modelling is crucial to predict how geothermal minewater systems will react to predefined exploitation schemes and to define the energy potential and development strategy of a large-scale geothermal - cold/heat storage mine water systems. However, most numerical reservoir modelling software are developed for typical environments, such as porous media (a.o. many codes developed for petroleum reservoirs or groundwater formations) and cannot be applied to mine systems. Indeed, mines are atypical environments that encompass different types of flow, namely porous media flow, fracture flow and open pipe flow usually described with different modelling codes. Ideally, 3D models accounting for the subsurface geometry, geology, hydrogeology, thermal aspects and flooding history of the mine as well as long-term effects of heat extraction should be used. A new modelling approach is proposed here to predict the long-term behaviour of Minewater geothermal systems in a reactive and reliable manner. The simulation method integrates concepts for heat and mass transport through various media (e.g., back-filled areas, fractured rock, fault zones). As a base, the standard software EPANET2 (Rossman 1999; 2000) was used. Additional equations for describing heat flow through the mine (both through open pipes and from the rock massif) have been implemented. Among others, parametric methods are used to bypass some shortcomings in the physical models used for the subsurface. The advantage is that the complete geometry of the mine workings can be integrated and that computing is fast enough to allow implementing and testing several scenarios (e.g. contributions from fault zones, different assumptions about the actual status of shafts, drifts and mined out areas) in an efficient way (Ferket et al., 2011). EPANET allows to incorporate the full complexity of the subsurface mine structure. As a result, the flooded mine is considered as a network of pipes, each with a custom-defined diameter, length and roughness.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
NASA Astrophysics Data System (ADS)
Svensen, Henrik H.; Planke, Sverre; Silkoset, Petter; Hammer, Øyvind; Iyer, Karthik; Schmid, Dani W.; Chevallier, Luc
2017-04-01
Most of the Large Igneous Provinces (LIPs) formed during the last 260 million years are associated with climatic change, oceanic anoxia, or extinctions in marine and terrestrial environments. Current hypotheses involve A) degassing of carbon either from oceans or shallow sea-bed reservoirs, B) carbon and sulfur degassing from flood basalts, C) degassing from sedimentary basins heavily intruded by LIPs. Here we present new data on gas generation and degassing from the Karoo LIP, based on fieldwork, borehole studies (geochemistry, petrography), and thermal modeling. Our data expand and corroborate earlier work on the sub-volcanic processes in the Karoo Basin. We show that 1) hundreds of breccia pipes are rooted in Early Jurassic sill complexes and contact aureoles within the organic-rich Ecca Group, 2) statistical analyses reveal a fractal distribution of pipes and that they are overdispersed at small scales (<50 m), but clustered at larger scales (>800 m), 3) contact aureoles show a reduction in organic matter content towards the sill contacts, reduced to zero in the nearest zones, producing more carbon gas compared to thermal model calculations, 4) we find up to 3 permil reduction in the d13C of the organic matter remaining in the aureoles, and finally 5) some pipes contain recent oil seeps. We conclude that the sill-pipe system released thermogenic gases to the Early Jurassic atmosphere and that the pipes may have acted as permanent fluid flow pathways.
CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING
It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...
MEASURING AND MODELING DISINFECTION WALL DEMAND IN METALLIC PIPES
A field test procedure was developed and implemented in Detroit to estimate chlorine loss due to wall demand in older 6" (152 mm) and 8" (203 mm) diameter, unlined cast iron pipes. The test results produced extremely high wall reaction rate coefficients that increased significan...
Solar central receiver hybrid power system, phase 1. Volume 3: Appendices
NASA Astrophysics Data System (ADS)
1979-09-01
Parametric salt piping data, sample heat exchanger calculations, and salt/materials compatibility evaluations are presented. Data lists that include the heliostat field coordinates, the STEAEC program input data, the hybrid receiver design drawings and models, and the piping stress analysis are also presented.
NASA Astrophysics Data System (ADS)
Senapati, Pradipta Kumar; Mishra, Barada Kanta
2017-06-01
The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.
NASA Astrophysics Data System (ADS)
Davidson, Eric A.; Verchot, Louis V.
2000-12-01
Because several soil properties and processes affect emissions of nitric oxide (NO) and nitrous oxide (N2O) from soils, it has been difficult to develop effective and robust algorithms to predict emissions of these gases in biogeochemical models. The conceptual "hole-in-the-pipe" (HIP) model has been used effectively to interpret results of numerous studies, but the ranges of climatic conditions and soil properties are often relatively narrow for each individual study. The Trace Gas Network (TRAGNET) database offers a unique opportunity to test the validity of one manifestation of the HIP model across a broad range of sites, including temperate and tropical climates, grasslands and forests, and native vegetation and agricultural crops. The logarithm of the sum of NO + N2O emissions was positively and significantly correlated with the logarithm of the sum of extractable soil NH4+ + NO3-. The logarithm of the ratio of NO:N2O emissions was negatively and significantly correlated with water-filled pore space (WFPS). These analyses confirm the applicability of the HIP model concept, that indices of soil N availability correlate with the sum of NO+N2O emissions, while soil water content is a strong and robust controller of the ratio of NO:N2O emissions. However, these parameterizations have only broad-brush accuracy because of unaccounted variation among studies in the soil depths where gas production occurs, where soil N and water are measured, and other factors. Although accurate predictions at individual sites may still require site-specific parameterization of these empirical functions, the parameterizations presented here, particularly the one for WFPS, may be appropriate for global biogeochemical modeling. Moreover, this integration of data sets demonstrates the broad ranging applicability of the HIP conceptual approach for understanding soil emissions of NO and N2O.
Experimental study of geysers through a vent pipe connected to flowing sewers.
Huang, Biao; Wu, Shiqiang; Zhu, David Z; Schulz, Harry E
2017-04-01
Geysers of air-water mixtures in urban drainage systems is receiving considerable attention due to public safety concerns. However, the geyser formation process and its relation with air release from pressurized pipes are still relatively little known. A large-scale physical model, that consisted of a main tunnel with a diameter of 270 mm and a length of 25 m connecting two reservoirs and a vertical vent pipe, was established to investigate geyser evolution and pressure transients. Experimental results including dynamic pressure data and high speed videos were analysed in order to characterize geysering flow through the vent pipe. Pressure transients were observed during geysering events. Their amplitudes were found to be about three times the driving pressure head and their periods were close to the classic surge tank predictions. The influence of flow rate and vent pipe size were examined: geyser heights and pressure peaks decreased for small flow rate and large diameter vent pipe. It is suggested that geyser heights are related with the pressure head and the density of the air-water mixture.
The effect of trench width on the behavior of buried rigid pipes
NASA Astrophysics Data System (ADS)
Balkaya, Müge; Saǧlamer, Ahmet
2014-12-01
In this study, in order to determine the effect of trench width (Bd) on the behavior of buried rigid pipes, a concrete pipe having an outside diameter of 150 cm and wall thickness (t) of 15 cm was analyzed using 2D PLAXIS finite element program. In the analyses, three different trench widths (Bd = 2.20 m, 3.40 m, and 4.40 m) were modeled. The results of the analyses indicated that, as the width of the trench increases, the axial force, shear force, bending moment, effective normal stress, and the earth load acting on the pipe increased. The variations of the loads acting on the pipe due to the increasing trench widths were also evaluated using the Marston load theory. When the loads calculated by the Marston Load Theory and the finite element analysis were compared with each other, it was seen that the Marston Load Theory resulted in slightly higher load values than the finite element analysis. On the other hand, for the two methods, the loads acting on the pipe increased with increasing trench width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saurav, Kumar; Chandan, Vikas
District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less
NASA Astrophysics Data System (ADS)
Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.
2017-07-01
The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.
Sun, Fu; Chen, Ji-ning; Zeng, Si-yu
2008-12-01
A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.
A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.
Dürrenmatt, David J; Wanner, Oskar
2014-01-01
Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. Copyright © 2013 Elsevier Ltd. All rights reserved.
Smart Pipe System for a Shipyard 4.0
Fraga-Lamas, Paula; Noceda-Davila, Diego; Fernández-Caramés, Tiago M.; Díaz-Bouza, Manuel A.; Vilar-Montesinos, Miguel
2016-01-01
As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification) are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS) and improve the overall accuracy of the system. PMID:27999392
Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron
2014-01-01
Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562
Smart Pipe System for a Shipyard 4.0.
Fraga-Lamas, Paula; Noceda-Davila, Diego; Fernández-Caramés, Tiago M; Díaz-Bouza, Manuel A; Vilar-Montesinos, Miguel
2016-12-20
As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification) are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS) and improve the overall accuracy of the system.
Douterelo, I; Sharpe, R L; Boxall, J B
2013-02-01
Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this might have on drinking water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.
Islami, Farhad; Pourshams, Akram; Vedanthan, Rajesh; Poustchi, Hossein; Kamangar, Farin; Golozar, Asieh; Etemadi, Arash; Khademi, Hooman; Freedman, Neal D; Merat, Shahin; Garg, Vaani; Fuster, Valentin; Wakefield, Jon; Dawsey, Sanford M; Pharoah, Paul; Brennan, Paul; Abnet, Christian C; Malekzadeh, Reza; Boffetta, Paolo
2013-02-01
Water-pipe and smokeless tobacco use have been associated with several adverse health outcomes. However, little information is available on the association between water-pipe use and heart disease (HD). Therefore, we investigated the association of smoking water-pipe and chewing nass (a mixture of tobacco, lime and ash) with prevalent HD. Cross-sectional study. Baseline data (collected in 2004-2008) from a prospective population-based study in Golestan Province, Iran. 50 045 residents of Golestan (40-75 years old; 42.4% men). ORs and 95% CIs from multivariate logistic regression models for the association of water-pipe and nass use with HD prevalence. A total of 3051 (6.1%) participants reported a history of HD, and 525 (1.1%) and 3726 (7.5%) reported ever water-pipe or nass use, respectively. Heavy water-pipe smoking was significantly associated with HD prevalence (highest level of cumulative use vs never use, OR=3.75; 95% CI 1.52 to 9.22; p for trend=0.04). This association persisted when using different cut-off points, when restricting HD to those taking nitrate compound medications, and among never cigarette smokers. There was no significant association between nass use and HD prevalence (highest category of use vs never use, OR=0.91; 95% CI 0.69 to 1.20). Our study suggests a significant association between HD and heavy water-pipe smoking. Although the existing evidence suggesting similar biological consequences of water-pipe and cigarette smoking make this association plausible, results of our study were based on a modest number of water-pipe users and need to be replicated in further studies.
The IT Leader as Alchemist: Finding the True Gold
ERIC Educational Resources Information Center
Bleed, Ron
2006-01-01
The Information technology (IT) leader within higher education can be viewed from three scenarios: (1) the IT leader as plumber; (2) the IT leader as gardener; and (3) the IT leader as alchemist. In the first scenario, the college or university network consists of pipes, and the role of the IT leader resembles that of a plumber, who keeps the…
Scalable Energy Networks to Promote Energy Security
2011-07-01
commodity. Consider current challenges of converting energy and synchronizing sources with loads—for example, capturing solar energy to provide hot water...distributed micro-generation1 (for example, roof-mounted solar panels) and plug-in elec- tric/hybrid vehicles. The imperative extends to our national...transformers, battery chargers ■■ distribution: pumps, pipes, switches, cables ■■ applications: lighting, automobiles, personal electronic devices